Bump date stamp to 20121110
[official-gcc.git] / gcc / hash-table.c
blob7909a9894868f4c3a890bbc075ad99cc5c7a447d
1 /* A type-safe hash table template.
2 Copyright (C) 2012
3 Free Software Foundation, Inc.
4 Contributed by Lawrence Crowl <crowl@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* This file implements a typed hash table.
24 The implementation borrows from libiberty's hashtab. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "hash-table.h"
32 /* Table of primes and multiplicative inverses.
34 Note that these are not minimally reduced inverses. Unlike when generating
35 code to divide by a constant, we want to be able to use the same algorithm
36 all the time. All of these inverses (are implied to) have bit 32 set.
38 For the record, here's the function that computed the table; it's a
39 vastly simplified version of the function of the same name from gcc. */
41 #if 0
42 unsigned int
43 ceil_log2 (unsigned int x)
45 int i;
46 for (i = 31; i >= 0 ; --i)
47 if (x > (1u << i))
48 return i+1;
49 abort ();
52 unsigned int
53 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
55 unsigned long long mhigh;
56 double nx;
57 int lgup, post_shift;
58 int pow, pow2;
59 int n = 32, precision = 32;
61 lgup = ceil_log2 (d);
62 pow = n + lgup;
63 pow2 = n + lgup - precision;
65 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
66 mhigh = nx / d;
68 *shiftp = lgup - 1;
69 *mlp = mhigh;
70 return mhigh >> 32;
72 #endif
74 struct prime_ent const prime_tab[] = {
75 { 7, 0x24924925, 0x9999999b, 2 },
76 { 13, 0x3b13b13c, 0x745d1747, 3 },
77 { 31, 0x08421085, 0x1a7b9612, 4 },
78 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
79 { 127, 0x02040811, 0x0624dd30, 6 },
80 { 251, 0x05197f7e, 0x073260a5, 7 },
81 { 509, 0x01824366, 0x02864fc8, 8 },
82 { 1021, 0x00c0906d, 0x014191f7, 9 },
83 { 2039, 0x0121456f, 0x0161e69e, 10 },
84 { 4093, 0x00300902, 0x00501908, 11 },
85 { 8191, 0x00080041, 0x00180241, 12 },
86 { 16381, 0x000c0091, 0x00140191, 13 },
87 { 32749, 0x002605a5, 0x002a06e6, 14 },
88 { 65521, 0x000f00e2, 0x00110122, 15 },
89 { 131071, 0x00008001, 0x00018003, 16 },
90 { 262139, 0x00014002, 0x0001c004, 17 },
91 { 524287, 0x00002001, 0x00006001, 18 },
92 { 1048573, 0x00003001, 0x00005001, 19 },
93 { 2097143, 0x00004801, 0x00005801, 20 },
94 { 4194301, 0x00000c01, 0x00001401, 21 },
95 { 8388593, 0x00001e01, 0x00002201, 22 },
96 { 16777213, 0x00000301, 0x00000501, 23 },
97 { 33554393, 0x00001381, 0x00001481, 24 },
98 { 67108859, 0x00000141, 0x000001c1, 25 },
99 { 134217689, 0x000004e1, 0x00000521, 26 },
100 { 268435399, 0x00000391, 0x000003b1, 27 },
101 { 536870909, 0x00000019, 0x00000029, 28 },
102 { 1073741789, 0x0000008d, 0x00000095, 29 },
103 { 2147483647, 0x00000003, 0x00000007, 30 },
104 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
105 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
108 /* The following function returns an index into the above table of the
109 nearest prime number which is greater than N, and near a power of two. */
111 unsigned int
112 hash_table_higher_prime_index (unsigned long n)
114 unsigned int low = 0;
115 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
117 while (low != high)
119 unsigned int mid = low + (high - low) / 2;
120 if (n > prime_tab[mid].prime)
121 low = mid + 1;
122 else
123 high = mid;
126 /* If we've run out of primes, abort. */
127 if (n > prime_tab[low].prime)
129 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
130 abort ();
133 return low;
136 /* Return X % Y using multiplicative inverse values INV and SHIFT.
138 The multiplicative inverses computed above are for 32-bit types,
139 and requires that we be able to compute a highpart multiply.
141 FIX: I am not at all convinced that
142 3 loads, 2 multiplications, 3 shifts, and 3 additions
143 will be faster than
144 1 load and 1 modulus
145 on modern systems running a compiler. */
147 #ifdef UNSIGNED_64BIT_TYPE
148 static inline hashval_t
149 mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
151 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
152 hashval_t t1, t2, t3, t4, q, r;
154 t1 = ((ull)x * inv) >> 32;
155 t2 = x - t1;
156 t3 = t2 >> 1;
157 t4 = t1 + t3;
158 q = t4 >> shift;
159 r = x - (q * y);
161 return r;
163 #endif
165 /* Compute the primary table index for HASH given current prime index. */
167 hashval_t
168 hash_table_mod1 (hashval_t hash, unsigned int index)
170 const struct prime_ent *p = &prime_tab[index];
171 #ifdef UNSIGNED_64BIT_TYPE
172 if (sizeof (hashval_t) * CHAR_BIT <= 32)
173 return mul_mod (hash, p->prime, p->inv, p->shift);
174 #endif
175 return hash % p->prime;
179 /* Compute the secondary table index for HASH given current prime index. */
181 hashval_t
182 hash_table_mod2 (hashval_t hash, unsigned int index)
184 const struct prime_ent *p = &prime_tab[index];
185 #ifdef UNSIGNED_64BIT_TYPE
186 if (sizeof (hashval_t) * CHAR_BIT <= 32)
187 return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
188 #endif
189 return 1 + hash % (p->prime - 2);