* intrinsics/pack_generic.c (pack): Add missing return and fix whitespace.
[official-gcc.git] / gcc / function.c
blob670ff80ad3c3a734a640d18c8e9ec7544b118780
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "integrate.h"
58 #include "langhooks.h"
59 #include "target.h"
60 #include "cfglayout.h"
61 #include "gimple.h"
62 #include "tree-pass.h"
63 #include "predict.h"
64 #include "df.h"
65 #include "timevar.h"
66 #include "vecprim.h"
68 /* So we can assign to cfun in this file. */
69 #undef cfun
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 pass_stack_ptr_mod has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 /* These hashes record the prologue and epilogue insns. */
127 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t prologue_insn_hash;
129 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
130 htab_t epilogue_insn_hash;
133 htab_t types_used_by_vars_hash = NULL;
134 VEC(tree,gc) *types_used_by_cur_var_decl;
136 /* Forward declarations. */
138 static struct temp_slot *find_temp_slot_from_address (rtx);
139 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
140 static void pad_below (struct args_size *, enum machine_mode, tree);
141 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
142 static int all_blocks (tree, tree *);
143 static tree *get_block_vector (tree, int *);
144 extern tree debug_find_var_in_block_tree (tree, tree);
145 /* We always define `record_insns' even if it's not used so that we
146 can always export `prologue_epilogue_contains'. */
147 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
148 static bool contains (const_rtx, htab_t);
149 #ifdef HAVE_return
150 static void emit_return_into_block (basic_block);
151 #endif
152 static void prepare_function_start (void);
153 static void do_clobber_return_reg (rtx, void *);
154 static void do_use_return_reg (rtx, void *);
155 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
157 /* Stack of nested functions. */
158 /* Keep track of the cfun stack. */
160 typedef struct function *function_p;
162 DEF_VEC_P(function_p);
163 DEF_VEC_ALLOC_P(function_p,heap);
164 static VEC(function_p,heap) *function_context_stack;
166 /* Save the current context for compilation of a nested function.
167 This is called from language-specific code. */
169 void
170 push_function_context (void)
172 if (cfun == 0)
173 allocate_struct_function (NULL, false);
175 VEC_safe_push (function_p, heap, function_context_stack, cfun);
176 set_cfun (NULL);
179 /* Restore the last saved context, at the end of a nested function.
180 This function is called from language-specific code. */
182 void
183 pop_function_context (void)
185 struct function *p = VEC_pop (function_p, function_context_stack);
186 set_cfun (p);
187 current_function_decl = p->decl;
189 /* Reset variables that have known state during rtx generation. */
190 virtuals_instantiated = 0;
191 generating_concat_p = 1;
194 /* Clear out all parts of the state in F that can safely be discarded
195 after the function has been parsed, but not compiled, to let
196 garbage collection reclaim the memory. */
198 void
199 free_after_parsing (struct function *f)
201 f->language = 0;
204 /* Clear out all parts of the state in F that can safely be discarded
205 after the function has been compiled, to let garbage collection
206 reclaim the memory. */
208 void
209 free_after_compilation (struct function *f)
211 prologue_insn_hash = NULL;
212 epilogue_insn_hash = NULL;
214 if (crtl->emit.regno_pointer_align)
215 free (crtl->emit.regno_pointer_align);
217 memset (crtl, 0, sizeof (struct rtl_data));
218 f->eh = NULL;
219 f->machine = NULL;
220 f->cfg = NULL;
222 regno_reg_rtx = NULL;
223 insn_locators_free ();
226 /* Return size needed for stack frame based on slots so far allocated.
227 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
228 the caller may have to do that. */
230 HOST_WIDE_INT
231 get_frame_size (void)
233 if (FRAME_GROWS_DOWNWARD)
234 return -frame_offset;
235 else
236 return frame_offset;
239 /* Issue an error message and return TRUE if frame OFFSET overflows in
240 the signed target pointer arithmetics for function FUNC. Otherwise
241 return FALSE. */
243 bool
244 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
246 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
248 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
249 /* Leave room for the fixed part of the frame. */
250 - 64 * UNITS_PER_WORD)
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects too large");
254 return TRUE;
257 return FALSE;
260 /* Return stack slot alignment in bits for TYPE and MODE. */
262 static unsigned int
263 get_stack_local_alignment (tree type, enum machine_mode mode)
265 unsigned int alignment;
267 if (mode == BLKmode)
268 alignment = BIGGEST_ALIGNMENT;
269 else
270 alignment = GET_MODE_ALIGNMENT (mode);
272 /* Allow the frond-end to (possibly) increase the alignment of this
273 stack slot. */
274 if (! type)
275 type = lang_hooks.types.type_for_mode (mode, 0);
277 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
280 /* Determine whether it is possible to fit a stack slot of size SIZE and
281 alignment ALIGNMENT into an area in the stack frame that starts at
282 frame offset START and has a length of LENGTH. If so, store the frame
283 offset to be used for the stack slot in *POFFSET and return true;
284 return false otherwise. This function will extend the frame size when
285 given a start/length pair that lies at the end of the frame. */
287 static bool
288 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
289 HOST_WIDE_INT size, unsigned int alignment,
290 HOST_WIDE_INT *poffset)
292 HOST_WIDE_INT this_frame_offset;
293 int frame_off, frame_alignment, frame_phase;
295 /* Calculate how many bytes the start of local variables is off from
296 stack alignment. */
297 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
298 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
299 frame_phase = frame_off ? frame_alignment - frame_off : 0;
301 /* Round the frame offset to the specified alignment. */
303 /* We must be careful here, since FRAME_OFFSET might be negative and
304 division with a negative dividend isn't as well defined as we might
305 like. So we instead assume that ALIGNMENT is a power of two and
306 use logical operations which are unambiguous. */
307 if (FRAME_GROWS_DOWNWARD)
308 this_frame_offset
309 = (FLOOR_ROUND (start + length - size - frame_phase,
310 (unsigned HOST_WIDE_INT) alignment)
311 + frame_phase);
312 else
313 this_frame_offset
314 = (CEIL_ROUND (start - frame_phase,
315 (unsigned HOST_WIDE_INT) alignment)
316 + frame_phase);
318 /* See if it fits. If this space is at the edge of the frame,
319 consider extending the frame to make it fit. Our caller relies on
320 this when allocating a new slot. */
321 if (frame_offset == start && this_frame_offset < frame_offset)
322 frame_offset = this_frame_offset;
323 else if (this_frame_offset < start)
324 return false;
325 else if (start + length == frame_offset
326 && this_frame_offset + size > start + length)
327 frame_offset = this_frame_offset + size;
328 else if (this_frame_offset + size > start + length)
329 return false;
331 *poffset = this_frame_offset;
332 return true;
335 /* Create a new frame_space structure describing free space in the stack
336 frame beginning at START and ending at END, and chain it into the
337 function's frame_space_list. */
339 static void
340 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
342 struct frame_space *space = ggc_alloc_frame_space ();
343 space->next = crtl->frame_space_list;
344 crtl->frame_space_list = space;
345 space->start = start;
346 space->length = end - start;
349 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
350 with machine mode MODE.
352 ALIGN controls the amount of alignment for the address of the slot:
353 0 means according to MODE,
354 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
355 -2 means use BITS_PER_UNIT,
356 positive specifies alignment boundary in bits.
358 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
360 We do not round to stack_boundary here. */
363 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
364 int align,
365 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
367 rtx x, addr;
368 int bigend_correction = 0;
369 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
370 unsigned int alignment, alignment_in_bits;
372 if (align == 0)
374 alignment = get_stack_local_alignment (NULL, mode);
375 alignment /= BITS_PER_UNIT;
377 else if (align == -1)
379 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
380 size = CEIL_ROUND (size, alignment);
382 else if (align == -2)
383 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
384 else
385 alignment = align / BITS_PER_UNIT;
387 alignment_in_bits = alignment * BITS_PER_UNIT;
389 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
390 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
392 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
396 if (SUPPORTS_STACK_ALIGNMENT)
398 if (crtl->stack_alignment_estimated < alignment_in_bits)
400 if (!crtl->stack_realign_processed)
401 crtl->stack_alignment_estimated = alignment_in_bits;
402 else
404 /* If stack is realigned and stack alignment value
405 hasn't been finalized, it is OK not to increase
406 stack_alignment_estimated. The bigger alignment
407 requirement is recorded in stack_alignment_needed
408 below. */
409 gcc_assert (!crtl->stack_realign_finalized);
410 if (!crtl->stack_realign_needed)
412 /* It is OK to reduce the alignment as long as the
413 requested size is 0 or the estimated stack
414 alignment >= mode alignment. */
415 gcc_assert (reduce_alignment_ok
416 || size == 0
417 || (crtl->stack_alignment_estimated
418 >= GET_MODE_ALIGNMENT (mode)));
419 alignment_in_bits = crtl->stack_alignment_estimated;
420 alignment = alignment_in_bits / BITS_PER_UNIT;
426 if (crtl->stack_alignment_needed < alignment_in_bits)
427 crtl->stack_alignment_needed = alignment_in_bits;
428 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
429 crtl->max_used_stack_slot_alignment = alignment_in_bits;
431 if (mode != BLKmode || size != 0)
433 struct frame_space **psp;
435 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
437 struct frame_space *space = *psp;
438 if (!try_fit_stack_local (space->start, space->length, size,
439 alignment, &slot_offset))
440 continue;
441 *psp = space->next;
442 if (slot_offset > space->start)
443 add_frame_space (space->start, slot_offset);
444 if (slot_offset + size < space->start + space->length)
445 add_frame_space (slot_offset + size,
446 space->start + space->length);
447 goto found_space;
450 else if (!STACK_ALIGNMENT_NEEDED)
452 slot_offset = frame_offset;
453 goto found_space;
456 old_frame_offset = frame_offset;
458 if (FRAME_GROWS_DOWNWARD)
460 frame_offset -= size;
461 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
463 if (slot_offset > frame_offset)
464 add_frame_space (frame_offset, slot_offset);
465 if (slot_offset + size < old_frame_offset)
466 add_frame_space (slot_offset + size, old_frame_offset);
468 else
470 frame_offset += size;
471 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
473 if (slot_offset > old_frame_offset)
474 add_frame_space (old_frame_offset, slot_offset);
475 if (slot_offset + size < frame_offset)
476 add_frame_space (slot_offset + size, frame_offset);
479 found_space:
480 /* On a big-endian machine, if we are allocating more space than we will use,
481 use the least significant bytes of those that are allocated. */
482 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
483 bigend_correction = size - GET_MODE_SIZE (mode);
485 /* If we have already instantiated virtual registers, return the actual
486 address relative to the frame pointer. */
487 if (virtuals_instantiated)
488 addr = plus_constant (frame_pointer_rtx,
489 trunc_int_for_mode
490 (slot_offset + bigend_correction
491 + STARTING_FRAME_OFFSET, Pmode));
492 else
493 addr = plus_constant (virtual_stack_vars_rtx,
494 trunc_int_for_mode
495 (slot_offset + bigend_correction,
496 Pmode));
498 x = gen_rtx_MEM (mode, addr);
499 set_mem_align (x, alignment_in_bits);
500 MEM_NOTRAP_P (x) = 1;
502 stack_slot_list
503 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
505 if (frame_offset_overflow (frame_offset, current_function_decl))
506 frame_offset = 0;
508 return x;
511 /* Wrap up assign_stack_local_1 with last parameter as false. */
514 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
516 return assign_stack_local_1 (mode, size, align, false);
520 /* In order to evaluate some expressions, such as function calls returning
521 structures in memory, we need to temporarily allocate stack locations.
522 We record each allocated temporary in the following structure.
524 Associated with each temporary slot is a nesting level. When we pop up
525 one level, all temporaries associated with the previous level are freed.
526 Normally, all temporaries are freed after the execution of the statement
527 in which they were created. However, if we are inside a ({...}) grouping,
528 the result may be in a temporary and hence must be preserved. If the
529 result could be in a temporary, we preserve it if we can determine which
530 one it is in. If we cannot determine which temporary may contain the
531 result, all temporaries are preserved. A temporary is preserved by
532 pretending it was allocated at the previous nesting level.
534 Automatic variables are also assigned temporary slots, at the nesting
535 level where they are defined. They are marked a "kept" so that
536 free_temp_slots will not free them. */
538 struct GTY(()) temp_slot {
539 /* Points to next temporary slot. */
540 struct temp_slot *next;
541 /* Points to previous temporary slot. */
542 struct temp_slot *prev;
543 /* The rtx to used to reference the slot. */
544 rtx slot;
545 /* The size, in units, of the slot. */
546 HOST_WIDE_INT size;
547 /* The type of the object in the slot, or zero if it doesn't correspond
548 to a type. We use this to determine whether a slot can be reused.
549 It can be reused if objects of the type of the new slot will always
550 conflict with objects of the type of the old slot. */
551 tree type;
552 /* The alignment (in bits) of the slot. */
553 unsigned int align;
554 /* Nonzero if this temporary is currently in use. */
555 char in_use;
556 /* Nonzero if this temporary has its address taken. */
557 char addr_taken;
558 /* Nesting level at which this slot is being used. */
559 int level;
560 /* Nonzero if this should survive a call to free_temp_slots. */
561 int keep;
562 /* The offset of the slot from the frame_pointer, including extra space
563 for alignment. This info is for combine_temp_slots. */
564 HOST_WIDE_INT base_offset;
565 /* The size of the slot, including extra space for alignment. This
566 info is for combine_temp_slots. */
567 HOST_WIDE_INT full_size;
570 /* A table of addresses that represent a stack slot. The table is a mapping
571 from address RTXen to a temp slot. */
572 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
574 /* Entry for the above hash table. */
575 struct GTY(()) temp_slot_address_entry {
576 hashval_t hash;
577 rtx address;
578 struct temp_slot *temp_slot;
581 /* Removes temporary slot TEMP from LIST. */
583 static void
584 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
586 if (temp->next)
587 temp->next->prev = temp->prev;
588 if (temp->prev)
589 temp->prev->next = temp->next;
590 else
591 *list = temp->next;
593 temp->prev = temp->next = NULL;
596 /* Inserts temporary slot TEMP to LIST. */
598 static void
599 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
601 temp->next = *list;
602 if (*list)
603 (*list)->prev = temp;
604 temp->prev = NULL;
605 *list = temp;
608 /* Returns the list of used temp slots at LEVEL. */
610 static struct temp_slot **
611 temp_slots_at_level (int level)
613 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
614 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
616 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
619 /* Returns the maximal temporary slot level. */
621 static int
622 max_slot_level (void)
624 if (!used_temp_slots)
625 return -1;
627 return VEC_length (temp_slot_p, used_temp_slots) - 1;
630 /* Moves temporary slot TEMP to LEVEL. */
632 static void
633 move_slot_to_level (struct temp_slot *temp, int level)
635 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
636 insert_slot_to_list (temp, temp_slots_at_level (level));
637 temp->level = level;
640 /* Make temporary slot TEMP available. */
642 static void
643 make_slot_available (struct temp_slot *temp)
645 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
646 insert_slot_to_list (temp, &avail_temp_slots);
647 temp->in_use = 0;
648 temp->level = -1;
651 /* Compute the hash value for an address -> temp slot mapping.
652 The value is cached on the mapping entry. */
653 static hashval_t
654 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
656 int do_not_record = 0;
657 return hash_rtx (t->address, GET_MODE (t->address),
658 &do_not_record, NULL, false);
661 /* Return the hash value for an address -> temp slot mapping. */
662 static hashval_t
663 temp_slot_address_hash (const void *p)
665 const struct temp_slot_address_entry *t;
666 t = (const struct temp_slot_address_entry *) p;
667 return t->hash;
670 /* Compare two address -> temp slot mapping entries. */
671 static int
672 temp_slot_address_eq (const void *p1, const void *p2)
674 const struct temp_slot_address_entry *t1, *t2;
675 t1 = (const struct temp_slot_address_entry *) p1;
676 t2 = (const struct temp_slot_address_entry *) p2;
677 return exp_equiv_p (t1->address, t2->address, 0, true);
680 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
681 static void
682 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
684 void **slot;
685 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
686 t->address = address;
687 t->temp_slot = temp_slot;
688 t->hash = temp_slot_address_compute_hash (t);
689 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
690 *slot = t;
693 /* Remove an address -> temp slot mapping entry if the temp slot is
694 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
695 static int
696 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
698 const struct temp_slot_address_entry *t;
699 t = (const struct temp_slot_address_entry *) *slot;
700 if (! t->temp_slot->in_use)
701 *slot = NULL;
702 return 1;
705 /* Remove all mappings of addresses to unused temp slots. */
706 static void
707 remove_unused_temp_slot_addresses (void)
709 htab_traverse (temp_slot_address_table,
710 remove_unused_temp_slot_addresses_1,
711 NULL);
714 /* Find the temp slot corresponding to the object at address X. */
716 static struct temp_slot *
717 find_temp_slot_from_address (rtx x)
719 struct temp_slot *p;
720 struct temp_slot_address_entry tmp, *t;
722 /* First try the easy way:
723 See if X exists in the address -> temp slot mapping. */
724 tmp.address = x;
725 tmp.temp_slot = NULL;
726 tmp.hash = temp_slot_address_compute_hash (&tmp);
727 t = (struct temp_slot_address_entry *)
728 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
729 if (t)
730 return t->temp_slot;
732 /* If we have a sum involving a register, see if it points to a temp
733 slot. */
734 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
735 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
736 return p;
737 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
738 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
739 return p;
741 /* Last resort: Address is a virtual stack var address. */
742 if (GET_CODE (x) == PLUS
743 && XEXP (x, 0) == virtual_stack_vars_rtx
744 && CONST_INT_P (XEXP (x, 1)))
746 int i;
747 for (i = max_slot_level (); i >= 0; i--)
748 for (p = *temp_slots_at_level (i); p; p = p->next)
750 if (INTVAL (XEXP (x, 1)) >= p->base_offset
751 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
752 return p;
756 return NULL;
759 /* Allocate a temporary stack slot and record it for possible later
760 reuse.
762 MODE is the machine mode to be given to the returned rtx.
764 SIZE is the size in units of the space required. We do no rounding here
765 since assign_stack_local will do any required rounding.
767 KEEP is 1 if this slot is to be retained after a call to
768 free_temp_slots. Automatic variables for a block are allocated
769 with this flag. KEEP values of 2 or 3 were needed respectively
770 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
771 or for SAVE_EXPRs, but they are now unused.
773 TYPE is the type that will be used for the stack slot. */
776 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
777 int keep, tree type)
779 unsigned int align;
780 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
781 rtx slot;
783 /* If SIZE is -1 it means that somebody tried to allocate a temporary
784 of a variable size. */
785 gcc_assert (size != -1);
787 /* These are now unused. */
788 gcc_assert (keep <= 1);
790 align = get_stack_local_alignment (type, mode);
792 /* Try to find an available, already-allocated temporary of the proper
793 mode which meets the size and alignment requirements. Choose the
794 smallest one with the closest alignment.
796 If assign_stack_temp is called outside of the tree->rtl expansion,
797 we cannot reuse the stack slots (that may still refer to
798 VIRTUAL_STACK_VARS_REGNUM). */
799 if (!virtuals_instantiated)
801 for (p = avail_temp_slots; p; p = p->next)
803 if (p->align >= align && p->size >= size
804 && GET_MODE (p->slot) == mode
805 && objects_must_conflict_p (p->type, type)
806 && (best_p == 0 || best_p->size > p->size
807 || (best_p->size == p->size && best_p->align > p->align)))
809 if (p->align == align && p->size == size)
811 selected = p;
812 cut_slot_from_list (selected, &avail_temp_slots);
813 best_p = 0;
814 break;
816 best_p = p;
821 /* Make our best, if any, the one to use. */
822 if (best_p)
824 selected = best_p;
825 cut_slot_from_list (selected, &avail_temp_slots);
827 /* If there are enough aligned bytes left over, make them into a new
828 temp_slot so that the extra bytes don't get wasted. Do this only
829 for BLKmode slots, so that we can be sure of the alignment. */
830 if (GET_MODE (best_p->slot) == BLKmode)
832 int alignment = best_p->align / BITS_PER_UNIT;
833 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
835 if (best_p->size - rounded_size >= alignment)
837 p = ggc_alloc_temp_slot ();
838 p->in_use = p->addr_taken = 0;
839 p->size = best_p->size - rounded_size;
840 p->base_offset = best_p->base_offset + rounded_size;
841 p->full_size = best_p->full_size - rounded_size;
842 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
843 p->align = best_p->align;
844 p->type = best_p->type;
845 insert_slot_to_list (p, &avail_temp_slots);
847 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
848 stack_slot_list);
850 best_p->size = rounded_size;
851 best_p->full_size = rounded_size;
856 /* If we still didn't find one, make a new temporary. */
857 if (selected == 0)
859 HOST_WIDE_INT frame_offset_old = frame_offset;
861 p = ggc_alloc_temp_slot ();
863 /* We are passing an explicit alignment request to assign_stack_local.
864 One side effect of that is assign_stack_local will not round SIZE
865 to ensure the frame offset remains suitably aligned.
867 So for requests which depended on the rounding of SIZE, we go ahead
868 and round it now. We also make sure ALIGNMENT is at least
869 BIGGEST_ALIGNMENT. */
870 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
871 p->slot = assign_stack_local (mode,
872 (mode == BLKmode
873 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
874 : size),
875 align);
877 p->align = align;
879 /* The following slot size computation is necessary because we don't
880 know the actual size of the temporary slot until assign_stack_local
881 has performed all the frame alignment and size rounding for the
882 requested temporary. Note that extra space added for alignment
883 can be either above or below this stack slot depending on which
884 way the frame grows. We include the extra space if and only if it
885 is above this slot. */
886 if (FRAME_GROWS_DOWNWARD)
887 p->size = frame_offset_old - frame_offset;
888 else
889 p->size = size;
891 /* Now define the fields used by combine_temp_slots. */
892 if (FRAME_GROWS_DOWNWARD)
894 p->base_offset = frame_offset;
895 p->full_size = frame_offset_old - frame_offset;
897 else
899 p->base_offset = frame_offset_old;
900 p->full_size = frame_offset - frame_offset_old;
903 selected = p;
906 p = selected;
907 p->in_use = 1;
908 p->addr_taken = 0;
909 p->type = type;
910 p->level = temp_slot_level;
911 p->keep = keep;
913 pp = temp_slots_at_level (p->level);
914 insert_slot_to_list (p, pp);
915 insert_temp_slot_address (XEXP (p->slot, 0), p);
917 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
918 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
919 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
921 /* If we know the alias set for the memory that will be used, use
922 it. If there's no TYPE, then we don't know anything about the
923 alias set for the memory. */
924 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
925 set_mem_align (slot, align);
927 /* If a type is specified, set the relevant flags. */
928 if (type != 0)
930 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
931 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
932 || TREE_CODE (type) == COMPLEX_TYPE));
934 MEM_NOTRAP_P (slot) = 1;
936 return slot;
939 /* Allocate a temporary stack slot and record it for possible later
940 reuse. First three arguments are same as in preceding function. */
943 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
945 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
948 /* Assign a temporary.
949 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
950 and so that should be used in error messages. In either case, we
951 allocate of the given type.
952 KEEP is as for assign_stack_temp.
953 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
954 it is 0 if a register is OK.
955 DONT_PROMOTE is 1 if we should not promote values in register
956 to wider modes. */
959 assign_temp (tree type_or_decl, int keep, int memory_required,
960 int dont_promote ATTRIBUTE_UNUSED)
962 tree type, decl;
963 enum machine_mode mode;
964 #ifdef PROMOTE_MODE
965 int unsignedp;
966 #endif
968 if (DECL_P (type_or_decl))
969 decl = type_or_decl, type = TREE_TYPE (decl);
970 else
971 decl = NULL, type = type_or_decl;
973 mode = TYPE_MODE (type);
974 #ifdef PROMOTE_MODE
975 unsignedp = TYPE_UNSIGNED (type);
976 #endif
978 if (mode == BLKmode || memory_required)
980 HOST_WIDE_INT size = int_size_in_bytes (type);
981 rtx tmp;
983 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
984 problems with allocating the stack space. */
985 if (size == 0)
986 size = 1;
988 /* Unfortunately, we don't yet know how to allocate variable-sized
989 temporaries. However, sometimes we can find a fixed upper limit on
990 the size, so try that instead. */
991 else if (size == -1)
992 size = max_int_size_in_bytes (type);
994 /* The size of the temporary may be too large to fit into an integer. */
995 /* ??? Not sure this should happen except for user silliness, so limit
996 this to things that aren't compiler-generated temporaries. The
997 rest of the time we'll die in assign_stack_temp_for_type. */
998 if (decl && size == -1
999 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1001 error ("size of variable %q+D is too large", decl);
1002 size = 1;
1005 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1006 return tmp;
1009 #ifdef PROMOTE_MODE
1010 if (! dont_promote)
1011 mode = promote_mode (type, mode, &unsignedp);
1012 #endif
1014 return gen_reg_rtx (mode);
1017 /* Combine temporary stack slots which are adjacent on the stack.
1019 This allows for better use of already allocated stack space. This is only
1020 done for BLKmode slots because we can be sure that we won't have alignment
1021 problems in this case. */
1023 static void
1024 combine_temp_slots (void)
1026 struct temp_slot *p, *q, *next, *next_q;
1027 int num_slots;
1029 /* We can't combine slots, because the information about which slot
1030 is in which alias set will be lost. */
1031 if (flag_strict_aliasing)
1032 return;
1034 /* If there are a lot of temp slots, don't do anything unless
1035 high levels of optimization. */
1036 if (! flag_expensive_optimizations)
1037 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1038 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1039 return;
1041 for (p = avail_temp_slots; p; p = next)
1043 int delete_p = 0;
1045 next = p->next;
1047 if (GET_MODE (p->slot) != BLKmode)
1048 continue;
1050 for (q = p->next; q; q = next_q)
1052 int delete_q = 0;
1054 next_q = q->next;
1056 if (GET_MODE (q->slot) != BLKmode)
1057 continue;
1059 if (p->base_offset + p->full_size == q->base_offset)
1061 /* Q comes after P; combine Q into P. */
1062 p->size += q->size;
1063 p->full_size += q->full_size;
1064 delete_q = 1;
1066 else if (q->base_offset + q->full_size == p->base_offset)
1068 /* P comes after Q; combine P into Q. */
1069 q->size += p->size;
1070 q->full_size += p->full_size;
1071 delete_p = 1;
1072 break;
1074 if (delete_q)
1075 cut_slot_from_list (q, &avail_temp_slots);
1078 /* Either delete P or advance past it. */
1079 if (delete_p)
1080 cut_slot_from_list (p, &avail_temp_slots);
1084 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1085 slot that previously was known by OLD_RTX. */
1087 void
1088 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1090 struct temp_slot *p;
1092 if (rtx_equal_p (old_rtx, new_rtx))
1093 return;
1095 p = find_temp_slot_from_address (old_rtx);
1097 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1098 NEW_RTX is a register, see if one operand of the PLUS is a
1099 temporary location. If so, NEW_RTX points into it. Otherwise,
1100 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1101 in common between them. If so, try a recursive call on those
1102 values. */
1103 if (p == 0)
1105 if (GET_CODE (old_rtx) != PLUS)
1106 return;
1108 if (REG_P (new_rtx))
1110 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1111 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1112 return;
1114 else if (GET_CODE (new_rtx) != PLUS)
1115 return;
1117 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1118 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1119 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1120 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1121 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1122 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1123 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1124 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1126 return;
1129 /* Otherwise add an alias for the temp's address. */
1130 insert_temp_slot_address (new_rtx, p);
1133 /* If X could be a reference to a temporary slot, mark the fact that its
1134 address was taken. */
1136 void
1137 mark_temp_addr_taken (rtx x)
1139 struct temp_slot *p;
1141 if (x == 0)
1142 return;
1144 /* If X is not in memory or is at a constant address, it cannot be in
1145 a temporary slot. */
1146 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1147 return;
1149 p = find_temp_slot_from_address (XEXP (x, 0));
1150 if (p != 0)
1151 p->addr_taken = 1;
1154 /* If X could be a reference to a temporary slot, mark that slot as
1155 belonging to the to one level higher than the current level. If X
1156 matched one of our slots, just mark that one. Otherwise, we can't
1157 easily predict which it is, so upgrade all of them. Kept slots
1158 need not be touched.
1160 This is called when an ({...}) construct occurs and a statement
1161 returns a value in memory. */
1163 void
1164 preserve_temp_slots (rtx x)
1166 struct temp_slot *p = 0, *next;
1168 /* If there is no result, we still might have some objects whose address
1169 were taken, so we need to make sure they stay around. */
1170 if (x == 0)
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1176 if (p->addr_taken)
1177 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1183 /* If X is a register that is being used as a pointer, see if we have
1184 a temporary slot we know it points to. To be consistent with
1185 the code below, we really should preserve all non-kept slots
1186 if we can't find a match, but that seems to be much too costly. */
1187 if (REG_P (x) && REG_POINTER (x))
1188 p = find_temp_slot_from_address (x);
1190 /* If X is not in memory or is at a constant address, it cannot be in
1191 a temporary slot, but it can contain something whose address was
1192 taken. */
1193 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1195 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1197 next = p->next;
1199 if (p->addr_taken)
1200 move_slot_to_level (p, temp_slot_level - 1);
1203 return;
1206 /* First see if we can find a match. */
1207 if (p == 0)
1208 p = find_temp_slot_from_address (XEXP (x, 0));
1210 if (p != 0)
1212 /* Move everything at our level whose address was taken to our new
1213 level in case we used its address. */
1214 struct temp_slot *q;
1216 if (p->level == temp_slot_level)
1218 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1220 next = q->next;
1222 if (p != q && q->addr_taken)
1223 move_slot_to_level (q, temp_slot_level - 1);
1226 move_slot_to_level (p, temp_slot_level - 1);
1227 p->addr_taken = 0;
1229 return;
1232 /* Otherwise, preserve all non-kept slots at this level. */
1233 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1235 next = p->next;
1237 if (!p->keep)
1238 move_slot_to_level (p, temp_slot_level - 1);
1242 /* Free all temporaries used so far. This is normally called at the
1243 end of generating code for a statement. */
1245 void
1246 free_temp_slots (void)
1248 struct temp_slot *p, *next;
1249 bool some_available = false;
1251 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1253 next = p->next;
1255 if (!p->keep)
1257 make_slot_available (p);
1258 some_available = true;
1262 if (some_available)
1264 remove_unused_temp_slot_addresses ();
1265 combine_temp_slots ();
1269 /* Push deeper into the nesting level for stack temporaries. */
1271 void
1272 push_temp_slots (void)
1274 temp_slot_level++;
1277 /* Pop a temporary nesting level. All slots in use in the current level
1278 are freed. */
1280 void
1281 pop_temp_slots (void)
1283 struct temp_slot *p, *next;
1284 bool some_available = false;
1286 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1288 next = p->next;
1289 make_slot_available (p);
1290 some_available = true;
1293 if (some_available)
1295 remove_unused_temp_slot_addresses ();
1296 combine_temp_slots ();
1299 temp_slot_level--;
1302 /* Initialize temporary slots. */
1304 void
1305 init_temp_slots (void)
1307 /* We have not allocated any temporaries yet. */
1308 avail_temp_slots = 0;
1309 used_temp_slots = 0;
1310 temp_slot_level = 0;
1312 /* Set up the table to map addresses to temp slots. */
1313 if (! temp_slot_address_table)
1314 temp_slot_address_table = htab_create_ggc (32,
1315 temp_slot_address_hash,
1316 temp_slot_address_eq,
1317 NULL);
1318 else
1319 htab_empty (temp_slot_address_table);
1322 /* These routines are responsible for converting virtual register references
1323 to the actual hard register references once RTL generation is complete.
1325 The following four variables are used for communication between the
1326 routines. They contain the offsets of the virtual registers from their
1327 respective hard registers. */
1329 static int in_arg_offset;
1330 static int var_offset;
1331 static int dynamic_offset;
1332 static int out_arg_offset;
1333 static int cfa_offset;
1335 /* In most machines, the stack pointer register is equivalent to the bottom
1336 of the stack. */
1338 #ifndef STACK_POINTER_OFFSET
1339 #define STACK_POINTER_OFFSET 0
1340 #endif
1342 /* If not defined, pick an appropriate default for the offset of dynamically
1343 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1344 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1346 #ifndef STACK_DYNAMIC_OFFSET
1348 /* The bottom of the stack points to the actual arguments. If
1349 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1350 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1351 stack space for register parameters is not pushed by the caller, but
1352 rather part of the fixed stack areas and hence not included in
1353 `crtl->outgoing_args_size'. Nevertheless, we must allow
1354 for it when allocating stack dynamic objects. */
1356 #if defined(REG_PARM_STACK_SPACE)
1357 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1358 ((ACCUMULATE_OUTGOING_ARGS \
1359 ? (crtl->outgoing_args_size \
1360 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1361 : REG_PARM_STACK_SPACE (FNDECL))) \
1362 : 0) + (STACK_POINTER_OFFSET))
1363 #else
1364 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1365 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1366 + (STACK_POINTER_OFFSET))
1367 #endif
1368 #endif
1371 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1372 is a virtual register, return the equivalent hard register and set the
1373 offset indirectly through the pointer. Otherwise, return 0. */
1375 static rtx
1376 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1378 rtx new_rtx;
1379 HOST_WIDE_INT offset;
1381 if (x == virtual_incoming_args_rtx)
1383 if (stack_realign_drap)
1385 /* Replace virtual_incoming_args_rtx with internal arg
1386 pointer if DRAP is used to realign stack. */
1387 new_rtx = crtl->args.internal_arg_pointer;
1388 offset = 0;
1390 else
1391 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1393 else if (x == virtual_stack_vars_rtx)
1394 new_rtx = frame_pointer_rtx, offset = var_offset;
1395 else if (x == virtual_stack_dynamic_rtx)
1396 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1397 else if (x == virtual_outgoing_args_rtx)
1398 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1399 else if (x == virtual_cfa_rtx)
1401 #ifdef FRAME_POINTER_CFA_OFFSET
1402 new_rtx = frame_pointer_rtx;
1403 #else
1404 new_rtx = arg_pointer_rtx;
1405 #endif
1406 offset = cfa_offset;
1408 else
1409 return NULL_RTX;
1411 *poffset = offset;
1412 return new_rtx;
1415 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1416 Instantiate any virtual registers present inside of *LOC. The expression
1417 is simplified, as much as possible, but is not to be considered "valid"
1418 in any sense implied by the target. If any change is made, set CHANGED
1419 to true. */
1421 static int
1422 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1424 HOST_WIDE_INT offset;
1425 bool *changed = (bool *) data;
1426 rtx x, new_rtx;
1428 x = *loc;
1429 if (x == 0)
1430 return 0;
1432 switch (GET_CODE (x))
1434 case REG:
1435 new_rtx = instantiate_new_reg (x, &offset);
1436 if (new_rtx)
1438 *loc = plus_constant (new_rtx, offset);
1439 if (changed)
1440 *changed = true;
1442 return -1;
1444 case PLUS:
1445 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1446 if (new_rtx)
1448 new_rtx = plus_constant (new_rtx, offset);
1449 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1450 if (changed)
1451 *changed = true;
1452 return -1;
1455 /* FIXME -- from old code */
1456 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1457 we can commute the PLUS and SUBREG because pointers into the
1458 frame are well-behaved. */
1459 break;
1461 default:
1462 break;
1465 return 0;
1468 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1469 matches the predicate for insn CODE operand OPERAND. */
1471 static int
1472 safe_insn_predicate (int code, int operand, rtx x)
1474 const struct insn_operand_data *op_data;
1476 if (code < 0)
1477 return true;
1479 op_data = &insn_data[code].operand[operand];
1480 if (op_data->predicate == NULL)
1481 return true;
1483 return op_data->predicate (x, op_data->mode);
1486 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1487 registers present inside of insn. The result will be a valid insn. */
1489 static void
1490 instantiate_virtual_regs_in_insn (rtx insn)
1492 HOST_WIDE_INT offset;
1493 int insn_code, i;
1494 bool any_change = false;
1495 rtx set, new_rtx, x, seq;
1497 /* There are some special cases to be handled first. */
1498 set = single_set (insn);
1499 if (set)
1501 /* We're allowed to assign to a virtual register. This is interpreted
1502 to mean that the underlying register gets assigned the inverse
1503 transformation. This is used, for example, in the handling of
1504 non-local gotos. */
1505 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1506 if (new_rtx)
1508 start_sequence ();
1510 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1511 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1512 GEN_INT (-offset));
1513 x = force_operand (x, new_rtx);
1514 if (x != new_rtx)
1515 emit_move_insn (new_rtx, x);
1517 seq = get_insns ();
1518 end_sequence ();
1520 emit_insn_before (seq, insn);
1521 delete_insn (insn);
1522 return;
1525 /* Handle a straight copy from a virtual register by generating a
1526 new add insn. The difference between this and falling through
1527 to the generic case is avoiding a new pseudo and eliminating a
1528 move insn in the initial rtl stream. */
1529 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1530 if (new_rtx && offset != 0
1531 && REG_P (SET_DEST (set))
1532 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1534 start_sequence ();
1536 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1537 new_rtx, GEN_INT (offset), SET_DEST (set),
1538 1, OPTAB_LIB_WIDEN);
1539 if (x != SET_DEST (set))
1540 emit_move_insn (SET_DEST (set), x);
1542 seq = get_insns ();
1543 end_sequence ();
1545 emit_insn_before (seq, insn);
1546 delete_insn (insn);
1547 return;
1550 extract_insn (insn);
1551 insn_code = INSN_CODE (insn);
1553 /* Handle a plus involving a virtual register by determining if the
1554 operands remain valid if they're modified in place. */
1555 if (GET_CODE (SET_SRC (set)) == PLUS
1556 && recog_data.n_operands >= 3
1557 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1558 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1559 && CONST_INT_P (recog_data.operand[2])
1560 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1562 offset += INTVAL (recog_data.operand[2]);
1564 /* If the sum is zero, then replace with a plain move. */
1565 if (offset == 0
1566 && REG_P (SET_DEST (set))
1567 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1569 start_sequence ();
1570 emit_move_insn (SET_DEST (set), new_rtx);
1571 seq = get_insns ();
1572 end_sequence ();
1574 emit_insn_before (seq, insn);
1575 delete_insn (insn);
1576 return;
1579 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1581 /* Using validate_change and apply_change_group here leaves
1582 recog_data in an invalid state. Since we know exactly what
1583 we want to check, do those two by hand. */
1584 if (safe_insn_predicate (insn_code, 1, new_rtx)
1585 && safe_insn_predicate (insn_code, 2, x))
1587 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1588 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1589 any_change = true;
1591 /* Fall through into the regular operand fixup loop in
1592 order to take care of operands other than 1 and 2. */
1596 else
1598 extract_insn (insn);
1599 insn_code = INSN_CODE (insn);
1602 /* In the general case, we expect virtual registers to appear only in
1603 operands, and then only as either bare registers or inside memories. */
1604 for (i = 0; i < recog_data.n_operands; ++i)
1606 x = recog_data.operand[i];
1607 switch (GET_CODE (x))
1609 case MEM:
1611 rtx addr = XEXP (x, 0);
1612 bool changed = false;
1614 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1615 if (!changed)
1616 continue;
1618 start_sequence ();
1619 x = replace_equiv_address (x, addr);
1620 /* It may happen that the address with the virtual reg
1621 was valid (e.g. based on the virtual stack reg, which might
1622 be acceptable to the predicates with all offsets), whereas
1623 the address now isn't anymore, for instance when the address
1624 is still offsetted, but the base reg isn't virtual-stack-reg
1625 anymore. Below we would do a force_reg on the whole operand,
1626 but this insn might actually only accept memory. Hence,
1627 before doing that last resort, try to reload the address into
1628 a register, so this operand stays a MEM. */
1629 if (!safe_insn_predicate (insn_code, i, x))
1631 addr = force_reg (GET_MODE (addr), addr);
1632 x = replace_equiv_address (x, addr);
1634 seq = get_insns ();
1635 end_sequence ();
1636 if (seq)
1637 emit_insn_before (seq, insn);
1639 break;
1641 case REG:
1642 new_rtx = instantiate_new_reg (x, &offset);
1643 if (new_rtx == NULL)
1644 continue;
1645 if (offset == 0)
1646 x = new_rtx;
1647 else
1649 start_sequence ();
1651 /* Careful, special mode predicates may have stuff in
1652 insn_data[insn_code].operand[i].mode that isn't useful
1653 to us for computing a new value. */
1654 /* ??? Recognize address_operand and/or "p" constraints
1655 to see if (plus new offset) is a valid before we put
1656 this through expand_simple_binop. */
1657 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1658 GEN_INT (offset), NULL_RTX,
1659 1, OPTAB_LIB_WIDEN);
1660 seq = get_insns ();
1661 end_sequence ();
1662 emit_insn_before (seq, insn);
1664 break;
1666 case SUBREG:
1667 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1668 if (new_rtx == NULL)
1669 continue;
1670 if (offset != 0)
1672 start_sequence ();
1673 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1674 GEN_INT (offset), NULL_RTX,
1675 1, OPTAB_LIB_WIDEN);
1676 seq = get_insns ();
1677 end_sequence ();
1678 emit_insn_before (seq, insn);
1680 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1681 GET_MODE (new_rtx), SUBREG_BYTE (x));
1682 gcc_assert (x);
1683 break;
1685 default:
1686 continue;
1689 /* At this point, X contains the new value for the operand.
1690 Validate the new value vs the insn predicate. Note that
1691 asm insns will have insn_code -1 here. */
1692 if (!safe_insn_predicate (insn_code, i, x))
1694 start_sequence ();
1695 if (REG_P (x))
1697 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1698 x = copy_to_reg (x);
1700 else
1701 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1702 seq = get_insns ();
1703 end_sequence ();
1704 if (seq)
1705 emit_insn_before (seq, insn);
1708 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1709 any_change = true;
1712 if (any_change)
1714 /* Propagate operand changes into the duplicates. */
1715 for (i = 0; i < recog_data.n_dups; ++i)
1716 *recog_data.dup_loc[i]
1717 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1719 /* Force re-recognition of the instruction for validation. */
1720 INSN_CODE (insn) = -1;
1723 if (asm_noperands (PATTERN (insn)) >= 0)
1725 if (!check_asm_operands (PATTERN (insn)))
1727 error_for_asm (insn, "impossible constraint in %<asm%>");
1728 delete_insn (insn);
1731 else
1733 if (recog_memoized (insn) < 0)
1734 fatal_insn_not_found (insn);
1738 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1739 do any instantiation required. */
1741 void
1742 instantiate_decl_rtl (rtx x)
1744 rtx addr;
1746 if (x == 0)
1747 return;
1749 /* If this is a CONCAT, recurse for the pieces. */
1750 if (GET_CODE (x) == CONCAT)
1752 instantiate_decl_rtl (XEXP (x, 0));
1753 instantiate_decl_rtl (XEXP (x, 1));
1754 return;
1757 /* If this is not a MEM, no need to do anything. Similarly if the
1758 address is a constant or a register that is not a virtual register. */
1759 if (!MEM_P (x))
1760 return;
1762 addr = XEXP (x, 0);
1763 if (CONSTANT_P (addr)
1764 || (REG_P (addr)
1765 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1766 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1767 return;
1769 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1772 /* Helper for instantiate_decls called via walk_tree: Process all decls
1773 in the given DECL_VALUE_EXPR. */
1775 static tree
1776 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1778 tree t = *tp;
1779 if (! EXPR_P (t))
1781 *walk_subtrees = 0;
1782 if (DECL_P (t) && DECL_RTL_SET_P (t))
1783 instantiate_decl_rtl (DECL_RTL (t));
1785 return NULL;
1788 /* Subroutine of instantiate_decls: Process all decls in the given
1789 BLOCK node and all its subblocks. */
1791 static void
1792 instantiate_decls_1 (tree let)
1794 tree t;
1796 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1798 if (DECL_RTL_SET_P (t))
1799 instantiate_decl_rtl (DECL_RTL (t));
1800 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1802 tree v = DECL_VALUE_EXPR (t);
1803 walk_tree (&v, instantiate_expr, NULL, NULL);
1807 /* Process all subblocks. */
1808 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1809 instantiate_decls_1 (t);
1812 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1813 all virtual registers in their DECL_RTL's. */
1815 static void
1816 instantiate_decls (tree fndecl)
1818 tree decl;
1819 unsigned ix;
1821 /* Process all parameters of the function. */
1822 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1824 instantiate_decl_rtl (DECL_RTL (decl));
1825 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1826 if (DECL_HAS_VALUE_EXPR_P (decl))
1828 tree v = DECL_VALUE_EXPR (decl);
1829 walk_tree (&v, instantiate_expr, NULL, NULL);
1833 /* Now process all variables defined in the function or its subblocks. */
1834 instantiate_decls_1 (DECL_INITIAL (fndecl));
1836 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1837 if (DECL_RTL_SET_P (decl))
1838 instantiate_decl_rtl (DECL_RTL (decl));
1839 VEC_free (tree, gc, cfun->local_decls);
1842 /* Pass through the INSNS of function FNDECL and convert virtual register
1843 references to hard register references. */
1845 static unsigned int
1846 instantiate_virtual_regs (void)
1848 rtx insn;
1850 /* Compute the offsets to use for this function. */
1851 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1852 var_offset = STARTING_FRAME_OFFSET;
1853 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1854 out_arg_offset = STACK_POINTER_OFFSET;
1855 #ifdef FRAME_POINTER_CFA_OFFSET
1856 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1857 #else
1858 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1859 #endif
1861 /* Initialize recognition, indicating that volatile is OK. */
1862 init_recog ();
1864 /* Scan through all the insns, instantiating every virtual register still
1865 present. */
1866 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1867 if (INSN_P (insn))
1869 /* These patterns in the instruction stream can never be recognized.
1870 Fortunately, they shouldn't contain virtual registers either. */
1871 if (GET_CODE (PATTERN (insn)) == USE
1872 || GET_CODE (PATTERN (insn)) == CLOBBER
1873 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1874 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1875 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1876 continue;
1877 else if (DEBUG_INSN_P (insn))
1878 for_each_rtx (&INSN_VAR_LOCATION (insn),
1879 instantiate_virtual_regs_in_rtx, NULL);
1880 else
1881 instantiate_virtual_regs_in_insn (insn);
1883 if (INSN_DELETED_P (insn))
1884 continue;
1886 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1888 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1889 if (CALL_P (insn))
1890 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1891 instantiate_virtual_regs_in_rtx, NULL);
1894 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1895 instantiate_decls (current_function_decl);
1897 targetm.instantiate_decls ();
1899 /* Indicate that, from now on, assign_stack_local should use
1900 frame_pointer_rtx. */
1901 virtuals_instantiated = 1;
1903 /* See allocate_dynamic_stack_space for the rationale. */
1904 #ifdef SETJMP_VIA_SAVE_AREA
1905 if (flag_stack_usage && cfun->calls_setjmp)
1907 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1908 dynamic_offset = (dynamic_offset + align - 1) / align * align;
1909 current_function_dynamic_stack_size
1910 += current_function_dynamic_alloc_count * dynamic_offset;
1912 #endif
1914 return 0;
1917 struct rtl_opt_pass pass_instantiate_virtual_regs =
1920 RTL_PASS,
1921 "vregs", /* name */
1922 NULL, /* gate */
1923 instantiate_virtual_regs, /* execute */
1924 NULL, /* sub */
1925 NULL, /* next */
1926 0, /* static_pass_number */
1927 TV_NONE, /* tv_id */
1928 0, /* properties_required */
1929 0, /* properties_provided */
1930 0, /* properties_destroyed */
1931 0, /* todo_flags_start */
1932 TODO_dump_func /* todo_flags_finish */
1937 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1938 This means a type for which function calls must pass an address to the
1939 function or get an address back from the function.
1940 EXP may be a type node or an expression (whose type is tested). */
1943 aggregate_value_p (const_tree exp, const_tree fntype)
1945 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1946 int i, regno, nregs;
1947 rtx reg;
1949 if (fntype)
1950 switch (TREE_CODE (fntype))
1952 case CALL_EXPR:
1954 tree fndecl = get_callee_fndecl (fntype);
1955 fntype = (fndecl
1956 ? TREE_TYPE (fndecl)
1957 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1959 break;
1960 case FUNCTION_DECL:
1961 fntype = TREE_TYPE (fntype);
1962 break;
1963 case FUNCTION_TYPE:
1964 case METHOD_TYPE:
1965 break;
1966 case IDENTIFIER_NODE:
1967 fntype = NULL_TREE;
1968 break;
1969 default:
1970 /* We don't expect other tree types here. */
1971 gcc_unreachable ();
1974 if (VOID_TYPE_P (type))
1975 return 0;
1977 /* If a record should be passed the same as its first (and only) member
1978 don't pass it as an aggregate. */
1979 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
1980 return aggregate_value_p (first_field (type), fntype);
1982 /* If the front end has decided that this needs to be passed by
1983 reference, do so. */
1984 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1985 && DECL_BY_REFERENCE (exp))
1986 return 1;
1988 /* Function types that are TREE_ADDRESSABLE force return in memory. */
1989 if (fntype && TREE_ADDRESSABLE (fntype))
1990 return 1;
1992 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1993 and thus can't be returned in registers. */
1994 if (TREE_ADDRESSABLE (type))
1995 return 1;
1997 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1998 return 1;
2000 if (targetm.calls.return_in_memory (type, fntype))
2001 return 1;
2003 /* Make sure we have suitable call-clobbered regs to return
2004 the value in; if not, we must return it in memory. */
2005 reg = hard_function_value (type, 0, fntype, 0);
2007 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2008 it is OK. */
2009 if (!REG_P (reg))
2010 return 0;
2012 regno = REGNO (reg);
2013 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2014 for (i = 0; i < nregs; i++)
2015 if (! call_used_regs[regno + i])
2016 return 1;
2018 return 0;
2021 /* Return true if we should assign DECL a pseudo register; false if it
2022 should live on the local stack. */
2024 bool
2025 use_register_for_decl (const_tree decl)
2027 if (!targetm.calls.allocate_stack_slots_for_args())
2028 return true;
2030 /* Honor volatile. */
2031 if (TREE_SIDE_EFFECTS (decl))
2032 return false;
2034 /* Honor addressability. */
2035 if (TREE_ADDRESSABLE (decl))
2036 return false;
2038 /* Only register-like things go in registers. */
2039 if (DECL_MODE (decl) == BLKmode)
2040 return false;
2042 /* If -ffloat-store specified, don't put explicit float variables
2043 into registers. */
2044 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2045 propagates values across these stores, and it probably shouldn't. */
2046 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2047 return false;
2049 /* If we're not interested in tracking debugging information for
2050 this decl, then we can certainly put it in a register. */
2051 if (DECL_IGNORED_P (decl))
2052 return true;
2054 if (optimize)
2055 return true;
2057 if (!DECL_REGISTER (decl))
2058 return false;
2060 switch (TREE_CODE (TREE_TYPE (decl)))
2062 case RECORD_TYPE:
2063 case UNION_TYPE:
2064 case QUAL_UNION_TYPE:
2065 /* When not optimizing, disregard register keyword for variables with
2066 types containing methods, otherwise the methods won't be callable
2067 from the debugger. */
2068 if (TYPE_METHODS (TREE_TYPE (decl)))
2069 return false;
2070 break;
2071 default:
2072 break;
2075 return true;
2078 /* Return true if TYPE should be passed by invisible reference. */
2080 bool
2081 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2082 tree type, bool named_arg)
2084 if (type)
2086 /* If this type contains non-trivial constructors, then it is
2087 forbidden for the middle-end to create any new copies. */
2088 if (TREE_ADDRESSABLE (type))
2089 return true;
2091 /* GCC post 3.4 passes *all* variable sized types by reference. */
2092 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2093 return true;
2095 /* If a record type should be passed the same as its first (and only)
2096 member, use the type and mode of that member. */
2097 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2099 type = TREE_TYPE (first_field (type));
2100 mode = TYPE_MODE (type);
2104 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2107 /* Return true if TYPE, which is passed by reference, should be callee
2108 copied instead of caller copied. */
2110 bool
2111 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2112 tree type, bool named_arg)
2114 if (type && TREE_ADDRESSABLE (type))
2115 return false;
2116 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2119 /* Structures to communicate between the subroutines of assign_parms.
2120 The first holds data persistent across all parameters, the second
2121 is cleared out for each parameter. */
2123 struct assign_parm_data_all
2125 CUMULATIVE_ARGS args_so_far;
2126 struct args_size stack_args_size;
2127 tree function_result_decl;
2128 tree orig_fnargs;
2129 rtx first_conversion_insn;
2130 rtx last_conversion_insn;
2131 HOST_WIDE_INT pretend_args_size;
2132 HOST_WIDE_INT extra_pretend_bytes;
2133 int reg_parm_stack_space;
2136 struct assign_parm_data_one
2138 tree nominal_type;
2139 tree passed_type;
2140 rtx entry_parm;
2141 rtx stack_parm;
2142 enum machine_mode nominal_mode;
2143 enum machine_mode passed_mode;
2144 enum machine_mode promoted_mode;
2145 struct locate_and_pad_arg_data locate;
2146 int partial;
2147 BOOL_BITFIELD named_arg : 1;
2148 BOOL_BITFIELD passed_pointer : 1;
2149 BOOL_BITFIELD on_stack : 1;
2150 BOOL_BITFIELD loaded_in_reg : 1;
2153 /* A subroutine of assign_parms. Initialize ALL. */
2155 static void
2156 assign_parms_initialize_all (struct assign_parm_data_all *all)
2158 tree fntype ATTRIBUTE_UNUSED;
2160 memset (all, 0, sizeof (*all));
2162 fntype = TREE_TYPE (current_function_decl);
2164 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2165 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2166 #else
2167 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2168 current_function_decl, -1);
2169 #endif
2171 #ifdef REG_PARM_STACK_SPACE
2172 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2173 #endif
2176 /* If ARGS contains entries with complex types, split the entry into two
2177 entries of the component type. Return a new list of substitutions are
2178 needed, else the old list. */
2180 static void
2181 split_complex_args (VEC(tree, heap) **args)
2183 unsigned i;
2184 tree p;
2186 FOR_EACH_VEC_ELT (tree, *args, i, p)
2188 tree type = TREE_TYPE (p);
2189 if (TREE_CODE (type) == COMPLEX_TYPE
2190 && targetm.calls.split_complex_arg (type))
2192 tree decl;
2193 tree subtype = TREE_TYPE (type);
2194 bool addressable = TREE_ADDRESSABLE (p);
2196 /* Rewrite the PARM_DECL's type with its component. */
2197 p = copy_node (p);
2198 TREE_TYPE (p) = subtype;
2199 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2200 DECL_MODE (p) = VOIDmode;
2201 DECL_SIZE (p) = NULL;
2202 DECL_SIZE_UNIT (p) = NULL;
2203 /* If this arg must go in memory, put it in a pseudo here.
2204 We can't allow it to go in memory as per normal parms,
2205 because the usual place might not have the imag part
2206 adjacent to the real part. */
2207 DECL_ARTIFICIAL (p) = addressable;
2208 DECL_IGNORED_P (p) = addressable;
2209 TREE_ADDRESSABLE (p) = 0;
2210 layout_decl (p, 0);
2211 VEC_replace (tree, *args, i, p);
2213 /* Build a second synthetic decl. */
2214 decl = build_decl (EXPR_LOCATION (p),
2215 PARM_DECL, NULL_TREE, subtype);
2216 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2217 DECL_ARTIFICIAL (decl) = addressable;
2218 DECL_IGNORED_P (decl) = addressable;
2219 layout_decl (decl, 0);
2220 VEC_safe_insert (tree, heap, *args, ++i, decl);
2225 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2226 the hidden struct return argument, and (abi willing) complex args.
2227 Return the new parameter list. */
2229 static VEC(tree, heap) *
2230 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2232 tree fndecl = current_function_decl;
2233 tree fntype = TREE_TYPE (fndecl);
2234 VEC(tree, heap) *fnargs = NULL;
2235 tree arg;
2237 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2238 VEC_safe_push (tree, heap, fnargs, arg);
2240 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2242 /* If struct value address is treated as the first argument, make it so. */
2243 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2244 && ! cfun->returns_pcc_struct
2245 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2247 tree type = build_pointer_type (TREE_TYPE (fntype));
2248 tree decl;
2250 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2251 PARM_DECL, NULL_TREE, type);
2252 DECL_ARG_TYPE (decl) = type;
2253 DECL_ARTIFICIAL (decl) = 1;
2254 DECL_IGNORED_P (decl) = 1;
2256 DECL_CHAIN (decl) = all->orig_fnargs;
2257 all->orig_fnargs = decl;
2258 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2260 all->function_result_decl = decl;
2263 /* If the target wants to split complex arguments into scalars, do so. */
2264 if (targetm.calls.split_complex_arg)
2265 split_complex_args (&fnargs);
2267 return fnargs;
2270 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2271 data for the parameter. Incorporate ABI specifics such as pass-by-
2272 reference and type promotion. */
2274 static void
2275 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2276 struct assign_parm_data_one *data)
2278 tree nominal_type, passed_type;
2279 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2280 int unsignedp;
2282 memset (data, 0, sizeof (*data));
2284 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2285 if (!cfun->stdarg)
2286 data->named_arg = 1; /* No variadic parms. */
2287 else if (DECL_CHAIN (parm))
2288 data->named_arg = 1; /* Not the last non-variadic parm. */
2289 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2290 data->named_arg = 1; /* Only variadic ones are unnamed. */
2291 else
2292 data->named_arg = 0; /* Treat as variadic. */
2294 nominal_type = TREE_TYPE (parm);
2295 passed_type = DECL_ARG_TYPE (parm);
2297 /* Look out for errors propagating this far. Also, if the parameter's
2298 type is void then its value doesn't matter. */
2299 if (TREE_TYPE (parm) == error_mark_node
2300 /* This can happen after weird syntax errors
2301 or if an enum type is defined among the parms. */
2302 || TREE_CODE (parm) != PARM_DECL
2303 || passed_type == NULL
2304 || VOID_TYPE_P (nominal_type))
2306 nominal_type = passed_type = void_type_node;
2307 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2308 goto egress;
2311 /* Find mode of arg as it is passed, and mode of arg as it should be
2312 during execution of this function. */
2313 passed_mode = TYPE_MODE (passed_type);
2314 nominal_mode = TYPE_MODE (nominal_type);
2316 /* If the parm is to be passed as a transparent union or record, use the
2317 type of the first field for the tests below. We have already verified
2318 that the modes are the same. */
2319 if ((TREE_CODE (passed_type) == UNION_TYPE
2320 || TREE_CODE (passed_type) == RECORD_TYPE)
2321 && TYPE_TRANSPARENT_AGGR (passed_type))
2322 passed_type = TREE_TYPE (first_field (passed_type));
2324 /* See if this arg was passed by invisible reference. */
2325 if (pass_by_reference (&all->args_so_far, passed_mode,
2326 passed_type, data->named_arg))
2328 passed_type = nominal_type = build_pointer_type (passed_type);
2329 data->passed_pointer = true;
2330 passed_mode = nominal_mode = Pmode;
2333 /* Find mode as it is passed by the ABI. */
2334 unsignedp = TYPE_UNSIGNED (passed_type);
2335 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2336 TREE_TYPE (current_function_decl), 0);
2338 egress:
2339 data->nominal_type = nominal_type;
2340 data->passed_type = passed_type;
2341 data->nominal_mode = nominal_mode;
2342 data->passed_mode = passed_mode;
2343 data->promoted_mode = promoted_mode;
2346 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2348 static void
2349 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2350 struct assign_parm_data_one *data, bool no_rtl)
2352 int varargs_pretend_bytes = 0;
2354 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2355 data->promoted_mode,
2356 data->passed_type,
2357 &varargs_pretend_bytes, no_rtl);
2359 /* If the back-end has requested extra stack space, record how much is
2360 needed. Do not change pretend_args_size otherwise since it may be
2361 nonzero from an earlier partial argument. */
2362 if (varargs_pretend_bytes > 0)
2363 all->pretend_args_size = varargs_pretend_bytes;
2366 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2367 the incoming location of the current parameter. */
2369 static void
2370 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2371 struct assign_parm_data_one *data)
2373 HOST_WIDE_INT pretend_bytes = 0;
2374 rtx entry_parm;
2375 bool in_regs;
2377 if (data->promoted_mode == VOIDmode)
2379 data->entry_parm = data->stack_parm = const0_rtx;
2380 return;
2383 entry_parm = targetm.calls.function_incoming_arg (&all->args_so_far,
2384 data->promoted_mode,
2385 data->passed_type,
2386 data->named_arg);
2388 if (entry_parm == 0)
2389 data->promoted_mode = data->passed_mode;
2391 /* Determine parm's home in the stack, in case it arrives in the stack
2392 or we should pretend it did. Compute the stack position and rtx where
2393 the argument arrives and its size.
2395 There is one complexity here: If this was a parameter that would
2396 have been passed in registers, but wasn't only because it is
2397 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2398 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2399 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2400 as it was the previous time. */
2401 in_regs = entry_parm != 0;
2402 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2403 in_regs = true;
2404 #endif
2405 if (!in_regs && !data->named_arg)
2407 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2409 rtx tem;
2410 tem = targetm.calls.function_incoming_arg (&all->args_so_far,
2411 data->promoted_mode,
2412 data->passed_type, true);
2413 in_regs = tem != NULL;
2417 /* If this parameter was passed both in registers and in the stack, use
2418 the copy on the stack. */
2419 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2420 data->passed_type))
2421 entry_parm = 0;
2423 if (entry_parm)
2425 int partial;
2427 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2428 data->promoted_mode,
2429 data->passed_type,
2430 data->named_arg);
2431 data->partial = partial;
2433 /* The caller might already have allocated stack space for the
2434 register parameters. */
2435 if (partial != 0 && all->reg_parm_stack_space == 0)
2437 /* Part of this argument is passed in registers and part
2438 is passed on the stack. Ask the prologue code to extend
2439 the stack part so that we can recreate the full value.
2441 PRETEND_BYTES is the size of the registers we need to store.
2442 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2443 stack space that the prologue should allocate.
2445 Internally, gcc assumes that the argument pointer is aligned
2446 to STACK_BOUNDARY bits. This is used both for alignment
2447 optimizations (see init_emit) and to locate arguments that are
2448 aligned to more than PARM_BOUNDARY bits. We must preserve this
2449 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2450 a stack boundary. */
2452 /* We assume at most one partial arg, and it must be the first
2453 argument on the stack. */
2454 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2456 pretend_bytes = partial;
2457 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2459 /* We want to align relative to the actual stack pointer, so
2460 don't include this in the stack size until later. */
2461 all->extra_pretend_bytes = all->pretend_args_size;
2465 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2466 entry_parm ? data->partial : 0, current_function_decl,
2467 &all->stack_args_size, &data->locate);
2469 /* Update parm_stack_boundary if this parameter is passed in the
2470 stack. */
2471 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2472 crtl->parm_stack_boundary = data->locate.boundary;
2474 /* Adjust offsets to include the pretend args. */
2475 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2476 data->locate.slot_offset.constant += pretend_bytes;
2477 data->locate.offset.constant += pretend_bytes;
2479 data->entry_parm = entry_parm;
2482 /* A subroutine of assign_parms. If there is actually space on the stack
2483 for this parm, count it in stack_args_size and return true. */
2485 static bool
2486 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2487 struct assign_parm_data_one *data)
2489 /* Trivially true if we've no incoming register. */
2490 if (data->entry_parm == NULL)
2492 /* Also true if we're partially in registers and partially not,
2493 since we've arranged to drop the entire argument on the stack. */
2494 else if (data->partial != 0)
2496 /* Also true if the target says that it's passed in both registers
2497 and on the stack. */
2498 else if (GET_CODE (data->entry_parm) == PARALLEL
2499 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2501 /* Also true if the target says that there's stack allocated for
2502 all register parameters. */
2503 else if (all->reg_parm_stack_space > 0)
2505 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2506 else
2507 return false;
2509 all->stack_args_size.constant += data->locate.size.constant;
2510 if (data->locate.size.var)
2511 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2513 return true;
2516 /* A subroutine of assign_parms. Given that this parameter is allocated
2517 stack space by the ABI, find it. */
2519 static void
2520 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2522 rtx offset_rtx, stack_parm;
2523 unsigned int align, boundary;
2525 /* If we're passing this arg using a reg, make its stack home the
2526 aligned stack slot. */
2527 if (data->entry_parm)
2528 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2529 else
2530 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2532 stack_parm = crtl->args.internal_arg_pointer;
2533 if (offset_rtx != const0_rtx)
2534 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2535 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2537 if (!data->passed_pointer)
2539 set_mem_attributes (stack_parm, parm, 1);
2540 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2541 while promoted mode's size is needed. */
2542 if (data->promoted_mode != BLKmode
2543 && data->promoted_mode != DECL_MODE (parm))
2545 set_mem_size (stack_parm,
2546 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2547 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2549 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2550 data->promoted_mode);
2551 if (offset)
2552 set_mem_offset (stack_parm,
2553 plus_constant (MEM_OFFSET (stack_parm),
2554 -offset));
2559 boundary = data->locate.boundary;
2560 align = BITS_PER_UNIT;
2562 /* If we're padding upward, we know that the alignment of the slot
2563 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2564 intentionally forcing upward padding. Otherwise we have to come
2565 up with a guess at the alignment based on OFFSET_RTX. */
2566 if (data->locate.where_pad != downward || data->entry_parm)
2567 align = boundary;
2568 else if (CONST_INT_P (offset_rtx))
2570 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2571 align = align & -align;
2573 set_mem_align (stack_parm, align);
2575 if (data->entry_parm)
2576 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2578 data->stack_parm = stack_parm;
2581 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2582 always valid and contiguous. */
2584 static void
2585 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2587 rtx entry_parm = data->entry_parm;
2588 rtx stack_parm = data->stack_parm;
2590 /* If this parm was passed part in regs and part in memory, pretend it
2591 arrived entirely in memory by pushing the register-part onto the stack.
2592 In the special case of a DImode or DFmode that is split, we could put
2593 it together in a pseudoreg directly, but for now that's not worth
2594 bothering with. */
2595 if (data->partial != 0)
2597 /* Handle calls that pass values in multiple non-contiguous
2598 locations. The Irix 6 ABI has examples of this. */
2599 if (GET_CODE (entry_parm) == PARALLEL)
2600 emit_group_store (validize_mem (stack_parm), entry_parm,
2601 data->passed_type,
2602 int_size_in_bytes (data->passed_type));
2603 else
2605 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2606 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2607 data->partial / UNITS_PER_WORD);
2610 entry_parm = stack_parm;
2613 /* If we didn't decide this parm came in a register, by default it came
2614 on the stack. */
2615 else if (entry_parm == NULL)
2616 entry_parm = stack_parm;
2618 /* When an argument is passed in multiple locations, we can't make use
2619 of this information, but we can save some copying if the whole argument
2620 is passed in a single register. */
2621 else if (GET_CODE (entry_parm) == PARALLEL
2622 && data->nominal_mode != BLKmode
2623 && data->passed_mode != BLKmode)
2625 size_t i, len = XVECLEN (entry_parm, 0);
2627 for (i = 0; i < len; i++)
2628 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2629 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2630 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2631 == data->passed_mode)
2632 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2634 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2635 break;
2639 data->entry_parm = entry_parm;
2642 /* A subroutine of assign_parms. Reconstitute any values which were
2643 passed in multiple registers and would fit in a single register. */
2645 static void
2646 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2648 rtx entry_parm = data->entry_parm;
2650 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2651 This can be done with register operations rather than on the
2652 stack, even if we will store the reconstituted parameter on the
2653 stack later. */
2654 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2656 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2657 emit_group_store (parmreg, entry_parm, data->passed_type,
2658 GET_MODE_SIZE (GET_MODE (entry_parm)));
2659 entry_parm = parmreg;
2662 data->entry_parm = entry_parm;
2665 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2666 always valid and properly aligned. */
2668 static void
2669 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2671 rtx stack_parm = data->stack_parm;
2673 /* If we can't trust the parm stack slot to be aligned enough for its
2674 ultimate type, don't use that slot after entry. We'll make another
2675 stack slot, if we need one. */
2676 if (stack_parm
2677 && ((STRICT_ALIGNMENT
2678 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2679 || (data->nominal_type
2680 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2681 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2682 stack_parm = NULL;
2684 /* If parm was passed in memory, and we need to convert it on entry,
2685 don't store it back in that same slot. */
2686 else if (data->entry_parm == stack_parm
2687 && data->nominal_mode != BLKmode
2688 && data->nominal_mode != data->passed_mode)
2689 stack_parm = NULL;
2691 /* If stack protection is in effect for this function, don't leave any
2692 pointers in their passed stack slots. */
2693 else if (crtl->stack_protect_guard
2694 && (flag_stack_protect == 2
2695 || data->passed_pointer
2696 || POINTER_TYPE_P (data->nominal_type)))
2697 stack_parm = NULL;
2699 data->stack_parm = stack_parm;
2702 /* A subroutine of assign_parms. Return true if the current parameter
2703 should be stored as a BLKmode in the current frame. */
2705 static bool
2706 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2708 if (data->nominal_mode == BLKmode)
2709 return true;
2710 if (GET_MODE (data->entry_parm) == BLKmode)
2711 return true;
2713 #ifdef BLOCK_REG_PADDING
2714 /* Only assign_parm_setup_block knows how to deal with register arguments
2715 that are padded at the least significant end. */
2716 if (REG_P (data->entry_parm)
2717 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2718 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2719 == (BYTES_BIG_ENDIAN ? upward : downward)))
2720 return true;
2721 #endif
2723 return false;
2726 /* A subroutine of assign_parms. Arrange for the parameter to be
2727 present and valid in DATA->STACK_RTL. */
2729 static void
2730 assign_parm_setup_block (struct assign_parm_data_all *all,
2731 tree parm, struct assign_parm_data_one *data)
2733 rtx entry_parm = data->entry_parm;
2734 rtx stack_parm = data->stack_parm;
2735 HOST_WIDE_INT size;
2736 HOST_WIDE_INT size_stored;
2738 if (GET_CODE (entry_parm) == PARALLEL)
2739 entry_parm = emit_group_move_into_temps (entry_parm);
2741 size = int_size_in_bytes (data->passed_type);
2742 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2743 if (stack_parm == 0)
2745 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2746 stack_parm = assign_stack_local (BLKmode, size_stored,
2747 DECL_ALIGN (parm));
2748 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2749 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2750 set_mem_attributes (stack_parm, parm, 1);
2753 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2754 calls that pass values in multiple non-contiguous locations. */
2755 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2757 rtx mem;
2759 /* Note that we will be storing an integral number of words.
2760 So we have to be careful to ensure that we allocate an
2761 integral number of words. We do this above when we call
2762 assign_stack_local if space was not allocated in the argument
2763 list. If it was, this will not work if PARM_BOUNDARY is not
2764 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2765 if it becomes a problem. Exception is when BLKmode arrives
2766 with arguments not conforming to word_mode. */
2768 if (data->stack_parm == 0)
2770 else if (GET_CODE (entry_parm) == PARALLEL)
2772 else
2773 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2775 mem = validize_mem (stack_parm);
2777 /* Handle values in multiple non-contiguous locations. */
2778 if (GET_CODE (entry_parm) == PARALLEL)
2780 push_to_sequence2 (all->first_conversion_insn,
2781 all->last_conversion_insn);
2782 emit_group_store (mem, entry_parm, data->passed_type, size);
2783 all->first_conversion_insn = get_insns ();
2784 all->last_conversion_insn = get_last_insn ();
2785 end_sequence ();
2788 else if (size == 0)
2791 /* If SIZE is that of a mode no bigger than a word, just use
2792 that mode's store operation. */
2793 else if (size <= UNITS_PER_WORD)
2795 enum machine_mode mode
2796 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2798 if (mode != BLKmode
2799 #ifdef BLOCK_REG_PADDING
2800 && (size == UNITS_PER_WORD
2801 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2802 != (BYTES_BIG_ENDIAN ? upward : downward)))
2803 #endif
2806 rtx reg;
2808 /* We are really truncating a word_mode value containing
2809 SIZE bytes into a value of mode MODE. If such an
2810 operation requires no actual instructions, we can refer
2811 to the value directly in mode MODE, otherwise we must
2812 start with the register in word_mode and explicitly
2813 convert it. */
2814 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2815 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2816 else
2818 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2819 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2821 emit_move_insn (change_address (mem, mode, 0), reg);
2824 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2825 machine must be aligned to the left before storing
2826 to memory. Note that the previous test doesn't
2827 handle all cases (e.g. SIZE == 3). */
2828 else if (size != UNITS_PER_WORD
2829 #ifdef BLOCK_REG_PADDING
2830 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2831 == downward)
2832 #else
2833 && BYTES_BIG_ENDIAN
2834 #endif
2837 rtx tem, x;
2838 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2839 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2841 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2842 build_int_cst (NULL_TREE, by),
2843 NULL_RTX, 1);
2844 tem = change_address (mem, word_mode, 0);
2845 emit_move_insn (tem, x);
2847 else
2848 move_block_from_reg (REGNO (entry_parm), mem,
2849 size_stored / UNITS_PER_WORD);
2851 else
2852 move_block_from_reg (REGNO (entry_parm), mem,
2853 size_stored / UNITS_PER_WORD);
2855 else if (data->stack_parm == 0)
2857 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2858 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2859 BLOCK_OP_NORMAL);
2860 all->first_conversion_insn = get_insns ();
2861 all->last_conversion_insn = get_last_insn ();
2862 end_sequence ();
2865 data->stack_parm = stack_parm;
2866 SET_DECL_RTL (parm, stack_parm);
2869 /* A subroutine of assign_parm_setup_reg, called through note_stores.
2870 This collects sets and clobbers of hard registers in a HARD_REG_SET,
2871 which is pointed to by DATA. */
2872 static void
2873 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2875 HARD_REG_SET *pset = (HARD_REG_SET *)data;
2876 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
2878 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
2879 while (nregs-- > 0)
2880 SET_HARD_REG_BIT (*pset, REGNO (x) + nregs);
2884 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2885 parameter. Get it there. Perform all ABI specified conversions. */
2887 static void
2888 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2889 struct assign_parm_data_one *data)
2891 rtx parmreg, validated_mem;
2892 rtx equiv_stack_parm;
2893 enum machine_mode promoted_nominal_mode;
2894 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2895 bool did_conversion = false;
2896 bool need_conversion, moved;
2898 /* Store the parm in a pseudoregister during the function, but we may
2899 need to do it in a wider mode. Using 2 here makes the result
2900 consistent with promote_decl_mode and thus expand_expr_real_1. */
2901 promoted_nominal_mode
2902 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2903 TREE_TYPE (current_function_decl), 2);
2905 parmreg = gen_reg_rtx (promoted_nominal_mode);
2907 if (!DECL_ARTIFICIAL (parm))
2908 mark_user_reg (parmreg);
2910 /* If this was an item that we received a pointer to,
2911 set DECL_RTL appropriately. */
2912 if (data->passed_pointer)
2914 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2915 set_mem_attributes (x, parm, 1);
2916 SET_DECL_RTL (parm, x);
2918 else
2919 SET_DECL_RTL (parm, parmreg);
2921 assign_parm_remove_parallels (data);
2923 /* Copy the value into the register, thus bridging between
2924 assign_parm_find_data_types and expand_expr_real_1. */
2926 equiv_stack_parm = data->stack_parm;
2927 validated_mem = validize_mem (data->entry_parm);
2929 need_conversion = (data->nominal_mode != data->passed_mode
2930 || promoted_nominal_mode != data->promoted_mode);
2931 moved = false;
2933 if (need_conversion
2934 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2935 && data->nominal_mode == data->passed_mode
2936 && data->nominal_mode == GET_MODE (data->entry_parm))
2938 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2939 mode, by the caller. We now have to convert it to
2940 NOMINAL_MODE, if different. However, PARMREG may be in
2941 a different mode than NOMINAL_MODE if it is being stored
2942 promoted.
2944 If ENTRY_PARM is a hard register, it might be in a register
2945 not valid for operating in its mode (e.g., an odd-numbered
2946 register for a DFmode). In that case, moves are the only
2947 thing valid, so we can't do a convert from there. This
2948 occurs when the calling sequence allow such misaligned
2949 usages.
2951 In addition, the conversion may involve a call, which could
2952 clobber parameters which haven't been copied to pseudo
2953 registers yet.
2955 First, we try to emit an insn which performs the necessary
2956 conversion. We verify that this insn does not clobber any
2957 hard registers. */
2959 enum insn_code icode;
2960 rtx op0, op1;
2962 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2963 unsignedp);
2965 op0 = parmreg;
2966 op1 = validated_mem;
2967 if (icode != CODE_FOR_nothing
2968 && insn_data[icode].operand[0].predicate (op0, promoted_nominal_mode)
2969 && insn_data[icode].operand[1].predicate (op1, data->passed_mode))
2971 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2972 rtx insn, insns;
2973 HARD_REG_SET hardregs;
2975 start_sequence ();
2976 insn = gen_extend_insn (op0, op1, promoted_nominal_mode,
2977 data->passed_mode, unsignedp);
2978 emit_insn (insn);
2979 insns = get_insns ();
2981 moved = true;
2982 CLEAR_HARD_REG_SET (hardregs);
2983 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
2985 if (INSN_P (insn))
2986 note_stores (PATTERN (insn), record_hard_reg_sets,
2987 &hardregs);
2988 if (!hard_reg_set_empty_p (hardregs))
2989 moved = false;
2992 end_sequence ();
2994 if (moved)
2996 emit_insn (insns);
2997 if (equiv_stack_parm != NULL_RTX)
2998 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
2999 equiv_stack_parm);
3004 if (moved)
3005 /* Nothing to do. */
3007 else if (need_conversion)
3009 /* We did not have an insn to convert directly, or the sequence
3010 generated appeared unsafe. We must first copy the parm to a
3011 pseudo reg, and save the conversion until after all
3012 parameters have been moved. */
3014 int save_tree_used;
3015 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3017 emit_move_insn (tempreg, validated_mem);
3019 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3020 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3022 if (GET_CODE (tempreg) == SUBREG
3023 && GET_MODE (tempreg) == data->nominal_mode
3024 && REG_P (SUBREG_REG (tempreg))
3025 && data->nominal_mode == data->passed_mode
3026 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3027 && GET_MODE_SIZE (GET_MODE (tempreg))
3028 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3030 /* The argument is already sign/zero extended, so note it
3031 into the subreg. */
3032 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3033 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3036 /* TREE_USED gets set erroneously during expand_assignment. */
3037 save_tree_used = TREE_USED (parm);
3038 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3039 TREE_USED (parm) = save_tree_used;
3040 all->first_conversion_insn = get_insns ();
3041 all->last_conversion_insn = get_last_insn ();
3042 end_sequence ();
3044 did_conversion = true;
3046 else
3047 emit_move_insn (parmreg, validated_mem);
3049 /* If we were passed a pointer but the actual value can safely live
3050 in a register, put it in one. */
3051 if (data->passed_pointer
3052 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3053 /* If by-reference argument was promoted, demote it. */
3054 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3055 || use_register_for_decl (parm)))
3057 /* We can't use nominal_mode, because it will have been set to
3058 Pmode above. We must use the actual mode of the parm. */
3059 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3060 mark_user_reg (parmreg);
3062 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3064 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3065 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3067 push_to_sequence2 (all->first_conversion_insn,
3068 all->last_conversion_insn);
3069 emit_move_insn (tempreg, DECL_RTL (parm));
3070 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3071 emit_move_insn (parmreg, tempreg);
3072 all->first_conversion_insn = get_insns ();
3073 all->last_conversion_insn = get_last_insn ();
3074 end_sequence ();
3076 did_conversion = true;
3078 else
3079 emit_move_insn (parmreg, DECL_RTL (parm));
3081 SET_DECL_RTL (parm, parmreg);
3083 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3084 now the parm. */
3085 data->stack_parm = NULL;
3088 /* Mark the register as eliminable if we did no conversion and it was
3089 copied from memory at a fixed offset, and the arg pointer was not
3090 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3091 offset formed an invalid address, such memory-equivalences as we
3092 make here would screw up life analysis for it. */
3093 if (data->nominal_mode == data->passed_mode
3094 && !did_conversion
3095 && data->stack_parm != 0
3096 && MEM_P (data->stack_parm)
3097 && data->locate.offset.var == 0
3098 && reg_mentioned_p (virtual_incoming_args_rtx,
3099 XEXP (data->stack_parm, 0)))
3101 rtx linsn = get_last_insn ();
3102 rtx sinsn, set;
3104 /* Mark complex types separately. */
3105 if (GET_CODE (parmreg) == CONCAT)
3107 enum machine_mode submode
3108 = GET_MODE_INNER (GET_MODE (parmreg));
3109 int regnor = REGNO (XEXP (parmreg, 0));
3110 int regnoi = REGNO (XEXP (parmreg, 1));
3111 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3112 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3113 GET_MODE_SIZE (submode));
3115 /* Scan backwards for the set of the real and
3116 imaginary parts. */
3117 for (sinsn = linsn; sinsn != 0;
3118 sinsn = prev_nonnote_insn (sinsn))
3120 set = single_set (sinsn);
3121 if (set == 0)
3122 continue;
3124 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3125 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3126 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3127 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3130 else if ((set = single_set (linsn)) != 0
3131 && SET_DEST (set) == parmreg)
3132 set_unique_reg_note (linsn, REG_EQUIV, equiv_stack_parm);
3135 /* For pointer data type, suggest pointer register. */
3136 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3137 mark_reg_pointer (parmreg,
3138 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3141 /* A subroutine of assign_parms. Allocate stack space to hold the current
3142 parameter. Get it there. Perform all ABI specified conversions. */
3144 static void
3145 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3146 struct assign_parm_data_one *data)
3148 /* Value must be stored in the stack slot STACK_PARM during function
3149 execution. */
3150 bool to_conversion = false;
3152 assign_parm_remove_parallels (data);
3154 if (data->promoted_mode != data->nominal_mode)
3156 /* Conversion is required. */
3157 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3159 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3161 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3162 to_conversion = true;
3164 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3165 TYPE_UNSIGNED (TREE_TYPE (parm)));
3167 if (data->stack_parm)
3169 int offset = subreg_lowpart_offset (data->nominal_mode,
3170 GET_MODE (data->stack_parm));
3171 /* ??? This may need a big-endian conversion on sparc64. */
3172 data->stack_parm
3173 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3174 if (offset && MEM_OFFSET (data->stack_parm))
3175 set_mem_offset (data->stack_parm,
3176 plus_constant (MEM_OFFSET (data->stack_parm),
3177 offset));
3181 if (data->entry_parm != data->stack_parm)
3183 rtx src, dest;
3185 if (data->stack_parm == 0)
3187 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3188 GET_MODE (data->entry_parm),
3189 TYPE_ALIGN (data->passed_type));
3190 data->stack_parm
3191 = assign_stack_local (GET_MODE (data->entry_parm),
3192 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3193 align);
3194 set_mem_attributes (data->stack_parm, parm, 1);
3197 dest = validize_mem (data->stack_parm);
3198 src = validize_mem (data->entry_parm);
3200 if (MEM_P (src))
3202 /* Use a block move to handle potentially misaligned entry_parm. */
3203 if (!to_conversion)
3204 push_to_sequence2 (all->first_conversion_insn,
3205 all->last_conversion_insn);
3206 to_conversion = true;
3208 emit_block_move (dest, src,
3209 GEN_INT (int_size_in_bytes (data->passed_type)),
3210 BLOCK_OP_NORMAL);
3212 else
3213 emit_move_insn (dest, src);
3216 if (to_conversion)
3218 all->first_conversion_insn = get_insns ();
3219 all->last_conversion_insn = get_last_insn ();
3220 end_sequence ();
3223 SET_DECL_RTL (parm, data->stack_parm);
3226 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3227 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3229 static void
3230 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3231 VEC(tree, heap) *fnargs)
3233 tree parm;
3234 tree orig_fnargs = all->orig_fnargs;
3235 unsigned i = 0;
3237 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3239 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3240 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3242 rtx tmp, real, imag;
3243 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3245 real = DECL_RTL (VEC_index (tree, fnargs, i));
3246 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3247 if (inner != GET_MODE (real))
3249 real = gen_lowpart_SUBREG (inner, real);
3250 imag = gen_lowpart_SUBREG (inner, imag);
3253 if (TREE_ADDRESSABLE (parm))
3255 rtx rmem, imem;
3256 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3257 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3258 DECL_MODE (parm),
3259 TYPE_ALIGN (TREE_TYPE (parm)));
3261 /* split_complex_arg put the real and imag parts in
3262 pseudos. Move them to memory. */
3263 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3264 set_mem_attributes (tmp, parm, 1);
3265 rmem = adjust_address_nv (tmp, inner, 0);
3266 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3267 push_to_sequence2 (all->first_conversion_insn,
3268 all->last_conversion_insn);
3269 emit_move_insn (rmem, real);
3270 emit_move_insn (imem, imag);
3271 all->first_conversion_insn = get_insns ();
3272 all->last_conversion_insn = get_last_insn ();
3273 end_sequence ();
3275 else
3276 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3277 SET_DECL_RTL (parm, tmp);
3279 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3280 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3281 if (inner != GET_MODE (real))
3283 real = gen_lowpart_SUBREG (inner, real);
3284 imag = gen_lowpart_SUBREG (inner, imag);
3286 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3287 set_decl_incoming_rtl (parm, tmp, false);
3288 i++;
3293 /* Assign RTL expressions to the function's parameters. This may involve
3294 copying them into registers and using those registers as the DECL_RTL. */
3296 static void
3297 assign_parms (tree fndecl)
3299 struct assign_parm_data_all all;
3300 tree parm;
3301 VEC(tree, heap) *fnargs;
3302 unsigned i;
3304 crtl->args.internal_arg_pointer
3305 = targetm.calls.internal_arg_pointer ();
3307 assign_parms_initialize_all (&all);
3308 fnargs = assign_parms_augmented_arg_list (&all);
3310 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3312 struct assign_parm_data_one data;
3314 /* Extract the type of PARM; adjust it according to ABI. */
3315 assign_parm_find_data_types (&all, parm, &data);
3317 /* Early out for errors and void parameters. */
3318 if (data.passed_mode == VOIDmode)
3320 SET_DECL_RTL (parm, const0_rtx);
3321 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3322 continue;
3325 /* Estimate stack alignment from parameter alignment. */
3326 if (SUPPORTS_STACK_ALIGNMENT)
3328 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3329 data.passed_type);
3330 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3331 align);
3332 if (TYPE_ALIGN (data.nominal_type) > align)
3333 align = MINIMUM_ALIGNMENT (data.nominal_type,
3334 TYPE_MODE (data.nominal_type),
3335 TYPE_ALIGN (data.nominal_type));
3336 if (crtl->stack_alignment_estimated < align)
3338 gcc_assert (!crtl->stack_realign_processed);
3339 crtl->stack_alignment_estimated = align;
3343 if (cfun->stdarg && !DECL_CHAIN (parm))
3344 assign_parms_setup_varargs (&all, &data, false);
3346 /* Find out where the parameter arrives in this function. */
3347 assign_parm_find_entry_rtl (&all, &data);
3349 /* Find out where stack space for this parameter might be. */
3350 if (assign_parm_is_stack_parm (&all, &data))
3352 assign_parm_find_stack_rtl (parm, &data);
3353 assign_parm_adjust_entry_rtl (&data);
3356 /* Record permanently how this parm was passed. */
3357 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3359 /* Update info on where next arg arrives in registers. */
3360 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3361 data.passed_type, data.named_arg);
3363 assign_parm_adjust_stack_rtl (&data);
3365 if (assign_parm_setup_block_p (&data))
3366 assign_parm_setup_block (&all, parm, &data);
3367 else if (data.passed_pointer || use_register_for_decl (parm))
3368 assign_parm_setup_reg (&all, parm, &data);
3369 else
3370 assign_parm_setup_stack (&all, parm, &data);
3373 if (targetm.calls.split_complex_arg)
3374 assign_parms_unsplit_complex (&all, fnargs);
3376 VEC_free (tree, heap, fnargs);
3378 /* Output all parameter conversion instructions (possibly including calls)
3379 now that all parameters have been copied out of hard registers. */
3380 emit_insn (all.first_conversion_insn);
3382 /* Estimate reload stack alignment from scalar return mode. */
3383 if (SUPPORTS_STACK_ALIGNMENT)
3385 if (DECL_RESULT (fndecl))
3387 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3388 enum machine_mode mode = TYPE_MODE (type);
3390 if (mode != BLKmode
3391 && mode != VOIDmode
3392 && !AGGREGATE_TYPE_P (type))
3394 unsigned int align = GET_MODE_ALIGNMENT (mode);
3395 if (crtl->stack_alignment_estimated < align)
3397 gcc_assert (!crtl->stack_realign_processed);
3398 crtl->stack_alignment_estimated = align;
3404 /* If we are receiving a struct value address as the first argument, set up
3405 the RTL for the function result. As this might require code to convert
3406 the transmitted address to Pmode, we do this here to ensure that possible
3407 preliminary conversions of the address have been emitted already. */
3408 if (all.function_result_decl)
3410 tree result = DECL_RESULT (current_function_decl);
3411 rtx addr = DECL_RTL (all.function_result_decl);
3412 rtx x;
3414 if (DECL_BY_REFERENCE (result))
3415 x = addr;
3416 else
3418 addr = convert_memory_address (Pmode, addr);
3419 x = gen_rtx_MEM (DECL_MODE (result), addr);
3420 set_mem_attributes (x, result, 1);
3422 SET_DECL_RTL (result, x);
3425 /* We have aligned all the args, so add space for the pretend args. */
3426 crtl->args.pretend_args_size = all.pretend_args_size;
3427 all.stack_args_size.constant += all.extra_pretend_bytes;
3428 crtl->args.size = all.stack_args_size.constant;
3430 /* Adjust function incoming argument size for alignment and
3431 minimum length. */
3433 #ifdef REG_PARM_STACK_SPACE
3434 crtl->args.size = MAX (crtl->args.size,
3435 REG_PARM_STACK_SPACE (fndecl));
3436 #endif
3438 crtl->args.size = CEIL_ROUND (crtl->args.size,
3439 PARM_BOUNDARY / BITS_PER_UNIT);
3441 #ifdef ARGS_GROW_DOWNWARD
3442 crtl->args.arg_offset_rtx
3443 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3444 : expand_expr (size_diffop (all.stack_args_size.var,
3445 size_int (-all.stack_args_size.constant)),
3446 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3447 #else
3448 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3449 #endif
3451 /* See how many bytes, if any, of its args a function should try to pop
3452 on return. */
3454 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3455 TREE_TYPE (fndecl),
3456 crtl->args.size);
3458 /* For stdarg.h function, save info about
3459 regs and stack space used by the named args. */
3461 crtl->args.info = all.args_so_far;
3463 /* Set the rtx used for the function return value. Put this in its
3464 own variable so any optimizers that need this information don't have
3465 to include tree.h. Do this here so it gets done when an inlined
3466 function gets output. */
3468 crtl->return_rtx
3469 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3470 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3472 /* If scalar return value was computed in a pseudo-reg, or was a named
3473 return value that got dumped to the stack, copy that to the hard
3474 return register. */
3475 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3477 tree decl_result = DECL_RESULT (fndecl);
3478 rtx decl_rtl = DECL_RTL (decl_result);
3480 if (REG_P (decl_rtl)
3481 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3482 : DECL_REGISTER (decl_result))
3484 rtx real_decl_rtl;
3486 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3487 fndecl, true);
3488 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3489 /* The delay slot scheduler assumes that crtl->return_rtx
3490 holds the hard register containing the return value, not a
3491 temporary pseudo. */
3492 crtl->return_rtx = real_decl_rtl;
3497 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3498 For all seen types, gimplify their sizes. */
3500 static tree
3501 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3503 tree t = *tp;
3505 *walk_subtrees = 0;
3506 if (TYPE_P (t))
3508 if (POINTER_TYPE_P (t))
3509 *walk_subtrees = 1;
3510 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3511 && !TYPE_SIZES_GIMPLIFIED (t))
3513 gimplify_type_sizes (t, (gimple_seq *) data);
3514 *walk_subtrees = 1;
3518 return NULL;
3521 /* Gimplify the parameter list for current_function_decl. This involves
3522 evaluating SAVE_EXPRs of variable sized parameters and generating code
3523 to implement callee-copies reference parameters. Returns a sequence of
3524 statements to add to the beginning of the function. */
3526 gimple_seq
3527 gimplify_parameters (void)
3529 struct assign_parm_data_all all;
3530 tree parm;
3531 gimple_seq stmts = NULL;
3532 VEC(tree, heap) *fnargs;
3533 unsigned i;
3535 assign_parms_initialize_all (&all);
3536 fnargs = assign_parms_augmented_arg_list (&all);
3538 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3540 struct assign_parm_data_one data;
3542 /* Extract the type of PARM; adjust it according to ABI. */
3543 assign_parm_find_data_types (&all, parm, &data);
3545 /* Early out for errors and void parameters. */
3546 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3547 continue;
3549 /* Update info on where next arg arrives in registers. */
3550 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3551 data.passed_type, data.named_arg);
3553 /* ??? Once upon a time variable_size stuffed parameter list
3554 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3555 turned out to be less than manageable in the gimple world.
3556 Now we have to hunt them down ourselves. */
3557 walk_tree_without_duplicates (&data.passed_type,
3558 gimplify_parm_type, &stmts);
3560 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3562 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3563 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3566 if (data.passed_pointer)
3568 tree type = TREE_TYPE (data.passed_type);
3569 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3570 type, data.named_arg))
3572 tree local, t;
3574 /* For constant-sized objects, this is trivial; for
3575 variable-sized objects, we have to play games. */
3576 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3577 && !(flag_stack_check == GENERIC_STACK_CHECK
3578 && compare_tree_int (DECL_SIZE_UNIT (parm),
3579 STACK_CHECK_MAX_VAR_SIZE) > 0))
3581 local = create_tmp_var (type, get_name (parm));
3582 DECL_IGNORED_P (local) = 0;
3583 /* If PARM was addressable, move that flag over
3584 to the local copy, as its address will be taken,
3585 not the PARMs. Keep the parms address taken
3586 as we'll query that flag during gimplification. */
3587 if (TREE_ADDRESSABLE (parm))
3588 TREE_ADDRESSABLE (local) = 1;
3590 else
3592 tree ptr_type, addr;
3594 ptr_type = build_pointer_type (type);
3595 addr = create_tmp_var (ptr_type, get_name (parm));
3596 DECL_IGNORED_P (addr) = 0;
3597 local = build_fold_indirect_ref (addr);
3599 t = built_in_decls[BUILT_IN_ALLOCA];
3600 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3601 /* The call has been built for a variable-sized object. */
3602 ALLOCA_FOR_VAR_P (t) = 1;
3603 t = fold_convert (ptr_type, t);
3604 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3605 gimplify_and_add (t, &stmts);
3608 gimplify_assign (local, parm, &stmts);
3610 SET_DECL_VALUE_EXPR (parm, local);
3611 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3616 VEC_free (tree, heap, fnargs);
3618 return stmts;
3621 /* Compute the size and offset from the start of the stacked arguments for a
3622 parm passed in mode PASSED_MODE and with type TYPE.
3624 INITIAL_OFFSET_PTR points to the current offset into the stacked
3625 arguments.
3627 The starting offset and size for this parm are returned in
3628 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3629 nonzero, the offset is that of stack slot, which is returned in
3630 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3631 padding required from the initial offset ptr to the stack slot.
3633 IN_REGS is nonzero if the argument will be passed in registers. It will
3634 never be set if REG_PARM_STACK_SPACE is not defined.
3636 FNDECL is the function in which the argument was defined.
3638 There are two types of rounding that are done. The first, controlled by
3639 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3640 list to be aligned to the specific boundary (in bits). This rounding
3641 affects the initial and starting offsets, but not the argument size.
3643 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3644 optionally rounds the size of the parm to PARM_BOUNDARY. The
3645 initial offset is not affected by this rounding, while the size always
3646 is and the starting offset may be. */
3648 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3649 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3650 callers pass in the total size of args so far as
3651 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3653 void
3654 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3655 int partial, tree fndecl ATTRIBUTE_UNUSED,
3656 struct args_size *initial_offset_ptr,
3657 struct locate_and_pad_arg_data *locate)
3659 tree sizetree;
3660 enum direction where_pad;
3661 unsigned int boundary;
3662 int reg_parm_stack_space = 0;
3663 int part_size_in_regs;
3665 #ifdef REG_PARM_STACK_SPACE
3666 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3668 /* If we have found a stack parm before we reach the end of the
3669 area reserved for registers, skip that area. */
3670 if (! in_regs)
3672 if (reg_parm_stack_space > 0)
3674 if (initial_offset_ptr->var)
3676 initial_offset_ptr->var
3677 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3678 ssize_int (reg_parm_stack_space));
3679 initial_offset_ptr->constant = 0;
3681 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3682 initial_offset_ptr->constant = reg_parm_stack_space;
3685 #endif /* REG_PARM_STACK_SPACE */
3687 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3689 sizetree
3690 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3691 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3692 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3693 locate->where_pad = where_pad;
3695 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3696 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3697 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3699 locate->boundary = boundary;
3701 if (SUPPORTS_STACK_ALIGNMENT)
3703 /* stack_alignment_estimated can't change after stack has been
3704 realigned. */
3705 if (crtl->stack_alignment_estimated < boundary)
3707 if (!crtl->stack_realign_processed)
3708 crtl->stack_alignment_estimated = boundary;
3709 else
3711 /* If stack is realigned and stack alignment value
3712 hasn't been finalized, it is OK not to increase
3713 stack_alignment_estimated. The bigger alignment
3714 requirement is recorded in stack_alignment_needed
3715 below. */
3716 gcc_assert (!crtl->stack_realign_finalized
3717 && crtl->stack_realign_needed);
3722 /* Remember if the outgoing parameter requires extra alignment on the
3723 calling function side. */
3724 if (crtl->stack_alignment_needed < boundary)
3725 crtl->stack_alignment_needed = boundary;
3726 if (crtl->preferred_stack_boundary < boundary)
3727 crtl->preferred_stack_boundary = boundary;
3729 #ifdef ARGS_GROW_DOWNWARD
3730 locate->slot_offset.constant = -initial_offset_ptr->constant;
3731 if (initial_offset_ptr->var)
3732 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3733 initial_offset_ptr->var);
3736 tree s2 = sizetree;
3737 if (where_pad != none
3738 && (!host_integerp (sizetree, 1)
3739 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3740 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3741 SUB_PARM_SIZE (locate->slot_offset, s2);
3744 locate->slot_offset.constant += part_size_in_regs;
3746 if (!in_regs
3747 #ifdef REG_PARM_STACK_SPACE
3748 || REG_PARM_STACK_SPACE (fndecl) > 0
3749 #endif
3751 pad_to_arg_alignment (&locate->slot_offset, boundary,
3752 &locate->alignment_pad);
3754 locate->size.constant = (-initial_offset_ptr->constant
3755 - locate->slot_offset.constant);
3756 if (initial_offset_ptr->var)
3757 locate->size.var = size_binop (MINUS_EXPR,
3758 size_binop (MINUS_EXPR,
3759 ssize_int (0),
3760 initial_offset_ptr->var),
3761 locate->slot_offset.var);
3763 /* Pad_below needs the pre-rounded size to know how much to pad
3764 below. */
3765 locate->offset = locate->slot_offset;
3766 if (where_pad == downward)
3767 pad_below (&locate->offset, passed_mode, sizetree);
3769 #else /* !ARGS_GROW_DOWNWARD */
3770 if (!in_regs
3771 #ifdef REG_PARM_STACK_SPACE
3772 || REG_PARM_STACK_SPACE (fndecl) > 0
3773 #endif
3775 pad_to_arg_alignment (initial_offset_ptr, boundary,
3776 &locate->alignment_pad);
3777 locate->slot_offset = *initial_offset_ptr;
3779 #ifdef PUSH_ROUNDING
3780 if (passed_mode != BLKmode)
3781 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3782 #endif
3784 /* Pad_below needs the pre-rounded size to know how much to pad below
3785 so this must be done before rounding up. */
3786 locate->offset = locate->slot_offset;
3787 if (where_pad == downward)
3788 pad_below (&locate->offset, passed_mode, sizetree);
3790 if (where_pad != none
3791 && (!host_integerp (sizetree, 1)
3792 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3793 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3795 ADD_PARM_SIZE (locate->size, sizetree);
3797 locate->size.constant -= part_size_in_regs;
3798 #endif /* ARGS_GROW_DOWNWARD */
3800 #ifdef FUNCTION_ARG_OFFSET
3801 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3802 #endif
3805 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3806 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3808 static void
3809 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3810 struct args_size *alignment_pad)
3812 tree save_var = NULL_TREE;
3813 HOST_WIDE_INT save_constant = 0;
3814 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3815 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3817 #ifdef SPARC_STACK_BOUNDARY_HACK
3818 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3819 the real alignment of %sp. However, when it does this, the
3820 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3821 if (SPARC_STACK_BOUNDARY_HACK)
3822 sp_offset = 0;
3823 #endif
3825 if (boundary > PARM_BOUNDARY)
3827 save_var = offset_ptr->var;
3828 save_constant = offset_ptr->constant;
3831 alignment_pad->var = NULL_TREE;
3832 alignment_pad->constant = 0;
3834 if (boundary > BITS_PER_UNIT)
3836 if (offset_ptr->var)
3838 tree sp_offset_tree = ssize_int (sp_offset);
3839 tree offset = size_binop (PLUS_EXPR,
3840 ARGS_SIZE_TREE (*offset_ptr),
3841 sp_offset_tree);
3842 #ifdef ARGS_GROW_DOWNWARD
3843 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3844 #else
3845 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3846 #endif
3848 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3849 /* ARGS_SIZE_TREE includes constant term. */
3850 offset_ptr->constant = 0;
3851 if (boundary > PARM_BOUNDARY)
3852 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3853 save_var);
3855 else
3857 offset_ptr->constant = -sp_offset +
3858 #ifdef ARGS_GROW_DOWNWARD
3859 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3860 #else
3861 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3862 #endif
3863 if (boundary > PARM_BOUNDARY)
3864 alignment_pad->constant = offset_ptr->constant - save_constant;
3869 static void
3870 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3872 if (passed_mode != BLKmode)
3874 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3875 offset_ptr->constant
3876 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3877 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3878 - GET_MODE_SIZE (passed_mode));
3880 else
3882 if (TREE_CODE (sizetree) != INTEGER_CST
3883 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3885 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3886 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3887 /* Add it in. */
3888 ADD_PARM_SIZE (*offset_ptr, s2);
3889 SUB_PARM_SIZE (*offset_ptr, sizetree);
3895 /* True if register REGNO was alive at a place where `setjmp' was
3896 called and was set more than once or is an argument. Such regs may
3897 be clobbered by `longjmp'. */
3899 static bool
3900 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3902 /* There appear to be cases where some local vars never reach the
3903 backend but have bogus regnos. */
3904 if (regno >= max_reg_num ())
3905 return false;
3907 return ((REG_N_SETS (regno) > 1
3908 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3909 && REGNO_REG_SET_P (setjmp_crosses, regno));
3912 /* Walk the tree of blocks describing the binding levels within a
3913 function and warn about variables the might be killed by setjmp or
3914 vfork. This is done after calling flow_analysis before register
3915 allocation since that will clobber the pseudo-regs to hard
3916 regs. */
3918 static void
3919 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3921 tree decl, sub;
3923 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3925 if (TREE_CODE (decl) == VAR_DECL
3926 && DECL_RTL_SET_P (decl)
3927 && REG_P (DECL_RTL (decl))
3928 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3929 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3930 " %<longjmp%> or %<vfork%>", decl);
3933 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3934 setjmp_vars_warning (setjmp_crosses, sub);
3937 /* Do the appropriate part of setjmp_vars_warning
3938 but for arguments instead of local variables. */
3940 static void
3941 setjmp_args_warning (bitmap setjmp_crosses)
3943 tree decl;
3944 for (decl = DECL_ARGUMENTS (current_function_decl);
3945 decl; decl = DECL_CHAIN (decl))
3946 if (DECL_RTL (decl) != 0
3947 && REG_P (DECL_RTL (decl))
3948 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3949 warning (OPT_Wclobbered,
3950 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3951 decl);
3954 /* Generate warning messages for variables live across setjmp. */
3956 void
3957 generate_setjmp_warnings (void)
3959 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3961 if (n_basic_blocks == NUM_FIXED_BLOCKS
3962 || bitmap_empty_p (setjmp_crosses))
3963 return;
3965 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3966 setjmp_args_warning (setjmp_crosses);
3970 /* Reverse the order of elements in the fragment chain T of blocks,
3971 and return the new head of the chain (old last element). */
3973 static tree
3974 block_fragments_nreverse (tree t)
3976 tree prev = 0, block, next;
3977 for (block = t; block; block = next)
3979 next = BLOCK_FRAGMENT_CHAIN (block);
3980 BLOCK_FRAGMENT_CHAIN (block) = prev;
3981 prev = block;
3983 return prev;
3986 /* Reverse the order of elements in the chain T of blocks,
3987 and return the new head of the chain (old last element).
3988 Also do the same on subblocks and reverse the order of elements
3989 in BLOCK_FRAGMENT_CHAIN as well. */
3991 static tree
3992 blocks_nreverse_all (tree t)
3994 tree prev = 0, block, next;
3995 for (block = t; block; block = next)
3997 next = BLOCK_CHAIN (block);
3998 BLOCK_CHAIN (block) = prev;
3999 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4000 if (BLOCK_FRAGMENT_CHAIN (block)
4001 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4002 BLOCK_FRAGMENT_CHAIN (block)
4003 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4004 prev = block;
4006 return prev;
4010 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4011 and create duplicate blocks. */
4012 /* ??? Need an option to either create block fragments or to create
4013 abstract origin duplicates of a source block. It really depends
4014 on what optimization has been performed. */
4016 void
4017 reorder_blocks (void)
4019 tree block = DECL_INITIAL (current_function_decl);
4020 VEC(tree,heap) *block_stack;
4022 if (block == NULL_TREE)
4023 return;
4025 block_stack = VEC_alloc (tree, heap, 10);
4027 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4028 clear_block_marks (block);
4030 /* Prune the old trees away, so that they don't get in the way. */
4031 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4032 BLOCK_CHAIN (block) = NULL_TREE;
4034 /* Recreate the block tree from the note nesting. */
4035 reorder_blocks_1 (get_insns (), block, &block_stack);
4036 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4038 VEC_free (tree, heap, block_stack);
4041 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4043 void
4044 clear_block_marks (tree block)
4046 while (block)
4048 TREE_ASM_WRITTEN (block) = 0;
4049 clear_block_marks (BLOCK_SUBBLOCKS (block));
4050 block = BLOCK_CHAIN (block);
4054 static void
4055 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4057 rtx insn;
4059 for (insn = insns; insn; insn = NEXT_INSN (insn))
4061 if (NOTE_P (insn))
4063 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4065 tree block = NOTE_BLOCK (insn);
4066 tree origin;
4068 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4069 origin = block;
4071 /* If we have seen this block before, that means it now
4072 spans multiple address regions. Create a new fragment. */
4073 if (TREE_ASM_WRITTEN (block))
4075 tree new_block = copy_node (block);
4077 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4078 BLOCK_FRAGMENT_CHAIN (new_block)
4079 = BLOCK_FRAGMENT_CHAIN (origin);
4080 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4082 NOTE_BLOCK (insn) = new_block;
4083 block = new_block;
4086 BLOCK_SUBBLOCKS (block) = 0;
4087 TREE_ASM_WRITTEN (block) = 1;
4088 /* When there's only one block for the entire function,
4089 current_block == block and we mustn't do this, it
4090 will cause infinite recursion. */
4091 if (block != current_block)
4093 if (block != origin)
4094 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
4096 BLOCK_SUPERCONTEXT (block) = current_block;
4097 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4098 BLOCK_SUBBLOCKS (current_block) = block;
4099 current_block = origin;
4101 VEC_safe_push (tree, heap, *p_block_stack, block);
4103 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4105 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4106 current_block = BLOCK_SUPERCONTEXT (current_block);
4112 /* Reverse the order of elements in the chain T of blocks,
4113 and return the new head of the chain (old last element). */
4115 tree
4116 blocks_nreverse (tree t)
4118 tree prev = 0, block, next;
4119 for (block = t; block; block = next)
4121 next = BLOCK_CHAIN (block);
4122 BLOCK_CHAIN (block) = prev;
4123 prev = block;
4125 return prev;
4128 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4129 non-NULL, list them all into VECTOR, in a depth-first preorder
4130 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4131 blocks. */
4133 static int
4134 all_blocks (tree block, tree *vector)
4136 int n_blocks = 0;
4138 while (block)
4140 TREE_ASM_WRITTEN (block) = 0;
4142 /* Record this block. */
4143 if (vector)
4144 vector[n_blocks] = block;
4146 ++n_blocks;
4148 /* Record the subblocks, and their subblocks... */
4149 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4150 vector ? vector + n_blocks : 0);
4151 block = BLOCK_CHAIN (block);
4154 return n_blocks;
4157 /* Return a vector containing all the blocks rooted at BLOCK. The
4158 number of elements in the vector is stored in N_BLOCKS_P. The
4159 vector is dynamically allocated; it is the caller's responsibility
4160 to call `free' on the pointer returned. */
4162 static tree *
4163 get_block_vector (tree block, int *n_blocks_p)
4165 tree *block_vector;
4167 *n_blocks_p = all_blocks (block, NULL);
4168 block_vector = XNEWVEC (tree, *n_blocks_p);
4169 all_blocks (block, block_vector);
4171 return block_vector;
4174 static GTY(()) int next_block_index = 2;
4176 /* Set BLOCK_NUMBER for all the blocks in FN. */
4178 void
4179 number_blocks (tree fn)
4181 int i;
4182 int n_blocks;
4183 tree *block_vector;
4185 /* For SDB and XCOFF debugging output, we start numbering the blocks
4186 from 1 within each function, rather than keeping a running
4187 count. */
4188 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4189 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4190 next_block_index = 1;
4191 #endif
4193 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4195 /* The top-level BLOCK isn't numbered at all. */
4196 for (i = 1; i < n_blocks; ++i)
4197 /* We number the blocks from two. */
4198 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4200 free (block_vector);
4202 return;
4205 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4207 DEBUG_FUNCTION tree
4208 debug_find_var_in_block_tree (tree var, tree block)
4210 tree t;
4212 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4213 if (t == var)
4214 return block;
4216 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4218 tree ret = debug_find_var_in_block_tree (var, t);
4219 if (ret)
4220 return ret;
4223 return NULL_TREE;
4226 /* Keep track of whether we're in a dummy function context. If we are,
4227 we don't want to invoke the set_current_function hook, because we'll
4228 get into trouble if the hook calls target_reinit () recursively or
4229 when the initial initialization is not yet complete. */
4231 static bool in_dummy_function;
4233 /* Invoke the target hook when setting cfun. Update the optimization options
4234 if the function uses different options than the default. */
4236 static void
4237 invoke_set_current_function_hook (tree fndecl)
4239 if (!in_dummy_function)
4241 tree opts = ((fndecl)
4242 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4243 : optimization_default_node);
4245 if (!opts)
4246 opts = optimization_default_node;
4248 /* Change optimization options if needed. */
4249 if (optimization_current_node != opts)
4251 optimization_current_node = opts;
4252 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4255 targetm.set_current_function (fndecl);
4259 /* cfun should never be set directly; use this function. */
4261 void
4262 set_cfun (struct function *new_cfun)
4264 if (cfun != new_cfun)
4266 cfun = new_cfun;
4267 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4271 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4273 static VEC(function_p,heap) *cfun_stack;
4275 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4277 void
4278 push_cfun (struct function *new_cfun)
4280 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4281 set_cfun (new_cfun);
4284 /* Pop cfun from the stack. */
4286 void
4287 pop_cfun (void)
4289 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4290 set_cfun (new_cfun);
4293 /* Return value of funcdef and increase it. */
4295 get_next_funcdef_no (void)
4297 return funcdef_no++;
4300 /* Allocate a function structure for FNDECL and set its contents
4301 to the defaults. Set cfun to the newly-allocated object.
4302 Some of the helper functions invoked during initialization assume
4303 that cfun has already been set. Therefore, assign the new object
4304 directly into cfun and invoke the back end hook explicitly at the
4305 very end, rather than initializing a temporary and calling set_cfun
4306 on it.
4308 ABSTRACT_P is true if this is a function that will never be seen by
4309 the middle-end. Such functions are front-end concepts (like C++
4310 function templates) that do not correspond directly to functions
4311 placed in object files. */
4313 void
4314 allocate_struct_function (tree fndecl, bool abstract_p)
4316 tree result;
4317 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4319 cfun = ggc_alloc_cleared_function ();
4321 init_eh_for_function ();
4323 if (init_machine_status)
4324 cfun->machine = (*init_machine_status) ();
4326 #ifdef OVERRIDE_ABI_FORMAT
4327 OVERRIDE_ABI_FORMAT (fndecl);
4328 #endif
4330 invoke_set_current_function_hook (fndecl);
4332 if (fndecl != NULL_TREE)
4334 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4335 cfun->decl = fndecl;
4336 current_function_funcdef_no = get_next_funcdef_no ();
4338 result = DECL_RESULT (fndecl);
4339 if (!abstract_p && aggregate_value_p (result, fndecl))
4341 #ifdef PCC_STATIC_STRUCT_RETURN
4342 cfun->returns_pcc_struct = 1;
4343 #endif
4344 cfun->returns_struct = 1;
4347 cfun->stdarg = stdarg_p (fntype);
4349 /* Assume all registers in stdarg functions need to be saved. */
4350 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4351 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4353 /* ??? This could be set on a per-function basis by the front-end
4354 but is this worth the hassle? */
4355 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4359 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4360 instead of just setting it. */
4362 void
4363 push_struct_function (tree fndecl)
4365 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4366 allocate_struct_function (fndecl, false);
4369 /* Reset crtl and other non-struct-function variables to defaults as
4370 appropriate for emitting rtl at the start of a function. */
4372 static void
4373 prepare_function_start (void)
4375 gcc_assert (!crtl->emit.x_last_insn);
4376 init_temp_slots ();
4377 init_emit ();
4378 init_varasm_status ();
4379 init_expr ();
4380 default_rtl_profile ();
4382 if (flag_stack_usage)
4384 cfun->su = ggc_alloc_cleared_stack_usage ();
4385 cfun->su->static_stack_size = -1;
4388 cse_not_expected = ! optimize;
4390 /* Caller save not needed yet. */
4391 caller_save_needed = 0;
4393 /* We haven't done register allocation yet. */
4394 reg_renumber = 0;
4396 /* Indicate that we have not instantiated virtual registers yet. */
4397 virtuals_instantiated = 0;
4399 /* Indicate that we want CONCATs now. */
4400 generating_concat_p = 1;
4402 /* Indicate we have no need of a frame pointer yet. */
4403 frame_pointer_needed = 0;
4406 /* Initialize the rtl expansion mechanism so that we can do simple things
4407 like generate sequences. This is used to provide a context during global
4408 initialization of some passes. You must call expand_dummy_function_end
4409 to exit this context. */
4411 void
4412 init_dummy_function_start (void)
4414 gcc_assert (!in_dummy_function);
4415 in_dummy_function = true;
4416 push_struct_function (NULL_TREE);
4417 prepare_function_start ();
4420 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4421 and initialize static variables for generating RTL for the statements
4422 of the function. */
4424 void
4425 init_function_start (tree subr)
4427 if (subr && DECL_STRUCT_FUNCTION (subr))
4428 set_cfun (DECL_STRUCT_FUNCTION (subr));
4429 else
4430 allocate_struct_function (subr, false);
4431 prepare_function_start ();
4433 /* Warn if this value is an aggregate type,
4434 regardless of which calling convention we are using for it. */
4435 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4436 warning (OPT_Waggregate_return, "function returns an aggregate");
4439 /* Make sure all values used by the optimization passes have sane defaults. */
4440 unsigned int
4441 init_function_for_compilation (void)
4443 reg_renumber = 0;
4444 return 0;
4447 struct rtl_opt_pass pass_init_function =
4450 RTL_PASS,
4451 "*init_function", /* name */
4452 NULL, /* gate */
4453 init_function_for_compilation, /* execute */
4454 NULL, /* sub */
4455 NULL, /* next */
4456 0, /* static_pass_number */
4457 TV_NONE, /* tv_id */
4458 0, /* properties_required */
4459 0, /* properties_provided */
4460 0, /* properties_destroyed */
4461 0, /* todo_flags_start */
4462 0 /* todo_flags_finish */
4467 void
4468 expand_main_function (void)
4470 #if (defined(INVOKE__main) \
4471 || (!defined(HAS_INIT_SECTION) \
4472 && !defined(INIT_SECTION_ASM_OP) \
4473 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4474 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4475 #endif
4478 /* Expand code to initialize the stack_protect_guard. This is invoked at
4479 the beginning of a function to be protected. */
4481 #ifndef HAVE_stack_protect_set
4482 # define HAVE_stack_protect_set 0
4483 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4484 #endif
4486 void
4487 stack_protect_prologue (void)
4489 tree guard_decl = targetm.stack_protect_guard ();
4490 rtx x, y;
4492 x = expand_normal (crtl->stack_protect_guard);
4493 y = expand_normal (guard_decl);
4495 /* Allow the target to copy from Y to X without leaking Y into a
4496 register. */
4497 if (HAVE_stack_protect_set)
4499 rtx insn = gen_stack_protect_set (x, y);
4500 if (insn)
4502 emit_insn (insn);
4503 return;
4507 /* Otherwise do a straight move. */
4508 emit_move_insn (x, y);
4511 /* Expand code to verify the stack_protect_guard. This is invoked at
4512 the end of a function to be protected. */
4514 #ifndef HAVE_stack_protect_test
4515 # define HAVE_stack_protect_test 0
4516 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4517 #endif
4519 void
4520 stack_protect_epilogue (void)
4522 tree guard_decl = targetm.stack_protect_guard ();
4523 rtx label = gen_label_rtx ();
4524 rtx x, y, tmp;
4526 x = expand_normal (crtl->stack_protect_guard);
4527 y = expand_normal (guard_decl);
4529 /* Allow the target to compare Y with X without leaking either into
4530 a register. */
4531 switch (HAVE_stack_protect_test != 0)
4533 case 1:
4534 tmp = gen_stack_protect_test (x, y, label);
4535 if (tmp)
4537 emit_insn (tmp);
4538 break;
4540 /* FALLTHRU */
4542 default:
4543 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4544 break;
4547 /* The noreturn predictor has been moved to the tree level. The rtl-level
4548 predictors estimate this branch about 20%, which isn't enough to get
4549 things moved out of line. Since this is the only extant case of adding
4550 a noreturn function at the rtl level, it doesn't seem worth doing ought
4551 except adding the prediction by hand. */
4552 tmp = get_last_insn ();
4553 if (JUMP_P (tmp))
4554 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4556 expand_expr_stmt (targetm.stack_protect_fail ());
4557 emit_label (label);
4560 /* Start the RTL for a new function, and set variables used for
4561 emitting RTL.
4562 SUBR is the FUNCTION_DECL node.
4563 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4564 the function's parameters, which must be run at any return statement. */
4566 void
4567 expand_function_start (tree subr)
4569 /* Make sure volatile mem refs aren't considered
4570 valid operands of arithmetic insns. */
4571 init_recog_no_volatile ();
4573 crtl->profile
4574 = (profile_flag
4575 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4577 crtl->limit_stack
4578 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4580 /* Make the label for return statements to jump to. Do not special
4581 case machines with special return instructions -- they will be
4582 handled later during jump, ifcvt, or epilogue creation. */
4583 return_label = gen_label_rtx ();
4585 /* Initialize rtx used to return the value. */
4586 /* Do this before assign_parms so that we copy the struct value address
4587 before any library calls that assign parms might generate. */
4589 /* Decide whether to return the value in memory or in a register. */
4590 if (aggregate_value_p (DECL_RESULT (subr), subr))
4592 /* Returning something that won't go in a register. */
4593 rtx value_address = 0;
4595 #ifdef PCC_STATIC_STRUCT_RETURN
4596 if (cfun->returns_pcc_struct)
4598 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4599 value_address = assemble_static_space (size);
4601 else
4602 #endif
4604 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4605 /* Expect to be passed the address of a place to store the value.
4606 If it is passed as an argument, assign_parms will take care of
4607 it. */
4608 if (sv)
4610 value_address = gen_reg_rtx (Pmode);
4611 emit_move_insn (value_address, sv);
4614 if (value_address)
4616 rtx x = value_address;
4617 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4619 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4620 set_mem_attributes (x, DECL_RESULT (subr), 1);
4622 SET_DECL_RTL (DECL_RESULT (subr), x);
4625 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4626 /* If return mode is void, this decl rtl should not be used. */
4627 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4628 else
4630 /* Compute the return values into a pseudo reg, which we will copy
4631 into the true return register after the cleanups are done. */
4632 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4633 if (TYPE_MODE (return_type) != BLKmode
4634 && targetm.calls.return_in_msb (return_type))
4635 /* expand_function_end will insert the appropriate padding in
4636 this case. Use the return value's natural (unpadded) mode
4637 within the function proper. */
4638 SET_DECL_RTL (DECL_RESULT (subr),
4639 gen_reg_rtx (TYPE_MODE (return_type)));
4640 else
4642 /* In order to figure out what mode to use for the pseudo, we
4643 figure out what the mode of the eventual return register will
4644 actually be, and use that. */
4645 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4647 /* Structures that are returned in registers are not
4648 aggregate_value_p, so we may see a PARALLEL or a REG. */
4649 if (REG_P (hard_reg))
4650 SET_DECL_RTL (DECL_RESULT (subr),
4651 gen_reg_rtx (GET_MODE (hard_reg)));
4652 else
4654 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4655 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4659 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4660 result to the real return register(s). */
4661 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4664 /* Initialize rtx for parameters and local variables.
4665 In some cases this requires emitting insns. */
4666 assign_parms (subr);
4668 /* If function gets a static chain arg, store it. */
4669 if (cfun->static_chain_decl)
4671 tree parm = cfun->static_chain_decl;
4672 rtx local, chain, insn;
4674 local = gen_reg_rtx (Pmode);
4675 chain = targetm.calls.static_chain (current_function_decl, true);
4677 set_decl_incoming_rtl (parm, chain, false);
4678 SET_DECL_RTL (parm, local);
4679 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4681 insn = emit_move_insn (local, chain);
4683 /* Mark the register as eliminable, similar to parameters. */
4684 if (MEM_P (chain)
4685 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4686 set_unique_reg_note (insn, REG_EQUIV, chain);
4689 /* If the function receives a non-local goto, then store the
4690 bits we need to restore the frame pointer. */
4691 if (cfun->nonlocal_goto_save_area)
4693 tree t_save;
4694 rtx r_save;
4696 /* ??? We need to do this save early. Unfortunately here is
4697 before the frame variable gets declared. Help out... */
4698 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4699 if (!DECL_RTL_SET_P (var))
4700 expand_decl (var);
4702 t_save = build4 (ARRAY_REF, ptr_type_node,
4703 cfun->nonlocal_goto_save_area,
4704 integer_zero_node, NULL_TREE, NULL_TREE);
4705 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4706 r_save = convert_memory_address (Pmode, r_save);
4708 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4709 update_nonlocal_goto_save_area ();
4712 /* The following was moved from init_function_start.
4713 The move is supposed to make sdb output more accurate. */
4714 /* Indicate the beginning of the function body,
4715 as opposed to parm setup. */
4716 emit_note (NOTE_INSN_FUNCTION_BEG);
4718 gcc_assert (NOTE_P (get_last_insn ()));
4720 parm_birth_insn = get_last_insn ();
4722 if (crtl->profile)
4724 #ifdef PROFILE_HOOK
4725 PROFILE_HOOK (current_function_funcdef_no);
4726 #endif
4729 /* After the display initializations is where the stack checking
4730 probe should go. */
4731 if(flag_stack_check)
4732 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4734 /* Make sure there is a line number after the function entry setup code. */
4735 force_next_line_note ();
4738 /* Undo the effects of init_dummy_function_start. */
4739 void
4740 expand_dummy_function_end (void)
4742 gcc_assert (in_dummy_function);
4744 /* End any sequences that failed to be closed due to syntax errors. */
4745 while (in_sequence_p ())
4746 end_sequence ();
4748 /* Outside function body, can't compute type's actual size
4749 until next function's body starts. */
4751 free_after_parsing (cfun);
4752 free_after_compilation (cfun);
4753 pop_cfun ();
4754 in_dummy_function = false;
4757 /* Call DOIT for each hard register used as a return value from
4758 the current function. */
4760 void
4761 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4763 rtx outgoing = crtl->return_rtx;
4765 if (! outgoing)
4766 return;
4768 if (REG_P (outgoing))
4769 (*doit) (outgoing, arg);
4770 else if (GET_CODE (outgoing) == PARALLEL)
4772 int i;
4774 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4776 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4778 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4779 (*doit) (x, arg);
4784 static void
4785 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4787 emit_clobber (reg);
4790 void
4791 clobber_return_register (void)
4793 diddle_return_value (do_clobber_return_reg, NULL);
4795 /* In case we do use pseudo to return value, clobber it too. */
4796 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4798 tree decl_result = DECL_RESULT (current_function_decl);
4799 rtx decl_rtl = DECL_RTL (decl_result);
4800 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4802 do_clobber_return_reg (decl_rtl, NULL);
4807 static void
4808 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4810 emit_use (reg);
4813 static void
4814 use_return_register (void)
4816 diddle_return_value (do_use_return_reg, NULL);
4819 /* Possibly warn about unused parameters. */
4820 void
4821 do_warn_unused_parameter (tree fn)
4823 tree decl;
4825 for (decl = DECL_ARGUMENTS (fn);
4826 decl; decl = DECL_CHAIN (decl))
4827 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4828 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4829 && !TREE_NO_WARNING (decl))
4830 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4833 static GTY(()) rtx initial_trampoline;
4835 /* Generate RTL for the end of the current function. */
4837 void
4838 expand_function_end (void)
4840 rtx clobber_after;
4842 /* If arg_pointer_save_area was referenced only from a nested
4843 function, we will not have initialized it yet. Do that now. */
4844 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4845 get_arg_pointer_save_area ();
4847 /* If we are doing generic stack checking and this function makes calls,
4848 do a stack probe at the start of the function to ensure we have enough
4849 space for another stack frame. */
4850 if (flag_stack_check == GENERIC_STACK_CHECK)
4852 rtx insn, seq;
4854 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4855 if (CALL_P (insn))
4857 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4858 start_sequence ();
4859 if (STACK_CHECK_MOVING_SP)
4860 anti_adjust_stack_and_probe (max_frame_size, true);
4861 else
4862 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4863 seq = get_insns ();
4864 end_sequence ();
4865 emit_insn_before (seq, stack_check_probe_note);
4866 break;
4870 /* End any sequences that failed to be closed due to syntax errors. */
4871 while (in_sequence_p ())
4872 end_sequence ();
4874 clear_pending_stack_adjust ();
4875 do_pending_stack_adjust ();
4877 /* Output a linenumber for the end of the function.
4878 SDB depends on this. */
4879 force_next_line_note ();
4880 set_curr_insn_source_location (input_location);
4882 /* Before the return label (if any), clobber the return
4883 registers so that they are not propagated live to the rest of
4884 the function. This can only happen with functions that drop
4885 through; if there had been a return statement, there would
4886 have either been a return rtx, or a jump to the return label.
4888 We delay actual code generation after the current_function_value_rtx
4889 is computed. */
4890 clobber_after = get_last_insn ();
4892 /* Output the label for the actual return from the function. */
4893 emit_label (return_label);
4895 if (USING_SJLJ_EXCEPTIONS)
4897 /* Let except.c know where it should emit the call to unregister
4898 the function context for sjlj exceptions. */
4899 if (flag_exceptions)
4900 sjlj_emit_function_exit_after (get_last_insn ());
4902 else
4904 /* We want to ensure that instructions that may trap are not
4905 moved into the epilogue by scheduling, because we don't
4906 always emit unwind information for the epilogue. */
4907 if (cfun->can_throw_non_call_exceptions)
4908 emit_insn (gen_blockage ());
4911 /* If this is an implementation of throw, do what's necessary to
4912 communicate between __builtin_eh_return and the epilogue. */
4913 expand_eh_return ();
4915 /* If scalar return value was computed in a pseudo-reg, or was a named
4916 return value that got dumped to the stack, copy that to the hard
4917 return register. */
4918 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4920 tree decl_result = DECL_RESULT (current_function_decl);
4921 rtx decl_rtl = DECL_RTL (decl_result);
4923 if (REG_P (decl_rtl)
4924 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4925 : DECL_REGISTER (decl_result))
4927 rtx real_decl_rtl = crtl->return_rtx;
4929 /* This should be set in assign_parms. */
4930 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4932 /* If this is a BLKmode structure being returned in registers,
4933 then use the mode computed in expand_return. Note that if
4934 decl_rtl is memory, then its mode may have been changed,
4935 but that crtl->return_rtx has not. */
4936 if (GET_MODE (real_decl_rtl) == BLKmode)
4937 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4939 /* If a non-BLKmode return value should be padded at the least
4940 significant end of the register, shift it left by the appropriate
4941 amount. BLKmode results are handled using the group load/store
4942 machinery. */
4943 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4944 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4946 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4947 REGNO (real_decl_rtl)),
4948 decl_rtl);
4949 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4951 /* If a named return value dumped decl_return to memory, then
4952 we may need to re-do the PROMOTE_MODE signed/unsigned
4953 extension. */
4954 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4956 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4957 promote_function_mode (TREE_TYPE (decl_result),
4958 GET_MODE (decl_rtl), &unsignedp,
4959 TREE_TYPE (current_function_decl), 1);
4961 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4963 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4965 /* If expand_function_start has created a PARALLEL for decl_rtl,
4966 move the result to the real return registers. Otherwise, do
4967 a group load from decl_rtl for a named return. */
4968 if (GET_CODE (decl_rtl) == PARALLEL)
4969 emit_group_move (real_decl_rtl, decl_rtl);
4970 else
4971 emit_group_load (real_decl_rtl, decl_rtl,
4972 TREE_TYPE (decl_result),
4973 int_size_in_bytes (TREE_TYPE (decl_result)));
4975 /* In the case of complex integer modes smaller than a word, we'll
4976 need to generate some non-trivial bitfield insertions. Do that
4977 on a pseudo and not the hard register. */
4978 else if (GET_CODE (decl_rtl) == CONCAT
4979 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4980 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4982 int old_generating_concat_p;
4983 rtx tmp;
4985 old_generating_concat_p = generating_concat_p;
4986 generating_concat_p = 0;
4987 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4988 generating_concat_p = old_generating_concat_p;
4990 emit_move_insn (tmp, decl_rtl);
4991 emit_move_insn (real_decl_rtl, tmp);
4993 else
4994 emit_move_insn (real_decl_rtl, decl_rtl);
4998 /* If returning a structure, arrange to return the address of the value
4999 in a place where debuggers expect to find it.
5001 If returning a structure PCC style,
5002 the caller also depends on this value.
5003 And cfun->returns_pcc_struct is not necessarily set. */
5004 if (cfun->returns_struct
5005 || cfun->returns_pcc_struct)
5007 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5008 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5009 rtx outgoing;
5011 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5012 type = TREE_TYPE (type);
5013 else
5014 value_address = XEXP (value_address, 0);
5016 outgoing = targetm.calls.function_value (build_pointer_type (type),
5017 current_function_decl, true);
5019 /* Mark this as a function return value so integrate will delete the
5020 assignment and USE below when inlining this function. */
5021 REG_FUNCTION_VALUE_P (outgoing) = 1;
5023 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5024 value_address = convert_memory_address (GET_MODE (outgoing),
5025 value_address);
5027 emit_move_insn (outgoing, value_address);
5029 /* Show return register used to hold result (in this case the address
5030 of the result. */
5031 crtl->return_rtx = outgoing;
5034 /* Emit the actual code to clobber return register. */
5036 rtx seq;
5038 start_sequence ();
5039 clobber_return_register ();
5040 seq = get_insns ();
5041 end_sequence ();
5043 emit_insn_after (seq, clobber_after);
5046 /* Output the label for the naked return from the function. */
5047 if (naked_return_label)
5048 emit_label (naked_return_label);
5050 /* @@@ This is a kludge. We want to ensure that instructions that
5051 may trap are not moved into the epilogue by scheduling, because
5052 we don't always emit unwind information for the epilogue. */
5053 if (!USING_SJLJ_EXCEPTIONS && cfun->can_throw_non_call_exceptions)
5054 emit_insn (gen_blockage ());
5056 /* If stack protection is enabled for this function, check the guard. */
5057 if (crtl->stack_protect_guard)
5058 stack_protect_epilogue ();
5060 /* If we had calls to alloca, and this machine needs
5061 an accurate stack pointer to exit the function,
5062 insert some code to save and restore the stack pointer. */
5063 if (! EXIT_IGNORE_STACK
5064 && cfun->calls_alloca)
5066 rtx tem = 0;
5068 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
5069 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
5072 /* ??? This should no longer be necessary since stupid is no longer with
5073 us, but there are some parts of the compiler (eg reload_combine, and
5074 sh mach_dep_reorg) that still try and compute their own lifetime info
5075 instead of using the general framework. */
5076 use_return_register ();
5080 get_arg_pointer_save_area (void)
5082 rtx ret = arg_pointer_save_area;
5084 if (! ret)
5086 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5087 arg_pointer_save_area = ret;
5090 if (! crtl->arg_pointer_save_area_init)
5092 rtx seq;
5094 /* Save the arg pointer at the beginning of the function. The
5095 generated stack slot may not be a valid memory address, so we
5096 have to check it and fix it if necessary. */
5097 start_sequence ();
5098 emit_move_insn (validize_mem (ret),
5099 crtl->args.internal_arg_pointer);
5100 seq = get_insns ();
5101 end_sequence ();
5103 push_topmost_sequence ();
5104 emit_insn_after (seq, entry_of_function ());
5105 pop_topmost_sequence ();
5108 return ret;
5111 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5112 for the first time. */
5114 static void
5115 record_insns (rtx insns, rtx end, htab_t *hashp)
5117 rtx tmp;
5118 htab_t hash = *hashp;
5120 if (hash == NULL)
5121 *hashp = hash
5122 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5124 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5126 void **slot = htab_find_slot (hash, tmp, INSERT);
5127 gcc_assert (*slot == NULL);
5128 *slot = tmp;
5132 /* INSN has been duplicated as COPY, as part of duping a basic block.
5133 If INSN is an epilogue insn, then record COPY as epilogue as well. */
5135 void
5136 maybe_copy_epilogue_insn (rtx insn, rtx copy)
5138 void **slot;
5140 if (epilogue_insn_hash == NULL
5141 || htab_find (epilogue_insn_hash, insn) == NULL)
5142 return;
5144 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
5145 gcc_assert (*slot == NULL);
5146 *slot = copy;
5149 /* Set the locator of the insn chain starting at INSN to LOC. */
5150 static void
5151 set_insn_locators (rtx insn, int loc)
5153 while (insn != NULL_RTX)
5155 if (INSN_P (insn))
5156 INSN_LOCATOR (insn) = loc;
5157 insn = NEXT_INSN (insn);
5161 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5162 we can be running after reorg, SEQUENCE rtl is possible. */
5164 static bool
5165 contains (const_rtx insn, htab_t hash)
5167 if (hash == NULL)
5168 return false;
5170 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5172 int i;
5173 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5174 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5175 return true;
5176 return false;
5179 return htab_find (hash, insn) != NULL;
5183 prologue_epilogue_contains (const_rtx insn)
5185 if (contains (insn, prologue_insn_hash))
5186 return 1;
5187 if (contains (insn, epilogue_insn_hash))
5188 return 1;
5189 return 0;
5192 #ifdef HAVE_return
5193 /* Insert gen_return at the end of block BB. This also means updating
5194 block_for_insn appropriately. */
5196 static void
5197 emit_return_into_block (basic_block bb)
5199 emit_jump_insn_after (gen_return (), BB_END (bb));
5201 #endif /* HAVE_return */
5203 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5204 this into place with notes indicating where the prologue ends and where
5205 the epilogue begins. Update the basic block information when possible. */
5207 static void
5208 thread_prologue_and_epilogue_insns (void)
5210 int inserted = 0;
5211 edge e;
5212 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5213 rtx seq;
5214 #endif
5215 #if defined (HAVE_epilogue) || defined(HAVE_return)
5216 rtx epilogue_end = NULL_RTX;
5217 #endif
5218 edge_iterator ei;
5220 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5221 #ifdef HAVE_prologue
5222 if (HAVE_prologue)
5224 start_sequence ();
5225 seq = gen_prologue ();
5226 emit_insn (seq);
5228 /* Insert an explicit USE for the frame pointer
5229 if the profiling is on and the frame pointer is required. */
5230 if (crtl->profile && frame_pointer_needed)
5231 emit_use (hard_frame_pointer_rtx);
5233 /* Retain a map of the prologue insns. */
5234 record_insns (seq, NULL, &prologue_insn_hash);
5235 emit_note (NOTE_INSN_PROLOGUE_END);
5237 /* Ensure that instructions are not moved into the prologue when
5238 profiling is on. The call to the profiling routine can be
5239 emitted within the live range of a call-clobbered register. */
5240 if (!targetm.profile_before_prologue () && crtl->profile)
5241 emit_insn (gen_blockage ());
5243 seq = get_insns ();
5244 end_sequence ();
5245 set_insn_locators (seq, prologue_locator);
5247 /* Can't deal with multiple successors of the entry block
5248 at the moment. Function should always have at least one
5249 entry point. */
5250 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5252 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5253 inserted = 1;
5255 #endif
5257 /* If the exit block has no non-fake predecessors, we don't need
5258 an epilogue. */
5259 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5260 if ((e->flags & EDGE_FAKE) == 0)
5261 break;
5262 if (e == NULL)
5263 goto epilogue_done;
5265 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5266 #ifdef HAVE_return
5267 if (optimize && HAVE_return)
5269 /* If we're allowed to generate a simple return instruction,
5270 then by definition we don't need a full epilogue. Examine
5271 the block that falls through to EXIT. If it does not
5272 contain any code, examine its predecessors and try to
5273 emit (conditional) return instructions. */
5275 basic_block last;
5276 rtx label;
5278 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5279 if (e->flags & EDGE_FALLTHRU)
5280 break;
5281 if (e == NULL)
5282 goto epilogue_done;
5283 last = e->src;
5285 /* Verify that there are no active instructions in the last block. */
5286 label = BB_END (last);
5287 while (label && !LABEL_P (label))
5289 if (active_insn_p (label))
5290 break;
5291 label = PREV_INSN (label);
5294 if (BB_HEAD (last) == label && LABEL_P (label))
5296 edge_iterator ei2;
5298 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5300 basic_block bb = e->src;
5301 rtx jump;
5303 if (bb == ENTRY_BLOCK_PTR)
5305 ei_next (&ei2);
5306 continue;
5309 jump = BB_END (bb);
5310 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5312 ei_next (&ei2);
5313 continue;
5316 /* If we have an unconditional jump, we can replace that
5317 with a simple return instruction. */
5318 if (simplejump_p (jump))
5320 emit_return_into_block (bb);
5321 delete_insn (jump);
5324 /* If we have a conditional jump, we can try to replace
5325 that with a conditional return instruction. */
5326 else if (condjump_p (jump))
5328 if (! redirect_jump (jump, 0, 0))
5330 ei_next (&ei2);
5331 continue;
5334 /* If this block has only one successor, it both jumps
5335 and falls through to the fallthru block, so we can't
5336 delete the edge. */
5337 if (single_succ_p (bb))
5339 ei_next (&ei2);
5340 continue;
5343 else
5345 ei_next (&ei2);
5346 continue;
5349 /* Fix up the CFG for the successful change we just made. */
5350 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5353 /* Emit a return insn for the exit fallthru block. Whether
5354 this is still reachable will be determined later. */
5356 emit_barrier_after (BB_END (last));
5357 emit_return_into_block (last);
5358 epilogue_end = BB_END (last);
5359 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5360 goto epilogue_done;
5363 #endif
5365 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5366 this marker for the splits of EH_RETURN patterns, and nothing else
5367 uses the flag in the meantime. */
5368 epilogue_completed = 1;
5370 #ifdef HAVE_eh_return
5371 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5372 some targets, these get split to a special version of the epilogue
5373 code. In order to be able to properly annotate these with unwind
5374 info, try to split them now. If we get a valid split, drop an
5375 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5376 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5378 rtx prev, last, trial;
5380 if (e->flags & EDGE_FALLTHRU)
5381 continue;
5382 last = BB_END (e->src);
5383 if (!eh_returnjump_p (last))
5384 continue;
5386 prev = PREV_INSN (last);
5387 trial = try_split (PATTERN (last), last, 1);
5388 if (trial == last)
5389 continue;
5391 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5392 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5394 #endif
5396 /* Find the edge that falls through to EXIT. Other edges may exist
5397 due to RETURN instructions, but those don't need epilogues.
5398 There really shouldn't be a mixture -- either all should have
5399 been converted or none, however... */
5401 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5402 if (e->flags & EDGE_FALLTHRU)
5403 break;
5404 if (e == NULL)
5405 goto epilogue_done;
5407 #ifdef HAVE_epilogue
5408 if (HAVE_epilogue)
5410 start_sequence ();
5411 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5412 seq = gen_epilogue ();
5413 emit_jump_insn (seq);
5415 /* Retain a map of the epilogue insns. */
5416 record_insns (seq, NULL, &epilogue_insn_hash);
5417 set_insn_locators (seq, epilogue_locator);
5419 seq = get_insns ();
5420 end_sequence ();
5422 insert_insn_on_edge (seq, e);
5423 inserted = 1;
5425 else
5426 #endif
5428 basic_block cur_bb;
5430 if (! next_active_insn (BB_END (e->src)))
5431 goto epilogue_done;
5432 /* We have a fall-through edge to the exit block, the source is not
5433 at the end of the function, and there will be an assembler epilogue
5434 at the end of the function.
5435 We can't use force_nonfallthru here, because that would try to
5436 use return. Inserting a jump 'by hand' is extremely messy, so
5437 we take advantage of cfg_layout_finalize using
5438 fixup_fallthru_exit_predecessor. */
5439 cfg_layout_initialize (0);
5440 FOR_EACH_BB (cur_bb)
5441 if (cur_bb->index >= NUM_FIXED_BLOCKS
5442 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5443 cur_bb->aux = cur_bb->next_bb;
5444 cfg_layout_finalize ();
5446 epilogue_done:
5447 default_rtl_profile ();
5449 if (inserted)
5451 commit_edge_insertions ();
5453 /* The epilogue insns we inserted may cause the exit edge to no longer
5454 be fallthru. */
5455 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5457 if (((e->flags & EDGE_FALLTHRU) != 0)
5458 && returnjump_p (BB_END (e->src)))
5459 e->flags &= ~EDGE_FALLTHRU;
5463 #ifdef HAVE_sibcall_epilogue
5464 /* Emit sibling epilogues before any sibling call sites. */
5465 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5467 basic_block bb = e->src;
5468 rtx insn = BB_END (bb);
5470 if (!CALL_P (insn)
5471 || ! SIBLING_CALL_P (insn))
5473 ei_next (&ei);
5474 continue;
5477 start_sequence ();
5478 emit_note (NOTE_INSN_EPILOGUE_BEG);
5479 emit_insn (gen_sibcall_epilogue ());
5480 seq = get_insns ();
5481 end_sequence ();
5483 /* Retain a map of the epilogue insns. Used in life analysis to
5484 avoid getting rid of sibcall epilogue insns. Do this before we
5485 actually emit the sequence. */
5486 record_insns (seq, NULL, &epilogue_insn_hash);
5487 set_insn_locators (seq, epilogue_locator);
5489 emit_insn_before (seq, insn);
5490 ei_next (&ei);
5492 #endif
5494 #ifdef HAVE_epilogue
5495 if (epilogue_end)
5497 rtx insn, next;
5499 /* Similarly, move any line notes that appear after the epilogue.
5500 There is no need, however, to be quite so anal about the existence
5501 of such a note. Also possibly move
5502 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5503 info generation. */
5504 for (insn = epilogue_end; insn; insn = next)
5506 next = NEXT_INSN (insn);
5507 if (NOTE_P (insn)
5508 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5509 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5512 #endif
5514 /* Threading the prologue and epilogue changes the artificial refs
5515 in the entry and exit blocks. */
5516 epilogue_completed = 1;
5517 df_update_entry_exit_and_calls ();
5520 /* Reposition the prologue-end and epilogue-begin notes after
5521 instruction scheduling. */
5523 void
5524 reposition_prologue_and_epilogue_notes (void)
5526 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5527 || defined (HAVE_sibcall_epilogue)
5528 /* Since the hash table is created on demand, the fact that it is
5529 non-null is a signal that it is non-empty. */
5530 if (prologue_insn_hash != NULL)
5532 size_t len = htab_elements (prologue_insn_hash);
5533 rtx insn, last = NULL, note = NULL;
5535 /* Scan from the beginning until we reach the last prologue insn. */
5536 /* ??? While we do have the CFG intact, there are two problems:
5537 (1) The prologue can contain loops (typically probing the stack),
5538 which means that the end of the prologue isn't in the first bb.
5539 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5540 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5542 if (NOTE_P (insn))
5544 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5545 note = insn;
5547 else if (contains (insn, prologue_insn_hash))
5549 last = insn;
5550 if (--len == 0)
5551 break;
5555 if (last)
5557 if (note == NULL)
5559 /* Scan forward looking for the PROLOGUE_END note. It should
5560 be right at the beginning of the block, possibly with other
5561 insn notes that got moved there. */
5562 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5564 if (NOTE_P (note)
5565 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5566 break;
5570 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5571 if (LABEL_P (last))
5572 last = NEXT_INSN (last);
5573 reorder_insns (note, note, last);
5577 if (epilogue_insn_hash != NULL)
5579 edge_iterator ei;
5580 edge e;
5582 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5584 rtx insn, first = NULL, note = NULL;
5585 basic_block bb = e->src;
5587 /* Scan from the beginning until we reach the first epilogue insn. */
5588 FOR_BB_INSNS (bb, insn)
5590 if (NOTE_P (insn))
5592 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5594 note = insn;
5595 if (first != NULL)
5596 break;
5599 else if (first == NULL && contains (insn, epilogue_insn_hash))
5601 first = insn;
5602 if (note != NULL)
5603 break;
5607 if (note)
5609 /* If the function has a single basic block, and no real
5610 epilogue insns (e.g. sibcall with no cleanup), the
5611 epilogue note can get scheduled before the prologue
5612 note. If we have frame related prologue insns, having
5613 them scanned during the epilogue will result in a crash.
5614 In this case re-order the epilogue note to just before
5615 the last insn in the block. */
5616 if (first == NULL)
5617 first = BB_END (bb);
5619 if (PREV_INSN (first) != note)
5620 reorder_insns (note, note, PREV_INSN (first));
5624 #endif /* HAVE_prologue or HAVE_epilogue */
5627 /* Returns the name of the current function. */
5628 const char *
5629 current_function_name (void)
5631 if (cfun == NULL)
5632 return "<none>";
5633 return lang_hooks.decl_printable_name (cfun->decl, 2);
5637 static unsigned int
5638 rest_of_handle_check_leaf_regs (void)
5640 #ifdef LEAF_REGISTERS
5641 current_function_uses_only_leaf_regs
5642 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5643 #endif
5644 return 0;
5647 /* Insert a TYPE into the used types hash table of CFUN. */
5649 static void
5650 used_types_insert_helper (tree type, struct function *func)
5652 if (type != NULL && func != NULL)
5654 void **slot;
5656 if (func->used_types_hash == NULL)
5657 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5658 htab_eq_pointer, NULL);
5659 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5660 if (*slot == NULL)
5661 *slot = type;
5665 /* Given a type, insert it into the used hash table in cfun. */
5666 void
5667 used_types_insert (tree t)
5669 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5670 if (TYPE_NAME (t))
5671 break;
5672 else
5673 t = TREE_TYPE (t);
5674 if (TYPE_NAME (t) == NULL_TREE
5675 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5676 t = TYPE_MAIN_VARIANT (t);
5677 if (debug_info_level > DINFO_LEVEL_NONE)
5679 if (cfun)
5680 used_types_insert_helper (t, cfun);
5681 else
5682 /* So this might be a type referenced by a global variable.
5683 Record that type so that we can later decide to emit its debug
5684 information. */
5685 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
5689 /* Helper to Hash a struct types_used_by_vars_entry. */
5691 static hashval_t
5692 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5694 gcc_assert (entry && entry->var_decl && entry->type);
5696 return iterative_hash_object (entry->type,
5697 iterative_hash_object (entry->var_decl, 0));
5700 /* Hash function of the types_used_by_vars_entry hash table. */
5702 hashval_t
5703 types_used_by_vars_do_hash (const void *x)
5705 const struct types_used_by_vars_entry *entry =
5706 (const struct types_used_by_vars_entry *) x;
5708 return hash_types_used_by_vars_entry (entry);
5711 /*Equality function of the types_used_by_vars_entry hash table. */
5714 types_used_by_vars_eq (const void *x1, const void *x2)
5716 const struct types_used_by_vars_entry *e1 =
5717 (const struct types_used_by_vars_entry *) x1;
5718 const struct types_used_by_vars_entry *e2 =
5719 (const struct types_used_by_vars_entry *)x2;
5721 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5724 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5726 void
5727 types_used_by_var_decl_insert (tree type, tree var_decl)
5729 if (type != NULL && var_decl != NULL)
5731 void **slot;
5732 struct types_used_by_vars_entry e;
5733 e.var_decl = var_decl;
5734 e.type = type;
5735 if (types_used_by_vars_hash == NULL)
5736 types_used_by_vars_hash =
5737 htab_create_ggc (37, types_used_by_vars_do_hash,
5738 types_used_by_vars_eq, NULL);
5739 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5740 hash_types_used_by_vars_entry (&e), INSERT);
5741 if (*slot == NULL)
5743 struct types_used_by_vars_entry *entry;
5744 entry = ggc_alloc_types_used_by_vars_entry ();
5745 entry->type = type;
5746 entry->var_decl = var_decl;
5747 *slot = entry;
5752 struct rtl_opt_pass pass_leaf_regs =
5755 RTL_PASS,
5756 "*leaf_regs", /* name */
5757 NULL, /* gate */
5758 rest_of_handle_check_leaf_regs, /* execute */
5759 NULL, /* sub */
5760 NULL, /* next */
5761 0, /* static_pass_number */
5762 TV_NONE, /* tv_id */
5763 0, /* properties_required */
5764 0, /* properties_provided */
5765 0, /* properties_destroyed */
5766 0, /* todo_flags_start */
5767 0 /* todo_flags_finish */
5771 static unsigned int
5772 rest_of_handle_thread_prologue_and_epilogue (void)
5774 if (optimize)
5775 cleanup_cfg (CLEANUP_EXPENSIVE);
5777 /* On some machines, the prologue and epilogue code, or parts thereof,
5778 can be represented as RTL. Doing so lets us schedule insns between
5779 it and the rest of the code and also allows delayed branch
5780 scheduling to operate in the epilogue. */
5781 thread_prologue_and_epilogue_insns ();
5783 /* The stack usage info is finalized during prologue expansion. */
5784 if (flag_stack_usage)
5785 output_stack_usage ();
5787 return 0;
5790 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5793 RTL_PASS,
5794 "pro_and_epilogue", /* name */
5795 NULL, /* gate */
5796 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5797 NULL, /* sub */
5798 NULL, /* next */
5799 0, /* static_pass_number */
5800 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5801 0, /* properties_required */
5802 0, /* properties_provided */
5803 0, /* properties_destroyed */
5804 TODO_verify_flow, /* todo_flags_start */
5805 TODO_dump_func |
5806 TODO_df_verify |
5807 TODO_df_finish | TODO_verify_rtl_sharing |
5808 TODO_ggc_collect /* todo_flags_finish */
5813 /* This mini-pass fixes fall-out from SSA in asm statements that have
5814 in-out constraints. Say you start with
5816 orig = inout;
5817 asm ("": "+mr" (inout));
5818 use (orig);
5820 which is transformed very early to use explicit output and match operands:
5822 orig = inout;
5823 asm ("": "=mr" (inout) : "0" (inout));
5824 use (orig);
5826 Or, after SSA and copyprop,
5828 asm ("": "=mr" (inout_2) : "0" (inout_1));
5829 use (inout_1);
5831 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5832 they represent two separate values, so they will get different pseudo
5833 registers during expansion. Then, since the two operands need to match
5834 per the constraints, but use different pseudo registers, reload can
5835 only register a reload for these operands. But reloads can only be
5836 satisfied by hardregs, not by memory, so we need a register for this
5837 reload, just because we are presented with non-matching operands.
5838 So, even though we allow memory for this operand, no memory can be
5839 used for it, just because the two operands don't match. This can
5840 cause reload failures on register-starved targets.
5842 So it's a symptom of reload not being able to use memory for reloads
5843 or, alternatively it's also a symptom of both operands not coming into
5844 reload as matching (in which case the pseudo could go to memory just
5845 fine, as the alternative allows it, and no reload would be necessary).
5846 We fix the latter problem here, by transforming
5848 asm ("": "=mr" (inout_2) : "0" (inout_1));
5850 back to
5852 inout_2 = inout_1;
5853 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5855 static void
5856 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5858 int i;
5859 bool changed = false;
5860 rtx op = SET_SRC (p_sets[0]);
5861 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5862 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5863 bool *output_matched = XALLOCAVEC (bool, noutputs);
5865 memset (output_matched, 0, noutputs * sizeof (bool));
5866 for (i = 0; i < ninputs; i++)
5868 rtx input, output, insns;
5869 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5870 char *end;
5871 int match, j;
5873 if (*constraint == '%')
5874 constraint++;
5876 match = strtoul (constraint, &end, 10);
5877 if (end == constraint)
5878 continue;
5880 gcc_assert (match < noutputs);
5881 output = SET_DEST (p_sets[match]);
5882 input = RTVEC_ELT (inputs, i);
5883 /* Only do the transformation for pseudos. */
5884 if (! REG_P (output)
5885 || rtx_equal_p (output, input)
5886 || (GET_MODE (input) != VOIDmode
5887 && GET_MODE (input) != GET_MODE (output)))
5888 continue;
5890 /* We can't do anything if the output is also used as input,
5891 as we're going to overwrite it. */
5892 for (j = 0; j < ninputs; j++)
5893 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5894 break;
5895 if (j != ninputs)
5896 continue;
5898 /* Avoid changing the same input several times. For
5899 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5900 only change in once (to out1), rather than changing it
5901 first to out1 and afterwards to out2. */
5902 if (i > 0)
5904 for (j = 0; j < noutputs; j++)
5905 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5906 break;
5907 if (j != noutputs)
5908 continue;
5910 output_matched[match] = true;
5912 start_sequence ();
5913 emit_move_insn (output, input);
5914 insns = get_insns ();
5915 end_sequence ();
5916 emit_insn_before (insns, insn);
5918 /* Now replace all mentions of the input with output. We can't
5919 just replace the occurrence in inputs[i], as the register might
5920 also be used in some other input (or even in an address of an
5921 output), which would mean possibly increasing the number of
5922 inputs by one (namely 'output' in addition), which might pose
5923 a too complicated problem for reload to solve. E.g. this situation:
5925 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5927 Here 'input' is used in two occurrences as input (once for the
5928 input operand, once for the address in the second output operand).
5929 If we would replace only the occurrence of the input operand (to
5930 make the matching) we would be left with this:
5932 output = input
5933 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5935 Now we suddenly have two different input values (containing the same
5936 value, but different pseudos) where we formerly had only one.
5937 With more complicated asms this might lead to reload failures
5938 which wouldn't have happen without this pass. So, iterate over
5939 all operands and replace all occurrences of the register used. */
5940 for (j = 0; j < noutputs; j++)
5941 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5942 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5943 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5944 input, output);
5945 for (j = 0; j < ninputs; j++)
5946 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5947 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5948 input, output);
5950 changed = true;
5953 if (changed)
5954 df_insn_rescan (insn);
5957 static unsigned
5958 rest_of_match_asm_constraints (void)
5960 basic_block bb;
5961 rtx insn, pat, *p_sets;
5962 int noutputs;
5964 if (!crtl->has_asm_statement)
5965 return 0;
5967 df_set_flags (DF_DEFER_INSN_RESCAN);
5968 FOR_EACH_BB (bb)
5970 FOR_BB_INSNS (bb, insn)
5972 if (!INSN_P (insn))
5973 continue;
5975 pat = PATTERN (insn);
5976 if (GET_CODE (pat) == PARALLEL)
5977 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5978 else if (GET_CODE (pat) == SET)
5979 p_sets = &PATTERN (insn), noutputs = 1;
5980 else
5981 continue;
5983 if (GET_CODE (*p_sets) == SET
5984 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5985 match_asm_constraints_1 (insn, p_sets, noutputs);
5989 return TODO_df_finish;
5992 struct rtl_opt_pass pass_match_asm_constraints =
5995 RTL_PASS,
5996 "asmcons", /* name */
5997 NULL, /* gate */
5998 rest_of_match_asm_constraints, /* execute */
5999 NULL, /* sub */
6000 NULL, /* next */
6001 0, /* static_pass_number */
6002 TV_NONE, /* tv_id */
6003 0, /* properties_required */
6004 0, /* properties_provided */
6005 0, /* properties_destroyed */
6006 0, /* todo_flags_start */
6007 TODO_dump_func /* todo_flags_finish */
6012 #include "gt-function.h"