Bump date stamp to 20121110
[official-gcc.git] / gcc / hwint.c
blobb7bcfa5974032ed08d59f70e55ce657be23d1e92
1 /* Operations on HOST_WIDE_INT.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "diagnostic-core.h"
26 #if GCC_VERSION < 3004
28 /* The functions clz_hwi, ctz_hwi, ffs_hwi, floor_log2, ceil_log2,
29 and exact_log2 are defined as inline functions in hwint.h
30 if GCC_VERSION >= 3004.
31 The definitions here are used for older versions of GCC and
32 non-GCC bootstrap compilers. */
34 /* Given X, an unsigned number, return the largest int Y such that 2**Y <= X.
35 If X is 0, return -1. */
37 int
38 floor_log2 (unsigned HOST_WIDE_INT x)
40 int t = 0;
42 if (x == 0)
43 return -1;
45 if (HOST_BITS_PER_WIDE_INT > 64)
46 if (x >= (unsigned HOST_WIDE_INT) 1 << (t + 64))
47 t += 64;
48 if (HOST_BITS_PER_WIDE_INT > 32)
49 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 32))
50 t += 32;
51 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 16))
52 t += 16;
53 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 8))
54 t += 8;
55 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 4))
56 t += 4;
57 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 2))
58 t += 2;
59 if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 1))
60 t += 1;
62 return t;
65 /* Given X, an unsigned number, return the largest Y such that 2**Y >= X. */
67 int
68 ceil_log2 (unsigned HOST_WIDE_INT x)
70 return floor_log2 (x - 1) + 1;
73 /* Return the logarithm of X, base 2, considering X unsigned,
74 if X is a power of 2. Otherwise, returns -1. */
76 int
77 exact_log2 (unsigned HOST_WIDE_INT x)
79 if (x != (x & -x))
80 return -1;
81 return floor_log2 (x);
84 /* Given X, an unsigned number, return the number of least significant bits
85 that are zero. When X == 0, the result is the word size. */
87 int
88 ctz_hwi (unsigned HOST_WIDE_INT x)
90 return x ? floor_log2 (x & -x) : HOST_BITS_PER_WIDE_INT;
93 /* Similarly for most significant bits. */
95 int
96 clz_hwi (unsigned HOST_WIDE_INT x)
98 return HOST_BITS_PER_WIDE_INT - 1 - floor_log2(x);
101 /* Similar to ctz_hwi, except that the least significant bit is numbered
102 starting from 1, and X == 0 yields 0. */
105 ffs_hwi (unsigned HOST_WIDE_INT x)
107 return 1 + floor_log2 (x & -x);
110 /* Return the number of set bits in X. */
113 popcount_hwi (unsigned HOST_WIDE_INT x)
115 int i, ret = 0;
116 size_t bits = sizeof (x) * CHAR_BIT;
118 for (i = 0; i < bits; i += 1)
120 ret += x & 1;
121 x >>= 1;
124 return ret;
127 #endif /* GCC_VERSION < 3004 */
129 /* Compute the absolute value of X. */
131 HOST_WIDE_INT
132 abs_hwi (HOST_WIDE_INT x)
134 gcc_checking_assert (x != HOST_WIDE_INT_MIN);
135 return x >= 0 ? x : -x;
138 /* Compute the absolute value of X as an unsigned type. */
140 unsigned HOST_WIDE_INT
141 absu_hwi (HOST_WIDE_INT x)
143 return x >= 0 ? (unsigned HOST_WIDE_INT)x : -(unsigned HOST_WIDE_INT)x;
146 /* Compute the greatest common divisor of two numbers A and B using
147 Euclid's algorithm. */
149 HOST_WIDE_INT
150 gcd (HOST_WIDE_INT a, HOST_WIDE_INT b)
152 HOST_WIDE_INT x, y, z;
154 x = abs_hwi (a);
155 y = abs_hwi (b);
157 while (x > 0)
159 z = y % x;
160 y = x;
161 x = z;
164 return y;
167 /* For X and Y positive integers, return X multiplied by Y and check
168 that the result does not overflow. */
170 HOST_WIDE_INT
171 pos_mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
173 if (x != 0)
174 gcc_checking_assert ((HOST_WIDE_INT_MAX) / x >= y);
176 return x * y;
179 /* Return X multiplied by Y and check that the result does not
180 overflow. */
182 HOST_WIDE_INT
183 mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
185 gcc_checking_assert (x != HOST_WIDE_INT_MIN
186 && y != HOST_WIDE_INT_MIN);
188 if (x >= 0)
190 if (y >= 0)
191 return pos_mul_hwi (x, y);
193 return -pos_mul_hwi (x, -y);
196 if (y >= 0)
197 return -pos_mul_hwi (-x, y);
199 return pos_mul_hwi (-x, -y);
202 /* Compute the least common multiple of two numbers A and B . */
204 HOST_WIDE_INT
205 least_common_multiple (HOST_WIDE_INT a, HOST_WIDE_INT b)
207 return mul_hwi (abs_hwi (a) / gcd (a, b), abs_hwi (b));