PR 51390
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blobb739bbc125ca57955514309395ba5c8fe8abdbf1
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "timevar.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "tree-dump.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
36 #include "domwalk.h"
37 #include "cfgloop.h"
38 #include "tree-data-ref.h"
40 static unsigned int tree_ssa_phiopt (void);
41 static unsigned int tree_ssa_phiopt_worker (bool);
42 static bool conditional_replacement (basic_block, basic_block,
43 edge, edge, gimple, tree, tree);
44 static bool value_replacement (basic_block, basic_block,
45 edge, edge, gimple, tree, tree);
46 static bool minmax_replacement (basic_block, basic_block,
47 edge, edge, gimple, tree, tree);
48 static bool abs_replacement (basic_block, basic_block,
49 edge, edge, gimple, tree, tree);
50 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
51 struct pointer_set_t *);
52 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
53 static struct pointer_set_t * get_non_trapping (void);
54 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
56 /* This pass tries to replaces an if-then-else block with an
57 assignment. We have four kinds of transformations. Some of these
58 transformations are also performed by the ifcvt RTL optimizer.
60 Conditional Replacement
61 -----------------------
63 This transformation, implemented in conditional_replacement,
64 replaces
66 bb0:
67 if (cond) goto bb2; else goto bb1;
68 bb1:
69 bb2:
70 x = PHI <0 (bb1), 1 (bb0), ...>;
72 with
74 bb0:
75 x' = cond;
76 goto bb2;
77 bb2:
78 x = PHI <x' (bb0), ...>;
80 We remove bb1 as it becomes unreachable. This occurs often due to
81 gimplification of conditionals.
83 Value Replacement
84 -----------------
86 This transformation, implemented in value_replacement, replaces
88 bb0:
89 if (a != b) goto bb2; else goto bb1;
90 bb1:
91 bb2:
92 x = PHI <a (bb1), b (bb0), ...>;
94 with
96 bb0:
97 bb2:
98 x = PHI <b (bb0), ...>;
100 This opportunity can sometimes occur as a result of other
101 optimizations.
103 ABS Replacement
104 ---------------
106 This transformation, implemented in abs_replacement, replaces
108 bb0:
109 if (a >= 0) goto bb2; else goto bb1;
110 bb1:
111 x = -a;
112 bb2:
113 x = PHI <x (bb1), a (bb0), ...>;
115 with
117 bb0:
118 x' = ABS_EXPR< a >;
119 bb2:
120 x = PHI <x' (bb0), ...>;
122 MIN/MAX Replacement
123 -------------------
125 This transformation, minmax_replacement replaces
127 bb0:
128 if (a <= b) goto bb2; else goto bb1;
129 bb1:
130 bb2:
131 x = PHI <b (bb1), a (bb0), ...>;
133 with
135 bb0:
136 x' = MIN_EXPR (a, b)
137 bb2:
138 x = PHI <x' (bb0), ...>;
140 A similar transformation is done for MAX_EXPR. */
142 static unsigned int
143 tree_ssa_phiopt (void)
145 return tree_ssa_phiopt_worker (false);
148 /* This pass tries to transform conditional stores into unconditional
149 ones, enabling further simplifications with the simpler then and else
150 blocks. In particular it replaces this:
152 bb0:
153 if (cond) goto bb2; else goto bb1;
154 bb1:
155 *p = RHS;
156 bb2:
158 with
160 bb0:
161 if (cond) goto bb1; else goto bb2;
162 bb1:
163 condtmp' = *p;
164 bb2:
165 condtmp = PHI <RHS, condtmp'>
166 *p = condtmp;
168 This transformation can only be done under several constraints,
169 documented below. It also replaces:
171 bb0:
172 if (cond) goto bb2; else goto bb1;
173 bb1:
174 *p = RHS1;
175 goto bb3;
176 bb2:
177 *p = RHS2;
178 bb3:
180 with
182 bb0:
183 if (cond) goto bb3; else goto bb1;
184 bb1:
185 bb3:
186 condtmp = PHI <RHS1, RHS2>
187 *p = condtmp; */
189 static unsigned int
190 tree_ssa_cs_elim (void)
192 return tree_ssa_phiopt_worker (true);
195 /* For conditional store replacement we need a temporary to
196 put the old contents of the memory in. */
197 static tree condstoretemp;
199 /* The core routine of conditional store replacement and normal
200 phi optimizations. Both share much of the infrastructure in how
201 to match applicable basic block patterns. DO_STORE_ELIM is true
202 when we want to do conditional store replacement, false otherwise. */
203 static unsigned int
204 tree_ssa_phiopt_worker (bool do_store_elim)
206 basic_block bb;
207 basic_block *bb_order;
208 unsigned n, i;
209 bool cfgchanged = false;
210 struct pointer_set_t *nontrap = 0;
212 if (do_store_elim)
214 condstoretemp = NULL_TREE;
215 /* Calculate the set of non-trapping memory accesses. */
216 nontrap = get_non_trapping ();
219 /* Search every basic block for COND_EXPR we may be able to optimize.
221 We walk the blocks in order that guarantees that a block with
222 a single predecessor is processed before the predecessor.
223 This ensures that we collapse inner ifs before visiting the
224 outer ones, and also that we do not try to visit a removed
225 block. */
226 bb_order = blocks_in_phiopt_order ();
227 n = n_basic_blocks - NUM_FIXED_BLOCKS;
229 for (i = 0; i < n; i++)
231 gimple cond_stmt, phi;
232 basic_block bb1, bb2;
233 edge e1, e2;
234 tree arg0, arg1;
236 bb = bb_order[i];
238 cond_stmt = last_stmt (bb);
239 /* Check to see if the last statement is a GIMPLE_COND. */
240 if (!cond_stmt
241 || gimple_code (cond_stmt) != GIMPLE_COND)
242 continue;
244 e1 = EDGE_SUCC (bb, 0);
245 bb1 = e1->dest;
246 e2 = EDGE_SUCC (bb, 1);
247 bb2 = e2->dest;
249 /* We cannot do the optimization on abnormal edges. */
250 if ((e1->flags & EDGE_ABNORMAL) != 0
251 || (e2->flags & EDGE_ABNORMAL) != 0)
252 continue;
254 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
255 if (EDGE_COUNT (bb1->succs) == 0
256 || bb2 == NULL
257 || EDGE_COUNT (bb2->succs) == 0)
258 continue;
260 /* Find the bb which is the fall through to the other. */
261 if (EDGE_SUCC (bb1, 0)->dest == bb2)
263 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
265 basic_block bb_tmp = bb1;
266 edge e_tmp = e1;
267 bb1 = bb2;
268 bb2 = bb_tmp;
269 e1 = e2;
270 e2 = e_tmp;
272 else if (do_store_elim
273 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
275 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
277 if (!single_succ_p (bb1)
278 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
279 || !single_succ_p (bb2)
280 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
281 || EDGE_COUNT (bb3->preds) != 2)
282 continue;
283 if (cond_if_else_store_replacement (bb1, bb2, bb3))
284 cfgchanged = true;
285 continue;
287 else
288 continue;
290 e1 = EDGE_SUCC (bb1, 0);
292 /* Make sure that bb1 is just a fall through. */
293 if (!single_succ_p (bb1)
294 || (e1->flags & EDGE_FALLTHRU) == 0)
295 continue;
297 /* Also make sure that bb1 only have one predecessor and that it
298 is bb. */
299 if (!single_pred_p (bb1)
300 || single_pred (bb1) != bb)
301 continue;
303 if (do_store_elim)
305 /* bb1 is the middle block, bb2 the join block, bb the split block,
306 e1 the fallthrough edge from bb1 to bb2. We can't do the
307 optimization if the join block has more than two predecessors. */
308 if (EDGE_COUNT (bb2->preds) > 2)
309 continue;
310 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
311 cfgchanged = true;
313 else
315 gimple_seq phis = phi_nodes (bb2);
316 gimple_stmt_iterator gsi;
318 /* Check to make sure that there is only one non-virtual PHI node.
319 TODO: we could do it with more than one iff the other PHI nodes
320 have the same elements for these two edges. */
321 phi = NULL;
322 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
324 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
325 continue;
326 if (phi)
328 phi = NULL;
329 break;
331 phi = gsi_stmt (gsi);
333 if (!phi)
334 continue;
336 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
337 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
339 /* Something is wrong if we cannot find the arguments in the PHI
340 node. */
341 gcc_assert (arg0 != NULL && arg1 != NULL);
343 /* Do the replacement of conditional if it can be done. */
344 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
345 cfgchanged = true;
346 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
347 cfgchanged = true;
348 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
349 cfgchanged = true;
350 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
351 cfgchanged = true;
355 free (bb_order);
357 if (do_store_elim)
358 pointer_set_destroy (nontrap);
359 /* If the CFG has changed, we should cleanup the CFG. */
360 if (cfgchanged && do_store_elim)
362 /* In cond-store replacement we have added some loads on edges
363 and new VOPS (as we moved the store, and created a load). */
364 gsi_commit_edge_inserts ();
365 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
367 else if (cfgchanged)
368 return TODO_cleanup_cfg;
369 return 0;
372 /* Returns the list of basic blocks in the function in an order that guarantees
373 that if a block X has just a single predecessor Y, then Y is after X in the
374 ordering. */
376 basic_block *
377 blocks_in_phiopt_order (void)
379 basic_block x, y;
380 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
381 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
382 unsigned np, i;
383 sbitmap visited = sbitmap_alloc (last_basic_block);
385 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
386 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
388 sbitmap_zero (visited);
390 MARK_VISITED (ENTRY_BLOCK_PTR);
391 FOR_EACH_BB (x)
393 if (VISITED_P (x))
394 continue;
396 /* Walk the predecessors of x as long as they have precisely one
397 predecessor and add them to the list, so that they get stored
398 after x. */
399 for (y = x, np = 1;
400 single_pred_p (y) && !VISITED_P (single_pred (y));
401 y = single_pred (y))
402 np++;
403 for (y = x, i = n - np;
404 single_pred_p (y) && !VISITED_P (single_pred (y));
405 y = single_pred (y), i++)
407 order[i] = y;
408 MARK_VISITED (y);
410 order[i] = y;
411 MARK_VISITED (y);
413 gcc_assert (i == n - 1);
414 n -= np;
417 sbitmap_free (visited);
418 gcc_assert (n == 0);
419 return order;
421 #undef MARK_VISITED
422 #undef VISITED_P
426 /* Return TRUE if block BB has no executable statements, otherwise return
427 FALSE. */
429 bool
430 empty_block_p (basic_block bb)
432 /* BB must have no executable statements. */
433 gimple_stmt_iterator gsi = gsi_after_labels (bb);
434 if (gsi_end_p (gsi))
435 return true;
436 if (is_gimple_debug (gsi_stmt (gsi)))
437 gsi_next_nondebug (&gsi);
438 return gsi_end_p (gsi);
441 /* Replace PHI node element whose edge is E in block BB with variable NEW.
442 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
443 is known to have two edges, one of which must reach BB). */
445 static void
446 replace_phi_edge_with_variable (basic_block cond_block,
447 edge e, gimple phi, tree new_tree)
449 basic_block bb = gimple_bb (phi);
450 basic_block block_to_remove;
451 gimple_stmt_iterator gsi;
453 /* Change the PHI argument to new. */
454 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
456 /* Remove the empty basic block. */
457 if (EDGE_SUCC (cond_block, 0)->dest == bb)
459 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
460 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
461 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
462 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
464 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
466 else
468 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
469 EDGE_SUCC (cond_block, 1)->flags
470 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
471 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
472 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
474 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
476 delete_basic_block (block_to_remove);
478 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
479 gsi = gsi_last_bb (cond_block);
480 gsi_remove (&gsi, true);
482 if (dump_file && (dump_flags & TDF_DETAILS))
483 fprintf (dump_file,
484 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
485 cond_block->index,
486 bb->index);
489 /* The function conditional_replacement does the main work of doing the
490 conditional replacement. Return true if the replacement is done.
491 Otherwise return false.
492 BB is the basic block where the replacement is going to be done on. ARG0
493 is argument 0 from PHI. Likewise for ARG1. */
495 static bool
496 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
497 edge e0, edge e1, gimple phi,
498 tree arg0, tree arg1)
500 tree result;
501 gimple stmt, new_stmt;
502 tree cond;
503 gimple_stmt_iterator gsi;
504 edge true_edge, false_edge;
505 tree new_var, new_var2;
507 /* FIXME: Gimplification of complex type is too hard for now. */
508 if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
509 || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
510 return false;
512 /* The PHI arguments have the constants 0 and 1, then convert
513 it to the conditional. */
514 if ((integer_zerop (arg0) && integer_onep (arg1))
515 || (integer_zerop (arg1) && integer_onep (arg0)))
517 else
518 return false;
520 if (!empty_block_p (middle_bb))
521 return false;
523 /* At this point we know we have a GIMPLE_COND with two successors.
524 One successor is BB, the other successor is an empty block which
525 falls through into BB.
527 There is a single PHI node at the join point (BB) and its arguments
528 are constants (0, 1).
530 So, given the condition COND, and the two PHI arguments, we can
531 rewrite this PHI into non-branching code:
533 dest = (COND) or dest = COND'
535 We use the condition as-is if the argument associated with the
536 true edge has the value one or the argument associated with the
537 false edge as the value zero. Note that those conditions are not
538 the same since only one of the outgoing edges from the GIMPLE_COND
539 will directly reach BB and thus be associated with an argument. */
541 stmt = last_stmt (cond_bb);
542 result = PHI_RESULT (phi);
544 /* To handle special cases like floating point comparison, it is easier and
545 less error-prone to build a tree and gimplify it on the fly though it is
546 less efficient. */
547 cond = fold_build2_loc (gimple_location (stmt),
548 gimple_cond_code (stmt), boolean_type_node,
549 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
551 /* We need to know which is the true edge and which is the false
552 edge so that we know when to invert the condition below. */
553 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
554 if ((e0 == true_edge && integer_zerop (arg0))
555 || (e0 == false_edge && integer_onep (arg0))
556 || (e1 == true_edge && integer_zerop (arg1))
557 || (e1 == false_edge && integer_onep (arg1)))
558 cond = fold_build1_loc (gimple_location (stmt),
559 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
561 /* Insert our new statements at the end of conditional block before the
562 COND_STMT. */
563 gsi = gsi_for_stmt (stmt);
564 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
565 GSI_SAME_STMT);
567 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
569 source_location locus_0, locus_1;
571 new_var2 = create_tmp_var (TREE_TYPE (result), NULL);
572 add_referenced_var (new_var2);
573 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
574 new_var, NULL);
575 new_var2 = make_ssa_name (new_var2, new_stmt);
576 gimple_assign_set_lhs (new_stmt, new_var2);
577 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
578 new_var = new_var2;
580 /* Set the locus to the first argument, unless is doesn't have one. */
581 locus_0 = gimple_phi_arg_location (phi, 0);
582 locus_1 = gimple_phi_arg_location (phi, 1);
583 if (locus_0 == UNKNOWN_LOCATION)
584 locus_0 = locus_1;
585 gimple_set_location (new_stmt, locus_0);
588 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
590 /* Note that we optimized this PHI. */
591 return true;
594 /* Update *ARG which is defined in STMT so that it contains the
595 computed value if that seems profitable. Return true if the
596 statement is made dead by that rewriting. */
598 static bool
599 jump_function_from_stmt (tree *arg, gimple stmt)
601 enum tree_code code = gimple_assign_rhs_code (stmt);
602 if (code == ADDR_EXPR)
604 /* For arg = &p->i transform it to p, if possible. */
605 tree rhs1 = gimple_assign_rhs1 (stmt);
606 HOST_WIDE_INT offset;
607 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
608 &offset);
609 if (tem
610 && TREE_CODE (tem) == MEM_REF
611 && double_int_zero_p
612 (double_int_add (mem_ref_offset (tem),
613 shwi_to_double_int (offset))))
615 *arg = TREE_OPERAND (tem, 0);
616 return true;
619 /* TODO: Much like IPA-CP jump-functions we want to handle constant
620 additions symbolically here, and we'd need to update the comparison
621 code that compares the arg + cst tuples in our caller. For now the
622 code above exactly handles the VEC_BASE pattern from vec.h. */
623 return false;
626 /* The function value_replacement does the main work of doing the value
627 replacement. Return true if the replacement is done. Otherwise return
628 false.
629 BB is the basic block where the replacement is going to be done on. ARG0
630 is argument 0 from the PHI. Likewise for ARG1. */
632 static bool
633 value_replacement (basic_block cond_bb, basic_block middle_bb,
634 edge e0, edge e1, gimple phi,
635 tree arg0, tree arg1)
637 gimple_stmt_iterator gsi;
638 gimple cond;
639 edge true_edge, false_edge;
640 enum tree_code code;
642 /* If the type says honor signed zeros we cannot do this
643 optimization. */
644 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
645 return false;
647 /* Allow a single statement in MIDDLE_BB that defines one of the PHI
648 arguments. */
649 gsi = gsi_after_labels (middle_bb);
650 if (!gsi_end_p (gsi))
652 if (is_gimple_debug (gsi_stmt (gsi)))
653 gsi_next_nondebug (&gsi);
654 if (!gsi_end_p (gsi))
656 gimple stmt = gsi_stmt (gsi);
657 tree lhs;
658 gsi_next_nondebug (&gsi);
659 if (!gsi_end_p (gsi))
660 return false;
661 if (!is_gimple_assign (stmt))
662 return false;
663 /* Now try to adjust arg0 or arg1 according to the computation
664 in the single statement. */
665 lhs = gimple_assign_lhs (stmt);
666 if (!((lhs == arg0
667 && jump_function_from_stmt (&arg0, stmt))
668 || (lhs == arg1
669 && jump_function_from_stmt (&arg1, stmt))))
670 return false;
674 cond = last_stmt (cond_bb);
675 code = gimple_cond_code (cond);
677 /* This transformation is only valid for equality comparisons. */
678 if (code != NE_EXPR && code != EQ_EXPR)
679 return false;
681 /* We need to know which is the true edge and which is the false
682 edge so that we know if have abs or negative abs. */
683 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
685 /* At this point we know we have a COND_EXPR with two successors.
686 One successor is BB, the other successor is an empty block which
687 falls through into BB.
689 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
691 There is a single PHI node at the join point (BB) with two arguments.
693 We now need to verify that the two arguments in the PHI node match
694 the two arguments to the equality comparison. */
696 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
697 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
698 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
699 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
701 edge e;
702 tree arg;
704 /* For NE_EXPR, we want to build an assignment result = arg where
705 arg is the PHI argument associated with the true edge. For
706 EQ_EXPR we want the PHI argument associated with the false edge. */
707 e = (code == NE_EXPR ? true_edge : false_edge);
709 /* Unfortunately, E may not reach BB (it may instead have gone to
710 OTHER_BLOCK). If that is the case, then we want the single outgoing
711 edge from OTHER_BLOCK which reaches BB and represents the desired
712 path from COND_BLOCK. */
713 if (e->dest == middle_bb)
714 e = single_succ_edge (e->dest);
716 /* Now we know the incoming edge to BB that has the argument for the
717 RHS of our new assignment statement. */
718 if (e0 == e)
719 arg = arg0;
720 else
721 arg = arg1;
723 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
725 /* Note that we optimized this PHI. */
726 return true;
728 return false;
731 /* The function minmax_replacement does the main work of doing the minmax
732 replacement. Return true if the replacement is done. Otherwise return
733 false.
734 BB is the basic block where the replacement is going to be done on. ARG0
735 is argument 0 from the PHI. Likewise for ARG1. */
737 static bool
738 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
739 edge e0, edge e1, gimple phi,
740 tree arg0, tree arg1)
742 tree result, type;
743 gimple cond, new_stmt;
744 edge true_edge, false_edge;
745 enum tree_code cmp, minmax, ass_code;
746 tree smaller, larger, arg_true, arg_false;
747 gimple_stmt_iterator gsi, gsi_from;
749 type = TREE_TYPE (PHI_RESULT (phi));
751 /* The optimization may be unsafe due to NaNs. */
752 if (HONOR_NANS (TYPE_MODE (type)))
753 return false;
755 cond = last_stmt (cond_bb);
756 cmp = gimple_cond_code (cond);
758 /* This transformation is only valid for order comparisons. Record which
759 operand is smaller/larger if the result of the comparison is true. */
760 if (cmp == LT_EXPR || cmp == LE_EXPR)
762 smaller = gimple_cond_lhs (cond);
763 larger = gimple_cond_rhs (cond);
765 else if (cmp == GT_EXPR || cmp == GE_EXPR)
767 smaller = gimple_cond_rhs (cond);
768 larger = gimple_cond_lhs (cond);
770 else
771 return false;
773 /* We need to know which is the true edge and which is the false
774 edge so that we know if have abs or negative abs. */
775 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
777 /* Forward the edges over the middle basic block. */
778 if (true_edge->dest == middle_bb)
779 true_edge = EDGE_SUCC (true_edge->dest, 0);
780 if (false_edge->dest == middle_bb)
781 false_edge = EDGE_SUCC (false_edge->dest, 0);
783 if (true_edge == e0)
785 gcc_assert (false_edge == e1);
786 arg_true = arg0;
787 arg_false = arg1;
789 else
791 gcc_assert (false_edge == e0);
792 gcc_assert (true_edge == e1);
793 arg_true = arg1;
794 arg_false = arg0;
797 if (empty_block_p (middle_bb))
799 if (operand_equal_for_phi_arg_p (arg_true, smaller)
800 && operand_equal_for_phi_arg_p (arg_false, larger))
802 /* Case
804 if (smaller < larger)
805 rslt = smaller;
806 else
807 rslt = larger; */
808 minmax = MIN_EXPR;
810 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
811 && operand_equal_for_phi_arg_p (arg_true, larger))
812 minmax = MAX_EXPR;
813 else
814 return false;
816 else
818 /* Recognize the following case, assuming d <= u:
820 if (a <= u)
821 b = MAX (a, d);
822 x = PHI <b, u>
824 This is equivalent to
826 b = MAX (a, d);
827 x = MIN (b, u); */
829 gimple assign = last_and_only_stmt (middle_bb);
830 tree lhs, op0, op1, bound;
832 if (!assign
833 || gimple_code (assign) != GIMPLE_ASSIGN)
834 return false;
836 lhs = gimple_assign_lhs (assign);
837 ass_code = gimple_assign_rhs_code (assign);
838 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
839 return false;
840 op0 = gimple_assign_rhs1 (assign);
841 op1 = gimple_assign_rhs2 (assign);
843 if (true_edge->src == middle_bb)
845 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
846 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
847 return false;
849 if (operand_equal_for_phi_arg_p (arg_false, larger))
851 /* Case
853 if (smaller < larger)
855 r' = MAX_EXPR (smaller, bound)
857 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
858 if (ass_code != MAX_EXPR)
859 return false;
861 minmax = MIN_EXPR;
862 if (operand_equal_for_phi_arg_p (op0, smaller))
863 bound = op1;
864 else if (operand_equal_for_phi_arg_p (op1, smaller))
865 bound = op0;
866 else
867 return false;
869 /* We need BOUND <= LARGER. */
870 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
871 bound, larger)))
872 return false;
874 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
876 /* Case
878 if (smaller < larger)
880 r' = MIN_EXPR (larger, bound)
882 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
883 if (ass_code != MIN_EXPR)
884 return false;
886 minmax = MAX_EXPR;
887 if (operand_equal_for_phi_arg_p (op0, larger))
888 bound = op1;
889 else if (operand_equal_for_phi_arg_p (op1, larger))
890 bound = op0;
891 else
892 return false;
894 /* We need BOUND >= SMALLER. */
895 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
896 bound, smaller)))
897 return false;
899 else
900 return false;
902 else
904 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
905 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
906 return false;
908 if (operand_equal_for_phi_arg_p (arg_true, larger))
910 /* Case
912 if (smaller > larger)
914 r' = MIN_EXPR (smaller, bound)
916 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
917 if (ass_code != MIN_EXPR)
918 return false;
920 minmax = MAX_EXPR;
921 if (operand_equal_for_phi_arg_p (op0, smaller))
922 bound = op1;
923 else if (operand_equal_for_phi_arg_p (op1, smaller))
924 bound = op0;
925 else
926 return false;
928 /* We need BOUND >= LARGER. */
929 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
930 bound, larger)))
931 return false;
933 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
935 /* Case
937 if (smaller > larger)
939 r' = MAX_EXPR (larger, bound)
941 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
942 if (ass_code != MAX_EXPR)
943 return false;
945 minmax = MIN_EXPR;
946 if (operand_equal_for_phi_arg_p (op0, larger))
947 bound = op1;
948 else if (operand_equal_for_phi_arg_p (op1, larger))
949 bound = op0;
950 else
951 return false;
953 /* We need BOUND <= SMALLER. */
954 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
955 bound, smaller)))
956 return false;
958 else
959 return false;
962 /* Move the statement from the middle block. */
963 gsi = gsi_last_bb (cond_bb);
964 gsi_from = gsi_last_nondebug_bb (middle_bb);
965 gsi_move_before (&gsi_from, &gsi);
968 /* Emit the statement to compute min/max. */
969 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
970 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
971 gsi = gsi_last_bb (cond_bb);
972 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
974 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
975 return true;
978 /* The function absolute_replacement does the main work of doing the absolute
979 replacement. Return true if the replacement is done. Otherwise return
980 false.
981 bb is the basic block where the replacement is going to be done on. arg0
982 is argument 0 from the phi. Likewise for arg1. */
984 static bool
985 abs_replacement (basic_block cond_bb, basic_block middle_bb,
986 edge e0 ATTRIBUTE_UNUSED, edge e1,
987 gimple phi, tree arg0, tree arg1)
989 tree result;
990 gimple new_stmt, cond;
991 gimple_stmt_iterator gsi;
992 edge true_edge, false_edge;
993 gimple assign;
994 edge e;
995 tree rhs, lhs;
996 bool negate;
997 enum tree_code cond_code;
999 /* If the type says honor signed zeros we cannot do this
1000 optimization. */
1001 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1002 return false;
1004 /* OTHER_BLOCK must have only one executable statement which must have the
1005 form arg0 = -arg1 or arg1 = -arg0. */
1007 assign = last_and_only_stmt (middle_bb);
1008 /* If we did not find the proper negation assignment, then we can not
1009 optimize. */
1010 if (assign == NULL)
1011 return false;
1013 /* If we got here, then we have found the only executable statement
1014 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1015 arg1 = -arg0, then we can not optimize. */
1016 if (gimple_code (assign) != GIMPLE_ASSIGN)
1017 return false;
1019 lhs = gimple_assign_lhs (assign);
1021 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1022 return false;
1024 rhs = gimple_assign_rhs1 (assign);
1026 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1027 if (!(lhs == arg0 && rhs == arg1)
1028 && !(lhs == arg1 && rhs == arg0))
1029 return false;
1031 cond = last_stmt (cond_bb);
1032 result = PHI_RESULT (phi);
1034 /* Only relationals comparing arg[01] against zero are interesting. */
1035 cond_code = gimple_cond_code (cond);
1036 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1037 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1038 return false;
1040 /* Make sure the conditional is arg[01] OP y. */
1041 if (gimple_cond_lhs (cond) != rhs)
1042 return false;
1044 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1045 ? real_zerop (gimple_cond_rhs (cond))
1046 : integer_zerop (gimple_cond_rhs (cond)))
1048 else
1049 return false;
1051 /* We need to know which is the true edge and which is the false
1052 edge so that we know if have abs or negative abs. */
1053 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1055 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1056 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1057 the false edge goes to OTHER_BLOCK. */
1058 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1059 e = true_edge;
1060 else
1061 e = false_edge;
1063 if (e->dest == middle_bb)
1064 negate = true;
1065 else
1066 negate = false;
1068 result = duplicate_ssa_name (result, NULL);
1070 if (negate)
1072 tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
1073 add_referenced_var (tmp);
1074 lhs = make_ssa_name (tmp, NULL);
1076 else
1077 lhs = result;
1079 /* Build the modify expression with abs expression. */
1080 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
1082 gsi = gsi_last_bb (cond_bb);
1083 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1085 if (negate)
1087 /* Get the right GSI. We want to insert after the recently
1088 added ABS_EXPR statement (which we know is the first statement
1089 in the block. */
1090 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
1092 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1095 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1097 /* Note that we optimized this PHI. */
1098 return true;
1101 /* Auxiliary functions to determine the set of memory accesses which
1102 can't trap because they are preceded by accesses to the same memory
1103 portion. We do that for MEM_REFs, so we only need to track
1104 the SSA_NAME of the pointer indirectly referenced. The algorithm
1105 simply is a walk over all instructions in dominator order. When
1106 we see an MEM_REF we determine if we've already seen a same
1107 ref anywhere up to the root of the dominator tree. If we do the
1108 current access can't trap. If we don't see any dominating access
1109 the current access might trap, but might also make later accesses
1110 non-trapping, so we remember it. We need to be careful with loads
1111 or stores, for instance a load might not trap, while a store would,
1112 so if we see a dominating read access this doesn't mean that a later
1113 write access would not trap. Hence we also need to differentiate the
1114 type of access(es) seen.
1116 ??? We currently are very conservative and assume that a load might
1117 trap even if a store doesn't (write-only memory). This probably is
1118 overly conservative. */
1120 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1121 through it was seen, which would constitute a no-trap region for
1122 same accesses. */
1123 struct name_to_bb
1125 tree ssa_name;
1126 basic_block bb;
1127 unsigned store : 1;
1130 /* The hash table for remembering what we've seen. */
1131 static htab_t seen_ssa_names;
1133 /* The set of MEM_REFs which can't trap. */
1134 static struct pointer_set_t *nontrap_set;
1136 /* The hash function, based on the pointer to the pointer SSA_NAME. */
1137 static hashval_t
1138 name_to_bb_hash (const void *p)
1140 const_tree n = ((const struct name_to_bb *)p)->ssa_name;
1141 return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store;
1144 /* The equality function of *P1 and *P2. SSA_NAMEs are shared, so
1145 it's enough to simply compare them for equality. */
1146 static int
1147 name_to_bb_eq (const void *p1, const void *p2)
1149 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1150 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1152 return n1->ssa_name == n2->ssa_name && n1->store == n2->store;
1155 /* We see the expression EXP in basic block BB. If it's an interesting
1156 expression (an MEM_REF through an SSA_NAME) possibly insert the
1157 expression into the set NONTRAP or the hash table of seen expressions.
1158 STORE is true if this expression is on the LHS, otherwise it's on
1159 the RHS. */
1160 static void
1161 add_or_mark_expr (basic_block bb, tree exp,
1162 struct pointer_set_t *nontrap, bool store)
1164 if (TREE_CODE (exp) == MEM_REF
1165 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
1167 tree name = TREE_OPERAND (exp, 0);
1168 struct name_to_bb map;
1169 void **slot;
1170 struct name_to_bb *n2bb;
1171 basic_block found_bb = 0;
1173 /* Try to find the last seen MEM_REF through the same
1174 SSA_NAME, which can trap. */
1175 map.ssa_name = name;
1176 map.bb = 0;
1177 map.store = store;
1178 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1179 n2bb = (struct name_to_bb *) *slot;
1180 if (n2bb)
1181 found_bb = n2bb->bb;
1183 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1184 (it's in a basic block on the path from us to the dominator root)
1185 then we can't trap. */
1186 if (found_bb && found_bb->aux == (void *)1)
1188 pointer_set_insert (nontrap, exp);
1190 else
1192 /* EXP might trap, so insert it into the hash table. */
1193 if (n2bb)
1195 n2bb->bb = bb;
1197 else
1199 n2bb = XNEW (struct name_to_bb);
1200 n2bb->ssa_name = name;
1201 n2bb->bb = bb;
1202 n2bb->store = store;
1203 *slot = n2bb;
1209 /* Called by walk_dominator_tree, when entering the block BB. */
1210 static void
1211 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1213 gimple_stmt_iterator gsi;
1214 /* Mark this BB as being on the path to dominator root. */
1215 bb->aux = (void*)1;
1217 /* And walk the statements in order. */
1218 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1220 gimple stmt = gsi_stmt (gsi);
1222 if (is_gimple_assign (stmt))
1224 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1225 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
1226 if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1)
1227 add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set,
1228 false);
1233 /* Called by walk_dominator_tree, when basic block BB is exited. */
1234 static void
1235 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1237 /* This BB isn't on the path to dominator root anymore. */
1238 bb->aux = NULL;
1241 /* This is the entry point of gathering non trapping memory accesses.
1242 It will do a dominator walk over the whole function, and it will
1243 make use of the bb->aux pointers. It returns a set of trees
1244 (the MEM_REFs itself) which can't trap. */
1245 static struct pointer_set_t *
1246 get_non_trapping (void)
1248 struct pointer_set_t *nontrap;
1249 struct dom_walk_data walk_data;
1251 nontrap = pointer_set_create ();
1252 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1253 free);
1254 /* We're going to do a dominator walk, so ensure that we have
1255 dominance information. */
1256 calculate_dominance_info (CDI_DOMINATORS);
1258 /* Setup callbacks for the generic dominator tree walker. */
1259 nontrap_set = nontrap;
1260 walk_data.dom_direction = CDI_DOMINATORS;
1261 walk_data.initialize_block_local_data = NULL;
1262 walk_data.before_dom_children = nt_init_block;
1263 walk_data.after_dom_children = nt_fini_block;
1264 walk_data.global_data = NULL;
1265 walk_data.block_local_data_size = 0;
1267 init_walk_dominator_tree (&walk_data);
1268 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1269 fini_walk_dominator_tree (&walk_data);
1270 htab_delete (seen_ssa_names);
1272 return nontrap;
1275 /* Do the main work of conditional store replacement. We already know
1276 that the recognized pattern looks like so:
1278 split:
1279 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1280 MIDDLE_BB:
1281 something
1282 fallthrough (edge E0)
1283 JOIN_BB:
1284 some more
1286 We check that MIDDLE_BB contains only one store, that that store
1287 doesn't trap (not via NOTRAP, but via checking if an access to the same
1288 memory location dominates us) and that the store has a "simple" RHS. */
1290 static bool
1291 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1292 edge e0, edge e1, struct pointer_set_t *nontrap)
1294 gimple assign = last_and_only_stmt (middle_bb);
1295 tree lhs, rhs, name;
1296 gimple newphi, new_stmt;
1297 gimple_stmt_iterator gsi;
1298 source_location locus;
1300 /* Check if middle_bb contains of only one store. */
1301 if (!assign
1302 || !gimple_assign_single_p (assign))
1303 return false;
1305 locus = gimple_location (assign);
1306 lhs = gimple_assign_lhs (assign);
1307 rhs = gimple_assign_rhs1 (assign);
1308 if (TREE_CODE (lhs) != MEM_REF
1309 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1310 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1311 return false;
1313 /* Prove that we can move the store down. We could also check
1314 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1315 whose value is not available readily, which we want to avoid. */
1316 if (!pointer_set_contains (nontrap, lhs))
1317 return false;
1319 /* Now we've checked the constraints, so do the transformation:
1320 1) Remove the single store. */
1321 gsi = gsi_for_stmt (assign);
1322 unlink_stmt_vdef (assign);
1323 gsi_remove (&gsi, true);
1324 release_defs (assign);
1326 /* 2) Create a temporary where we can store the old content
1327 of the memory touched by the store, if we need to. */
1328 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1329 condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore");
1330 add_referenced_var (condstoretemp);
1332 /* 3) Insert a load from the memory of the store to the temporary
1333 on the edge which did not contain the store. */
1334 lhs = unshare_expr (lhs);
1335 new_stmt = gimple_build_assign (condstoretemp, lhs);
1336 name = make_ssa_name (condstoretemp, new_stmt);
1337 gimple_assign_set_lhs (new_stmt, name);
1338 gimple_set_location (new_stmt, locus);
1339 gsi_insert_on_edge (e1, new_stmt);
1341 /* 4) Create a PHI node at the join block, with one argument
1342 holding the old RHS, and the other holding the temporary
1343 where we stored the old memory contents. */
1344 newphi = create_phi_node (condstoretemp, join_bb);
1345 add_phi_arg (newphi, rhs, e0, locus);
1346 add_phi_arg (newphi, name, e1, locus);
1348 lhs = unshare_expr (lhs);
1349 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1351 /* 5) Insert that PHI node. */
1352 gsi = gsi_after_labels (join_bb);
1353 if (gsi_end_p (gsi))
1355 gsi = gsi_last_bb (join_bb);
1356 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1358 else
1359 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1361 return true;
1364 /* Do the main work of conditional store replacement. */
1366 static bool
1367 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1368 basic_block join_bb, gimple then_assign,
1369 gimple else_assign)
1371 tree lhs_base, lhs, then_rhs, else_rhs;
1372 source_location then_locus, else_locus;
1373 gimple_stmt_iterator gsi;
1374 gimple newphi, new_stmt;
1376 if (then_assign == NULL
1377 || !gimple_assign_single_p (then_assign)
1378 || gimple_clobber_p (then_assign)
1379 || else_assign == NULL
1380 || !gimple_assign_single_p (else_assign)
1381 || gimple_clobber_p (else_assign))
1382 return false;
1384 lhs = gimple_assign_lhs (then_assign);
1385 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1386 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1387 return false;
1389 lhs_base = get_base_address (lhs);
1390 if (lhs_base == NULL_TREE
1391 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1392 return false;
1394 then_rhs = gimple_assign_rhs1 (then_assign);
1395 else_rhs = gimple_assign_rhs1 (else_assign);
1396 then_locus = gimple_location (then_assign);
1397 else_locus = gimple_location (else_assign);
1399 /* Now we've checked the constraints, so do the transformation:
1400 1) Remove the stores. */
1401 gsi = gsi_for_stmt (then_assign);
1402 unlink_stmt_vdef (then_assign);
1403 gsi_remove (&gsi, true);
1404 release_defs (then_assign);
1406 gsi = gsi_for_stmt (else_assign);
1407 unlink_stmt_vdef (else_assign);
1408 gsi_remove (&gsi, true);
1409 release_defs (else_assign);
1411 /* 2) Create a temporary where we can store the old content
1412 of the memory touched by the store, if we need to. */
1413 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1414 condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore");
1415 add_referenced_var (condstoretemp);
1417 /* 3) Create a PHI node at the join block, with one argument
1418 holding the old RHS, and the other holding the temporary
1419 where we stored the old memory contents. */
1420 newphi = create_phi_node (condstoretemp, join_bb);
1421 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1422 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1424 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1426 /* 4) Insert that PHI node. */
1427 gsi = gsi_after_labels (join_bb);
1428 if (gsi_end_p (gsi))
1430 gsi = gsi_last_bb (join_bb);
1431 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1433 else
1434 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1436 return true;
1439 /* Conditional store replacement. We already know
1440 that the recognized pattern looks like so:
1442 split:
1443 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1444 THEN_BB:
1446 X = Y;
1448 goto JOIN_BB;
1449 ELSE_BB:
1451 X = Z;
1453 fallthrough (edge E0)
1454 JOIN_BB:
1455 some more
1457 We check that it is safe to sink the store to JOIN_BB by verifying that
1458 there are no read-after-write or write-after-write dependencies in
1459 THEN_BB and ELSE_BB. */
1461 static bool
1462 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1463 basic_block join_bb)
1465 gimple then_assign = last_and_only_stmt (then_bb);
1466 gimple else_assign = last_and_only_stmt (else_bb);
1467 VEC (data_reference_p, heap) *then_datarefs, *else_datarefs;
1468 VEC (ddr_p, heap) *then_ddrs, *else_ddrs;
1469 gimple then_store, else_store;
1470 bool found, ok = false, res;
1471 struct data_dependence_relation *ddr;
1472 data_reference_p then_dr, else_dr;
1473 int i, j;
1474 tree then_lhs, else_lhs;
1475 VEC (gimple, heap) *then_stores, *else_stores;
1476 basic_block blocks[3];
1478 if (MAX_STORES_TO_SINK == 0)
1479 return false;
1481 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1482 if (then_assign && else_assign)
1483 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1484 then_assign, else_assign);
1486 /* Find data references. */
1487 then_datarefs = VEC_alloc (data_reference_p, heap, 1);
1488 else_datarefs = VEC_alloc (data_reference_p, heap, 1);
1489 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1490 == chrec_dont_know)
1491 || !VEC_length (data_reference_p, then_datarefs)
1492 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1493 == chrec_dont_know)
1494 || !VEC_length (data_reference_p, else_datarefs))
1496 free_data_refs (then_datarefs);
1497 free_data_refs (else_datarefs);
1498 return false;
1501 /* Find pairs of stores with equal LHS. */
1502 then_stores = VEC_alloc (gimple, heap, 1);
1503 else_stores = VEC_alloc (gimple, heap, 1);
1504 FOR_EACH_VEC_ELT (data_reference_p, then_datarefs, i, then_dr)
1506 if (DR_IS_READ (then_dr))
1507 continue;
1509 then_store = DR_STMT (then_dr);
1510 then_lhs = gimple_get_lhs (then_store);
1511 found = false;
1513 FOR_EACH_VEC_ELT (data_reference_p, else_datarefs, j, else_dr)
1515 if (DR_IS_READ (else_dr))
1516 continue;
1518 else_store = DR_STMT (else_dr);
1519 else_lhs = gimple_get_lhs (else_store);
1521 if (operand_equal_p (then_lhs, else_lhs, 0))
1523 found = true;
1524 break;
1528 if (!found)
1529 continue;
1531 VEC_safe_push (gimple, heap, then_stores, then_store);
1532 VEC_safe_push (gimple, heap, else_stores, else_store);
1535 /* No pairs of stores found. */
1536 if (!VEC_length (gimple, then_stores)
1537 || VEC_length (gimple, then_stores) > (unsigned) MAX_STORES_TO_SINK)
1539 free_data_refs (then_datarefs);
1540 free_data_refs (else_datarefs);
1541 VEC_free (gimple, heap, then_stores);
1542 VEC_free (gimple, heap, else_stores);
1543 return false;
1546 /* Compute and check data dependencies in both basic blocks. */
1547 then_ddrs = VEC_alloc (ddr_p, heap, 1);
1548 else_ddrs = VEC_alloc (ddr_p, heap, 1);
1549 compute_all_dependences (then_datarefs, &then_ddrs, NULL, false);
1550 compute_all_dependences (else_datarefs, &else_ddrs, NULL, false);
1551 blocks[0] = then_bb;
1552 blocks[1] = else_bb;
1553 blocks[2] = join_bb;
1554 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1556 /* Check that there are no read-after-write or write-after-write dependencies
1557 in THEN_BB. */
1558 FOR_EACH_VEC_ELT (ddr_p, then_ddrs, i, ddr)
1560 struct data_reference *dra = DDR_A (ddr);
1561 struct data_reference *drb = DDR_B (ddr);
1563 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1564 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1565 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1566 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1567 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1568 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1570 free_dependence_relations (then_ddrs);
1571 free_dependence_relations (else_ddrs);
1572 free_data_refs (then_datarefs);
1573 free_data_refs (else_datarefs);
1574 VEC_free (gimple, heap, then_stores);
1575 VEC_free (gimple, heap, else_stores);
1576 return false;
1580 /* Check that there are no read-after-write or write-after-write dependencies
1581 in ELSE_BB. */
1582 FOR_EACH_VEC_ELT (ddr_p, else_ddrs, i, ddr)
1584 struct data_reference *dra = DDR_A (ddr);
1585 struct data_reference *drb = DDR_B (ddr);
1587 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1588 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1589 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1590 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1591 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1592 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1594 free_dependence_relations (then_ddrs);
1595 free_dependence_relations (else_ddrs);
1596 free_data_refs (then_datarefs);
1597 free_data_refs (else_datarefs);
1598 VEC_free (gimple, heap, then_stores);
1599 VEC_free (gimple, heap, else_stores);
1600 return false;
1604 /* Sink stores with same LHS. */
1605 FOR_EACH_VEC_ELT (gimple, then_stores, i, then_store)
1607 else_store = VEC_index (gimple, else_stores, i);
1608 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1609 then_store, else_store);
1610 ok = ok || res;
1613 free_dependence_relations (then_ddrs);
1614 free_dependence_relations (else_ddrs);
1615 free_data_refs (then_datarefs);
1616 free_data_refs (else_datarefs);
1617 VEC_free (gimple, heap, then_stores);
1618 VEC_free (gimple, heap, else_stores);
1620 return ok;
1623 /* Always do these optimizations if we have SSA
1624 trees to work on. */
1625 static bool
1626 gate_phiopt (void)
1628 return 1;
1631 struct gimple_opt_pass pass_phiopt =
1634 GIMPLE_PASS,
1635 "phiopt", /* name */
1636 gate_phiopt, /* gate */
1637 tree_ssa_phiopt, /* execute */
1638 NULL, /* sub */
1639 NULL, /* next */
1640 0, /* static_pass_number */
1641 TV_TREE_PHIOPT, /* tv_id */
1642 PROP_cfg | PROP_ssa, /* properties_required */
1643 0, /* properties_provided */
1644 0, /* properties_destroyed */
1645 0, /* todo_flags_start */
1646 TODO_ggc_collect
1647 | TODO_verify_ssa
1648 | TODO_verify_flow
1649 | TODO_verify_stmts /* todo_flags_finish */
1653 static bool
1654 gate_cselim (void)
1656 return flag_tree_cselim;
1659 struct gimple_opt_pass pass_cselim =
1662 GIMPLE_PASS,
1663 "cselim", /* name */
1664 gate_cselim, /* gate */
1665 tree_ssa_cs_elim, /* execute */
1666 NULL, /* sub */
1667 NULL, /* next */
1668 0, /* static_pass_number */
1669 TV_TREE_PHIOPT, /* tv_id */
1670 PROP_cfg | PROP_ssa, /* properties_required */
1671 0, /* properties_provided */
1672 0, /* properties_destroyed */
1673 0, /* todo_flags_start */
1674 TODO_ggc_collect
1675 | TODO_verify_ssa
1676 | TODO_verify_flow
1677 | TODO_verify_stmts /* todo_flags_finish */