1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "hard-reg-set.h"
32 #include "insn-config.h"
38 #include "basic-block.h"
43 #include "diagnostic-core.h"
48 #include "tree-pass.h"
52 static int reload_cse_noop_set_p (rtx
);
53 static void reload_cse_simplify (rtx
, rtx
);
54 static void reload_cse_regs_1 (rtx
);
55 static int reload_cse_simplify_set (rtx
, rtx
);
56 static int reload_cse_simplify_operands (rtx
, rtx
);
58 static void reload_combine (void);
59 static void reload_combine_note_use (rtx
*, rtx
, int, rtx
);
60 static void reload_combine_note_store (rtx
, const_rtx
, void *);
62 static bool reload_cse_move2add (rtx
);
63 static void move2add_note_store (rtx
, const_rtx
, void *);
65 /* Call cse / combine like post-reload optimization phases.
66 FIRST is the first instruction. */
68 reload_cse_regs (rtx first ATTRIBUTE_UNUSED
)
71 reload_cse_regs_1 (first
);
73 moves_converted
= reload_cse_move2add (first
);
74 if (flag_expensive_optimizations
)
78 reload_cse_regs_1 (first
);
82 /* See whether a single set SET is a noop. */
84 reload_cse_noop_set_p (rtx set
)
86 if (cselib_reg_set_mode (SET_DEST (set
)) != GET_MODE (SET_DEST (set
)))
89 return rtx_equal_for_cselib_p (SET_DEST (set
), SET_SRC (set
));
92 /* Try to simplify INSN. */
94 reload_cse_simplify (rtx insn
, rtx testreg
)
96 rtx body
= PATTERN (insn
);
98 if (GET_CODE (body
) == SET
)
102 /* Simplify even if we may think it is a no-op.
103 We may think a memory load of a value smaller than WORD_SIZE
104 is redundant because we haven't taken into account possible
105 implicit extension. reload_cse_simplify_set() will bring
106 this out, so it's safer to simplify before we delete. */
107 count
+= reload_cse_simplify_set (body
, insn
);
109 if (!count
&& reload_cse_noop_set_p (body
))
111 rtx value
= SET_DEST (body
);
113 && ! REG_FUNCTION_VALUE_P (value
))
115 if (check_for_inc_dec (insn
))
116 delete_insn_and_edges (insn
);
121 apply_change_group ();
123 reload_cse_simplify_operands (insn
, testreg
);
125 else if (GET_CODE (body
) == PARALLEL
)
129 rtx value
= NULL_RTX
;
131 /* Registers mentioned in the clobber list for an asm cannot be reused
132 within the body of the asm. Invalidate those registers now so that
133 we don't try to substitute values for them. */
134 if (asm_noperands (body
) >= 0)
136 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
138 rtx part
= XVECEXP (body
, 0, i
);
139 if (GET_CODE (part
) == CLOBBER
&& REG_P (XEXP (part
, 0)))
140 cselib_invalidate_rtx (XEXP (part
, 0));
144 /* If every action in a PARALLEL is a noop, we can delete
145 the entire PARALLEL. */
146 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
148 rtx part
= XVECEXP (body
, 0, i
);
149 if (GET_CODE (part
) == SET
)
151 if (! reload_cse_noop_set_p (part
))
153 if (REG_P (SET_DEST (part
))
154 && REG_FUNCTION_VALUE_P (SET_DEST (part
)))
158 value
= SET_DEST (part
);
161 else if (GET_CODE (part
) != CLOBBER
)
167 if (check_for_inc_dec (insn
))
168 delete_insn_and_edges (insn
);
169 /* We're done with this insn. */
173 /* It's not a no-op, but we can try to simplify it. */
174 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
175 if (GET_CODE (XVECEXP (body
, 0, i
)) == SET
)
176 count
+= reload_cse_simplify_set (XVECEXP (body
, 0, i
), insn
);
179 apply_change_group ();
181 reload_cse_simplify_operands (insn
, testreg
);
185 /* Do a very simple CSE pass over the hard registers.
187 This function detects no-op moves where we happened to assign two
188 different pseudo-registers to the same hard register, and then
189 copied one to the other. Reload will generate a useless
190 instruction copying a register to itself.
192 This function also detects cases where we load a value from memory
193 into two different registers, and (if memory is more expensive than
194 registers) changes it to simply copy the first register into the
197 Another optimization is performed that scans the operands of each
198 instruction to see whether the value is already available in a
199 hard register. It then replaces the operand with the hard register
200 if possible, much like an optional reload would. */
203 reload_cse_regs_1 (rtx first
)
206 rtx testreg
= gen_rtx_REG (VOIDmode
, -1);
208 cselib_init (CSELIB_RECORD_MEMORY
);
209 init_alias_analysis ();
211 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
214 reload_cse_simplify (insn
, testreg
);
216 cselib_process_insn (insn
);
220 end_alias_analysis ();
224 /* Try to simplify a single SET instruction. SET is the set pattern.
225 INSN is the instruction it came from.
226 This function only handles one case: if we set a register to a value
227 which is not a register, we try to find that value in some other register
228 and change the set into a register copy. */
231 reload_cse_simplify_set (rtx set
, rtx insn
)
239 struct elt_loc_list
*l
;
240 #ifdef LOAD_EXTEND_OP
241 enum rtx_code extend_op
= UNKNOWN
;
243 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
245 dreg
= true_regnum (SET_DEST (set
));
250 if (side_effects_p (src
) || true_regnum (src
) >= 0)
253 dclass
= REGNO_REG_CLASS (dreg
);
255 #ifdef LOAD_EXTEND_OP
256 /* When replacing a memory with a register, we need to honor assumptions
257 that combine made wrt the contents of sign bits. We'll do this by
258 generating an extend instruction instead of a reg->reg copy. Thus
259 the destination must be a register that we can widen. */
261 && GET_MODE_BITSIZE (GET_MODE (src
)) < BITS_PER_WORD
262 && (extend_op
= LOAD_EXTEND_OP (GET_MODE (src
))) != UNKNOWN
263 && !REG_P (SET_DEST (set
)))
267 val
= cselib_lookup (src
, GET_MODE (SET_DEST (set
)), 0, VOIDmode
);
271 /* If memory loads are cheaper than register copies, don't change them. */
273 old_cost
= memory_move_cost (GET_MODE (src
), dclass
, true);
274 else if (REG_P (src
))
275 old_cost
= register_move_cost (GET_MODE (src
),
276 REGNO_REG_CLASS (REGNO (src
)), dclass
);
278 old_cost
= set_src_cost (src
, speed
);
280 for (l
= val
->locs
; l
; l
= l
->next
)
282 rtx this_rtx
= l
->loc
;
285 if (CONSTANT_P (this_rtx
) && ! references_value_p (this_rtx
, 0))
287 #ifdef LOAD_EXTEND_OP
288 if (extend_op
!= UNKNOWN
)
290 HOST_WIDE_INT this_val
;
292 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
293 constants, such as SYMBOL_REF, cannot be extended. */
294 if (!CONST_INT_P (this_rtx
))
297 this_val
= INTVAL (this_rtx
);
301 this_val
&= GET_MODE_MASK (GET_MODE (src
));
304 /* ??? In theory we're already extended. */
305 if (this_val
== trunc_int_for_mode (this_val
, GET_MODE (src
)))
310 this_rtx
= GEN_INT (this_val
);
313 this_cost
= set_src_cost (this_rtx
, speed
);
315 else if (REG_P (this_rtx
))
317 #ifdef LOAD_EXTEND_OP
318 if (extend_op
!= UNKNOWN
)
320 this_rtx
= gen_rtx_fmt_e (extend_op
, word_mode
, this_rtx
);
321 this_cost
= set_src_cost (this_rtx
, speed
);
325 this_cost
= register_move_cost (GET_MODE (this_rtx
),
326 REGNO_REG_CLASS (REGNO (this_rtx
)),
332 /* If equal costs, prefer registers over anything else. That
333 tends to lead to smaller instructions on some machines. */
334 if (this_cost
< old_cost
335 || (this_cost
== old_cost
337 && !REG_P (SET_SRC (set
))))
339 #ifdef LOAD_EXTEND_OP
340 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set
))) < BITS_PER_WORD
341 && extend_op
!= UNKNOWN
342 #ifdef CANNOT_CHANGE_MODE_CLASS
343 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set
)),
345 REGNO_REG_CLASS (REGNO (SET_DEST (set
))))
349 rtx wide_dest
= gen_rtx_REG (word_mode
, REGNO (SET_DEST (set
)));
350 ORIGINAL_REGNO (wide_dest
) = ORIGINAL_REGNO (SET_DEST (set
));
351 validate_change (insn
, &SET_DEST (set
), wide_dest
, 1);
355 validate_unshare_change (insn
, &SET_SRC (set
), this_rtx
, 1);
356 old_cost
= this_cost
, did_change
= 1;
363 /* Try to replace operands in INSN with equivalent values that are already
364 in registers. This can be viewed as optional reloading.
366 For each non-register operand in the insn, see if any hard regs are
367 known to be equivalent to that operand. Record the alternatives which
368 can accept these hard registers. Among all alternatives, select the
369 ones which are better or equal to the one currently matching, where
370 "better" is in terms of '?' and '!' constraints. Among the remaining
371 alternatives, select the one which replaces most operands with
375 reload_cse_simplify_operands (rtx insn
, rtx testreg
)
379 /* For each operand, all registers that are equivalent to it. */
380 HARD_REG_SET equiv_regs
[MAX_RECOG_OPERANDS
];
382 const char *constraints
[MAX_RECOG_OPERANDS
];
384 /* Vector recording how bad an alternative is. */
385 int *alternative_reject
;
386 /* Vector recording how many registers can be introduced by choosing
388 int *alternative_nregs
;
389 /* Array of vectors recording, for each operand and each alternative,
390 which hard register to substitute, or -1 if the operand should be
392 int *op_alt_regno
[MAX_RECOG_OPERANDS
];
393 /* Array of alternatives, sorted in order of decreasing desirability. */
394 int *alternative_order
;
398 if (recog_data
.n_alternatives
== 0 || recog_data
.n_operands
== 0)
401 /* Figure out which alternative currently matches. */
402 if (! constrain_operands (1))
403 fatal_insn_not_found (insn
);
405 alternative_reject
= XALLOCAVEC (int, recog_data
.n_alternatives
);
406 alternative_nregs
= XALLOCAVEC (int, recog_data
.n_alternatives
);
407 alternative_order
= XALLOCAVEC (int, recog_data
.n_alternatives
);
408 memset (alternative_reject
, 0, recog_data
.n_alternatives
* sizeof (int));
409 memset (alternative_nregs
, 0, recog_data
.n_alternatives
* sizeof (int));
411 /* For each operand, find out which regs are equivalent. */
412 for (i
= 0; i
< recog_data
.n_operands
; i
++)
415 struct elt_loc_list
*l
;
418 CLEAR_HARD_REG_SET (equiv_regs
[i
]);
420 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
421 right, so avoid the problem here. Likewise if we have a constant
422 and the insn pattern doesn't tell us the mode we need. */
423 if (LABEL_P (recog_data
.operand
[i
])
424 || (CONSTANT_P (recog_data
.operand
[i
])
425 && recog_data
.operand_mode
[i
] == VOIDmode
))
428 op
= recog_data
.operand
[i
];
429 #ifdef LOAD_EXTEND_OP
431 && GET_MODE_BITSIZE (GET_MODE (op
)) < BITS_PER_WORD
432 && LOAD_EXTEND_OP (GET_MODE (op
)) != UNKNOWN
)
434 rtx set
= single_set (insn
);
436 /* We might have multiple sets, some of which do implicit
437 extension. Punt on this for now. */
440 /* If the destination is also a MEM or a STRICT_LOW_PART, no
442 Also, if there is an explicit extension, we don't have to
443 worry about an implicit one. */
444 else if (MEM_P (SET_DEST (set
))
445 || GET_CODE (SET_DEST (set
)) == STRICT_LOW_PART
446 || GET_CODE (SET_SRC (set
)) == ZERO_EXTEND
447 || GET_CODE (SET_SRC (set
)) == SIGN_EXTEND
)
448 ; /* Continue ordinary processing. */
449 #ifdef CANNOT_CHANGE_MODE_CLASS
450 /* If the register cannot change mode to word_mode, it follows that
451 it cannot have been used in word_mode. */
452 else if (REG_P (SET_DEST (set
))
453 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set
)),
455 REGNO_REG_CLASS (REGNO (SET_DEST (set
)))))
456 ; /* Continue ordinary processing. */
458 /* If this is a straight load, make the extension explicit. */
459 else if (REG_P (SET_DEST (set
))
460 && recog_data
.n_operands
== 2
461 && SET_SRC (set
) == op
462 && SET_DEST (set
) == recog_data
.operand
[1-i
])
464 validate_change (insn
, recog_data
.operand_loc
[i
],
465 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op
)),
468 validate_change (insn
, recog_data
.operand_loc
[1-i
],
469 gen_rtx_REG (word_mode
, REGNO (SET_DEST (set
))),
471 if (! apply_change_group ())
473 return reload_cse_simplify_operands (insn
, testreg
);
476 /* ??? There might be arithmetic operations with memory that are
477 safe to optimize, but is it worth the trouble? */
480 #endif /* LOAD_EXTEND_OP */
481 if (side_effects_p (op
))
483 v
= cselib_lookup (op
, recog_data
.operand_mode
[i
], 0, VOIDmode
);
487 for (l
= v
->locs
; l
; l
= l
->next
)
489 SET_HARD_REG_BIT (equiv_regs
[i
], REGNO (l
->loc
));
492 for (i
= 0; i
< recog_data
.n_operands
; i
++)
494 enum machine_mode mode
;
498 op_alt_regno
[i
] = XALLOCAVEC (int, recog_data
.n_alternatives
);
499 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
500 op_alt_regno
[i
][j
] = -1;
502 p
= constraints
[i
] = recog_data
.constraints
[i
];
503 mode
= recog_data
.operand_mode
[i
];
505 /* Add the reject values for each alternative given by the constraints
514 alternative_reject
[j
] += 3;
516 alternative_reject
[j
] += 300;
519 /* We won't change operands which are already registers. We
520 also don't want to modify output operands. */
521 regno
= true_regnum (recog_data
.operand
[i
]);
523 || constraints
[i
][0] == '='
524 || constraints
[i
][0] == '+')
527 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
529 enum reg_class rclass
= NO_REGS
;
531 if (! TEST_HARD_REG_BIT (equiv_regs
[i
], regno
))
534 SET_REGNO_RAW (testreg
, regno
);
535 PUT_MODE (testreg
, mode
);
537 /* We found a register equal to this operand. Now look for all
538 alternatives that can accept this register and have not been
539 assigned a register they can use yet. */
548 case '=': case '+': case '?':
549 case '#': case '&': case '!':
551 case '0': case '1': case '2': case '3': case '4':
552 case '5': case '6': case '7': case '8': case '9':
553 case '<': case '>': case 'V': case 'o':
554 case 'E': case 'F': case 'G': case 'H':
555 case 's': case 'i': case 'n':
556 case 'I': case 'J': case 'K': case 'L':
557 case 'M': case 'N': case 'O': case 'P':
558 case 'p': case 'X': case TARGET_MEM_CONSTRAINT
:
559 /* These don't say anything we care about. */
563 rclass
= reg_class_subunion
[(int) rclass
][(int) GENERAL_REGS
];
568 = (reg_class_subunion
570 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
574 /* See if REGNO fits this alternative, and set it up as the
575 replacement register if we don't have one for this
576 alternative yet and the operand being replaced is not
577 a cheap CONST_INT. */
578 if (op_alt_regno
[i
][j
] == -1
579 && recog_data
.alternative_enabled_p
[j
]
580 && reg_fits_class_p (testreg
, rclass
, 0, mode
)
581 && (!CONST_INT_P (recog_data
.operand
[i
])
582 || (set_src_cost (recog_data
.operand
[i
],
583 optimize_bb_for_speed_p
584 (BLOCK_FOR_INSN (insn
)))
585 > set_src_cost (testreg
,
586 optimize_bb_for_speed_p
587 (BLOCK_FOR_INSN (insn
))))))
589 alternative_nregs
[j
]++;
590 op_alt_regno
[i
][j
] = regno
;
596 p
+= CONSTRAINT_LEN (c
, p
);
604 /* Record all alternatives which are better or equal to the currently
605 matching one in the alternative_order array. */
606 for (i
= j
= 0; i
< recog_data
.n_alternatives
; i
++)
607 if (alternative_reject
[i
] <= alternative_reject
[which_alternative
])
608 alternative_order
[j
++] = i
;
609 recog_data
.n_alternatives
= j
;
611 /* Sort it. Given a small number of alternatives, a dumb algorithm
612 won't hurt too much. */
613 for (i
= 0; i
< recog_data
.n_alternatives
- 1; i
++)
616 int best_reject
= alternative_reject
[alternative_order
[i
]];
617 int best_nregs
= alternative_nregs
[alternative_order
[i
]];
620 for (j
= i
+ 1; j
< recog_data
.n_alternatives
; j
++)
622 int this_reject
= alternative_reject
[alternative_order
[j
]];
623 int this_nregs
= alternative_nregs
[alternative_order
[j
]];
625 if (this_reject
< best_reject
626 || (this_reject
== best_reject
&& this_nregs
> best_nregs
))
629 best_reject
= this_reject
;
630 best_nregs
= this_nregs
;
634 tmp
= alternative_order
[best
];
635 alternative_order
[best
] = alternative_order
[i
];
636 alternative_order
[i
] = tmp
;
639 /* Substitute the operands as determined by op_alt_regno for the best
641 j
= alternative_order
[0];
643 for (i
= 0; i
< recog_data
.n_operands
; i
++)
645 enum machine_mode mode
= recog_data
.operand_mode
[i
];
646 if (op_alt_regno
[i
][j
] == -1)
649 validate_change (insn
, recog_data
.operand_loc
[i
],
650 gen_rtx_REG (mode
, op_alt_regno
[i
][j
]), 1);
653 for (i
= recog_data
.n_dups
- 1; i
>= 0; i
--)
655 int op
= recog_data
.dup_num
[i
];
656 enum machine_mode mode
= recog_data
.operand_mode
[op
];
658 if (op_alt_regno
[op
][j
] == -1)
661 validate_change (insn
, recog_data
.dup_loc
[i
],
662 gen_rtx_REG (mode
, op_alt_regno
[op
][j
]), 1);
665 return apply_change_group ();
668 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
670 This code might also be useful when reload gave up on reg+reg addressing
671 because of clashes between the return register and INDEX_REG_CLASS. */
673 /* The maximum number of uses of a register we can keep track of to
674 replace them with reg+reg addressing. */
675 #define RELOAD_COMBINE_MAX_USES 16
677 /* Describes a recorded use of a register. */
680 /* The insn where a register has been used. */
682 /* Points to the memory reference enclosing the use, if any, NULL_RTX
685 /* Location of the register withing INSN. */
687 /* The reverse uid of the insn. */
691 /* If the register is used in some unknown fashion, USE_INDEX is negative.
692 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
693 indicates where it is first set or clobbered.
694 Otherwise, USE_INDEX is the index of the last encountered use of the
695 register (which is first among these we have seen since we scan backwards).
696 USE_RUID indicates the first encountered, i.e. last, of these uses.
697 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
698 with a constant offset; OFFSET contains this constant in that case.
699 STORE_RUID is always meaningful if we only want to use a value in a
700 register in a different place: it denotes the next insn in the insn
701 stream (i.e. the last encountered) that sets or clobbers the register.
702 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
705 struct reg_use reg_use
[RELOAD_COMBINE_MAX_USES
];
711 bool all_offsets_match
;
712 } reg_state
[FIRST_PSEUDO_REGISTER
];
714 /* Reverse linear uid. This is increased in reload_combine while scanning
715 the instructions from last to first. It is used to set last_label_ruid
716 and the store_ruid / use_ruid fields in reg_state. */
717 static int reload_combine_ruid
;
719 /* The RUID of the last label we encountered in reload_combine. */
720 static int last_label_ruid
;
722 /* The RUID of the last jump we encountered in reload_combine. */
723 static int last_jump_ruid
;
725 /* The register numbers of the first and last index register. A value of
726 -1 in LAST_INDEX_REG indicates that we've previously computed these
727 values and found no suitable index registers. */
728 static int first_index_reg
= -1;
729 static int last_index_reg
;
731 #define LABEL_LIVE(LABEL) \
732 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
734 /* Subroutine of reload_combine_split_ruids, called to fix up a single
735 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
738 reload_combine_split_one_ruid (int *pruid
, int split_ruid
)
740 if (*pruid
> split_ruid
)
744 /* Called when we insert a new insn in a position we've already passed in
745 the scan. Examine all our state, increasing all ruids that are higher
746 than SPLIT_RUID by one in order to make room for a new insn. */
749 reload_combine_split_ruids (int split_ruid
)
753 reload_combine_split_one_ruid (&reload_combine_ruid
, split_ruid
);
754 reload_combine_split_one_ruid (&last_label_ruid
, split_ruid
);
755 reload_combine_split_one_ruid (&last_jump_ruid
, split_ruid
);
757 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
759 int j
, idx
= reg_state
[i
].use_index
;
760 reload_combine_split_one_ruid (®_state
[i
].use_ruid
, split_ruid
);
761 reload_combine_split_one_ruid (®_state
[i
].store_ruid
, split_ruid
);
762 reload_combine_split_one_ruid (®_state
[i
].real_store_ruid
,
766 for (j
= idx
; j
< RELOAD_COMBINE_MAX_USES
; j
++)
768 reload_combine_split_one_ruid (®_state
[i
].reg_use
[j
].ruid
,
774 /* Called when we are about to rescan a previously encountered insn with
775 reload_combine_note_use after modifying some part of it. This clears all
776 information about uses in that particular insn. */
779 reload_combine_purge_insn_uses (rtx insn
)
783 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
785 int j
, k
, idx
= reg_state
[i
].use_index
;
788 j
= k
= RELOAD_COMBINE_MAX_USES
;
791 if (reg_state
[i
].reg_use
[j
].insn
!= insn
)
795 reg_state
[i
].reg_use
[k
] = reg_state
[i
].reg_use
[j
];
798 reg_state
[i
].use_index
= k
;
802 /* Called when we need to forget about all uses of REGNO after an insn
803 which is identified by RUID. */
806 reload_combine_purge_reg_uses_after_ruid (unsigned regno
, int ruid
)
808 int j
, k
, idx
= reg_state
[regno
].use_index
;
811 j
= k
= RELOAD_COMBINE_MAX_USES
;
814 if (reg_state
[regno
].reg_use
[j
].ruid
>= ruid
)
818 reg_state
[regno
].reg_use
[k
] = reg_state
[regno
].reg_use
[j
];
821 reg_state
[regno
].use_index
= k
;
824 /* Find the use of REGNO with the ruid that is highest among those
825 lower than RUID_LIMIT, and return it if it is the only use of this
826 reg in the insn. Return NULL otherwise. */
828 static struct reg_use
*
829 reload_combine_closest_single_use (unsigned regno
, int ruid_limit
)
831 int i
, best_ruid
= 0;
832 int use_idx
= reg_state
[regno
].use_index
;
833 struct reg_use
*retval
;
838 for (i
= use_idx
; i
< RELOAD_COMBINE_MAX_USES
; i
++)
840 struct reg_use
*use
= reg_state
[regno
].reg_use
+ i
;
841 int this_ruid
= use
->ruid
;
842 if (this_ruid
>= ruid_limit
)
844 if (this_ruid
> best_ruid
)
846 best_ruid
= this_ruid
;
849 else if (this_ruid
== best_ruid
)
852 if (last_label_ruid
>= best_ruid
)
857 /* After we've moved an add insn, fix up any debug insns that occur
858 between the old location of the add and the new location. REG is
859 the destination register of the add insn; REPLACEMENT is the
860 SET_SRC of the add. FROM and TO specify the range in which we
861 should make this change on debug insns. */
864 fixup_debug_insns (rtx reg
, rtx replacement
, rtx from
, rtx to
)
867 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
871 if (!DEBUG_INSN_P (insn
))
874 t
= INSN_VAR_LOCATION_LOC (insn
);
875 t
= simplify_replace_rtx (t
, reg
, replacement
);
876 validate_change (insn
, &INSN_VAR_LOCATION_LOC (insn
), t
, 0);
880 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
881 with SRC in the insn described by USE, taking costs into account. Return
882 true if we made the replacement. */
885 try_replace_in_use (struct reg_use
*use
, rtx reg
, rtx src
)
887 rtx use_insn
= use
->insn
;
888 rtx mem
= use
->containing_mem
;
889 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
893 addr_space_t as
= MEM_ADDR_SPACE (mem
);
894 rtx oldaddr
= XEXP (mem
, 0);
895 rtx newaddr
= NULL_RTX
;
896 int old_cost
= address_cost (oldaddr
, GET_MODE (mem
), as
, speed
);
899 newaddr
= simplify_replace_rtx (oldaddr
, reg
, src
);
900 if (memory_address_addr_space_p (GET_MODE (mem
), newaddr
, as
))
902 XEXP (mem
, 0) = newaddr
;
903 new_cost
= address_cost (newaddr
, GET_MODE (mem
), as
, speed
);
904 XEXP (mem
, 0) = oldaddr
;
905 if (new_cost
<= old_cost
906 && validate_change (use_insn
,
907 &XEXP (mem
, 0), newaddr
, 0))
913 rtx new_set
= single_set (use_insn
);
915 && REG_P (SET_DEST (new_set
))
916 && GET_CODE (SET_SRC (new_set
)) == PLUS
917 && REG_P (XEXP (SET_SRC (new_set
), 0))
918 && CONSTANT_P (XEXP (SET_SRC (new_set
), 1)))
921 int old_cost
= set_src_cost (SET_SRC (new_set
), speed
);
923 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set
), 0), reg
));
924 new_src
= simplify_replace_rtx (SET_SRC (new_set
), reg
, src
);
926 if (set_src_cost (new_src
, speed
) <= old_cost
927 && validate_change (use_insn
, &SET_SRC (new_set
),
935 /* Called by reload_combine when scanning INSN. This function tries to detect
936 patterns where a constant is added to a register, and the result is used
938 Return true if no further processing is needed on INSN; false if it wasn't
939 recognized and should be handled normally. */
942 reload_combine_recognize_const_pattern (rtx insn
)
944 int from_ruid
= reload_combine_ruid
;
945 rtx set
, pat
, reg
, src
, addreg
;
949 rtx add_moved_after_insn
= NULL_RTX
;
950 int add_moved_after_ruid
= 0;
951 int clobbered_regno
= -1;
953 set
= single_set (insn
);
957 reg
= SET_DEST (set
);
960 || hard_regno_nregs
[REGNO (reg
)][GET_MODE (reg
)] != 1
961 || GET_MODE (reg
) != Pmode
962 || reg
== stack_pointer_rtx
)
967 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
968 uses of REG1 inside an address, or inside another add insn. If
969 possible and profitable, merge the addition into subsequent
971 if (GET_CODE (src
) != PLUS
972 || !REG_P (XEXP (src
, 0))
973 || !CONSTANT_P (XEXP (src
, 1)))
976 addreg
= XEXP (src
, 0);
977 must_move_add
= rtx_equal_p (reg
, addreg
);
979 pat
= PATTERN (insn
);
980 if (must_move_add
&& set
!= pat
)
982 /* We have to be careful when moving the add; apart from the
983 single_set there may also be clobbers. Recognize one special
984 case, that of one clobber alongside the set (likely a clobber
985 of the CC register). */
986 gcc_assert (GET_CODE (PATTERN (insn
)) == PARALLEL
);
987 if (XVECLEN (pat
, 0) != 2 || XVECEXP (pat
, 0, 0) != set
988 || GET_CODE (XVECEXP (pat
, 0, 1)) != CLOBBER
989 || !REG_P (XEXP (XVECEXP (pat
, 0, 1), 0)))
991 clobbered_regno
= REGNO (XEXP (XVECEXP (pat
, 0, 1), 0));
996 use
= reload_combine_closest_single_use (regno
, from_ruid
);
999 /* Start the search for the next use from here. */
1000 from_ruid
= use
->ruid
;
1002 if (use
&& GET_MODE (*use
->usep
) == Pmode
)
1004 bool delete_add
= false;
1005 rtx use_insn
= use
->insn
;
1006 int use_ruid
= use
->ruid
;
1008 /* Avoid moving the add insn past a jump. */
1009 if (must_move_add
&& use_ruid
<= last_jump_ruid
)
1012 /* If the add clobbers another hard reg in parallel, don't move
1013 it past a real set of this hard reg. */
1014 if (must_move_add
&& clobbered_regno
>= 0
1015 && reg_state
[clobbered_regno
].real_store_ruid
>= use_ruid
)
1019 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1020 if (must_move_add
&& sets_cc0_p (PATTERN (use_insn
)))
1024 gcc_assert (reg_state
[regno
].store_ruid
<= use_ruid
);
1025 /* Avoid moving a use of ADDREG past a point where it is stored. */
1026 if (reg_state
[REGNO (addreg
)].store_ruid
> use_ruid
)
1029 /* We also must not move the addition past an insn that sets
1030 the same register, unless we can combine two add insns. */
1031 if (must_move_add
&& reg_state
[regno
].store_ruid
== use_ruid
)
1033 if (use
->containing_mem
== NULL_RTX
)
1039 if (try_replace_in_use (use
, reg
, src
))
1041 reload_combine_purge_insn_uses (use_insn
);
1042 reload_combine_note_use (&PATTERN (use_insn
), use_insn
,
1043 use_ruid
, NULL_RTX
);
1047 fixup_debug_insns (reg
, src
, insn
, use_insn
);
1053 add_moved_after_insn
= use_insn
;
1054 add_moved_after_ruid
= use_ruid
;
1059 /* If we get here, we couldn't handle this use. */
1065 if (!must_move_add
|| add_moved_after_insn
== NULL_RTX
)
1066 /* Process the add normally. */
1069 fixup_debug_insns (reg
, src
, insn
, add_moved_after_insn
);
1071 reorder_insns (insn
, insn
, add_moved_after_insn
);
1072 reload_combine_purge_reg_uses_after_ruid (regno
, add_moved_after_ruid
);
1073 reload_combine_split_ruids (add_moved_after_ruid
- 1);
1074 reload_combine_note_use (&PATTERN (insn
), insn
,
1075 add_moved_after_ruid
, NULL_RTX
);
1076 reg_state
[regno
].store_ruid
= add_moved_after_ruid
;
1081 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1082 can handle and improve. Return true if no further processing is needed on
1083 INSN; false if it wasn't recognized and should be handled normally. */
1086 reload_combine_recognize_pattern (rtx insn
)
1091 set
= single_set (insn
);
1092 if (set
== NULL_RTX
)
1095 reg
= SET_DEST (set
);
1096 src
= SET_SRC (set
);
1098 || hard_regno_nregs
[REGNO (reg
)][GET_MODE (reg
)] != 1)
1101 regno
= REGNO (reg
);
1103 /* Look for (set (REGX) (CONST_INT))
1104 (set (REGX) (PLUS (REGX) (REGY)))
1106 ... (MEM (REGX)) ...
1108 (set (REGZ) (CONST_INT))
1110 ... (MEM (PLUS (REGZ) (REGY)))... .
1112 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1113 and that we know all uses of REGX before it dies.
1114 Also, explicitly check that REGX != REGY; our life information
1115 does not yet show whether REGY changes in this insn. */
1117 if (GET_CODE (src
) == PLUS
1118 && reg_state
[regno
].all_offsets_match
1119 && last_index_reg
!= -1
1120 && REG_P (XEXP (src
, 1))
1121 && rtx_equal_p (XEXP (src
, 0), reg
)
1122 && !rtx_equal_p (XEXP (src
, 1), reg
)
1123 && reg_state
[regno
].use_index
>= 0
1124 && reg_state
[regno
].use_index
< RELOAD_COMBINE_MAX_USES
1125 && last_label_ruid
< reg_state
[regno
].use_ruid
)
1127 rtx base
= XEXP (src
, 1);
1128 rtx prev
= prev_nonnote_nondebug_insn (insn
);
1129 rtx prev_set
= prev
? single_set (prev
) : NULL_RTX
;
1130 rtx index_reg
= NULL_RTX
;
1131 rtx reg_sum
= NULL_RTX
;
1134 /* Now we need to set INDEX_REG to an index register (denoted as
1135 REGZ in the illustration above) and REG_SUM to the expression
1136 register+register that we want to use to substitute uses of REG
1137 (typically in MEMs) with. First check REG and BASE for being
1138 index registers; we can use them even if they are not dead. */
1139 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], regno
)
1140 || TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
],
1148 /* Otherwise, look for a free index register. Since we have
1149 checked above that neither REG nor BASE are index registers,
1150 if we find anything at all, it will be different from these
1152 for (i
= first_index_reg
; i
<= last_index_reg
; i
++)
1154 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], i
)
1155 && reg_state
[i
].use_index
== RELOAD_COMBINE_MAX_USES
1156 && reg_state
[i
].store_ruid
<= reg_state
[regno
].use_ruid
1157 && (call_used_regs
[i
] || df_regs_ever_live_p (i
))
1158 && (!frame_pointer_needed
|| i
!= HARD_FRAME_POINTER_REGNUM
)
1159 && !fixed_regs
[i
] && !global_regs
[i
]
1160 && hard_regno_nregs
[i
][GET_MODE (reg
)] == 1
1161 && targetm
.hard_regno_scratch_ok (i
))
1163 index_reg
= gen_rtx_REG (GET_MODE (reg
), i
);
1164 reg_sum
= gen_rtx_PLUS (GET_MODE (reg
), index_reg
, base
);
1170 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1171 (REGY), i.e. BASE, is not clobbered before the last use we'll
1175 && CONST_INT_P (SET_SRC (prev_set
))
1176 && rtx_equal_p (SET_DEST (prev_set
), reg
)
1177 && (reg_state
[REGNO (base
)].store_ruid
1178 <= reg_state
[regno
].use_ruid
))
1180 /* Change destination register and, if necessary, the constant
1181 value in PREV, the constant loading instruction. */
1182 validate_change (prev
, &SET_DEST (prev_set
), index_reg
, 1);
1183 if (reg_state
[regno
].offset
!= const0_rtx
)
1184 validate_change (prev
,
1185 &SET_SRC (prev_set
),
1186 GEN_INT (INTVAL (SET_SRC (prev_set
))
1187 + INTVAL (reg_state
[regno
].offset
)),
1190 /* Now for every use of REG that we have recorded, replace REG
1192 for (i
= reg_state
[regno
].use_index
;
1193 i
< RELOAD_COMBINE_MAX_USES
; i
++)
1194 validate_unshare_change (reg_state
[regno
].reg_use
[i
].insn
,
1195 reg_state
[regno
].reg_use
[i
].usep
,
1196 /* Each change must have its own
1200 if (apply_change_group ())
1202 struct reg_use
*lowest_ruid
= NULL
;
1204 /* For every new use of REG_SUM, we have to record the use
1205 of BASE therein, i.e. operand 1. */
1206 for (i
= reg_state
[regno
].use_index
;
1207 i
< RELOAD_COMBINE_MAX_USES
; i
++)
1209 struct reg_use
*use
= reg_state
[regno
].reg_use
+ i
;
1210 reload_combine_note_use (&XEXP (*use
->usep
, 1), use
->insn
,
1211 use
->ruid
, use
->containing_mem
);
1212 if (lowest_ruid
== NULL
|| use
->ruid
< lowest_ruid
->ruid
)
1216 fixup_debug_insns (reg
, reg_sum
, insn
, lowest_ruid
->insn
);
1218 /* Delete the reg-reg addition. */
1221 if (reg_state
[regno
].offset
!= const0_rtx
)
1222 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1224 remove_reg_equal_equiv_notes (prev
);
1226 reg_state
[regno
].use_index
= RELOAD_COMBINE_MAX_USES
;
1235 reload_combine (void)
1240 int min_labelno
, n_labels
;
1241 HARD_REG_SET ever_live_at_start
, *label_live
;
1243 /* To avoid wasting too much time later searching for an index register,
1244 determine the minimum and maximum index register numbers. */
1245 if (INDEX_REG_CLASS
== NO_REGS
)
1246 last_index_reg
= -1;
1247 else if (first_index_reg
== -1 && last_index_reg
== 0)
1249 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1250 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], r
))
1252 if (first_index_reg
== -1)
1253 first_index_reg
= r
;
1258 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1259 to -1 so we'll know to quit early the next time we get here. */
1260 if (first_index_reg
== -1)
1262 last_index_reg
= -1;
1267 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1268 information is a bit fuzzy immediately after reload, but it's
1269 still good enough to determine which registers are live at a jump
1271 min_labelno
= get_first_label_num ();
1272 n_labels
= max_label_num () - min_labelno
;
1273 label_live
= XNEWVEC (HARD_REG_SET
, n_labels
);
1274 CLEAR_HARD_REG_SET (ever_live_at_start
);
1276 FOR_EACH_BB_REVERSE (bb
)
1278 insn
= BB_HEAD (bb
);
1282 bitmap live_in
= df_get_live_in (bb
);
1284 REG_SET_TO_HARD_REG_SET (live
, live_in
);
1285 compute_use_by_pseudos (&live
, live_in
);
1286 COPY_HARD_REG_SET (LABEL_LIVE (insn
), live
);
1287 IOR_HARD_REG_SET (ever_live_at_start
, live
);
1291 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1292 last_label_ruid
= last_jump_ruid
= reload_combine_ruid
= 0;
1293 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1295 reg_state
[r
].store_ruid
= 0;
1296 reg_state
[r
].real_store_ruid
= 0;
1298 reg_state
[r
].use_index
= -1;
1300 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
1303 for (insn
= get_last_insn (); insn
; insn
= prev
)
1305 bool control_flow_insn
;
1308 prev
= PREV_INSN (insn
);
1310 /* We cannot do our optimization across labels. Invalidating all the use
1311 information we have would be costly, so we just note where the label
1312 is and then later disable any optimization that would cross it. */
1314 last_label_ruid
= reload_combine_ruid
;
1315 else if (BARRIER_P (insn
))
1317 /* Crossing a barrier resets all the use information. */
1318 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1319 if (! fixed_regs
[r
])
1320 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
1322 else if (INSN_P (insn
) && volatile_insn_p (PATTERN (insn
)))
1323 /* Optimizations across insns being marked as volatile must be
1324 prevented. All the usage information is invalidated
1326 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1328 && reg_state
[r
].use_index
!= RELOAD_COMBINE_MAX_USES
)
1329 reg_state
[r
].use_index
= -1;
1331 if (! NONDEBUG_INSN_P (insn
))
1334 reload_combine_ruid
++;
1336 control_flow_insn
= control_flow_insn_p (insn
);
1337 if (control_flow_insn
)
1338 last_jump_ruid
= reload_combine_ruid
;
1340 if (reload_combine_recognize_const_pattern (insn
)
1341 || reload_combine_recognize_pattern (insn
))
1344 note_stores (PATTERN (insn
), reload_combine_note_store
, NULL
);
1350 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1351 if (call_used_regs
[r
])
1353 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
1354 reg_state
[r
].store_ruid
= reload_combine_ruid
;
1357 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
;
1358 link
= XEXP (link
, 1))
1360 rtx usage_rtx
= XEXP (XEXP (link
, 0), 0);
1361 if (REG_P (usage_rtx
))
1364 unsigned int start_reg
= REGNO (usage_rtx
);
1365 unsigned int num_regs
1366 = hard_regno_nregs
[start_reg
][GET_MODE (usage_rtx
)];
1367 unsigned int end_reg
= start_reg
+ num_regs
- 1;
1368 for (i
= start_reg
; i
<= end_reg
; i
++)
1369 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
1371 reg_state
[i
].use_index
= RELOAD_COMBINE_MAX_USES
;
1372 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1375 reg_state
[i
].use_index
= -1;
1380 if (control_flow_insn
&& GET_CODE (PATTERN (insn
)) != RETURN
)
1382 /* Non-spill registers might be used at the call destination in
1383 some unknown fashion, so we have to mark the unknown use. */
1386 if ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
1387 && JUMP_LABEL (insn
))
1388 live
= &LABEL_LIVE (JUMP_LABEL (insn
));
1390 live
= &ever_live_at_start
;
1392 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1393 if (TEST_HARD_REG_BIT (*live
, r
))
1394 reg_state
[r
].use_index
= -1;
1397 reload_combine_note_use (&PATTERN (insn
), insn
, reload_combine_ruid
,
1400 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1402 if (REG_NOTE_KIND (note
) == REG_INC
&& REG_P (XEXP (note
, 0)))
1404 int regno
= REGNO (XEXP (note
, 0));
1405 reg_state
[regno
].store_ruid
= reload_combine_ruid
;
1406 reg_state
[regno
].real_store_ruid
= reload_combine_ruid
;
1407 reg_state
[regno
].use_index
= -1;
1415 /* Check if DST is a register or a subreg of a register; if it is,
1416 update store_ruid, real_store_ruid and use_index in the reg_state
1417 structure accordingly. Called via note_stores from reload_combine. */
1420 reload_combine_note_store (rtx dst
, const_rtx set
, void *data ATTRIBUTE_UNUSED
)
1424 enum machine_mode mode
= GET_MODE (dst
);
1426 if (GET_CODE (dst
) == SUBREG
)
1428 regno
= subreg_regno_offset (REGNO (SUBREG_REG (dst
)),
1429 GET_MODE (SUBREG_REG (dst
)),
1432 dst
= SUBREG_REG (dst
);
1435 /* Some targets do argument pushes without adding REG_INC notes. */
1439 dst
= XEXP (dst
, 0);
1440 if (GET_CODE (dst
) == PRE_INC
|| GET_CODE (dst
) == POST_INC
1441 || GET_CODE (dst
) == PRE_DEC
|| GET_CODE (dst
) == POST_DEC
1442 || GET_CODE (dst
) == PRE_MODIFY
|| GET_CODE (dst
) == POST_MODIFY
)
1444 regno
= REGNO (XEXP (dst
, 0));
1445 mode
= GET_MODE (XEXP (dst
, 0));
1446 for (i
= hard_regno_nregs
[regno
][mode
] - 1 + regno
; i
>= regno
; i
--)
1448 /* We could probably do better, but for now mark the register
1449 as used in an unknown fashion and set/clobbered at this
1451 reg_state
[i
].use_index
= -1;
1452 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1453 reg_state
[i
].real_store_ruid
= reload_combine_ruid
;
1462 regno
+= REGNO (dst
);
1464 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1465 careful with registers / register parts that are not full words.
1466 Similarly for ZERO_EXTRACT. */
1467 if (GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
1468 || GET_CODE (SET_DEST (set
)) == STRICT_LOW_PART
)
1470 for (i
= hard_regno_nregs
[regno
][mode
] - 1 + regno
; i
>= regno
; i
--)
1472 reg_state
[i
].use_index
= -1;
1473 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1474 reg_state
[i
].real_store_ruid
= reload_combine_ruid
;
1479 for (i
= hard_regno_nregs
[regno
][mode
] - 1 + regno
; i
>= regno
; i
--)
1481 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1482 if (GET_CODE (set
) == SET
)
1483 reg_state
[i
].real_store_ruid
= reload_combine_ruid
;
1484 reg_state
[i
].use_index
= RELOAD_COMBINE_MAX_USES
;
1489 /* XP points to a piece of rtl that has to be checked for any uses of
1491 *XP is the pattern of INSN, or a part of it.
1492 Called from reload_combine, and recursively by itself. */
1494 reload_combine_note_use (rtx
*xp
, rtx insn
, int ruid
, rtx containing_mem
)
1497 enum rtx_code code
= x
->code
;
1500 rtx offset
= const0_rtx
; /* For the REG case below. */
1505 if (REG_P (SET_DEST (x
)))
1507 reload_combine_note_use (&SET_SRC (x
), insn
, ruid
, NULL_RTX
);
1513 /* If this is the USE of a return value, we can't change it. */
1514 if (REG_P (XEXP (x
, 0)) && REG_FUNCTION_VALUE_P (XEXP (x
, 0)))
1516 /* Mark the return register as used in an unknown fashion. */
1517 rtx reg
= XEXP (x
, 0);
1518 int regno
= REGNO (reg
);
1519 int nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
1521 while (--nregs
>= 0)
1522 reg_state
[regno
+ nregs
].use_index
= -1;
1528 if (REG_P (SET_DEST (x
)))
1530 /* No spurious CLOBBERs of pseudo registers may remain. */
1531 gcc_assert (REGNO (SET_DEST (x
)) < FIRST_PSEUDO_REGISTER
);
1537 /* We are interested in (plus (reg) (const_int)) . */
1538 if (!REG_P (XEXP (x
, 0))
1539 || !CONST_INT_P (XEXP (x
, 1)))
1541 offset
= XEXP (x
, 1);
1546 int regno
= REGNO (x
);
1550 /* No spurious USEs of pseudo registers may remain. */
1551 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
1553 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1555 /* We can't substitute into multi-hard-reg uses. */
1558 while (--nregs
>= 0)
1559 reg_state
[regno
+ nregs
].use_index
= -1;
1563 /* We may be called to update uses in previously seen insns.
1564 Don't add uses beyond the last store we saw. */
1565 if (ruid
< reg_state
[regno
].store_ruid
)
1568 /* If this register is already used in some unknown fashion, we
1570 If we decrement the index from zero to -1, we can't store more
1571 uses, so this register becomes used in an unknown fashion. */
1572 use_index
= --reg_state
[regno
].use_index
;
1576 if (use_index
== RELOAD_COMBINE_MAX_USES
- 1)
1578 /* This is the first use of this register we have seen since we
1579 marked it as dead. */
1580 reg_state
[regno
].offset
= offset
;
1581 reg_state
[regno
].all_offsets_match
= true;
1582 reg_state
[regno
].use_ruid
= ruid
;
1586 if (reg_state
[regno
].use_ruid
> ruid
)
1587 reg_state
[regno
].use_ruid
= ruid
;
1589 if (! rtx_equal_p (offset
, reg_state
[regno
].offset
))
1590 reg_state
[regno
].all_offsets_match
= false;
1593 reg_state
[regno
].reg_use
[use_index
].insn
= insn
;
1594 reg_state
[regno
].reg_use
[use_index
].ruid
= ruid
;
1595 reg_state
[regno
].reg_use
[use_index
].containing_mem
= containing_mem
;
1596 reg_state
[regno
].reg_use
[use_index
].usep
= xp
;
1608 /* Recursively process the components of X. */
1609 fmt
= GET_RTX_FORMAT (code
);
1610 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1613 reload_combine_note_use (&XEXP (x
, i
), insn
, ruid
, containing_mem
);
1614 else if (fmt
[i
] == 'E')
1616 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1617 reload_combine_note_use (&XVECEXP (x
, i
, j
), insn
, ruid
,
1623 /* See if we can reduce the cost of a constant by replacing a move
1624 with an add. We track situations in which a register is set to a
1625 constant or to a register plus a constant. */
1626 /* We cannot do our optimization across labels. Invalidating all the
1627 information about register contents we have would be costly, so we
1628 use move2add_last_label_luid to note where the label is and then
1629 later disable any optimization that would cross it.
1630 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1631 are only valid if reg_set_luid[n] is greater than
1632 move2add_last_label_luid. */
1633 static int reg_set_luid
[FIRST_PSEUDO_REGISTER
];
1635 /* If reg_base_reg[n] is negative, register n has been set to
1636 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1637 If reg_base_reg[n] is non-negative, register n has been set to the
1638 sum of reg_offset[n] and the value of register reg_base_reg[n]
1639 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1640 static HOST_WIDE_INT reg_offset
[FIRST_PSEUDO_REGISTER
];
1641 static int reg_base_reg
[FIRST_PSEUDO_REGISTER
];
1642 static rtx reg_symbol_ref
[FIRST_PSEUDO_REGISTER
];
1643 static enum machine_mode reg_mode
[FIRST_PSEUDO_REGISTER
];
1645 /* move2add_luid is linearly increased while scanning the instructions
1646 from first to last. It is used to set reg_set_luid in
1647 reload_cse_move2add and move2add_note_store. */
1648 static int move2add_luid
;
1650 /* move2add_last_label_luid is set whenever a label is found. Labels
1651 invalidate all previously collected reg_offset data. */
1652 static int move2add_last_label_luid
;
1654 /* ??? We don't know how zero / sign extension is handled, hence we
1655 can't go from a narrower to a wider mode. */
1656 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1657 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1658 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1659 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1661 /* This function is called with INSN that sets REG to (SYM + OFF),
1662 while REG is known to already have value (SYM + offset).
1663 This function tries to change INSN into an add instruction
1664 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1665 It also updates the information about REG's known value.
1666 Return true if we made a change. */
1669 move2add_use_add2_insn (rtx reg
, rtx sym
, rtx off
, rtx insn
)
1671 rtx pat
= PATTERN (insn
);
1672 rtx src
= SET_SRC (pat
);
1673 int regno
= REGNO (reg
);
1674 rtx new_src
= gen_int_mode (INTVAL (off
) - reg_offset
[regno
],
1676 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
1677 bool changed
= false;
1679 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1680 use (set (reg) (reg)) instead.
1681 We don't delete this insn, nor do we convert it into a
1682 note, to avoid losing register notes or the return
1683 value flag. jump2 already knows how to get rid of
1685 if (new_src
== const0_rtx
)
1687 /* If the constants are different, this is a
1688 truncation, that, if turned into (set (reg)
1689 (reg)), would be discarded. Maybe we should
1690 try a truncMN pattern? */
1691 if (INTVAL (off
) == reg_offset
[regno
])
1692 changed
= validate_change (insn
, &SET_SRC (pat
), reg
, 0);
1696 struct full_rtx_costs oldcst
, newcst
;
1697 rtx tem
= gen_rtx_PLUS (GET_MODE (reg
), reg
, new_src
);
1699 get_full_set_rtx_cost (pat
, &oldcst
);
1700 SET_SRC (pat
) = tem
;
1701 get_full_set_rtx_cost (pat
, &newcst
);
1702 SET_SRC (pat
) = src
;
1704 if (costs_lt_p (&newcst
, &oldcst
, speed
)
1705 && have_add2_insn (reg
, new_src
))
1706 changed
= validate_change (insn
, &SET_SRC (pat
), tem
, 0);
1707 else if (sym
== NULL_RTX
&& GET_MODE (reg
) != BImode
)
1709 enum machine_mode narrow_mode
;
1710 for (narrow_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1711 narrow_mode
!= VOIDmode
1712 && narrow_mode
!= GET_MODE (reg
);
1713 narrow_mode
= GET_MODE_WIDER_MODE (narrow_mode
))
1715 if (have_insn_for (STRICT_LOW_PART
, narrow_mode
)
1716 && ((reg_offset
[regno
] & ~GET_MODE_MASK (narrow_mode
))
1717 == (INTVAL (off
) & ~GET_MODE_MASK (narrow_mode
))))
1719 rtx narrow_reg
= gen_rtx_REG (narrow_mode
,
1721 rtx narrow_src
= gen_int_mode (INTVAL (off
),
1724 = gen_rtx_SET (VOIDmode
,
1725 gen_rtx_STRICT_LOW_PART (VOIDmode
,
1728 changed
= validate_change (insn
, &PATTERN (insn
),
1736 reg_set_luid
[regno
] = move2add_luid
;
1737 reg_base_reg
[regno
] = -1;
1738 reg_mode
[regno
] = GET_MODE (reg
);
1739 reg_symbol_ref
[regno
] = sym
;
1740 reg_offset
[regno
] = INTVAL (off
);
1745 /* This function is called with INSN that sets REG to (SYM + OFF),
1746 but REG doesn't have known value (SYM + offset). This function
1747 tries to find another register which is known to already have
1748 value (SYM + offset) and change INSN into an add instruction
1749 (set (REG) (plus (the found register) (OFF - offset))) if such
1750 a register is found. It also updates the information about
1752 Return true iff we made a change. */
1755 move2add_use_add3_insn (rtx reg
, rtx sym
, rtx off
, rtx insn
)
1757 rtx pat
= PATTERN (insn
);
1758 rtx src
= SET_SRC (pat
);
1759 int regno
= REGNO (reg
);
1761 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
1763 bool changed
= false;
1764 struct full_rtx_costs oldcst
, newcst
, mincst
;
1767 init_costs_to_max (&mincst
);
1768 get_full_set_rtx_cost (pat
, &oldcst
);
1770 plus_expr
= gen_rtx_PLUS (GET_MODE (reg
), reg
, const0_rtx
);
1771 SET_SRC (pat
) = plus_expr
;
1773 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1774 if (reg_set_luid
[i
] > move2add_last_label_luid
1775 && reg_mode
[i
] == GET_MODE (reg
)
1776 && reg_base_reg
[i
] < 0
1777 && reg_symbol_ref
[i
] != NULL_RTX
1778 && rtx_equal_p (sym
, reg_symbol_ref
[i
]))
1780 rtx new_src
= gen_int_mode (INTVAL (off
) - reg_offset
[i
],
1782 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1783 use (set (reg) (reg)) instead.
1784 We don't delete this insn, nor do we convert it into a
1785 note, to avoid losing register notes or the return
1786 value flag. jump2 already knows how to get rid of
1788 if (new_src
== const0_rtx
)
1790 init_costs_to_zero (&mincst
);
1796 XEXP (plus_expr
, 1) = new_src
;
1797 get_full_set_rtx_cost (pat
, &newcst
);
1799 if (costs_lt_p (&newcst
, &mincst
, speed
))
1806 SET_SRC (pat
) = src
;
1808 if (costs_lt_p (&mincst
, &oldcst
, speed
))
1812 tem
= gen_rtx_REG (GET_MODE (reg
), min_regno
);
1815 rtx new_src
= gen_int_mode (INTVAL (off
) - reg_offset
[min_regno
],
1817 tem
= gen_rtx_PLUS (GET_MODE (reg
), tem
, new_src
);
1819 if (validate_change (insn
, &SET_SRC (pat
), tem
, 0))
1822 reg_set_luid
[regno
] = move2add_luid
;
1823 reg_base_reg
[regno
] = -1;
1824 reg_mode
[regno
] = GET_MODE (reg
);
1825 reg_symbol_ref
[regno
] = sym
;
1826 reg_offset
[regno
] = INTVAL (off
);
1830 /* Convert move insns with constant inputs to additions if they are cheaper.
1831 Return true if any changes were made. */
1833 reload_cse_move2add (rtx first
)
1837 bool changed
= false;
1839 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
1841 reg_set_luid
[i
] = 0;
1843 reg_base_reg
[i
] = 0;
1844 reg_symbol_ref
[i
] = NULL_RTX
;
1845 reg_mode
[i
] = VOIDmode
;
1848 move2add_last_label_luid
= 0;
1850 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
), move2add_luid
++)
1856 move2add_last_label_luid
= move2add_luid
;
1857 /* We're going to increment move2add_luid twice after a
1858 label, so that we can use move2add_last_label_luid + 1 as
1859 the luid for constants. */
1863 if (! INSN_P (insn
))
1865 pat
= PATTERN (insn
);
1866 /* For simplicity, we only perform this optimization on
1867 straightforward SETs. */
1868 if (GET_CODE (pat
) == SET
1869 && REG_P (SET_DEST (pat
)))
1871 rtx reg
= SET_DEST (pat
);
1872 int regno
= REGNO (reg
);
1873 rtx src
= SET_SRC (pat
);
1875 /* Check if we have valid information on the contents of this
1876 register in the mode of REG. */
1877 if (reg_set_luid
[regno
] > move2add_last_label_luid
1878 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg
), reg_mode
[regno
])
1879 && dbg_cnt (cse2_move2add
))
1881 /* Try to transform (set (REGX) (CONST_INT A))
1883 (set (REGX) (CONST_INT B))
1885 (set (REGX) (CONST_INT A))
1887 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1889 (set (REGX) (CONST_INT A))
1891 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1894 if (CONST_INT_P (src
)
1895 && reg_base_reg
[regno
] < 0
1896 && reg_symbol_ref
[regno
] == NULL_RTX
)
1898 changed
|= move2add_use_add2_insn (reg
, NULL_RTX
, src
, insn
);
1902 /* Try to transform (set (REGX) (REGY))
1903 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1906 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1909 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1911 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1912 else if (REG_P (src
)
1913 && reg_set_luid
[regno
] == reg_set_luid
[REGNO (src
)]
1914 && reg_base_reg
[regno
] == reg_base_reg
[REGNO (src
)]
1915 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg
),
1916 reg_mode
[REGNO (src
)]))
1918 rtx next
= next_nonnote_nondebug_insn (insn
);
1921 set
= single_set (next
);
1923 && SET_DEST (set
) == reg
1924 && GET_CODE (SET_SRC (set
)) == PLUS
1925 && XEXP (SET_SRC (set
), 0) == reg
1926 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
1928 rtx src3
= XEXP (SET_SRC (set
), 1);
1929 HOST_WIDE_INT added_offset
= INTVAL (src3
);
1930 HOST_WIDE_INT base_offset
= reg_offset
[REGNO (src
)];
1931 HOST_WIDE_INT regno_offset
= reg_offset
[regno
];
1933 gen_int_mode (added_offset
1937 bool success
= false;
1938 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
1940 if (new_src
== const0_rtx
)
1941 /* See above why we create (set (reg) (reg)) here. */
1943 = validate_change (next
, &SET_SRC (set
), reg
, 0);
1946 rtx old_src
= SET_SRC (set
);
1947 struct full_rtx_costs oldcst
, newcst
;
1948 rtx tem
= gen_rtx_PLUS (GET_MODE (reg
), reg
, new_src
);
1950 get_full_set_rtx_cost (set
, &oldcst
);
1951 SET_SRC (set
) = tem
;
1952 get_full_set_src_cost (tem
, &newcst
);
1953 SET_SRC (set
) = old_src
;
1954 costs_add_n_insns (&oldcst
, 1);
1956 if (costs_lt_p (&newcst
, &oldcst
, speed
)
1957 && have_add2_insn (reg
, new_src
))
1959 rtx newpat
= gen_rtx_SET (VOIDmode
, reg
, tem
);
1961 = validate_change (next
, &PATTERN (next
),
1969 reg_mode
[regno
] = GET_MODE (reg
);
1971 trunc_int_for_mode (added_offset
+ base_offset
,
1979 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1981 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
1983 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
1985 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
1986 if ((GET_CODE (src
) == SYMBOL_REF
1987 || (GET_CODE (src
) == CONST
1988 && GET_CODE (XEXP (src
, 0)) == PLUS
1989 && GET_CODE (XEXP (XEXP (src
, 0), 0)) == SYMBOL_REF
1990 && CONST_INT_P (XEXP (XEXP (src
, 0), 1))))
1991 && dbg_cnt (cse2_move2add
))
1995 if (GET_CODE (src
) == SYMBOL_REF
)
2002 sym
= XEXP (XEXP (src
, 0), 0);
2003 off
= XEXP (XEXP (src
, 0), 1);
2006 /* If the reg already contains the value which is sum of
2007 sym and some constant value, we can use an add2 insn. */
2008 if (reg_set_luid
[regno
] > move2add_last_label_luid
2009 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg
), reg_mode
[regno
])
2010 && reg_base_reg
[regno
] < 0
2011 && reg_symbol_ref
[regno
] != NULL_RTX
2012 && rtx_equal_p (sym
, reg_symbol_ref
[regno
]))
2013 changed
|= move2add_use_add2_insn (reg
, sym
, off
, insn
);
2015 /* Otherwise, we have to find a register whose value is sum
2016 of sym and some constant value. */
2018 changed
|= move2add_use_add3_insn (reg
, sym
, off
, insn
);
2024 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2026 if (REG_NOTE_KIND (note
) == REG_INC
2027 && REG_P (XEXP (note
, 0)))
2029 /* Reset the information about this register. */
2030 int regno
= REGNO (XEXP (note
, 0));
2031 if (regno
< FIRST_PSEUDO_REGISTER
)
2032 reg_set_luid
[regno
] = 0;
2035 note_stores (PATTERN (insn
), move2add_note_store
, insn
);
2037 /* If INSN is a conditional branch, we try to extract an
2038 implicit set out of it. */
2039 if (any_condjump_p (insn
))
2041 rtx cnd
= fis_get_condition (insn
);
2044 && GET_CODE (cnd
) == NE
2045 && REG_P (XEXP (cnd
, 0))
2046 && !reg_set_p (XEXP (cnd
, 0), insn
)
2047 /* The following two checks, which are also in
2048 move2add_note_store, are intended to reduce the
2049 number of calls to gen_rtx_SET to avoid memory
2050 allocation if possible. */
2051 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd
, 0)))
2052 && hard_regno_nregs
[REGNO (XEXP (cnd
, 0))][GET_MODE (XEXP (cnd
, 0))] == 1
2053 && CONST_INT_P (XEXP (cnd
, 1)))
2056 gen_rtx_SET (VOIDmode
, XEXP (cnd
, 0), XEXP (cnd
, 1));
2057 move2add_note_store (SET_DEST (implicit_set
), implicit_set
, insn
);
2061 /* If this is a CALL_INSN, all call used registers are stored with
2065 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
2067 if (call_used_regs
[i
])
2068 /* Reset the information about this register. */
2069 reg_set_luid
[i
] = 0;
2076 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2078 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2079 Called from reload_cse_move2add via note_stores. */
2082 move2add_note_store (rtx dst
, const_rtx set
, void *data
)
2084 rtx insn
= (rtx
) data
;
2085 unsigned int regno
= 0;
2086 unsigned int nregs
= 0;
2088 enum machine_mode mode
= GET_MODE (dst
);
2090 if (GET_CODE (dst
) == SUBREG
)
2092 regno
= subreg_regno_offset (REGNO (SUBREG_REG (dst
)),
2093 GET_MODE (SUBREG_REG (dst
)),
2096 nregs
= subreg_nregs (dst
);
2097 dst
= SUBREG_REG (dst
);
2100 /* Some targets do argument pushes without adding REG_INC notes. */
2104 dst
= XEXP (dst
, 0);
2105 if (GET_CODE (dst
) == PRE_INC
|| GET_CODE (dst
) == POST_INC
2106 || GET_CODE (dst
) == PRE_DEC
|| GET_CODE (dst
) == POST_DEC
)
2107 reg_set_luid
[REGNO (XEXP (dst
, 0))] = 0;
2113 regno
+= REGNO (dst
);
2115 nregs
= hard_regno_nregs
[regno
][mode
];
2117 if (SCALAR_INT_MODE_P (GET_MODE (dst
))
2118 && nregs
== 1 && GET_CODE (set
) == SET
)
2120 rtx note
, sym
= NULL_RTX
;
2123 note
= find_reg_equal_equiv_note (insn
);
2124 if (note
&& GET_CODE (XEXP (note
, 0)) == SYMBOL_REF
)
2126 sym
= XEXP (note
, 0);
2129 else if (note
&& GET_CODE (XEXP (note
, 0)) == CONST
2130 && GET_CODE (XEXP (XEXP (note
, 0), 0)) == PLUS
2131 && GET_CODE (XEXP (XEXP (XEXP (note
, 0), 0), 0)) == SYMBOL_REF
2132 && CONST_INT_P (XEXP (XEXP (XEXP (note
, 0), 0), 1)))
2134 sym
= XEXP (XEXP (XEXP (note
, 0), 0), 0);
2135 off
= INTVAL (XEXP (XEXP (XEXP (note
, 0), 0), 1));
2138 if (sym
!= NULL_RTX
)
2140 reg_base_reg
[regno
] = -1;
2141 reg_symbol_ref
[regno
] = sym
;
2142 reg_offset
[regno
] = off
;
2143 reg_mode
[regno
] = mode
;
2144 reg_set_luid
[regno
] = move2add_luid
;
2149 if (SCALAR_INT_MODE_P (GET_MODE (dst
))
2150 && nregs
== 1 && GET_CODE (set
) == SET
2151 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
2152 && GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
)
2154 rtx src
= SET_SRC (set
);
2156 HOST_WIDE_INT offset
;
2158 /* This may be different from mode, if SET_DEST (set) is a
2160 enum machine_mode dst_mode
= GET_MODE (dst
);
2162 switch (GET_CODE (src
))
2165 if (REG_P (XEXP (src
, 0)))
2167 base_reg
= XEXP (src
, 0);
2169 if (CONST_INT_P (XEXP (src
, 1)))
2170 offset
= INTVAL (XEXP (src
, 1));
2171 else if (REG_P (XEXP (src
, 1))
2172 && (reg_set_luid
[REGNO (XEXP (src
, 1))]
2173 > move2add_last_label_luid
)
2174 && (MODES_OK_FOR_MOVE2ADD
2175 (dst_mode
, reg_mode
[REGNO (XEXP (src
, 1))])))
2177 if (reg_base_reg
[REGNO (XEXP (src
, 1))] < 0
2178 && reg_symbol_ref
[REGNO (XEXP (src
, 1))] == NULL_RTX
)
2179 offset
= reg_offset
[REGNO (XEXP (src
, 1))];
2180 /* Maybe the first register is known to be a
2182 else if (reg_set_luid
[REGNO (base_reg
)]
2183 > move2add_last_label_luid
2184 && (MODES_OK_FOR_MOVE2ADD
2185 (dst_mode
, reg_mode
[REGNO (base_reg
)]))
2186 && reg_base_reg
[REGNO (base_reg
)] < 0
2187 && reg_symbol_ref
[REGNO (base_reg
)] == NULL_RTX
)
2189 offset
= reg_offset
[REGNO (base_reg
)];
2190 base_reg
= XEXP (src
, 1);
2209 /* Start tracking the register as a constant. */
2210 reg_base_reg
[regno
] = -1;
2211 reg_symbol_ref
[regno
] = NULL_RTX
;
2212 reg_offset
[regno
] = INTVAL (SET_SRC (set
));
2213 /* We assign the same luid to all registers set to constants. */
2214 reg_set_luid
[regno
] = move2add_last_label_luid
+ 1;
2215 reg_mode
[regno
] = mode
;
2220 /* Invalidate the contents of the register. */
2221 reg_set_luid
[regno
] = 0;
2225 base_regno
= REGNO (base_reg
);
2226 /* If information about the base register is not valid, set it
2227 up as a new base register, pretending its value is known
2228 starting from the current insn. */
2229 if (reg_set_luid
[base_regno
] <= move2add_last_label_luid
)
2231 reg_base_reg
[base_regno
] = base_regno
;
2232 reg_symbol_ref
[base_regno
] = NULL_RTX
;
2233 reg_offset
[base_regno
] = 0;
2234 reg_set_luid
[base_regno
] = move2add_luid
;
2235 reg_mode
[base_regno
] = mode
;
2237 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode
,
2238 reg_mode
[base_regno
]))
2241 reg_mode
[regno
] = mode
;
2243 /* Copy base information from our base register. */
2244 reg_set_luid
[regno
] = reg_set_luid
[base_regno
];
2245 reg_base_reg
[regno
] = reg_base_reg
[base_regno
];
2246 reg_symbol_ref
[regno
] = reg_symbol_ref
[base_regno
];
2248 /* Compute the sum of the offsets or constants. */
2249 reg_offset
[regno
] = trunc_int_for_mode (offset
2250 + reg_offset
[base_regno
],
2255 unsigned int endregno
= regno
+ nregs
;
2257 for (i
= regno
; i
< endregno
; i
++)
2258 /* Reset the information about this register. */
2259 reg_set_luid
[i
] = 0;
2264 gate_handle_postreload (void)
2266 return (optimize
> 0 && reload_completed
);
2271 rest_of_handle_postreload (void)
2273 if (!dbg_cnt (postreload_cse
))
2276 /* Do a very simple CSE pass over just the hard registers. */
2277 reload_cse_regs (get_insns ());
2278 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2279 Remove any EH edges associated with them. */
2280 if (cfun
->can_throw_non_call_exceptions
)
2281 purge_all_dead_edges ();
2286 struct rtl_opt_pass pass_postreload_cse
=
2290 "postreload", /* name */
2291 gate_handle_postreload
, /* gate */
2292 rest_of_handle_postreload
, /* execute */
2295 0, /* static_pass_number */
2296 TV_RELOAD_CSE_REGS
, /* tv_id */
2297 0, /* properties_required */
2298 0, /* properties_provided */
2299 0, /* properties_destroyed */
2300 0, /* todo_flags_start */
2301 TODO_df_finish
| TODO_verify_rtl_sharing
|
2302 0 /* todo_flags_finish */