1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992-2012 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
47 #include "hard-reg-set.h"
49 #include "insn-config.h"
52 #include "basic-block.h"
55 #include "langhooks.h"
60 struct target_rtl default_target_rtl
;
62 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
65 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
67 /* Commonly used modes. */
69 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
70 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
71 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
72 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
74 /* Datastructures maintained for currently processed function in RTL form. */
76 struct rtl_data x_rtl
;
78 /* Indexed by pseudo register number, gives the rtx for that pseudo.
79 Allocated in parallel with regno_pointer_align.
80 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
81 with length attribute nested in top level structures. */
85 /* This is *not* reset after each function. It gives each CODE_LABEL
86 in the entire compilation a unique label number. */
88 static GTY(()) int label_num
= 1;
90 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
91 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
92 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
93 is set only for MODE_INT and MODE_VECTOR_INT modes. */
95 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
99 REAL_VALUE_TYPE dconst0
;
100 REAL_VALUE_TYPE dconst1
;
101 REAL_VALUE_TYPE dconst2
;
102 REAL_VALUE_TYPE dconstm1
;
103 REAL_VALUE_TYPE dconsthalf
;
105 /* Record fixed-point constant 0 and 1. */
106 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
107 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
109 /* We make one copy of (const_int C) where C is in
110 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
111 to save space during the compilation and simplify comparisons of
114 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
116 /* Standard pieces of rtx, to be substituted directly into things. */
119 rtx simple_return_rtx
;
122 /* A hash table storing CONST_INTs whose absolute value is greater
123 than MAX_SAVED_CONST_INT. */
125 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
126 htab_t const_int_htab
;
128 /* A hash table storing memory attribute structures. */
129 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
130 htab_t mem_attrs_htab
;
132 /* A hash table storing register attribute structures. */
133 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
134 htab_t reg_attrs_htab
;
136 /* A hash table storing all CONST_DOUBLEs. */
137 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
138 htab_t const_double_htab
;
140 /* A hash table storing all CONST_FIXEDs. */
141 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
142 htab_t const_fixed_htab
;
144 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
145 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
146 #define first_label_num (crtl->emit.x_first_label_num)
148 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
149 static void set_used_decls (tree
);
150 static void mark_label_nuses (rtx
);
151 static hashval_t
const_int_htab_hash (const void *);
152 static int const_int_htab_eq (const void *, const void *);
153 static hashval_t
const_double_htab_hash (const void *);
154 static int const_double_htab_eq (const void *, const void *);
155 static rtx
lookup_const_double (rtx
);
156 static hashval_t
const_fixed_htab_hash (const void *);
157 static int const_fixed_htab_eq (const void *, const void *);
158 static rtx
lookup_const_fixed (rtx
);
159 static hashval_t
mem_attrs_htab_hash (const void *);
160 static int mem_attrs_htab_eq (const void *, const void *);
161 static hashval_t
reg_attrs_htab_hash (const void *);
162 static int reg_attrs_htab_eq (const void *, const void *);
163 static reg_attrs
*get_reg_attrs (tree
, int);
164 static rtx
gen_const_vector (enum machine_mode
, int);
165 static void copy_rtx_if_shared_1 (rtx
*orig
);
167 /* Probability of the conditional branch currently proceeded by try_split.
168 Set to -1 otherwise. */
169 int split_branch_probability
= -1;
171 /* Returns a hash code for X (which is a really a CONST_INT). */
174 const_int_htab_hash (const void *x
)
176 return (hashval_t
) INTVAL ((const_rtx
) x
);
179 /* Returns nonzero if the value represented by X (which is really a
180 CONST_INT) is the same as that given by Y (which is really a
184 const_int_htab_eq (const void *x
, const void *y
)
186 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
189 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
191 const_double_htab_hash (const void *x
)
193 const_rtx
const value
= (const_rtx
) x
;
196 if (GET_MODE (value
) == VOIDmode
)
197 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
200 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
201 /* MODE is used in the comparison, so it should be in the hash. */
202 h
^= GET_MODE (value
);
207 /* Returns nonzero if the value represented by X (really a ...)
208 is the same as that represented by Y (really a ...) */
210 const_double_htab_eq (const void *x
, const void *y
)
212 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
214 if (GET_MODE (a
) != GET_MODE (b
))
216 if (GET_MODE (a
) == VOIDmode
)
217 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
218 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
220 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
221 CONST_DOUBLE_REAL_VALUE (b
));
224 /* Returns a hash code for X (which is really a CONST_FIXED). */
227 const_fixed_htab_hash (const void *x
)
229 const_rtx
const value
= (const_rtx
) x
;
232 h
= fixed_hash (CONST_FIXED_VALUE (value
));
233 /* MODE is used in the comparison, so it should be in the hash. */
234 h
^= GET_MODE (value
);
238 /* Returns nonzero if the value represented by X (really a ...)
239 is the same as that represented by Y (really a ...). */
242 const_fixed_htab_eq (const void *x
, const void *y
)
244 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
246 if (GET_MODE (a
) != GET_MODE (b
))
248 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
251 /* Returns a hash code for X (which is a really a mem_attrs *). */
254 mem_attrs_htab_hash (const void *x
)
256 const mem_attrs
*const p
= (const mem_attrs
*) x
;
258 return (p
->alias
^ (p
->align
* 1000)
259 ^ (p
->addrspace
* 4000)
260 ^ ((p
->offset_known_p
? p
->offset
: 0) * 50000)
261 ^ ((p
->size_known_p
? p
->size
: 0) * 2500000)
262 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
265 /* Return true if the given memory attributes are equal. */
268 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
270 return (p
->alias
== q
->alias
271 && p
->offset_known_p
== q
->offset_known_p
272 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
273 && p
->size_known_p
== q
->size_known_p
274 && (!p
->size_known_p
|| p
->size
== q
->size
)
275 && p
->align
== q
->align
276 && p
->addrspace
== q
->addrspace
277 && (p
->expr
== q
->expr
278 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
279 && operand_equal_p (p
->expr
, q
->expr
, 0))));
282 /* Returns nonzero if the value represented by X (which is really a
283 mem_attrs *) is the same as that given by Y (which is also really a
287 mem_attrs_htab_eq (const void *x
, const void *y
)
289 return mem_attrs_eq_p ((const mem_attrs
*) x
, (const mem_attrs
*) y
);
292 /* Set MEM's memory attributes so that they are the same as ATTRS. */
295 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
299 /* If everything is the default, we can just clear the attributes. */
300 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
306 slot
= htab_find_slot (mem_attrs_htab
, attrs
, INSERT
);
309 *slot
= ggc_alloc_mem_attrs ();
310 memcpy (*slot
, attrs
, sizeof (mem_attrs
));
313 MEM_ATTRS (mem
) = (mem_attrs
*) *slot
;
316 /* Returns a hash code for X (which is a really a reg_attrs *). */
319 reg_attrs_htab_hash (const void *x
)
321 const reg_attrs
*const p
= (const reg_attrs
*) x
;
323 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
326 /* Returns nonzero if the value represented by X (which is really a
327 reg_attrs *) is the same as that given by Y (which is also really a
331 reg_attrs_htab_eq (const void *x
, const void *y
)
333 const reg_attrs
*const p
= (const reg_attrs
*) x
;
334 const reg_attrs
*const q
= (const reg_attrs
*) y
;
336 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
338 /* Allocate a new reg_attrs structure and insert it into the hash table if
339 one identical to it is not already in the table. We are doing this for
343 get_reg_attrs (tree decl
, int offset
)
348 /* If everything is the default, we can just return zero. */
349 if (decl
== 0 && offset
== 0)
353 attrs
.offset
= offset
;
355 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
358 *slot
= ggc_alloc_reg_attrs ();
359 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
362 return (reg_attrs
*) *slot
;
367 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
373 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
374 MEM_VOLATILE_P (x
) = true;
380 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
381 don't attempt to share with the various global pieces of rtl (such as
382 frame_pointer_rtx). */
385 gen_raw_REG (enum machine_mode mode
, int regno
)
387 rtx x
= gen_rtx_raw_REG (mode
, regno
);
388 ORIGINAL_REGNO (x
) = regno
;
392 /* There are some RTL codes that require special attention; the generation
393 functions do the raw handling. If you add to this list, modify
394 special_rtx in gengenrtl.c as well. */
397 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
401 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
402 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
404 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
405 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
406 return const_true_rtx
;
409 /* Look up the CONST_INT in the hash table. */
410 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
411 (hashval_t
) arg
, INSERT
);
413 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
419 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
421 return GEN_INT (trunc_int_for_mode (c
, mode
));
424 /* CONST_DOUBLEs might be created from pairs of integers, or from
425 REAL_VALUE_TYPEs. Also, their length is known only at run time,
426 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
428 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
429 hash table. If so, return its counterpart; otherwise add it
430 to the hash table and return it. */
432 lookup_const_double (rtx real
)
434 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
441 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
442 VALUE in mode MODE. */
444 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
446 rtx real
= rtx_alloc (CONST_DOUBLE
);
447 PUT_MODE (real
, mode
);
451 return lookup_const_double (real
);
454 /* Determine whether FIXED, a CONST_FIXED, already exists in the
455 hash table. If so, return its counterpart; otherwise add it
456 to the hash table and return it. */
459 lookup_const_fixed (rtx fixed
)
461 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
468 /* Return a CONST_FIXED rtx for a fixed-point value specified by
469 VALUE in mode MODE. */
472 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
474 rtx fixed
= rtx_alloc (CONST_FIXED
);
475 PUT_MODE (fixed
, mode
);
479 return lookup_const_fixed (fixed
);
482 /* Constructs double_int from rtx CST. */
485 rtx_to_double_int (const_rtx cst
)
489 if (CONST_INT_P (cst
))
490 r
= double_int::from_shwi (INTVAL (cst
));
491 else if (CONST_DOUBLE_AS_INT_P (cst
))
493 r
.low
= CONST_DOUBLE_LOW (cst
);
494 r
.high
= CONST_DOUBLE_HIGH (cst
);
503 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
507 immed_double_int_const (double_int i
, enum machine_mode mode
)
509 return immed_double_const (i
.low
, i
.high
, mode
);
512 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
513 of ints: I0 is the low-order word and I1 is the high-order word.
514 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
515 implied upper bits are copies of the high bit of i1. The value
516 itself is neither signed nor unsigned. Do not use this routine for
517 non-integer modes; convert to REAL_VALUE_TYPE and use
518 CONST_DOUBLE_FROM_REAL_VALUE. */
521 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
526 /* There are the following cases (note that there are no modes with
527 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
529 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
531 2) If the value of the integer fits into HOST_WIDE_INT anyway
532 (i.e., i1 consists only from copies of the sign bit, and sign
533 of i0 and i1 are the same), then we return a CONST_INT for i0.
534 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
535 if (mode
!= VOIDmode
)
537 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
538 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
539 /* We can get a 0 for an error mark. */
540 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
541 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
543 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
544 return gen_int_mode (i0
, mode
);
547 /* If this integer fits in one word, return a CONST_INT. */
548 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
551 /* We use VOIDmode for integers. */
552 value
= rtx_alloc (CONST_DOUBLE
);
553 PUT_MODE (value
, VOIDmode
);
555 CONST_DOUBLE_LOW (value
) = i0
;
556 CONST_DOUBLE_HIGH (value
) = i1
;
558 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
559 XWINT (value
, i
) = 0;
561 return lookup_const_double (value
);
565 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
567 /* In case the MD file explicitly references the frame pointer, have
568 all such references point to the same frame pointer. This is
569 used during frame pointer elimination to distinguish the explicit
570 references to these registers from pseudos that happened to be
573 If we have eliminated the frame pointer or arg pointer, we will
574 be using it as a normal register, for example as a spill
575 register. In such cases, we might be accessing it in a mode that
576 is not Pmode and therefore cannot use the pre-allocated rtx.
578 Also don't do this when we are making new REGs in reload, since
579 we don't want to get confused with the real pointers. */
581 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
583 if (regno
== FRAME_POINTER_REGNUM
584 && (!reload_completed
|| frame_pointer_needed
))
585 return frame_pointer_rtx
;
586 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
587 if (regno
== HARD_FRAME_POINTER_REGNUM
588 && (!reload_completed
|| frame_pointer_needed
))
589 return hard_frame_pointer_rtx
;
591 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
592 if (regno
== ARG_POINTER_REGNUM
)
593 return arg_pointer_rtx
;
595 #ifdef RETURN_ADDRESS_POINTER_REGNUM
596 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
597 return return_address_pointer_rtx
;
599 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
600 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
601 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
602 return pic_offset_table_rtx
;
603 if (regno
== STACK_POINTER_REGNUM
)
604 return stack_pointer_rtx
;
608 /* If the per-function register table has been set up, try to re-use
609 an existing entry in that table to avoid useless generation of RTL.
611 This code is disabled for now until we can fix the various backends
612 which depend on having non-shared hard registers in some cases. Long
613 term we want to re-enable this code as it can significantly cut down
614 on the amount of useless RTL that gets generated.
616 We'll also need to fix some code that runs after reload that wants to
617 set ORIGINAL_REGNO. */
622 && regno
< FIRST_PSEUDO_REGISTER
623 && reg_raw_mode
[regno
] == mode
)
624 return regno_reg_rtx
[regno
];
627 return gen_raw_REG (mode
, regno
);
631 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
633 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
635 /* This field is not cleared by the mere allocation of the rtx, so
642 /* Generate a memory referring to non-trapping constant memory. */
645 gen_const_mem (enum machine_mode mode
, rtx addr
)
647 rtx mem
= gen_rtx_MEM (mode
, addr
);
648 MEM_READONLY_P (mem
) = 1;
649 MEM_NOTRAP_P (mem
) = 1;
653 /* Generate a MEM referring to fixed portions of the frame, e.g., register
657 gen_frame_mem (enum machine_mode mode
, rtx addr
)
659 rtx mem
= gen_rtx_MEM (mode
, addr
);
660 MEM_NOTRAP_P (mem
) = 1;
661 set_mem_alias_set (mem
, get_frame_alias_set ());
665 /* Generate a MEM referring to a temporary use of the stack, not part
666 of the fixed stack frame. For example, something which is pushed
667 by a target splitter. */
669 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
671 rtx mem
= gen_rtx_MEM (mode
, addr
);
672 MEM_NOTRAP_P (mem
) = 1;
673 if (!cfun
->calls_alloca
)
674 set_mem_alias_set (mem
, get_frame_alias_set ());
678 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
679 this construct would be valid, and false otherwise. */
682 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
683 const_rtx reg
, unsigned int offset
)
685 unsigned int isize
= GET_MODE_SIZE (imode
);
686 unsigned int osize
= GET_MODE_SIZE (omode
);
688 /* All subregs must be aligned. */
689 if (offset
% osize
!= 0)
692 /* The subreg offset cannot be outside the inner object. */
696 /* ??? This should not be here. Temporarily continue to allow word_mode
697 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
698 Generally, backends are doing something sketchy but it'll take time to
700 if (omode
== word_mode
)
702 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
703 is the culprit here, and not the backends. */
704 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
706 /* Allow component subregs of complex and vector. Though given the below
707 extraction rules, it's not always clear what that means. */
708 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
709 && GET_MODE_INNER (imode
) == omode
)
711 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
712 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
713 represent this. It's questionable if this ought to be represented at
714 all -- why can't this all be hidden in post-reload splitters that make
715 arbitrarily mode changes to the registers themselves. */
716 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
718 /* Subregs involving floating point modes are not allowed to
719 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
720 (subreg:SI (reg:DF) 0) isn't. */
721 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
723 if (! (isize
== osize
724 /* LRA can use subreg to store a floating point value in
725 an integer mode. Although the floating point and the
726 integer modes need the same number of hard registers,
727 the size of floating point mode can be less than the
728 integer mode. LRA also uses subregs for a register
729 should be used in different mode in on insn. */
734 /* Paradoxical subregs must have offset zero. */
738 /* This is a normal subreg. Verify that the offset is representable. */
740 /* For hard registers, we already have most of these rules collected in
741 subreg_offset_representable_p. */
742 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
744 unsigned int regno
= REGNO (reg
);
746 #ifdef CANNOT_CHANGE_MODE_CLASS
747 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
748 && GET_MODE_INNER (imode
) == omode
)
750 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
754 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
757 /* For pseudo registers, we want most of the same checks. Namely:
758 If the register no larger than a word, the subreg must be lowpart.
759 If the register is larger than a word, the subreg must be the lowpart
760 of a subword. A subreg does *not* perform arbitrary bit extraction.
761 Given that we've already checked mode/offset alignment, we only have
762 to check subword subregs here. */
763 if (osize
< UNITS_PER_WORD
764 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
766 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
767 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
768 if (offset
% UNITS_PER_WORD
!= low_off
)
775 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
777 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
778 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
787 enum machine_mode inmode
;
789 inmode
= GET_MODE (reg
);
790 if (inmode
== VOIDmode
)
792 return gen_rtx_SUBREG (mode
, reg
,
793 subreg_lowpart_offset (mode
, inmode
));
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
800 gen_rtvec (int n
, ...)
808 /* Don't allocate an empty rtvec... */
815 rt_val
= rtvec_alloc (n
);
817 for (i
= 0; i
< n
; i
++)
818 rt_val
->elem
[i
] = va_arg (p
, rtx
);
825 gen_rtvec_v (int n
, rtx
*argp
)
830 /* Don't allocate an empty rtvec... */
834 rt_val
= rtvec_alloc (n
);
836 for (i
= 0; i
< n
; i
++)
837 rt_val
->elem
[i
] = *argp
++;
842 /* Return the number of bytes between the start of an OUTER_MODE
843 in-memory value and the start of an INNER_MODE in-memory value,
844 given that the former is a lowpart of the latter. It may be a
845 paradoxical lowpart, in which case the offset will be negative
846 on big-endian targets. */
849 byte_lowpart_offset (enum machine_mode outer_mode
,
850 enum machine_mode inner_mode
)
852 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
853 return subreg_lowpart_offset (outer_mode
, inner_mode
);
855 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
858 /* Generate a REG rtx for a new pseudo register of mode MODE.
859 This pseudo is assigned the next sequential register number. */
862 gen_reg_rtx (enum machine_mode mode
)
865 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
867 gcc_assert (can_create_pseudo_p ());
869 /* If a virtual register with bigger mode alignment is generated,
870 increase stack alignment estimation because it might be spilled
872 if (SUPPORTS_STACK_ALIGNMENT
873 && crtl
->stack_alignment_estimated
< align
874 && !crtl
->stack_realign_processed
)
876 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
877 if (crtl
->stack_alignment_estimated
< min_align
)
878 crtl
->stack_alignment_estimated
= min_align
;
881 if (generating_concat_p
882 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
883 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
885 /* For complex modes, don't make a single pseudo.
886 Instead, make a CONCAT of two pseudos.
887 This allows noncontiguous allocation of the real and imaginary parts,
888 which makes much better code. Besides, allocating DCmode
889 pseudos overstrains reload on some machines like the 386. */
890 rtx realpart
, imagpart
;
891 enum machine_mode partmode
= GET_MODE_INNER (mode
);
893 realpart
= gen_reg_rtx (partmode
);
894 imagpart
= gen_reg_rtx (partmode
);
895 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
898 /* Make sure regno_pointer_align, and regno_reg_rtx are large
899 enough to have an element for this pseudo reg number. */
901 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
903 int old_size
= crtl
->emit
.regno_pointer_align_length
;
907 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
908 memset (tmp
+ old_size
, 0, old_size
);
909 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
911 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
912 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
913 regno_reg_rtx
= new1
;
915 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
918 val
= gen_raw_REG (mode
, reg_rtx_no
);
919 regno_reg_rtx
[reg_rtx_no
++] = val
;
923 /* Update NEW with the same attributes as REG, but with OFFSET added
924 to the REG_OFFSET. */
927 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
929 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
930 REG_OFFSET (reg
) + offset
);
933 /* Generate a register with same attributes as REG, but with OFFSET
934 added to the REG_OFFSET. */
937 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
940 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
942 update_reg_offset (new_rtx
, reg
, offset
);
946 /* Generate a new pseudo-register with the same attributes as REG, but
947 with OFFSET added to the REG_OFFSET. */
950 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
952 rtx new_rtx
= gen_reg_rtx (mode
);
954 update_reg_offset (new_rtx
, reg
, offset
);
958 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
959 new register is a (possibly paradoxical) lowpart of the old one. */
962 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
964 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
965 PUT_MODE (reg
, mode
);
968 /* Copy REG's attributes from X, if X has any attributes. If REG and X
969 have different modes, REG is a (possibly paradoxical) lowpart of X. */
972 set_reg_attrs_from_value (rtx reg
, rtx x
)
975 bool can_be_reg_pointer
= true;
977 /* Don't call mark_reg_pointer for incompatible pointer sign
979 while (GET_CODE (x
) == SIGN_EXTEND
980 || GET_CODE (x
) == ZERO_EXTEND
981 || GET_CODE (x
) == TRUNCATE
982 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
984 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
985 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
986 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
987 can_be_reg_pointer
= false;
992 /* Hard registers can be reused for multiple purposes within the same
993 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
995 if (HARD_REGISTER_P (reg
))
998 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1001 if (MEM_OFFSET_KNOWN_P (x
))
1002 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1003 MEM_OFFSET (x
) + offset
);
1004 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1005 mark_reg_pointer (reg
, 0);
1010 update_reg_offset (reg
, x
, offset
);
1011 if (can_be_reg_pointer
&& REG_POINTER (x
))
1012 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1016 /* Generate a REG rtx for a new pseudo register, copying the mode
1017 and attributes from X. */
1020 gen_reg_rtx_and_attrs (rtx x
)
1022 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1023 set_reg_attrs_from_value (reg
, x
);
1027 /* Set the register attributes for registers contained in PARM_RTX.
1028 Use needed values from memory attributes of MEM. */
1031 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1033 if (REG_P (parm_rtx
))
1034 set_reg_attrs_from_value (parm_rtx
, mem
);
1035 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1037 /* Check for a NULL entry in the first slot, used to indicate that the
1038 parameter goes both on the stack and in registers. */
1039 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1040 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1042 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1043 if (REG_P (XEXP (x
, 0)))
1044 REG_ATTRS (XEXP (x
, 0))
1045 = get_reg_attrs (MEM_EXPR (mem
),
1046 INTVAL (XEXP (x
, 1)));
1051 /* Set the REG_ATTRS for registers in value X, given that X represents
1055 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1057 if (GET_CODE (x
) == SUBREG
)
1059 gcc_assert (subreg_lowpart_p (x
));
1064 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1066 if (GET_CODE (x
) == CONCAT
)
1068 if (REG_P (XEXP (x
, 0)))
1069 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1070 if (REG_P (XEXP (x
, 1)))
1071 REG_ATTRS (XEXP (x
, 1))
1072 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1074 if (GET_CODE (x
) == PARALLEL
)
1078 /* Check for a NULL entry, used to indicate that the parameter goes
1079 both on the stack and in registers. */
1080 if (XEXP (XVECEXP (x
, 0, 0), 0))
1085 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1087 rtx y
= XVECEXP (x
, 0, i
);
1088 if (REG_P (XEXP (y
, 0)))
1089 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1094 /* Assign the RTX X to declaration T. */
1097 set_decl_rtl (tree t
, rtx x
)
1099 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1101 set_reg_attrs_for_decl_rtl (t
, x
);
1104 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1105 if the ABI requires the parameter to be passed by reference. */
1108 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1110 DECL_INCOMING_RTL (t
) = x
;
1111 if (x
&& !by_reference_p
)
1112 set_reg_attrs_for_decl_rtl (t
, x
);
1115 /* Identify REG (which may be a CONCAT) as a user register. */
1118 mark_user_reg (rtx reg
)
1120 if (GET_CODE (reg
) == CONCAT
)
1122 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1123 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1127 gcc_assert (REG_P (reg
));
1128 REG_USERVAR_P (reg
) = 1;
1132 /* Identify REG as a probable pointer register and show its alignment
1133 as ALIGN, if nonzero. */
1136 mark_reg_pointer (rtx reg
, int align
)
1138 if (! REG_POINTER (reg
))
1140 REG_POINTER (reg
) = 1;
1143 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1145 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1146 /* We can no-longer be sure just how aligned this pointer is. */
1147 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1150 /* Return 1 plus largest pseudo reg number used in the current function. */
1158 /* Return 1 + the largest label number used so far in the current function. */
1161 max_label_num (void)
1166 /* Return first label number used in this function (if any were used). */
1169 get_first_label_num (void)
1171 return first_label_num
;
1174 /* If the rtx for label was created during the expansion of a nested
1175 function, then first_label_num won't include this label number.
1176 Fix this now so that array indices work later. */
1179 maybe_set_first_label_num (rtx x
)
1181 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1182 first_label_num
= CODE_LABEL_NUMBER (x
);
1185 /* Return a value representing some low-order bits of X, where the number
1186 of low-order bits is given by MODE. Note that no conversion is done
1187 between floating-point and fixed-point values, rather, the bit
1188 representation is returned.
1190 This function handles the cases in common between gen_lowpart, below,
1191 and two variants in cse.c and combine.c. These are the cases that can
1192 be safely handled at all points in the compilation.
1194 If this is not a case we can handle, return 0. */
1197 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1199 int msize
= GET_MODE_SIZE (mode
);
1202 enum machine_mode innermode
;
1204 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1205 so we have to make one up. Yuk. */
1206 innermode
= GET_MODE (x
);
1208 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1209 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1210 else if (innermode
== VOIDmode
)
1211 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1213 xsize
= GET_MODE_SIZE (innermode
);
1215 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1217 if (innermode
== mode
)
1220 /* MODE must occupy no more words than the mode of X. */
1221 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1222 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1225 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1226 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1229 offset
= subreg_lowpart_offset (mode
, innermode
);
1231 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1232 && (GET_MODE_CLASS (mode
) == MODE_INT
1233 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1235 /* If we are getting the low-order part of something that has been
1236 sign- or zero-extended, we can either just use the object being
1237 extended or make a narrower extension. If we want an even smaller
1238 piece than the size of the object being extended, call ourselves
1241 This case is used mostly by combine and cse. */
1243 if (GET_MODE (XEXP (x
, 0)) == mode
)
1245 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1246 return gen_lowpart_common (mode
, XEXP (x
, 0));
1247 else if (msize
< xsize
)
1248 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1250 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1251 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1252 || CONST_DOUBLE_P (x
) || CONST_INT_P (x
))
1253 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1255 /* Otherwise, we can't do this. */
1260 gen_highpart (enum machine_mode mode
, rtx x
)
1262 unsigned int msize
= GET_MODE_SIZE (mode
);
1265 /* This case loses if X is a subreg. To catch bugs early,
1266 complain if an invalid MODE is used even in other cases. */
1267 gcc_assert (msize
<= UNITS_PER_WORD
1268 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1270 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1271 subreg_highpart_offset (mode
, GET_MODE (x
)));
1272 gcc_assert (result
);
1274 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1275 the target if we have a MEM. gen_highpart must return a valid operand,
1276 emitting code if necessary to do so. */
1279 result
= validize_mem (result
);
1280 gcc_assert (result
);
1286 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1287 be VOIDmode constant. */
1289 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1291 if (GET_MODE (exp
) != VOIDmode
)
1293 gcc_assert (GET_MODE (exp
) == innermode
);
1294 return gen_highpart (outermode
, exp
);
1296 return simplify_gen_subreg (outermode
, exp
, innermode
,
1297 subreg_highpart_offset (outermode
, innermode
));
1300 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1303 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1305 unsigned int offset
= 0;
1306 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1310 if (WORDS_BIG_ENDIAN
)
1311 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1312 if (BYTES_BIG_ENDIAN
)
1313 offset
+= difference
% UNITS_PER_WORD
;
1319 /* Return offset in bytes to get OUTERMODE high part
1320 of the value in mode INNERMODE stored in memory in target format. */
1322 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1324 unsigned int offset
= 0;
1325 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1327 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1331 if (! WORDS_BIG_ENDIAN
)
1332 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1333 if (! BYTES_BIG_ENDIAN
)
1334 offset
+= difference
% UNITS_PER_WORD
;
1340 /* Return 1 iff X, assumed to be a SUBREG,
1341 refers to the least significant part of its containing reg.
1342 If X is not a SUBREG, always return 1 (it is its own low part!). */
1345 subreg_lowpart_p (const_rtx x
)
1347 if (GET_CODE (x
) != SUBREG
)
1349 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1352 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1353 == SUBREG_BYTE (x
));
1356 /* Return true if X is a paradoxical subreg, false otherwise. */
1358 paradoxical_subreg_p (const_rtx x
)
1360 if (GET_CODE (x
) != SUBREG
)
1362 return (GET_MODE_PRECISION (GET_MODE (x
))
1363 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1366 /* Return subword OFFSET of operand OP.
1367 The word number, OFFSET, is interpreted as the word number starting
1368 at the low-order address. OFFSET 0 is the low-order word if not
1369 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1371 If we cannot extract the required word, we return zero. Otherwise,
1372 an rtx corresponding to the requested word will be returned.
1374 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1375 reload has completed, a valid address will always be returned. After
1376 reload, if a valid address cannot be returned, we return zero.
1378 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1379 it is the responsibility of the caller.
1381 MODE is the mode of OP in case it is a CONST_INT.
1383 ??? This is still rather broken for some cases. The problem for the
1384 moment is that all callers of this thing provide no 'goal mode' to
1385 tell us to work with. This exists because all callers were written
1386 in a word based SUBREG world.
1387 Now use of this function can be deprecated by simplify_subreg in most
1392 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1394 if (mode
== VOIDmode
)
1395 mode
= GET_MODE (op
);
1397 gcc_assert (mode
!= VOIDmode
);
1399 /* If OP is narrower than a word, fail. */
1401 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1404 /* If we want a word outside OP, return zero. */
1406 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1409 /* Form a new MEM at the requested address. */
1412 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1414 if (! validate_address
)
1417 else if (reload_completed
)
1419 if (! strict_memory_address_addr_space_p (word_mode
,
1421 MEM_ADDR_SPACE (op
)))
1425 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1428 /* Rest can be handled by simplify_subreg. */
1429 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1432 /* Similar to `operand_subword', but never return 0. If we can't
1433 extract the required subword, put OP into a register and try again.
1434 The second attempt must succeed. We always validate the address in
1437 MODE is the mode of OP, in case it is CONST_INT. */
1440 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1442 rtx result
= operand_subword (op
, offset
, 1, mode
);
1447 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1449 /* If this is a register which can not be accessed by words, copy it
1450 to a pseudo register. */
1452 op
= copy_to_reg (op
);
1454 op
= force_reg (mode
, op
);
1457 result
= operand_subword (op
, offset
, 1, mode
);
1458 gcc_assert (result
);
1463 /* Returns 1 if both MEM_EXPR can be considered equal
1467 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1472 if (! expr1
|| ! expr2
)
1475 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1478 return operand_equal_p (expr1
, expr2
, 0);
1481 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1482 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1486 get_mem_align_offset (rtx mem
, unsigned int align
)
1489 unsigned HOST_WIDE_INT offset
;
1491 /* This function can't use
1492 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1493 || (MAX (MEM_ALIGN (mem),
1494 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1498 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1500 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1501 for <variable>. get_inner_reference doesn't handle it and
1502 even if it did, the alignment in that case needs to be determined
1503 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1504 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1505 isn't sufficiently aligned, the object it is in might be. */
1506 gcc_assert (MEM_P (mem
));
1507 expr
= MEM_EXPR (mem
);
1508 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1511 offset
= MEM_OFFSET (mem
);
1514 if (DECL_ALIGN (expr
) < align
)
1517 else if (INDIRECT_REF_P (expr
))
1519 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1522 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1526 tree inner
= TREE_OPERAND (expr
, 0);
1527 tree field
= TREE_OPERAND (expr
, 1);
1528 tree byte_offset
= component_ref_field_offset (expr
);
1529 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1532 || !host_integerp (byte_offset
, 1)
1533 || !host_integerp (bit_offset
, 1))
1536 offset
+= tree_low_cst (byte_offset
, 1);
1537 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1539 if (inner
== NULL_TREE
)
1541 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1542 < (unsigned int) align
)
1546 else if (DECL_P (inner
))
1548 if (DECL_ALIGN (inner
) < align
)
1552 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1560 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1563 /* Given REF (a MEM) and T, either the type of X or the expression
1564 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1565 if we are making a new object of this type. BITPOS is nonzero if
1566 there is an offset outstanding on T that will be applied later. */
1569 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1570 HOST_WIDE_INT bitpos
)
1572 HOST_WIDE_INT apply_bitpos
= 0;
1574 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1577 /* It can happen that type_for_mode was given a mode for which there
1578 is no language-level type. In which case it returns NULL, which
1583 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1584 if (type
== error_mark_node
)
1587 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1588 wrong answer, as it assumes that DECL_RTL already has the right alias
1589 info. Callers should not set DECL_RTL until after the call to
1590 set_mem_attributes. */
1591 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1593 memset (&attrs
, 0, sizeof (attrs
));
1595 /* Get the alias set from the expression or type (perhaps using a
1596 front-end routine) and use it. */
1597 attrs
.alias
= get_alias_set (t
);
1599 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1600 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1602 /* Default values from pre-existing memory attributes if present. */
1603 refattrs
= MEM_ATTRS (ref
);
1606 /* ??? Can this ever happen? Calling this routine on a MEM that
1607 already carries memory attributes should probably be invalid. */
1608 attrs
.expr
= refattrs
->expr
;
1609 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1610 attrs
.offset
= refattrs
->offset
;
1611 attrs
.size_known_p
= refattrs
->size_known_p
;
1612 attrs
.size
= refattrs
->size
;
1613 attrs
.align
= refattrs
->align
;
1616 /* Otherwise, default values from the mode of the MEM reference. */
1619 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1620 gcc_assert (!defattrs
->expr
);
1621 gcc_assert (!defattrs
->offset_known_p
);
1623 /* Respect mode size. */
1624 attrs
.size_known_p
= defattrs
->size_known_p
;
1625 attrs
.size
= defattrs
->size
;
1626 /* ??? Is this really necessary? We probably should always get
1627 the size from the type below. */
1629 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1630 if T is an object, always compute the object alignment below. */
1632 attrs
.align
= defattrs
->align
;
1634 attrs
.align
= BITS_PER_UNIT
;
1635 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1636 e.g. if the type carries an alignment attribute. Should we be
1637 able to simply always use TYPE_ALIGN? */
1640 /* We can set the alignment from the type if we are making an object,
1641 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1642 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1643 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1645 else if (TREE_CODE (t
) == MEM_REF
)
1647 tree op0
= TREE_OPERAND (t
, 0);
1648 if (TREE_CODE (op0
) == ADDR_EXPR
1649 && (DECL_P (TREE_OPERAND (op0
, 0))
1650 || CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0))))
1652 if (DECL_P (TREE_OPERAND (op0
, 0)))
1653 attrs
.align
= DECL_ALIGN (TREE_OPERAND (op0
, 0));
1654 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0)))
1656 attrs
.align
= TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0
, 0)));
1657 #ifdef CONSTANT_ALIGNMENT
1658 attrs
.align
= CONSTANT_ALIGNMENT (TREE_OPERAND (op0
, 0),
1662 if (TREE_INT_CST_LOW (TREE_OPERAND (t
, 1)) != 0)
1664 unsigned HOST_WIDE_INT ioff
1665 = TREE_INT_CST_LOW (TREE_OPERAND (t
, 1));
1666 unsigned HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1667 attrs
.align
= MIN (aoff
, attrs
.align
);
1671 /* ??? This isn't fully correct, we can't set the alignment from the
1672 type in all cases. */
1673 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1676 else if (TREE_CODE (t
) == TARGET_MEM_REF
)
1677 /* ??? This isn't fully correct, we can't set the alignment from the
1678 type in all cases. */
1679 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1681 /* If the size is known, we can set that. */
1682 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1684 attrs
.size_known_p
= true;
1685 attrs
.size
= tree_low_cst (TYPE_SIZE_UNIT (type
), 1);
1688 /* If T is not a type, we may be able to deduce some more information about
1693 bool align_computed
= false;
1695 if (TREE_THIS_VOLATILE (t
))
1696 MEM_VOLATILE_P (ref
) = 1;
1698 /* Now remove any conversions: they don't change what the underlying
1699 object is. Likewise for SAVE_EXPR. */
1700 while (CONVERT_EXPR_P (t
)
1701 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1702 || TREE_CODE (t
) == SAVE_EXPR
)
1703 t
= TREE_OPERAND (t
, 0);
1705 /* Note whether this expression can trap. */
1706 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1708 base
= get_base_address (t
);
1712 && TREE_READONLY (base
)
1713 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1714 && !TREE_THIS_VOLATILE (base
))
1715 MEM_READONLY_P (ref
) = 1;
1717 /* Mark static const strings readonly as well. */
1718 if (TREE_CODE (base
) == STRING_CST
1719 && TREE_READONLY (base
)
1720 && TREE_STATIC (base
))
1721 MEM_READONLY_P (ref
) = 1;
1723 if (TREE_CODE (base
) == MEM_REF
1724 || TREE_CODE (base
) == TARGET_MEM_REF
)
1725 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1728 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1731 as
= TYPE_ADDR_SPACE (type
);
1733 /* If this expression uses it's parent's alias set, mark it such
1734 that we won't change it. */
1735 if (component_uses_parent_alias_set (t
))
1736 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1738 /* If this is a decl, set the attributes of the MEM from it. */
1742 attrs
.offset_known_p
= true;
1744 apply_bitpos
= bitpos
;
1745 if (DECL_SIZE_UNIT (t
) && host_integerp (DECL_SIZE_UNIT (t
), 1))
1747 attrs
.size_known_p
= true;
1748 attrs
.size
= tree_low_cst (DECL_SIZE_UNIT (t
), 1);
1751 attrs
.size_known_p
= false;
1752 attrs
.align
= DECL_ALIGN (t
);
1753 align_computed
= true;
1756 /* If this is a constant, we know the alignment. */
1757 else if (CONSTANT_CLASS_P (t
))
1759 attrs
.align
= TYPE_ALIGN (type
);
1760 #ifdef CONSTANT_ALIGNMENT
1761 attrs
.align
= CONSTANT_ALIGNMENT (t
, attrs
.align
);
1763 align_computed
= true;
1766 /* If this is a field reference and not a bit-field, record it. */
1767 /* ??? There is some information that can be gleaned from bit-fields,
1768 such as the word offset in the structure that might be modified.
1769 But skip it for now. */
1770 else if (TREE_CODE (t
) == COMPONENT_REF
1771 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1774 attrs
.offset_known_p
= true;
1776 apply_bitpos
= bitpos
;
1777 /* ??? Any reason the field size would be different than
1778 the size we got from the type? */
1781 /* If this is an array reference, look for an outer field reference. */
1782 else if (TREE_CODE (t
) == ARRAY_REF
)
1784 tree off_tree
= size_zero_node
;
1785 /* We can't modify t, because we use it at the end of the
1791 tree index
= TREE_OPERAND (t2
, 1);
1792 tree low_bound
= array_ref_low_bound (t2
);
1793 tree unit_size
= array_ref_element_size (t2
);
1795 /* We assume all arrays have sizes that are a multiple of a byte.
1796 First subtract the lower bound, if any, in the type of the
1797 index, then convert to sizetype and multiply by the size of
1798 the array element. */
1799 if (! integer_zerop (low_bound
))
1800 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1803 off_tree
= size_binop (PLUS_EXPR
,
1804 size_binop (MULT_EXPR
,
1805 fold_convert (sizetype
,
1809 t2
= TREE_OPERAND (t2
, 0);
1811 while (TREE_CODE (t2
) == ARRAY_REF
);
1816 attrs
.offset_known_p
= false;
1817 if (host_integerp (off_tree
, 1))
1819 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1820 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1821 attrs
.align
= DECL_ALIGN (t2
);
1822 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< attrs
.align
)
1824 align_computed
= true;
1825 attrs
.offset_known_p
= true;
1826 attrs
.offset
= ioff
;
1827 apply_bitpos
= bitpos
;
1830 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1833 attrs
.offset_known_p
= false;
1834 if (host_integerp (off_tree
, 1))
1836 attrs
.offset_known_p
= true;
1837 attrs
.offset
= tree_low_cst (off_tree
, 1);
1838 apply_bitpos
= bitpos
;
1840 /* ??? Any reason the field size would be different than
1841 the size we got from the type? */
1845 /* If this is an indirect reference, record it. */
1846 else if (TREE_CODE (t
) == MEM_REF
1847 || TREE_CODE (t
) == TARGET_MEM_REF
)
1850 attrs
.offset_known_p
= true;
1852 apply_bitpos
= bitpos
;
1855 if (!align_computed
)
1857 unsigned int obj_align
= get_object_alignment (t
);
1858 attrs
.align
= MAX (attrs
.align
, obj_align
);
1862 as
= TYPE_ADDR_SPACE (type
);
1864 /* If we modified OFFSET based on T, then subtract the outstanding
1865 bit position offset. Similarly, increase the size of the accessed
1866 object to contain the negative offset. */
1869 gcc_assert (attrs
.offset_known_p
);
1870 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1871 if (attrs
.size_known_p
)
1872 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1875 /* Now set the attributes we computed above. */
1876 attrs
.addrspace
= as
;
1877 set_mem_attrs (ref
, &attrs
);
1881 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1883 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1886 /* Set the alias set of MEM to SET. */
1889 set_mem_alias_set (rtx mem
, alias_set_type set
)
1891 struct mem_attrs attrs
;
1893 /* If the new and old alias sets don't conflict, something is wrong. */
1894 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1895 attrs
= *get_mem_attrs (mem
);
1897 set_mem_attrs (mem
, &attrs
);
1900 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1903 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1905 struct mem_attrs attrs
;
1907 attrs
= *get_mem_attrs (mem
);
1908 attrs
.addrspace
= addrspace
;
1909 set_mem_attrs (mem
, &attrs
);
1912 /* Set the alignment of MEM to ALIGN bits. */
1915 set_mem_align (rtx mem
, unsigned int align
)
1917 struct mem_attrs attrs
;
1919 attrs
= *get_mem_attrs (mem
);
1920 attrs
.align
= align
;
1921 set_mem_attrs (mem
, &attrs
);
1924 /* Set the expr for MEM to EXPR. */
1927 set_mem_expr (rtx mem
, tree expr
)
1929 struct mem_attrs attrs
;
1931 attrs
= *get_mem_attrs (mem
);
1933 set_mem_attrs (mem
, &attrs
);
1936 /* Set the offset of MEM to OFFSET. */
1939 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1941 struct mem_attrs attrs
;
1943 attrs
= *get_mem_attrs (mem
);
1944 attrs
.offset_known_p
= true;
1945 attrs
.offset
= offset
;
1946 set_mem_attrs (mem
, &attrs
);
1949 /* Clear the offset of MEM. */
1952 clear_mem_offset (rtx mem
)
1954 struct mem_attrs attrs
;
1956 attrs
= *get_mem_attrs (mem
);
1957 attrs
.offset_known_p
= false;
1958 set_mem_attrs (mem
, &attrs
);
1961 /* Set the size of MEM to SIZE. */
1964 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1966 struct mem_attrs attrs
;
1968 attrs
= *get_mem_attrs (mem
);
1969 attrs
.size_known_p
= true;
1971 set_mem_attrs (mem
, &attrs
);
1974 /* Clear the size of MEM. */
1977 clear_mem_size (rtx mem
)
1979 struct mem_attrs attrs
;
1981 attrs
= *get_mem_attrs (mem
);
1982 attrs
.size_known_p
= false;
1983 set_mem_attrs (mem
, &attrs
);
1986 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1987 and its address changed to ADDR. (VOIDmode means don't change the mode.
1988 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1989 returned memory location is required to be valid. The memory
1990 attributes are not changed. */
1993 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1998 gcc_assert (MEM_P (memref
));
1999 as
= MEM_ADDR_SPACE (memref
);
2000 if (mode
== VOIDmode
)
2001 mode
= GET_MODE (memref
);
2003 addr
= XEXP (memref
, 0);
2004 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
2005 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2010 if (reload_in_progress
|| reload_completed
)
2011 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2013 addr
= memory_address_addr_space (mode
, addr
, as
);
2016 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2019 new_rtx
= gen_rtx_MEM (mode
, addr
);
2020 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2024 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2025 way we are changing MEMREF, so we only preserve the alias set. */
2028 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
2030 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1);
2031 enum machine_mode mmode
= GET_MODE (new_rtx
);
2032 struct mem_attrs attrs
, *defattrs
;
2034 attrs
= *get_mem_attrs (memref
);
2035 defattrs
= mode_mem_attrs
[(int) mmode
];
2036 attrs
.expr
= NULL_TREE
;
2037 attrs
.offset_known_p
= false;
2038 attrs
.size_known_p
= defattrs
->size_known_p
;
2039 attrs
.size
= defattrs
->size
;
2040 attrs
.align
= defattrs
->align
;
2042 /* If there are no changes, just return the original memory reference. */
2043 if (new_rtx
== memref
)
2045 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2048 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2049 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2052 set_mem_attrs (new_rtx
, &attrs
);
2056 /* Return a memory reference like MEMREF, but with its mode changed
2057 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2058 nonzero, the memory address is forced to be valid.
2059 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2060 and the caller is responsible for adjusting MEMREF base register.
2061 If ADJUST_OBJECT is zero, the underlying object associated with the
2062 memory reference is left unchanged and the caller is responsible for
2063 dealing with it. Otherwise, if the new memory reference is outside
2064 the underlying object, even partially, then the object is dropped. */
2067 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2068 int validate
, int adjust_address
, int adjust_object
)
2070 rtx addr
= XEXP (memref
, 0);
2072 enum machine_mode address_mode
;
2074 struct mem_attrs attrs
, *defattrs
;
2075 unsigned HOST_WIDE_INT max_align
;
2077 attrs
= *get_mem_attrs (memref
);
2079 /* If there are no changes, just return the original memory reference. */
2080 if (mode
== GET_MODE (memref
) && !offset
2081 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2085 /* ??? Prefer to create garbage instead of creating shared rtl.
2086 This may happen even if offset is nonzero -- consider
2087 (plus (plus reg reg) const_int) -- so do this always. */
2088 addr
= copy_rtx (addr
);
2090 /* Convert a possibly large offset to a signed value within the
2091 range of the target address space. */
2092 address_mode
= get_address_mode (memref
);
2093 pbits
= GET_MODE_BITSIZE (address_mode
);
2094 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2096 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2097 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2103 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2104 object, we can merge it into the LO_SUM. */
2105 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2107 && (unsigned HOST_WIDE_INT
) offset
2108 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2109 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2110 plus_constant (address_mode
,
2111 XEXP (addr
, 1), offset
));
2113 addr
= plus_constant (address_mode
, addr
, offset
);
2116 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2118 /* If the address is a REG, change_address_1 rightfully returns memref,
2119 but this would destroy memref's MEM_ATTRS. */
2120 if (new_rtx
== memref
&& offset
!= 0)
2121 new_rtx
= copy_rtx (new_rtx
);
2123 /* Conservatively drop the object if we don't know where we start from. */
2124 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2126 attrs
.expr
= NULL_TREE
;
2130 /* Compute the new values of the memory attributes due to this adjustment.
2131 We add the offsets and update the alignment. */
2132 if (attrs
.offset_known_p
)
2134 attrs
.offset
+= offset
;
2136 /* Drop the object if the new left end is not within its bounds. */
2137 if (adjust_object
&& attrs
.offset
< 0)
2139 attrs
.expr
= NULL_TREE
;
2144 /* Compute the new alignment by taking the MIN of the alignment and the
2145 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2149 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2150 attrs
.align
= MIN (attrs
.align
, max_align
);
2153 /* We can compute the size in a number of ways. */
2154 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2155 if (defattrs
->size_known_p
)
2157 /* Drop the object if the new right end is not within its bounds. */
2158 if (adjust_object
&& (offset
+ defattrs
->size
) > attrs
.size
)
2160 attrs
.expr
= NULL_TREE
;
2163 attrs
.size_known_p
= true;
2164 attrs
.size
= defattrs
->size
;
2166 else if (attrs
.size_known_p
)
2168 attrs
.size
-= offset
;
2169 /* ??? The store_by_pieces machinery generates negative sizes. */
2170 gcc_assert (!(adjust_object
&& attrs
.size
< 0));
2173 set_mem_attrs (new_rtx
, &attrs
);
2178 /* Return a memory reference like MEMREF, but with its mode changed
2179 to MODE and its address changed to ADDR, which is assumed to be
2180 MEMREF offset by OFFSET bytes. If VALIDATE is
2181 nonzero, the memory address is forced to be valid. */
2184 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2185 HOST_WIDE_INT offset
, int validate
)
2187 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2188 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0);
2191 /* Return a memory reference like MEMREF, but whose address is changed by
2192 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2193 known to be in OFFSET (possibly 1). */
2196 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2198 rtx new_rtx
, addr
= XEXP (memref
, 0);
2199 enum machine_mode address_mode
;
2200 struct mem_attrs attrs
, *defattrs
;
2202 attrs
= *get_mem_attrs (memref
);
2203 address_mode
= get_address_mode (memref
);
2204 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2206 /* At this point we don't know _why_ the address is invalid. It
2207 could have secondary memory references, multiplies or anything.
2209 However, if we did go and rearrange things, we can wind up not
2210 being able to recognize the magic around pic_offset_table_rtx.
2211 This stuff is fragile, and is yet another example of why it is
2212 bad to expose PIC machinery too early. */
2213 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2215 && GET_CODE (addr
) == PLUS
2216 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2218 addr
= force_reg (GET_MODE (addr
), addr
);
2219 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2222 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2223 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2225 /* If there are no changes, just return the original memory reference. */
2226 if (new_rtx
== memref
)
2229 /* Update the alignment to reflect the offset. Reset the offset, which
2231 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2232 attrs
.offset_known_p
= false;
2233 attrs
.size_known_p
= defattrs
->size_known_p
;
2234 attrs
.size
= defattrs
->size
;
2235 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2236 set_mem_attrs (new_rtx
, &attrs
);
2240 /* Return a memory reference like MEMREF, but with its address changed to
2241 ADDR. The caller is asserting that the actual piece of memory pointed
2242 to is the same, just the form of the address is being changed, such as
2243 by putting something into a register. */
2246 replace_equiv_address (rtx memref
, rtx addr
)
2248 /* change_address_1 copies the memory attribute structure without change
2249 and that's exactly what we want here. */
2250 update_temp_slot_address (XEXP (memref
, 0), addr
);
2251 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2254 /* Likewise, but the reference is not required to be valid. */
2257 replace_equiv_address_nv (rtx memref
, rtx addr
)
2259 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2262 /* Return a memory reference like MEMREF, but with its mode widened to
2263 MODE and offset by OFFSET. This would be used by targets that e.g.
2264 cannot issue QImode memory operations and have to use SImode memory
2265 operations plus masking logic. */
2268 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2270 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0);
2271 struct mem_attrs attrs
;
2272 unsigned int size
= GET_MODE_SIZE (mode
);
2274 /* If there are no changes, just return the original memory reference. */
2275 if (new_rtx
== memref
)
2278 attrs
= *get_mem_attrs (new_rtx
);
2280 /* If we don't know what offset we were at within the expression, then
2281 we can't know if we've overstepped the bounds. */
2282 if (! attrs
.offset_known_p
)
2283 attrs
.expr
= NULL_TREE
;
2287 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2289 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2290 tree offset
= component_ref_field_offset (attrs
.expr
);
2292 if (! DECL_SIZE_UNIT (field
))
2294 attrs
.expr
= NULL_TREE
;
2298 /* Is the field at least as large as the access? If so, ok,
2299 otherwise strip back to the containing structure. */
2300 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2301 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2302 && attrs
.offset
>= 0)
2305 if (! host_integerp (offset
, 1))
2307 attrs
.expr
= NULL_TREE
;
2311 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2312 attrs
.offset
+= tree_low_cst (offset
, 1);
2313 attrs
.offset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2316 /* Similarly for the decl. */
2317 else if (DECL_P (attrs
.expr
)
2318 && DECL_SIZE_UNIT (attrs
.expr
)
2319 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2320 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2321 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2325 /* The widened memory access overflows the expression, which means
2326 that it could alias another expression. Zap it. */
2327 attrs
.expr
= NULL_TREE
;
2333 attrs
.offset_known_p
= false;
2335 /* The widened memory may alias other stuff, so zap the alias set. */
2336 /* ??? Maybe use get_alias_set on any remaining expression. */
2338 attrs
.size_known_p
= true;
2340 set_mem_attrs (new_rtx
, &attrs
);
2344 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2345 static GTY(()) tree spill_slot_decl
;
2348 get_spill_slot_decl (bool force_build_p
)
2350 tree d
= spill_slot_decl
;
2352 struct mem_attrs attrs
;
2354 if (d
|| !force_build_p
)
2357 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2358 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2359 DECL_ARTIFICIAL (d
) = 1;
2360 DECL_IGNORED_P (d
) = 1;
2362 spill_slot_decl
= d
;
2364 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2365 MEM_NOTRAP_P (rd
) = 1;
2366 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2367 attrs
.alias
= new_alias_set ();
2369 set_mem_attrs (rd
, &attrs
);
2370 SET_DECL_RTL (d
, rd
);
2375 /* Given MEM, a result from assign_stack_local, fill in the memory
2376 attributes as appropriate for a register allocator spill slot.
2377 These slots are not aliasable by other memory. We arrange for
2378 them all to use a single MEM_EXPR, so that the aliasing code can
2379 work properly in the case of shared spill slots. */
2382 set_mem_attrs_for_spill (rtx mem
)
2384 struct mem_attrs attrs
;
2387 attrs
= *get_mem_attrs (mem
);
2388 attrs
.expr
= get_spill_slot_decl (true);
2389 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2390 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2392 /* We expect the incoming memory to be of the form:
2393 (mem:MODE (plus (reg sfp) (const_int offset)))
2394 with perhaps the plus missing for offset = 0. */
2395 addr
= XEXP (mem
, 0);
2396 attrs
.offset_known_p
= true;
2398 if (GET_CODE (addr
) == PLUS
2399 && CONST_INT_P (XEXP (addr
, 1)))
2400 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2402 set_mem_attrs (mem
, &attrs
);
2403 MEM_NOTRAP_P (mem
) = 1;
2406 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2409 gen_label_rtx (void)
2411 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2412 NULL
, label_num
++, NULL
);
2415 /* For procedure integration. */
2417 /* Install new pointers to the first and last insns in the chain.
2418 Also, set cur_insn_uid to one higher than the last in use.
2419 Used for an inline-procedure after copying the insn chain. */
2422 set_new_first_and_last_insn (rtx first
, rtx last
)
2426 set_first_insn (first
);
2427 set_last_insn (last
);
2430 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2432 int debug_count
= 0;
2434 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2435 cur_debug_insn_uid
= 0;
2437 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2438 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2439 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2442 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2443 if (DEBUG_INSN_P (insn
))
2448 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2450 cur_debug_insn_uid
++;
2453 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2454 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2459 /* Go through all the RTL insn bodies and copy any invalid shared
2460 structure. This routine should only be called once. */
2463 unshare_all_rtl_1 (rtx insn
)
2465 /* Unshare just about everything else. */
2466 unshare_all_rtl_in_chain (insn
);
2468 /* Make sure the addresses of stack slots found outside the insn chain
2469 (such as, in DECL_RTL of a variable) are not shared
2470 with the insn chain.
2472 This special care is necessary when the stack slot MEM does not
2473 actually appear in the insn chain. If it does appear, its address
2474 is unshared from all else at that point. */
2475 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2478 /* Go through all the RTL insn bodies and copy any invalid shared
2479 structure, again. This is a fairly expensive thing to do so it
2480 should be done sparingly. */
2483 unshare_all_rtl_again (rtx insn
)
2488 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2491 reset_used_flags (PATTERN (p
));
2492 reset_used_flags (REG_NOTES (p
));
2494 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2497 /* Make sure that virtual stack slots are not shared. */
2498 set_used_decls (DECL_INITIAL (cfun
->decl
));
2500 /* Make sure that virtual parameters are not shared. */
2501 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2502 set_used_flags (DECL_RTL (decl
));
2504 reset_used_flags (stack_slot_list
);
2506 unshare_all_rtl_1 (insn
);
2510 unshare_all_rtl (void)
2512 unshare_all_rtl_1 (get_insns ());
2517 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2518 Recursively does the same for subexpressions. */
2521 verify_rtx_sharing (rtx orig
, rtx insn
)
2526 const char *format_ptr
;
2531 code
= GET_CODE (x
);
2533 /* These types may be freely shared. */
2550 /* SCRATCH must be shared because they represent distinct values. */
2552 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2557 if (shared_const_p (orig
))
2562 /* A MEM is allowed to be shared if its address is constant. */
2563 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2564 || reload_completed
|| reload_in_progress
)
2573 /* This rtx may not be shared. If it has already been seen,
2574 replace it with a copy of itself. */
2575 #ifdef ENABLE_CHECKING
2576 if (RTX_FLAG (x
, used
))
2578 error ("invalid rtl sharing found in the insn");
2580 error ("shared rtx");
2582 internal_error ("internal consistency failure");
2585 gcc_assert (!RTX_FLAG (x
, used
));
2587 RTX_FLAG (x
, used
) = 1;
2589 /* Now scan the subexpressions recursively. */
2591 format_ptr
= GET_RTX_FORMAT (code
);
2593 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2595 switch (*format_ptr
++)
2598 verify_rtx_sharing (XEXP (x
, i
), insn
);
2602 if (XVEC (x
, i
) != NULL
)
2605 int len
= XVECLEN (x
, i
);
2607 for (j
= 0; j
< len
; j
++)
2609 /* We allow sharing of ASM_OPERANDS inside single
2611 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2612 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2614 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2616 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2625 /* Go through all the RTL insn bodies and check that there is no unexpected
2626 sharing in between the subexpressions. */
2629 verify_rtl_sharing (void)
2633 timevar_push (TV_VERIFY_RTL_SHARING
);
2635 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2638 reset_used_flags (PATTERN (p
));
2639 reset_used_flags (REG_NOTES (p
));
2641 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2642 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2645 rtx q
, sequence
= PATTERN (p
);
2647 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2649 q
= XVECEXP (sequence
, 0, i
);
2650 gcc_assert (INSN_P (q
));
2651 reset_used_flags (PATTERN (q
));
2652 reset_used_flags (REG_NOTES (q
));
2654 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q
));
2659 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2662 verify_rtx_sharing (PATTERN (p
), p
);
2663 verify_rtx_sharing (REG_NOTES (p
), p
);
2665 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p
), p
);
2668 timevar_pop (TV_VERIFY_RTL_SHARING
);
2671 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2672 Assumes the mark bits are cleared at entry. */
2675 unshare_all_rtl_in_chain (rtx insn
)
2677 for (; insn
; insn
= NEXT_INSN (insn
))
2680 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2681 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2683 CALL_INSN_FUNCTION_USAGE (insn
)
2684 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2688 /* Go through all virtual stack slots of a function and mark them as
2689 shared. We never replace the DECL_RTLs themselves with a copy,
2690 but expressions mentioned into a DECL_RTL cannot be shared with
2691 expressions in the instruction stream.
2693 Note that reload may convert pseudo registers into memories in-place.
2694 Pseudo registers are always shared, but MEMs never are. Thus if we
2695 reset the used flags on MEMs in the instruction stream, we must set
2696 them again on MEMs that appear in DECL_RTLs. */
2699 set_used_decls (tree blk
)
2704 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2705 if (DECL_RTL_SET_P (t
))
2706 set_used_flags (DECL_RTL (t
));
2708 /* Now process sub-blocks. */
2709 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2713 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2714 Recursively does the same for subexpressions. Uses
2715 copy_rtx_if_shared_1 to reduce stack space. */
2718 copy_rtx_if_shared (rtx orig
)
2720 copy_rtx_if_shared_1 (&orig
);
2724 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2725 use. Recursively does the same for subexpressions. */
2728 copy_rtx_if_shared_1 (rtx
*orig1
)
2734 const char *format_ptr
;
2738 /* Repeat is used to turn tail-recursion into iteration. */
2745 code
= GET_CODE (x
);
2747 /* These types may be freely shared. */
2763 /* SCRATCH must be shared because they represent distinct values. */
2766 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2771 if (shared_const_p (x
))
2781 /* The chain of insns is not being copied. */
2788 /* This rtx may not be shared. If it has already been seen,
2789 replace it with a copy of itself. */
2791 if (RTX_FLAG (x
, used
))
2793 x
= shallow_copy_rtx (x
);
2796 RTX_FLAG (x
, used
) = 1;
2798 /* Now scan the subexpressions recursively.
2799 We can store any replaced subexpressions directly into X
2800 since we know X is not shared! Any vectors in X
2801 must be copied if X was copied. */
2803 format_ptr
= GET_RTX_FORMAT (code
);
2804 length
= GET_RTX_LENGTH (code
);
2807 for (i
= 0; i
< length
; i
++)
2809 switch (*format_ptr
++)
2813 copy_rtx_if_shared_1 (last_ptr
);
2814 last_ptr
= &XEXP (x
, i
);
2818 if (XVEC (x
, i
) != NULL
)
2821 int len
= XVECLEN (x
, i
);
2823 /* Copy the vector iff I copied the rtx and the length
2825 if (copied
&& len
> 0)
2826 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2828 /* Call recursively on all inside the vector. */
2829 for (j
= 0; j
< len
; j
++)
2832 copy_rtx_if_shared_1 (last_ptr
);
2833 last_ptr
= &XVECEXP (x
, i
, j
);
2848 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2851 mark_used_flags (rtx x
, int flag
)
2855 const char *format_ptr
;
2858 /* Repeat is used to turn tail-recursion into iteration. */
2863 code
= GET_CODE (x
);
2865 /* These types may be freely shared so we needn't do any resetting
2889 /* The chain of insns is not being copied. */
2896 RTX_FLAG (x
, used
) = flag
;
2898 format_ptr
= GET_RTX_FORMAT (code
);
2899 length
= GET_RTX_LENGTH (code
);
2901 for (i
= 0; i
< length
; i
++)
2903 switch (*format_ptr
++)
2911 mark_used_flags (XEXP (x
, i
), flag
);
2915 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2916 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2922 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2923 to look for shared sub-parts. */
2926 reset_used_flags (rtx x
)
2928 mark_used_flags (x
, 0);
2931 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2932 to look for shared sub-parts. */
2935 set_used_flags (rtx x
)
2937 mark_used_flags (x
, 1);
2940 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2941 Return X or the rtx for the pseudo reg the value of X was copied into.
2942 OTHER must be valid as a SET_DEST. */
2945 make_safe_from (rtx x
, rtx other
)
2948 switch (GET_CODE (other
))
2951 other
= SUBREG_REG (other
);
2953 case STRICT_LOW_PART
:
2956 other
= XEXP (other
, 0);
2965 && GET_CODE (x
) != SUBREG
)
2967 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2968 || reg_mentioned_p (other
, x
))))
2970 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2971 emit_move_insn (temp
, x
);
2977 /* Emission of insns (adding them to the doubly-linked list). */
2979 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2982 get_last_insn_anywhere (void)
2984 struct sequence_stack
*stack
;
2985 if (get_last_insn ())
2986 return get_last_insn ();
2987 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2988 if (stack
->last
!= 0)
2993 /* Return the first nonnote insn emitted in current sequence or current
2994 function. This routine looks inside SEQUENCEs. */
2997 get_first_nonnote_insn (void)
2999 rtx insn
= get_insns ();
3004 for (insn
= next_insn (insn
);
3005 insn
&& NOTE_P (insn
);
3006 insn
= next_insn (insn
))
3010 if (NONJUMP_INSN_P (insn
)
3011 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3012 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3019 /* Return the last nonnote insn emitted in current sequence or current
3020 function. This routine looks inside SEQUENCEs. */
3023 get_last_nonnote_insn (void)
3025 rtx insn
= get_last_insn ();
3030 for (insn
= previous_insn (insn
);
3031 insn
&& NOTE_P (insn
);
3032 insn
= previous_insn (insn
))
3036 if (NONJUMP_INSN_P (insn
)
3037 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3038 insn
= XVECEXP (PATTERN (insn
), 0,
3039 XVECLEN (PATTERN (insn
), 0) - 1);
3046 /* Return the number of actual (non-debug) insns emitted in this
3050 get_max_insn_count (void)
3052 int n
= cur_insn_uid
;
3054 /* The table size must be stable across -g, to avoid codegen
3055 differences due to debug insns, and not be affected by
3056 -fmin-insn-uid, to avoid excessive table size and to simplify
3057 debugging of -fcompare-debug failures. */
3058 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3059 n
-= cur_debug_insn_uid
;
3061 n
-= MIN_NONDEBUG_INSN_UID
;
3067 /* Return the next insn. If it is a SEQUENCE, return the first insn
3071 next_insn (rtx insn
)
3075 insn
= NEXT_INSN (insn
);
3076 if (insn
&& NONJUMP_INSN_P (insn
)
3077 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3078 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3084 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3088 previous_insn (rtx insn
)
3092 insn
= PREV_INSN (insn
);
3093 if (insn
&& NONJUMP_INSN_P (insn
)
3094 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3095 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3101 /* Return the next insn after INSN that is not a NOTE. This routine does not
3102 look inside SEQUENCEs. */
3105 next_nonnote_insn (rtx insn
)
3109 insn
= NEXT_INSN (insn
);
3110 if (insn
== 0 || !NOTE_P (insn
))
3117 /* Return the next insn after INSN that is not a NOTE, but stop the
3118 search before we enter another basic block. This routine does not
3119 look inside SEQUENCEs. */
3122 next_nonnote_insn_bb (rtx insn
)
3126 insn
= NEXT_INSN (insn
);
3127 if (insn
== 0 || !NOTE_P (insn
))
3129 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3136 /* Return the previous insn before INSN that is not a NOTE. This routine does
3137 not look inside SEQUENCEs. */
3140 prev_nonnote_insn (rtx insn
)
3144 insn
= PREV_INSN (insn
);
3145 if (insn
== 0 || !NOTE_P (insn
))
3152 /* Return the previous insn before INSN that is not a NOTE, but stop
3153 the search before we enter another basic block. This routine does
3154 not look inside SEQUENCEs. */
3157 prev_nonnote_insn_bb (rtx insn
)
3161 insn
= PREV_INSN (insn
);
3162 if (insn
== 0 || !NOTE_P (insn
))
3164 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3171 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3172 routine does not look inside SEQUENCEs. */
3175 next_nondebug_insn (rtx insn
)
3179 insn
= NEXT_INSN (insn
);
3180 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3187 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3188 This routine does not look inside SEQUENCEs. */
3191 prev_nondebug_insn (rtx insn
)
3195 insn
= PREV_INSN (insn
);
3196 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3203 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3204 This routine does not look inside SEQUENCEs. */
3207 next_nonnote_nondebug_insn (rtx insn
)
3211 insn
= NEXT_INSN (insn
);
3212 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3219 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3220 This routine does not look inside SEQUENCEs. */
3223 prev_nonnote_nondebug_insn (rtx insn
)
3227 insn
= PREV_INSN (insn
);
3228 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3235 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3236 or 0, if there is none. This routine does not look inside
3240 next_real_insn (rtx insn
)
3244 insn
= NEXT_INSN (insn
);
3245 if (insn
== 0 || INSN_P (insn
))
3252 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3253 or 0, if there is none. This routine does not look inside
3257 prev_real_insn (rtx insn
)
3261 insn
= PREV_INSN (insn
);
3262 if (insn
== 0 || INSN_P (insn
))
3269 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3270 This routine does not look inside SEQUENCEs. */
3273 last_call_insn (void)
3277 for (insn
= get_last_insn ();
3278 insn
&& !CALL_P (insn
);
3279 insn
= PREV_INSN (insn
))
3285 /* Find the next insn after INSN that really does something. This routine
3286 does not look inside SEQUENCEs. After reload this also skips over
3287 standalone USE and CLOBBER insn. */
3290 active_insn_p (const_rtx insn
)
3292 return (CALL_P (insn
) || JUMP_P (insn
)
3293 || (NONJUMP_INSN_P (insn
)
3294 && (! reload_completed
3295 || (GET_CODE (PATTERN (insn
)) != USE
3296 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3300 next_active_insn (rtx insn
)
3304 insn
= NEXT_INSN (insn
);
3305 if (insn
== 0 || active_insn_p (insn
))
3312 /* Find the last insn before INSN that really does something. This routine
3313 does not look inside SEQUENCEs. After reload this also skips over
3314 standalone USE and CLOBBER insn. */
3317 prev_active_insn (rtx insn
)
3321 insn
= PREV_INSN (insn
);
3322 if (insn
== 0 || active_insn_p (insn
))
3329 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3332 next_label (rtx insn
)
3336 insn
= NEXT_INSN (insn
);
3337 if (insn
== 0 || LABEL_P (insn
))
3344 /* Return the last label to mark the same position as LABEL. Return LABEL
3345 itself if it is null or any return rtx. */
3348 skip_consecutive_labels (rtx label
)
3352 if (label
&& ANY_RETURN_P (label
))
3355 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3363 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3364 and REG_CC_USER notes so we can find it. */
3367 link_cc0_insns (rtx insn
)
3369 rtx user
= next_nonnote_insn (insn
);
3371 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3372 user
= XVECEXP (PATTERN (user
), 0, 0);
3374 add_reg_note (user
, REG_CC_SETTER
, insn
);
3375 add_reg_note (insn
, REG_CC_USER
, user
);
3378 /* Return the next insn that uses CC0 after INSN, which is assumed to
3379 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3380 applied to the result of this function should yield INSN).
3382 Normally, this is simply the next insn. However, if a REG_CC_USER note
3383 is present, it contains the insn that uses CC0.
3385 Return 0 if we can't find the insn. */
3388 next_cc0_user (rtx insn
)
3390 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3393 return XEXP (note
, 0);
3395 insn
= next_nonnote_insn (insn
);
3396 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3397 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3399 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3405 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3406 note, it is the previous insn. */
3409 prev_cc0_setter (rtx insn
)
3411 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3414 return XEXP (note
, 0);
3416 insn
= prev_nonnote_insn (insn
);
3417 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3424 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3427 find_auto_inc (rtx
*xp
, void *data
)
3430 rtx reg
= (rtx
) data
;
3432 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3435 switch (GET_CODE (x
))
3443 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3454 /* Increment the label uses for all labels present in rtx. */
3457 mark_label_nuses (rtx x
)
3463 code
= GET_CODE (x
);
3464 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3465 LABEL_NUSES (XEXP (x
, 0))++;
3467 fmt
= GET_RTX_FORMAT (code
);
3468 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3471 mark_label_nuses (XEXP (x
, i
));
3472 else if (fmt
[i
] == 'E')
3473 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3474 mark_label_nuses (XVECEXP (x
, i
, j
));
3479 /* Try splitting insns that can be split for better scheduling.
3480 PAT is the pattern which might split.
3481 TRIAL is the insn providing PAT.
3482 LAST is nonzero if we should return the last insn of the sequence produced.
3484 If this routine succeeds in splitting, it returns the first or last
3485 replacement insn depending on the value of LAST. Otherwise, it
3486 returns TRIAL. If the insn to be returned can be split, it will be. */
3489 try_split (rtx pat
, rtx trial
, int last
)
3491 rtx before
= PREV_INSN (trial
);
3492 rtx after
= NEXT_INSN (trial
);
3493 int has_barrier
= 0;
3496 rtx insn_last
, insn
;
3499 /* We're not good at redistributing frame information. */
3500 if (RTX_FRAME_RELATED_P (trial
))
3503 if (any_condjump_p (trial
)
3504 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3505 split_branch_probability
= INTVAL (XEXP (note
, 0));
3506 probability
= split_branch_probability
;
3508 seq
= split_insns (pat
, trial
);
3510 split_branch_probability
= -1;
3512 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3513 We may need to handle this specially. */
3514 if (after
&& BARRIER_P (after
))
3517 after
= NEXT_INSN (after
);
3523 /* Avoid infinite loop if any insn of the result matches
3524 the original pattern. */
3528 if (INSN_P (insn_last
)
3529 && rtx_equal_p (PATTERN (insn_last
), pat
))
3531 if (!NEXT_INSN (insn_last
))
3533 insn_last
= NEXT_INSN (insn_last
);
3536 /* We will be adding the new sequence to the function. The splitters
3537 may have introduced invalid RTL sharing, so unshare the sequence now. */
3538 unshare_all_rtl_in_chain (seq
);
3541 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3545 mark_jump_label (PATTERN (insn
), insn
, 0);
3547 if (probability
!= -1
3548 && any_condjump_p (insn
)
3549 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3551 /* We can preserve the REG_BR_PROB notes only if exactly
3552 one jump is created, otherwise the machine description
3553 is responsible for this step using
3554 split_branch_probability variable. */
3555 gcc_assert (njumps
== 1);
3556 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3561 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3562 in SEQ and copy any additional information across. */
3565 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3570 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3571 target may have explicitly specified. */
3572 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3575 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3577 /* If the old call was a sibling call, the new one must
3579 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3581 /* If the new call is the last instruction in the sequence,
3582 it will effectively replace the old call in-situ. Otherwise
3583 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3584 so that it comes immediately after the new call. */
3585 if (NEXT_INSN (insn
))
3586 for (next
= NEXT_INSN (trial
);
3587 next
&& NOTE_P (next
);
3588 next
= NEXT_INSN (next
))
3589 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3592 add_insn_after (next
, insn
, NULL
);
3598 /* Copy notes, particularly those related to the CFG. */
3599 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3601 switch (REG_NOTE_KIND (note
))
3604 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3610 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3613 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3617 case REG_NON_LOCAL_GOTO
:
3618 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3621 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3627 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3629 rtx reg
= XEXP (note
, 0);
3630 if (!FIND_REG_INC_NOTE (insn
, reg
)
3631 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3632 add_reg_note (insn
, REG_INC
, reg
);
3638 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3646 /* If there are LABELS inside the split insns increment the
3647 usage count so we don't delete the label. */
3651 while (insn
!= NULL_RTX
)
3653 /* JUMP_P insns have already been "marked" above. */
3654 if (NONJUMP_INSN_P (insn
))
3655 mark_label_nuses (PATTERN (insn
));
3657 insn
= PREV_INSN (insn
);
3661 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3663 delete_insn (trial
);
3665 emit_barrier_after (tem
);
3667 /* Recursively call try_split for each new insn created; by the
3668 time control returns here that insn will be fully split, so
3669 set LAST and continue from the insn after the one returned.
3670 We can't use next_active_insn here since AFTER may be a note.
3671 Ignore deleted insns, which can be occur if not optimizing. */
3672 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3673 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3674 tem
= try_split (PATTERN (tem
), tem
, 1);
3676 /* Return either the first or the last insn, depending on which was
3679 ? (after
? PREV_INSN (after
) : get_last_insn ())
3680 : NEXT_INSN (before
);
3683 /* Make and return an INSN rtx, initializing all its slots.
3684 Store PATTERN in the pattern slots. */
3687 make_insn_raw (rtx pattern
)
3691 insn
= rtx_alloc (INSN
);
3693 INSN_UID (insn
) = cur_insn_uid
++;
3694 PATTERN (insn
) = pattern
;
3695 INSN_CODE (insn
) = -1;
3696 REG_NOTES (insn
) = NULL
;
3697 INSN_LOCATION (insn
) = curr_insn_location ();
3698 BLOCK_FOR_INSN (insn
) = NULL
;
3700 #ifdef ENABLE_RTL_CHECKING
3703 && (returnjump_p (insn
)
3704 || (GET_CODE (insn
) == SET
3705 && SET_DEST (insn
) == pc_rtx
)))
3707 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3715 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3718 make_debug_insn_raw (rtx pattern
)
3722 insn
= rtx_alloc (DEBUG_INSN
);
3723 INSN_UID (insn
) = cur_debug_insn_uid
++;
3724 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3725 INSN_UID (insn
) = cur_insn_uid
++;
3727 PATTERN (insn
) = pattern
;
3728 INSN_CODE (insn
) = -1;
3729 REG_NOTES (insn
) = NULL
;
3730 INSN_LOCATION (insn
) = curr_insn_location ();
3731 BLOCK_FOR_INSN (insn
) = NULL
;
3736 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3739 make_jump_insn_raw (rtx pattern
)
3743 insn
= rtx_alloc (JUMP_INSN
);
3744 INSN_UID (insn
) = cur_insn_uid
++;
3746 PATTERN (insn
) = pattern
;
3747 INSN_CODE (insn
) = -1;
3748 REG_NOTES (insn
) = NULL
;
3749 JUMP_LABEL (insn
) = NULL
;
3750 INSN_LOCATION (insn
) = curr_insn_location ();
3751 BLOCK_FOR_INSN (insn
) = NULL
;
3756 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3759 make_call_insn_raw (rtx pattern
)
3763 insn
= rtx_alloc (CALL_INSN
);
3764 INSN_UID (insn
) = cur_insn_uid
++;
3766 PATTERN (insn
) = pattern
;
3767 INSN_CODE (insn
) = -1;
3768 REG_NOTES (insn
) = NULL
;
3769 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3770 INSN_LOCATION (insn
) = curr_insn_location ();
3771 BLOCK_FOR_INSN (insn
) = NULL
;
3776 /* Add INSN to the end of the doubly-linked list.
3777 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3782 PREV_INSN (insn
) = get_last_insn();
3783 NEXT_INSN (insn
) = 0;
3785 if (NULL
!= get_last_insn())
3786 NEXT_INSN (get_last_insn ()) = insn
;
3788 if (NULL
== get_insns ())
3789 set_first_insn (insn
);
3791 set_last_insn (insn
);
3794 /* Add INSN into the doubly-linked list after insn AFTER. This and
3795 the next should be the only functions called to insert an insn once
3796 delay slots have been filled since only they know how to update a
3800 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3802 rtx next
= NEXT_INSN (after
);
3804 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3806 NEXT_INSN (insn
) = next
;
3807 PREV_INSN (insn
) = after
;
3811 PREV_INSN (next
) = insn
;
3812 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3813 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3815 else if (get_last_insn () == after
)
3816 set_last_insn (insn
);
3819 struct sequence_stack
*stack
= seq_stack
;
3820 /* Scan all pending sequences too. */
3821 for (; stack
; stack
= stack
->next
)
3822 if (after
== stack
->last
)
3831 if (!BARRIER_P (after
)
3832 && !BARRIER_P (insn
)
3833 && (bb
= BLOCK_FOR_INSN (after
)))
3835 set_block_for_insn (insn
, bb
);
3837 df_insn_rescan (insn
);
3838 /* Should not happen as first in the BB is always
3839 either NOTE or LABEL. */
3840 if (BB_END (bb
) == after
3841 /* Avoid clobbering of structure when creating new BB. */
3842 && !BARRIER_P (insn
)
3843 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3847 NEXT_INSN (after
) = insn
;
3848 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3850 rtx sequence
= PATTERN (after
);
3851 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3855 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3856 the previous should be the only functions called to insert an insn
3857 once delay slots have been filled since only they know how to
3858 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3862 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3864 rtx prev
= PREV_INSN (before
);
3866 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3868 PREV_INSN (insn
) = prev
;
3869 NEXT_INSN (insn
) = before
;
3873 NEXT_INSN (prev
) = insn
;
3874 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3876 rtx sequence
= PATTERN (prev
);
3877 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3880 else if (get_insns () == before
)
3881 set_first_insn (insn
);
3884 struct sequence_stack
*stack
= seq_stack
;
3885 /* Scan all pending sequences too. */
3886 for (; stack
; stack
= stack
->next
)
3887 if (before
== stack
->first
)
3889 stack
->first
= insn
;
3897 && !BARRIER_P (before
)
3898 && !BARRIER_P (insn
))
3899 bb
= BLOCK_FOR_INSN (before
);
3903 set_block_for_insn (insn
, bb
);
3905 df_insn_rescan (insn
);
3906 /* Should not happen as first in the BB is always either NOTE or
3908 gcc_assert (BB_HEAD (bb
) != insn
3909 /* Avoid clobbering of structure when creating new BB. */
3911 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3914 PREV_INSN (before
) = insn
;
3915 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3916 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3920 /* Replace insn with an deleted instruction note. */
3923 set_insn_deleted (rtx insn
)
3925 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3926 PUT_CODE (insn
, NOTE
);
3927 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3931 /* Remove an insn from its doubly-linked list. This function knows how
3932 to handle sequences. */
3934 remove_insn (rtx insn
)
3936 rtx next
= NEXT_INSN (insn
);
3937 rtx prev
= PREV_INSN (insn
);
3940 /* Later in the code, the block will be marked dirty. */
3941 df_insn_delete (NULL
, INSN_UID (insn
));
3945 NEXT_INSN (prev
) = next
;
3946 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3948 rtx sequence
= PATTERN (prev
);
3949 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3952 else if (get_insns () == insn
)
3955 PREV_INSN (next
) = NULL
;
3956 set_first_insn (next
);
3960 struct sequence_stack
*stack
= seq_stack
;
3961 /* Scan all pending sequences too. */
3962 for (; stack
; stack
= stack
->next
)
3963 if (insn
== stack
->first
)
3965 stack
->first
= next
;
3974 PREV_INSN (next
) = prev
;
3975 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3976 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3978 else if (get_last_insn () == insn
)
3979 set_last_insn (prev
);
3982 struct sequence_stack
*stack
= seq_stack
;
3983 /* Scan all pending sequences too. */
3984 for (; stack
; stack
= stack
->next
)
3985 if (insn
== stack
->last
)
3993 if (!BARRIER_P (insn
)
3994 && (bb
= BLOCK_FOR_INSN (insn
)))
3996 if (NONDEBUG_INSN_P (insn
))
3997 df_set_bb_dirty (bb
);
3998 if (BB_HEAD (bb
) == insn
)
4000 /* Never ever delete the basic block note without deleting whole
4002 gcc_assert (!NOTE_P (insn
));
4003 BB_HEAD (bb
) = next
;
4005 if (BB_END (bb
) == insn
)
4010 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4013 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4015 gcc_assert (call_insn
&& CALL_P (call_insn
));
4017 /* Put the register usage information on the CALL. If there is already
4018 some usage information, put ours at the end. */
4019 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4023 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4024 link
= XEXP (link
, 1))
4027 XEXP (link
, 1) = call_fusage
;
4030 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4033 /* Delete all insns made since FROM.
4034 FROM becomes the new last instruction. */
4037 delete_insns_since (rtx from
)
4042 NEXT_INSN (from
) = 0;
4043 set_last_insn (from
);
4046 /* This function is deprecated, please use sequences instead.
4048 Move a consecutive bunch of insns to a different place in the chain.
4049 The insns to be moved are those between FROM and TO.
4050 They are moved to a new position after the insn AFTER.
4051 AFTER must not be FROM or TO or any insn in between.
4053 This function does not know about SEQUENCEs and hence should not be
4054 called after delay-slot filling has been done. */
4057 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4059 #ifdef ENABLE_CHECKING
4061 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4062 gcc_assert (after
!= x
);
4063 gcc_assert (after
!= to
);
4066 /* Splice this bunch out of where it is now. */
4067 if (PREV_INSN (from
))
4068 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4070 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4071 if (get_last_insn () == to
)
4072 set_last_insn (PREV_INSN (from
));
4073 if (get_insns () == from
)
4074 set_first_insn (NEXT_INSN (to
));
4076 /* Make the new neighbors point to it and it to them. */
4077 if (NEXT_INSN (after
))
4078 PREV_INSN (NEXT_INSN (after
)) = to
;
4080 NEXT_INSN (to
) = NEXT_INSN (after
);
4081 PREV_INSN (from
) = after
;
4082 NEXT_INSN (after
) = from
;
4083 if (after
== get_last_insn())
4087 /* Same as function above, but take care to update BB boundaries. */
4089 reorder_insns (rtx from
, rtx to
, rtx after
)
4091 rtx prev
= PREV_INSN (from
);
4092 basic_block bb
, bb2
;
4094 reorder_insns_nobb (from
, to
, after
);
4096 if (!BARRIER_P (after
)
4097 && (bb
= BLOCK_FOR_INSN (after
)))
4100 df_set_bb_dirty (bb
);
4102 if (!BARRIER_P (from
)
4103 && (bb2
= BLOCK_FOR_INSN (from
)))
4105 if (BB_END (bb2
) == to
)
4106 BB_END (bb2
) = prev
;
4107 df_set_bb_dirty (bb2
);
4110 if (BB_END (bb
) == after
)
4113 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4115 df_insn_change_bb (x
, bb
);
4120 /* Emit insn(s) of given code and pattern
4121 at a specified place within the doubly-linked list.
4123 All of the emit_foo global entry points accept an object
4124 X which is either an insn list or a PATTERN of a single
4127 There are thus a few canonical ways to generate code and
4128 emit it at a specific place in the instruction stream. For
4129 example, consider the instruction named SPOT and the fact that
4130 we would like to emit some instructions before SPOT. We might
4134 ... emit the new instructions ...
4135 insns_head = get_insns ();
4138 emit_insn_before (insns_head, SPOT);
4140 It used to be common to generate SEQUENCE rtl instead, but that
4141 is a relic of the past which no longer occurs. The reason is that
4142 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4143 generated would almost certainly die right after it was created. */
4146 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4147 rtx (*make_raw
) (rtx
))
4151 gcc_assert (before
);
4156 switch (GET_CODE (x
))
4168 rtx next
= NEXT_INSN (insn
);
4169 add_insn_before (insn
, before
, bb
);
4175 #ifdef ENABLE_RTL_CHECKING
4182 last
= (*make_raw
) (x
);
4183 add_insn_before (last
, before
, bb
);
4190 /* Make X be output before the instruction BEFORE. */
4193 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4195 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4198 /* Make an instruction with body X and code JUMP_INSN
4199 and output it before the instruction BEFORE. */
4202 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4204 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4205 make_jump_insn_raw
);
4208 /* Make an instruction with body X and code CALL_INSN
4209 and output it before the instruction BEFORE. */
4212 emit_call_insn_before_noloc (rtx x
, rtx before
)
4214 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4215 make_call_insn_raw
);
4218 /* Make an instruction with body X and code DEBUG_INSN
4219 and output it before the instruction BEFORE. */
4222 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4224 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4225 make_debug_insn_raw
);
4228 /* Make an insn of code BARRIER
4229 and output it before the insn BEFORE. */
4232 emit_barrier_before (rtx before
)
4234 rtx insn
= rtx_alloc (BARRIER
);
4236 INSN_UID (insn
) = cur_insn_uid
++;
4238 add_insn_before (insn
, before
, NULL
);
4242 /* Emit the label LABEL before the insn BEFORE. */
4245 emit_label_before (rtx label
, rtx before
)
4247 gcc_checking_assert (INSN_UID (label
) == 0);
4248 INSN_UID (label
) = cur_insn_uid
++;
4249 add_insn_before (label
, before
, NULL
);
4253 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4256 emit_note_before (enum insn_note subtype
, rtx before
)
4258 rtx note
= rtx_alloc (NOTE
);
4259 INSN_UID (note
) = cur_insn_uid
++;
4260 NOTE_KIND (note
) = subtype
;
4261 BLOCK_FOR_INSN (note
) = NULL
;
4262 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4264 add_insn_before (note
, before
, NULL
);
4268 /* Helper for emit_insn_after, handles lists of instructions
4272 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4276 if (!bb
&& !BARRIER_P (after
))
4277 bb
= BLOCK_FOR_INSN (after
);
4281 df_set_bb_dirty (bb
);
4282 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4283 if (!BARRIER_P (last
))
4285 set_block_for_insn (last
, bb
);
4286 df_insn_rescan (last
);
4288 if (!BARRIER_P (last
))
4290 set_block_for_insn (last
, bb
);
4291 df_insn_rescan (last
);
4293 if (BB_END (bb
) == after
)
4297 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4300 after_after
= NEXT_INSN (after
);
4302 NEXT_INSN (after
) = first
;
4303 PREV_INSN (first
) = after
;
4304 NEXT_INSN (last
) = after_after
;
4306 PREV_INSN (after_after
) = last
;
4308 if (after
== get_last_insn())
4309 set_last_insn (last
);
4315 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4316 rtx (*make_raw
)(rtx
))
4325 switch (GET_CODE (x
))
4334 last
= emit_insn_after_1 (x
, after
, bb
);
4337 #ifdef ENABLE_RTL_CHECKING
4344 last
= (*make_raw
) (x
);
4345 add_insn_after (last
, after
, bb
);
4352 /* Make X be output after the insn AFTER and set the BB of insn. If
4353 BB is NULL, an attempt is made to infer the BB from AFTER. */
4356 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4358 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4362 /* Make an insn of code JUMP_INSN with body X
4363 and output it after the insn AFTER. */
4366 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4368 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4371 /* Make an instruction with body X and code CALL_INSN
4372 and output it after the instruction AFTER. */
4375 emit_call_insn_after_noloc (rtx x
, rtx after
)
4377 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4380 /* Make an instruction with body X and code CALL_INSN
4381 and output it after the instruction AFTER. */
4384 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4386 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4389 /* Make an insn of code BARRIER
4390 and output it after the insn AFTER. */
4393 emit_barrier_after (rtx after
)
4395 rtx insn
= rtx_alloc (BARRIER
);
4397 INSN_UID (insn
) = cur_insn_uid
++;
4399 add_insn_after (insn
, after
, NULL
);
4403 /* Emit the label LABEL after the insn AFTER. */
4406 emit_label_after (rtx label
, rtx after
)
4408 gcc_checking_assert (INSN_UID (label
) == 0);
4409 INSN_UID (label
) = cur_insn_uid
++;
4410 add_insn_after (label
, after
, NULL
);
4414 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4417 emit_note_after (enum insn_note subtype
, rtx after
)
4419 rtx note
= rtx_alloc (NOTE
);
4420 INSN_UID (note
) = cur_insn_uid
++;
4421 NOTE_KIND (note
) = subtype
;
4422 BLOCK_FOR_INSN (note
) = NULL
;
4423 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4424 add_insn_after (note
, after
, NULL
);
4428 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4429 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4432 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4433 rtx (*make_raw
) (rtx
))
4435 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4437 if (pattern
== NULL_RTX
|| !loc
)
4440 after
= NEXT_INSN (after
);
4443 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4444 INSN_LOCATION (after
) = loc
;
4447 after
= NEXT_INSN (after
);
4452 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4453 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4457 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4458 rtx (*make_raw
) (rtx
))
4462 if (skip_debug_insns
)
4463 while (DEBUG_INSN_P (prev
))
4464 prev
= PREV_INSN (prev
);
4467 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4470 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4473 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4475 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4477 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4480 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4482 emit_insn_after (rtx pattern
, rtx after
)
4484 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4487 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4489 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4491 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4494 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4496 emit_jump_insn_after (rtx pattern
, rtx after
)
4498 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4501 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4503 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4505 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4508 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4510 emit_call_insn_after (rtx pattern
, rtx after
)
4512 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4515 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4517 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4519 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4522 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4524 emit_debug_insn_after (rtx pattern
, rtx after
)
4526 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4529 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4530 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4531 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4535 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4536 rtx (*make_raw
) (rtx
))
4538 rtx first
= PREV_INSN (before
);
4539 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4540 insnp
? before
: NULL_RTX
,
4543 if (pattern
== NULL_RTX
|| !loc
)
4547 first
= get_insns ();
4549 first
= NEXT_INSN (first
);
4552 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4553 INSN_LOCATION (first
) = loc
;
4556 first
= NEXT_INSN (first
);
4561 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4562 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4563 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4564 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4567 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4568 bool insnp
, rtx (*make_raw
) (rtx
))
4572 if (skip_debug_insns
)
4573 while (DEBUG_INSN_P (next
))
4574 next
= PREV_INSN (next
);
4577 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4580 return emit_pattern_before_noloc (pattern
, before
,
4581 insnp
? before
: NULL_RTX
,
4585 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4587 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4589 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4593 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4595 emit_insn_before (rtx pattern
, rtx before
)
4597 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4600 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4602 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4604 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4605 make_jump_insn_raw
);
4608 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4610 emit_jump_insn_before (rtx pattern
, rtx before
)
4612 return emit_pattern_before (pattern
, before
, true, false,
4613 make_jump_insn_raw
);
4616 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4618 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4620 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4621 make_call_insn_raw
);
4624 /* Like emit_call_insn_before_noloc,
4625 but set insn_location according to BEFORE. */
4627 emit_call_insn_before (rtx pattern
, rtx before
)
4629 return emit_pattern_before (pattern
, before
, true, false,
4630 make_call_insn_raw
);
4633 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4635 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4637 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4638 make_debug_insn_raw
);
4641 /* Like emit_debug_insn_before_noloc,
4642 but set insn_location according to BEFORE. */
4644 emit_debug_insn_before (rtx pattern
, rtx before
)
4646 return emit_pattern_before (pattern
, before
, false, false,
4647 make_debug_insn_raw
);
4650 /* Take X and emit it at the end of the doubly-linked
4653 Returns the last insn emitted. */
4658 rtx last
= get_last_insn();
4664 switch (GET_CODE (x
))
4676 rtx next
= NEXT_INSN (insn
);
4683 #ifdef ENABLE_RTL_CHECKING
4690 last
= make_insn_raw (x
);
4698 /* Make an insn of code DEBUG_INSN with pattern X
4699 and add it to the end of the doubly-linked list. */
4702 emit_debug_insn (rtx x
)
4704 rtx last
= get_last_insn();
4710 switch (GET_CODE (x
))
4722 rtx next
= NEXT_INSN (insn
);
4729 #ifdef ENABLE_RTL_CHECKING
4736 last
= make_debug_insn_raw (x
);
4744 /* Make an insn of code JUMP_INSN with pattern X
4745 and add it to the end of the doubly-linked list. */
4748 emit_jump_insn (rtx x
)
4750 rtx last
= NULL_RTX
, insn
;
4752 switch (GET_CODE (x
))
4764 rtx next
= NEXT_INSN (insn
);
4771 #ifdef ENABLE_RTL_CHECKING
4778 last
= make_jump_insn_raw (x
);
4786 /* Make an insn of code CALL_INSN with pattern X
4787 and add it to the end of the doubly-linked list. */
4790 emit_call_insn (rtx x
)
4794 switch (GET_CODE (x
))
4803 insn
= emit_insn (x
);
4806 #ifdef ENABLE_RTL_CHECKING
4813 insn
= make_call_insn_raw (x
);
4821 /* Add the label LABEL to the end of the doubly-linked list. */
4824 emit_label (rtx label
)
4826 gcc_checking_assert (INSN_UID (label
) == 0);
4827 INSN_UID (label
) = cur_insn_uid
++;
4832 /* Make an insn of code BARRIER
4833 and add it to the end of the doubly-linked list. */
4838 rtx barrier
= rtx_alloc (BARRIER
);
4839 INSN_UID (barrier
) = cur_insn_uid
++;
4844 /* Emit a copy of note ORIG. */
4847 emit_note_copy (rtx orig
)
4851 note
= rtx_alloc (NOTE
);
4853 INSN_UID (note
) = cur_insn_uid
++;
4854 NOTE_DATA (note
) = NOTE_DATA (orig
);
4855 NOTE_KIND (note
) = NOTE_KIND (orig
);
4856 BLOCK_FOR_INSN (note
) = NULL
;
4862 /* Make an insn of code NOTE or type NOTE_NO
4863 and add it to the end of the doubly-linked list. */
4866 emit_note (enum insn_note kind
)
4870 note
= rtx_alloc (NOTE
);
4871 INSN_UID (note
) = cur_insn_uid
++;
4872 NOTE_KIND (note
) = kind
;
4873 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4874 BLOCK_FOR_INSN (note
) = NULL
;
4879 /* Emit a clobber of lvalue X. */
4882 emit_clobber (rtx x
)
4884 /* CONCATs should not appear in the insn stream. */
4885 if (GET_CODE (x
) == CONCAT
)
4887 emit_clobber (XEXP (x
, 0));
4888 return emit_clobber (XEXP (x
, 1));
4890 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4893 /* Return a sequence of insns to clobber lvalue X. */
4907 /* Emit a use of rvalue X. */
4912 /* CONCATs should not appear in the insn stream. */
4913 if (GET_CODE (x
) == CONCAT
)
4915 emit_use (XEXP (x
, 0));
4916 return emit_use (XEXP (x
, 1));
4918 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4921 /* Return a sequence of insns to use rvalue X. */
4935 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4936 note of this type already exists, remove it first. */
4939 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4941 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4947 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4948 has multiple sets (some callers assume single_set
4949 means the insn only has one set, when in fact it
4950 means the insn only has one * useful * set). */
4951 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4957 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4958 It serves no useful purpose and breaks eliminate_regs. */
4959 if (GET_CODE (datum
) == ASM_OPERANDS
)
4964 XEXP (note
, 0) = datum
;
4965 df_notes_rescan (insn
);
4973 XEXP (note
, 0) = datum
;
4979 add_reg_note (insn
, kind
, datum
);
4985 df_notes_rescan (insn
);
4991 return REG_NOTES (insn
);
4994 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
4996 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
4998 rtx set
= single_set (insn
);
5000 if (set
&& SET_DEST (set
) == dst
)
5001 return set_unique_reg_note (insn
, kind
, datum
);
5005 /* Return an indication of which type of insn should have X as a body.
5006 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5008 static enum rtx_code
5009 classify_insn (rtx x
)
5013 if (GET_CODE (x
) == CALL
)
5015 if (ANY_RETURN_P (x
))
5017 if (GET_CODE (x
) == SET
)
5019 if (SET_DEST (x
) == pc_rtx
)
5021 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5026 if (GET_CODE (x
) == PARALLEL
)
5029 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5030 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5032 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5033 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5035 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5036 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5042 /* Emit the rtl pattern X as an appropriate kind of insn.
5043 If X is a label, it is simply added into the insn chain. */
5048 enum rtx_code code
= classify_insn (x
);
5053 return emit_label (x
);
5055 return emit_insn (x
);
5058 rtx insn
= emit_jump_insn (x
);
5059 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5060 return emit_barrier ();
5064 return emit_call_insn (x
);
5066 return emit_debug_insn (x
);
5072 /* Space for free sequence stack entries. */
5073 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5075 /* Begin emitting insns to a sequence. If this sequence will contain
5076 something that might cause the compiler to pop arguments to function
5077 calls (because those pops have previously been deferred; see
5078 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5079 before calling this function. That will ensure that the deferred
5080 pops are not accidentally emitted in the middle of this sequence. */
5083 start_sequence (void)
5085 struct sequence_stack
*tem
;
5087 if (free_sequence_stack
!= NULL
)
5089 tem
= free_sequence_stack
;
5090 free_sequence_stack
= tem
->next
;
5093 tem
= ggc_alloc_sequence_stack ();
5095 tem
->next
= seq_stack
;
5096 tem
->first
= get_insns ();
5097 tem
->last
= get_last_insn ();
5105 /* Set up the insn chain starting with FIRST as the current sequence,
5106 saving the previously current one. See the documentation for
5107 start_sequence for more information about how to use this function. */
5110 push_to_sequence (rtx first
)
5116 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5119 set_first_insn (first
);
5120 set_last_insn (last
);
5123 /* Like push_to_sequence, but take the last insn as an argument to avoid
5124 looping through the list. */
5127 push_to_sequence2 (rtx first
, rtx last
)
5131 set_first_insn (first
);
5132 set_last_insn (last
);
5135 /* Set up the outer-level insn chain
5136 as the current sequence, saving the previously current one. */
5139 push_topmost_sequence (void)
5141 struct sequence_stack
*stack
, *top
= NULL
;
5145 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5148 set_first_insn (top
->first
);
5149 set_last_insn (top
->last
);
5152 /* After emitting to the outer-level insn chain, update the outer-level
5153 insn chain, and restore the previous saved state. */
5156 pop_topmost_sequence (void)
5158 struct sequence_stack
*stack
, *top
= NULL
;
5160 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5163 top
->first
= get_insns ();
5164 top
->last
= get_last_insn ();
5169 /* After emitting to a sequence, restore previous saved state.
5171 To get the contents of the sequence just made, you must call
5172 `get_insns' *before* calling here.
5174 If the compiler might have deferred popping arguments while
5175 generating this sequence, and this sequence will not be immediately
5176 inserted into the instruction stream, use do_pending_stack_adjust
5177 before calling get_insns. That will ensure that the deferred
5178 pops are inserted into this sequence, and not into some random
5179 location in the instruction stream. See INHIBIT_DEFER_POP for more
5180 information about deferred popping of arguments. */
5185 struct sequence_stack
*tem
= seq_stack
;
5187 set_first_insn (tem
->first
);
5188 set_last_insn (tem
->last
);
5189 seq_stack
= tem
->next
;
5191 memset (tem
, 0, sizeof (*tem
));
5192 tem
->next
= free_sequence_stack
;
5193 free_sequence_stack
= tem
;
5196 /* Return 1 if currently emitting into a sequence. */
5199 in_sequence_p (void)
5201 return seq_stack
!= 0;
5204 /* Put the various virtual registers into REGNO_REG_RTX. */
5207 init_virtual_regs (void)
5209 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5210 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5211 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5212 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5213 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5214 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5215 = virtual_preferred_stack_boundary_rtx
;
5219 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5220 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5221 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5222 static int copy_insn_n_scratches
;
5224 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5225 copied an ASM_OPERANDS.
5226 In that case, it is the original input-operand vector. */
5227 static rtvec orig_asm_operands_vector
;
5229 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5230 copied an ASM_OPERANDS.
5231 In that case, it is the copied input-operand vector. */
5232 static rtvec copy_asm_operands_vector
;
5234 /* Likewise for the constraints vector. */
5235 static rtvec orig_asm_constraints_vector
;
5236 static rtvec copy_asm_constraints_vector
;
5238 /* Recursively create a new copy of an rtx for copy_insn.
5239 This function differs from copy_rtx in that it handles SCRATCHes and
5240 ASM_OPERANDs properly.
5241 Normally, this function is not used directly; use copy_insn as front end.
5242 However, you could first copy an insn pattern with copy_insn and then use
5243 this function afterwards to properly copy any REG_NOTEs containing
5247 copy_insn_1 (rtx orig
)
5252 const char *format_ptr
;
5257 code
= GET_CODE (orig
);
5272 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
5277 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5278 if (copy_insn_scratch_in
[i
] == orig
)
5279 return copy_insn_scratch_out
[i
];
5283 if (shared_const_p (orig
))
5287 /* A MEM with a constant address is not sharable. The problem is that
5288 the constant address may need to be reloaded. If the mem is shared,
5289 then reloading one copy of this mem will cause all copies to appear
5290 to have been reloaded. */
5296 /* Copy the various flags, fields, and other information. We assume
5297 that all fields need copying, and then clear the fields that should
5298 not be copied. That is the sensible default behavior, and forces
5299 us to explicitly document why we are *not* copying a flag. */
5300 copy
= shallow_copy_rtx (orig
);
5302 /* We do not copy the USED flag, which is used as a mark bit during
5303 walks over the RTL. */
5304 RTX_FLAG (copy
, used
) = 0;
5306 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5309 RTX_FLAG (copy
, jump
) = 0;
5310 RTX_FLAG (copy
, call
) = 0;
5311 RTX_FLAG (copy
, frame_related
) = 0;
5314 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5316 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5317 switch (*format_ptr
++)
5320 if (XEXP (orig
, i
) != NULL
)
5321 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5326 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5327 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5328 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5329 XVEC (copy
, i
) = copy_asm_operands_vector
;
5330 else if (XVEC (orig
, i
) != NULL
)
5332 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5333 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5334 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5345 /* These are left unchanged. */
5352 if (code
== SCRATCH
)
5354 i
= copy_insn_n_scratches
++;
5355 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5356 copy_insn_scratch_in
[i
] = orig
;
5357 copy_insn_scratch_out
[i
] = copy
;
5359 else if (code
== ASM_OPERANDS
)
5361 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5362 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5363 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5364 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5370 /* Create a new copy of an rtx.
5371 This function differs from copy_rtx in that it handles SCRATCHes and
5372 ASM_OPERANDs properly.
5373 INSN doesn't really have to be a full INSN; it could be just the
5376 copy_insn (rtx insn
)
5378 copy_insn_n_scratches
= 0;
5379 orig_asm_operands_vector
= 0;
5380 orig_asm_constraints_vector
= 0;
5381 copy_asm_operands_vector
= 0;
5382 copy_asm_constraints_vector
= 0;
5383 return copy_insn_1 (insn
);
5386 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5387 on that assumption that INSN itself remains in its original place. */
5390 copy_delay_slot_insn (rtx insn
)
5392 /* Copy INSN with its rtx_code, all its notes, location etc. */
5393 insn
= copy_rtx (insn
);
5394 INSN_UID (insn
) = cur_insn_uid
++;
5398 /* Initialize data structures and variables in this file
5399 before generating rtl for each function. */
5404 set_first_insn (NULL
);
5405 set_last_insn (NULL
);
5406 if (MIN_NONDEBUG_INSN_UID
)
5407 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5410 cur_debug_insn_uid
= 1;
5411 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5412 first_label_num
= label_num
;
5415 /* Init the tables that describe all the pseudo regs. */
5417 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5419 crtl
->emit
.regno_pointer_align
5420 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5422 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5424 /* Put copies of all the hard registers into regno_reg_rtx. */
5425 memcpy (regno_reg_rtx
,
5426 initial_regno_reg_rtx
,
5427 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5429 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5430 init_virtual_regs ();
5432 /* Indicate that the virtual registers and stack locations are
5434 REG_POINTER (stack_pointer_rtx
) = 1;
5435 REG_POINTER (frame_pointer_rtx
) = 1;
5436 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5437 REG_POINTER (arg_pointer_rtx
) = 1;
5439 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5440 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5441 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5442 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5443 REG_POINTER (virtual_cfa_rtx
) = 1;
5445 #ifdef STACK_BOUNDARY
5446 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5447 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5448 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5449 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5451 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5452 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5453 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5454 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5455 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5458 #ifdef INIT_EXPANDERS
5463 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5466 gen_const_vector (enum machine_mode mode
, int constant
)
5471 enum machine_mode inner
;
5473 units
= GET_MODE_NUNITS (mode
);
5474 inner
= GET_MODE_INNER (mode
);
5476 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5478 v
= rtvec_alloc (units
);
5480 /* We need to call this function after we set the scalar const_tiny_rtx
5482 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5484 for (i
= 0; i
< units
; ++i
)
5485 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5487 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5491 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5492 all elements are zero, and the one vector when all elements are one. */
5494 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5496 enum machine_mode inner
= GET_MODE_INNER (mode
);
5497 int nunits
= GET_MODE_NUNITS (mode
);
5501 /* Check to see if all of the elements have the same value. */
5502 x
= RTVEC_ELT (v
, nunits
- 1);
5503 for (i
= nunits
- 2; i
>= 0; i
--)
5504 if (RTVEC_ELT (v
, i
) != x
)
5507 /* If the values are all the same, check to see if we can use one of the
5508 standard constant vectors. */
5511 if (x
== CONST0_RTX (inner
))
5512 return CONST0_RTX (mode
);
5513 else if (x
== CONST1_RTX (inner
))
5514 return CONST1_RTX (mode
);
5515 else if (x
== CONSTM1_RTX (inner
))
5516 return CONSTM1_RTX (mode
);
5519 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5522 /* Initialise global register information required by all functions. */
5525 init_emit_regs (void)
5528 enum machine_mode mode
;
5531 /* Reset register attributes */
5532 htab_empty (reg_attrs_htab
);
5534 /* We need reg_raw_mode, so initialize the modes now. */
5535 init_reg_modes_target ();
5537 /* Assign register numbers to the globally defined register rtx. */
5538 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5539 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5540 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5541 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5542 virtual_incoming_args_rtx
=
5543 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5544 virtual_stack_vars_rtx
=
5545 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5546 virtual_stack_dynamic_rtx
=
5547 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5548 virtual_outgoing_args_rtx
=
5549 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5550 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5551 virtual_preferred_stack_boundary_rtx
=
5552 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5554 /* Initialize RTL for commonly used hard registers. These are
5555 copied into regno_reg_rtx as we begin to compile each function. */
5556 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5557 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5559 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5560 return_address_pointer_rtx
5561 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5564 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5565 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5567 pic_offset_table_rtx
= NULL_RTX
;
5569 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5571 mode
= (enum machine_mode
) i
;
5572 attrs
= ggc_alloc_cleared_mem_attrs ();
5573 attrs
->align
= BITS_PER_UNIT
;
5574 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5575 if (mode
!= BLKmode
)
5577 attrs
->size_known_p
= true;
5578 attrs
->size
= GET_MODE_SIZE (mode
);
5579 if (STRICT_ALIGNMENT
)
5580 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5582 mode_mem_attrs
[i
] = attrs
;
5586 /* Create some permanent unique rtl objects shared between all functions. */
5589 init_emit_once (void)
5592 enum machine_mode mode
;
5593 enum machine_mode double_mode
;
5595 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5597 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5598 const_int_htab_eq
, NULL
);
5600 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5601 const_double_htab_eq
, NULL
);
5603 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5604 const_fixed_htab_eq
, NULL
);
5606 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5607 mem_attrs_htab_eq
, NULL
);
5608 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5609 reg_attrs_htab_eq
, NULL
);
5611 /* Compute the word and byte modes. */
5613 byte_mode
= VOIDmode
;
5614 word_mode
= VOIDmode
;
5615 double_mode
= VOIDmode
;
5617 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5619 mode
= GET_MODE_WIDER_MODE (mode
))
5621 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5622 && byte_mode
== VOIDmode
)
5625 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5626 && word_mode
== VOIDmode
)
5630 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5632 mode
= GET_MODE_WIDER_MODE (mode
))
5634 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5635 && double_mode
== VOIDmode
)
5639 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5641 #ifdef INIT_EXPANDERS
5642 /* This is to initialize {init|mark|free}_machine_status before the first
5643 call to push_function_context_to. This is needed by the Chill front
5644 end which calls push_function_context_to before the first call to
5645 init_function_start. */
5649 /* Create the unique rtx's for certain rtx codes and operand values. */
5651 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5652 tries to use these variables. */
5653 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5654 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5655 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5657 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5658 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5659 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5661 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5663 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5664 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5665 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5670 dconsthalf
= dconst1
;
5671 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5673 for (i
= 0; i
< 3; i
++)
5675 const REAL_VALUE_TYPE
*const r
=
5676 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5678 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5680 mode
= GET_MODE_WIDER_MODE (mode
))
5681 const_tiny_rtx
[i
][(int) mode
] =
5682 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5684 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5686 mode
= GET_MODE_WIDER_MODE (mode
))
5687 const_tiny_rtx
[i
][(int) mode
] =
5688 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5690 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5692 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5694 mode
= GET_MODE_WIDER_MODE (mode
))
5695 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5697 for (mode
= MIN_MODE_PARTIAL_INT
;
5698 mode
<= MAX_MODE_PARTIAL_INT
;
5699 mode
= (enum machine_mode
)((int)(mode
) + 1))
5700 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5703 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5705 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5707 mode
= GET_MODE_WIDER_MODE (mode
))
5708 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5710 for (mode
= MIN_MODE_PARTIAL_INT
;
5711 mode
<= MAX_MODE_PARTIAL_INT
;
5712 mode
= (enum machine_mode
)((int)(mode
) + 1))
5713 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5715 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5717 mode
= GET_MODE_WIDER_MODE (mode
))
5719 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5720 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5723 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5725 mode
= GET_MODE_WIDER_MODE (mode
))
5727 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5728 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5731 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5733 mode
= GET_MODE_WIDER_MODE (mode
))
5735 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5736 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5737 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5740 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5742 mode
= GET_MODE_WIDER_MODE (mode
))
5744 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5745 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5748 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5750 mode
= GET_MODE_WIDER_MODE (mode
))
5752 FCONST0(mode
).data
.high
= 0;
5753 FCONST0(mode
).data
.low
= 0;
5754 FCONST0(mode
).mode
= mode
;
5755 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5756 FCONST0 (mode
), mode
);
5759 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5761 mode
= GET_MODE_WIDER_MODE (mode
))
5763 FCONST0(mode
).data
.high
= 0;
5764 FCONST0(mode
).data
.low
= 0;
5765 FCONST0(mode
).mode
= mode
;
5766 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5767 FCONST0 (mode
), mode
);
5770 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5772 mode
= GET_MODE_WIDER_MODE (mode
))
5774 FCONST0(mode
).data
.high
= 0;
5775 FCONST0(mode
).data
.low
= 0;
5776 FCONST0(mode
).mode
= mode
;
5777 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5778 FCONST0 (mode
), mode
);
5780 /* We store the value 1. */
5781 FCONST1(mode
).data
.high
= 0;
5782 FCONST1(mode
).data
.low
= 0;
5783 FCONST1(mode
).mode
= mode
;
5785 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5786 HOST_BITS_PER_DOUBLE_INT
,
5787 SIGNED_FIXED_POINT_MODE_P (mode
));
5788 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5789 FCONST1 (mode
), mode
);
5792 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5794 mode
= GET_MODE_WIDER_MODE (mode
))
5796 FCONST0(mode
).data
.high
= 0;
5797 FCONST0(mode
).data
.low
= 0;
5798 FCONST0(mode
).mode
= mode
;
5799 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5800 FCONST0 (mode
), mode
);
5802 /* We store the value 1. */
5803 FCONST1(mode
).data
.high
= 0;
5804 FCONST1(mode
).data
.low
= 0;
5805 FCONST1(mode
).mode
= mode
;
5807 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5808 HOST_BITS_PER_DOUBLE_INT
,
5809 SIGNED_FIXED_POINT_MODE_P (mode
));
5810 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5811 FCONST1 (mode
), mode
);
5814 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5816 mode
= GET_MODE_WIDER_MODE (mode
))
5818 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5821 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5823 mode
= GET_MODE_WIDER_MODE (mode
))
5825 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5828 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5830 mode
= GET_MODE_WIDER_MODE (mode
))
5832 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5833 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5836 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5838 mode
= GET_MODE_WIDER_MODE (mode
))
5840 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5841 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5844 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5845 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5846 const_tiny_rtx
[0][i
] = const0_rtx
;
5848 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5849 if (STORE_FLAG_VALUE
== 1)
5850 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5852 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5853 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5854 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
5855 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5858 /* Produce exact duplicate of insn INSN after AFTER.
5859 Care updating of libcall regions if present. */
5862 emit_copy_of_insn_after (rtx insn
, rtx after
)
5866 switch (GET_CODE (insn
))
5869 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5873 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5877 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5881 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5882 if (CALL_INSN_FUNCTION_USAGE (insn
))
5883 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5884 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5885 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5886 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5887 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5888 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5889 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5896 /* Update LABEL_NUSES. */
5897 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5899 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
5901 /* If the old insn is frame related, then so is the new one. This is
5902 primarily needed for IA-64 unwind info which marks epilogue insns,
5903 which may be duplicated by the basic block reordering code. */
5904 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5906 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5907 will make them. REG_LABEL_TARGETs are created there too, but are
5908 supposed to be sticky, so we copy them. */
5909 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5910 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5912 if (GET_CODE (link
) == EXPR_LIST
)
5913 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5914 copy_insn_1 (XEXP (link
, 0)));
5916 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5919 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5923 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5925 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5927 if (hard_reg_clobbers
[mode
][regno
])
5928 return hard_reg_clobbers
[mode
][regno
];
5930 return (hard_reg_clobbers
[mode
][regno
] =
5931 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5934 location_t prologue_location
;
5935 location_t epilogue_location
;
5937 /* Hold current location information and last location information, so the
5938 datastructures are built lazily only when some instructions in given
5939 place are needed. */
5940 static location_t curr_location
, last_location
;
5942 /* Allocate insn location datastructure. */
5944 insn_locations_init (void)
5946 prologue_location
= epilogue_location
= 0;
5947 curr_location
= UNKNOWN_LOCATION
;
5948 last_location
= UNKNOWN_LOCATION
;
5951 /* At the end of emit stage, clear current location. */
5953 insn_locations_finalize (void)
5955 epilogue_location
= curr_location
;
5956 curr_location
= UNKNOWN_LOCATION
;
5959 /* Set current location. */
5961 set_curr_insn_location (location_t location
)
5963 curr_location
= location
;
5966 /* Get current location. */
5968 curr_insn_location (void)
5970 return curr_location
;
5973 /* Return lexical scope block insn belongs to. */
5975 insn_scope (const_rtx insn
)
5977 return LOCATION_BLOCK (INSN_LOCATION (insn
));
5980 /* Return line number of the statement that produced this insn. */
5982 insn_line (const_rtx insn
)
5984 return LOCATION_LINE (INSN_LOCATION (insn
));
5987 /* Return source file of the statement that produced this insn. */
5989 insn_file (const_rtx insn
)
5991 return LOCATION_FILE (INSN_LOCATION (insn
));
5994 /* Return true if memory model MODEL requires a pre-operation (release-style)
5995 barrier or a post-operation (acquire-style) barrier. While not universal,
5996 this function matches behavior of several targets. */
5999 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6003 case MEMMODEL_RELAXED
:
6004 case MEMMODEL_CONSUME
:
6006 case MEMMODEL_RELEASE
:
6008 case MEMMODEL_ACQUIRE
:
6010 case MEMMODEL_ACQ_REL
:
6011 case MEMMODEL_SEQ_CST
:
6018 #include "gt-emit-rtl.h"