* gimplify.c (find_single_pointer_decl_1): New static function.
[official-gcc.git] / gcc / ada / exp_ch7.adb
blobf7d01197b7c43d0820899fe73fec6ecf55c19156
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 7 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 -- This package contains virtually all expansion mechanisms related to
28 -- - controlled types
29 -- - transient scopes
31 with Atree; use Atree;
32 with Debug; use Debug;
33 with Einfo; use Einfo;
34 with Errout; use Errout;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Ch11; use Exp_Ch11;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Freeze; use Freeze;
41 with Hostparm; use Hostparm;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Targparm; use Targparm;
50 with Sinfo; use Sinfo;
51 with Sem; use Sem;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch7; use Sem_Ch7;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Res; use Sem_Res;
56 with Sem_Type; use Sem_Type;
57 with Sem_Util; use Sem_Util;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Tbuild; use Tbuild;
61 with Uintp; use Uintp;
63 package body Exp_Ch7 is
65 --------------------------------
66 -- Transient Scope Management --
67 --------------------------------
69 -- A transient scope is created when temporary objects are created by the
70 -- compiler. These temporary objects are allocated on the secondary stack
71 -- and the transient scope is responsible for finalizing the object when
72 -- appropriate and reclaiming the memory at the right time. The temporary
73 -- objects are generally the objects allocated to store the result of a
74 -- function returning an unconstrained or a tagged value. Expressions
75 -- needing to be wrapped in a transient scope (functions calls returning
76 -- unconstrained or tagged values) may appear in 3 different contexts which
77 -- lead to 3 different kinds of transient scope expansion:
79 -- 1. In a simple statement (procedure call, assignment, ...). In
80 -- this case the instruction is wrapped into a transient block.
81 -- (See Wrap_Transient_Statement for details)
83 -- 2. In an expression of a control structure (test in a IF statement,
84 -- expression in a CASE statement, ...).
85 -- (See Wrap_Transient_Expression for details)
87 -- 3. In a expression of an object_declaration. No wrapping is possible
88 -- here, so the finalization actions, if any are done right after the
89 -- declaration and the secondary stack deallocation is done in the
90 -- proper enclosing scope (see Wrap_Transient_Declaration for details)
92 -- Note about function returning tagged types: It has been decided to
93 -- always allocate their result in the secondary stack while it is not
94 -- absolutely mandatory when the tagged type is constrained because the
95 -- caller knows the size of the returned object and thus could allocate the
96 -- result in the primary stack. But, allocating them always in the
97 -- secondary stack simplifies many implementation hassles:
99 -- - If it is dispatching function call, the computation of the size of
100 -- the result is possible but complex from the outside.
102 -- - If the returned type is controlled, the assignment of the returned
103 -- value to the anonymous object involves an Adjust, and we have no
104 -- easy way to access the anonymous object created by the back-end
106 -- - If the returned type is class-wide, this is an unconstrained type
107 -- anyway
109 -- Furthermore, the little loss in efficiency which is the result of this
110 -- decision is not such a big deal because function returning tagged types
111 -- are not very much used in real life as opposed to functions returning
112 -- access to a tagged type
114 --------------------------------------------------
115 -- Transient Blocks and Finalization Management --
116 --------------------------------------------------
118 function Find_Node_To_Be_Wrapped (N : Node_Id) return Node_Id;
119 -- N is a node wich may generate a transient scope. Loop over the
120 -- parent pointers of N until it find the appropriate node to
121 -- wrap. It it returns Empty, it means that no transient scope is
122 -- needed in this context.
124 function Make_Clean
125 (N : Node_Id;
126 Clean : Entity_Id;
127 Mark : Entity_Id;
128 Flist : Entity_Id;
129 Is_Task : Boolean;
130 Is_Master : Boolean;
131 Is_Protected_Subprogram : Boolean;
132 Is_Task_Allocation_Block : Boolean;
133 Is_Asynchronous_Call_Block : Boolean) return Node_Id;
134 -- Expand a the clean-up procedure for controlled and/or transient
135 -- block, and/or task master or task body, or blocks used to
136 -- implement task allocation or asynchronous entry calls, or
137 -- procedures used to implement protected procedures. Clean is the
138 -- entity for such a procedure. Mark is the entity for the secondary
139 -- stack mark, if empty only controlled block clean-up will be
140 -- performed. Flist is the entity for the local final list, if empty
141 -- only transient scope clean-up will be performed. The flags
142 -- Is_Task and Is_Master control the calls to the corresponding
143 -- finalization actions for a task body or for an entity that is a
144 -- task master.
146 procedure Set_Node_To_Be_Wrapped (N : Node_Id);
147 -- Set the field Node_To_Be_Wrapped of the current scope
149 procedure Insert_Actions_In_Scope_Around (N : Node_Id);
150 -- Insert the before-actions kept in the scope stack before N, and the
151 -- after after-actions, after N which must be a member of a list.
153 function Make_Transient_Block
154 (Loc : Source_Ptr;
155 Action : Node_Id) return Node_Id;
156 -- Create a transient block whose name is Scope, which is also a
157 -- controlled block if Flist is not empty and whose only code is
158 -- Action (either a single statement or single declaration).
160 type Final_Primitives is (Initialize_Case, Adjust_Case, Finalize_Case);
161 -- This enumeration type is defined in order to ease sharing code for
162 -- building finalization procedures for composite types.
164 Name_Of : constant array (Final_Primitives) of Name_Id :=
165 (Initialize_Case => Name_Initialize,
166 Adjust_Case => Name_Adjust,
167 Finalize_Case => Name_Finalize);
169 Deep_Name_Of : constant array (Final_Primitives) of TSS_Name_Type :=
170 (Initialize_Case => TSS_Deep_Initialize,
171 Adjust_Case => TSS_Deep_Adjust,
172 Finalize_Case => TSS_Deep_Finalize);
174 procedure Build_Record_Deep_Procs (Typ : Entity_Id);
175 -- Build the deep Initialize/Adjust/Finalize for a record Typ with
176 -- Has_Component_Component set and store them using the TSS mechanism.
178 procedure Build_Array_Deep_Procs (Typ : Entity_Id);
179 -- Build the deep Initialize/Adjust/Finalize for a record Typ with
180 -- Has_Controlled_Component set and store them using the TSS mechanism.
182 function Make_Deep_Proc
183 (Prim : Final_Primitives;
184 Typ : Entity_Id;
185 Stmts : List_Id) return Node_Id;
186 -- This function generates the tree for Deep_Initialize, Deep_Adjust
187 -- or Deep_Finalize procedures according to the first parameter,
188 -- these procedures operate on the type Typ. The Stmts parameter
189 -- gives the body of the procedure.
191 function Make_Deep_Array_Body
192 (Prim : Final_Primitives;
193 Typ : Entity_Id) return List_Id;
194 -- This function generates the list of statements for implementing
195 -- Deep_Initialize, Deep_Adjust or Deep_Finalize procedures
196 -- according to the first parameter, these procedures operate on the
197 -- array type Typ.
199 function Make_Deep_Record_Body
200 (Prim : Final_Primitives;
201 Typ : Entity_Id) return List_Id;
202 -- This function generates the list of statements for implementing
203 -- Deep_Initialize, Deep_Adjust or Deep_Finalize procedures
204 -- according to the first parameter, these procedures operate on the
205 -- record type Typ.
207 procedure Check_Visibly_Controlled
208 (Prim : Final_Primitives;
209 Typ : Entity_Id;
210 E : in out Entity_Id;
211 Cref : in out Node_Id);
212 -- The controlled operation declared for a derived type may not be
213 -- overriding, if the controlled operations of the parent type are
214 -- hidden, for example when the parent is a private type whose full
215 -- view is controlled. For other primitive operations we modify the
216 -- name of the operation to indicate that it is not overriding, but
217 -- this is not possible for Initialize, etc. because they have to be
218 -- retrievable by name. Before generating the proper call to one of
219 -- these operations we check whether Typ is known to be controlled at
220 -- the point of definition. If it is not then we must retrieve the
221 -- hidden operation of the parent and use it instead. This is one
222 -- case that might be solved more cleanly once Overriding pragmas or
223 -- declarations are in place.
225 function Convert_View
226 (Proc : Entity_Id;
227 Arg : Node_Id;
228 Ind : Pos := 1) return Node_Id;
229 -- Proc is one of the Initialize/Adjust/Finalize operations, and
230 -- Arg is the argument being passed to it. Ind indicates which
231 -- formal of procedure Proc we are trying to match. This function
232 -- will, if necessary, generate an conversion between the partial
233 -- and full view of Arg to match the type of the formal of Proc,
234 -- or force a conversion to the class-wide type in the case where
235 -- the operation is abstract.
237 -----------------------------
238 -- Finalization Management --
239 -----------------------------
241 -- This part describe how Initialization/Adjusment/Finalization procedures
242 -- are generated and called. Two cases must be considered, types that are
243 -- Controlled (Is_Controlled flag set) and composite types that contain
244 -- controlled components (Has_Controlled_Component flag set). In the first
245 -- case the procedures to call are the user-defined primitive operations
246 -- Initialize/Adjust/Finalize. In the second case, GNAT generates
247 -- Deep_Initialize, Deep_Adjust and Deep_Finalize that are in charge of
248 -- calling the former procedures on the controlled components.
250 -- For records with Has_Controlled_Component set, a hidden "controller"
251 -- component is inserted. This controller component contains its own
252 -- finalization list on which all controlled components are attached
253 -- creating an indirection on the upper-level Finalization list. This
254 -- technique facilitates the management of objects whose number of
255 -- controlled components changes during execution. This controller
256 -- component is itself controlled and is attached to the upper-level
257 -- finalization chain. Its adjust primitive is in charge of calling
258 -- adjust on the components and adusting the finalization pointer to
259 -- match their new location (see a-finali.adb).
261 -- It is not possible to use a similar technique for arrays that have
262 -- Has_Controlled_Component set. In this case, deep procedures are
263 -- generated that call initialize/adjust/finalize + attachment or
264 -- detachment on the finalization list for all component.
266 -- Initialize calls: they are generated for declarations or dynamic
267 -- allocations of Controlled objects with no initial value. They are
268 -- always followed by an attachment to the current Finalization
269 -- Chain. For the dynamic allocation case this the chain attached to
270 -- the scope of the access type definition otherwise, this is the chain
271 -- of the current scope.
273 -- Adjust Calls: They are generated on 2 occasions: (1) for
274 -- declarations or dynamic allocations of Controlled objects with an
275 -- initial value. (2) after an assignment. In the first case they are
276 -- followed by an attachment to the final chain, in the second case
277 -- they are not.
279 -- Finalization Calls: They are generated on (1) scope exit, (2)
280 -- assignments, (3) unchecked deallocations. In case (3) they have to
281 -- be detached from the final chain, in case (2) they must not and in
282 -- case (1) this is not important since we are exiting the scope
283 -- anyway.
285 -- Other details:
286 -- - Type extensions will have a new record controller at each derivation
287 -- level containing controlled components.
288 -- - For types that are both Is_Controlled and Has_Controlled_Components,
289 -- the record controller and the object itself are handled separately.
290 -- It could seem simpler to attach the object at the end of its record
291 -- controller but this would not tackle view conversions properly.
292 -- - A classwide type can always potentially have controlled components
293 -- but the record controller of the corresponding actual type may not
294 -- be known at compile time so the dispatch table contains a special
295 -- field that allows to compute the offset of the record controller
296 -- dynamically. See s-finimp.Deep_Tag_Attach and a-tags.RC_Offset
298 -- Here is a simple example of the expansion of a controlled block :
300 -- declare
301 -- X : Controlled ;
302 -- Y : Controlled := Init;
304 -- type R is record
305 -- C : Controlled;
306 -- end record;
307 -- W : R;
308 -- Z : R := (C => X);
309 -- begin
310 -- X := Y;
311 -- W := Z;
312 -- end;
314 -- is expanded into
316 -- declare
317 -- _L : System.FI.Finalizable_Ptr;
319 -- procedure _Clean is
320 -- begin
321 -- Abort_Defer;
322 -- System.FI.Finalize_List (_L);
323 -- Abort_Undefer;
324 -- end _Clean;
326 -- X : Controlled;
327 -- begin
328 -- Abort_Defer;
329 -- Initialize (X);
330 -- Attach_To_Final_List (_L, Finalizable (X), 1);
331 -- at end: Abort_Undefer;
332 -- Y : Controlled := Init;
333 -- Adjust (Y);
334 -- Attach_To_Final_List (_L, Finalizable (Y), 1);
336 -- type R is record
337 -- _C : Record_Controller;
338 -- C : Controlled;
339 -- end record;
340 -- W : R;
341 -- begin
342 -- Abort_Defer;
343 -- Deep_Initialize (W, _L, 1);
344 -- at end: Abort_Under;
345 -- Z : R := (C => X);
346 -- Deep_Adjust (Z, _L, 1);
348 -- begin
349 -- _Assign (X, Y);
350 -- Deep_Finalize (W, False);
351 -- <save W's final pointers>
352 -- W := Z;
353 -- <restore W's final pointers>
354 -- Deep_Adjust (W, _L, 0);
355 -- at end
356 -- _Clean;
357 -- end;
359 function Global_Flist_Ref (Flist_Ref : Node_Id) return Boolean;
360 -- Return True if Flist_Ref refers to a global final list, either
361 -- the object GLobal_Final_List which is used to attach standalone
362 -- objects, or any of the list controllers associated with library
363 -- level access to controlled objects
365 procedure Clean_Simple_Protected_Objects (N : Node_Id);
366 -- Protected objects without entries are not controlled types, and the
367 -- locks have to be released explicitly when such an object goes out
368 -- of scope. Traverse declarations in scope to determine whether such
369 -- objects are present.
371 ----------------------------
372 -- Build_Array_Deep_Procs --
373 ----------------------------
375 procedure Build_Array_Deep_Procs (Typ : Entity_Id) is
376 begin
377 Set_TSS (Typ,
378 Make_Deep_Proc (
379 Prim => Initialize_Case,
380 Typ => Typ,
381 Stmts => Make_Deep_Array_Body (Initialize_Case, Typ)));
383 if not Is_Return_By_Reference_Type (Typ) then
384 Set_TSS (Typ,
385 Make_Deep_Proc (
386 Prim => Adjust_Case,
387 Typ => Typ,
388 Stmts => Make_Deep_Array_Body (Adjust_Case, Typ)));
389 end if;
391 Set_TSS (Typ,
392 Make_Deep_Proc (
393 Prim => Finalize_Case,
394 Typ => Typ,
395 Stmts => Make_Deep_Array_Body (Finalize_Case, Typ)));
396 end Build_Array_Deep_Procs;
398 -----------------------------
399 -- Build_Controlling_Procs --
400 -----------------------------
402 procedure Build_Controlling_Procs (Typ : Entity_Id) is
403 begin
404 if Is_Array_Type (Typ) then
405 Build_Array_Deep_Procs (Typ);
407 else pragma Assert (Is_Record_Type (Typ));
408 Build_Record_Deep_Procs (Typ);
409 end if;
410 end Build_Controlling_Procs;
412 ----------------------
413 -- Build_Final_List --
414 ----------------------
416 procedure Build_Final_List (N : Node_Id; Typ : Entity_Id) is
417 Loc : constant Source_Ptr := Sloc (N);
418 Decl : Node_Id;
420 begin
421 Set_Associated_Final_Chain (Typ,
422 Make_Defining_Identifier (Loc,
423 New_External_Name (Chars (Typ), 'L')));
425 Decl :=
426 Make_Object_Declaration (Loc,
427 Defining_Identifier =>
428 Associated_Final_Chain (Typ),
429 Object_Definition =>
430 New_Reference_To
431 (RTE (RE_List_Controller), Loc));
433 -- The type may have been frozen already, and this is a late freezing
434 -- action, in which case the declaration must be elaborated at once.
435 -- If the call is for an allocator, the chain must also be created now,
436 -- because the freezing of the type does not build one. Otherwise, the
437 -- declaration is one of the freezing actions for a user-defined type.
439 if Is_Frozen (Typ)
440 or else (Nkind (N) = N_Allocator
441 and then Ekind (Etype (N)) = E_Anonymous_Access_Type)
442 then
443 Insert_Action (N, Decl);
444 else
445 Append_Freeze_Action (Typ, Decl);
446 end if;
447 end Build_Final_List;
449 ---------------------
450 -- Build_Late_Proc --
451 ---------------------
453 procedure Build_Late_Proc (Typ : Entity_Id; Nam : Name_Id) is
454 begin
455 for Final_Prim in Name_Of'Range loop
456 if Name_Of (Final_Prim) = Nam then
457 Set_TSS (Typ,
458 Make_Deep_Proc (
459 Prim => Final_Prim,
460 Typ => Typ,
461 Stmts => Make_Deep_Record_Body (Final_Prim, Typ)));
462 end if;
463 end loop;
464 end Build_Late_Proc;
466 -----------------------------
467 -- Build_Record_Deep_Procs --
468 -----------------------------
470 procedure Build_Record_Deep_Procs (Typ : Entity_Id) is
471 begin
472 Set_TSS (Typ,
473 Make_Deep_Proc (
474 Prim => Initialize_Case,
475 Typ => Typ,
476 Stmts => Make_Deep_Record_Body (Initialize_Case, Typ)));
478 if not Is_Return_By_Reference_Type (Typ) then
479 Set_TSS (Typ,
480 Make_Deep_Proc (
481 Prim => Adjust_Case,
482 Typ => Typ,
483 Stmts => Make_Deep_Record_Body (Adjust_Case, Typ)));
484 end if;
486 Set_TSS (Typ,
487 Make_Deep_Proc (
488 Prim => Finalize_Case,
489 Typ => Typ,
490 Stmts => Make_Deep_Record_Body (Finalize_Case, Typ)));
491 end Build_Record_Deep_Procs;
493 -------------------
494 -- Cleanup_Array --
495 -------------------
497 function Cleanup_Array
498 (N : Node_Id;
499 Obj : Node_Id;
500 Typ : Entity_Id) return List_Id
502 Loc : constant Source_Ptr := Sloc (N);
503 Index_List : constant List_Id := New_List;
505 function Free_Component return List_Id;
506 -- Generate the code to finalize the task or protected subcomponents
507 -- of a single component of the array.
509 function Free_One_Dimension (Dim : Int) return List_Id;
510 -- Generate a loop over one dimension of the array
512 --------------------
513 -- Free_Component --
514 --------------------
516 function Free_Component return List_Id is
517 Stmts : List_Id := New_List;
518 Tsk : Node_Id;
519 C_Typ : constant Entity_Id := Component_Type (Typ);
521 begin
522 -- Component type is known to contain tasks or protected objects
524 Tsk :=
525 Make_Indexed_Component (Loc,
526 Prefix => Duplicate_Subexpr_No_Checks (Obj),
527 Expressions => Index_List);
529 Set_Etype (Tsk, C_Typ);
531 if Is_Task_Type (C_Typ) then
532 Append_To (Stmts, Cleanup_Task (N, Tsk));
534 elsif Is_Simple_Protected_Type (C_Typ) then
535 Append_To (Stmts, Cleanup_Protected_Object (N, Tsk));
537 elsif Is_Record_Type (C_Typ) then
538 Stmts := Cleanup_Record (N, Tsk, C_Typ);
540 elsif Is_Array_Type (C_Typ) then
541 Stmts := Cleanup_Array (N, Tsk, C_Typ);
542 end if;
544 return Stmts;
545 end Free_Component;
547 ------------------------
548 -- Free_One_Dimension --
549 ------------------------
551 function Free_One_Dimension (Dim : Int) return List_Id is
552 Index : Entity_Id;
554 begin
555 if Dim > Number_Dimensions (Typ) then
556 return Free_Component;
558 -- Here we generate the required loop
560 else
561 Index :=
562 Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
564 Append (New_Reference_To (Index, Loc), Index_List);
566 return New_List (
567 Make_Implicit_Loop_Statement (N,
568 Identifier => Empty,
569 Iteration_Scheme =>
570 Make_Iteration_Scheme (Loc,
571 Loop_Parameter_Specification =>
572 Make_Loop_Parameter_Specification (Loc,
573 Defining_Identifier => Index,
574 Discrete_Subtype_Definition =>
575 Make_Attribute_Reference (Loc,
576 Prefix => Duplicate_Subexpr (Obj),
577 Attribute_Name => Name_Range,
578 Expressions => New_List (
579 Make_Integer_Literal (Loc, Dim))))),
580 Statements => Free_One_Dimension (Dim + 1)));
581 end if;
582 end Free_One_Dimension;
584 -- Start of processing for Cleanup_Array
586 begin
587 return Free_One_Dimension (1);
588 end Cleanup_Array;
590 --------------------
591 -- Cleanup_Record --
592 --------------------
594 function Cleanup_Record
595 (N : Node_Id;
596 Obj : Node_Id;
597 Typ : Entity_Id) return List_Id
599 Loc : constant Source_Ptr := Sloc (N);
600 Tsk : Node_Id;
601 Comp : Entity_Id;
602 Stmts : constant List_Id := New_List;
603 U_Typ : constant Entity_Id := Underlying_Type (Typ);
605 begin
606 if Has_Discriminants (U_Typ)
607 and then Nkind (Parent (U_Typ)) = N_Full_Type_Declaration
608 and then
609 Nkind (Type_Definition (Parent (U_Typ))) = N_Record_Definition
610 and then
611 Present
612 (Variant_Part
613 (Component_List (Type_Definition (Parent (U_Typ)))))
614 then
615 -- For now, do not attempt to free a component that may appear in
616 -- a variant, and instead issue a warning. Doing this "properly"
617 -- would require building a case statement and would be quite a
618 -- mess. Note that the RM only requires that free "work" for the
619 -- case of a task access value, so already we go way beyond this
620 -- in that we deal with the array case and non-discriminated
621 -- record cases.
623 Error_Msg_N
624 ("task/protected object in variant record will not be freed?", N);
625 return New_List (Make_Null_Statement (Loc));
626 end if;
628 Comp := First_Component (Typ);
630 while Present (Comp) loop
631 if Has_Task (Etype (Comp))
632 or else Has_Simple_Protected_Object (Etype (Comp))
633 then
634 Tsk :=
635 Make_Selected_Component (Loc,
636 Prefix => Duplicate_Subexpr_No_Checks (Obj),
637 Selector_Name => New_Occurrence_Of (Comp, Loc));
638 Set_Etype (Tsk, Etype (Comp));
640 if Is_Task_Type (Etype (Comp)) then
641 Append_To (Stmts, Cleanup_Task (N, Tsk));
643 elsif Is_Simple_Protected_Type (Etype (Comp)) then
644 Append_To (Stmts, Cleanup_Protected_Object (N, Tsk));
646 elsif Is_Record_Type (Etype (Comp)) then
648 -- Recurse, by generating the prefix of the argument to
649 -- the eventual cleanup call.
651 Append_List_To
652 (Stmts, Cleanup_Record (N, Tsk, Etype (Comp)));
654 elsif Is_Array_Type (Etype (Comp)) then
655 Append_List_To
656 (Stmts, Cleanup_Array (N, Tsk, Etype (Comp)));
657 end if;
658 end if;
660 Next_Component (Comp);
661 end loop;
663 return Stmts;
664 end Cleanup_Record;
666 ------------------------------
667 -- Cleanup_Protected_Object --
668 ------------------------------
670 function Cleanup_Protected_Object
671 (N : Node_Id;
672 Ref : Node_Id) return Node_Id
674 Loc : constant Source_Ptr := Sloc (N);
676 begin
677 return
678 Make_Procedure_Call_Statement (Loc,
679 Name => New_Reference_To (RTE (RE_Finalize_Protection), Loc),
680 Parameter_Associations => New_List (
681 Concurrent_Ref (Ref)));
682 end Cleanup_Protected_Object;
684 ------------------------------------
685 -- Clean_Simple_Protected_Objects --
686 ------------------------------------
688 procedure Clean_Simple_Protected_Objects (N : Node_Id) is
689 Stmts : constant List_Id := Statements (Handled_Statement_Sequence (N));
690 Stmt : Node_Id := Last (Stmts);
691 E : Entity_Id;
693 begin
694 E := First_Entity (Current_Scope);
695 while Present (E) loop
696 if (Ekind (E) = E_Variable
697 or else Ekind (E) = E_Constant)
698 and then Has_Simple_Protected_Object (Etype (E))
699 and then not Has_Task (Etype (E))
700 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
701 then
702 declare
703 Typ : constant Entity_Id := Etype (E);
704 Ref : constant Node_Id := New_Occurrence_Of (E, Sloc (Stmt));
706 begin
707 if Is_Simple_Protected_Type (Typ) then
708 Append_To (Stmts, Cleanup_Protected_Object (N, Ref));
710 elsif Has_Simple_Protected_Object (Typ) then
711 if Is_Record_Type (Typ) then
712 Append_List_To (Stmts, Cleanup_Record (N, Ref, Typ));
714 elsif Is_Array_Type (Typ) then
715 Append_List_To (Stmts, Cleanup_Array (N, Ref, Typ));
716 end if;
717 end if;
718 end;
719 end if;
721 Next_Entity (E);
722 end loop;
724 -- Analyze inserted cleanup statements
726 if Present (Stmt) then
727 Stmt := Next (Stmt);
729 while Present (Stmt) loop
730 Analyze (Stmt);
731 Next (Stmt);
732 end loop;
733 end if;
734 end Clean_Simple_Protected_Objects;
736 ------------------
737 -- Cleanup_Task --
738 ------------------
740 function Cleanup_Task
741 (N : Node_Id;
742 Ref : Node_Id) return Node_Id
744 Loc : constant Source_Ptr := Sloc (N);
745 begin
746 return
747 Make_Procedure_Call_Statement (Loc,
748 Name => New_Reference_To (RTE (RE_Free_Task), Loc),
749 Parameter_Associations =>
750 New_List (Concurrent_Ref (Ref)));
751 end Cleanup_Task;
753 ---------------------------------
754 -- Has_Simple_Protected_Object --
755 ---------------------------------
757 function Has_Simple_Protected_Object (T : Entity_Id) return Boolean is
758 Comp : Entity_Id;
760 begin
761 if Is_Simple_Protected_Type (T) then
762 return True;
764 elsif Is_Array_Type (T) then
765 return Has_Simple_Protected_Object (Component_Type (T));
767 elsif Is_Record_Type (T) then
768 Comp := First_Component (T);
770 while Present (Comp) loop
771 if Has_Simple_Protected_Object (Etype (Comp)) then
772 return True;
773 end if;
775 Next_Component (Comp);
776 end loop;
778 return False;
780 else
781 return False;
782 end if;
783 end Has_Simple_Protected_Object;
785 ------------------------------
786 -- Is_Simple_Protected_Type --
787 ------------------------------
789 function Is_Simple_Protected_Type (T : Entity_Id) return Boolean is
790 begin
791 return Is_Protected_Type (T) and then not Has_Entries (T);
792 end Is_Simple_Protected_Type;
794 ------------------------------
795 -- Check_Visibly_Controlled --
796 ------------------------------
798 procedure Check_Visibly_Controlled
799 (Prim : Final_Primitives;
800 Typ : Entity_Id;
801 E : in out Entity_Id;
802 Cref : in out Node_Id)
804 Parent_Type : Entity_Id;
805 Op : Entity_Id;
807 begin
808 if Is_Derived_Type (Typ)
809 and then Comes_From_Source (E)
810 and then not Is_Overriding_Operation (E)
811 then
812 -- We know that the explicit operation on the type does not override
813 -- the inherited operation of the parent, and that the derivation
814 -- is from a private type that is not visibly controlled.
816 Parent_Type := Etype (Typ);
817 Op := Find_Prim_Op (Parent_Type, Name_Of (Prim));
819 if Present (Op) then
820 E := Op;
822 -- Wrap the object to be initialized into the proper
823 -- unchecked conversion, to be compatible with the operation
824 -- to be called.
826 if Nkind (Cref) = N_Unchecked_Type_Conversion then
827 Cref := Unchecked_Convert_To (Parent_Type, Expression (Cref));
828 else
829 Cref := Unchecked_Convert_To (Parent_Type, Cref);
830 end if;
831 end if;
832 end if;
833 end Check_Visibly_Controlled;
835 ---------------------
836 -- Controlled_Type --
837 ---------------------
839 function Controlled_Type (T : Entity_Id) return Boolean is
841 function Has_Some_Controlled_Component (Rec : Entity_Id) return Boolean;
842 -- If type is not frozen yet, check explicitly among its components,
843 -- because flag is not necessarily set.
845 -----------------------------------
846 -- Has_Some_Controlled_Component --
847 -----------------------------------
849 function Has_Some_Controlled_Component
850 (Rec : Entity_Id) return Boolean
852 Comp : Entity_Id;
854 begin
855 if Has_Controlled_Component (Rec) then
856 return True;
858 elsif not Is_Frozen (Rec) then
859 if Is_Record_Type (Rec) then
860 Comp := First_Entity (Rec);
862 while Present (Comp) loop
863 if not Is_Type (Comp)
864 and then Controlled_Type (Etype (Comp))
865 then
866 return True;
867 end if;
869 Next_Entity (Comp);
870 end loop;
872 return False;
874 elsif Is_Array_Type (Rec) then
875 return Is_Controlled (Component_Type (Rec));
877 else
878 return Has_Controlled_Component (Rec);
879 end if;
880 else
881 return False;
882 end if;
883 end Has_Some_Controlled_Component;
885 -- Start of processing for Controlled_Type
887 begin
888 -- Class-wide types must be treated as controlled because they may
889 -- contain an extension that has controlled components
891 -- We can skip this if finalization is not available
893 return (Is_Class_Wide_Type (T)
894 and then not In_Finalization_Root (T)
895 and then not Restriction_Active (No_Finalization))
896 or else Is_Controlled (T)
897 or else Has_Some_Controlled_Component (T)
898 or else (Is_Concurrent_Type (T)
899 and then Present (Corresponding_Record_Type (T))
900 and then Controlled_Type (Corresponding_Record_Type (T)));
901 end Controlled_Type;
903 --------------------------
904 -- Controller_Component --
905 --------------------------
907 function Controller_Component (Typ : Entity_Id) return Entity_Id is
908 T : Entity_Id := Base_Type (Typ);
909 Comp : Entity_Id;
910 Comp_Scop : Entity_Id;
911 Res : Entity_Id := Empty;
912 Res_Scop : Entity_Id := Empty;
914 begin
915 if Is_Class_Wide_Type (T) then
916 T := Root_Type (T);
917 end if;
919 if Is_Private_Type (T) then
920 T := Underlying_Type (T);
921 end if;
923 -- Fetch the outermost controller
925 Comp := First_Entity (T);
926 while Present (Comp) loop
927 if Chars (Comp) = Name_uController then
928 Comp_Scop := Scope (Original_Record_Component (Comp));
930 -- If this controller is at the outermost level, no need to
931 -- look for another one
933 if Comp_Scop = T then
934 return Comp;
936 -- Otherwise record the outermost one and continue looking
938 elsif Res = Empty or else Is_Ancestor (Res_Scop, Comp_Scop) then
939 Res := Comp;
940 Res_Scop := Comp_Scop;
941 end if;
942 end if;
944 Next_Entity (Comp);
945 end loop;
947 -- If we fall through the loop, there is no controller component
949 return Res;
950 end Controller_Component;
952 ------------------
953 -- Convert_View --
954 ------------------
956 function Convert_View
957 (Proc : Entity_Id;
958 Arg : Node_Id;
959 Ind : Pos := 1) return Node_Id
961 Fent : Entity_Id := First_Entity (Proc);
962 Ftyp : Entity_Id;
963 Atyp : Entity_Id;
965 begin
966 for J in 2 .. Ind loop
967 Next_Entity (Fent);
968 end loop;
970 Ftyp := Etype (Fent);
972 if Nkind (Arg) = N_Type_Conversion
973 or else Nkind (Arg) = N_Unchecked_Type_Conversion
974 then
975 Atyp := Entity (Subtype_Mark (Arg));
976 else
977 Atyp := Etype (Arg);
978 end if;
980 if Is_Abstract (Proc) and then Is_Tagged_Type (Ftyp) then
981 return Unchecked_Convert_To (Class_Wide_Type (Ftyp), Arg);
983 elsif Ftyp /= Atyp
984 and then Present (Atyp)
985 and then
986 (Is_Private_Type (Ftyp) or else Is_Private_Type (Atyp))
987 and then
988 Base_Type (Underlying_Type (Atyp)) =
989 Base_Type (Underlying_Type (Ftyp))
990 then
991 return Unchecked_Convert_To (Ftyp, Arg);
993 -- If the argument is already a conversion, as generated by
994 -- Make_Init_Call, set the target type to the type of the formal
995 -- directly, to avoid spurious typing problems.
997 elsif (Nkind (Arg) = N_Unchecked_Type_Conversion
998 or else Nkind (Arg) = N_Type_Conversion)
999 and then not Is_Class_Wide_Type (Atyp)
1000 then
1001 Set_Subtype_Mark (Arg, New_Occurrence_Of (Ftyp, Sloc (Arg)));
1002 Set_Etype (Arg, Ftyp);
1003 return Arg;
1005 else
1006 return Arg;
1007 end if;
1008 end Convert_View;
1010 -------------------------------
1011 -- Establish_Transient_Scope --
1012 -------------------------------
1014 -- This procedure is called each time a transient block has to be inserted
1015 -- that is to say for each call to a function with unconstrained ot tagged
1016 -- result. It creates a new scope on the stack scope in order to enclose
1017 -- all transient variables generated
1019 procedure Establish_Transient_Scope (N : Node_Id; Sec_Stack : Boolean) is
1020 Loc : constant Source_Ptr := Sloc (N);
1021 Wrap_Node : Node_Id;
1023 Sec_Stk : constant Boolean :=
1024 Sec_Stack and not Functions_Return_By_DSP_On_Target;
1025 -- We never need a secondary stack if functions return by DSP
1027 begin
1028 -- Do not create a transient scope if we are already inside one
1030 for S in reverse Scope_Stack.First .. Scope_Stack.Last loop
1032 if Scope_Stack.Table (S).Is_Transient then
1033 if Sec_Stk then
1034 Set_Uses_Sec_Stack (Scope_Stack.Table (S).Entity);
1035 end if;
1037 return;
1039 -- If we have encountered Standard there are no enclosing
1040 -- transient scopes.
1042 elsif Scope_Stack.Table (S).Entity = Standard_Standard then
1043 exit;
1045 end if;
1046 end loop;
1048 Wrap_Node := Find_Node_To_Be_Wrapped (N);
1050 -- Case of no wrap node, false alert, no transient scope needed
1052 if No (Wrap_Node) then
1053 null;
1055 -- If the node to wrap is an iteration_scheme, the expression is
1056 -- one of the bounds, and the expansion will make an explicit
1057 -- declaration for it (see Analyze_Iteration_Scheme, sem_ch5.adb),
1058 -- so do not apply any transformations here.
1060 elsif Nkind (Wrap_Node) = N_Iteration_Scheme then
1061 null;
1063 else
1064 New_Scope (New_Internal_Entity (E_Block, Current_Scope, Loc, 'B'));
1065 Set_Scope_Is_Transient;
1067 if Sec_Stk then
1068 Set_Uses_Sec_Stack (Current_Scope);
1069 Check_Restriction (No_Secondary_Stack, N);
1070 end if;
1072 Set_Etype (Current_Scope, Standard_Void_Type);
1073 Set_Node_To_Be_Wrapped (Wrap_Node);
1075 if Debug_Flag_W then
1076 Write_Str (" <Transient>");
1077 Write_Eol;
1078 end if;
1079 end if;
1080 end Establish_Transient_Scope;
1082 ----------------------------
1083 -- Expand_Cleanup_Actions --
1084 ----------------------------
1086 procedure Expand_Cleanup_Actions (N : Node_Id) is
1087 Loc : Source_Ptr;
1088 S : constant Entity_Id :=
1089 Current_Scope;
1090 Flist : constant Entity_Id :=
1091 Finalization_Chain_Entity (S);
1092 Is_Task : constant Boolean :=
1093 (Nkind (Original_Node (N)) = N_Task_Body);
1094 Is_Master : constant Boolean :=
1095 Nkind (N) /= N_Entry_Body
1096 and then Is_Task_Master (N);
1097 Is_Protected : constant Boolean :=
1098 Nkind (N) = N_Subprogram_Body
1099 and then Is_Protected_Subprogram_Body (N);
1100 Is_Task_Allocation : constant Boolean :=
1101 Nkind (N) = N_Block_Statement
1102 and then Is_Task_Allocation_Block (N);
1103 Is_Asynchronous_Call : constant Boolean :=
1104 Nkind (N) = N_Block_Statement
1105 and then Is_Asynchronous_Call_Block (N);
1107 Clean : Entity_Id;
1108 Mark : Entity_Id := Empty;
1109 New_Decls : constant List_Id := New_List;
1110 Blok : Node_Id;
1111 End_Lab : Node_Id;
1112 Wrapped : Boolean;
1113 Chain : Entity_Id := Empty;
1114 Decl : Node_Id;
1115 Old_Poll : Boolean;
1117 begin
1119 -- Compute a location that is not directly in the user code in
1120 -- order to avoid to generate confusing debug info. A good
1121 -- approximation is the name of the outer user-defined scope
1123 declare
1124 S1 : Entity_Id := S;
1126 begin
1127 while not Comes_From_Source (S1) and then S1 /= Standard_Standard loop
1128 S1 := Scope (S1);
1129 end loop;
1131 Loc := Sloc (S1);
1132 end;
1134 -- There are cleanup actions only if the secondary stack needs
1135 -- releasing or some finalizations are needed or in the context
1136 -- of tasking
1138 if Uses_Sec_Stack (Current_Scope)
1139 and then not Sec_Stack_Needed_For_Return (Current_Scope)
1140 then
1141 null;
1142 elsif No (Flist)
1143 and then not Is_Master
1144 and then not Is_Task
1145 and then not Is_Protected
1146 and then not Is_Task_Allocation
1147 and then not Is_Asynchronous_Call
1148 then
1149 Clean_Simple_Protected_Objects (N);
1150 return;
1151 end if;
1153 -- If the current scope is the subprogram body that is the rewriting
1154 -- of a task body, and the descriptors have not been delayed (due to
1155 -- some nested instantiations) do not generate redundant cleanup
1156 -- actions: the cleanup procedure already exists for this body.
1158 if Nkind (N) = N_Subprogram_Body
1159 and then Nkind (Original_Node (N)) = N_Task_Body
1160 and then not Delay_Subprogram_Descriptors (Corresponding_Spec (N))
1161 then
1162 return;
1163 end if;
1165 -- Set polling off, since we don't need to poll during cleanup
1166 -- actions, and indeed for the cleanup routine, which is executed
1167 -- with aborts deferred, we don't want polling.
1169 Old_Poll := Polling_Required;
1170 Polling_Required := False;
1172 -- Make sure we have a declaration list, since we will add to it
1174 if No (Declarations (N)) then
1175 Set_Declarations (N, New_List);
1176 end if;
1178 -- The task activation call has already been built for task
1179 -- allocation blocks.
1181 if not Is_Task_Allocation then
1182 Build_Task_Activation_Call (N);
1183 end if;
1185 if Is_Master then
1186 Establish_Task_Master (N);
1187 end if;
1189 -- If secondary stack is in use, expand:
1190 -- _Mxx : constant Mark_Id := SS_Mark;
1192 -- Suppress calls to SS_Mark and SS_Release if Java_VM,
1193 -- since we never use the secondary stack on the JVM.
1195 if Uses_Sec_Stack (Current_Scope)
1196 and then not Sec_Stack_Needed_For_Return (Current_Scope)
1197 and then not Java_VM
1198 then
1199 Mark := Make_Defining_Identifier (Loc, New_Internal_Name ('M'));
1200 Append_To (New_Decls,
1201 Make_Object_Declaration (Loc,
1202 Defining_Identifier => Mark,
1203 Object_Definition => New_Reference_To (RTE (RE_Mark_Id), Loc),
1204 Expression =>
1205 Make_Function_Call (Loc,
1206 Name => New_Reference_To (RTE (RE_SS_Mark), Loc))));
1208 Set_Uses_Sec_Stack (Current_Scope, False);
1209 end if;
1211 -- If finalization list is present then expand:
1212 -- Local_Final_List : System.FI.Finalizable_Ptr;
1214 if Present (Flist) then
1215 Append_To (New_Decls,
1216 Make_Object_Declaration (Loc,
1217 Defining_Identifier => Flist,
1218 Object_Definition =>
1219 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
1220 end if;
1222 -- Clean-up procedure definition
1224 Clean := Make_Defining_Identifier (Loc, Name_uClean);
1225 Set_Suppress_Elaboration_Warnings (Clean);
1226 Append_To (New_Decls,
1227 Make_Clean (N, Clean, Mark, Flist,
1228 Is_Task,
1229 Is_Master,
1230 Is_Protected,
1231 Is_Task_Allocation,
1232 Is_Asynchronous_Call));
1234 -- If exception handlers are present, wrap the Sequence of
1235 -- statements in a block because it is not possible to get
1236 -- exception handlers and an AT END call in the same scope.
1238 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1240 -- Preserve end label to provide proper cross-reference information
1242 End_Lab := End_Label (Handled_Statement_Sequence (N));
1243 Blok :=
1244 Make_Block_Statement (Loc,
1245 Handled_Statement_Sequence => Handled_Statement_Sequence (N));
1246 Set_Handled_Statement_Sequence (N,
1247 Make_Handled_Sequence_Of_Statements (Loc, New_List (Blok)));
1248 Set_End_Label (Handled_Statement_Sequence (N), End_Lab);
1249 Wrapped := True;
1251 -- Otherwise we do not wrap
1253 else
1254 Wrapped := False;
1255 Blok := Empty;
1256 end if;
1258 -- Don't move the _chain Activation_Chain declaration in task
1259 -- allocation blocks. Task allocation blocks use this object
1260 -- in their cleanup handlers, and gigi complains if it is declared
1261 -- in the sequence of statements of the scope that declares the
1262 -- handler.
1264 if Is_Task_Allocation then
1265 Chain := Activation_Chain_Entity (N);
1266 Decl := First (Declarations (N));
1268 while Nkind (Decl) /= N_Object_Declaration
1269 or else Defining_Identifier (Decl) /= Chain
1270 loop
1271 Next (Decl);
1272 pragma Assert (Present (Decl));
1273 end loop;
1275 Remove (Decl);
1276 Prepend_To (New_Decls, Decl);
1277 end if;
1279 -- Now we move the declarations into the Sequence of statements
1280 -- in order to get them protected by the AT END call. It may seem
1281 -- weird to put declarations in the sequence of statement but in
1282 -- fact nothing forbids that at the tree level. We also set the
1283 -- First_Real_Statement field so that we remember where the real
1284 -- statements (i.e. original statements) begin. Note that if we
1285 -- wrapped the statements, the first real statement is inside the
1286 -- inner block. If the First_Real_Statement is already set (as is
1287 -- the case for subprogram bodies that are expansions of task bodies)
1288 -- then do not reset it, because its declarative part would migrate
1289 -- to the statement part.
1291 if not Wrapped then
1292 if No (First_Real_Statement (Handled_Statement_Sequence (N))) then
1293 Set_First_Real_Statement (Handled_Statement_Sequence (N),
1294 First (Statements (Handled_Statement_Sequence (N))));
1295 end if;
1297 else
1298 Set_First_Real_Statement (Handled_Statement_Sequence (N), Blok);
1299 end if;
1301 Append_List_To (Declarations (N),
1302 Statements (Handled_Statement_Sequence (N)));
1303 Set_Statements (Handled_Statement_Sequence (N), Declarations (N));
1305 -- We need to reset the Sloc of the handled statement sequence to
1306 -- properly reflect the new initial "statement" in the sequence.
1308 Set_Sloc
1309 (Handled_Statement_Sequence (N), Sloc (First (Declarations (N))));
1311 -- The declarations of the _Clean procedure and finalization chain
1312 -- replace the old declarations that have been moved inward
1314 Set_Declarations (N, New_Decls);
1315 Analyze_Declarations (New_Decls);
1317 -- The At_End call is attached to the sequence of statements
1319 declare
1320 HSS : Node_Id;
1322 begin
1323 -- If the construct is a protected subprogram, then the call to
1324 -- the corresponding unprotected program appears in a block which
1325 -- is the last statement in the body, and it is this block that
1326 -- must be covered by the At_End handler.
1328 if Is_Protected then
1329 HSS := Handled_Statement_Sequence
1330 (Last (Statements (Handled_Statement_Sequence (N))));
1331 else
1332 HSS := Handled_Statement_Sequence (N);
1333 end if;
1335 Set_At_End_Proc (HSS, New_Occurrence_Of (Clean, Loc));
1336 Expand_At_End_Handler (HSS, Empty);
1337 end;
1339 -- Restore saved polling mode
1341 Polling_Required := Old_Poll;
1342 end Expand_Cleanup_Actions;
1344 -------------------------------
1345 -- Expand_Ctrl_Function_Call --
1346 -------------------------------
1348 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
1349 Loc : constant Source_Ptr := Sloc (N);
1350 Rtype : constant Entity_Id := Etype (N);
1351 Utype : constant Entity_Id := Underlying_Type (Rtype);
1352 Ref : Node_Id;
1353 Action : Node_Id;
1354 Action2 : Node_Id := Empty;
1356 Attach_Level : Uint := Uint_1;
1357 Len_Ref : Node_Id := Empty;
1359 function Last_Array_Component
1360 (Ref : Node_Id;
1361 Typ : Entity_Id) return Node_Id;
1362 -- Creates a reference to the last component of the array object
1363 -- designated by Ref whose type is Typ.
1365 --------------------------
1366 -- Last_Array_Component --
1367 --------------------------
1369 function Last_Array_Component
1370 (Ref : Node_Id;
1371 Typ : Entity_Id) return Node_Id
1373 Index_List : constant List_Id := New_List;
1375 begin
1376 for N in 1 .. Number_Dimensions (Typ) loop
1377 Append_To (Index_List,
1378 Make_Attribute_Reference (Loc,
1379 Prefix => Duplicate_Subexpr_No_Checks (Ref),
1380 Attribute_Name => Name_Last,
1381 Expressions => New_List (
1382 Make_Integer_Literal (Loc, N))));
1383 end loop;
1385 return
1386 Make_Indexed_Component (Loc,
1387 Prefix => Duplicate_Subexpr (Ref),
1388 Expressions => Index_List);
1389 end Last_Array_Component;
1391 -- Start of processing for Expand_Ctrl_Function_Call
1393 begin
1394 -- Optimization, if the returned value (which is on the sec-stack)
1395 -- is returned again, no need to copy/readjust/finalize, we can just
1396 -- pass the value thru (see Expand_N_Return_Statement), and thus no
1397 -- attachment is needed
1399 if Nkind (Parent (N)) = N_Return_Statement then
1400 return;
1401 end if;
1403 -- Resolution is now finished, make sure we don't start analysis again
1404 -- because of the duplication
1406 Set_Analyzed (N);
1407 Ref := Duplicate_Subexpr_No_Checks (N);
1409 -- Now we can generate the Attach Call, note that this value is
1410 -- always in the (secondary) stack and thus is attached to a singly
1411 -- linked final list:
1413 -- Resx := F (X)'reference;
1414 -- Attach_To_Final_List (_Lx, Resx.all, 1);
1416 -- or when there are controlled components
1418 -- Attach_To_Final_List (_Lx, Resx._controller, 1);
1420 -- or when it is both is_controlled and has_controlled_components
1422 -- Attach_To_Final_List (_Lx, Resx._controller, 1);
1423 -- Attach_To_Final_List (_Lx, Resx, 1);
1425 -- or if it is an array with is_controlled (and has_controlled)
1427 -- Attach_To_Final_List (_Lx, Resx (Resx'last), 3);
1428 -- An attach level of 3 means that a whole array is to be
1429 -- attached to the finalization list (including the controlled
1430 -- components)
1432 -- or if it is an array with has_controlled components but not
1433 -- is_controlled
1435 -- Attach_To_Final_List (_Lx, Resx (Resx'last)._controller, 3);
1437 if Has_Controlled_Component (Rtype) then
1438 declare
1439 T1 : Entity_Id := Rtype;
1440 T2 : Entity_Id := Utype;
1442 begin
1443 if Is_Array_Type (T2) then
1444 Len_Ref :=
1445 Make_Attribute_Reference (Loc,
1446 Prefix =>
1447 Duplicate_Subexpr_Move_Checks
1448 (Unchecked_Convert_To (T2, Ref)),
1449 Attribute_Name => Name_Length);
1450 end if;
1452 while Is_Array_Type (T2) loop
1453 if T1 /= T2 then
1454 Ref := Unchecked_Convert_To (T2, Ref);
1455 end if;
1457 Ref := Last_Array_Component (Ref, T2);
1458 Attach_Level := Uint_3;
1459 T1 := Component_Type (T2);
1460 T2 := Underlying_Type (T1);
1461 end loop;
1463 -- If the type has controlled components, go to the controller
1464 -- except in the case of arrays of controlled objects since in
1465 -- this case objects and their components are already chained
1466 -- and the head of the chain is the last array element.
1468 if Is_Array_Type (Rtype) and then Is_Controlled (T2) then
1469 null;
1471 elsif Has_Controlled_Component (T2) then
1472 if T1 /= T2 then
1473 Ref := Unchecked_Convert_To (T2, Ref);
1474 end if;
1476 Ref :=
1477 Make_Selected_Component (Loc,
1478 Prefix => Ref,
1479 Selector_Name => Make_Identifier (Loc, Name_uController));
1480 end if;
1481 end;
1483 -- Here we know that 'Ref' has a controller so we may as well
1484 -- attach it directly
1486 Action :=
1487 Make_Attach_Call (
1488 Obj_Ref => Ref,
1489 Flist_Ref => Find_Final_List (Current_Scope),
1490 With_Attach => Make_Integer_Literal (Loc, Attach_Level));
1492 -- If it is also Is_Controlled we need to attach the global object
1494 if Is_Controlled (Rtype) then
1495 Action2 :=
1496 Make_Attach_Call (
1497 Obj_Ref => Duplicate_Subexpr_No_Checks (N),
1498 Flist_Ref => Find_Final_List (Current_Scope),
1499 With_Attach => Make_Integer_Literal (Loc, Attach_Level));
1500 end if;
1502 else
1503 -- Here, we have a controlled type that does not seem to have
1504 -- controlled components but it could be a class wide type whose
1505 -- further derivations have controlled components. So we don't know
1506 -- if the object itself needs to be attached or if it
1507 -- has a record controller. We need to call a runtime function
1508 -- (Deep_Tag_Attach) which knows what to do thanks to the
1509 -- RC_Offset in the dispatch table.
1511 Action :=
1512 Make_Procedure_Call_Statement (Loc,
1513 Name => New_Reference_To (RTE (RE_Deep_Tag_Attach), Loc),
1514 Parameter_Associations => New_List (
1515 Find_Final_List (Current_Scope),
1517 Make_Attribute_Reference (Loc,
1518 Prefix => Ref,
1519 Attribute_Name => Name_Address),
1521 Make_Integer_Literal (Loc, Attach_Level)));
1522 end if;
1524 if Present (Len_Ref) then
1525 Action :=
1526 Make_Implicit_If_Statement (N,
1527 Condition => Make_Op_Gt (Loc,
1528 Left_Opnd => Len_Ref,
1529 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1530 Then_Statements => New_List (Action));
1531 end if;
1533 Insert_Action (N, Action);
1534 if Present (Action2) then
1535 Insert_Action (N, Action2);
1536 end if;
1537 end Expand_Ctrl_Function_Call;
1539 ---------------------------
1540 -- Expand_N_Package_Body --
1541 ---------------------------
1543 -- Add call to Activate_Tasks if body is an activator (actual
1544 -- processing is in chapter 9).
1546 -- Generate subprogram descriptor for elaboration routine
1548 -- ENcode entity names in package body
1550 procedure Expand_N_Package_Body (N : Node_Id) is
1551 Ent : constant Entity_Id := Corresponding_Spec (N);
1553 begin
1554 -- This is done only for non-generic packages
1556 if Ekind (Ent) = E_Package then
1557 New_Scope (Corresponding_Spec (N));
1558 Build_Task_Activation_Call (N);
1559 Pop_Scope;
1560 end if;
1562 Set_Elaboration_Flag (N, Corresponding_Spec (N));
1563 Set_In_Package_Body (Ent, False);
1565 -- Set to encode entity names in package body before gigi is called
1567 Qualify_Entity_Names (N);
1568 end Expand_N_Package_Body;
1570 ----------------------------------
1571 -- Expand_N_Package_Declaration --
1572 ----------------------------------
1574 -- Add call to Activate_Tasks if there are tasks declared and the
1575 -- package has no body. Note that in Ada83, this may result in
1576 -- premature activation of some tasks, given that we cannot tell
1577 -- whether a body will eventually appear.
1579 procedure Expand_N_Package_Declaration (N : Node_Id) is
1580 begin
1581 if Nkind (Parent (N)) = N_Compilation_Unit
1582 and then not Body_Required (Parent (N))
1583 and then not Unit_Requires_Body (Defining_Entity (N))
1584 and then Present (Activation_Chain_Entity (N))
1585 then
1586 New_Scope (Defining_Entity (N));
1587 Build_Task_Activation_Call (N);
1588 Pop_Scope;
1589 end if;
1591 -- Note: it is not necessary to worry about generating a subprogram
1592 -- descriptor, since the only way to get exception handlers into a
1593 -- package spec is to include instantiations, and that would cause
1594 -- generation of subprogram descriptors to be delayed in any case.
1596 -- Set to encode entity names in package spec before gigi is called
1598 Qualify_Entity_Names (N);
1599 end Expand_N_Package_Declaration;
1601 ---------------------
1602 -- Find_Final_List --
1603 ---------------------
1605 function Find_Final_List
1606 (E : Entity_Id;
1607 Ref : Node_Id := Empty) return Node_Id
1609 Loc : constant Source_Ptr := Sloc (Ref);
1610 S : Entity_Id;
1611 Id : Entity_Id;
1612 R : Node_Id;
1614 begin
1615 -- Case of an internal component. The Final list is the record
1616 -- controller of the enclosing record
1618 if Present (Ref) then
1619 R := Ref;
1620 loop
1621 case Nkind (R) is
1622 when N_Unchecked_Type_Conversion | N_Type_Conversion =>
1623 R := Expression (R);
1625 when N_Indexed_Component | N_Explicit_Dereference =>
1626 R := Prefix (R);
1628 when N_Selected_Component =>
1629 R := Prefix (R);
1630 exit;
1632 when N_Identifier =>
1633 exit;
1635 when others =>
1636 raise Program_Error;
1637 end case;
1638 end loop;
1640 return
1641 Make_Selected_Component (Loc,
1642 Prefix =>
1643 Make_Selected_Component (Loc,
1644 Prefix => R,
1645 Selector_Name => Make_Identifier (Loc, Name_uController)),
1646 Selector_Name => Make_Identifier (Loc, Name_F));
1648 -- Case of a dynamically allocated object. The final list is the
1649 -- corresponding list controller (The next entity in the scope of
1650 -- the access type with the right type). If the type comes from a
1651 -- With_Type clause, no controller was created, and we use the
1652 -- global chain instead.
1654 elsif Is_Access_Type (E) then
1655 if not From_With_Type (E) then
1656 return
1657 Make_Selected_Component (Loc,
1658 Prefix =>
1659 New_Reference_To
1660 (Associated_Final_Chain (Base_Type (E)), Loc),
1661 Selector_Name => Make_Identifier (Loc, Name_F));
1662 else
1663 return New_Reference_To (RTE (RE_Global_Final_List), Sloc (E));
1664 end if;
1666 else
1667 if Is_Dynamic_Scope (E) then
1668 S := E;
1669 else
1670 S := Enclosing_Dynamic_Scope (E);
1671 end if;
1673 -- When the finalization chain entity is 'Error', it means that
1674 -- there should not be any chain at that level and that the
1675 -- enclosing one should be used
1677 -- This is a nasty kludge, see ??? note in exp_ch11
1679 while Finalization_Chain_Entity (S) = Error loop
1680 S := Enclosing_Dynamic_Scope (S);
1681 end loop;
1683 if S = Standard_Standard then
1684 return New_Reference_To (RTE (RE_Global_Final_List), Sloc (E));
1685 else
1686 if No (Finalization_Chain_Entity (S)) then
1688 Id := Make_Defining_Identifier (Sloc (S),
1689 New_Internal_Name ('F'));
1690 Set_Finalization_Chain_Entity (S, Id);
1692 -- Set momentarily some semantics attributes to allow normal
1693 -- analysis of expansions containing references to this chain.
1694 -- Will be fully decorated during the expansion of the scope
1695 -- itself
1697 Set_Ekind (Id, E_Variable);
1698 Set_Etype (Id, RTE (RE_Finalizable_Ptr));
1699 end if;
1701 return New_Reference_To (Finalization_Chain_Entity (S), Sloc (E));
1702 end if;
1703 end if;
1704 end Find_Final_List;
1706 -----------------------------
1707 -- Find_Node_To_Be_Wrapped --
1708 -----------------------------
1710 function Find_Node_To_Be_Wrapped (N : Node_Id) return Node_Id is
1711 P : Node_Id;
1712 The_Parent : Node_Id;
1714 begin
1715 The_Parent := N;
1716 loop
1717 P := The_Parent;
1718 pragma Assert (P /= Empty);
1719 The_Parent := Parent (P);
1721 case Nkind (The_Parent) is
1723 -- Simple statement can be wrapped
1725 when N_Pragma =>
1726 return The_Parent;
1728 -- Usually assignments are good candidate for wrapping
1729 -- except when they have been generated as part of a
1730 -- controlled aggregate where the wrapping should take
1731 -- place more globally.
1733 when N_Assignment_Statement =>
1734 if No_Ctrl_Actions (The_Parent) then
1735 null;
1736 else
1737 return The_Parent;
1738 end if;
1740 -- An entry call statement is a special case if it occurs in
1741 -- the context of a Timed_Entry_Call. In this case we wrap
1742 -- the entire timed entry call.
1744 when N_Entry_Call_Statement |
1745 N_Procedure_Call_Statement =>
1746 if Nkind (Parent (The_Parent)) = N_Entry_Call_Alternative
1747 and then
1748 (Nkind (Parent (Parent (The_Parent)))
1749 = N_Timed_Entry_Call
1750 or else
1751 Nkind (Parent (Parent (The_Parent)))
1752 = N_Conditional_Entry_Call)
1753 then
1754 return Parent (Parent (The_Parent));
1755 else
1756 return The_Parent;
1757 end if;
1759 -- Object declarations are also a boundary for the transient scope
1760 -- even if they are not really wrapped
1761 -- (see Wrap_Transient_Declaration)
1763 when N_Object_Declaration |
1764 N_Object_Renaming_Declaration |
1765 N_Subtype_Declaration =>
1766 return The_Parent;
1768 -- The expression itself is to be wrapped if its parent is a
1769 -- compound statement or any other statement where the expression
1770 -- is known to be scalar
1772 when N_Accept_Alternative |
1773 N_Attribute_Definition_Clause |
1774 N_Case_Statement |
1775 N_Code_Statement |
1776 N_Delay_Alternative |
1777 N_Delay_Until_Statement |
1778 N_Delay_Relative_Statement |
1779 N_Discriminant_Association |
1780 N_Elsif_Part |
1781 N_Entry_Body_Formal_Part |
1782 N_Exit_Statement |
1783 N_If_Statement |
1784 N_Iteration_Scheme |
1785 N_Terminate_Alternative =>
1786 return P;
1788 when N_Attribute_Reference =>
1790 if Is_Procedure_Attribute_Name
1791 (Attribute_Name (The_Parent))
1792 then
1793 return The_Parent;
1794 end if;
1796 -- If the expression is within the iteration scheme of a loop,
1797 -- we must create a declaration for it, followed by an assignment
1798 -- in order to have a usable statement to wrap.
1800 when N_Loop_Parameter_Specification =>
1801 return Parent (The_Parent);
1803 -- The following nodes contains "dummy calls" which don't
1804 -- need to be wrapped.
1806 when N_Parameter_Specification |
1807 N_Discriminant_Specification |
1808 N_Component_Declaration =>
1809 return Empty;
1811 -- The return statement is not to be wrapped when the function
1812 -- itself needs wrapping at the outer-level
1814 when N_Return_Statement =>
1815 if Requires_Transient_Scope (Return_Type (The_Parent)) then
1816 return Empty;
1817 else
1818 return The_Parent;
1819 end if;
1821 -- If we leave a scope without having been able to find a node to
1822 -- wrap, something is going wrong but this can happen in error
1823 -- situation that are not detected yet (such as a dynamic string
1824 -- in a pragma export)
1826 when N_Subprogram_Body |
1827 N_Package_Declaration |
1828 N_Package_Body |
1829 N_Block_Statement =>
1830 return Empty;
1832 -- otherwise continue the search
1834 when others =>
1835 null;
1836 end case;
1837 end loop;
1838 end Find_Node_To_Be_Wrapped;
1840 ----------------------
1841 -- Global_Flist_Ref --
1842 ----------------------
1844 function Global_Flist_Ref (Flist_Ref : Node_Id) return Boolean is
1845 Flist : Entity_Id;
1847 begin
1848 -- Look for the Global_Final_List
1850 if Is_Entity_Name (Flist_Ref) then
1851 Flist := Entity (Flist_Ref);
1853 -- Look for the final list associated with an access to controlled
1855 elsif Nkind (Flist_Ref) = N_Selected_Component
1856 and then Is_Entity_Name (Prefix (Flist_Ref))
1857 then
1858 Flist := Entity (Prefix (Flist_Ref));
1859 else
1860 return False;
1861 end if;
1863 return Present (Flist)
1864 and then Present (Scope (Flist))
1865 and then Enclosing_Dynamic_Scope (Flist) = Standard_Standard;
1866 end Global_Flist_Ref;
1868 ----------------------------------
1869 -- Has_New_Controlled_Component --
1870 ----------------------------------
1872 function Has_New_Controlled_Component (E : Entity_Id) return Boolean is
1873 Comp : Entity_Id;
1875 begin
1876 if not Is_Tagged_Type (E) then
1877 return Has_Controlled_Component (E);
1878 elsif not Is_Derived_Type (E) then
1879 return Has_Controlled_Component (E);
1880 end if;
1882 Comp := First_Component (E);
1883 while Present (Comp) loop
1885 if Chars (Comp) = Name_uParent then
1886 null;
1888 elsif Scope (Original_Record_Component (Comp)) = E
1889 and then Controlled_Type (Etype (Comp))
1890 then
1891 return True;
1892 end if;
1894 Next_Component (Comp);
1895 end loop;
1897 return False;
1898 end Has_New_Controlled_Component;
1900 --------------------------
1901 -- In_Finalization_Root --
1902 --------------------------
1904 -- It would seem simpler to test Scope (RTE (RE_Root_Controlled)) but
1905 -- the purpose of this function is to avoid a circular call to Rtsfind
1906 -- which would been caused by such a test.
1908 function In_Finalization_Root (E : Entity_Id) return Boolean is
1909 S : constant Entity_Id := Scope (E);
1911 begin
1912 return Chars (Scope (S)) = Name_System
1913 and then Chars (S) = Name_Finalization_Root
1914 and then Scope (Scope (S)) = Standard_Standard;
1915 end In_Finalization_Root;
1917 ------------------------------------
1918 -- Insert_Actions_In_Scope_Around --
1919 ------------------------------------
1921 procedure Insert_Actions_In_Scope_Around (N : Node_Id) is
1922 SE : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
1923 Target : Node_Id;
1925 begin
1926 -- If the node to be wrapped is the triggering alternative of an
1927 -- asynchronous select, it is not part of a statement list. The
1928 -- actions must be inserted before the Select itself, which is
1929 -- part of some list of statements.
1931 if Nkind (Parent (Node_To_Be_Wrapped)) = N_Triggering_Alternative then
1932 Target := Parent (Parent (Node_To_Be_Wrapped));
1933 else
1934 Target := N;
1935 end if;
1937 if Present (SE.Actions_To_Be_Wrapped_Before) then
1938 Insert_List_Before (Target, SE.Actions_To_Be_Wrapped_Before);
1939 SE.Actions_To_Be_Wrapped_Before := No_List;
1940 end if;
1942 if Present (SE.Actions_To_Be_Wrapped_After) then
1943 Insert_List_After (Target, SE.Actions_To_Be_Wrapped_After);
1944 SE.Actions_To_Be_Wrapped_After := No_List;
1945 end if;
1946 end Insert_Actions_In_Scope_Around;
1948 -----------------------
1949 -- Make_Adjust_Call --
1950 -----------------------
1952 function Make_Adjust_Call
1953 (Ref : Node_Id;
1954 Typ : Entity_Id;
1955 Flist_Ref : Node_Id;
1956 With_Attach : Node_Id) return List_Id
1958 Loc : constant Source_Ptr := Sloc (Ref);
1959 Res : constant List_Id := New_List;
1960 Utyp : Entity_Id;
1961 Proc : Entity_Id;
1962 Cref : Node_Id := Ref;
1963 Cref2 : Node_Id;
1964 Attach : Node_Id := With_Attach;
1966 begin
1967 if Is_Class_Wide_Type (Typ) then
1968 Utyp := Underlying_Type (Base_Type (Root_Type (Typ)));
1969 else
1970 Utyp := Underlying_Type (Base_Type (Typ));
1971 end if;
1973 Set_Assignment_OK (Cref);
1975 -- Deal with non-tagged derivation of private views
1977 if Is_Untagged_Derivation (Typ) then
1978 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
1979 Cref := Unchecked_Convert_To (Utyp, Cref);
1980 Set_Assignment_OK (Cref);
1981 -- To prevent problems with UC see 1.156 RH ???
1982 end if;
1984 -- If the underlying_type is a subtype, we are dealing with
1985 -- the completion of a private type. We need to access
1986 -- the base type and generate a conversion to it.
1988 if Utyp /= Base_Type (Utyp) then
1989 pragma Assert (Is_Private_Type (Typ));
1990 Utyp := Base_Type (Utyp);
1991 Cref := Unchecked_Convert_To (Utyp, Cref);
1992 end if;
1994 -- If the object is unanalyzed, set its expected type for use
1995 -- in Convert_View in case an additional conversion is needed.
1997 if No (Etype (Cref))
1998 and then Nkind (Cref) /= N_Unchecked_Type_Conversion
1999 then
2000 Set_Etype (Cref, Typ);
2001 end if;
2003 -- We do not need to attach to one of the Global Final Lists
2004 -- the objects whose type is Finalize_Storage_Only
2006 if Finalize_Storage_Only (Typ)
2007 and then (Global_Flist_Ref (Flist_Ref)
2008 or else Entity (Constant_Value (RTE (RE_Garbage_Collected)))
2009 = Standard_True)
2010 then
2011 Attach := Make_Integer_Literal (Loc, 0);
2012 end if;
2014 -- Generate:
2015 -- Deep_Adjust (Flist_Ref, Ref, With_Attach);
2017 if Has_Controlled_Component (Utyp)
2018 or else Is_Class_Wide_Type (Typ)
2019 then
2020 if Is_Tagged_Type (Utyp) then
2021 Proc := Find_Prim_Op (Utyp, TSS_Deep_Adjust);
2023 else
2024 Proc := TSS (Utyp, TSS_Deep_Adjust);
2025 end if;
2027 Cref := Convert_View (Proc, Cref, 2);
2029 Append_To (Res,
2030 Make_Procedure_Call_Statement (Loc,
2031 Name => New_Reference_To (Proc, Loc),
2032 Parameter_Associations =>
2033 New_List (Flist_Ref, Cref, Attach)));
2035 -- Generate:
2036 -- if With_Attach then
2037 -- Attach_To_Final_List (Ref, Flist_Ref);
2038 -- end if;
2039 -- Adjust (Ref);
2041 else -- Is_Controlled (Utyp)
2043 Proc := Find_Prim_Op (Utyp, Name_Of (Adjust_Case));
2044 Cref := Convert_View (Proc, Cref);
2045 Cref2 := New_Copy_Tree (Cref);
2047 Append_To (Res,
2048 Make_Procedure_Call_Statement (Loc,
2049 Name => New_Reference_To (Proc, Loc),
2050 Parameter_Associations => New_List (Cref2)));
2052 Append_To (Res, Make_Attach_Call (Cref, Flist_Ref, Attach));
2053 end if;
2055 return Res;
2056 end Make_Adjust_Call;
2058 ----------------------
2059 -- Make_Attach_Call --
2060 ----------------------
2062 -- Generate:
2063 -- System.FI.Attach_To_Final_List (Flist, Ref, Nb_Link)
2065 function Make_Attach_Call
2066 (Obj_Ref : Node_Id;
2067 Flist_Ref : Node_Id;
2068 With_Attach : Node_Id) return Node_Id
2070 Loc : constant Source_Ptr := Sloc (Obj_Ref);
2072 begin
2073 -- Optimization: If the number of links is statically '0', don't
2074 -- call the attach_proc.
2076 if Nkind (With_Attach) = N_Integer_Literal
2077 and then Intval (With_Attach) = Uint_0
2078 then
2079 return Make_Null_Statement (Loc);
2080 end if;
2082 return
2083 Make_Procedure_Call_Statement (Loc,
2084 Name => New_Reference_To (RTE (RE_Attach_To_Final_List), Loc),
2085 Parameter_Associations => New_List (
2086 Flist_Ref,
2087 OK_Convert_To (RTE (RE_Finalizable), Obj_Ref),
2088 With_Attach));
2089 end Make_Attach_Call;
2091 ----------------
2092 -- Make_Clean --
2093 ----------------
2095 function Make_Clean
2096 (N : Node_Id;
2097 Clean : Entity_Id;
2098 Mark : Entity_Id;
2099 Flist : Entity_Id;
2100 Is_Task : Boolean;
2101 Is_Master : Boolean;
2102 Is_Protected_Subprogram : Boolean;
2103 Is_Task_Allocation_Block : Boolean;
2104 Is_Asynchronous_Call_Block : Boolean) return Node_Id
2106 Loc : constant Source_Ptr := Sloc (Clean);
2107 Stmt : constant List_Id := New_List;
2109 Sbody : Node_Id;
2110 Spec : Node_Id;
2111 Name : Node_Id;
2112 Param : Node_Id;
2113 Param_Type : Entity_Id;
2114 Pid : Entity_Id := Empty;
2115 Cancel_Param : Entity_Id;
2117 begin
2118 if Is_Task then
2119 if Restricted_Profile then
2120 Append_To
2121 (Stmt, Build_Runtime_Call (Loc, RE_Complete_Restricted_Task));
2122 else
2123 Append_To (Stmt, Build_Runtime_Call (Loc, RE_Complete_Task));
2124 end if;
2126 elsif Is_Master then
2127 if Restriction_Active (No_Task_Hierarchy) = False then
2128 Append_To (Stmt, Build_Runtime_Call (Loc, RE_Complete_Master));
2129 end if;
2131 elsif Is_Protected_Subprogram then
2133 -- Add statements to the cleanup handler of the (ordinary)
2134 -- subprogram expanded to implement a protected subprogram,
2135 -- unlocking the protected object parameter and undeferring abort.
2136 -- If this is a protected procedure, and the object contains
2137 -- entries, this also calls the entry service routine.
2139 -- NOTE: This cleanup handler references _object, a parameter
2140 -- to the procedure.
2142 -- Find the _object parameter representing the protected object
2144 Spec := Parent (Corresponding_Spec (N));
2146 Param := First (Parameter_Specifications (Spec));
2147 loop
2148 Param_Type := Etype (Parameter_Type (Param));
2150 if Ekind (Param_Type) = E_Record_Type then
2151 Pid := Corresponding_Concurrent_Type (Param_Type);
2152 end if;
2154 exit when not Present (Param) or else Present (Pid);
2155 Next (Param);
2156 end loop;
2158 pragma Assert (Present (Param));
2160 -- If the associated protected object declares entries,
2161 -- a protected procedure has to service entry queues.
2162 -- In this case, add
2164 -- Service_Entries (_object._object'Access);
2166 -- _object is the record used to implement the protected object.
2167 -- It is a parameter to the protected subprogram.
2169 if Nkind (Specification (N)) = N_Procedure_Specification
2170 and then Has_Entries (Pid)
2171 then
2172 if Abort_Allowed
2173 or else Restriction_Active (No_Entry_Queue) = False
2174 or else Number_Entries (Pid) > 1
2175 then
2176 Name := New_Reference_To (RTE (RE_Service_Entries), Loc);
2177 else
2178 Name := New_Reference_To (RTE (RE_Service_Entry), Loc);
2179 end if;
2181 Append_To (Stmt,
2182 Make_Procedure_Call_Statement (Loc,
2183 Name => Name,
2184 Parameter_Associations => New_List (
2185 Make_Attribute_Reference (Loc,
2186 Prefix =>
2187 Make_Selected_Component (Loc,
2188 Prefix => New_Reference_To (
2189 Defining_Identifier (Param), Loc),
2190 Selector_Name =>
2191 Make_Identifier (Loc, Name_uObject)),
2192 Attribute_Name => Name_Unchecked_Access))));
2194 else
2195 -- Unlock (_object._object'Access);
2197 -- object is the record used to implement the protected object.
2198 -- It is a parameter to the protected subprogram.
2200 -- If the protected object is controlled (i.e it has entries or
2201 -- needs finalization for interrupt handling), call
2202 -- Unlock_Entries, except if the protected object follows the
2203 -- ravenscar profile, in which case call Unlock_Entry, otherwise
2204 -- call the simplified version, Unlock.
2206 if Has_Entries (Pid)
2207 or else Has_Interrupt_Handler (Pid)
2208 or else (Has_Attach_Handler (Pid)
2209 and then not Restricted_Profile)
2210 or else (Ada_Version >= Ada_05
2211 and then Present (Interface_List (Parent (Pid))))
2212 then
2213 if Abort_Allowed
2214 or else Restriction_Active (No_Entry_Queue) = False
2215 or else Number_Entries (Pid) > 1
2216 then
2217 Name := New_Reference_To (RTE (RE_Unlock_Entries), Loc);
2218 else
2219 Name := New_Reference_To (RTE (RE_Unlock_Entry), Loc);
2220 end if;
2222 else
2223 Name := New_Reference_To (RTE (RE_Unlock), Loc);
2224 end if;
2226 Append_To (Stmt,
2227 Make_Procedure_Call_Statement (Loc,
2228 Name => Name,
2229 Parameter_Associations => New_List (
2230 Make_Attribute_Reference (Loc,
2231 Prefix =>
2232 Make_Selected_Component (Loc,
2233 Prefix =>
2234 New_Reference_To (Defining_Identifier (Param), Loc),
2235 Selector_Name =>
2236 Make_Identifier (Loc, Name_uObject)),
2237 Attribute_Name => Name_Unchecked_Access))));
2238 end if;
2240 if Abort_Allowed then
2242 -- Abort_Undefer;
2244 Append_To (Stmt,
2245 Make_Procedure_Call_Statement (Loc,
2246 Name =>
2247 New_Reference_To (
2248 RTE (RE_Abort_Undefer), Loc),
2249 Parameter_Associations => Empty_List));
2250 end if;
2252 elsif Is_Task_Allocation_Block then
2254 -- Add a call to Expunge_Unactivated_Tasks to the cleanup
2255 -- handler of a block created for the dynamic allocation of
2256 -- tasks:
2258 -- Expunge_Unactivated_Tasks (_chain);
2260 -- where _chain is the list of tasks created by the allocator
2261 -- but not yet activated. This list will be empty unless
2262 -- the block completes abnormally.
2264 -- This only applies to dynamically allocated tasks;
2265 -- other unactivated tasks are completed by Complete_Task or
2266 -- Complete_Master.
2268 -- NOTE: This cleanup handler references _chain, a local
2269 -- object.
2271 Append_To (Stmt,
2272 Make_Procedure_Call_Statement (Loc,
2273 Name =>
2274 New_Reference_To (
2275 RTE (RE_Expunge_Unactivated_Tasks), Loc),
2276 Parameter_Associations => New_List (
2277 New_Reference_To (Activation_Chain_Entity (N), Loc))));
2279 elsif Is_Asynchronous_Call_Block then
2281 -- Add a call to attempt to cancel the asynchronous entry call
2282 -- whenever the block containing the abortable part is exited.
2284 -- NOTE: This cleanup handler references C, a local object
2286 -- Get the argument to the Cancel procedure
2287 Cancel_Param := Entry_Cancel_Parameter (Entity (Identifier (N)));
2289 -- If it is of type Communication_Block, this must be a
2290 -- protected entry call.
2292 if Is_RTE (Etype (Cancel_Param), RE_Communication_Block) then
2294 Append_To (Stmt,
2296 -- if Enqueued (Cancel_Parameter) then
2298 Make_Implicit_If_Statement (Clean,
2299 Condition => Make_Function_Call (Loc,
2300 Name => New_Reference_To (
2301 RTE (RE_Enqueued), Loc),
2302 Parameter_Associations => New_List (
2303 New_Reference_To (Cancel_Param, Loc))),
2304 Then_Statements => New_List (
2306 -- Cancel_Protected_Entry_Call (Cancel_Param);
2308 Make_Procedure_Call_Statement (Loc,
2309 Name => New_Reference_To (
2310 RTE (RE_Cancel_Protected_Entry_Call), Loc),
2311 Parameter_Associations => New_List (
2312 New_Reference_To (Cancel_Param, Loc))))));
2314 -- Asynchronous delay
2316 elsif Is_RTE (Etype (Cancel_Param), RE_Delay_Block) then
2317 Append_To (Stmt,
2318 Make_Procedure_Call_Statement (Loc,
2319 Name => New_Reference_To (RTE (RE_Cancel_Async_Delay), Loc),
2320 Parameter_Associations => New_List (
2321 Make_Attribute_Reference (Loc,
2322 Prefix => New_Reference_To (Cancel_Param, Loc),
2323 Attribute_Name => Name_Unchecked_Access))));
2325 -- Task entry call
2327 else
2328 -- Append call to Cancel_Task_Entry_Call (C);
2330 Append_To (Stmt,
2331 Make_Procedure_Call_Statement (Loc,
2332 Name => New_Reference_To (
2333 RTE (RE_Cancel_Task_Entry_Call),
2334 Loc),
2335 Parameter_Associations => New_List (
2336 New_Reference_To (Cancel_Param, Loc))));
2338 end if;
2339 end if;
2341 if Present (Flist) then
2342 Append_To (Stmt,
2343 Make_Procedure_Call_Statement (Loc,
2344 Name => New_Reference_To (RTE (RE_Finalize_List), Loc),
2345 Parameter_Associations => New_List (
2346 New_Reference_To (Flist, Loc))));
2347 end if;
2349 if Present (Mark) then
2350 Append_To (Stmt,
2351 Make_Procedure_Call_Statement (Loc,
2352 Name => New_Reference_To (RTE (RE_SS_Release), Loc),
2353 Parameter_Associations => New_List (
2354 New_Reference_To (Mark, Loc))));
2355 end if;
2357 Sbody :=
2358 Make_Subprogram_Body (Loc,
2359 Specification =>
2360 Make_Procedure_Specification (Loc,
2361 Defining_Unit_Name => Clean),
2363 Declarations => New_List,
2365 Handled_Statement_Sequence =>
2366 Make_Handled_Sequence_Of_Statements (Loc,
2367 Statements => Stmt));
2369 if Present (Flist) or else Is_Task or else Is_Master then
2370 Wrap_Cleanup_Procedure (Sbody);
2371 end if;
2373 -- We do not want debug information for _Clean routines,
2374 -- since it just confuses the debugging operation unless
2375 -- we are debugging generated code.
2377 if not Debug_Generated_Code then
2378 Set_Debug_Info_Off (Clean, True);
2379 end if;
2381 return Sbody;
2382 end Make_Clean;
2384 --------------------------
2385 -- Make_Deep_Array_Body --
2386 --------------------------
2388 -- Array components are initialized and adjusted in the normal order
2389 -- and finalized in the reverse order. Exceptions are handled and
2390 -- Program_Error is re-raise in the Adjust and Finalize case
2391 -- (RM 7.6.1(12)). Generate the following code :
2393 -- procedure Deep_<P> -- with <P> being Initialize or Adjust or Finalize
2394 -- (L : in out Finalizable_Ptr;
2395 -- V : in out Typ)
2396 -- is
2397 -- begin
2398 -- for J1 in Typ'First (1) .. Typ'Last (1) loop
2399 -- ^ reverse ^ -- in the finalization case
2400 -- ...
2401 -- for J2 in Typ'First (n) .. Typ'Last (n) loop
2402 -- Make_<P>_Call (Typ, V (J1, .. , Jn), L, V);
2403 -- end loop;
2404 -- ...
2405 -- end loop;
2406 -- exception -- not in the
2407 -- when others => raise Program_Error; -- Initialize case
2408 -- end Deep_<P>;
2410 function Make_Deep_Array_Body
2411 (Prim : Final_Primitives;
2412 Typ : Entity_Id) return List_Id
2414 Loc : constant Source_Ptr := Sloc (Typ);
2416 Index_List : constant List_Id := New_List;
2417 -- Stores the list of references to the indexes (one per dimension)
2419 function One_Component return List_Id;
2420 -- Create one statement to initialize/adjust/finalize one array
2421 -- component, designated by a full set of indices.
2423 function One_Dimension (N : Int) return List_Id;
2424 -- Create loop to deal with one dimension of the array. The single
2425 -- statement in the body of the loop initializes the inner dimensions if
2426 -- any, or else a single component.
2428 -------------------
2429 -- One_Component --
2430 -------------------
2432 function One_Component return List_Id is
2433 Comp_Typ : constant Entity_Id := Component_Type (Typ);
2434 Comp_Ref : constant Node_Id :=
2435 Make_Indexed_Component (Loc,
2436 Prefix => Make_Identifier (Loc, Name_V),
2437 Expressions => Index_List);
2439 begin
2440 -- Set the etype of the component Reference, which is used to
2441 -- determine whether a conversion to a parent type is needed.
2443 Set_Etype (Comp_Ref, Comp_Typ);
2445 case Prim is
2446 when Initialize_Case =>
2447 return Make_Init_Call (Comp_Ref, Comp_Typ,
2448 Make_Identifier (Loc, Name_L),
2449 Make_Identifier (Loc, Name_B));
2451 when Adjust_Case =>
2452 return Make_Adjust_Call (Comp_Ref, Comp_Typ,
2453 Make_Identifier (Loc, Name_L),
2454 Make_Identifier (Loc, Name_B));
2456 when Finalize_Case =>
2457 return Make_Final_Call (Comp_Ref, Comp_Typ,
2458 Make_Identifier (Loc, Name_B));
2459 end case;
2460 end One_Component;
2462 -------------------
2463 -- One_Dimension --
2464 -------------------
2466 function One_Dimension (N : Int) return List_Id is
2467 Index : Entity_Id;
2469 begin
2470 if N > Number_Dimensions (Typ) then
2471 return One_Component;
2473 else
2474 Index :=
2475 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
2477 Append_To (Index_List, New_Reference_To (Index, Loc));
2479 return New_List (
2480 Make_Implicit_Loop_Statement (Typ,
2481 Identifier => Empty,
2482 Iteration_Scheme =>
2483 Make_Iteration_Scheme (Loc,
2484 Loop_Parameter_Specification =>
2485 Make_Loop_Parameter_Specification (Loc,
2486 Defining_Identifier => Index,
2487 Discrete_Subtype_Definition =>
2488 Make_Attribute_Reference (Loc,
2489 Prefix => Make_Identifier (Loc, Name_V),
2490 Attribute_Name => Name_Range,
2491 Expressions => New_List (
2492 Make_Integer_Literal (Loc, N))),
2493 Reverse_Present => Prim = Finalize_Case)),
2494 Statements => One_Dimension (N + 1)));
2495 end if;
2496 end One_Dimension;
2498 -- Start of processing for Make_Deep_Array_Body
2500 begin
2501 return One_Dimension (1);
2502 end Make_Deep_Array_Body;
2504 --------------------
2505 -- Make_Deep_Proc --
2506 --------------------
2508 -- Generate:
2509 -- procedure DEEP_<prim>
2510 -- (L : IN OUT Finalizable_Ptr; -- not for Finalize
2511 -- V : IN OUT <typ>;
2512 -- B : IN Short_Short_Integer) is
2513 -- begin
2514 -- <stmts>;
2515 -- exception -- Finalize and Adjust Cases only
2516 -- raise Program_Error; -- idem
2517 -- end DEEP_<prim>;
2519 function Make_Deep_Proc
2520 (Prim : Final_Primitives;
2521 Typ : Entity_Id;
2522 Stmts : List_Id) return Entity_Id
2524 Loc : constant Source_Ptr := Sloc (Typ);
2525 Formals : List_Id;
2526 Proc_Name : Entity_Id;
2527 Handler : List_Id := No_List;
2528 Type_B : Entity_Id;
2530 begin
2531 if Prim = Finalize_Case then
2532 Formals := New_List;
2533 Type_B := Standard_Boolean;
2535 else
2536 Formals := New_List (
2537 Make_Parameter_Specification (Loc,
2538 Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
2539 In_Present => True,
2540 Out_Present => True,
2541 Parameter_Type =>
2542 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
2543 Type_B := Standard_Short_Short_Integer;
2544 end if;
2546 Append_To (Formals,
2547 Make_Parameter_Specification (Loc,
2548 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
2549 In_Present => True,
2550 Out_Present => True,
2551 Parameter_Type => New_Reference_To (Typ, Loc)));
2553 Append_To (Formals,
2554 Make_Parameter_Specification (Loc,
2555 Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
2556 Parameter_Type => New_Reference_To (Type_B, Loc)));
2558 if Prim = Finalize_Case or else Prim = Adjust_Case then
2559 Handler := New_List (
2560 Make_Exception_Handler (Loc,
2561 Exception_Choices => New_List (Make_Others_Choice (Loc)),
2562 Statements => New_List (
2563 Make_Raise_Program_Error (Loc,
2564 Reason => PE_Finalize_Raised_Exception))));
2565 end if;
2567 Proc_Name :=
2568 Make_Defining_Identifier (Loc,
2569 Chars => Make_TSS_Name (Typ, Deep_Name_Of (Prim)));
2571 Discard_Node (
2572 Make_Subprogram_Body (Loc,
2573 Specification =>
2574 Make_Procedure_Specification (Loc,
2575 Defining_Unit_Name => Proc_Name,
2576 Parameter_Specifications => Formals),
2578 Declarations => Empty_List,
2579 Handled_Statement_Sequence =>
2580 Make_Handled_Sequence_Of_Statements (Loc,
2581 Statements => Stmts,
2582 Exception_Handlers => Handler)));
2584 return Proc_Name;
2585 end Make_Deep_Proc;
2587 ---------------------------
2588 -- Make_Deep_Record_Body --
2589 ---------------------------
2591 -- The Deep procedures call the appropriate Controlling proc on the
2592 -- the controller component. In the init case, it also attach the
2593 -- controller to the current finalization list.
2595 function Make_Deep_Record_Body
2596 (Prim : Final_Primitives;
2597 Typ : Entity_Id) return List_Id
2599 Loc : constant Source_Ptr := Sloc (Typ);
2600 Controller_Typ : Entity_Id;
2601 Obj_Ref : constant Node_Id := Make_Identifier (Loc, Name_V);
2602 Controller_Ref : constant Node_Id :=
2603 Make_Selected_Component (Loc,
2604 Prefix => Obj_Ref,
2605 Selector_Name =>
2606 Make_Identifier (Loc, Name_uController));
2607 Res : constant List_Id := New_List;
2609 begin
2610 if Is_Return_By_Reference_Type (Typ) then
2611 Controller_Typ := RTE (RE_Limited_Record_Controller);
2612 else
2613 Controller_Typ := RTE (RE_Record_Controller);
2614 end if;
2616 case Prim is
2617 when Initialize_Case =>
2618 Append_List_To (Res,
2619 Make_Init_Call (
2620 Ref => Controller_Ref,
2621 Typ => Controller_Typ,
2622 Flist_Ref => Make_Identifier (Loc, Name_L),
2623 With_Attach => Make_Identifier (Loc, Name_B)));
2625 -- When the type is also a controlled type by itself,
2626 -- Initialize it and attach it to the finalization chain
2628 if Is_Controlled (Typ) then
2629 Append_To (Res,
2630 Make_Procedure_Call_Statement (Loc,
2631 Name => New_Reference_To (
2632 Find_Prim_Op (Typ, Name_Of (Prim)), Loc),
2633 Parameter_Associations =>
2634 New_List (New_Copy_Tree (Obj_Ref))));
2636 Append_To (Res, Make_Attach_Call (
2637 Obj_Ref => New_Copy_Tree (Obj_Ref),
2638 Flist_Ref => Make_Identifier (Loc, Name_L),
2639 With_Attach => Make_Identifier (Loc, Name_B)));
2640 end if;
2642 when Adjust_Case =>
2643 Append_List_To (Res,
2644 Make_Adjust_Call (Controller_Ref, Controller_Typ,
2645 Make_Identifier (Loc, Name_L),
2646 Make_Identifier (Loc, Name_B)));
2648 -- When the type is also a controlled type by itself,
2649 -- Adjust it it and attach it to the finalization chain
2651 if Is_Controlled (Typ) then
2652 Append_To (Res,
2653 Make_Procedure_Call_Statement (Loc,
2654 Name => New_Reference_To (
2655 Find_Prim_Op (Typ, Name_Of (Prim)), Loc),
2656 Parameter_Associations =>
2657 New_List (New_Copy_Tree (Obj_Ref))));
2659 Append_To (Res, Make_Attach_Call (
2660 Obj_Ref => New_Copy_Tree (Obj_Ref),
2661 Flist_Ref => Make_Identifier (Loc, Name_L),
2662 With_Attach => Make_Identifier (Loc, Name_B)));
2663 end if;
2665 when Finalize_Case =>
2666 if Is_Controlled (Typ) then
2667 Append_To (Res,
2668 Make_Implicit_If_Statement (Obj_Ref,
2669 Condition => Make_Identifier (Loc, Name_B),
2670 Then_Statements => New_List (
2671 Make_Procedure_Call_Statement (Loc,
2672 Name => New_Reference_To (RTE (RE_Finalize_One), Loc),
2673 Parameter_Associations => New_List (
2674 OK_Convert_To (RTE (RE_Finalizable),
2675 New_Copy_Tree (Obj_Ref))))),
2677 Else_Statements => New_List (
2678 Make_Procedure_Call_Statement (Loc,
2679 Name => New_Reference_To (
2680 Find_Prim_Op (Typ, Name_Of (Prim)), Loc),
2681 Parameter_Associations =>
2682 New_List (New_Copy_Tree (Obj_Ref))))));
2683 end if;
2685 Append_List_To (Res,
2686 Make_Final_Call (Controller_Ref, Controller_Typ,
2687 Make_Identifier (Loc, Name_B)));
2688 end case;
2689 return Res;
2690 end Make_Deep_Record_Body;
2692 ----------------------
2693 -- Make_Final_Call --
2694 ----------------------
2696 function Make_Final_Call
2697 (Ref : Node_Id;
2698 Typ : Entity_Id;
2699 With_Detach : Node_Id) return List_Id
2701 Loc : constant Source_Ptr := Sloc (Ref);
2702 Res : constant List_Id := New_List;
2703 Cref : Node_Id;
2704 Cref2 : Node_Id;
2705 Proc : Entity_Id;
2706 Utyp : Entity_Id;
2708 begin
2709 if Is_Class_Wide_Type (Typ) then
2710 Utyp := Root_Type (Typ);
2711 Cref := Ref;
2713 elsif Is_Concurrent_Type (Typ) then
2714 Utyp := Corresponding_Record_Type (Typ);
2715 Cref := Convert_Concurrent (Ref, Typ);
2717 elsif Is_Private_Type (Typ)
2718 and then Present (Full_View (Typ))
2719 and then Is_Concurrent_Type (Full_View (Typ))
2720 then
2721 Utyp := Corresponding_Record_Type (Full_View (Typ));
2722 Cref := Convert_Concurrent (Ref, Full_View (Typ));
2723 else
2724 Utyp := Typ;
2725 Cref := Ref;
2726 end if;
2728 Utyp := Underlying_Type (Base_Type (Utyp));
2729 Set_Assignment_OK (Cref);
2731 -- Deal with non-tagged derivation of private views
2733 if Is_Untagged_Derivation (Typ) then
2734 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
2735 Cref := Unchecked_Convert_To (Utyp, Cref);
2736 Set_Assignment_OK (Cref);
2737 -- To prevent problems with UC see 1.156 RH ???
2738 end if;
2740 -- If the underlying_type is a subtype, we are dealing with
2741 -- the completion of a private type. We need to access
2742 -- the base type and generate a conversion to it.
2744 if Utyp /= Base_Type (Utyp) then
2745 pragma Assert (Is_Private_Type (Typ));
2746 Utyp := Base_Type (Utyp);
2747 Cref := Unchecked_Convert_To (Utyp, Cref);
2748 end if;
2750 -- Generate:
2751 -- Deep_Finalize (Ref, With_Detach);
2753 if Has_Controlled_Component (Utyp)
2754 or else Is_Class_Wide_Type (Typ)
2755 then
2756 if Is_Tagged_Type (Utyp) then
2757 Proc := Find_Prim_Op (Utyp, TSS_Deep_Finalize);
2758 else
2759 Proc := TSS (Utyp, TSS_Deep_Finalize);
2760 end if;
2762 Cref := Convert_View (Proc, Cref);
2764 Append_To (Res,
2765 Make_Procedure_Call_Statement (Loc,
2766 Name => New_Reference_To (Proc, Loc),
2767 Parameter_Associations =>
2768 New_List (Cref, With_Detach)));
2770 -- Generate:
2771 -- if With_Detach then
2772 -- Finalize_One (Ref);
2773 -- else
2774 -- Finalize (Ref);
2775 -- end if;
2777 else
2778 Proc := Find_Prim_Op (Utyp, Name_Of (Finalize_Case));
2780 if Chars (With_Detach) = Chars (Standard_True) then
2781 Append_To (Res,
2782 Make_Procedure_Call_Statement (Loc,
2783 Name => New_Reference_To (RTE (RE_Finalize_One), Loc),
2784 Parameter_Associations => New_List (
2785 OK_Convert_To (RTE (RE_Finalizable), Cref))));
2787 elsif Chars (With_Detach) = Chars (Standard_False) then
2788 Append_To (Res,
2789 Make_Procedure_Call_Statement (Loc,
2790 Name => New_Reference_To (Proc, Loc),
2791 Parameter_Associations =>
2792 New_List (Convert_View (Proc, Cref))));
2794 else
2795 Cref2 := New_Copy_Tree (Cref);
2796 Append_To (Res,
2797 Make_Implicit_If_Statement (Ref,
2798 Condition => With_Detach,
2799 Then_Statements => New_List (
2800 Make_Procedure_Call_Statement (Loc,
2801 Name => New_Reference_To (RTE (RE_Finalize_One), Loc),
2802 Parameter_Associations => New_List (
2803 OK_Convert_To (RTE (RE_Finalizable), Cref)))),
2805 Else_Statements => New_List (
2806 Make_Procedure_Call_Statement (Loc,
2807 Name => New_Reference_To (Proc, Loc),
2808 Parameter_Associations =>
2809 New_List (Convert_View (Proc, Cref2))))));
2810 end if;
2811 end if;
2813 return Res;
2814 end Make_Final_Call;
2816 --------------------
2817 -- Make_Init_Call --
2818 --------------------
2820 function Make_Init_Call
2821 (Ref : Node_Id;
2822 Typ : Entity_Id;
2823 Flist_Ref : Node_Id;
2824 With_Attach : Node_Id) return List_Id
2826 Loc : constant Source_Ptr := Sloc (Ref);
2827 Is_Conc : Boolean;
2828 Res : constant List_Id := New_List;
2829 Proc : Entity_Id;
2830 Utyp : Entity_Id;
2831 Cref : Node_Id;
2832 Cref2 : Node_Id;
2833 Attach : Node_Id := With_Attach;
2835 begin
2836 if Is_Concurrent_Type (Typ) then
2837 Is_Conc := True;
2838 Utyp := Corresponding_Record_Type (Typ);
2839 Cref := Convert_Concurrent (Ref, Typ);
2841 elsif Is_Private_Type (Typ)
2842 and then Present (Full_View (Typ))
2843 and then Is_Concurrent_Type (Underlying_Type (Typ))
2844 then
2845 Is_Conc := True;
2846 Utyp := Corresponding_Record_Type (Underlying_Type (Typ));
2847 Cref := Convert_Concurrent (Ref, Underlying_Type (Typ));
2849 else
2850 Is_Conc := False;
2851 Utyp := Typ;
2852 Cref := Ref;
2853 end if;
2855 Utyp := Underlying_Type (Base_Type (Utyp));
2857 Set_Assignment_OK (Cref);
2859 -- Deal with non-tagged derivation of private views
2861 if Is_Untagged_Derivation (Typ)
2862 and then not Is_Conc
2863 then
2864 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
2865 Cref := Unchecked_Convert_To (Utyp, Cref);
2866 Set_Assignment_OK (Cref);
2867 -- To prevent problems with UC see 1.156 RH ???
2868 end if;
2870 -- If the underlying_type is a subtype, we are dealing with
2871 -- the completion of a private type. We need to access
2872 -- the base type and generate a conversion to it.
2874 if Utyp /= Base_Type (Utyp) then
2875 pragma Assert (Is_Private_Type (Typ));
2876 Utyp := Base_Type (Utyp);
2877 Cref := Unchecked_Convert_To (Utyp, Cref);
2878 end if;
2880 -- We do not need to attach to one of the Global Final Lists
2881 -- the objects whose type is Finalize_Storage_Only
2883 if Finalize_Storage_Only (Typ)
2884 and then (Global_Flist_Ref (Flist_Ref)
2885 or else Entity (Constant_Value (RTE (RE_Garbage_Collected)))
2886 = Standard_True)
2887 then
2888 Attach := Make_Integer_Literal (Loc, 0);
2889 end if;
2891 -- Generate:
2892 -- Deep_Initialize (Ref, Flist_Ref);
2894 if Has_Controlled_Component (Utyp) then
2895 Proc := TSS (Utyp, Deep_Name_Of (Initialize_Case));
2897 Cref := Convert_View (Proc, Cref, 2);
2899 Append_To (Res,
2900 Make_Procedure_Call_Statement (Loc,
2901 Name => New_Reference_To (Proc, Loc),
2902 Parameter_Associations => New_List (
2903 Node1 => Flist_Ref,
2904 Node2 => Cref,
2905 Node3 => Attach)));
2907 -- Generate:
2908 -- Attach_To_Final_List (Ref, Flist_Ref);
2909 -- Initialize (Ref);
2911 else -- Is_Controlled (Utyp)
2912 Proc := Find_Prim_Op (Utyp, Name_Of (Initialize_Case));
2913 Check_Visibly_Controlled (Initialize_Case, Typ, Proc, Cref);
2915 Cref := Convert_View (Proc, Cref);
2916 Cref2 := New_Copy_Tree (Cref);
2918 Append_To (Res,
2919 Make_Procedure_Call_Statement (Loc,
2920 Name => New_Reference_To (Proc, Loc),
2921 Parameter_Associations => New_List (Cref2)));
2923 Append_To (Res,
2924 Make_Attach_Call (Cref, Flist_Ref, Attach));
2925 end if;
2927 return Res;
2928 end Make_Init_Call;
2930 --------------------------
2931 -- Make_Transient_Block --
2932 --------------------------
2934 -- If finalization is involved, this function just wraps the instruction
2935 -- into a block whose name is the transient block entity, and then
2936 -- Expand_Cleanup_Actions (called on the expansion of the handled
2937 -- sequence of statements will do the necessary expansions for
2938 -- cleanups).
2940 function Make_Transient_Block
2941 (Loc : Source_Ptr;
2942 Action : Node_Id) return Node_Id
2944 Flist : constant Entity_Id := Finalization_Chain_Entity (Current_Scope);
2945 Decls : constant List_Id := New_List;
2946 Par : constant Node_Id := Parent (Action);
2947 Instrs : constant List_Id := New_List (Action);
2948 Blk : Node_Id;
2950 begin
2951 -- Case where only secondary stack use is involved
2953 if Uses_Sec_Stack (Current_Scope)
2954 and then No (Flist)
2955 and then Nkind (Action) /= N_Return_Statement
2956 and then Nkind (Par) /= N_Exception_Handler
2957 then
2959 declare
2960 S : Entity_Id;
2961 K : Entity_Kind;
2962 begin
2963 S := Scope (Current_Scope);
2964 loop
2965 K := Ekind (S);
2967 -- At the outer level, no need to release the sec stack
2969 if S = Standard_Standard then
2970 Set_Uses_Sec_Stack (Current_Scope, False);
2971 exit;
2973 -- In a function, only release the sec stack if the
2974 -- function does not return on the sec stack otherwise
2975 -- the result may be lost. The caller is responsible for
2976 -- releasing.
2978 elsif K = E_Function then
2979 Set_Uses_Sec_Stack (Current_Scope, False);
2981 if not Requires_Transient_Scope (Etype (S)) then
2982 if not Functions_Return_By_DSP_On_Target then
2983 Set_Uses_Sec_Stack (S, True);
2984 Check_Restriction (No_Secondary_Stack, Action);
2985 end if;
2986 end if;
2988 exit;
2990 -- In a loop or entry we should install a block encompassing
2991 -- all the construct. For now just release right away.
2993 elsif K = E_Loop or else K = E_Entry then
2994 exit;
2996 -- In a procedure or a block, we release on exit of the
2997 -- procedure or block. ??? memory leak can be created by
2998 -- recursive calls.
3000 elsif K = E_Procedure
3001 or else K = E_Block
3002 then
3003 if not Functions_Return_By_DSP_On_Target then
3004 Set_Uses_Sec_Stack (S, True);
3005 Check_Restriction (No_Secondary_Stack, Action);
3006 end if;
3008 Set_Uses_Sec_Stack (Current_Scope, False);
3009 exit;
3011 else
3012 S := Scope (S);
3013 end if;
3014 end loop;
3015 end;
3016 end if;
3018 -- Insert actions stuck in the transient scopes as well as all
3019 -- freezing nodes needed by those actions
3021 Insert_Actions_In_Scope_Around (Action);
3023 declare
3024 Last_Inserted : Node_Id := Prev (Action);
3026 begin
3027 if Present (Last_Inserted) then
3028 Freeze_All (First_Entity (Current_Scope), Last_Inserted);
3029 end if;
3030 end;
3032 Blk :=
3033 Make_Block_Statement (Loc,
3034 Identifier => New_Reference_To (Current_Scope, Loc),
3035 Declarations => Decls,
3036 Handled_Statement_Sequence =>
3037 Make_Handled_Sequence_Of_Statements (Loc, Statements => Instrs),
3038 Has_Created_Identifier => True);
3040 -- When the transient scope was established, we pushed the entry for
3041 -- the transient scope onto the scope stack, so that the scope was
3042 -- active for the installation of finalizable entities etc. Now we
3043 -- must remove this entry, since we have constructed a proper block.
3045 Pop_Scope;
3047 return Blk;
3048 end Make_Transient_Block;
3050 ------------------------
3051 -- Node_To_Be_Wrapped --
3052 ------------------------
3054 function Node_To_Be_Wrapped return Node_Id is
3055 begin
3056 return Scope_Stack.Table (Scope_Stack.Last).Node_To_Be_Wrapped;
3057 end Node_To_Be_Wrapped;
3059 ----------------------------
3060 -- Set_Node_To_Be_Wrapped --
3061 ----------------------------
3063 procedure Set_Node_To_Be_Wrapped (N : Node_Id) is
3064 begin
3065 Scope_Stack.Table (Scope_Stack.Last).Node_To_Be_Wrapped := N;
3066 end Set_Node_To_Be_Wrapped;
3068 ----------------------------------
3069 -- Store_After_Actions_In_Scope --
3070 ----------------------------------
3072 procedure Store_After_Actions_In_Scope (L : List_Id) is
3073 SE : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
3075 begin
3076 if Present (SE.Actions_To_Be_Wrapped_After) then
3077 Insert_List_Before_And_Analyze (
3078 First (SE.Actions_To_Be_Wrapped_After), L);
3080 else
3081 SE.Actions_To_Be_Wrapped_After := L;
3083 if Is_List_Member (SE.Node_To_Be_Wrapped) then
3084 Set_Parent (L, Parent (SE.Node_To_Be_Wrapped));
3085 else
3086 Set_Parent (L, SE.Node_To_Be_Wrapped);
3087 end if;
3089 Analyze_List (L);
3090 end if;
3091 end Store_After_Actions_In_Scope;
3093 -----------------------------------
3094 -- Store_Before_Actions_In_Scope --
3095 -----------------------------------
3097 procedure Store_Before_Actions_In_Scope (L : List_Id) is
3098 SE : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
3100 begin
3101 if Present (SE.Actions_To_Be_Wrapped_Before) then
3102 Insert_List_After_And_Analyze (
3103 Last (SE.Actions_To_Be_Wrapped_Before), L);
3105 else
3106 SE.Actions_To_Be_Wrapped_Before := L;
3108 if Is_List_Member (SE.Node_To_Be_Wrapped) then
3109 Set_Parent (L, Parent (SE.Node_To_Be_Wrapped));
3110 else
3111 Set_Parent (L, SE.Node_To_Be_Wrapped);
3112 end if;
3114 Analyze_List (L);
3115 end if;
3116 end Store_Before_Actions_In_Scope;
3118 --------------------------------
3119 -- Wrap_Transient_Declaration --
3120 --------------------------------
3122 -- If a transient scope has been established during the processing of the
3123 -- Expression of an Object_Declaration, it is not possible to wrap the
3124 -- declaration into a transient block as usual case, otherwise the object
3125 -- would be itself declared in the wrong scope. Therefore, all entities (if
3126 -- any) defined in the transient block are moved to the proper enclosing
3127 -- scope, furthermore, if they are controlled variables they are finalized
3128 -- right after the declaration. The finalization list of the transient
3129 -- scope is defined as a renaming of the enclosing one so during their
3130 -- initialization they will be attached to the proper finalization
3131 -- list. For instance, the following declaration :
3133 -- X : Typ := F (G (A), G (B));
3135 -- (where G(A) and G(B) return controlled values, expanded as _v1 and _v2)
3136 -- is expanded into :
3138 -- _local_final_list_1 : Finalizable_Ptr;
3139 -- X : Typ := [ complex Expression-Action ];
3140 -- Finalize_One(_v1);
3141 -- Finalize_One (_v2);
3143 procedure Wrap_Transient_Declaration (N : Node_Id) is
3144 S : Entity_Id;
3145 LC : Entity_Id := Empty;
3146 Nodes : List_Id;
3147 Loc : constant Source_Ptr := Sloc (N);
3148 Enclosing_S : Entity_Id;
3149 Uses_SS : Boolean;
3150 Next_N : constant Node_Id := Next (N);
3152 begin
3153 S := Current_Scope;
3154 Enclosing_S := Scope (S);
3156 -- Insert Actions kept in the Scope stack
3158 Insert_Actions_In_Scope_Around (N);
3160 -- If the declaration is consuming some secondary stack, mark the
3161 -- Enclosing scope appropriately.
3163 Uses_SS := Uses_Sec_Stack (S);
3164 Pop_Scope;
3166 -- Create a List controller and rename the final list to be its
3167 -- internal final pointer:
3168 -- Lxxx : Simple_List_Controller;
3169 -- Fxxx : Finalizable_Ptr renames Lxxx.F;
3171 if Present (Finalization_Chain_Entity (S)) then
3172 LC := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
3174 Nodes := New_List (
3175 Make_Object_Declaration (Loc,
3176 Defining_Identifier => LC,
3177 Object_Definition =>
3178 New_Reference_To (RTE (RE_Simple_List_Controller), Loc)),
3180 Make_Object_Renaming_Declaration (Loc,
3181 Defining_Identifier => Finalization_Chain_Entity (S),
3182 Subtype_Mark => New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
3183 Name =>
3184 Make_Selected_Component (Loc,
3185 Prefix => New_Reference_To (LC, Loc),
3186 Selector_Name => Make_Identifier (Loc, Name_F))));
3188 -- Put the declaration at the beginning of the declaration part
3189 -- to make sure it will be before all other actions that have been
3190 -- inserted before N.
3192 Insert_List_Before_And_Analyze (First (List_Containing (N)), Nodes);
3194 -- Generate the Finalization calls by finalizing the list
3195 -- controller right away. It will be re-finalized on scope
3196 -- exit but it doesn't matter. It cannot be done when the
3197 -- call initializes a renaming object though because in this
3198 -- case, the object becomes a pointer to the temporary and thus
3199 -- increases its life span.
3201 if Nkind (N) = N_Object_Renaming_Declaration
3202 and then Controlled_Type (Etype (Defining_Identifier (N)))
3203 then
3204 null;
3206 else
3207 Nodes :=
3208 Make_Final_Call (
3209 Ref => New_Reference_To (LC, Loc),
3210 Typ => Etype (LC),
3211 With_Detach => New_Reference_To (Standard_False, Loc));
3212 if Present (Next_N) then
3213 Insert_List_Before_And_Analyze (Next_N, Nodes);
3214 else
3215 Append_List_To (List_Containing (N), Nodes);
3216 end if;
3217 end if;
3218 end if;
3220 -- Put the local entities back in the enclosing scope, and set the
3221 -- Is_Public flag appropriately.
3223 Transfer_Entities (S, Enclosing_S);
3225 -- Mark the enclosing dynamic scope so that the sec stack will be
3226 -- released upon its exit unless this is a function that returns on
3227 -- the sec stack in which case this will be done by the caller.
3229 if Uses_SS then
3230 S := Enclosing_Dynamic_Scope (S);
3232 if Ekind (S) = E_Function
3233 and then Requires_Transient_Scope (Etype (S))
3234 then
3235 null;
3236 else
3237 Set_Uses_Sec_Stack (S);
3238 Check_Restriction (No_Secondary_Stack, N);
3239 end if;
3240 end if;
3241 end Wrap_Transient_Declaration;
3243 -------------------------------
3244 -- Wrap_Transient_Expression --
3245 -------------------------------
3247 -- Insert actions before <Expression>:
3249 -- (lines marked with <CTRL> are expanded only in presence of Controlled
3250 -- objects needing finalization)
3252 -- _E : Etyp;
3253 -- declare
3254 -- _M : constant Mark_Id := SS_Mark;
3255 -- Local_Final_List : System.FI.Finalizable_Ptr; <CTRL>
3257 -- procedure _Clean is
3258 -- begin
3259 -- Abort_Defer;
3260 -- System.FI.Finalize_List (Local_Final_List); <CTRL>
3261 -- SS_Release (M);
3262 -- Abort_Undefer;
3263 -- end _Clean;
3265 -- begin
3266 -- _E := <Expression>;
3267 -- at end
3268 -- _Clean;
3269 -- end;
3271 -- then expression is replaced by _E
3273 procedure Wrap_Transient_Expression (N : Node_Id) is
3274 Loc : constant Source_Ptr := Sloc (N);
3275 E : constant Entity_Id :=
3276 Make_Defining_Identifier (Loc, New_Internal_Name ('E'));
3277 Etyp : constant Entity_Id := Etype (N);
3279 begin
3280 Insert_Actions (N, New_List (
3281 Make_Object_Declaration (Loc,
3282 Defining_Identifier => E,
3283 Object_Definition => New_Reference_To (Etyp, Loc)),
3285 Make_Transient_Block (Loc,
3286 Action =>
3287 Make_Assignment_Statement (Loc,
3288 Name => New_Reference_To (E, Loc),
3289 Expression => Relocate_Node (N)))));
3291 Rewrite (N, New_Reference_To (E, Loc));
3292 Analyze_And_Resolve (N, Etyp);
3293 end Wrap_Transient_Expression;
3295 ------------------------------
3296 -- Wrap_Transient_Statement --
3297 ------------------------------
3299 -- Transform <Instruction> into
3301 -- (lines marked with <CTRL> are expanded only in presence of Controlled
3302 -- objects needing finalization)
3304 -- declare
3305 -- _M : Mark_Id := SS_Mark;
3306 -- Local_Final_List : System.FI.Finalizable_Ptr ; <CTRL>
3308 -- procedure _Clean is
3309 -- begin
3310 -- Abort_Defer;
3311 -- System.FI.Finalize_List (Local_Final_List); <CTRL>
3312 -- SS_Release (_M);
3313 -- Abort_Undefer;
3314 -- end _Clean;
3316 -- begin
3317 -- <Instr uction>;
3318 -- at end
3319 -- _Clean;
3320 -- end;
3322 procedure Wrap_Transient_Statement (N : Node_Id) is
3323 Loc : constant Source_Ptr := Sloc (N);
3324 New_Statement : constant Node_Id := Relocate_Node (N);
3326 begin
3327 Rewrite (N, Make_Transient_Block (Loc, New_Statement));
3329 -- With the scope stack back to normal, we can call analyze on the
3330 -- resulting block. At this point, the transient scope is being
3331 -- treated like a perfectly normal scope, so there is nothing
3332 -- special about it.
3334 -- Note: Wrap_Transient_Statement is called with the node already
3335 -- analyzed (i.e. Analyzed (N) is True). This is important, since
3336 -- otherwise we would get a recursive processing of the node when
3337 -- we do this Analyze call.
3339 Analyze (N);
3340 end Wrap_Transient_Statement;
3342 end Exp_Ch7;