1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "diagnostic-core.h"
28 #include "sparseset.h"
31 #include "insn-config.h"
35 #include "basic-block.h"
39 #include "tree-pass.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes
;
120 DEF_VEC_ALLOC_P(df_ref
,heap
);
121 static VEC(df_ref
,heap
) *use_def_ref
;
122 static VEC(df_ref
,heap
) *reg_defs
;
123 static VEC(df_ref
,heap
) *reg_defs_stack
;
125 /* The MD bitmaps are trimmed to include only live registers to cut
126 memory usage on testcases like insn-recog.c. Track live registers
127 in the basic block and do not perform forward propagation if the
128 destination is a dead pseudo occurring in a note. */
129 static bitmap local_md
;
130 static bitmap local_lr
;
132 /* Return the only def in USE's use-def chain, or NULL if there is
133 more than one def in the chain. */
136 get_def_for_use (df_ref use
)
138 return VEC_index (df_ref
, use_def_ref
, DF_REF_ID (use
));
142 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
143 TOP_FLAG says which artificials uses should be used, when DEF_REC
144 is an artificial def vector. LOCAL_MD is modified as after a
145 df_md_simulate_* function; we do more or less the same processing
146 done there, so we do not use those functions. */
148 #define DF_MD_GEN_FLAGS \
149 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
152 process_defs (df_ref
*def_rec
, int top_flag
)
155 while ((def
= *def_rec
++) != NULL
)
157 df_ref curr_def
= VEC_index (df_ref
, reg_defs
, DF_REF_REGNO (def
));
160 if ((DF_REF_FLAGS (def
) & DF_REF_AT_TOP
) != top_flag
)
163 dregno
= DF_REF_REGNO (def
);
165 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, curr_def
);
168 /* Do not store anything if "transitioning" from NULL to NULL. But
169 otherwise, push a special entry on the stack to tell the
170 leave_block callback that the entry in reg_defs was NULL. */
171 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
174 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, def
);
177 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
179 bitmap_set_bit (local_md
, dregno
);
180 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
184 bitmap_clear_bit (local_md
, dregno
);
185 VEC_replace (df_ref
, reg_defs
, dregno
, def
);
191 /* Fill the use_def_ref vector with values for the uses in USE_REC,
192 taking reaching definitions info from LOCAL_MD and REG_DEFS.
193 TOP_FLAG says which artificials uses should be used, when USE_REC
194 is an artificial use vector. */
197 process_uses (df_ref
*use_rec
, int top_flag
)
200 while ((use
= *use_rec
++) != NULL
)
201 if ((DF_REF_FLAGS (use
) & DF_REF_AT_TOP
) == top_flag
)
203 unsigned int uregno
= DF_REF_REGNO (use
);
204 if (VEC_index (df_ref
, reg_defs
, uregno
)
205 && !bitmap_bit_p (local_md
, uregno
)
206 && bitmap_bit_p (local_lr
, uregno
))
207 VEC_replace (df_ref
, use_def_ref
, DF_REF_ID (use
),
208 VEC_index (df_ref
, reg_defs
, uregno
));
214 single_def_use_enter_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
217 int bb_index
= bb
->index
;
218 struct df_md_bb_info
*md_bb_info
= df_md_get_bb_info (bb_index
);
219 struct df_lr_bb_info
*lr_bb_info
= df_lr_get_bb_info (bb_index
);
222 bitmap_copy (local_md
, &md_bb_info
->in
);
223 bitmap_copy (local_lr
, &lr_bb_info
->in
);
225 /* Push a marker for the leave_block callback. */
226 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, NULL
);
228 process_uses (df_get_artificial_uses (bb_index
), DF_REF_AT_TOP
);
229 process_defs (df_get_artificial_defs (bb_index
), DF_REF_AT_TOP
);
231 /* We don't call df_simulate_initialize_forwards, as it may overestimate
232 the live registers if there are unused artificial defs. We prefer
233 liveness to be underestimated. */
235 FOR_BB_INSNS (bb
, insn
)
238 unsigned int uid
= INSN_UID (insn
);
239 process_uses (DF_INSN_UID_USES (uid
), 0);
240 process_uses (DF_INSN_UID_EQ_USES (uid
), 0);
241 process_defs (DF_INSN_UID_DEFS (uid
), 0);
242 df_simulate_one_insn_forwards (bb
, insn
, local_lr
);
245 process_uses (df_get_artificial_uses (bb_index
), 0);
246 process_defs (df_get_artificial_defs (bb_index
), 0);
249 /* Pop the definitions created in this basic block when leaving its
253 single_def_use_leave_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
254 basic_block bb ATTRIBUTE_UNUSED
)
257 while ((saved_def
= VEC_pop (df_ref
, reg_defs_stack
)) != NULL
)
259 unsigned int dregno
= DF_REF_REGNO (saved_def
);
261 /* See also process_defs. */
262 if (saved_def
== VEC_index (df_ref
, reg_defs
, dregno
))
263 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
265 VEC_replace (df_ref
, reg_defs
, dregno
, saved_def
);
270 /* Build a vector holding the reaching definitions of uses reached by a
271 single dominating definition. */
274 build_single_def_use_links (void)
276 struct dom_walk_data walk_data
;
278 /* We use the multiple definitions problem to compute our restricted
280 df_set_flags (DF_EQ_NOTES
);
281 df_md_add_problem ();
282 df_note_add_problem ();
284 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES
);
286 use_def_ref
= VEC_alloc (df_ref
, heap
, DF_USES_TABLE_SIZE ());
287 VEC_safe_grow_cleared (df_ref
, heap
, use_def_ref
, DF_USES_TABLE_SIZE ());
289 reg_defs
= VEC_alloc (df_ref
, heap
, max_reg_num ());
290 VEC_safe_grow_cleared (df_ref
, heap
, reg_defs
, max_reg_num ());
292 reg_defs_stack
= VEC_alloc (df_ref
, heap
, n_basic_blocks
* 10);
293 local_md
= BITMAP_ALLOC (NULL
);
294 local_lr
= BITMAP_ALLOC (NULL
);
296 /* Walk the dominator tree looking for single reaching definitions
297 dominating the uses. This is similar to how SSA form is built. */
298 walk_data
.dom_direction
= CDI_DOMINATORS
;
299 walk_data
.initialize_block_local_data
= NULL
;
300 walk_data
.before_dom_children
= single_def_use_enter_block
;
301 walk_data
.after_dom_children
= single_def_use_leave_block
;
303 init_walk_dominator_tree (&walk_data
);
304 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
305 fini_walk_dominator_tree (&walk_data
);
307 BITMAP_FREE (local_lr
);
308 BITMAP_FREE (local_md
);
309 VEC_free (df_ref
, heap
, reg_defs
);
310 VEC_free (df_ref
, heap
, reg_defs_stack
);
314 /* Do not try to replace constant addresses or addresses of local and
315 argument slots. These MEM expressions are made only once and inserted
316 in many instructions, as well as being used to control symbol table
317 output. It is not safe to clobber them.
319 There are some uncommon cases where the address is already in a register
320 for some reason, but we cannot take advantage of that because we have
321 no easy way to unshare the MEM. In addition, looking up all stack
322 addresses is costly. */
325 can_simplify_addr (rtx addr
)
329 if (CONSTANT_ADDRESS_P (addr
))
332 if (GET_CODE (addr
) == PLUS
)
333 reg
= XEXP (addr
, 0);
338 || (REGNO (reg
) != FRAME_POINTER_REGNUM
339 && REGNO (reg
) != HARD_FRAME_POINTER_REGNUM
340 && REGNO (reg
) != ARG_POINTER_REGNUM
));
343 /* Returns a canonical version of X for the address, from the point of view,
344 that all multiplications are represented as MULT instead of the multiply
345 by a power of 2 being represented as ASHIFT.
347 Every ASHIFT we find has been made by simplify_gen_binary and was not
348 there before, so it is not shared. So we can do this in place. */
351 canonicalize_address (rtx x
)
354 switch (GET_CODE (x
))
357 if (CONST_INT_P (XEXP (x
, 1))
358 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
))
359 && INTVAL (XEXP (x
, 1)) >= 0)
361 HOST_WIDE_INT shift
= INTVAL (XEXP (x
, 1));
363 XEXP (x
, 1) = gen_int_mode ((HOST_WIDE_INT
) 1 << shift
,
371 if (GET_CODE (XEXP (x
, 0)) == PLUS
372 || GET_CODE (XEXP (x
, 0)) == ASHIFT
373 || GET_CODE (XEXP (x
, 0)) == CONST
)
374 canonicalize_address (XEXP (x
, 0));
388 /* OLD is a memory address. Return whether it is good to use NEW instead,
389 for a memory access in the given MODE. */
392 should_replace_address (rtx old_rtx
, rtx new_rtx
, enum machine_mode mode
,
393 addr_space_t as
, bool speed
)
397 if (rtx_equal_p (old_rtx
, new_rtx
)
398 || !memory_address_addr_space_p (mode
, new_rtx
, as
))
401 /* Copy propagation is always ok. */
402 if (REG_P (old_rtx
) && REG_P (new_rtx
))
405 /* Prefer the new address if it is less expensive. */
406 gain
= (address_cost (old_rtx
, mode
, as
, speed
)
407 - address_cost (new_rtx
, mode
, as
, speed
));
409 /* If the addresses have equivalent cost, prefer the new address
410 if it has the highest `set_src_cost'. That has the potential of
411 eliminating the most insns without additional costs, and it
412 is the same that cse.c used to do. */
414 gain
= set_src_cost (new_rtx
, speed
) - set_src_cost (old_rtx
, speed
);
420 /* Flags for the last parameter of propagate_rtx_1. */
423 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
424 if it is false, propagate_rtx_1 returns false if, for at least
425 one occurrence OLD, it failed to collapse the result to a constant.
426 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
427 collapse to zero if replacing (reg:M B) with (reg:M A).
429 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
430 propagate_rtx_1 just tries to make cheaper and valid memory
434 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
435 outside memory addresses. This is needed because propagate_rtx_1 does
436 not do any analysis on memory; thus it is very conservative and in general
437 it will fail if non-read-only MEMs are found in the source expression.
439 PR_HANDLE_MEM is set when the source of the propagation was not
440 another MEM. Then, it is safe not to treat non-read-only MEMs as
441 ``opaque'' objects. */
444 /* Set when costs should be optimized for speed. */
445 PR_OPTIMIZE_FOR_SPEED
= 4
449 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
450 resulting expression. Replace *PX with a new RTL expression if an
451 occurrence of OLD was found.
453 This is only a wrapper around simplify-rtx.c: do not add any pattern
454 matching code here. (The sole exception is the handling of LO_SUM, but
455 that is because there is no simplify_gen_* function for LO_SUM). */
458 propagate_rtx_1 (rtx
*px
, rtx old_rtx
, rtx new_rtx
, int flags
)
460 rtx x
= *px
, tem
= NULL_RTX
, op0
, op1
, op2
;
461 enum rtx_code code
= GET_CODE (x
);
462 enum machine_mode mode
= GET_MODE (x
);
463 enum machine_mode op_mode
;
464 bool can_appear
= (flags
& PR_CAN_APPEAR
) != 0;
465 bool valid_ops
= true;
467 if (!(flags
& PR_HANDLE_MEM
) && MEM_P (x
) && !MEM_READONLY_P (x
))
469 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
470 they have side effects or not). */
471 *px
= (side_effects_p (x
)
472 ? gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
)
473 : gen_rtx_SCRATCH (GET_MODE (x
)));
477 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
478 address, and we are *not* inside one. */
485 /* If this is an expression, try recursive substitution. */
486 switch (GET_RTX_CLASS (code
))
490 op_mode
= GET_MODE (op0
);
491 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
492 if (op0
== XEXP (x
, 0))
494 tem
= simplify_gen_unary (code
, mode
, op0
, op_mode
);
501 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
502 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
503 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
505 tem
= simplify_gen_binary (code
, mode
, op0
, op1
);
509 case RTX_COMM_COMPARE
:
512 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
513 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
514 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
515 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
517 tem
= simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
521 case RTX_BITFIELD_OPS
:
525 op_mode
= GET_MODE (op0
);
526 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
527 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
528 valid_ops
&= propagate_rtx_1 (&op2
, old_rtx
, new_rtx
, flags
);
529 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
531 if (op_mode
== VOIDmode
)
532 op_mode
= GET_MODE (op0
);
533 tem
= simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
537 /* The only case we try to handle is a SUBREG. */
541 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
542 if (op0
== XEXP (x
, 0))
544 tem
= simplify_gen_subreg (mode
, op0
, GET_MODE (SUBREG_REG (x
)),
550 if (code
== MEM
&& x
!= new_rtx
)
555 /* There are some addresses that we cannot work on. */
556 if (!can_simplify_addr (op0
))
559 op0
= new_op0
= targetm
.delegitimize_address (op0
);
560 valid_ops
&= propagate_rtx_1 (&new_op0
, old_rtx
, new_rtx
,
561 flags
| PR_CAN_APPEAR
);
563 /* Dismiss transformation that we do not want to carry on. */
566 || !(GET_MODE (new_op0
) == GET_MODE (op0
)
567 || GET_MODE (new_op0
) == VOIDmode
))
570 canonicalize_address (new_op0
);
572 /* Copy propagations are always ok. Otherwise check the costs. */
573 if (!(REG_P (old_rtx
) && REG_P (new_rtx
))
574 && !should_replace_address (op0
, new_op0
, GET_MODE (x
),
576 flags
& PR_OPTIMIZE_FOR_SPEED
))
579 tem
= replace_equiv_address_nv (x
, new_op0
);
582 else if (code
== LO_SUM
)
587 /* The only simplification we do attempts to remove references to op0
588 or make it constant -- in both cases, op0's invalidity will not
589 make the result invalid. */
590 propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
| PR_CAN_APPEAR
);
591 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
592 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
595 /* (lo_sum (high x) x) -> x */
596 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
599 tem
= gen_rtx_LO_SUM (mode
, op0
, op1
);
601 /* OP1 is likely not a legitimate address, otherwise there would have
602 been no LO_SUM. We want it to disappear if it is invalid, return
603 false in that case. */
604 return memory_address_p (mode
, tem
);
607 else if (code
== REG
)
609 if (rtx_equal_p (x
, old_rtx
))
621 /* No change, no trouble. */
627 /* The replacement we made so far is valid, if all of the recursive
628 replacements were valid, or we could simplify everything to
630 return valid_ops
|| can_appear
|| CONSTANT_P (tem
);
634 /* for_each_rtx traversal function that returns 1 if BODY points to
635 a non-constant mem. */
638 varying_mem_p (rtx
*body
, void *data ATTRIBUTE_UNUSED
)
641 return MEM_P (x
) && !MEM_READONLY_P (x
);
645 /* Replace all occurrences of OLD in X with NEW and try to simplify the
646 resulting expression (in mode MODE). Return a new expression if it is
647 a constant, otherwise X.
649 Simplifications where occurrences of NEW collapse to a constant are always
650 accepted. All simplifications are accepted if NEW is a pseudo too.
651 Otherwise, we accept simplifications that have a lower or equal cost. */
654 propagate_rtx (rtx x
, enum machine_mode mode
, rtx old_rtx
, rtx new_rtx
,
661 if (REG_P (new_rtx
) && REGNO (new_rtx
) < FIRST_PSEUDO_REGISTER
)
666 || CONSTANT_P (new_rtx
)
667 || (GET_CODE (new_rtx
) == SUBREG
668 && REG_P (SUBREG_REG (new_rtx
))
669 && (GET_MODE_SIZE (mode
)
670 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx
))))))
671 flags
|= PR_CAN_APPEAR
;
672 if (!for_each_rtx (&new_rtx
, varying_mem_p
, NULL
))
673 flags
|= PR_HANDLE_MEM
;
676 flags
|= PR_OPTIMIZE_FOR_SPEED
;
679 collapsed
= propagate_rtx_1 (&tem
, old_rtx
, copy_rtx (new_rtx
), flags
);
680 if (tem
== x
|| !collapsed
)
683 /* gen_lowpart_common will not be able to process VOIDmode entities other
685 if (GET_MODE (tem
) == VOIDmode
&& !CONST_INT_P (tem
))
688 if (GET_MODE (tem
) == VOIDmode
)
689 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, tem
);
691 gcc_assert (GET_MODE (tem
) == mode
);
699 /* Return true if the register from reference REF is killed
700 between FROM to (but not including) TO. */
703 local_ref_killed_between_p (df_ref ref
, rtx from
, rtx to
)
707 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
713 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
715 df_ref def
= *def_rec
;
716 if (DF_REF_REGNO (ref
) == DF_REF_REGNO (def
))
724 /* Check if the given DEF is available in INSN. This would require full
725 computation of available expressions; we check only restricted conditions:
726 - if DEF is the sole definition of its register, go ahead;
727 - in the same basic block, we check for no definitions killing the
728 definition of DEF_INSN;
729 - if USE's basic block has DEF's basic block as the sole predecessor,
730 we check if the definition is killed after DEF_INSN or before
731 TARGET_INSN insn, in their respective basic blocks. */
733 use_killed_between (df_ref use
, rtx def_insn
, rtx target_insn
)
735 basic_block def_bb
= BLOCK_FOR_INSN (def_insn
);
736 basic_block target_bb
= BLOCK_FOR_INSN (target_insn
);
740 /* We used to have a def reaching a use that is _before_ the def,
741 with the def not dominating the use even though the use and def
742 are in the same basic block, when a register may be used
743 uninitialized in a loop. This should not happen anymore since
744 we do not use reaching definitions, but still we test for such
745 cases and assume that DEF is not available. */
746 if (def_bb
== target_bb
747 ? DF_INSN_LUID (def_insn
) >= DF_INSN_LUID (target_insn
)
748 : !dominated_by_p (CDI_DOMINATORS
, target_bb
, def_bb
))
751 /* Check if the reg in USE has only one definition. We already
752 know that this definition reaches use, or we wouldn't be here.
753 However, this is invalid for hard registers because if they are
754 live at the beginning of the function it does not mean that we
755 have an uninitialized access. */
756 regno
= DF_REF_REGNO (use
);
757 def
= DF_REG_DEF_CHAIN (regno
);
759 && DF_REF_NEXT_REG (def
) == NULL
760 && regno
>= FIRST_PSEUDO_REGISTER
)
763 /* Check locally if we are in the same basic block. */
764 if (def_bb
== target_bb
)
765 return local_ref_killed_between_p (use
, def_insn
, target_insn
);
767 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
768 if (single_pred_p (target_bb
)
769 && single_pred (target_bb
) == def_bb
)
773 /* See if USE is killed between DEF_INSN and the last insn in the
774 basic block containing DEF_INSN. */
775 x
= df_bb_regno_last_def_find (def_bb
, regno
);
776 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) >= DF_INSN_LUID (def_insn
))
779 /* See if USE is killed between TARGET_INSN and the first insn in the
780 basic block containing TARGET_INSN. */
781 x
= df_bb_regno_first_def_find (target_bb
, regno
);
782 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) < DF_INSN_LUID (target_insn
))
788 /* Otherwise assume the worst case. */
793 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
794 would require full computation of available expressions;
795 we check only restricted conditions, see use_killed_between. */
797 all_uses_available_at (rtx def_insn
, rtx target_insn
)
800 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
801 rtx def_set
= single_set (def_insn
);
804 gcc_assert (def_set
);
806 /* If target_insn comes right after def_insn, which is very common
807 for addresses, we can use a quicker test. Ignore debug insns
808 other than target insns for this. */
809 next
= NEXT_INSN (def_insn
);
810 while (next
&& next
!= target_insn
&& DEBUG_INSN_P (next
))
811 next
= NEXT_INSN (next
);
812 if (next
== target_insn
&& REG_P (SET_DEST (def_set
)))
814 rtx def_reg
= SET_DEST (def_set
);
816 /* If the insn uses the reg that it defines, the substitution is
818 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
820 df_ref use
= *use_rec
;
821 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
824 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
826 df_ref use
= *use_rec
;
827 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
833 rtx def_reg
= REG_P (SET_DEST (def_set
)) ? SET_DEST (def_set
) : NULL_RTX
;
835 /* Look at all the uses of DEF_INSN, and see if they are not
836 killed between DEF_INSN and TARGET_INSN. */
837 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
839 df_ref use
= *use_rec
;
840 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
842 if (use_killed_between (use
, def_insn
, target_insn
))
845 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
847 df_ref use
= *use_rec
;
848 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
850 if (use_killed_between (use
, def_insn
, target_insn
))
859 static df_ref
*active_defs
;
860 #ifdef ENABLE_CHECKING
861 static sparseset active_defs_check
;
864 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
865 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
866 too, for checking purposes. */
869 register_active_defs (df_ref
*use_rec
)
873 df_ref use
= *use_rec
++;
874 df_ref def
= get_def_for_use (use
);
875 int regno
= DF_REF_REGNO (use
);
877 #ifdef ENABLE_CHECKING
878 sparseset_set_bit (active_defs_check
, regno
);
880 active_defs
[regno
] = def
;
885 /* Build the use->def links that we use to update the dataflow info
886 for new uses. Note that building the links is very cheap and if
887 it were done earlier, they could be used to rule out invalid
888 propagations (in addition to what is done in all_uses_available_at).
889 I'm not doing this yet, though. */
892 update_df_init (rtx def_insn
, rtx insn
)
894 #ifdef ENABLE_CHECKING
895 sparseset_clear (active_defs_check
);
897 register_active_defs (DF_INSN_USES (def_insn
));
898 register_active_defs (DF_INSN_USES (insn
));
899 register_active_defs (DF_INSN_EQ_USES (insn
));
903 /* Update the USE_DEF_REF array for the given use, using the active definitions
904 in the ACTIVE_DEFS array to match pseudos to their def. */
907 update_uses (df_ref
*use_rec
)
911 df_ref use
= *use_rec
++;
912 int regno
= DF_REF_REGNO (use
);
914 /* Set up the use-def chain. */
915 if (DF_REF_ID (use
) >= (int) VEC_length (df_ref
, use_def_ref
))
916 VEC_safe_grow_cleared (df_ref
, heap
, use_def_ref
,
917 DF_REF_ID (use
) + 1);
919 #ifdef ENABLE_CHECKING
920 gcc_assert (sparseset_bit_p (active_defs_check
, regno
));
922 VEC_replace (df_ref
, use_def_ref
, DF_REF_ID (use
), active_defs
[regno
]);
927 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
928 uses if NOTES_ONLY is true. */
931 update_df (rtx insn
, rtx note
)
933 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
937 df_uses_create (&XEXP (note
, 0), insn
, DF_REF_IN_NOTE
);
938 df_notes_rescan (insn
);
942 df_uses_create (&PATTERN (insn
), insn
, 0);
943 df_insn_rescan (insn
);
944 update_uses (DF_INSN_INFO_USES (insn_info
));
947 update_uses (DF_INSN_INFO_EQ_USES (insn_info
));
951 /* Try substituting NEW into LOC, which originated from forward propagation
952 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
953 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
954 new insn is not recognized. Return whether the substitution was
958 try_fwprop_subst (df_ref use
, rtx
*loc
, rtx new_rtx
, rtx def_insn
, bool set_reg_equal
)
960 rtx insn
= DF_REF_INSN (use
);
961 rtx set
= single_set (insn
);
963 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
967 update_df_init (def_insn
, insn
);
969 /* forward_propagate_subreg may be operating on an instruction with
970 multiple sets. If so, assume the cost of the new instruction is
971 not greater than the old one. */
973 old_cost
= set_src_cost (SET_SRC (set
), speed
);
976 fprintf (dump_file
, "\nIn insn %d, replacing\n ", INSN_UID (insn
));
977 print_inline_rtx (dump_file
, *loc
, 2);
978 fprintf (dump_file
, "\n with ");
979 print_inline_rtx (dump_file
, new_rtx
, 2);
980 fprintf (dump_file
, "\n");
983 validate_unshare_change (insn
, loc
, new_rtx
, true);
984 if (!verify_changes (0))
987 fprintf (dump_file
, "Changes to insn %d not recognized\n",
992 else if (DF_REF_TYPE (use
) == DF_REF_REG_USE
994 && set_src_cost (SET_SRC (set
), speed
) > old_cost
)
997 fprintf (dump_file
, "Changes to insn %d not profitable\n",
1005 fprintf (dump_file
, "Changed insn %d\n", INSN_UID (insn
));
1011 confirm_change_group ();
1018 /* Can also record a simplified value in a REG_EQUAL note,
1019 making a new one if one does not already exist. */
1023 fprintf (dump_file
, " Setting REG_EQUAL note\n");
1025 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1029 if ((ok
|| note
) && !CONSTANT_P (new_rtx
))
1030 update_df (insn
, note
);
1035 /* For the given single_set INSN, containing SRC known to be a
1036 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1037 is redundant due to the register being set by a LOAD_EXTEND_OP
1038 load from memory. */
1041 free_load_extend (rtx src
, rtx insn
)
1045 df_ref use
= 0, def
;
1047 reg
= XEXP (src
, 0);
1048 #ifdef LOAD_EXTEND_OP
1049 if (LOAD_EXTEND_OP (GET_MODE (reg
)) != GET_CODE (src
))
1053 for (use_vec
= DF_INSN_USES (insn
); *use_vec
; use_vec
++)
1057 if (!DF_REF_IS_ARTIFICIAL (use
)
1058 && DF_REF_TYPE (use
) == DF_REF_REG_USE
1059 && DF_REF_REG (use
) == reg
)
1065 def
= get_def_for_use (use
);
1069 if (DF_REF_IS_ARTIFICIAL (def
))
1072 if (NONJUMP_INSN_P (DF_REF_INSN (def
)))
1074 rtx patt
= PATTERN (DF_REF_INSN (def
));
1076 if (GET_CODE (patt
) == SET
1077 && GET_CODE (SET_SRC (patt
)) == MEM
1078 && rtx_equal_p (SET_DEST (patt
), reg
))
1084 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1087 forward_propagate_subreg (df_ref use
, rtx def_insn
, rtx def_set
)
1089 rtx use_reg
= DF_REF_REG (use
);
1092 /* Only consider subregs... */
1093 enum machine_mode use_mode
= GET_MODE (use_reg
);
1094 if (GET_CODE (use_reg
) != SUBREG
1095 || !REG_P (SET_DEST (def_set
)))
1098 /* If this is a paradoxical SUBREG... */
1099 if (GET_MODE_SIZE (use_mode
)
1100 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg
))))
1102 /* If this is a paradoxical SUBREG, we have no idea what value the
1103 extra bits would have. However, if the operand is equivalent to
1104 a SUBREG whose operand is the same as our mode, and all the modes
1105 are within a word, we can just use the inner operand because
1106 these SUBREGs just say how to treat the register. */
1107 use_insn
= DF_REF_INSN (use
);
1108 src
= SET_SRC (def_set
);
1109 if (GET_CODE (src
) == SUBREG
1110 && REG_P (SUBREG_REG (src
))
1111 && REGNO (SUBREG_REG (src
)) >= FIRST_PSEUDO_REGISTER
1112 && GET_MODE (SUBREG_REG (src
)) == use_mode
1113 && subreg_lowpart_p (src
)
1114 && all_uses_available_at (def_insn
, use_insn
))
1115 return try_fwprop_subst (use
, DF_REF_LOC (use
), SUBREG_REG (src
),
1119 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1120 is the low part of the reg being extended then just use the inner
1121 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1122 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1123 or due to the operation being a no-op when applied to registers.
1124 For example, if we have:
1126 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1127 B: (... (subreg:SI (reg:DI X)) ...)
1129 and mode_rep_extended says that Y is already sign-extended,
1130 the backend will typically allow A to be combined with the
1131 definition of Y or, failing that, allow A to be deleted after
1132 reload through register tying. Introducing more uses of Y
1133 prevents both optimisations. */
1134 else if (subreg_lowpart_p (use_reg
))
1136 use_insn
= DF_REF_INSN (use
);
1137 src
= SET_SRC (def_set
);
1138 if ((GET_CODE (src
) == ZERO_EXTEND
1139 || GET_CODE (src
) == SIGN_EXTEND
)
1140 && REG_P (XEXP (src
, 0))
1141 && REGNO (XEXP (src
, 0)) >= FIRST_PSEUDO_REGISTER
1142 && GET_MODE (XEXP (src
, 0)) == use_mode
1143 && !free_load_extend (src
, def_insn
)
1144 && (targetm
.mode_rep_extended (use_mode
, GET_MODE (src
))
1145 != (int) GET_CODE (src
))
1146 && all_uses_available_at (def_insn
, use_insn
))
1147 return try_fwprop_subst (use
, DF_REF_LOC (use
), XEXP (src
, 0),
1154 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1157 forward_propagate_asm (df_ref use
, rtx def_insn
, rtx def_set
, rtx reg
)
1159 rtx use_insn
= DF_REF_INSN (use
), src
, use_pat
, asm_operands
, new_rtx
, *loc
;
1163 gcc_assert ((DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
) == 0);
1165 src
= SET_SRC (def_set
);
1166 use_pat
= PATTERN (use_insn
);
1168 /* In __asm don't replace if src might need more registers than
1169 reg, as that could increase register pressure on the __asm. */
1170 use_vec
= DF_INSN_USES (def_insn
);
1171 if (use_vec
[0] && use_vec
[1])
1174 update_df_init (def_insn
, use_insn
);
1175 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
1176 asm_operands
= NULL_RTX
;
1177 switch (GET_CODE (use_pat
))
1180 asm_operands
= use_pat
;
1183 if (MEM_P (SET_DEST (use_pat
)))
1185 loc
= &SET_DEST (use_pat
);
1186 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1188 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1190 asm_operands
= SET_SRC (use_pat
);
1193 for (i
= 0; i
< XVECLEN (use_pat
, 0); i
++)
1194 if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == SET
)
1196 if (MEM_P (SET_DEST (XVECEXP (use_pat
, 0, i
))))
1198 loc
= &SET_DEST (XVECEXP (use_pat
, 0, i
));
1199 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
,
1202 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1204 asm_operands
= SET_SRC (XVECEXP (use_pat
, 0, i
));
1206 else if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == ASM_OPERANDS
)
1207 asm_operands
= XVECEXP (use_pat
, 0, i
);
1213 gcc_assert (asm_operands
&& GET_CODE (asm_operands
) == ASM_OPERANDS
);
1214 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (asm_operands
); i
++)
1216 loc
= &ASM_OPERANDS_INPUT (asm_operands
, i
);
1217 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1219 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1222 if (num_changes_pending () == 0 || !apply_change_group ())
1225 update_df (use_insn
, NULL
);
1230 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1234 forward_propagate_and_simplify (df_ref use
, rtx def_insn
, rtx def_set
)
1236 rtx use_insn
= DF_REF_INSN (use
);
1237 rtx use_set
= single_set (use_insn
);
1238 rtx src
, reg
, new_rtx
, *loc
;
1240 enum machine_mode mode
;
1243 if (INSN_CODE (use_insn
) < 0)
1244 asm_use
= asm_noperands (PATTERN (use_insn
));
1246 if (!use_set
&& asm_use
< 0 && !DEBUG_INSN_P (use_insn
))
1249 /* Do not propagate into PC, CC0, etc. */
1250 if (use_set
&& GET_MODE (SET_DEST (use_set
)) == VOIDmode
)
1253 /* If def and use are subreg, check if they match. */
1254 reg
= DF_REF_REG (use
);
1255 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1257 if (SUBREG_BYTE (SET_DEST (def_set
)) != SUBREG_BYTE (reg
))
1260 /* Check if the def had a subreg, but the use has the whole reg. */
1261 else if (REG_P (reg
) && GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1263 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1264 previous case, the optimization is possible and often useful indeed. */
1265 else if (GET_CODE (reg
) == SUBREG
&& REG_P (SET_DEST (def_set
)))
1266 reg
= SUBREG_REG (reg
);
1268 /* Make sure that we can treat REG as having the same mode as the
1269 source of DEF_SET. */
1270 if (GET_MODE (SET_DEST (def_set
)) != GET_MODE (reg
))
1273 /* Check if the substitution is valid (last, because it's the most
1274 expensive check!). */
1275 src
= SET_SRC (def_set
);
1276 if (!CONSTANT_P (src
) && !all_uses_available_at (def_insn
, use_insn
))
1279 /* Check if the def is loading something from the constant pool; in this
1280 case we would undo optimization such as compress_float_constant.
1281 Still, we can set a REG_EQUAL note. */
1282 if (MEM_P (src
) && MEM_READONLY_P (src
))
1284 rtx x
= avoid_constant_pool_reference (src
);
1285 if (x
!= src
&& use_set
)
1287 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1288 rtx old_rtx
= note
? XEXP (note
, 0) : SET_SRC (use_set
);
1289 rtx new_rtx
= simplify_replace_rtx (old_rtx
, src
, x
);
1290 if (old_rtx
!= new_rtx
)
1291 set_unique_reg_note (use_insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1297 return forward_propagate_asm (use
, def_insn
, def_set
, reg
);
1299 /* Else try simplifying. */
1301 if (DF_REF_TYPE (use
) == DF_REF_REG_MEM_STORE
)
1303 loc
= &SET_DEST (use_set
);
1304 set_reg_equal
= false;
1308 loc
= &INSN_VAR_LOCATION_LOC (use_insn
);
1309 set_reg_equal
= false;
1313 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1314 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1315 loc
= &XEXP (note
, 0);
1317 loc
= &SET_SRC (use_set
);
1319 /* Do not replace an existing REG_EQUAL note if the insn is not
1320 recognized. Either we're already replacing in the note, or we'll
1321 separately try plugging the definition in the note and simplifying.
1322 And only install a REQ_EQUAL note when the destination is a REG,
1323 as the note would be invalid otherwise. */
1324 set_reg_equal
= (note
== NULL_RTX
&& REG_P (SET_DEST (use_set
)));
1327 if (GET_MODE (*loc
) == VOIDmode
)
1328 mode
= GET_MODE (SET_DEST (use_set
));
1330 mode
= GET_MODE (*loc
);
1332 new_rtx
= propagate_rtx (*loc
, mode
, reg
, src
,
1333 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
)));
1338 return try_fwprop_subst (use
, loc
, new_rtx
, def_insn
, set_reg_equal
);
1342 /* Given a use USE of an insn, if it has a single reaching
1343 definition, try to forward propagate it into that insn.
1344 Return true if cfg cleanup will be needed. */
1347 forward_propagate_into (df_ref use
)
1350 rtx def_insn
, def_set
, use_insn
;
1353 if (DF_REF_FLAGS (use
) & DF_REF_READ_WRITE
)
1355 if (DF_REF_IS_ARTIFICIAL (use
))
1358 /* Only consider uses that have a single definition. */
1359 def
= get_def_for_use (use
);
1362 if (DF_REF_FLAGS (def
) & DF_REF_READ_WRITE
)
1364 if (DF_REF_IS_ARTIFICIAL (def
))
1367 /* Do not propagate loop invariant definitions inside the loop. */
1368 if (DF_REF_BB (def
)->loop_father
!= DF_REF_BB (use
)->loop_father
)
1371 /* Check if the use is still present in the insn! */
1372 use_insn
= DF_REF_INSN (use
);
1373 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1374 parent
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1376 parent
= PATTERN (use_insn
);
1378 if (!reg_mentioned_p (DF_REF_REG (use
), parent
))
1381 def_insn
= DF_REF_INSN (def
);
1382 if (multiple_sets (def_insn
))
1384 def_set
= single_set (def_insn
);
1388 /* Only try one kind of propagation. If two are possible, we'll
1389 do it on the following iterations. */
1390 if (forward_propagate_and_simplify (use
, def_insn
, def_set
)
1391 || forward_propagate_subreg (use
, def_insn
, def_set
))
1393 if (cfun
->can_throw_non_call_exceptions
1394 && find_reg_note (use_insn
, REG_EH_REGION
, NULL_RTX
)
1395 && purge_dead_edges (DF_REF_BB (use
)))
1406 calculate_dominance_info (CDI_DOMINATORS
);
1408 /* We do not always want to propagate into loops, so we have to find
1409 loops and be careful about them. But we have to call flow_loops_find
1410 before df_analyze, because flow_loops_find may introduce new jump
1411 insns (sadly) if we are not working in cfglayout mode. */
1412 loop_optimizer_init (0);
1414 build_single_def_use_links ();
1415 df_set_flags (DF_DEFER_INSN_RESCAN
);
1417 active_defs
= XNEWVEC (df_ref
, max_reg_num ());
1418 #ifdef ENABLE_CHECKING
1419 active_defs_check
= sparseset_alloc (max_reg_num ());
1426 loop_optimizer_finalize ();
1428 VEC_free (df_ref
, heap
, use_def_ref
);
1430 #ifdef ENABLE_CHECKING
1431 sparseset_free (active_defs_check
);
1434 free_dominance_info (CDI_DOMINATORS
);
1436 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1440 "\nNumber of successful forward propagations: %d\n\n",
1445 /* Main entry point. */
1450 return optimize
> 0 && flag_forward_propagate
;
1457 bool need_cleanup
= false;
1461 /* Go through all the uses. df_uses_create will create new ones at the
1462 end, and we'll go through them as well.
1464 Do not forward propagate addresses into loops until after unrolling.
1465 CSE did so because it was able to fix its own mess, but we are not. */
1467 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1469 df_ref use
= DF_USES_GET (i
);
1471 if (DF_REF_TYPE (use
) == DF_REF_REG_USE
1472 || DF_REF_BB (use
)->loop_father
== NULL
1473 /* The outer most loop is not really a loop. */
1474 || loop_outer (DF_REF_BB (use
)->loop_father
) == NULL
)
1475 need_cleanup
|= forward_propagate_into (use
);
1484 struct rtl_opt_pass pass_rtl_fwprop
=
1488 "fwprop1", /* name */
1489 OPTGROUP_NONE
, /* optinfo_flags */
1490 gate_fwprop
, /* gate */
1491 fwprop
, /* execute */
1494 0, /* static_pass_number */
1495 TV_FWPROP
, /* tv_id */
1496 0, /* properties_required */
1497 0, /* properties_provided */
1498 0, /* properties_destroyed */
1499 0, /* todo_flags_start */
1502 | TODO_verify_rtl_sharing
/* todo_flags_finish */
1510 bool need_cleanup
= false;
1514 /* Go through all the uses. df_uses_create will create new ones at the
1515 end, and we'll go through them as well. */
1516 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1518 df_ref use
= DF_USES_GET (i
);
1520 if (DF_REF_TYPE (use
) != DF_REF_REG_USE
1521 && DF_REF_BB (use
)->loop_father
!= NULL
1522 /* The outer most loop is not really a loop. */
1523 && loop_outer (DF_REF_BB (use
)->loop_father
) != NULL
)
1524 need_cleanup
|= forward_propagate_into (use
);
1534 struct rtl_opt_pass pass_rtl_fwprop_addr
=
1538 "fwprop2", /* name */
1539 OPTGROUP_NONE
, /* optinfo_flags */
1540 gate_fwprop
, /* gate */
1541 fwprop_addr
, /* execute */
1544 0, /* static_pass_number */
1545 TV_FWPROP
, /* tv_id */
1546 0, /* properties_required */
1547 0, /* properties_provided */
1548 0, /* properties_destroyed */
1549 0, /* todo_flags_start */
1550 TODO_df_finish
| TODO_verify_rtl_sharing
/* todo_flags_finish */