* gimplify.c (find_single_pointer_decl_1): New static function.
[official-gcc.git] / gcc / ada / exp_ch5.adb
blob54da8cb4811181853ba19c062aef52ba9ac9d50a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Exp_Aggr; use Exp_Aggr;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Ch11; use Exp_Ch11;
34 with Exp_Dbug; use Exp_Dbug;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Hostparm; use Hostparm;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Rtsfind; use Rtsfind;
45 with Sinfo; use Sinfo;
46 with Sem; use Sem;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch8; use Sem_Ch8;
49 with Sem_Ch13; use Sem_Ch13;
50 with Sem_Eval; use Sem_Eval;
51 with Sem_Res; use Sem_Res;
52 with Sem_Util; use Sem_Util;
53 with Snames; use Snames;
54 with Stand; use Stand;
55 with Stringt; use Stringt;
56 with Tbuild; use Tbuild;
57 with Ttypes; use Ttypes;
58 with Uintp; use Uintp;
59 with Validsw; use Validsw;
61 package body Exp_Ch5 is
63 function Change_Of_Representation (N : Node_Id) return Boolean;
64 -- Determine if the right hand side of the assignment N is a type
65 -- conversion which requires a change of representation. Called
66 -- only for the array and record cases.
68 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
69 -- N is an assignment which assigns an array value. This routine process
70 -- the various special cases and checks required for such assignments,
71 -- including change of representation. Rhs is normally simply the right
72 -- hand side of the assignment, except that if the right hand side is
73 -- a type conversion or a qualified expression, then the Rhs is the
74 -- actual expression inside any such type conversions or qualifications.
76 function Expand_Assign_Array_Loop
77 (N : Node_Id;
78 Larray : Entity_Id;
79 Rarray : Entity_Id;
80 L_Type : Entity_Id;
81 R_Type : Entity_Id;
82 Ndim : Pos;
83 Rev : Boolean) return Node_Id;
84 -- N is an assignment statement which assigns an array value. This routine
85 -- expands the assignment into a loop (or nested loops for the case of a
86 -- multi-dimensional array) to do the assignment component by component.
87 -- Larray and Rarray are the entities of the actual arrays on the left
88 -- hand and right hand sides. L_Type and R_Type are the types of these
89 -- arrays (which may not be the same, due to either sliding, or to a
90 -- change of representation case). Ndim is the number of dimensions and
91 -- the parameter Rev indicates if the loops run normally (Rev = False),
92 -- or reversed (Rev = True). The value returned is the constructed
93 -- loop statement. Auxiliary declarations are inserted before node N
94 -- using the standard Insert_Actions mechanism.
96 procedure Expand_Assign_Record (N : Node_Id);
97 -- N is an assignment of a non-tagged record value. This routine handles
98 -- the case where the assignment must be made component by component,
99 -- either because the target is not byte aligned, or there is a change
100 -- of representation.
102 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
103 -- Generate the necessary code for controlled and tagged assignment,
104 -- that is to say, finalization of the target before, adjustement of
105 -- the target after and save and restore of the tag and finalization
106 -- pointers which are not 'part of the value' and must not be changed
107 -- upon assignment. N is the original Assignment node.
109 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean;
110 -- This function is used in processing the assignment of a record or
111 -- indexed component. The argument N is either the left hand or right
112 -- hand side of an assignment, and this function determines if there
113 -- is a record component reference where the record may be bit aligned
114 -- in a manner that causes trouble for the back end (see description
115 -- of Exp_Util.Component_May_Be_Bit_Aligned for further details).
117 ------------------------------
118 -- Change_Of_Representation --
119 ------------------------------
121 function Change_Of_Representation (N : Node_Id) return Boolean is
122 Rhs : constant Node_Id := Expression (N);
123 begin
124 return
125 Nkind (Rhs) = N_Type_Conversion
126 and then
127 not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
128 end Change_Of_Representation;
130 -------------------------
131 -- Expand_Assign_Array --
132 -------------------------
134 -- There are two issues here. First, do we let Gigi do a block move, or
135 -- do we expand out into a loop? Second, we need to set the two flags
136 -- Forwards_OK and Backwards_OK which show whether the block move (or
137 -- corresponding loops) can be legitimately done in a forwards (low to
138 -- high) or backwards (high to low) manner.
140 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
141 Loc : constant Source_Ptr := Sloc (N);
143 Lhs : constant Node_Id := Name (N);
145 Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
146 Act_Rhs : Node_Id := Get_Referenced_Object (Rhs);
148 L_Type : constant Entity_Id :=
149 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
150 R_Type : Entity_Id :=
151 Underlying_Type (Get_Actual_Subtype (Act_Rhs));
153 L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
154 R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
156 Crep : constant Boolean := Change_Of_Representation (N);
158 Larray : Node_Id;
159 Rarray : Node_Id;
161 Ndim : constant Pos := Number_Dimensions (L_Type);
163 Loop_Required : Boolean := False;
164 -- This switch is set to True if the array move must be done using
165 -- an explicit front end generated loop.
167 procedure Apply_Dereference (Arg : in out Node_Id);
168 -- If the argument is an access to an array, and the assignment is
169 -- converted into a procedure call, apply explicit dereference.
171 function Has_Address_Clause (Exp : Node_Id) return Boolean;
172 -- Test if Exp is a reference to an array whose declaration has
173 -- an address clause, or it is a slice of such an array.
175 function Is_Formal_Array (Exp : Node_Id) return Boolean;
176 -- Test if Exp is a reference to an array which is either a formal
177 -- parameter or a slice of a formal parameter. These are the cases
178 -- where hidden aliasing can occur.
180 function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
181 -- Determine if Exp is a reference to an array variable which is other
182 -- than an object defined in the current scope, or a slice of such
183 -- an object. Such objects can be aliased to parameters (unlike local
184 -- array references).
186 -----------------------
187 -- Apply_Dereference --
188 -----------------------
190 procedure Apply_Dereference (Arg : in out Node_Id) is
191 Typ : constant Entity_Id := Etype (Arg);
192 begin
193 if Is_Access_Type (Typ) then
194 Rewrite (Arg, Make_Explicit_Dereference (Loc,
195 Prefix => Relocate_Node (Arg)));
196 Analyze_And_Resolve (Arg, Designated_Type (Typ));
197 end if;
198 end Apply_Dereference;
200 ------------------------
201 -- Has_Address_Clause --
202 ------------------------
204 function Has_Address_Clause (Exp : Node_Id) return Boolean is
205 begin
206 return
207 (Is_Entity_Name (Exp) and then
208 Present (Address_Clause (Entity (Exp))))
209 or else
210 (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
211 end Has_Address_Clause;
213 ---------------------
214 -- Is_Formal_Array --
215 ---------------------
217 function Is_Formal_Array (Exp : Node_Id) return Boolean is
218 begin
219 return
220 (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
221 or else
222 (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
223 end Is_Formal_Array;
225 ------------------------
226 -- Is_Non_Local_Array --
227 ------------------------
229 function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
230 begin
231 return (Is_Entity_Name (Exp)
232 and then Scope (Entity (Exp)) /= Current_Scope)
233 or else (Nkind (Exp) = N_Slice
234 and then Is_Non_Local_Array (Prefix (Exp)));
235 end Is_Non_Local_Array;
237 -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
239 Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
240 Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
242 Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
243 Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
245 -- Start of processing for Expand_Assign_Array
247 begin
248 -- Deal with length check, note that the length check is done with
249 -- respect to the right hand side as given, not a possible underlying
250 -- renamed object, since this would generate incorrect extra checks.
252 Apply_Length_Check (Rhs, L_Type);
254 -- We start by assuming that the move can be done in either
255 -- direction, i.e. that the two sides are completely disjoint.
257 Set_Forwards_OK (N, True);
258 Set_Backwards_OK (N, True);
260 -- Normally it is only the slice case that can lead to overlap,
261 -- and explicit checks for slices are made below. But there is
262 -- one case where the slice can be implicit and invisible to us
263 -- and that is the case where we have a one dimensional array,
264 -- and either both operands are parameters, or one is a parameter
265 -- and the other is a global variable. In this case the parameter
266 -- could be a slice that overlaps with the other parameter.
268 -- Check for the case of slices requiring an explicit loop. Normally
269 -- it is only the explicit slice cases that bother us, but in the
270 -- case of one dimensional arrays, parameters can be slices that
271 -- are passed by reference, so we can have aliasing for assignments
272 -- from one parameter to another, or assignments between parameters
273 -- and nonlocal variables. However, if the array subtype is a
274 -- constrained first subtype in the parameter case, then we don't
275 -- have to worry about overlap, since slice assignments aren't
276 -- possible (other than for a slice denoting the whole array).
278 -- Note: overlap is never possible if there is a change of
279 -- representation, so we can exclude this case.
281 if Ndim = 1
282 and then not Crep
283 and then
284 ((Lhs_Formal and Rhs_Formal)
285 or else
286 (Lhs_Formal and Rhs_Non_Local_Var)
287 or else
288 (Rhs_Formal and Lhs_Non_Local_Var))
289 and then
290 (not Is_Constrained (Etype (Lhs))
291 or else not Is_First_Subtype (Etype (Lhs)))
293 -- In the case of compiling for the Java Virtual Machine,
294 -- slices are always passed by making a copy, so we don't
295 -- have to worry about overlap. We also want to prevent
296 -- generation of "<" comparisons for array addresses,
297 -- since that's a meaningless operation on the JVM.
299 and then not Java_VM
300 then
301 Set_Forwards_OK (N, False);
302 Set_Backwards_OK (N, False);
304 -- Note: the bit-packed case is not worrisome here, since if
305 -- we have a slice passed as a parameter, it is always aligned
306 -- on a byte boundary, and if there are no explicit slices, the
307 -- assignment can be performed directly.
308 end if;
310 -- We certainly must use a loop for change of representation
311 -- and also we use the operand of the conversion on the right
312 -- hand side as the effective right hand side (the component
313 -- types must match in this situation).
315 if Crep then
316 Act_Rhs := Get_Referenced_Object (Rhs);
317 R_Type := Get_Actual_Subtype (Act_Rhs);
318 Loop_Required := True;
320 -- We require a loop if the left side is possibly bit unaligned
322 elsif Possible_Bit_Aligned_Component (Lhs)
323 or else
324 Possible_Bit_Aligned_Component (Rhs)
325 then
326 Loop_Required := True;
328 -- Arrays with controlled components are expanded into a loop
329 -- to force calls to adjust at the component level.
331 elsif Has_Controlled_Component (L_Type) then
332 Loop_Required := True;
334 -- If object is atomic, we cannot tolerate a loop
336 elsif Is_Atomic_Object (Act_Lhs)
337 or else
338 Is_Atomic_Object (Act_Rhs)
339 then
340 return;
342 -- Loop is required if we have atomic components since we have to
343 -- be sure to do any accesses on an element by element basis.
345 elsif Has_Atomic_Components (L_Type)
346 or else Has_Atomic_Components (R_Type)
347 or else Is_Atomic (Component_Type (L_Type))
348 or else Is_Atomic (Component_Type (R_Type))
349 then
350 Loop_Required := True;
352 -- Case where no slice is involved
354 elsif not L_Slice and not R_Slice then
356 -- The following code deals with the case of unconstrained bit
357 -- packed arrays. The problem is that the template for such
358 -- arrays contains the bounds of the actual source level array,
360 -- But the copy of an entire array requires the bounds of the
361 -- underlying array. It would be nice if the back end could take
362 -- care of this, but right now it does not know how, so if we
363 -- have such a type, then we expand out into a loop, which is
364 -- inefficient but works correctly. If we don't do this, we
365 -- get the wrong length computed for the array to be moved.
366 -- The two cases we need to worry about are:
368 -- Explicit deference of an unconstrained packed array type as
369 -- in the following example:
371 -- procedure C52 is
372 -- type BITS is array(INTEGER range <>) of BOOLEAN;
373 -- pragma PACK(BITS);
374 -- type A is access BITS;
375 -- P1,P2 : A;
376 -- begin
377 -- P1 := new BITS (1 .. 65_535);
378 -- P2 := new BITS (1 .. 65_535);
379 -- P2.ALL := P1.ALL;
380 -- end C52;
382 -- A formal parameter reference with an unconstrained bit
383 -- array type is the other case we need to worry about (here
384 -- we assume the same BITS type declared above:
386 -- procedure Write_All (File : out BITS; Contents : in BITS);
387 -- begin
388 -- File.Storage := Contents;
389 -- end Write_All;
391 -- We expand to a loop in either of these two cases
393 -- Question for future thought. Another potentially more efficient
394 -- approach would be to create the actual subtype, and then do an
395 -- unchecked conversion to this actual subtype ???
397 Check_Unconstrained_Bit_Packed_Array : declare
399 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
400 -- Function to perform required test for the first case,
401 -- above (dereference of an unconstrained bit packed array)
403 -----------------------
404 -- Is_UBPA_Reference --
405 -----------------------
407 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
408 Typ : constant Entity_Id := Underlying_Type (Etype (Opnd));
409 P_Type : Entity_Id;
410 Des_Type : Entity_Id;
412 begin
413 if Present (Packed_Array_Type (Typ))
414 and then Is_Array_Type (Packed_Array_Type (Typ))
415 and then not Is_Constrained (Packed_Array_Type (Typ))
416 then
417 return True;
419 elsif Nkind (Opnd) = N_Explicit_Dereference then
420 P_Type := Underlying_Type (Etype (Prefix (Opnd)));
422 if not Is_Access_Type (P_Type) then
423 return False;
425 else
426 Des_Type := Designated_Type (P_Type);
427 return
428 Is_Bit_Packed_Array (Des_Type)
429 and then not Is_Constrained (Des_Type);
430 end if;
432 else
433 return False;
434 end if;
435 end Is_UBPA_Reference;
437 -- Start of processing for Check_Unconstrained_Bit_Packed_Array
439 begin
440 if Is_UBPA_Reference (Lhs)
441 or else
442 Is_UBPA_Reference (Rhs)
443 then
444 Loop_Required := True;
446 -- Here if we do not have the case of a reference to a bit
447 -- packed unconstrained array case. In this case gigi can
448 -- most certainly handle the assignment if a forwards move
449 -- is allowed.
451 -- (could it handle the backwards case also???)
453 elsif Forwards_OK (N) then
454 return;
455 end if;
456 end Check_Unconstrained_Bit_Packed_Array;
458 -- The back end can always handle the assignment if the right side is a
459 -- string literal (note that overlap is definitely impossible in this
460 -- case). If the type is packed, a string literal is always converted
461 -- into aggregate, except in the case of a null slice, for which no
462 -- aggregate can be written. In that case, rewrite the assignment as a
463 -- null statement, a length check has already been emitted to verify
464 -- that the range of the left-hand side is empty.
466 -- Note that this code is not executed if we had an assignment of
467 -- a string literal to a non-bit aligned component of a record, a
468 -- case which cannot be handled by the backend
470 elsif Nkind (Rhs) = N_String_Literal then
471 if String_Length (Strval (Rhs)) = 0
472 and then Is_Bit_Packed_Array (L_Type)
473 then
474 Rewrite (N, Make_Null_Statement (Loc));
475 Analyze (N);
476 end if;
478 return;
480 -- If either operand is bit packed, then we need a loop, since we
481 -- can't be sure that the slice is byte aligned. Similarly, if either
482 -- operand is a possibly unaligned slice, then we need a loop (since
483 -- the back end cannot handle unaligned slices).
485 elsif Is_Bit_Packed_Array (L_Type)
486 or else Is_Bit_Packed_Array (R_Type)
487 or else Is_Possibly_Unaligned_Slice (Lhs)
488 or else Is_Possibly_Unaligned_Slice (Rhs)
489 then
490 Loop_Required := True;
492 -- If we are not bit-packed, and we have only one slice, then no
493 -- overlap is possible except in the parameter case, so we can let
494 -- the back end handle things.
496 elsif not (L_Slice and R_Slice) then
497 if Forwards_OK (N) then
498 return;
499 end if;
500 end if;
502 -- If the right-hand side is a string literal, introduce a temporary
503 -- for it, for use in the generated loop that will follow.
505 if Nkind (Rhs) = N_String_Literal then
506 declare
507 Temp : constant Entity_Id :=
508 Make_Defining_Identifier (Loc, Name_T);
509 Decl : Node_Id;
511 begin
512 Decl :=
513 Make_Object_Declaration (Loc,
514 Defining_Identifier => Temp,
515 Object_Definition => New_Occurrence_Of (L_Type, Loc),
516 Expression => Relocate_Node (Rhs));
518 Insert_Action (N, Decl);
519 Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
520 R_Type := Etype (Temp);
521 end;
522 end if;
524 -- Come here to complete the analysis
526 -- Loop_Required: Set to True if we know that a loop is required
527 -- regardless of overlap considerations.
529 -- Forwards_OK: Set to False if we already know that a forwards
530 -- move is not safe, else set to True.
532 -- Backwards_OK: Set to False if we already know that a backwards
533 -- move is not safe, else set to True
535 -- Our task at this stage is to complete the overlap analysis, which
536 -- can result in possibly setting Forwards_OK or Backwards_OK to
537 -- False, and then generating the final code, either by deciding
538 -- that it is OK after all to let Gigi handle it, or by generating
539 -- appropriate code in the front end.
541 declare
542 L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
543 R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
545 Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ);
546 Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ);
547 Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ);
548 Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
550 Act_L_Array : Node_Id;
551 Act_R_Array : Node_Id;
553 Cleft_Lo : Node_Id;
554 Cright_Lo : Node_Id;
555 Condition : Node_Id;
557 Cresult : Compare_Result;
559 begin
560 -- Get the expressions for the arrays. If we are dealing with a
561 -- private type, then convert to the underlying type. We can do
562 -- direct assignments to an array that is a private type, but
563 -- we cannot assign to elements of the array without this extra
564 -- unchecked conversion.
566 if Nkind (Act_Lhs) = N_Slice then
567 Larray := Prefix (Act_Lhs);
568 else
569 Larray := Act_Lhs;
571 if Is_Private_Type (Etype (Larray)) then
572 Larray :=
573 Unchecked_Convert_To
574 (Underlying_Type (Etype (Larray)), Larray);
575 end if;
576 end if;
578 if Nkind (Act_Rhs) = N_Slice then
579 Rarray := Prefix (Act_Rhs);
580 else
581 Rarray := Act_Rhs;
583 if Is_Private_Type (Etype (Rarray)) then
584 Rarray :=
585 Unchecked_Convert_To
586 (Underlying_Type (Etype (Rarray)), Rarray);
587 end if;
588 end if;
590 -- If both sides are slices, we must figure out whether
591 -- it is safe to do the move in one direction or the other
592 -- It is always safe if there is a change of representation
593 -- since obviously two arrays with different representations
594 -- cannot possibly overlap.
596 if (not Crep) and L_Slice and R_Slice then
597 Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
598 Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
600 -- If both left and right hand arrays are entity names, and
601 -- refer to different entities, then we know that the move
602 -- is safe (the two storage areas are completely disjoint).
604 if Is_Entity_Name (Act_L_Array)
605 and then Is_Entity_Name (Act_R_Array)
606 and then Entity (Act_L_Array) /= Entity (Act_R_Array)
607 then
608 null;
610 -- Otherwise, we assume the worst, which is that the two
611 -- arrays are the same array. There is no need to check if
612 -- we know that is the case, because if we don't know it,
613 -- we still have to assume it!
615 -- Generally if the same array is involved, then we have
616 -- an overlapping case. We will have to really assume the
617 -- worst (i.e. set neither of the OK flags) unless we can
618 -- determine the lower or upper bounds at compile time and
619 -- compare them.
621 else
622 Cresult := Compile_Time_Compare (Left_Lo, Right_Lo);
624 if Cresult = Unknown then
625 Cresult := Compile_Time_Compare (Left_Hi, Right_Hi);
626 end if;
628 case Cresult is
629 when LT | LE | EQ => Set_Backwards_OK (N, False);
630 when GT | GE => Set_Forwards_OK (N, False);
631 when NE | Unknown => Set_Backwards_OK (N, False);
632 Set_Forwards_OK (N, False);
633 end case;
634 end if;
635 end if;
637 -- If after that analysis, Forwards_OK is still True, and
638 -- Loop_Required is False, meaning that we have not discovered
639 -- some non-overlap reason for requiring a loop, then we can
640 -- still let gigi handle it.
642 if not Loop_Required then
643 if Forwards_OK (N) then
644 return;
645 else
646 null;
647 -- Here is where a memmove would be appropriate ???
648 end if;
649 end if;
651 -- At this stage we have to generate an explicit loop, and
652 -- we have the following cases:
654 -- Forwards_OK = True
656 -- Rnn : right_index := right_index'First;
657 -- for Lnn in left-index loop
658 -- left (Lnn) := right (Rnn);
659 -- Rnn := right_index'Succ (Rnn);
660 -- end loop;
662 -- Note: the above code MUST be analyzed with checks off,
663 -- because otherwise the Succ could overflow. But in any
664 -- case this is more efficient!
666 -- Forwards_OK = False, Backwards_OK = True
668 -- Rnn : right_index := right_index'Last;
669 -- for Lnn in reverse left-index loop
670 -- left (Lnn) := right (Rnn);
671 -- Rnn := right_index'Pred (Rnn);
672 -- end loop;
674 -- Note: the above code MUST be analyzed with checks off,
675 -- because otherwise the Pred could overflow. But in any
676 -- case this is more efficient!
678 -- Forwards_OK = Backwards_OK = False
680 -- This only happens if we have the same array on each side. It is
681 -- possible to create situations using overlays that violate this,
682 -- but we simply do not promise to get this "right" in this case.
684 -- There are two possible subcases. If the No_Implicit_Conditionals
685 -- restriction is set, then we generate the following code:
687 -- declare
688 -- T : constant <operand-type> := rhs;
689 -- begin
690 -- lhs := T;
691 -- end;
693 -- If implicit conditionals are permitted, then we generate:
695 -- if Left_Lo <= Right_Lo then
696 -- <code for Forwards_OK = True above>
697 -- else
698 -- <code for Backwards_OK = True above>
699 -- end if;
701 -- Cases where either Forwards_OK or Backwards_OK is true
703 if Forwards_OK (N) or else Backwards_OK (N) then
704 if Controlled_Type (Component_Type (L_Type))
705 and then Base_Type (L_Type) = Base_Type (R_Type)
706 and then Ndim = 1
707 and then not No_Ctrl_Actions (N)
708 then
709 declare
710 Proc : constant Entity_Id :=
711 TSS (Base_Type (L_Type), TSS_Slice_Assign);
712 Actuals : List_Id;
714 begin
715 Apply_Dereference (Larray);
716 Apply_Dereference (Rarray);
717 Actuals := New_List (
718 Duplicate_Subexpr (Larray, Name_Req => True),
719 Duplicate_Subexpr (Rarray, Name_Req => True),
720 Duplicate_Subexpr (Left_Lo, Name_Req => True),
721 Duplicate_Subexpr (Left_Hi, Name_Req => True),
722 Duplicate_Subexpr (Right_Lo, Name_Req => True),
723 Duplicate_Subexpr (Right_Hi, Name_Req => True));
725 Append_To (Actuals,
726 New_Occurrence_Of (
727 Boolean_Literals (not Forwards_OK (N)), Loc));
729 Rewrite (N,
730 Make_Procedure_Call_Statement (Loc,
731 Name => New_Reference_To (Proc, Loc),
732 Parameter_Associations => Actuals));
733 end;
735 else
736 Rewrite (N,
737 Expand_Assign_Array_Loop
738 (N, Larray, Rarray, L_Type, R_Type, Ndim,
739 Rev => not Forwards_OK (N)));
740 end if;
742 -- Case of both are false with No_Implicit_Conditionals
744 elsif Restriction_Active (No_Implicit_Conditionals) then
745 declare
746 T : constant Entity_Id :=
747 Make_Defining_Identifier (Loc, Chars => Name_T);
749 begin
750 Rewrite (N,
751 Make_Block_Statement (Loc,
752 Declarations => New_List (
753 Make_Object_Declaration (Loc,
754 Defining_Identifier => T,
755 Constant_Present => True,
756 Object_Definition =>
757 New_Occurrence_Of (Etype (Rhs), Loc),
758 Expression => Relocate_Node (Rhs))),
760 Handled_Statement_Sequence =>
761 Make_Handled_Sequence_Of_Statements (Loc,
762 Statements => New_List (
763 Make_Assignment_Statement (Loc,
764 Name => Relocate_Node (Lhs),
765 Expression => New_Occurrence_Of (T, Loc))))));
766 end;
768 -- Case of both are false with implicit conditionals allowed
770 else
771 -- Before we generate this code, we must ensure that the
772 -- left and right side array types are defined. They may
773 -- be itypes, and we cannot let them be defined inside the
774 -- if, since the first use in the then may not be executed.
776 Ensure_Defined (L_Type, N);
777 Ensure_Defined (R_Type, N);
779 -- We normally compare addresses to find out which way round
780 -- to do the loop, since this is realiable, and handles the
781 -- cases of parameters, conversions etc. But we can't do that
782 -- in the bit packed case or the Java VM case, because addresses
783 -- don't work there.
785 if not Is_Bit_Packed_Array (L_Type) and then not Java_VM then
786 Condition :=
787 Make_Op_Le (Loc,
788 Left_Opnd =>
789 Unchecked_Convert_To (RTE (RE_Integer_Address),
790 Make_Attribute_Reference (Loc,
791 Prefix =>
792 Make_Indexed_Component (Loc,
793 Prefix =>
794 Duplicate_Subexpr_Move_Checks (Larray, True),
795 Expressions => New_List (
796 Make_Attribute_Reference (Loc,
797 Prefix =>
798 New_Reference_To
799 (L_Index_Typ, Loc),
800 Attribute_Name => Name_First))),
801 Attribute_Name => Name_Address)),
803 Right_Opnd =>
804 Unchecked_Convert_To (RTE (RE_Integer_Address),
805 Make_Attribute_Reference (Loc,
806 Prefix =>
807 Make_Indexed_Component (Loc,
808 Prefix =>
809 Duplicate_Subexpr_Move_Checks (Rarray, True),
810 Expressions => New_List (
811 Make_Attribute_Reference (Loc,
812 Prefix =>
813 New_Reference_To
814 (R_Index_Typ, Loc),
815 Attribute_Name => Name_First))),
816 Attribute_Name => Name_Address)));
818 -- For the bit packed and Java VM cases we use the bounds.
819 -- That's OK, because we don't have to worry about parameters,
820 -- since they cannot cause overlap. Perhaps we should worry
821 -- about weird slice conversions ???
823 else
824 -- Copy the bounds and reset the Analyzed flag, because the
825 -- bounds of the index type itself may be universal, and must
826 -- must be reaanalyzed to acquire the proper type for Gigi.
828 Cleft_Lo := New_Copy_Tree (Left_Lo);
829 Cright_Lo := New_Copy_Tree (Right_Lo);
830 Set_Analyzed (Cleft_Lo, False);
831 Set_Analyzed (Cright_Lo, False);
833 Condition :=
834 Make_Op_Le (Loc,
835 Left_Opnd => Cleft_Lo,
836 Right_Opnd => Cright_Lo);
837 end if;
839 if Controlled_Type (Component_Type (L_Type))
840 and then Base_Type (L_Type) = Base_Type (R_Type)
841 and then Ndim = 1
842 and then not No_Ctrl_Actions (N)
843 then
845 -- Call TSS procedure for array assignment, passing the
846 -- the explicit bounds of right and left hand sides.
848 declare
849 Proc : constant Node_Id :=
850 TSS (Base_Type (L_Type), TSS_Slice_Assign);
851 Actuals : List_Id;
853 begin
854 Apply_Dereference (Larray);
855 Apply_Dereference (Rarray);
856 Actuals := New_List (
857 Duplicate_Subexpr (Larray, Name_Req => True),
858 Duplicate_Subexpr (Rarray, Name_Req => True),
859 Duplicate_Subexpr (Left_Lo, Name_Req => True),
860 Duplicate_Subexpr (Left_Hi, Name_Req => True),
861 Duplicate_Subexpr (Right_Lo, Name_Req => True),
862 Duplicate_Subexpr (Right_Hi, Name_Req => True));
864 Append_To (Actuals,
865 Make_Op_Not (Loc,
866 Right_Opnd => Condition));
868 Rewrite (N,
869 Make_Procedure_Call_Statement (Loc,
870 Name => New_Reference_To (Proc, Loc),
871 Parameter_Associations => Actuals));
872 end;
874 else
875 Rewrite (N,
876 Make_Implicit_If_Statement (N,
877 Condition => Condition,
879 Then_Statements => New_List (
880 Expand_Assign_Array_Loop
881 (N, Larray, Rarray, L_Type, R_Type, Ndim,
882 Rev => False)),
884 Else_Statements => New_List (
885 Expand_Assign_Array_Loop
886 (N, Larray, Rarray, L_Type, R_Type, Ndim,
887 Rev => True))));
888 end if;
889 end if;
891 Analyze (N, Suppress => All_Checks);
892 end;
894 exception
895 when RE_Not_Available =>
896 return;
897 end Expand_Assign_Array;
899 ------------------------------
900 -- Expand_Assign_Array_Loop --
901 ------------------------------
903 -- The following is an example of the loop generated for the case of
904 -- a two-dimensional array:
906 -- declare
907 -- R2b : Tm1X1 := 1;
908 -- begin
909 -- for L1b in 1 .. 100 loop
910 -- declare
911 -- R4b : Tm1X2 := 1;
912 -- begin
913 -- for L3b in 1 .. 100 loop
914 -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
915 -- R4b := Tm1X2'succ(R4b);
916 -- end loop;
917 -- end;
918 -- R2b := Tm1X1'succ(R2b);
919 -- end loop;
920 -- end;
922 -- Here Rev is False, and Tm1Xn are the subscript types for the right
923 -- hand side. The declarations of R2b and R4b are inserted before the
924 -- original assignment statement.
926 function Expand_Assign_Array_Loop
927 (N : Node_Id;
928 Larray : Entity_Id;
929 Rarray : Entity_Id;
930 L_Type : Entity_Id;
931 R_Type : Entity_Id;
932 Ndim : Pos;
933 Rev : Boolean) return Node_Id
935 Loc : constant Source_Ptr := Sloc (N);
937 Lnn : array (1 .. Ndim) of Entity_Id;
938 Rnn : array (1 .. Ndim) of Entity_Id;
939 -- Entities used as subscripts on left and right sides
941 L_Index_Type : array (1 .. Ndim) of Entity_Id;
942 R_Index_Type : array (1 .. Ndim) of Entity_Id;
943 -- Left and right index types
945 Assign : Node_Id;
947 F_Or_L : Name_Id;
948 S_Or_P : Name_Id;
950 begin
951 if Rev then
952 F_Or_L := Name_Last;
953 S_Or_P := Name_Pred;
954 else
955 F_Or_L := Name_First;
956 S_Or_P := Name_Succ;
957 end if;
959 -- Setup index types and subscript entities
961 declare
962 L_Index : Node_Id;
963 R_Index : Node_Id;
965 begin
966 L_Index := First_Index (L_Type);
967 R_Index := First_Index (R_Type);
969 for J in 1 .. Ndim loop
970 Lnn (J) :=
971 Make_Defining_Identifier (Loc,
972 Chars => New_Internal_Name ('L'));
974 Rnn (J) :=
975 Make_Defining_Identifier (Loc,
976 Chars => New_Internal_Name ('R'));
978 L_Index_Type (J) := Etype (L_Index);
979 R_Index_Type (J) := Etype (R_Index);
981 Next_Index (L_Index);
982 Next_Index (R_Index);
983 end loop;
984 end;
986 -- Now construct the assignment statement
988 declare
989 ExprL : constant List_Id := New_List;
990 ExprR : constant List_Id := New_List;
992 begin
993 for J in 1 .. Ndim loop
994 Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
995 Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
996 end loop;
998 Assign :=
999 Make_Assignment_Statement (Loc,
1000 Name =>
1001 Make_Indexed_Component (Loc,
1002 Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
1003 Expressions => ExprL),
1004 Expression =>
1005 Make_Indexed_Component (Loc,
1006 Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
1007 Expressions => ExprR));
1009 -- We set assignment OK, since there are some cases, e.g. in object
1010 -- declarations, where we are actually assigning into a constant.
1011 -- If there really is an illegality, it was caught long before now,
1012 -- and was flagged when the original assignment was analyzed.
1014 Set_Assignment_OK (Name (Assign));
1016 -- Propagate the No_Ctrl_Actions flag to individual assignments
1018 Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
1019 end;
1021 -- Now construct the loop from the inside out, with the last subscript
1022 -- varying most rapidly. Note that Assign is first the raw assignment
1023 -- statement, and then subsequently the loop that wraps it up.
1025 for J in reverse 1 .. Ndim loop
1026 Assign :=
1027 Make_Block_Statement (Loc,
1028 Declarations => New_List (
1029 Make_Object_Declaration (Loc,
1030 Defining_Identifier => Rnn (J),
1031 Object_Definition =>
1032 New_Occurrence_Of (R_Index_Type (J), Loc),
1033 Expression =>
1034 Make_Attribute_Reference (Loc,
1035 Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
1036 Attribute_Name => F_Or_L))),
1038 Handled_Statement_Sequence =>
1039 Make_Handled_Sequence_Of_Statements (Loc,
1040 Statements => New_List (
1041 Make_Implicit_Loop_Statement (N,
1042 Iteration_Scheme =>
1043 Make_Iteration_Scheme (Loc,
1044 Loop_Parameter_Specification =>
1045 Make_Loop_Parameter_Specification (Loc,
1046 Defining_Identifier => Lnn (J),
1047 Reverse_Present => Rev,
1048 Discrete_Subtype_Definition =>
1049 New_Reference_To (L_Index_Type (J), Loc))),
1051 Statements => New_List (
1052 Assign,
1054 Make_Assignment_Statement (Loc,
1055 Name => New_Occurrence_Of (Rnn (J), Loc),
1056 Expression =>
1057 Make_Attribute_Reference (Loc,
1058 Prefix =>
1059 New_Occurrence_Of (R_Index_Type (J), Loc),
1060 Attribute_Name => S_Or_P,
1061 Expressions => New_List (
1062 New_Occurrence_Of (Rnn (J), Loc)))))))));
1063 end loop;
1065 return Assign;
1066 end Expand_Assign_Array_Loop;
1068 --------------------------
1069 -- Expand_Assign_Record --
1070 --------------------------
1072 -- The only processing required is in the change of representation
1073 -- case, where we must expand the assignment to a series of field
1074 -- by field assignments.
1076 procedure Expand_Assign_Record (N : Node_Id) is
1077 Lhs : constant Node_Id := Name (N);
1078 Rhs : Node_Id := Expression (N);
1080 begin
1081 -- If change of representation, then extract the real right hand
1082 -- side from the type conversion, and proceed with component-wise
1083 -- assignment, since the two types are not the same as far as the
1084 -- back end is concerned.
1086 if Change_Of_Representation (N) then
1087 Rhs := Expression (Rhs);
1089 -- If this may be a case of a large bit aligned component, then
1090 -- proceed with component-wise assignment, to avoid possible
1091 -- clobbering of other components sharing bits in the first or
1092 -- last byte of the component to be assigned.
1094 elsif Possible_Bit_Aligned_Component (Lhs)
1096 Possible_Bit_Aligned_Component (Rhs)
1097 then
1098 null;
1100 -- If neither condition met, then nothing special to do, the back end
1101 -- can handle assignment of the entire component as a single entity.
1103 else
1104 return;
1105 end if;
1107 -- At this stage we know that we must do a component wise assignment
1109 declare
1110 Loc : constant Source_Ptr := Sloc (N);
1111 R_Typ : constant Entity_Id := Base_Type (Etype (Rhs));
1112 L_Typ : constant Entity_Id := Base_Type (Etype (Lhs));
1113 Decl : constant Node_Id := Declaration_Node (R_Typ);
1114 RDef : Node_Id;
1115 F : Entity_Id;
1117 function Find_Component
1118 (Typ : Entity_Id;
1119 Comp : Entity_Id) return Entity_Id;
1120 -- Find the component with the given name in the underlying record
1121 -- declaration for Typ. We need to use the actual entity because
1122 -- the type may be private and resolution by identifier alone would
1123 -- fail.
1125 function Make_Component_List_Assign
1126 (CL : Node_Id;
1127 U_U : Boolean := False) return List_Id;
1128 -- Returns a sequence of statements to assign the components that
1129 -- are referenced in the given component list. The flag U_U is
1130 -- used to force the usage of the inferred value of the variant
1131 -- part expression as the switch for the generated case statement.
1133 function Make_Field_Assign
1134 (C : Entity_Id;
1135 U_U : Boolean := False) return Node_Id;
1136 -- Given C, the entity for a discriminant or component, build an
1137 -- assignment for the corresponding field values. The flag U_U
1138 -- signals the presence of an Unchecked_Union and forces the usage
1139 -- of the inferred discriminant value of C as the right hand side
1140 -- of the assignment.
1142 function Make_Field_Assigns (CI : List_Id) return List_Id;
1143 -- Given CI, a component items list, construct series of statements
1144 -- for fieldwise assignment of the corresponding components.
1146 --------------------
1147 -- Find_Component --
1148 --------------------
1150 function Find_Component
1151 (Typ : Entity_Id;
1152 Comp : Entity_Id) return Entity_Id
1154 Utyp : constant Entity_Id := Underlying_Type (Typ);
1155 C : Entity_Id;
1157 begin
1158 C := First_Entity (Utyp);
1160 while Present (C) loop
1161 if Chars (C) = Chars (Comp) then
1162 return C;
1163 end if;
1164 Next_Entity (C);
1165 end loop;
1167 raise Program_Error;
1168 end Find_Component;
1170 --------------------------------
1171 -- Make_Component_List_Assign --
1172 --------------------------------
1174 function Make_Component_List_Assign
1175 (CL : Node_Id;
1176 U_U : Boolean := False) return List_Id
1178 CI : constant List_Id := Component_Items (CL);
1179 VP : constant Node_Id := Variant_Part (CL);
1181 Alts : List_Id;
1182 DC : Node_Id;
1183 DCH : List_Id;
1184 Expr : Node_Id;
1185 Result : List_Id;
1186 V : Node_Id;
1188 begin
1189 Result := Make_Field_Assigns (CI);
1191 if Present (VP) then
1193 V := First_Non_Pragma (Variants (VP));
1194 Alts := New_List;
1195 while Present (V) loop
1197 DCH := New_List;
1198 DC := First (Discrete_Choices (V));
1199 while Present (DC) loop
1200 Append_To (DCH, New_Copy_Tree (DC));
1201 Next (DC);
1202 end loop;
1204 Append_To (Alts,
1205 Make_Case_Statement_Alternative (Loc,
1206 Discrete_Choices => DCH,
1207 Statements =>
1208 Make_Component_List_Assign (Component_List (V))));
1209 Next_Non_Pragma (V);
1210 end loop;
1212 -- If we have an Unchecked_Union, use the value of the inferred
1213 -- discriminant of the variant part expression as the switch
1214 -- for the case statement. The case statement may later be
1215 -- folded.
1217 if U_U then
1218 Expr :=
1219 New_Copy (Get_Discriminant_Value (
1220 Entity (Name (VP)),
1221 Etype (Rhs),
1222 Discriminant_Constraint (Etype (Rhs))));
1223 else
1224 Expr :=
1225 Make_Selected_Component (Loc,
1226 Prefix => Duplicate_Subexpr (Rhs),
1227 Selector_Name =>
1228 Make_Identifier (Loc, Chars (Name (VP))));
1229 end if;
1231 Append_To (Result,
1232 Make_Case_Statement (Loc,
1233 Expression => Expr,
1234 Alternatives => Alts));
1235 end if;
1237 return Result;
1238 end Make_Component_List_Assign;
1240 -----------------------
1241 -- Make_Field_Assign --
1242 -----------------------
1244 function Make_Field_Assign
1245 (C : Entity_Id;
1246 U_U : Boolean := False) return Node_Id
1248 A : Node_Id;
1249 Expr : Node_Id;
1251 begin
1252 -- In the case of an Unchecked_Union, use the discriminant
1253 -- constraint value as on the right hand side of the assignment.
1255 if U_U then
1256 Expr :=
1257 New_Copy (Get_Discriminant_Value (C,
1258 Etype (Rhs),
1259 Discriminant_Constraint (Etype (Rhs))));
1260 else
1261 Expr :=
1262 Make_Selected_Component (Loc,
1263 Prefix => Duplicate_Subexpr (Rhs),
1264 Selector_Name => New_Occurrence_Of (C, Loc));
1265 end if;
1267 A :=
1268 Make_Assignment_Statement (Loc,
1269 Name =>
1270 Make_Selected_Component (Loc,
1271 Prefix => Duplicate_Subexpr (Lhs),
1272 Selector_Name =>
1273 New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
1274 Expression => Expr);
1276 -- Set Assignment_OK, so discriminants can be assigned
1278 Set_Assignment_OK (Name (A), True);
1279 return A;
1280 end Make_Field_Assign;
1282 ------------------------
1283 -- Make_Field_Assigns --
1284 ------------------------
1286 function Make_Field_Assigns (CI : List_Id) return List_Id is
1287 Item : Node_Id;
1288 Result : List_Id;
1290 begin
1291 Item := First (CI);
1292 Result := New_List;
1293 while Present (Item) loop
1294 if Nkind (Item) = N_Component_Declaration then
1295 Append_To
1296 (Result, Make_Field_Assign (Defining_Identifier (Item)));
1297 end if;
1299 Next (Item);
1300 end loop;
1302 return Result;
1303 end Make_Field_Assigns;
1305 -- Start of processing for Expand_Assign_Record
1307 begin
1308 -- Note that we use the base types for this processing. This results
1309 -- in some extra work in the constrained case, but the change of
1310 -- representation case is so unusual that it is not worth the effort.
1312 -- First copy the discriminants. This is done unconditionally. It
1313 -- is required in the unconstrained left side case, and also in the
1314 -- case where this assignment was constructed during the expansion
1315 -- of a type conversion (since initialization of discriminants is
1316 -- suppressed in this case). It is unnecessary but harmless in
1317 -- other cases.
1319 if Has_Discriminants (L_Typ) then
1320 F := First_Discriminant (R_Typ);
1321 while Present (F) loop
1323 if Is_Unchecked_Union (Base_Type (R_Typ)) then
1324 Insert_Action (N, Make_Field_Assign (F, True));
1325 else
1326 Insert_Action (N, Make_Field_Assign (F));
1327 end if;
1329 Next_Discriminant (F);
1330 end loop;
1331 end if;
1333 -- We know the underlying type is a record, but its current view
1334 -- may be private. We must retrieve the usable record declaration.
1336 if Nkind (Decl) = N_Private_Type_Declaration
1337 and then Present (Full_View (R_Typ))
1338 then
1339 RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
1340 else
1341 RDef := Type_Definition (Decl);
1342 end if;
1344 if Nkind (RDef) = N_Record_Definition
1345 and then Present (Component_List (RDef))
1346 then
1348 if Is_Unchecked_Union (R_Typ) then
1349 Insert_Actions (N,
1350 Make_Component_List_Assign (Component_List (RDef), True));
1351 else
1352 Insert_Actions
1353 (N, Make_Component_List_Assign (Component_List (RDef)));
1354 end if;
1356 Rewrite (N, Make_Null_Statement (Loc));
1357 end if;
1359 end;
1360 end Expand_Assign_Record;
1362 -----------------------------------
1363 -- Expand_N_Assignment_Statement --
1364 -----------------------------------
1366 -- This procedure implements various cases where an assignment statement
1367 -- cannot just be passed on to the back end in untransformed state.
1369 procedure Expand_N_Assignment_Statement (N : Node_Id) is
1370 Loc : constant Source_Ptr := Sloc (N);
1371 Lhs : constant Node_Id := Name (N);
1372 Rhs : constant Node_Id := Expression (N);
1373 Typ : constant Entity_Id := Underlying_Type (Etype (Lhs));
1374 Exp : Node_Id;
1376 begin
1377 -- First deal with generation of range check if required. For now
1378 -- we do this only for discrete types.
1380 if Do_Range_Check (Rhs)
1381 and then Is_Discrete_Type (Typ)
1382 then
1383 Set_Do_Range_Check (Rhs, False);
1384 Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
1385 end if;
1387 -- Check for a special case where a high level transformation is
1388 -- required. If we have either of:
1390 -- P.field := rhs;
1391 -- P (sub) := rhs;
1393 -- where P is a reference to a bit packed array, then we have to unwind
1394 -- the assignment. The exact meaning of being a reference to a bit
1395 -- packed array is as follows:
1397 -- An indexed component whose prefix is a bit packed array is a
1398 -- reference to a bit packed array.
1400 -- An indexed component or selected component whose prefix is a
1401 -- reference to a bit packed array is itself a reference ot a
1402 -- bit packed array.
1404 -- The required transformation is
1406 -- Tnn : prefix_type := P;
1407 -- Tnn.field := rhs;
1408 -- P := Tnn;
1410 -- or
1412 -- Tnn : prefix_type := P;
1413 -- Tnn (subscr) := rhs;
1414 -- P := Tnn;
1416 -- Since P is going to be evaluated more than once, any subscripts
1417 -- in P must have their evaluation forced.
1419 if (Nkind (Lhs) = N_Indexed_Component
1420 or else
1421 Nkind (Lhs) = N_Selected_Component)
1422 and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
1423 then
1424 declare
1425 BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs));
1426 BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr);
1427 Tnn : constant Entity_Id :=
1428 Make_Defining_Identifier (Loc,
1429 Chars => New_Internal_Name ('T'));
1431 begin
1432 -- Insert the post assignment first, because we want to copy
1433 -- the BPAR_Expr tree before it gets analyzed in the context
1434 -- of the pre assignment. Note that we do not analyze the
1435 -- post assignment yet (we cannot till we have completed the
1436 -- analysis of the pre assignment). As usual, the analysis
1437 -- of this post assignment will happen on its own when we
1438 -- "run into" it after finishing the current assignment.
1440 Insert_After (N,
1441 Make_Assignment_Statement (Loc,
1442 Name => New_Copy_Tree (BPAR_Expr),
1443 Expression => New_Occurrence_Of (Tnn, Loc)));
1445 -- At this stage BPAR_Expr is a reference to a bit packed
1446 -- array where the reference was not expanded in the original
1447 -- tree, since it was on the left side of an assignment. But
1448 -- in the pre-assignment statement (the object definition),
1449 -- BPAR_Expr will end up on the right hand side, and must be
1450 -- reexpanded. To achieve this, we reset the analyzed flag
1451 -- of all selected and indexed components down to the actual
1452 -- indexed component for the packed array.
1454 Exp := BPAR_Expr;
1455 loop
1456 Set_Analyzed (Exp, False);
1458 if Nkind (Exp) = N_Selected_Component
1459 or else
1460 Nkind (Exp) = N_Indexed_Component
1461 then
1462 Exp := Prefix (Exp);
1463 else
1464 exit;
1465 end if;
1466 end loop;
1468 -- Now we can insert and analyze the pre-assignment
1470 -- If the right-hand side requires a transient scope, it has
1471 -- already been placed on the stack. However, the declaration is
1472 -- inserted in the tree outside of this scope, and must reflect
1473 -- the proper scope for its variable. This awkward bit is forced
1474 -- by the stricter scope discipline imposed by GCC 2.97.
1476 declare
1477 Uses_Transient_Scope : constant Boolean :=
1478 Scope_Is_Transient
1479 and then N = Node_To_Be_Wrapped;
1481 begin
1482 if Uses_Transient_Scope then
1483 New_Scope (Scope (Current_Scope));
1484 end if;
1486 Insert_Before_And_Analyze (N,
1487 Make_Object_Declaration (Loc,
1488 Defining_Identifier => Tnn,
1489 Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc),
1490 Expression => BPAR_Expr));
1492 if Uses_Transient_Scope then
1493 Pop_Scope;
1494 end if;
1495 end;
1497 -- Now fix up the original assignment and continue processing
1499 Rewrite (Prefix (Lhs),
1500 New_Occurrence_Of (Tnn, Loc));
1502 -- We do not need to reanalyze that assignment, and we do not need
1503 -- to worry about references to the temporary, but we do need to
1504 -- make sure that the temporary is not marked as a true constant
1505 -- since we now have a generate assignment to it!
1507 Set_Is_True_Constant (Tnn, False);
1508 end;
1509 end if;
1511 -- When we have the appropriate type of aggregate in the
1512 -- expression (it has been determined during analysis of the
1513 -- aggregate by setting the delay flag), let's perform in place
1514 -- assignment and thus avoid creating a temporay.
1516 if Is_Delayed_Aggregate (Rhs) then
1517 Convert_Aggr_In_Assignment (N);
1518 Rewrite (N, Make_Null_Statement (Loc));
1519 Analyze (N);
1520 return;
1521 end if;
1523 -- Apply discriminant check if required. If Lhs is an access type
1524 -- to a designated type with discriminants, we must always check.
1526 if Has_Discriminants (Etype (Lhs)) then
1528 -- Skip discriminant check if change of representation. Will be
1529 -- done when the change of representation is expanded out.
1531 if not Change_Of_Representation (N) then
1532 Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
1533 end if;
1535 -- If the type is private without discriminants, and the full type
1536 -- has discriminants (necessarily with defaults) a check may still be
1537 -- necessary if the Lhs is aliased. The private determinants must be
1538 -- visible to build the discriminant constraints.
1540 -- Only an explicit dereference that comes from source indicates
1541 -- aliasing. Access to formals of protected operations and entries
1542 -- create dereferences but are not semantic aliasings.
1544 elsif Is_Private_Type (Etype (Lhs))
1545 and then Has_Discriminants (Typ)
1546 and then Nkind (Lhs) = N_Explicit_Dereference
1547 and then Comes_From_Source (Lhs)
1548 then
1549 declare
1550 Lt : constant Entity_Id := Etype (Lhs);
1551 begin
1552 Set_Etype (Lhs, Typ);
1553 Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1554 Apply_Discriminant_Check (Rhs, Typ, Lhs);
1555 Set_Etype (Lhs, Lt);
1556 end;
1558 -- If the Lhs has a private type with unknown discriminants, it
1559 -- may have a full view with discriminants, but those are nameable
1560 -- only in the underlying type, so convert the Rhs to it before
1561 -- potential checking.
1563 elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
1564 and then Has_Discriminants (Typ)
1565 then
1566 Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1567 Apply_Discriminant_Check (Rhs, Typ, Lhs);
1569 -- In the access type case, we need the same discriminant check,
1570 -- and also range checks if we have an access to constrained array.
1572 elsif Is_Access_Type (Etype (Lhs))
1573 and then Is_Constrained (Designated_Type (Etype (Lhs)))
1574 then
1575 if Has_Discriminants (Designated_Type (Etype (Lhs))) then
1577 -- Skip discriminant check if change of representation. Will be
1578 -- done when the change of representation is expanded out.
1580 if not Change_Of_Representation (N) then
1581 Apply_Discriminant_Check (Rhs, Etype (Lhs));
1582 end if;
1584 elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
1585 Apply_Range_Check (Rhs, Etype (Lhs));
1587 if Is_Constrained (Etype (Lhs)) then
1588 Apply_Length_Check (Rhs, Etype (Lhs));
1589 end if;
1591 if Nkind (Rhs) = N_Allocator then
1592 declare
1593 Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
1594 C_Es : Check_Result;
1596 begin
1597 C_Es :=
1598 Range_Check
1599 (Lhs,
1600 Target_Typ,
1601 Etype (Designated_Type (Etype (Lhs))));
1603 Insert_Range_Checks
1604 (C_Es,
1606 Target_Typ,
1607 Sloc (Lhs),
1608 Lhs);
1609 end;
1610 end if;
1611 end if;
1613 -- Apply range check for access type case
1615 elsif Is_Access_Type (Etype (Lhs))
1616 and then Nkind (Rhs) = N_Allocator
1617 and then Nkind (Expression (Rhs)) = N_Qualified_Expression
1618 then
1619 Analyze_And_Resolve (Expression (Rhs));
1620 Apply_Range_Check
1621 (Expression (Rhs), Designated_Type (Etype (Lhs)));
1622 end if;
1624 -- Ada 2005 (AI-231): Generate the run-time check
1626 if Is_Access_Type (Typ)
1627 and then Can_Never_Be_Null (Etype (Lhs))
1628 and then not Can_Never_Be_Null (Etype (Rhs))
1629 then
1630 Apply_Constraint_Check (Rhs, Etype (Lhs));
1631 end if;
1633 -- If we are assigning an access type and the left side is an
1634 -- entity, then make sure that Is_Known_Non_Null properly
1635 -- reflects the state of the entity after the assignment
1637 if Is_Access_Type (Typ)
1638 and then Is_Entity_Name (Lhs)
1639 and then Known_Non_Null (Rhs)
1640 and then Safe_To_Capture_Value (N, Entity (Lhs))
1641 then
1642 Set_Is_Known_Non_Null (Entity (Lhs), Known_Non_Null (Rhs));
1643 end if;
1645 -- Case of assignment to a bit packed array element
1647 if Nkind (Lhs) = N_Indexed_Component
1648 and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
1649 then
1650 Expand_Bit_Packed_Element_Set (N);
1651 return;
1653 elsif Is_Tagged_Type (Typ)
1654 or else (Controlled_Type (Typ) and then not Is_Array_Type (Typ))
1655 then
1656 Tagged_Case : declare
1657 L : List_Id := No_List;
1658 Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
1660 begin
1661 -- In the controlled case, we need to make sure that function
1662 -- calls are evaluated before finalizing the target. In all
1663 -- cases, it makes the expansion easier if the side-effects
1664 -- are removed first.
1666 Remove_Side_Effects (Lhs);
1667 Remove_Side_Effects (Rhs);
1669 -- Avoid recursion in the mechanism
1671 Set_Analyzed (N);
1673 -- If dispatching assignment, we need to dispatch to _assign
1675 if Is_Class_Wide_Type (Typ)
1677 -- If the type is tagged, we may as well use the predefined
1678 -- primitive assignment. This avoids inlining a lot of code
1679 -- and in the class-wide case, the assignment is replaced by
1680 -- dispatch call to _assign. Note that this cannot be done
1681 -- when discriminant checks are locally suppressed (as in
1682 -- extension aggregate expansions) because otherwise the
1683 -- discriminant check will be performed within the _assign
1684 -- call. It is also suppressed for assignmments created by the
1685 -- expander that correspond to initializations, where we do
1686 -- want to copy the tag (No_Ctrl_Actions flag set True).
1687 -- by the expander and we do not need to mess with tags ever
1688 -- (Expand_Ctrl_Actions flag is set True in this case).
1690 or else (Is_Tagged_Type (Typ)
1691 and then Chars (Current_Scope) /= Name_uAssign
1692 and then Expand_Ctrl_Actions
1693 and then not Discriminant_Checks_Suppressed (Empty))
1694 then
1695 -- Fetch the primitive op _assign and proper type to call
1696 -- it. Because of possible conflits between private and
1697 -- full view the proper type is fetched directly from the
1698 -- operation profile.
1700 declare
1701 Op : constant Entity_Id :=
1702 Find_Prim_Op (Typ, Name_uAssign);
1703 F_Typ : Entity_Id := Etype (First_Formal (Op));
1705 begin
1706 -- If the assignment is dispatching, make sure to use the
1707 -- ??? where is rest of this comment ???
1709 if Is_Class_Wide_Type (Typ) then
1710 F_Typ := Class_Wide_Type (F_Typ);
1711 end if;
1713 L := New_List (
1714 Make_Procedure_Call_Statement (Loc,
1715 Name => New_Reference_To (Op, Loc),
1716 Parameter_Associations => New_List (
1717 Unchecked_Convert_To (F_Typ, Duplicate_Subexpr (Lhs)),
1718 Unchecked_Convert_To (F_Typ,
1719 Duplicate_Subexpr (Rhs)))));
1720 end;
1722 else
1723 L := Make_Tag_Ctrl_Assignment (N);
1725 -- We can't afford to have destructive Finalization Actions
1726 -- in the Self assignment case, so if the target and the
1727 -- source are not obviously different, code is generated to
1728 -- avoid the self assignment case
1730 -- if lhs'address /= rhs'address then
1731 -- <code for controlled and/or tagged assignment>
1732 -- end if;
1734 if not Statically_Different (Lhs, Rhs)
1735 and then Expand_Ctrl_Actions
1736 then
1737 L := New_List (
1738 Make_Implicit_If_Statement (N,
1739 Condition =>
1740 Make_Op_Ne (Loc,
1741 Left_Opnd =>
1742 Make_Attribute_Reference (Loc,
1743 Prefix => Duplicate_Subexpr (Lhs),
1744 Attribute_Name => Name_Address),
1746 Right_Opnd =>
1747 Make_Attribute_Reference (Loc,
1748 Prefix => Duplicate_Subexpr (Rhs),
1749 Attribute_Name => Name_Address)),
1751 Then_Statements => L));
1752 end if;
1754 -- We need to set up an exception handler for implementing
1755 -- 7.6.1 (18). The remaining adjustments are tackled by the
1756 -- implementation of adjust for record_controllers (see
1757 -- s-finimp.adb)
1759 -- This is skipped if we have no finalization
1761 if Expand_Ctrl_Actions
1762 and then not Restriction_Active (No_Finalization)
1763 then
1764 L := New_List (
1765 Make_Block_Statement (Loc,
1766 Handled_Statement_Sequence =>
1767 Make_Handled_Sequence_Of_Statements (Loc,
1768 Statements => L,
1769 Exception_Handlers => New_List (
1770 Make_Exception_Handler (Loc,
1771 Exception_Choices =>
1772 New_List (Make_Others_Choice (Loc)),
1773 Statements => New_List (
1774 Make_Raise_Program_Error (Loc,
1775 Reason =>
1776 PE_Finalize_Raised_Exception)
1777 ))))));
1778 end if;
1779 end if;
1781 Rewrite (N,
1782 Make_Block_Statement (Loc,
1783 Handled_Statement_Sequence =>
1784 Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
1786 -- If no restrictions on aborts, protect the whole assignement
1787 -- for controlled objects as per 9.8(11)
1789 if Controlled_Type (Typ)
1790 and then Expand_Ctrl_Actions
1791 and then Abort_Allowed
1792 then
1793 declare
1794 Blk : constant Entity_Id :=
1795 New_Internal_Entity
1796 (E_Block, Current_Scope, Sloc (N), 'B');
1798 begin
1799 Set_Scope (Blk, Current_Scope);
1800 Set_Etype (Blk, Standard_Void_Type);
1801 Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
1803 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
1804 Set_At_End_Proc (Handled_Statement_Sequence (N),
1805 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
1806 Expand_At_End_Handler
1807 (Handled_Statement_Sequence (N), Blk);
1808 end;
1809 end if;
1811 Analyze (N);
1812 return;
1813 end Tagged_Case;
1815 -- Array types
1817 elsif Is_Array_Type (Typ) then
1818 declare
1819 Actual_Rhs : Node_Id := Rhs;
1821 begin
1822 while Nkind (Actual_Rhs) = N_Type_Conversion
1823 or else
1824 Nkind (Actual_Rhs) = N_Qualified_Expression
1825 loop
1826 Actual_Rhs := Expression (Actual_Rhs);
1827 end loop;
1829 Expand_Assign_Array (N, Actual_Rhs);
1830 return;
1831 end;
1833 -- Record types
1835 elsif Is_Record_Type (Typ) then
1836 Expand_Assign_Record (N);
1837 return;
1839 -- Scalar types. This is where we perform the processing related
1840 -- to the requirements of (RM 13.9.1(9-11)) concerning the handling
1841 -- of invalid scalar values.
1843 elsif Is_Scalar_Type (Typ) then
1845 -- Case where right side is known valid
1847 if Expr_Known_Valid (Rhs) then
1849 -- Here the right side is valid, so it is fine. The case to
1850 -- deal with is when the left side is a local variable reference
1851 -- whose value is not currently known to be valid. If this is
1852 -- the case, and the assignment appears in an unconditional
1853 -- context, then we can mark the left side as now being valid.
1855 if Is_Local_Variable_Reference (Lhs)
1856 and then not Is_Known_Valid (Entity (Lhs))
1857 and then In_Unconditional_Context (N)
1858 then
1859 Set_Is_Known_Valid (Entity (Lhs), True);
1860 end if;
1862 -- Case where right side may be invalid in the sense of the RM
1863 -- reference above. The RM does not require that we check for
1864 -- the validity on an assignment, but it does require that the
1865 -- assignment of an invalid value not cause erroneous behavior.
1867 -- The general approach in GNAT is to use the Is_Known_Valid flag
1868 -- to avoid the need for validity checking on assignments. However
1869 -- in some cases, we have to do validity checking in order to make
1870 -- sure that the setting of this flag is correct.
1872 else
1873 -- Validate right side if we are validating copies
1875 if Validity_Checks_On
1876 and then Validity_Check_Copies
1877 then
1878 Ensure_Valid (Rhs);
1880 -- We can propagate this to the left side where appropriate
1882 if Is_Local_Variable_Reference (Lhs)
1883 and then not Is_Known_Valid (Entity (Lhs))
1884 and then In_Unconditional_Context (N)
1885 then
1886 Set_Is_Known_Valid (Entity (Lhs), True);
1887 end if;
1889 -- Otherwise check to see what should be done
1891 -- If left side is a local variable, then we just set its
1892 -- flag to indicate that its value may no longer be valid,
1893 -- since we are copying a potentially invalid value.
1895 elsif Is_Local_Variable_Reference (Lhs) then
1896 Set_Is_Known_Valid (Entity (Lhs), False);
1898 -- Check for case of a nonlocal variable on the left side
1899 -- which is currently known to be valid. In this case, we
1900 -- simply ensure that the right side is valid. We only play
1901 -- the game of copying validity status for local variables,
1902 -- since we are doing this statically, not by tracing the
1903 -- full flow graph.
1905 elsif Is_Entity_Name (Lhs)
1906 and then Is_Known_Valid (Entity (Lhs))
1907 then
1908 -- Note that the Ensure_Valid call is ignored if the
1909 -- Validity_Checking mode is set to none so we do not
1910 -- need to worry about that case here.
1912 Ensure_Valid (Rhs);
1914 -- In all other cases, we can safely copy an invalid value
1915 -- without worrying about the status of the left side. Since
1916 -- it is not a variable reference it will not be considered
1917 -- as being known to be valid in any case.
1919 else
1920 null;
1921 end if;
1922 end if;
1923 end if;
1925 -- Defend against invalid subscripts on left side if we are in
1926 -- standard validity checking mode. No need to do this if we
1927 -- are checking all subscripts.
1929 if Validity_Checks_On
1930 and then Validity_Check_Default
1931 and then not Validity_Check_Subscripts
1932 then
1933 Check_Valid_Lvalue_Subscripts (Lhs);
1934 end if;
1936 exception
1937 when RE_Not_Available =>
1938 return;
1939 end Expand_N_Assignment_Statement;
1941 ------------------------------
1942 -- Expand_N_Block_Statement --
1943 ------------------------------
1945 -- Encode entity names defined in block statement
1947 procedure Expand_N_Block_Statement (N : Node_Id) is
1948 begin
1949 Qualify_Entity_Names (N);
1950 end Expand_N_Block_Statement;
1952 -----------------------------
1953 -- Expand_N_Case_Statement --
1954 -----------------------------
1956 procedure Expand_N_Case_Statement (N : Node_Id) is
1957 Loc : constant Source_Ptr := Sloc (N);
1958 Expr : constant Node_Id := Expression (N);
1959 Alt : Node_Id;
1960 Len : Nat;
1961 Cond : Node_Id;
1962 Choice : Node_Id;
1963 Chlist : List_Id;
1965 begin
1966 -- Check for the situation where we know at compile time which
1967 -- branch will be taken
1969 if Compile_Time_Known_Value (Expr) then
1970 Alt := Find_Static_Alternative (N);
1972 -- Move the statements from this alternative after the case
1973 -- statement. They are already analyzed, so will be skipped
1974 -- by the analyzer.
1976 Insert_List_After (N, Statements (Alt));
1978 -- That leaves the case statement as a shell. The alternative
1979 -- that will be executed is reset to a null list. So now we can
1980 -- kill the entire case statement.
1982 Kill_Dead_Code (Expression (N));
1983 Kill_Dead_Code (Alternatives (N));
1984 Rewrite (N, Make_Null_Statement (Loc));
1985 return;
1986 end if;
1988 -- Here if the choice is not determined at compile time
1990 declare
1991 Last_Alt : constant Node_Id := Last (Alternatives (N));
1993 Others_Present : Boolean;
1994 Others_Node : Node_Id;
1996 Then_Stms : List_Id;
1997 Else_Stms : List_Id;
1999 begin
2000 if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
2001 Others_Present := True;
2002 Others_Node := Last_Alt;
2003 else
2004 Others_Present := False;
2005 end if;
2007 -- First step is to worry about possible invalid argument. The RM
2008 -- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
2009 -- outside the base range), then Constraint_Error must be raised.
2011 -- Case of validity check required (validity checks are on, the
2012 -- expression is not known to be valid, and the case statement
2013 -- comes from source -- no need to validity check internally
2014 -- generated case statements).
2016 if Validity_Check_Default then
2017 Ensure_Valid (Expr);
2018 end if;
2020 -- If there is only a single alternative, just replace it with
2021 -- the sequence of statements since obviously that is what is
2022 -- going to be executed in all cases.
2024 Len := List_Length (Alternatives (N));
2026 if Len = 1 then
2027 -- We still need to evaluate the expression if it has any
2028 -- side effects.
2030 Remove_Side_Effects (Expression (N));
2032 Insert_List_After (N, Statements (First (Alternatives (N))));
2034 -- That leaves the case statement as a shell. The alternative
2035 -- that will be executed is reset to a null list. So now we can
2036 -- kill the entire case statement.
2038 Kill_Dead_Code (Expression (N));
2039 Rewrite (N, Make_Null_Statement (Loc));
2040 return;
2041 end if;
2043 -- An optimization. If there are only two alternatives, and only
2044 -- a single choice, then rewrite the whole case statement as an
2045 -- if statement, since this can result in susbequent optimizations.
2046 -- This helps not only with case statements in the source of a
2047 -- simple form, but also with generated code (discriminant check
2048 -- functions in particular)
2050 if Len = 2 then
2051 Chlist := Discrete_Choices (First (Alternatives (N)));
2053 if List_Length (Chlist) = 1 then
2054 Choice := First (Chlist);
2056 Then_Stms := Statements (First (Alternatives (N)));
2057 Else_Stms := Statements (Last (Alternatives (N)));
2059 -- For TRUE, generate "expression", not expression = true
2061 if Nkind (Choice) = N_Identifier
2062 and then Entity (Choice) = Standard_True
2063 then
2064 Cond := Expression (N);
2066 -- For FALSE, generate "expression" and switch then/else
2068 elsif Nkind (Choice) = N_Identifier
2069 and then Entity (Choice) = Standard_False
2070 then
2071 Cond := Expression (N);
2072 Else_Stms := Statements (First (Alternatives (N)));
2073 Then_Stms := Statements (Last (Alternatives (N)));
2075 -- For a range, generate "expression in range"
2077 elsif Nkind (Choice) = N_Range
2078 or else (Nkind (Choice) = N_Attribute_Reference
2079 and then Attribute_Name (Choice) = Name_Range)
2080 or else (Is_Entity_Name (Choice)
2081 and then Is_Type (Entity (Choice)))
2082 or else Nkind (Choice) = N_Subtype_Indication
2083 then
2084 Cond :=
2085 Make_In (Loc,
2086 Left_Opnd => Expression (N),
2087 Right_Opnd => Relocate_Node (Choice));
2089 -- For any other subexpression "expression = value"
2091 else
2092 Cond :=
2093 Make_Op_Eq (Loc,
2094 Left_Opnd => Expression (N),
2095 Right_Opnd => Relocate_Node (Choice));
2096 end if;
2098 -- Now rewrite the case as an IF
2100 Rewrite (N,
2101 Make_If_Statement (Loc,
2102 Condition => Cond,
2103 Then_Statements => Then_Stms,
2104 Else_Statements => Else_Stms));
2105 Analyze (N);
2106 return;
2107 end if;
2108 end if;
2110 -- If the last alternative is not an Others choice, replace it
2111 -- with an N_Others_Choice. Note that we do not bother to call
2112 -- Analyze on the modified case statement, since it's only effect
2113 -- would be to compute the contents of the Others_Discrete_Choices
2114 -- which is not needed by the back end anyway.
2116 -- The reason we do this is that the back end always needs some
2117 -- default for a switch, so if we have not supplied one in the
2118 -- processing above for validity checking, then we need to
2119 -- supply one here.
2121 if not Others_Present then
2122 Others_Node := Make_Others_Choice (Sloc (Last_Alt));
2123 Set_Others_Discrete_Choices
2124 (Others_Node, Discrete_Choices (Last_Alt));
2125 Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
2126 end if;
2127 end;
2128 end Expand_N_Case_Statement;
2130 -----------------------------
2131 -- Expand_N_Exit_Statement --
2132 -----------------------------
2134 -- The only processing required is to deal with a possible C/Fortran
2135 -- boolean value used as the condition for the exit statement.
2137 procedure Expand_N_Exit_Statement (N : Node_Id) is
2138 begin
2139 Adjust_Condition (Condition (N));
2140 end Expand_N_Exit_Statement;
2142 -----------------------------
2143 -- Expand_N_Goto_Statement --
2144 -----------------------------
2146 -- Add poll before goto if polling active
2148 procedure Expand_N_Goto_Statement (N : Node_Id) is
2149 begin
2150 Generate_Poll_Call (N);
2151 end Expand_N_Goto_Statement;
2153 ---------------------------
2154 -- Expand_N_If_Statement --
2155 ---------------------------
2157 -- First we deal with the case of C and Fortran convention boolean
2158 -- values, with zero/non-zero semantics.
2160 -- Second, we deal with the obvious rewriting for the cases where the
2161 -- condition of the IF is known at compile time to be True or False.
2163 -- Third, we remove elsif parts which have non-empty Condition_Actions
2164 -- and rewrite as independent if statements. For example:
2166 -- if x then xs
2167 -- elsif y then ys
2168 -- ...
2169 -- end if;
2171 -- becomes
2173 -- if x then xs
2174 -- else
2175 -- <<condition actions of y>>
2176 -- if y then ys
2177 -- ...
2178 -- end if;
2179 -- end if;
2181 -- This rewriting is needed if at least one elsif part has a non-empty
2182 -- Condition_Actions list. We also do the same processing if there is
2183 -- a constant condition in an elsif part (in conjunction with the first
2184 -- processing step mentioned above, for the recursive call made to deal
2185 -- with the created inner if, this deals with properly optimizing the
2186 -- cases of constant elsif conditions).
2188 procedure Expand_N_If_Statement (N : Node_Id) is
2189 Loc : constant Source_Ptr := Sloc (N);
2190 Hed : Node_Id;
2191 E : Node_Id;
2192 New_If : Node_Id;
2194 begin
2195 Adjust_Condition (Condition (N));
2197 -- The following loop deals with constant conditions for the IF. We
2198 -- need a loop because as we eliminate False conditions, we grab the
2199 -- first elsif condition and use it as the primary condition.
2201 while Compile_Time_Known_Value (Condition (N)) loop
2203 -- If condition is True, we can simply rewrite the if statement
2204 -- now by replacing it by the series of then statements.
2206 if Is_True (Expr_Value (Condition (N))) then
2208 -- All the else parts can be killed
2210 Kill_Dead_Code (Elsif_Parts (N));
2211 Kill_Dead_Code (Else_Statements (N));
2213 Hed := Remove_Head (Then_Statements (N));
2214 Insert_List_After (N, Then_Statements (N));
2215 Rewrite (N, Hed);
2216 return;
2218 -- If condition is False, then we can delete the condition and
2219 -- the Then statements
2221 else
2222 -- We do not delete the condition if constant condition
2223 -- warnings are enabled, since otherwise we end up deleting
2224 -- the desired warning. Of course the backend will get rid
2225 -- of this True/False test anyway, so nothing is lost here.
2227 if not Constant_Condition_Warnings then
2228 Kill_Dead_Code (Condition (N));
2229 end if;
2231 Kill_Dead_Code (Then_Statements (N));
2233 -- If there are no elsif statements, then we simply replace
2234 -- the entire if statement by the sequence of else statements.
2236 if No (Elsif_Parts (N)) then
2238 if No (Else_Statements (N))
2239 or else Is_Empty_List (Else_Statements (N))
2240 then
2241 Rewrite (N,
2242 Make_Null_Statement (Sloc (N)));
2244 else
2245 Hed := Remove_Head (Else_Statements (N));
2246 Insert_List_After (N, Else_Statements (N));
2247 Rewrite (N, Hed);
2248 end if;
2250 return;
2252 -- If there are elsif statements, the first of them becomes
2253 -- the if/then section of the rebuilt if statement This is
2254 -- the case where we loop to reprocess this copied condition.
2256 else
2257 Hed := Remove_Head (Elsif_Parts (N));
2258 Insert_Actions (N, Condition_Actions (Hed));
2259 Set_Condition (N, Condition (Hed));
2260 Set_Then_Statements (N, Then_Statements (Hed));
2262 if Is_Empty_List (Elsif_Parts (N)) then
2263 Set_Elsif_Parts (N, No_List);
2264 end if;
2265 end if;
2266 end if;
2267 end loop;
2269 -- Loop through elsif parts, dealing with constant conditions and
2270 -- possible expression actions that are present.
2272 if Present (Elsif_Parts (N)) then
2273 E := First (Elsif_Parts (N));
2274 while Present (E) loop
2275 Adjust_Condition (Condition (E));
2277 -- If there are condition actions, then we rewrite the if
2278 -- statement as indicated above. We also do the same rewrite
2279 -- if the condition is True or False. The further processing
2280 -- of this constant condition is then done by the recursive
2281 -- call to expand the newly created if statement
2283 if Present (Condition_Actions (E))
2284 or else Compile_Time_Known_Value (Condition (E))
2285 then
2286 -- Note this is not an implicit if statement, since it is
2287 -- part of an explicit if statement in the source (or of an
2288 -- implicit if statement that has already been tested).
2290 New_If :=
2291 Make_If_Statement (Sloc (E),
2292 Condition => Condition (E),
2293 Then_Statements => Then_Statements (E),
2294 Elsif_Parts => No_List,
2295 Else_Statements => Else_Statements (N));
2297 -- Elsif parts for new if come from remaining elsif's of parent
2299 while Present (Next (E)) loop
2300 if No (Elsif_Parts (New_If)) then
2301 Set_Elsif_Parts (New_If, New_List);
2302 end if;
2304 Append (Remove_Next (E), Elsif_Parts (New_If));
2305 end loop;
2307 Set_Else_Statements (N, New_List (New_If));
2309 if Present (Condition_Actions (E)) then
2310 Insert_List_Before (New_If, Condition_Actions (E));
2311 end if;
2313 Remove (E);
2315 if Is_Empty_List (Elsif_Parts (N)) then
2316 Set_Elsif_Parts (N, No_List);
2317 end if;
2319 Analyze (New_If);
2320 return;
2322 -- No special processing for that elsif part, move to next
2324 else
2325 Next (E);
2326 end if;
2327 end loop;
2328 end if;
2330 -- Some more optimizations applicable if we still have an IF statement
2332 if Nkind (N) /= N_If_Statement then
2333 return;
2334 end if;
2336 -- Another optimization, special cases that can be simplified
2338 -- if expression then
2339 -- return true;
2340 -- else
2341 -- return false;
2342 -- end if;
2344 -- can be changed to:
2346 -- return expression;
2348 -- and
2350 -- if expression then
2351 -- return false;
2352 -- else
2353 -- return true;
2354 -- end if;
2356 -- can be changed to:
2358 -- return not (expression);
2360 if Nkind (N) = N_If_Statement
2361 and then No (Elsif_Parts (N))
2362 and then Present (Else_Statements (N))
2363 and then List_Length (Then_Statements (N)) = 1
2364 and then List_Length (Else_Statements (N)) = 1
2365 then
2366 declare
2367 Then_Stm : constant Node_Id := First (Then_Statements (N));
2368 Else_Stm : constant Node_Id := First (Else_Statements (N));
2370 begin
2371 if Nkind (Then_Stm) = N_Return_Statement
2372 and then
2373 Nkind (Else_Stm) = N_Return_Statement
2374 then
2375 declare
2376 Then_Expr : constant Node_Id := Expression (Then_Stm);
2377 Else_Expr : constant Node_Id := Expression (Else_Stm);
2379 begin
2380 if Nkind (Then_Expr) = N_Identifier
2381 and then
2382 Nkind (Else_Expr) = N_Identifier
2383 then
2384 if Entity (Then_Expr) = Standard_True
2385 and then Entity (Else_Expr) = Standard_False
2386 then
2387 Rewrite (N,
2388 Make_Return_Statement (Loc,
2389 Expression => Relocate_Node (Condition (N))));
2390 Analyze (N);
2391 return;
2393 elsif Entity (Then_Expr) = Standard_False
2394 and then Entity (Else_Expr) = Standard_True
2395 then
2396 Rewrite (N,
2397 Make_Return_Statement (Loc,
2398 Expression =>
2399 Make_Op_Not (Loc,
2400 Right_Opnd => Relocate_Node (Condition (N)))));
2401 Analyze (N);
2402 return;
2403 end if;
2404 end if;
2405 end;
2406 end if;
2407 end;
2408 end if;
2409 end Expand_N_If_Statement;
2411 -----------------------------
2412 -- Expand_N_Loop_Statement --
2413 -----------------------------
2415 -- 1. Deal with while condition for C/Fortran boolean
2416 -- 2. Deal with loops with a non-standard enumeration type range
2417 -- 3. Deal with while loops where Condition_Actions is set
2418 -- 4. Insert polling call if required
2420 procedure Expand_N_Loop_Statement (N : Node_Id) is
2421 Loc : constant Source_Ptr := Sloc (N);
2422 Isc : constant Node_Id := Iteration_Scheme (N);
2424 begin
2425 if Present (Isc) then
2426 Adjust_Condition (Condition (Isc));
2427 end if;
2429 if Is_Non_Empty_List (Statements (N)) then
2430 Generate_Poll_Call (First (Statements (N)));
2431 end if;
2433 if No (Isc) then
2434 return;
2435 end if;
2437 -- Handle the case where we have a for loop with the range type being
2438 -- an enumeration type with non-standard representation. In this case
2439 -- we expand:
2441 -- for x in [reverse] a .. b loop
2442 -- ...
2443 -- end loop;
2445 -- to
2447 -- for xP in [reverse] integer
2448 -- range etype'Pos (a) .. etype'Pos (b) loop
2449 -- declare
2450 -- x : constant etype := Pos_To_Rep (xP);
2451 -- begin
2452 -- ...
2453 -- end;
2454 -- end loop;
2456 if Present (Loop_Parameter_Specification (Isc)) then
2457 declare
2458 LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
2459 Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
2460 Ltype : constant Entity_Id := Etype (Loop_Id);
2461 Btype : constant Entity_Id := Base_Type (Ltype);
2462 Expr : Node_Id;
2463 New_Id : Entity_Id;
2465 begin
2466 if not Is_Enumeration_Type (Btype)
2467 or else No (Enum_Pos_To_Rep (Btype))
2468 then
2469 return;
2470 end if;
2472 New_Id :=
2473 Make_Defining_Identifier (Loc,
2474 Chars => New_External_Name (Chars (Loop_Id), 'P'));
2476 -- If the type has a contiguous representation, successive
2477 -- values can be generated as offsets from the first literal.
2479 if Has_Contiguous_Rep (Btype) then
2480 Expr :=
2481 Unchecked_Convert_To (Btype,
2482 Make_Op_Add (Loc,
2483 Left_Opnd =>
2484 Make_Integer_Literal (Loc,
2485 Enumeration_Rep (First_Literal (Btype))),
2486 Right_Opnd => New_Reference_To (New_Id, Loc)));
2487 else
2488 -- Use the constructed array Enum_Pos_To_Rep
2490 Expr :=
2491 Make_Indexed_Component (Loc,
2492 Prefix => New_Reference_To (Enum_Pos_To_Rep (Btype), Loc),
2493 Expressions => New_List (New_Reference_To (New_Id, Loc)));
2494 end if;
2496 Rewrite (N,
2497 Make_Loop_Statement (Loc,
2498 Identifier => Identifier (N),
2500 Iteration_Scheme =>
2501 Make_Iteration_Scheme (Loc,
2502 Loop_Parameter_Specification =>
2503 Make_Loop_Parameter_Specification (Loc,
2504 Defining_Identifier => New_Id,
2505 Reverse_Present => Reverse_Present (LPS),
2507 Discrete_Subtype_Definition =>
2508 Make_Subtype_Indication (Loc,
2510 Subtype_Mark =>
2511 New_Reference_To (Standard_Natural, Loc),
2513 Constraint =>
2514 Make_Range_Constraint (Loc,
2515 Range_Expression =>
2516 Make_Range (Loc,
2518 Low_Bound =>
2519 Make_Attribute_Reference (Loc,
2520 Prefix =>
2521 New_Reference_To (Btype, Loc),
2523 Attribute_Name => Name_Pos,
2525 Expressions => New_List (
2526 Relocate_Node
2527 (Type_Low_Bound (Ltype)))),
2529 High_Bound =>
2530 Make_Attribute_Reference (Loc,
2531 Prefix =>
2532 New_Reference_To (Btype, Loc),
2534 Attribute_Name => Name_Pos,
2536 Expressions => New_List (
2537 Relocate_Node
2538 (Type_High_Bound (Ltype))))))))),
2540 Statements => New_List (
2541 Make_Block_Statement (Loc,
2542 Declarations => New_List (
2543 Make_Object_Declaration (Loc,
2544 Defining_Identifier => Loop_Id,
2545 Constant_Present => True,
2546 Object_Definition => New_Reference_To (Ltype, Loc),
2547 Expression => Expr)),
2549 Handled_Statement_Sequence =>
2550 Make_Handled_Sequence_Of_Statements (Loc,
2551 Statements => Statements (N)))),
2553 End_Label => End_Label (N)));
2554 Analyze (N);
2555 end;
2557 -- Second case, if we have a while loop with Condition_Actions set,
2558 -- then we change it into a plain loop:
2560 -- while C loop
2561 -- ...
2562 -- end loop;
2564 -- changed to:
2566 -- loop
2567 -- <<condition actions>>
2568 -- exit when not C;
2569 -- ...
2570 -- end loop
2572 elsif Present (Isc)
2573 and then Present (Condition_Actions (Isc))
2574 then
2575 declare
2576 ES : Node_Id;
2578 begin
2579 ES :=
2580 Make_Exit_Statement (Sloc (Condition (Isc)),
2581 Condition =>
2582 Make_Op_Not (Sloc (Condition (Isc)),
2583 Right_Opnd => Condition (Isc)));
2585 Prepend (ES, Statements (N));
2586 Insert_List_Before (ES, Condition_Actions (Isc));
2588 -- This is not an implicit loop, since it is generated in
2589 -- response to the loop statement being processed. If this
2590 -- is itself implicit, the restriction has already been
2591 -- checked. If not, it is an explicit loop.
2593 Rewrite (N,
2594 Make_Loop_Statement (Sloc (N),
2595 Identifier => Identifier (N),
2596 Statements => Statements (N),
2597 End_Label => End_Label (N)));
2599 Analyze (N);
2600 end;
2601 end if;
2602 end Expand_N_Loop_Statement;
2604 -------------------------------
2605 -- Expand_N_Return_Statement --
2606 -------------------------------
2608 procedure Expand_N_Return_Statement (N : Node_Id) is
2609 Loc : constant Source_Ptr := Sloc (N);
2610 Exp : constant Node_Id := Expression (N);
2611 Exptyp : Entity_Id;
2612 T : Entity_Id;
2613 Utyp : Entity_Id;
2614 Scope_Id : Entity_Id;
2615 Kind : Entity_Kind;
2616 Call : Node_Id;
2617 Acc_Stat : Node_Id;
2618 Goto_Stat : Node_Id;
2619 Lab_Node : Node_Id;
2620 Cur_Idx : Nat;
2621 Return_Type : Entity_Id;
2622 Result_Exp : Node_Id;
2623 Result_Id : Entity_Id;
2624 Result_Obj : Node_Id;
2626 begin
2627 -- Case where returned expression is present
2629 if Present (Exp) then
2631 -- Always normalize C/Fortran boolean result. This is not always
2632 -- necessary, but it seems a good idea to minimize the passing
2633 -- around of non-normalized values, and in any case this handles
2634 -- the processing of barrier functions for protected types, which
2635 -- turn the condition into a return statement.
2637 Exptyp := Etype (Exp);
2639 if Is_Boolean_Type (Exptyp)
2640 and then Nonzero_Is_True (Exptyp)
2641 then
2642 Adjust_Condition (Exp);
2643 Adjust_Result_Type (Exp, Exptyp);
2644 end if;
2646 -- Do validity check if enabled for returns
2648 if Validity_Checks_On
2649 and then Validity_Check_Returns
2650 then
2651 Ensure_Valid (Exp);
2652 end if;
2653 end if;
2655 -- Find relevant enclosing scope from which return is returning
2657 Cur_Idx := Scope_Stack.Last;
2658 loop
2659 Scope_Id := Scope_Stack.Table (Cur_Idx).Entity;
2661 if Ekind (Scope_Id) /= E_Block
2662 and then Ekind (Scope_Id) /= E_Loop
2663 then
2664 exit;
2666 else
2667 Cur_Idx := Cur_Idx - 1;
2668 pragma Assert (Cur_Idx >= 0);
2669 end if;
2670 end loop;
2672 if No (Exp) then
2673 Kind := Ekind (Scope_Id);
2675 -- If it is a return from procedures do no extra steps
2677 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
2678 return;
2679 end if;
2681 pragma Assert (Is_Entry (Scope_Id));
2683 -- Look at the enclosing block to see whether the return is from
2684 -- an accept statement or an entry body.
2686 for J in reverse 0 .. Cur_Idx loop
2687 Scope_Id := Scope_Stack.Table (J).Entity;
2688 exit when Is_Concurrent_Type (Scope_Id);
2689 end loop;
2691 -- If it is a return from accept statement it should be expanded
2692 -- as a call to RTS Complete_Rendezvous and a goto to the end of
2693 -- the accept body.
2695 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
2696 -- Expand_N_Accept_Alternative in exp_ch9.adb)
2698 if Is_Task_Type (Scope_Id) then
2700 Call := (Make_Procedure_Call_Statement (Loc,
2701 Name => New_Reference_To
2702 (RTE (RE_Complete_Rendezvous), Loc)));
2703 Insert_Before (N, Call);
2704 -- why not insert actions here???
2705 Analyze (Call);
2707 Acc_Stat := Parent (N);
2708 while Nkind (Acc_Stat) /= N_Accept_Statement loop
2709 Acc_Stat := Parent (Acc_Stat);
2710 end loop;
2712 Lab_Node := Last (Statements
2713 (Handled_Statement_Sequence (Acc_Stat)));
2715 Goto_Stat := Make_Goto_Statement (Loc,
2716 Name => New_Occurrence_Of
2717 (Entity (Identifier (Lab_Node)), Loc));
2719 Set_Analyzed (Goto_Stat);
2721 Rewrite (N, Goto_Stat);
2722 Analyze (N);
2724 -- If it is a return from an entry body, put a Complete_Entry_Body
2725 -- call in front of the return.
2727 elsif Is_Protected_Type (Scope_Id) then
2729 Call :=
2730 Make_Procedure_Call_Statement (Loc,
2731 Name => New_Reference_To
2732 (RTE (RE_Complete_Entry_Body), Loc),
2733 Parameter_Associations => New_List
2734 (Make_Attribute_Reference (Loc,
2735 Prefix =>
2736 New_Reference_To
2737 (Object_Ref
2738 (Corresponding_Body (Parent (Scope_Id))),
2739 Loc),
2740 Attribute_Name => Name_Unchecked_Access)));
2742 Insert_Before (N, Call);
2743 Analyze (Call);
2745 end if;
2747 return;
2748 end if;
2750 T := Etype (Exp);
2751 Return_Type := Etype (Scope_Id);
2752 Utyp := Underlying_Type (Return_Type);
2754 -- Check the result expression of a scalar function against
2755 -- the subtype of the function by inserting a conversion.
2756 -- This conversion must eventually be performed for other
2757 -- classes of types, but for now it's only done for scalars.
2758 -- ???
2760 if Is_Scalar_Type (T) then
2761 Rewrite (Exp, Convert_To (Return_Type, Exp));
2762 Analyze (Exp);
2763 end if;
2765 -- Implement the rules of 6.5(8-10), which require a tag check in
2766 -- the case of a limited tagged return type, and tag reassignment
2767 -- for nonlimited tagged results. These actions are needed when
2768 -- the return type is a specific tagged type and the result
2769 -- expression is a conversion or a formal parameter, because in
2770 -- that case the tag of the expression might differ from the tag
2771 -- of the specific result type.
2773 if Is_Tagged_Type (Utyp)
2774 and then not Is_Class_Wide_Type (Utyp)
2775 and then (Nkind (Exp) = N_Type_Conversion
2776 or else Nkind (Exp) = N_Unchecked_Type_Conversion
2777 or else (Is_Entity_Name (Exp)
2778 and then Ekind (Entity (Exp)) in Formal_Kind))
2779 then
2780 -- When the return type is limited, perform a check that the
2781 -- tag of the result is the same as the tag of the return type.
2783 if Is_Limited_Type (Return_Type) then
2784 Insert_Action (Exp,
2785 Make_Raise_Constraint_Error (Loc,
2786 Condition =>
2787 Make_Op_Ne (Loc,
2788 Left_Opnd =>
2789 Make_Selected_Component (Loc,
2790 Prefix => Duplicate_Subexpr (Exp),
2791 Selector_Name =>
2792 New_Reference_To (First_Tag_Component (Utyp), Loc)),
2793 Right_Opnd =>
2794 Unchecked_Convert_To (RTE (RE_Tag),
2795 New_Reference_To
2796 (Node (First_Elmt
2797 (Access_Disp_Table (Base_Type (Utyp)))),
2798 Loc))),
2799 Reason => CE_Tag_Check_Failed));
2801 -- If the result type is a specific nonlimited tagged type,
2802 -- then we have to ensure that the tag of the result is that
2803 -- of the result type. This is handled by making a copy of the
2804 -- expression in the case where it might have a different tag,
2805 -- namely when the expression is a conversion or a formal
2806 -- parameter. We create a new object of the result type and
2807 -- initialize it from the expression, which will implicitly
2808 -- force the tag to be set appropriately.
2810 else
2811 Result_Id :=
2812 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
2813 Result_Exp := New_Reference_To (Result_Id, Loc);
2815 Result_Obj :=
2816 Make_Object_Declaration (Loc,
2817 Defining_Identifier => Result_Id,
2818 Object_Definition => New_Reference_To (Return_Type, Loc),
2819 Constant_Present => True,
2820 Expression => Relocate_Node (Exp));
2822 Set_Assignment_OK (Result_Obj);
2823 Insert_Action (Exp, Result_Obj);
2825 Rewrite (Exp, Result_Exp);
2826 Analyze_And_Resolve (Exp, Return_Type);
2827 end if;
2829 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
2830 -- a check that the level of the return expression's underlying type
2831 -- is not deeper than the level of the master enclosing the function.
2832 -- Always generate the check when the type of the return expression
2833 -- is class-wide, when it's a type conversion, or when it's a formal
2834 -- parameter. Otherwise, suppress the check in the case where the
2835 -- return expression has a specific type whose level is known not to
2836 -- be statically deeper than the function's result type.
2838 elsif Ada_Version >= Ada_05
2839 and then Is_Class_Wide_Type (Return_Type)
2840 and then not Scope_Suppress (Accessibility_Check)
2841 and then
2842 (Is_Class_Wide_Type (Etype (Exp))
2843 or else Nkind (Exp) = N_Type_Conversion
2844 or else Nkind (Exp) = N_Unchecked_Type_Conversion
2845 or else (Is_Entity_Name (Exp)
2846 and then Ekind (Entity (Exp)) in Formal_Kind)
2847 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
2848 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
2849 then
2850 Insert_Action (Exp,
2851 Make_Raise_Program_Error (Loc,
2852 Condition =>
2853 Make_Op_Gt (Loc,
2854 Left_Opnd =>
2855 Make_Function_Call (Loc,
2856 Name =>
2857 New_Reference_To
2858 (RTE (RE_Get_Access_Level), Loc),
2859 Parameter_Associations =>
2860 New_List (Make_Attribute_Reference (Loc,
2861 Prefix =>
2862 Duplicate_Subexpr (Exp),
2863 Attribute_Name =>
2864 Name_Tag))),
2865 Right_Opnd =>
2866 Make_Integer_Literal (Loc,
2867 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
2868 Reason => PE_Accessibility_Check_Failed));
2869 end if;
2871 -- Deal with returning variable length objects and controlled types
2873 -- Nothing to do if we are returning by reference, or this is not
2874 -- a type that requires special processing (indicated by the fact
2875 -- that it requires a cleanup scope for the secondary stack case)
2877 if Is_Return_By_Reference_Type (T)
2878 or else not Requires_Transient_Scope (Return_Type)
2879 then
2880 null;
2882 -- Case of secondary stack not used
2884 elsif Function_Returns_With_DSP (Scope_Id) then
2886 -- Here what we need to do is to always return by reference, since
2887 -- we will return with the stack pointer depressed. We may need to
2888 -- do a copy to a local temporary before doing this return.
2890 No_Secondary_Stack_Case : declare
2891 Local_Copy_Required : Boolean := False;
2892 -- Set to True if a local copy is required
2894 Copy_Ent : Entity_Id;
2895 -- Used for the target entity if a copy is required
2897 Decl : Node_Id;
2898 -- Declaration used to create copy if needed
2900 procedure Test_Copy_Required (Expr : Node_Id);
2901 -- Determines if Expr represents a return value for which a
2902 -- copy is required. More specifically, a copy is not required
2903 -- if Expr represents an object or component of an object that
2904 -- is either in the local subprogram frame, or is constant.
2905 -- If a copy is required, then Local_Copy_Required is set True.
2907 ------------------------
2908 -- Test_Copy_Required --
2909 ------------------------
2911 procedure Test_Copy_Required (Expr : Node_Id) is
2912 Ent : Entity_Id;
2914 begin
2915 -- If component, test prefix (object containing component)
2917 if Nkind (Expr) = N_Indexed_Component
2918 or else
2919 Nkind (Expr) = N_Selected_Component
2920 then
2921 Test_Copy_Required (Prefix (Expr));
2922 return;
2924 -- See if we have an entity name
2926 elsif Is_Entity_Name (Expr) then
2927 Ent := Entity (Expr);
2929 -- Constant entity is always OK, no copy required
2931 if Ekind (Ent) = E_Constant then
2932 return;
2934 -- No copy required for local variable
2936 elsif Ekind (Ent) = E_Variable
2937 and then Scope (Ent) = Current_Subprogram
2938 then
2939 return;
2940 end if;
2941 end if;
2943 -- All other cases require a copy
2945 Local_Copy_Required := True;
2946 end Test_Copy_Required;
2948 -- Start of processing for No_Secondary_Stack_Case
2950 begin
2951 -- No copy needed if result is from a function call.
2952 -- In this case the result is already being returned by
2953 -- reference with the stack pointer depressed.
2955 -- To make up for a gcc 2.8.1 deficiency (???), we perform
2956 -- the copy for array types if the constrained status of the
2957 -- target type is different from that of the expression.
2959 if Requires_Transient_Scope (T)
2960 and then
2961 (not Is_Array_Type (T)
2962 or else Is_Constrained (T) = Is_Constrained (Return_Type)
2963 or else Controlled_Type (T))
2964 and then Nkind (Exp) = N_Function_Call
2965 then
2966 Set_By_Ref (N);
2968 -- We always need a local copy for a controlled type, since
2969 -- we are required to finalize the local value before return.
2970 -- The copy will automatically include the required finalize.
2971 -- Moreover, gigi cannot make this copy, since we need special
2972 -- processing to ensure proper behavior for finalization.
2974 -- Note: the reason we are returning with a depressed stack
2975 -- pointer in the controlled case (even if the type involved
2976 -- is constrained) is that we must make a local copy to deal
2977 -- properly with the requirement that the local result be
2978 -- finalized.
2980 elsif Controlled_Type (Utyp) then
2981 Copy_Ent :=
2982 Make_Defining_Identifier (Loc,
2983 Chars => New_Internal_Name ('R'));
2985 -- Build declaration to do the copy, and insert it, setting
2986 -- Assignment_OK, because we may be copying a limited type.
2987 -- In addition we set the special flag to inhibit finalize
2988 -- attachment if this is a controlled type (since this attach
2989 -- must be done by the caller, otherwise if we attach it here
2990 -- we will finalize the returned result prematurely).
2992 Decl :=
2993 Make_Object_Declaration (Loc,
2994 Defining_Identifier => Copy_Ent,
2995 Object_Definition => New_Occurrence_Of (Return_Type, Loc),
2996 Expression => Relocate_Node (Exp));
2998 Set_Assignment_OK (Decl);
2999 Set_Delay_Finalize_Attach (Decl);
3000 Insert_Action (N, Decl);
3002 -- Now the actual return uses the copied value
3004 Rewrite (Exp, New_Occurrence_Of (Copy_Ent, Loc));
3005 Analyze_And_Resolve (Exp, Return_Type);
3007 -- Since we have made the copy, gigi does not have to, so
3008 -- we set the By_Ref flag to prevent another copy being made.
3010 Set_By_Ref (N);
3012 -- Non-controlled cases
3014 else
3015 Test_Copy_Required (Exp);
3017 -- If a local copy is required, then gigi will make the
3018 -- copy, otherwise, we can return the result directly,
3019 -- so set By_Ref to suppress the gigi copy.
3021 if not Local_Copy_Required then
3022 Set_By_Ref (N);
3023 end if;
3024 end if;
3025 end No_Secondary_Stack_Case;
3027 -- Here if secondary stack is used
3029 else
3030 -- Make sure that no surrounding block will reclaim the
3031 -- secondary-stack on which we are going to put the result.
3032 -- Not only may this introduce secondary stack leaks but worse,
3033 -- if the reclamation is done too early, then the result we are
3034 -- returning may get clobbered. See example in 7417-003.
3036 declare
3037 S : Entity_Id := Current_Scope;
3039 begin
3040 while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
3041 Set_Sec_Stack_Needed_For_Return (S, True);
3042 S := Enclosing_Dynamic_Scope (S);
3043 end loop;
3044 end;
3046 -- Optimize the case where the result is a function call. In this
3047 -- case either the result is already on the secondary stack, or is
3048 -- already being returned with the stack pointer depressed and no
3049 -- further processing is required except to set the By_Ref flag to
3050 -- ensure that gigi does not attempt an extra unnecessary copy.
3051 -- (actually not just unnecessary but harmfully wrong in the case
3052 -- of a controlled type, where gigi does not know how to do a copy).
3053 -- To make up for a gcc 2.8.1 deficiency (???), we perform
3054 -- the copy for array types if the constrained status of the
3055 -- target type is different from that of the expression.
3057 if Requires_Transient_Scope (T)
3058 and then
3059 (not Is_Array_Type (T)
3060 or else Is_Constrained (T) = Is_Constrained (Return_Type)
3061 or else Controlled_Type (T))
3062 and then Nkind (Exp) = N_Function_Call
3063 then
3064 Set_By_Ref (N);
3066 -- For controlled types, do the allocation on the sec-stack
3067 -- manually in order to call adjust at the right time
3068 -- type Anon1 is access Return_Type;
3069 -- for Anon1'Storage_pool use ss_pool;
3070 -- Anon2 : anon1 := new Return_Type'(expr);
3071 -- return Anon2.all;
3073 elsif Controlled_Type (Utyp) then
3074 declare
3075 Loc : constant Source_Ptr := Sloc (N);
3076 Temp : constant Entity_Id :=
3077 Make_Defining_Identifier (Loc,
3078 Chars => New_Internal_Name ('R'));
3079 Acc_Typ : constant Entity_Id :=
3080 Make_Defining_Identifier (Loc,
3081 Chars => New_Internal_Name ('A'));
3082 Alloc_Node : Node_Id;
3084 begin
3085 Set_Ekind (Acc_Typ, E_Access_Type);
3087 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
3089 Alloc_Node :=
3090 Make_Allocator (Loc,
3091 Expression =>
3092 Make_Qualified_Expression (Loc,
3093 Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
3094 Expression => Relocate_Node (Exp)));
3096 Insert_List_Before_And_Analyze (N, New_List (
3097 Make_Full_Type_Declaration (Loc,
3098 Defining_Identifier => Acc_Typ,
3099 Type_Definition =>
3100 Make_Access_To_Object_Definition (Loc,
3101 Subtype_Indication =>
3102 New_Reference_To (Return_Type, Loc))),
3104 Make_Object_Declaration (Loc,
3105 Defining_Identifier => Temp,
3106 Object_Definition => New_Reference_To (Acc_Typ, Loc),
3107 Expression => Alloc_Node)));
3109 Rewrite (Exp,
3110 Make_Explicit_Dereference (Loc,
3111 Prefix => New_Reference_To (Temp, Loc)));
3113 Analyze_And_Resolve (Exp, Return_Type);
3114 end;
3116 -- Otherwise use the gigi mechanism to allocate result on the
3117 -- secondary stack.
3119 else
3120 Set_Storage_Pool (N, RTE (RE_SS_Pool));
3122 -- If we are generating code for the Java VM do not use
3123 -- SS_Allocate since everything is heap-allocated anyway.
3125 if not Java_VM then
3126 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
3127 end if;
3128 end if;
3129 end if;
3131 exception
3132 when RE_Not_Available =>
3133 return;
3134 end Expand_N_Return_Statement;
3136 ------------------------------
3137 -- Make_Tag_Ctrl_Assignment --
3138 ------------------------------
3140 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
3141 Loc : constant Source_Ptr := Sloc (N);
3142 L : constant Node_Id := Name (N);
3143 T : constant Entity_Id := Underlying_Type (Etype (L));
3145 Ctrl_Act : constant Boolean := Controlled_Type (T)
3146 and then not No_Ctrl_Actions (N);
3148 Save_Tag : constant Boolean := Is_Tagged_Type (T)
3149 and then not No_Ctrl_Actions (N)
3150 and then not Java_VM;
3151 -- Tags are not saved and restored when Java_VM because JVM tags
3152 -- are represented implicitly in objects.
3154 Res : List_Id;
3155 Tag_Tmp : Entity_Id;
3157 begin
3158 Res := New_List;
3160 -- Finalize the target of the assignment when controlled.
3161 -- We have two exceptions here:
3163 -- 1. If we are in an init proc since it is an initialization
3164 -- more than an assignment
3166 -- 2. If the left-hand side is a temporary that was not initialized
3167 -- (or the parent part of a temporary since it is the case in
3168 -- extension aggregates). Such a temporary does not come from
3169 -- source. We must examine the original node for the prefix, because
3170 -- it may be a component of an entry formal, in which case it has
3171 -- been rewritten and does not appear to come from source either.
3173 -- Case of init proc
3175 if not Ctrl_Act then
3176 null;
3178 -- The left hand side is an uninitialized temporary
3180 elsif Nkind (L) = N_Type_Conversion
3181 and then Is_Entity_Name (Expression (L))
3182 and then No_Initialization (Parent (Entity (Expression (L))))
3183 then
3184 null;
3185 else
3186 Append_List_To (Res,
3187 Make_Final_Call (
3188 Ref => Duplicate_Subexpr_No_Checks (L),
3189 Typ => Etype (L),
3190 With_Detach => New_Reference_To (Standard_False, Loc)));
3191 end if;
3193 -- Save the Tag in a local variable Tag_Tmp
3195 if Save_Tag then
3196 Tag_Tmp :=
3197 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
3199 Append_To (Res,
3200 Make_Object_Declaration (Loc,
3201 Defining_Identifier => Tag_Tmp,
3202 Object_Definition => New_Reference_To (RTE (RE_Tag), Loc),
3203 Expression =>
3204 Make_Selected_Component (Loc,
3205 Prefix => Duplicate_Subexpr_No_Checks (L),
3206 Selector_Name => New_Reference_To (First_Tag_Component (T),
3207 Loc))));
3209 -- Otherwise Tag_Tmp not used
3211 else
3212 Tag_Tmp := Empty;
3213 end if;
3215 -- Processing for controlled types and types with controlled components
3217 -- Variables of such types contain pointers used to chain them in
3218 -- finalization lists, in addition to user data. These pointers are
3219 -- specific to each object of the type, not to the value being assigned.
3220 -- Thus they need to be left intact during the assignment. We achieve
3221 -- this by constructing a Storage_Array subtype, and by overlaying
3222 -- objects of this type on the source and target of the assignment.
3223 -- The assignment is then rewritten to assignments of slices of these
3224 -- arrays, copying the user data, and leaving the pointers untouched.
3226 if Ctrl_Act then
3227 Controlled_Actions : declare
3228 Prev_Ref : Node_Id;
3229 -- A reference to the Prev component of the record controller
3231 First_After_Root : Node_Id := Empty;
3232 -- Index of first byte to be copied (used to skip
3233 -- Root_Controlled in controlled objects).
3235 Last_Before_Hole : Node_Id := Empty;
3236 -- Index of last byte to be copied before outermost record
3237 -- controller data.
3239 Hole_Length : Node_Id := Empty;
3240 -- Length of record controller data (Prev and Next pointers)
3242 First_After_Hole : Node_Id := Empty;
3243 -- Index of first byte to be copied after outermost record
3244 -- controller data.
3246 Expr, Source_Size : Node_Id;
3247 Source_Actual_Subtype : Entity_Id;
3248 -- Used for computation of the size of the data to be copied
3250 Range_Type : Entity_Id;
3251 Opaque_Type : Entity_Id;
3253 function Build_Slice
3254 (Rec : Entity_Id;
3255 Lo : Node_Id;
3256 Hi : Node_Id) return Node_Id;
3257 -- Build and return a slice of an array of type S overlaid
3258 -- on object Rec, with bounds specified by Lo and Hi. If either
3259 -- bound is empty, a default of S'First (respectively S'Last)
3260 -- is used.
3262 -----------------
3263 -- Build_Slice --
3264 -----------------
3266 function Build_Slice
3267 (Rec : Node_Id;
3268 Lo : Node_Id;
3269 Hi : Node_Id) return Node_Id
3271 Lo_Bound : Node_Id;
3272 Hi_Bound : Node_Id;
3274 Opaque : constant Node_Id :=
3275 Unchecked_Convert_To (Opaque_Type,
3276 Make_Attribute_Reference (Loc,
3277 Prefix => Rec,
3278 Attribute_Name => Name_Address));
3279 -- Access value designating an opaque storage array of
3280 -- type S overlaid on record Rec.
3282 begin
3283 -- Compute slice bounds using S'First (1) and S'Last
3284 -- as default values when not specified by the caller.
3286 if No (Lo) then
3287 Lo_Bound := Make_Integer_Literal (Loc, 1);
3288 else
3289 Lo_Bound := Lo;
3290 end if;
3292 if No (Hi) then
3293 Hi_Bound := Make_Attribute_Reference (Loc,
3294 Prefix => New_Occurrence_Of (Range_Type, Loc),
3295 Attribute_Name => Name_Last);
3296 else
3297 Hi_Bound := Hi;
3298 end if;
3300 return Make_Slice (Loc,
3301 Prefix =>
3302 Opaque,
3303 Discrete_Range => Make_Range (Loc,
3304 Lo_Bound, Hi_Bound));
3305 end Build_Slice;
3307 -- Start of processing for Controlled_Actions
3309 begin
3310 -- Create a constrained subtype of Storage_Array whose size
3311 -- corresponds to the value being assigned.
3313 -- subtype G is Storage_Offset range
3314 -- 1 .. (Expr'Size + Storage_Unit - 1) / Storage_Unit
3316 Expr := Duplicate_Subexpr_No_Checks (Expression (N));
3318 if Nkind (Expr) = N_Qualified_Expression then
3319 Expr := Expression (Expr);
3320 end if;
3322 Source_Actual_Subtype := Etype (Expr);
3324 if Has_Discriminants (Source_Actual_Subtype)
3325 and then not Is_Constrained (Source_Actual_Subtype)
3326 then
3327 Append_To (Res,
3328 Build_Actual_Subtype (Source_Actual_Subtype, Expr));
3329 Source_Actual_Subtype := Defining_Identifier (Last (Res));
3330 end if;
3332 Source_Size :=
3333 Make_Op_Add (Loc,
3334 Left_Opnd =>
3335 Make_Attribute_Reference (Loc,
3336 Prefix =>
3337 New_Occurrence_Of (Source_Actual_Subtype, Loc),
3338 Attribute_Name =>
3339 Name_Size),
3340 Right_Opnd =>
3341 Make_Integer_Literal (Loc,
3342 System_Storage_Unit - 1));
3343 Source_Size :=
3344 Make_Op_Divide (Loc,
3345 Left_Opnd => Source_Size,
3346 Right_Opnd =>
3347 Make_Integer_Literal (Loc,
3348 Intval => System_Storage_Unit));
3350 Range_Type :=
3351 Make_Defining_Identifier (Loc,
3352 New_Internal_Name ('G'));
3354 Append_To (Res,
3355 Make_Subtype_Declaration (Loc,
3356 Defining_Identifier => Range_Type,
3357 Subtype_Indication =>
3358 Make_Subtype_Indication (Loc,
3359 Subtype_Mark =>
3360 New_Reference_To (RTE (RE_Storage_Offset), Loc),
3361 Constraint => Make_Range_Constraint (Loc,
3362 Range_Expression =>
3363 Make_Range (Loc,
3364 Low_Bound => Make_Integer_Literal (Loc, 1),
3365 High_Bound => Source_Size)))));
3367 -- subtype S is Storage_Array (G)
3369 Append_To (Res,
3370 Make_Subtype_Declaration (Loc,
3371 Defining_Identifier =>
3372 Make_Defining_Identifier (Loc,
3373 New_Internal_Name ('S')),
3374 Subtype_Indication =>
3375 Make_Subtype_Indication (Loc,
3376 Subtype_Mark =>
3377 New_Reference_To (RTE (RE_Storage_Array), Loc),
3378 Constraint =>
3379 Make_Index_Or_Discriminant_Constraint (Loc,
3380 Constraints =>
3381 New_List (New_Reference_To (Range_Type, Loc))))));
3383 -- type A is access S
3385 Opaque_Type :=
3386 Make_Defining_Identifier (Loc,
3387 Chars => New_Internal_Name ('A'));
3389 Append_To (Res,
3390 Make_Full_Type_Declaration (Loc,
3391 Defining_Identifier => Opaque_Type,
3392 Type_Definition =>
3393 Make_Access_To_Object_Definition (Loc,
3394 Subtype_Indication =>
3395 New_Occurrence_Of (
3396 Defining_Identifier (Last (Res)), Loc))));
3398 -- Generate appropriate slice assignments
3400 First_After_Root := Make_Integer_Literal (Loc, 1);
3402 -- For the case of a controlled object, skip the
3403 -- Root_Controlled part.
3405 if Is_Controlled (T) then
3406 First_After_Root :=
3407 Make_Op_Add (Loc,
3408 First_After_Root,
3409 Make_Op_Divide (Loc,
3410 Make_Attribute_Reference (Loc,
3411 Prefix =>
3412 New_Occurrence_Of (RTE (RE_Root_Controlled), Loc),
3413 Attribute_Name => Name_Size),
3414 Make_Integer_Literal (Loc, System_Storage_Unit)));
3415 end if;
3417 -- For the case of a record with controlled components, skip
3418 -- the Prev and Next components of the record controller.
3419 -- These components constitute a 'hole' in the middle of the
3420 -- data to be copied.
3422 if Has_Controlled_Component (T) then
3423 Prev_Ref :=
3424 Make_Selected_Component (Loc,
3425 Prefix =>
3426 Make_Selected_Component (Loc,
3427 Prefix => Duplicate_Subexpr_No_Checks (L),
3428 Selector_Name =>
3429 New_Reference_To (Controller_Component (T), Loc)),
3430 Selector_Name => Make_Identifier (Loc, Name_Prev));
3432 -- Last index before hole: determined by position of
3433 -- the _Controller.Prev component.
3435 Last_Before_Hole :=
3436 Make_Defining_Identifier (Loc,
3437 New_Internal_Name ('L'));
3439 Append_To (Res,
3440 Make_Object_Declaration (Loc,
3441 Defining_Identifier => Last_Before_Hole,
3442 Object_Definition => New_Occurrence_Of (
3443 RTE (RE_Storage_Offset), Loc),
3444 Constant_Present => True,
3445 Expression => Make_Op_Add (Loc,
3446 Make_Attribute_Reference (Loc,
3447 Prefix => Prev_Ref,
3448 Attribute_Name => Name_Position),
3449 Make_Attribute_Reference (Loc,
3450 Prefix => New_Copy_Tree (Prefix (Prev_Ref)),
3451 Attribute_Name => Name_Position))));
3453 -- Hole length: size of the Prev and Next components
3455 Hole_Length :=
3456 Make_Op_Multiply (Loc,
3457 Left_Opnd => Make_Integer_Literal (Loc, Uint_2),
3458 Right_Opnd =>
3459 Make_Op_Divide (Loc,
3460 Left_Opnd =>
3461 Make_Attribute_Reference (Loc,
3462 Prefix => New_Copy_Tree (Prev_Ref),
3463 Attribute_Name => Name_Size),
3464 Right_Opnd =>
3465 Make_Integer_Literal (Loc,
3466 Intval => System_Storage_Unit)));
3468 -- First index after hole
3470 First_After_Hole :=
3471 Make_Defining_Identifier (Loc,
3472 New_Internal_Name ('F'));
3474 Append_To (Res,
3475 Make_Object_Declaration (Loc,
3476 Defining_Identifier => First_After_Hole,
3477 Object_Definition => New_Occurrence_Of (
3478 RTE (RE_Storage_Offset), Loc),
3479 Constant_Present => True,
3480 Expression =>
3481 Make_Op_Add (Loc,
3482 Left_Opnd =>
3483 Make_Op_Add (Loc,
3484 Left_Opnd =>
3485 New_Occurrence_Of (Last_Before_Hole, Loc),
3486 Right_Opnd => Hole_Length),
3487 Right_Opnd => Make_Integer_Literal (Loc, 1))));
3489 Last_Before_Hole := New_Occurrence_Of (Last_Before_Hole, Loc);
3490 First_After_Hole := New_Occurrence_Of (First_After_Hole, Loc);
3491 end if;
3493 -- Assign the first slice (possibly skipping Root_Controlled,
3494 -- up to the beginning of the record controller if present,
3495 -- up to the end of the object if not).
3497 Append_To (Res, Make_Assignment_Statement (Loc,
3498 Name => Build_Slice (
3499 Rec => Duplicate_Subexpr_No_Checks (L),
3500 Lo => First_After_Root,
3501 Hi => Last_Before_Hole),
3503 Expression => Build_Slice (
3504 Rec => Expression (N),
3505 Lo => First_After_Root,
3506 Hi => New_Copy_Tree (Last_Before_Hole))));
3508 if Present (First_After_Hole) then
3510 -- If a record controller is present, copy the second slice,
3511 -- from right after the _Controller.Next component up to the
3512 -- end of the object.
3514 Append_To (Res, Make_Assignment_Statement (Loc,
3515 Name => Build_Slice (
3516 Rec => Duplicate_Subexpr_No_Checks (L),
3517 Lo => First_After_Hole,
3518 Hi => Empty),
3519 Expression => Build_Slice (
3520 Rec => Duplicate_Subexpr_No_Checks (Expression (N)),
3521 Lo => New_Copy_Tree (First_After_Hole),
3522 Hi => Empty)));
3523 end if;
3524 end Controlled_Actions;
3526 else
3527 Append_To (Res, Relocate_Node (N));
3528 end if;
3530 -- Restore the tag
3532 if Save_Tag then
3533 Append_To (Res,
3534 Make_Assignment_Statement (Loc,
3535 Name =>
3536 Make_Selected_Component (Loc,
3537 Prefix => Duplicate_Subexpr_No_Checks (L),
3538 Selector_Name => New_Reference_To (First_Tag_Component (T),
3539 Loc)),
3540 Expression => New_Reference_To (Tag_Tmp, Loc)));
3541 end if;
3543 -- Adjust the target after the assignment when controlled (not in the
3544 -- init proc since it is an initialization more than an assignment).
3546 if Ctrl_Act then
3547 Append_List_To (Res,
3548 Make_Adjust_Call (
3549 Ref => Duplicate_Subexpr_Move_Checks (L),
3550 Typ => Etype (L),
3551 Flist_Ref => New_Reference_To (RTE (RE_Global_Final_List), Loc),
3552 With_Attach => Make_Integer_Literal (Loc, 0)));
3553 end if;
3555 return Res;
3557 exception
3558 -- Could use comment here ???
3560 when RE_Not_Available =>
3561 return Empty_List;
3562 end Make_Tag_Ctrl_Assignment;
3564 ------------------------------------
3565 -- Possible_Bit_Aligned_Component --
3566 ------------------------------------
3568 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
3569 begin
3570 case Nkind (N) is
3572 -- Case of indexed component
3574 when N_Indexed_Component =>
3575 declare
3576 P : constant Node_Id := Prefix (N);
3577 Ptyp : constant Entity_Id := Etype (P);
3579 begin
3580 -- If we know the component size and it is less than 64, then
3581 -- we are definitely OK. The back end always does assignment
3582 -- of misaligned small objects correctly.
3584 if Known_Static_Component_Size (Ptyp)
3585 and then Component_Size (Ptyp) <= 64
3586 then
3587 return False;
3589 -- Otherwise, we need to test the prefix, to see if we are
3590 -- indexing from a possibly unaligned component.
3592 else
3593 return Possible_Bit_Aligned_Component (P);
3594 end if;
3595 end;
3597 -- Case of selected component
3599 when N_Selected_Component =>
3600 declare
3601 P : constant Node_Id := Prefix (N);
3602 Comp : constant Entity_Id := Entity (Selector_Name (N));
3604 begin
3605 -- If there is no component clause, then we are in the clear
3606 -- since the back end will never misalign a large component
3607 -- unless it is forced to do so. In the clear means we need
3608 -- only the recursive test on the prefix.
3610 if Component_May_Be_Bit_Aligned (Comp) then
3611 return True;
3612 else
3613 return Possible_Bit_Aligned_Component (P);
3614 end if;
3615 end;
3617 -- If we have neither a record nor array component, it means that
3618 -- we have fallen off the top testing prefixes recursively, and
3619 -- we now have a stand alone object, where we don't have a problem
3621 when others =>
3622 return False;
3624 end case;
3625 end Possible_Bit_Aligned_Component;
3627 end Exp_Ch5;