2002-10-01 Matt Thomas <matt@3am-software.com>
[official-gcc.git] / gcc / unroll.c
bloba1b0287304323bee9344d91df3f2d2af1d0b0841
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* Try to unroll a loop, and split induction variables.
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
56 /* Possible improvements follow: */
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
134 #include "config.h"
135 #include "system.h"
136 #include "rtl.h"
137 #include "tm_p.h"
138 #include "insn-config.h"
139 #include "integrate.h"
140 #include "regs.h"
141 #include "recog.h"
142 #include "flags.h"
143 #include "function.h"
144 #include "expr.h"
145 #include "loop.h"
146 #include "toplev.h"
147 #include "hard-reg-set.h"
148 #include "basic-block.h"
149 #include "predict.h"
150 #include "params.h"
152 /* The prime factors looked for when trying to unroll a loop by some
153 number which is modulo the total number of iterations. Just checking
154 for these 4 prime factors will find at least one factor for 75% of
155 all numbers theoretically. Practically speaking, this will succeed
156 almost all of the time since loops are generally a multiple of 2
157 and/or 5. */
159 #define NUM_FACTORS 4
161 static struct _factor { const int factor; int count; }
162 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
164 /* Describes the different types of loop unrolling performed. */
166 enum unroll_types
168 UNROLL_COMPLETELY,
169 UNROLL_MODULO,
170 UNROLL_NAIVE
173 /* Indexed by register number, if nonzero, then it contains a pointer
174 to a struct induction for a DEST_REG giv which has been combined with
175 one of more address givs. This is needed because whenever such a DEST_REG
176 giv is modified, we must modify the value of all split address givs
177 that were combined with this DEST_REG giv. */
179 static struct induction **addr_combined_regs;
181 /* Indexed by register number, if this is a splittable induction variable,
182 then this will hold the current value of the register, which depends on the
183 iteration number. */
185 static rtx *splittable_regs;
187 /* Indexed by register number, if this is a splittable induction variable,
188 then this will hold the number of instructions in the loop that modify
189 the induction variable. Used to ensure that only the last insn modifying
190 a split iv will update the original iv of the dest. */
192 static int *splittable_regs_updates;
194 /* Forward declarations. */
196 static rtx simplify_cmp_and_jump_insns PARAMS ((enum rtx_code,
197 enum machine_mode,
198 rtx, rtx, rtx));
199 static void init_reg_map PARAMS ((struct inline_remap *, int));
200 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
201 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
202 static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
203 static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
204 struct inline_remap *, rtx, int,
205 enum unroll_types, rtx, rtx, rtx, rtx));
206 static int find_splittable_regs PARAMS ((const struct loop *,
207 enum unroll_types, int));
208 static int find_splittable_givs PARAMS ((const struct loop *,
209 struct iv_class *, enum unroll_types,
210 rtx, int));
211 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
212 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
213 static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
214 static rtx find_common_reg_term PARAMS ((rtx, rtx));
215 static rtx subtract_reg_term PARAMS ((rtx, rtx));
216 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
217 static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
219 /* Try to unroll one loop and split induction variables in the loop.
221 The loop is described by the arguments LOOP and INSN_COUNT.
222 STRENGTH_REDUCTION_P indicates whether information generated in the
223 strength reduction pass is available.
225 This function is intended to be called from within `strength_reduce'
226 in loop.c. */
228 void
229 unroll_loop (loop, insn_count, strength_reduce_p)
230 struct loop *loop;
231 int insn_count;
232 int strength_reduce_p;
234 struct loop_info *loop_info = LOOP_INFO (loop);
235 struct loop_ivs *ivs = LOOP_IVS (loop);
236 int i, j;
237 unsigned int r;
238 unsigned HOST_WIDE_INT temp;
239 int unroll_number = 1;
240 rtx copy_start, copy_end;
241 rtx insn, sequence, pattern, tem;
242 int max_labelno, max_insnno;
243 rtx insert_before;
244 struct inline_remap *map;
245 char *local_label = NULL;
246 char *local_regno;
247 unsigned int max_local_regnum;
248 unsigned int maxregnum;
249 rtx exit_label = 0;
250 rtx start_label;
251 struct iv_class *bl;
252 int splitting_not_safe = 0;
253 enum unroll_types unroll_type = UNROLL_NAIVE;
254 int loop_preconditioned = 0;
255 rtx safety_label;
256 /* This points to the last real insn in the loop, which should be either
257 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
258 jumps). */
259 rtx last_loop_insn;
260 rtx loop_start = loop->start;
261 rtx loop_end = loop->end;
263 /* Don't bother unrolling huge loops. Since the minimum factor is
264 two, loops greater than one half of MAX_UNROLLED_INSNS will never
265 be unrolled. */
266 if (insn_count > MAX_UNROLLED_INSNS / 2)
268 if (loop_dump_stream)
269 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
270 return;
273 /* Determine type of unroll to perform. Depends on the number of iterations
274 and the size of the loop. */
276 /* If there is no strength reduce info, then set
277 loop_info->n_iterations to zero. This can happen if
278 strength_reduce can't find any bivs in the loop. A value of zero
279 indicates that the number of iterations could not be calculated. */
281 if (! strength_reduce_p)
282 loop_info->n_iterations = 0;
284 if (loop_dump_stream && loop_info->n_iterations > 0)
286 fputs ("Loop unrolling: ", loop_dump_stream);
287 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
288 loop_info->n_iterations);
289 fputs (" iterations.\n", loop_dump_stream);
292 /* Find and save a pointer to the last nonnote insn in the loop. */
294 last_loop_insn = prev_nonnote_insn (loop_end);
296 /* Calculate how many times to unroll the loop. Indicate whether or
297 not the loop is being completely unrolled. */
299 if (loop_info->n_iterations == 1)
301 /* Handle the case where the loop begins with an unconditional
302 jump to the loop condition. Make sure to delete the jump
303 insn, otherwise the loop body will never execute. */
305 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
306 if (ujump)
307 delete_related_insns (ujump);
309 /* If number of iterations is exactly 1, then eliminate the compare and
310 branch at the end of the loop since they will never be taken.
311 Then return, since no other action is needed here. */
313 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
314 don't do anything. */
316 if (GET_CODE (last_loop_insn) == BARRIER)
318 /* Delete the jump insn. This will delete the barrier also. */
319 delete_related_insns (PREV_INSN (last_loop_insn));
321 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
323 #ifdef HAVE_cc0
324 rtx prev = PREV_INSN (last_loop_insn);
325 #endif
326 delete_related_insns (last_loop_insn);
327 #ifdef HAVE_cc0
328 /* The immediately preceding insn may be a compare which must be
329 deleted. */
330 if (only_sets_cc0_p (prev))
331 delete_related_insns (prev);
332 #endif
335 /* Remove the loop notes since this is no longer a loop. */
336 if (loop->vtop)
337 delete_related_insns (loop->vtop);
338 if (loop->cont)
339 delete_related_insns (loop->cont);
340 if (loop_start)
341 delete_related_insns (loop_start);
342 if (loop_end)
343 delete_related_insns (loop_end);
345 return;
347 else if (loop_info->n_iterations > 0
348 /* Avoid overflow in the next expression. */
349 && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
350 && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
352 unroll_number = loop_info->n_iterations;
353 unroll_type = UNROLL_COMPLETELY;
355 else if (loop_info->n_iterations > 0)
357 /* Try to factor the number of iterations. Don't bother with the
358 general case, only using 2, 3, 5, and 7 will get 75% of all
359 numbers theoretically, and almost all in practice. */
361 for (i = 0; i < NUM_FACTORS; i++)
362 factors[i].count = 0;
364 temp = loop_info->n_iterations;
365 for (i = NUM_FACTORS - 1; i >= 0; i--)
366 while (temp % factors[i].factor == 0)
368 factors[i].count++;
369 temp = temp / factors[i].factor;
372 /* Start with the larger factors first so that we generally
373 get lots of unrolling. */
375 unroll_number = 1;
376 temp = insn_count;
377 for (i = 3; i >= 0; i--)
378 while (factors[i].count--)
380 if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
382 unroll_number *= factors[i].factor;
383 temp *= factors[i].factor;
385 else
386 break;
389 /* If we couldn't find any factors, then unroll as in the normal
390 case. */
391 if (unroll_number == 1)
393 if (loop_dump_stream)
394 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
396 else
397 unroll_type = UNROLL_MODULO;
400 /* Default case, calculate number of times to unroll loop based on its
401 size. */
402 if (unroll_type == UNROLL_NAIVE)
404 if (8 * insn_count < MAX_UNROLLED_INSNS)
405 unroll_number = 8;
406 else if (4 * insn_count < MAX_UNROLLED_INSNS)
407 unroll_number = 4;
408 else
409 unroll_number = 2;
412 /* Now we know how many times to unroll the loop. */
414 if (loop_dump_stream)
415 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
417 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
419 /* Loops of these types can start with jump down to the exit condition
420 in rare circumstances.
422 Consider a pair of nested loops where the inner loop is part
423 of the exit code for the outer loop.
425 In this case jump.c will not duplicate the exit test for the outer
426 loop, so it will start with a jump to the exit code.
428 Then consider if the inner loop turns out to iterate once and
429 only once. We will end up deleting the jumps associated with
430 the inner loop. However, the loop notes are not removed from
431 the instruction stream.
433 And finally assume that we can compute the number of iterations
434 for the outer loop.
436 In this case unroll may want to unroll the outer loop even though
437 it starts with a jump to the outer loop's exit code.
439 We could try to optimize this case, but it hardly seems worth it.
440 Just return without unrolling the loop in such cases. */
442 insn = loop_start;
443 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
444 insn = NEXT_INSN (insn);
445 if (GET_CODE (insn) == JUMP_INSN)
446 return;
449 if (unroll_type == UNROLL_COMPLETELY)
451 /* Completely unrolling the loop: Delete the compare and branch at
452 the end (the last two instructions). This delete must done at the
453 very end of loop unrolling, to avoid problems with calls to
454 back_branch_in_range_p, which is called by find_splittable_regs.
455 All increments of splittable bivs/givs are changed to load constant
456 instructions. */
458 copy_start = loop_start;
460 /* Set insert_before to the instruction immediately after the JUMP_INSN
461 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
462 the loop will be correctly handled by copy_loop_body. */
463 insert_before = NEXT_INSN (last_loop_insn);
465 /* Set copy_end to the insn before the jump at the end of the loop. */
466 if (GET_CODE (last_loop_insn) == BARRIER)
467 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
468 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
470 copy_end = PREV_INSN (last_loop_insn);
471 #ifdef HAVE_cc0
472 /* The instruction immediately before the JUMP_INSN may be a compare
473 instruction which we do not want to copy. */
474 if (sets_cc0_p (PREV_INSN (copy_end)))
475 copy_end = PREV_INSN (copy_end);
476 #endif
478 else
480 /* We currently can't unroll a loop if it doesn't end with a
481 JUMP_INSN. There would need to be a mechanism that recognizes
482 this case, and then inserts a jump after each loop body, which
483 jumps to after the last loop body. */
484 if (loop_dump_stream)
485 fprintf (loop_dump_stream,
486 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
487 return;
490 else if (unroll_type == UNROLL_MODULO)
492 /* Partially unrolling the loop: The compare and branch at the end
493 (the last two instructions) must remain. Don't copy the compare
494 and branch instructions at the end of the loop. Insert the unrolled
495 code immediately before the compare/branch at the end so that the
496 code will fall through to them as before. */
498 copy_start = loop_start;
500 /* Set insert_before to the jump insn at the end of the loop.
501 Set copy_end to before the jump insn at the end of the loop. */
502 if (GET_CODE (last_loop_insn) == BARRIER)
504 insert_before = PREV_INSN (last_loop_insn);
505 copy_end = PREV_INSN (insert_before);
507 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
509 insert_before = last_loop_insn;
510 #ifdef HAVE_cc0
511 /* The instruction immediately before the JUMP_INSN may be a compare
512 instruction which we do not want to copy or delete. */
513 if (sets_cc0_p (PREV_INSN (insert_before)))
514 insert_before = PREV_INSN (insert_before);
515 #endif
516 copy_end = PREV_INSN (insert_before);
518 else
520 /* We currently can't unroll a loop if it doesn't end with a
521 JUMP_INSN. There would need to be a mechanism that recognizes
522 this case, and then inserts a jump after each loop body, which
523 jumps to after the last loop body. */
524 if (loop_dump_stream)
525 fprintf (loop_dump_stream,
526 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
527 return;
530 else
532 /* Normal case: Must copy the compare and branch instructions at the
533 end of the loop. */
535 if (GET_CODE (last_loop_insn) == BARRIER)
537 /* Loop ends with an unconditional jump and a barrier.
538 Handle this like above, don't copy jump and barrier.
539 This is not strictly necessary, but doing so prevents generating
540 unconditional jumps to an immediately following label.
542 This will be corrected below if the target of this jump is
543 not the start_label. */
545 insert_before = PREV_INSN (last_loop_insn);
546 copy_end = PREV_INSN (insert_before);
548 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
550 /* Set insert_before to immediately after the JUMP_INSN, so that
551 NOTEs at the end of the loop will be correctly handled by
552 copy_loop_body. */
553 insert_before = NEXT_INSN (last_loop_insn);
554 copy_end = last_loop_insn;
556 else
558 /* We currently can't unroll a loop if it doesn't end with a
559 JUMP_INSN. There would need to be a mechanism that recognizes
560 this case, and then inserts a jump after each loop body, which
561 jumps to after the last loop body. */
562 if (loop_dump_stream)
563 fprintf (loop_dump_stream,
564 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
565 return;
568 /* If copying exit test branches because they can not be eliminated,
569 then must convert the fall through case of the branch to a jump past
570 the end of the loop. Create a label to emit after the loop and save
571 it for later use. Do not use the label after the loop, if any, since
572 it might be used by insns outside the loop, or there might be insns
573 added before it later by final_[bg]iv_value which must be after
574 the real exit label. */
575 exit_label = gen_label_rtx ();
577 insn = loop_start;
578 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
579 insn = NEXT_INSN (insn);
581 if (GET_CODE (insn) == JUMP_INSN)
583 /* The loop starts with a jump down to the exit condition test.
584 Start copying the loop after the barrier following this
585 jump insn. */
586 copy_start = NEXT_INSN (insn);
588 /* Splitting induction variables doesn't work when the loop is
589 entered via a jump to the bottom, because then we end up doing
590 a comparison against a new register for a split variable, but
591 we did not execute the set insn for the new register because
592 it was skipped over. */
593 splitting_not_safe = 1;
594 if (loop_dump_stream)
595 fprintf (loop_dump_stream,
596 "Splitting not safe, because loop not entered at top.\n");
598 else
599 copy_start = loop_start;
602 /* This should always be the first label in the loop. */
603 start_label = NEXT_INSN (copy_start);
604 /* There may be a line number note and/or a loop continue note here. */
605 while (GET_CODE (start_label) == NOTE)
606 start_label = NEXT_INSN (start_label);
607 if (GET_CODE (start_label) != CODE_LABEL)
609 /* This can happen as a result of jump threading. If the first insns in
610 the loop test the same condition as the loop's backward jump, or the
611 opposite condition, then the backward jump will be modified to point
612 to elsewhere, and the loop's start label is deleted.
614 This case currently can not be handled by the loop unrolling code. */
616 if (loop_dump_stream)
617 fprintf (loop_dump_stream,
618 "Unrolling failure: unknown insns between BEG note and loop label.\n");
619 return;
621 if (LABEL_NAME (start_label))
623 /* The jump optimization pass must have combined the original start label
624 with a named label for a goto. We can't unroll this case because
625 jumps which go to the named label must be handled differently than
626 jumps to the loop start, and it is impossible to differentiate them
627 in this case. */
628 if (loop_dump_stream)
629 fprintf (loop_dump_stream,
630 "Unrolling failure: loop start label is gone\n");
631 return;
634 if (unroll_type == UNROLL_NAIVE
635 && GET_CODE (last_loop_insn) == BARRIER
636 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
637 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
639 /* In this case, we must copy the jump and barrier, because they will
640 not be converted to jumps to an immediately following label. */
642 insert_before = NEXT_INSN (last_loop_insn);
643 copy_end = last_loop_insn;
646 if (unroll_type == UNROLL_NAIVE
647 && GET_CODE (last_loop_insn) == JUMP_INSN
648 && start_label != JUMP_LABEL (last_loop_insn))
650 /* ??? The loop ends with a conditional branch that does not branch back
651 to the loop start label. In this case, we must emit an unconditional
652 branch to the loop exit after emitting the final branch.
653 copy_loop_body does not have support for this currently, so we
654 give up. It doesn't seem worthwhile to unroll anyways since
655 unrolling would increase the number of branch instructions
656 executed. */
657 if (loop_dump_stream)
658 fprintf (loop_dump_stream,
659 "Unrolling failure: final conditional branch not to loop start\n");
660 return;
663 /* Allocate a translation table for the labels and insn numbers.
664 They will be filled in as we copy the insns in the loop. */
666 max_labelno = max_label_num ();
667 max_insnno = get_max_uid ();
669 /* Various paths through the unroll code may reach the "egress" label
670 without initializing fields within the map structure.
672 To be safe, we use xcalloc to zero the memory. */
673 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
675 /* Allocate the label map. */
677 if (max_labelno > 0)
679 map->label_map = (rtx *) xcalloc (max_labelno, sizeof (rtx));
680 local_label = (char *) xcalloc (max_labelno, sizeof (char));
683 /* Search the loop and mark all local labels, i.e. the ones which have to
684 be distinct labels when copied. For all labels which might be
685 non-local, set their label_map entries to point to themselves.
686 If they happen to be local their label_map entries will be overwritten
687 before the loop body is copied. The label_map entries for local labels
688 will be set to a different value each time the loop body is copied. */
690 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
692 rtx note;
694 if (GET_CODE (insn) == CODE_LABEL)
695 local_label[CODE_LABEL_NUMBER (insn)] = 1;
696 else if (GET_CODE (insn) == JUMP_INSN)
698 if (JUMP_LABEL (insn))
699 set_label_in_map (map,
700 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
701 JUMP_LABEL (insn));
702 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
703 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
705 rtx pat = PATTERN (insn);
706 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
707 int len = XVECLEN (pat, diff_vec_p);
708 rtx label;
710 for (i = 0; i < len; i++)
712 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
713 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
717 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
718 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
719 XEXP (note, 0));
722 /* Allocate space for the insn map. */
724 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
726 /* Set this to zero, to indicate that we are doing loop unrolling,
727 not function inlining. */
728 map->inline_target = 0;
730 /* The register and constant maps depend on the number of registers
731 present, so the final maps can't be created until after
732 find_splittable_regs is called. However, they are needed for
733 preconditioning, so we create temporary maps when preconditioning
734 is performed. */
736 /* The preconditioning code may allocate two new pseudo registers. */
737 maxregnum = max_reg_num ();
739 /* local_regno is only valid for regnos < max_local_regnum. */
740 max_local_regnum = maxregnum;
742 /* Allocate and zero out the splittable_regs and addr_combined_regs
743 arrays. These must be zeroed here because they will be used if
744 loop preconditioning is performed, and must be zero for that case.
746 It is safe to do this here, since the extra registers created by the
747 preconditioning code and find_splittable_regs will never be used
748 to access the splittable_regs[] and addr_combined_regs[] arrays. */
750 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
751 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
752 addr_combined_regs
753 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
754 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
756 /* Mark all local registers, i.e. the ones which are referenced only
757 inside the loop. */
758 if (INSN_UID (copy_end) < max_uid_for_loop)
760 int copy_start_luid = INSN_LUID (copy_start);
761 int copy_end_luid = INSN_LUID (copy_end);
763 /* If a register is used in the jump insn, we must not duplicate it
764 since it will also be used outside the loop. */
765 if (GET_CODE (copy_end) == JUMP_INSN)
766 copy_end_luid--;
768 /* If we have a target that uses cc0, then we also must not duplicate
769 the insn that sets cc0 before the jump insn, if one is present. */
770 #ifdef HAVE_cc0
771 if (GET_CODE (copy_end) == JUMP_INSN
772 && sets_cc0_p (PREV_INSN (copy_end)))
773 copy_end_luid--;
774 #endif
776 /* If copy_start points to the NOTE that starts the loop, then we must
777 use the next luid, because invariant pseudo-regs moved out of the loop
778 have their lifetimes modified to start here, but they are not safe
779 to duplicate. */
780 if (copy_start == loop_start)
781 copy_start_luid++;
783 /* If a pseudo's lifetime is entirely contained within this loop, then we
784 can use a different pseudo in each unrolled copy of the loop. This
785 results in better code. */
786 /* We must limit the generic test to max_reg_before_loop, because only
787 these pseudo registers have valid regno_first_uid info. */
788 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
789 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
790 && REGNO_FIRST_LUID (r) >= copy_start_luid
791 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
792 && REGNO_LAST_LUID (r) <= copy_end_luid)
794 /* However, we must also check for loop-carried dependencies.
795 If the value the pseudo has at the end of iteration X is
796 used by iteration X+1, then we can not use a different pseudo
797 for each unrolled copy of the loop. */
798 /* A pseudo is safe if regno_first_uid is a set, and this
799 set dominates all instructions from regno_first_uid to
800 regno_last_uid. */
801 /* ??? This check is simplistic. We would get better code if
802 this check was more sophisticated. */
803 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
804 copy_start, copy_end))
805 local_regno[r] = 1;
807 if (loop_dump_stream)
809 if (local_regno[r])
810 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
811 else
812 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
818 /* If this loop requires exit tests when unrolled, check to see if we
819 can precondition the loop so as to make the exit tests unnecessary.
820 Just like variable splitting, this is not safe if the loop is entered
821 via a jump to the bottom. Also, can not do this if no strength
822 reduce info, because precondition_loop_p uses this info. */
824 /* Must copy the loop body for preconditioning before the following
825 find_splittable_regs call since that will emit insns which need to
826 be after the preconditioned loop copies, but immediately before the
827 unrolled loop copies. */
829 /* Also, it is not safe to split induction variables for the preconditioned
830 copies of the loop body. If we split induction variables, then the code
831 assumes that each induction variable can be represented as a function
832 of its initial value and the loop iteration number. This is not true
833 in this case, because the last preconditioned copy of the loop body
834 could be any iteration from the first up to the `unroll_number-1'th,
835 depending on the initial value of the iteration variable. Therefore
836 we can not split induction variables here, because we can not calculate
837 their value. Hence, this code must occur before find_splittable_regs
838 is called. */
840 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
842 rtx initial_value, final_value, increment;
843 enum machine_mode mode;
845 if (precondition_loop_p (loop,
846 &initial_value, &final_value, &increment,
847 &mode))
849 rtx diff, insn;
850 rtx *labels;
851 int abs_inc, neg_inc;
852 enum rtx_code cc = loop_info->comparison_code;
853 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
854 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
856 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
858 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
859 "unroll_loop_precondition");
860 global_const_equiv_varray = map->const_equiv_varray;
862 init_reg_map (map, maxregnum);
864 /* Limit loop unrolling to 4, since this will make 7 copies of
865 the loop body. */
866 if (unroll_number > 4)
867 unroll_number = 4;
869 /* Save the absolute value of the increment, and also whether or
870 not it is negative. */
871 neg_inc = 0;
872 abs_inc = INTVAL (increment);
873 if (abs_inc < 0)
875 abs_inc = -abs_inc;
876 neg_inc = 1;
879 start_sequence ();
881 /* We must copy the final and initial values here to avoid
882 improperly shared rtl. */
883 final_value = copy_rtx (final_value);
884 initial_value = copy_rtx (initial_value);
886 /* Final value may have form of (PLUS val1 const1_rtx). We need
887 to convert it into general operand, so compute the real value. */
889 final_value = force_operand (final_value, NULL_RTX);
890 if (!nonmemory_operand (final_value, VOIDmode))
891 final_value = force_reg (mode, final_value);
893 /* Calculate the difference between the final and initial values.
894 Final value may be a (plus (reg x) (const_int 1)) rtx.
896 We have to deal with for (i = 0; --i < 6;) type loops.
897 For such loops the real final value is the first time the
898 loop variable overflows, so the diff we calculate is the
899 distance from the overflow value. This is 0 or ~0 for
900 unsigned loops depending on the direction, or INT_MAX,
901 INT_MAX+1 for signed loops. We really do not need the
902 exact value, since we are only interested in the diff
903 modulo the increment, and the increment is a power of 2,
904 so we can pretend that the overflow value is 0/~0. */
906 if (cc == NE || less_p != neg_inc)
907 diff = simplify_gen_binary (MINUS, mode, final_value,
908 initial_value);
909 else
910 diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
911 initial_value, mode);
912 diff = force_operand (diff, NULL_RTX);
914 /* Now calculate (diff % (unroll * abs (increment))) by using an
915 and instruction. */
916 diff = simplify_gen_binary (AND, mode, diff,
917 GEN_INT (unroll_number*abs_inc - 1));
918 diff = force_operand (diff, NULL_RTX);
920 /* Now emit a sequence of branches to jump to the proper precond
921 loop entry point. */
923 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
924 for (i = 0; i < unroll_number; i++)
925 labels[i] = gen_label_rtx ();
927 /* Check for the case where the initial value is greater than or
928 equal to the final value. In that case, we want to execute
929 exactly one loop iteration. The code below will fail for this
930 case. This check does not apply if the loop has a NE
931 comparison at the end. */
933 if (cc != NE)
935 rtx incremented_initval;
936 enum rtx_code cmp_code;
938 incremented_initval
939 = simplify_gen_binary (PLUS, mode, initial_value, increment);
940 incremented_initval
941 = force_operand (incremented_initval, NULL_RTX);
943 cmp_code = (less_p
944 ? (unsigned_p ? GEU : GE)
945 : (unsigned_p ? LEU : LE));
947 insn = simplify_cmp_and_jump_insns (cmp_code, mode,
948 incremented_initval,
949 final_value, labels[1]);
950 if (insn)
951 predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
954 /* Assuming the unroll_number is 4, and the increment is 2, then
955 for a negative increment: for a positive increment:
956 diff = 0,1 precond 0 diff = 0,7 precond 0
957 diff = 2,3 precond 3 diff = 1,2 precond 1
958 diff = 4,5 precond 2 diff = 3,4 precond 2
959 diff = 6,7 precond 1 diff = 5,6 precond 3 */
961 /* We only need to emit (unroll_number - 1) branches here, the
962 last case just falls through to the following code. */
964 /* ??? This would give better code if we emitted a tree of branches
965 instead of the current linear list of branches. */
967 for (i = 0; i < unroll_number - 1; i++)
969 int cmp_const;
970 enum rtx_code cmp_code;
972 /* For negative increments, must invert the constant compared
973 against, except when comparing against zero. */
974 if (i == 0)
976 cmp_const = 0;
977 cmp_code = EQ;
979 else if (neg_inc)
981 cmp_const = unroll_number - i;
982 cmp_code = GE;
984 else
986 cmp_const = i;
987 cmp_code = LE;
990 insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
991 GEN_INT (abs_inc*cmp_const),
992 labels[i]);
993 if (insn)
994 predict_insn (insn, PRED_LOOP_PRECONDITIONING,
995 REG_BR_PROB_BASE / (unroll_number - i));
998 /* If the increment is greater than one, then we need another branch,
999 to handle other cases equivalent to 0. */
1001 /* ??? This should be merged into the code above somehow to help
1002 simplify the code here, and reduce the number of branches emitted.
1003 For the negative increment case, the branch here could easily
1004 be merged with the `0' case branch above. For the positive
1005 increment case, it is not clear how this can be simplified. */
1007 if (abs_inc != 1)
1009 int cmp_const;
1010 enum rtx_code cmp_code;
1012 if (neg_inc)
1014 cmp_const = abs_inc - 1;
1015 cmp_code = LE;
1017 else
1019 cmp_const = abs_inc * (unroll_number - 1) + 1;
1020 cmp_code = GE;
1023 simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1024 GEN_INT (cmp_const), labels[0]);
1027 sequence = get_insns ();
1028 end_sequence ();
1029 loop_insn_hoist (loop, sequence);
1031 /* Only the last copy of the loop body here needs the exit
1032 test, so set copy_end to exclude the compare/branch here,
1033 and then reset it inside the loop when get to the last
1034 copy. */
1036 if (GET_CODE (last_loop_insn) == BARRIER)
1037 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1038 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1040 copy_end = PREV_INSN (last_loop_insn);
1041 #ifdef HAVE_cc0
1042 /* The immediately preceding insn may be a compare which
1043 we do not want to copy. */
1044 if (sets_cc0_p (PREV_INSN (copy_end)))
1045 copy_end = PREV_INSN (copy_end);
1046 #endif
1048 else
1049 abort ();
1051 for (i = 1; i < unroll_number; i++)
1053 emit_label_after (labels[unroll_number - i],
1054 PREV_INSN (loop_start));
1056 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1057 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1058 0, (VARRAY_SIZE (map->const_equiv_varray)
1059 * sizeof (struct const_equiv_data)));
1060 map->const_age = 0;
1062 for (j = 0; j < max_labelno; j++)
1063 if (local_label[j])
1064 set_label_in_map (map, j, gen_label_rtx ());
1066 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1067 if (local_regno[r])
1069 map->reg_map[r]
1070 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1071 record_base_value (REGNO (map->reg_map[r]),
1072 regno_reg_rtx[r], 0);
1074 /* The last copy needs the compare/branch insns at the end,
1075 so reset copy_end here if the loop ends with a conditional
1076 branch. */
1078 if (i == unroll_number - 1)
1080 if (GET_CODE (last_loop_insn) == BARRIER)
1081 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1082 else
1083 copy_end = last_loop_insn;
1086 /* None of the copies are the `last_iteration', so just
1087 pass zero for that parameter. */
1088 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1089 unroll_type, start_label, loop_end,
1090 loop_start, copy_end);
1092 emit_label_after (labels[0], PREV_INSN (loop_start));
1094 if (GET_CODE (last_loop_insn) == BARRIER)
1096 insert_before = PREV_INSN (last_loop_insn);
1097 copy_end = PREV_INSN (insert_before);
1099 else
1101 insert_before = last_loop_insn;
1102 #ifdef HAVE_cc0
1103 /* The instruction immediately before the JUMP_INSN may
1104 be a compare instruction which we do not want to copy
1105 or delete. */
1106 if (sets_cc0_p (PREV_INSN (insert_before)))
1107 insert_before = PREV_INSN (insert_before);
1108 #endif
1109 copy_end = PREV_INSN (insert_before);
1112 /* Set unroll type to MODULO now. */
1113 unroll_type = UNROLL_MODULO;
1114 loop_preconditioned = 1;
1116 /* Clean up. */
1117 free (labels);
1121 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1122 the loop unless all loops are being unrolled. */
1123 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1125 if (loop_dump_stream)
1126 fprintf (loop_dump_stream,
1127 "Unrolling failure: Naive unrolling not being done.\n");
1128 goto egress;
1131 /* At this point, we are guaranteed to unroll the loop. */
1133 /* Keep track of the unroll factor for the loop. */
1134 loop_info->unroll_number = unroll_number;
1136 /* And whether the loop has been preconditioned. */
1137 loop_info->preconditioned = loop_preconditioned;
1139 /* For each biv and giv, determine whether it can be safely split into
1140 a different variable for each unrolled copy of the loop body.
1141 We precalculate and save this info here, since computing it is
1142 expensive.
1144 Do this before deleting any instructions from the loop, so that
1145 back_branch_in_range_p will work correctly. */
1147 if (splitting_not_safe)
1148 temp = 0;
1149 else
1150 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1152 /* find_splittable_regs may have created some new registers, so must
1153 reallocate the reg_map with the new larger size, and must realloc
1154 the constant maps also. */
1156 maxregnum = max_reg_num ();
1157 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1159 init_reg_map (map, maxregnum);
1161 if (map->const_equiv_varray == 0)
1162 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1163 maxregnum + temp * unroll_number * 2,
1164 "unroll_loop");
1165 global_const_equiv_varray = map->const_equiv_varray;
1167 /* Search the list of bivs and givs to find ones which need to be remapped
1168 when split, and set their reg_map entry appropriately. */
1170 for (bl = ivs->list; bl; bl = bl->next)
1172 if (REGNO (bl->biv->src_reg) != bl->regno)
1173 map->reg_map[bl->regno] = bl->biv->src_reg;
1174 #if 0
1175 /* Currently, non-reduced/final-value givs are never split. */
1176 for (v = bl->giv; v; v = v->next_iv)
1177 if (REGNO (v->src_reg) != bl->regno)
1178 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1179 #endif
1182 /* Use our current register alignment and pointer flags. */
1183 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1184 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1186 /* If the loop is being partially unrolled, and the iteration variables
1187 are being split, and are being renamed for the split, then must fix up
1188 the compare/jump instruction at the end of the loop to refer to the new
1189 registers. This compare isn't copied, so the registers used in it
1190 will never be replaced if it isn't done here. */
1192 if (unroll_type == UNROLL_MODULO)
1194 insn = NEXT_INSN (copy_end);
1195 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1196 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1199 /* For unroll_number times, make a copy of each instruction
1200 between copy_start and copy_end, and insert these new instructions
1201 before the end of the loop. */
1203 for (i = 0; i < unroll_number; i++)
1205 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1206 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1207 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1208 map->const_age = 0;
1210 for (j = 0; j < max_labelno; j++)
1211 if (local_label[j])
1212 set_label_in_map (map, j, gen_label_rtx ());
1214 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1215 if (local_regno[r])
1217 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1218 record_base_value (REGNO (map->reg_map[r]),
1219 regno_reg_rtx[r], 0);
1222 /* If loop starts with a branch to the test, then fix it so that
1223 it points to the test of the first unrolled copy of the loop. */
1224 if (i == 0 && loop_start != copy_start)
1226 insn = PREV_INSN (copy_start);
1227 pattern = PATTERN (insn);
1229 tem = get_label_from_map (map,
1230 CODE_LABEL_NUMBER
1231 (XEXP (SET_SRC (pattern), 0)));
1232 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1234 /* Set the jump label so that it can be used by later loop unrolling
1235 passes. */
1236 JUMP_LABEL (insn) = tem;
1237 LABEL_NUSES (tem)++;
1240 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1241 i == unroll_number - 1, unroll_type, start_label,
1242 loop_end, insert_before, insert_before);
1245 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1246 insn to be deleted. This prevents any runaway delete_insn call from
1247 more insns that it should, as it always stops at a CODE_LABEL. */
1249 /* Delete the compare and branch at the end of the loop if completely
1250 unrolling the loop. Deleting the backward branch at the end also
1251 deletes the code label at the start of the loop. This is done at
1252 the very end to avoid problems with back_branch_in_range_p. */
1254 if (unroll_type == UNROLL_COMPLETELY)
1255 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1256 else
1257 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1259 /* Delete all of the original loop instructions. Don't delete the
1260 LOOP_BEG note, or the first code label in the loop. */
1262 insn = NEXT_INSN (copy_start);
1263 while (insn != safety_label)
1265 /* ??? Don't delete named code labels. They will be deleted when the
1266 jump that references them is deleted. Otherwise, we end up deleting
1267 them twice, which causes them to completely disappear instead of turn
1268 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1269 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1270 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1271 associated LABEL_DECL to point to one of the new label instances. */
1272 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1273 if (insn != start_label
1274 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1275 && ! (GET_CODE (insn) == NOTE
1276 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1277 insn = delete_related_insns (insn);
1278 else
1279 insn = NEXT_INSN (insn);
1282 /* Can now delete the 'safety' label emitted to protect us from runaway
1283 delete_related_insns calls. */
1284 if (INSN_DELETED_P (safety_label))
1285 abort ();
1286 delete_related_insns (safety_label);
1288 /* If exit_label exists, emit it after the loop. Doing the emit here
1289 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1290 This is needed so that mostly_true_jump in reorg.c will treat jumps
1291 to this loop end label correctly, i.e. predict that they are usually
1292 not taken. */
1293 if (exit_label)
1294 emit_label_after (exit_label, loop_end);
1296 egress:
1297 if (unroll_type == UNROLL_COMPLETELY)
1299 /* Remove the loop notes since this is no longer a loop. */
1300 if (loop->vtop)
1301 delete_related_insns (loop->vtop);
1302 if (loop->cont)
1303 delete_related_insns (loop->cont);
1304 if (loop_start)
1305 delete_related_insns (loop_start);
1306 if (loop_end)
1307 delete_related_insns (loop_end);
1310 if (map->const_equiv_varray)
1311 VARRAY_FREE (map->const_equiv_varray);
1312 if (map->label_map)
1314 free (map->label_map);
1315 free (local_label);
1317 free (map->insn_map);
1318 free (splittable_regs);
1319 free (splittable_regs_updates);
1320 free (addr_combined_regs);
1321 free (local_regno);
1322 if (map->reg_map)
1323 free (map->reg_map);
1324 free (map);
1327 /* A helper function for unroll_loop. Emit a compare and branch to
1328 satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1329 If the branch turned out to be conditional, return it, otherwise
1330 return NULL. */
1332 static rtx
1333 simplify_cmp_and_jump_insns (code, mode, op0, op1, label)
1334 enum rtx_code code;
1335 enum machine_mode mode;
1336 rtx op0, op1, label;
1338 rtx t, insn;
1340 t = simplify_relational_operation (code, mode, op0, op1);
1341 if (!t)
1343 enum rtx_code scode = signed_condition (code);
1344 emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1345 code != scode, label);
1346 insn = get_last_insn ();
1348 JUMP_LABEL (insn) = label;
1349 LABEL_NUSES (label) += 1;
1351 return insn;
1353 else if (t == const_true_rtx)
1355 insn = emit_jump_insn (gen_jump (label));
1356 emit_barrier ();
1357 JUMP_LABEL (insn) = label;
1358 LABEL_NUSES (label) += 1;
1361 return NULL_RTX;
1364 /* Return true if the loop can be safely, and profitably, preconditioned
1365 so that the unrolled copies of the loop body don't need exit tests.
1367 This only works if final_value, initial_value and increment can be
1368 determined, and if increment is a constant power of 2.
1369 If increment is not a power of 2, then the preconditioning modulo
1370 operation would require a real modulo instead of a boolean AND, and this
1371 is not considered `profitable'. */
1373 /* ??? If the loop is known to be executed very many times, or the machine
1374 has a very cheap divide instruction, then preconditioning is a win even
1375 when the increment is not a power of 2. Use RTX_COST to compute
1376 whether divide is cheap.
1377 ??? A divide by constant doesn't actually need a divide, look at
1378 expand_divmod. The reduced cost of this optimized modulo is not
1379 reflected in RTX_COST. */
1382 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1383 const struct loop *loop;
1384 rtx *initial_value, *final_value, *increment;
1385 enum machine_mode *mode;
1387 rtx loop_start = loop->start;
1388 struct loop_info *loop_info = LOOP_INFO (loop);
1390 if (loop_info->n_iterations > 0)
1392 if (INTVAL (loop_info->increment) > 0)
1394 *initial_value = const0_rtx;
1395 *increment = const1_rtx;
1396 *final_value = GEN_INT (loop_info->n_iterations);
1398 else
1400 *initial_value = GEN_INT (loop_info->n_iterations);
1401 *increment = constm1_rtx;
1402 *final_value = const0_rtx;
1404 *mode = word_mode;
1406 if (loop_dump_stream)
1408 fputs ("Preconditioning: Success, number of iterations known, ",
1409 loop_dump_stream);
1410 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1411 loop_info->n_iterations);
1412 fputs (".\n", loop_dump_stream);
1414 return 1;
1417 if (loop_info->iteration_var == 0)
1419 if (loop_dump_stream)
1420 fprintf (loop_dump_stream,
1421 "Preconditioning: Could not find iteration variable.\n");
1422 return 0;
1424 else if (loop_info->initial_value == 0)
1426 if (loop_dump_stream)
1427 fprintf (loop_dump_stream,
1428 "Preconditioning: Could not find initial value.\n");
1429 return 0;
1431 else if (loop_info->increment == 0)
1433 if (loop_dump_stream)
1434 fprintf (loop_dump_stream,
1435 "Preconditioning: Could not find increment value.\n");
1436 return 0;
1438 else if (GET_CODE (loop_info->increment) != CONST_INT)
1440 if (loop_dump_stream)
1441 fprintf (loop_dump_stream,
1442 "Preconditioning: Increment not a constant.\n");
1443 return 0;
1445 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1446 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1448 if (loop_dump_stream)
1449 fprintf (loop_dump_stream,
1450 "Preconditioning: Increment not a constant power of 2.\n");
1451 return 0;
1454 /* Unsigned_compare and compare_dir can be ignored here, since they do
1455 not matter for preconditioning. */
1457 if (loop_info->final_value == 0)
1459 if (loop_dump_stream)
1460 fprintf (loop_dump_stream,
1461 "Preconditioning: EQ comparison loop.\n");
1462 return 0;
1465 /* Must ensure that final_value is invariant, so call
1466 loop_invariant_p to check. Before doing so, must check regno
1467 against max_reg_before_loop to make sure that the register is in
1468 the range covered by loop_invariant_p. If it isn't, then it is
1469 most likely a biv/giv which by definition are not invariant. */
1470 if ((GET_CODE (loop_info->final_value) == REG
1471 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1472 || (GET_CODE (loop_info->final_value) == PLUS
1473 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1474 || ! loop_invariant_p (loop, loop_info->final_value))
1476 if (loop_dump_stream)
1477 fprintf (loop_dump_stream,
1478 "Preconditioning: Final value not invariant.\n");
1479 return 0;
1482 /* Fail for floating point values, since the caller of this function
1483 does not have code to deal with them. */
1484 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1485 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1487 if (loop_dump_stream)
1488 fprintf (loop_dump_stream,
1489 "Preconditioning: Floating point final or initial value.\n");
1490 return 0;
1493 /* Fail if loop_info->iteration_var is not live before loop_start,
1494 since we need to test its value in the preconditioning code. */
1496 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1497 > INSN_LUID (loop_start))
1499 if (loop_dump_stream)
1500 fprintf (loop_dump_stream,
1501 "Preconditioning: Iteration var not live before loop start.\n");
1502 return 0;
1505 /* Note that loop_iterations biases the initial value for GIV iterators
1506 such as "while (i-- > 0)" so that we can calculate the number of
1507 iterations just like for BIV iterators.
1509 Also note that the absolute values of initial_value and
1510 final_value are unimportant as only their difference is used for
1511 calculating the number of loop iterations. */
1512 *initial_value = loop_info->initial_value;
1513 *increment = loop_info->increment;
1514 *final_value = loop_info->final_value;
1516 /* Decide what mode to do these calculations in. Choose the larger
1517 of final_value's mode and initial_value's mode, or a full-word if
1518 both are constants. */
1519 *mode = GET_MODE (*final_value);
1520 if (*mode == VOIDmode)
1522 *mode = GET_MODE (*initial_value);
1523 if (*mode == VOIDmode)
1524 *mode = word_mode;
1526 else if (*mode != GET_MODE (*initial_value)
1527 && (GET_MODE_SIZE (*mode)
1528 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1529 *mode = GET_MODE (*initial_value);
1531 /* Success! */
1532 if (loop_dump_stream)
1533 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1534 return 1;
1537 /* All pseudo-registers must be mapped to themselves. Two hard registers
1538 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1539 REGNUM, to avoid function-inlining specific conversions of these
1540 registers. All other hard regs can not be mapped because they may be
1541 used with different
1542 modes. */
1544 static void
1545 init_reg_map (map, maxregnum)
1546 struct inline_remap *map;
1547 int maxregnum;
1549 int i;
1551 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1552 map->reg_map[i] = regno_reg_rtx[i];
1553 /* Just clear the rest of the entries. */
1554 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1555 map->reg_map[i] = 0;
1557 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1558 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1559 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1560 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1563 /* Strength-reduction will often emit code for optimized biv/givs which
1564 calculates their value in a temporary register, and then copies the result
1565 to the iv. This procedure reconstructs the pattern computing the iv;
1566 verifying that all operands are of the proper form.
1568 PATTERN must be the result of single_set.
1569 The return value is the amount that the giv is incremented by. */
1571 static rtx
1572 calculate_giv_inc (pattern, src_insn, regno)
1573 rtx pattern, src_insn;
1574 unsigned int regno;
1576 rtx increment;
1577 rtx increment_total = 0;
1578 int tries = 0;
1580 retry:
1581 /* Verify that we have an increment insn here. First check for a plus
1582 as the set source. */
1583 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1585 /* SR sometimes computes the new giv value in a temp, then copies it
1586 to the new_reg. */
1587 src_insn = PREV_INSN (src_insn);
1588 pattern = single_set (src_insn);
1589 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1590 abort ();
1592 /* The last insn emitted is not needed, so delete it to avoid confusing
1593 the second cse pass. This insn sets the giv unnecessarily. */
1594 delete_related_insns (get_last_insn ());
1597 /* Verify that we have a constant as the second operand of the plus. */
1598 increment = XEXP (SET_SRC (pattern), 1);
1599 if (GET_CODE (increment) != CONST_INT)
1601 /* SR sometimes puts the constant in a register, especially if it is
1602 too big to be an add immed operand. */
1603 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1605 /* SR may have used LO_SUM to compute the constant if it is too large
1606 for a load immed operand. In this case, the constant is in operand
1607 one of the LO_SUM rtx. */
1608 if (GET_CODE (increment) == LO_SUM)
1609 increment = XEXP (increment, 1);
1611 /* Some ports store large constants in memory and add a REG_EQUAL
1612 note to the store insn. */
1613 else if (GET_CODE (increment) == MEM)
1615 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1616 if (note)
1617 increment = XEXP (note, 0);
1620 else if (GET_CODE (increment) == IOR
1621 || GET_CODE (increment) == ASHIFT
1622 || GET_CODE (increment) == PLUS)
1624 /* The rs6000 port loads some constants with IOR.
1625 The alpha port loads some constants with ASHIFT and PLUS. */
1626 rtx second_part = XEXP (increment, 1);
1627 enum rtx_code code = GET_CODE (increment);
1629 increment = find_last_value (XEXP (increment, 0),
1630 &src_insn, NULL_RTX, 0);
1631 /* Don't need the last insn anymore. */
1632 delete_related_insns (get_last_insn ());
1634 if (GET_CODE (second_part) != CONST_INT
1635 || GET_CODE (increment) != CONST_INT)
1636 abort ();
1638 if (code == IOR)
1639 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1640 else if (code == PLUS)
1641 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1642 else
1643 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1646 if (GET_CODE (increment) != CONST_INT)
1647 abort ();
1649 /* The insn loading the constant into a register is no longer needed,
1650 so delete it. */
1651 delete_related_insns (get_last_insn ());
1654 if (increment_total)
1655 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1656 else
1657 increment_total = increment;
1659 /* Check that the source register is the same as the register we expected
1660 to see as the source. If not, something is seriously wrong. */
1661 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1662 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1664 /* Some machines (e.g. the romp), may emit two add instructions for
1665 certain constants, so lets try looking for another add immediately
1666 before this one if we have only seen one add insn so far. */
1668 if (tries == 0)
1670 tries++;
1672 src_insn = PREV_INSN (src_insn);
1673 pattern = single_set (src_insn);
1675 delete_related_insns (get_last_insn ());
1677 goto retry;
1680 abort ();
1683 return increment_total;
1686 /* Copy REG_NOTES, except for insn references, because not all insn_map
1687 entries are valid yet. We do need to copy registers now though, because
1688 the reg_map entries can change during copying. */
1690 static rtx
1691 initial_reg_note_copy (notes, map)
1692 rtx notes;
1693 struct inline_remap *map;
1695 rtx copy;
1697 if (notes == 0)
1698 return 0;
1700 copy = rtx_alloc (GET_CODE (notes));
1701 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1703 if (GET_CODE (notes) == EXPR_LIST)
1704 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1705 else if (GET_CODE (notes) == INSN_LIST)
1706 /* Don't substitute for these yet. */
1707 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1708 else
1709 abort ();
1711 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1713 return copy;
1716 /* Fixup insn references in copied REG_NOTES. */
1718 static void
1719 final_reg_note_copy (notesp, map)
1720 rtx *notesp;
1721 struct inline_remap *map;
1723 while (*notesp)
1725 rtx note = *notesp;
1727 if (GET_CODE (note) == INSN_LIST)
1729 /* Sometimes, we have a REG_WAS_0 note that points to a
1730 deleted instruction. In that case, we can just delete the
1731 note. */
1732 if (REG_NOTE_KIND (note) == REG_WAS_0)
1734 *notesp = XEXP (note, 1);
1735 continue;
1737 else
1739 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1741 /* If we failed to remap the note, something is awry.
1742 Allow REG_LABEL as it may reference label outside
1743 the unrolled loop. */
1744 if (!insn)
1746 if (REG_NOTE_KIND (note) != REG_LABEL)
1747 abort ();
1749 else
1750 XEXP (note, 0) = insn;
1754 notesp = &XEXP (note, 1);
1758 /* Copy each instruction in the loop, substituting from map as appropriate.
1759 This is very similar to a loop in expand_inline_function. */
1761 static void
1762 copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1763 unroll_type, start_label, loop_end, insert_before,
1764 copy_notes_from)
1765 struct loop *loop;
1766 rtx copy_start, copy_end;
1767 struct inline_remap *map;
1768 rtx exit_label;
1769 int last_iteration;
1770 enum unroll_types unroll_type;
1771 rtx start_label, loop_end, insert_before, copy_notes_from;
1773 struct loop_ivs *ivs = LOOP_IVS (loop);
1774 rtx insn, pattern;
1775 rtx set, tem, copy = NULL_RTX;
1776 int dest_reg_was_split, i;
1777 #ifdef HAVE_cc0
1778 rtx cc0_insn = 0;
1779 #endif
1780 rtx final_label = 0;
1781 rtx giv_inc, giv_dest_reg, giv_src_reg;
1783 /* If this isn't the last iteration, then map any references to the
1784 start_label to final_label. Final label will then be emitted immediately
1785 after the end of this loop body if it was ever used.
1787 If this is the last iteration, then map references to the start_label
1788 to itself. */
1789 if (! last_iteration)
1791 final_label = gen_label_rtx ();
1792 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1794 else
1795 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1797 start_sequence ();
1799 insn = copy_start;
1802 insn = NEXT_INSN (insn);
1804 map->orig_asm_operands_vector = 0;
1806 switch (GET_CODE (insn))
1808 case INSN:
1809 pattern = PATTERN (insn);
1810 copy = 0;
1811 giv_inc = 0;
1813 /* Check to see if this is a giv that has been combined with
1814 some split address givs. (Combined in the sense that
1815 `combine_givs' in loop.c has put two givs in the same register.)
1816 In this case, we must search all givs based on the same biv to
1817 find the address givs. Then split the address givs.
1818 Do this before splitting the giv, since that may map the
1819 SET_DEST to a new register. */
1821 if ((set = single_set (insn))
1822 && GET_CODE (SET_DEST (set)) == REG
1823 && addr_combined_regs[REGNO (SET_DEST (set))])
1825 struct iv_class *bl;
1826 struct induction *v, *tv;
1827 unsigned int regno = REGNO (SET_DEST (set));
1829 v = addr_combined_regs[REGNO (SET_DEST (set))];
1830 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1832 /* Although the giv_inc amount is not needed here, we must call
1833 calculate_giv_inc here since it might try to delete the
1834 last insn emitted. If we wait until later to call it,
1835 we might accidentally delete insns generated immediately
1836 below by emit_unrolled_add. */
1838 giv_inc = calculate_giv_inc (set, insn, regno);
1840 /* Now find all address giv's that were combined with this
1841 giv 'v'. */
1842 for (tv = bl->giv; tv; tv = tv->next_iv)
1843 if (tv->giv_type == DEST_ADDR && tv->same == v)
1845 int this_giv_inc;
1847 /* If this DEST_ADDR giv was not split, then ignore it. */
1848 if (*tv->location != tv->dest_reg)
1849 continue;
1851 /* Scale this_giv_inc if the multiplicative factors of
1852 the two givs are different. */
1853 this_giv_inc = INTVAL (giv_inc);
1854 if (tv->mult_val != v->mult_val)
1855 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1856 * INTVAL (tv->mult_val));
1858 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1859 *tv->location = tv->dest_reg;
1861 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1863 /* Must emit an insn to increment the split address
1864 giv. Add in the const_adjust field in case there
1865 was a constant eliminated from the address. */
1866 rtx value, dest_reg;
1868 /* tv->dest_reg will be either a bare register,
1869 or else a register plus a constant. */
1870 if (GET_CODE (tv->dest_reg) == REG)
1871 dest_reg = tv->dest_reg;
1872 else
1873 dest_reg = XEXP (tv->dest_reg, 0);
1875 /* Check for shared address givs, and avoid
1876 incrementing the shared pseudo reg more than
1877 once. */
1878 if (! tv->same_insn && ! tv->shared)
1880 /* tv->dest_reg may actually be a (PLUS (REG)
1881 (CONST)) here, so we must call plus_constant
1882 to add the const_adjust amount before calling
1883 emit_unrolled_add below. */
1884 value = plus_constant (tv->dest_reg,
1885 tv->const_adjust);
1887 if (GET_CODE (value) == PLUS)
1889 /* The constant could be too large for an add
1890 immediate, so can't directly emit an insn
1891 here. */
1892 emit_unrolled_add (dest_reg, XEXP (value, 0),
1893 XEXP (value, 1));
1897 /* Reset the giv to be just the register again, in case
1898 it is used after the set we have just emitted.
1899 We must subtract the const_adjust factor added in
1900 above. */
1901 tv->dest_reg = plus_constant (dest_reg,
1902 -tv->const_adjust);
1903 *tv->location = tv->dest_reg;
1908 /* If this is a setting of a splittable variable, then determine
1909 how to split the variable, create a new set based on this split,
1910 and set up the reg_map so that later uses of the variable will
1911 use the new split variable. */
1913 dest_reg_was_split = 0;
1915 if ((set = single_set (insn))
1916 && GET_CODE (SET_DEST (set)) == REG
1917 && splittable_regs[REGNO (SET_DEST (set))])
1919 unsigned int regno = REGNO (SET_DEST (set));
1920 unsigned int src_regno;
1922 dest_reg_was_split = 1;
1924 giv_dest_reg = SET_DEST (set);
1925 giv_src_reg = giv_dest_reg;
1926 /* Compute the increment value for the giv, if it wasn't
1927 already computed above. */
1928 if (giv_inc == 0)
1929 giv_inc = calculate_giv_inc (set, insn, regno);
1931 src_regno = REGNO (giv_src_reg);
1933 if (unroll_type == UNROLL_COMPLETELY)
1935 /* Completely unrolling the loop. Set the induction
1936 variable to a known constant value. */
1938 /* The value in splittable_regs may be an invariant
1939 value, so we must use plus_constant here. */
1940 splittable_regs[regno]
1941 = plus_constant (splittable_regs[src_regno],
1942 INTVAL (giv_inc));
1944 if (GET_CODE (splittable_regs[regno]) == PLUS)
1946 giv_src_reg = XEXP (splittable_regs[regno], 0);
1947 giv_inc = XEXP (splittable_regs[regno], 1);
1949 else
1951 /* The splittable_regs value must be a REG or a
1952 CONST_INT, so put the entire value in the giv_src_reg
1953 variable. */
1954 giv_src_reg = splittable_regs[regno];
1955 giv_inc = const0_rtx;
1958 else
1960 /* Partially unrolling loop. Create a new pseudo
1961 register for the iteration variable, and set it to
1962 be a constant plus the original register. Except
1963 on the last iteration, when the result has to
1964 go back into the original iteration var register. */
1966 /* Handle bivs which must be mapped to a new register
1967 when split. This happens for bivs which need their
1968 final value set before loop entry. The new register
1969 for the biv was stored in the biv's first struct
1970 induction entry by find_splittable_regs. */
1972 if (regno < ivs->n_regs
1973 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1975 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1976 giv_dest_reg = giv_src_reg;
1979 #if 0
1980 /* If non-reduced/final-value givs were split, then
1981 this would have to remap those givs also. See
1982 find_splittable_regs. */
1983 #endif
1985 splittable_regs[regno]
1986 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1987 giv_inc,
1988 splittable_regs[src_regno]);
1989 giv_inc = splittable_regs[regno];
1991 /* Now split the induction variable by changing the dest
1992 of this insn to a new register, and setting its
1993 reg_map entry to point to this new register.
1995 If this is the last iteration, and this is the last insn
1996 that will update the iv, then reuse the original dest,
1997 to ensure that the iv will have the proper value when
1998 the loop exits or repeats.
2000 Using splittable_regs_updates here like this is safe,
2001 because it can only be greater than one if all
2002 instructions modifying the iv are always executed in
2003 order. */
2005 if (! last_iteration
2006 || (splittable_regs_updates[regno]-- != 1))
2008 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
2009 giv_dest_reg = tem;
2010 map->reg_map[regno] = tem;
2011 record_base_value (REGNO (tem),
2012 giv_inc == const0_rtx
2013 ? giv_src_reg
2014 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
2015 giv_src_reg, giv_inc),
2018 else
2019 map->reg_map[regno] = giv_src_reg;
2022 /* The constant being added could be too large for an add
2023 immediate, so can't directly emit an insn here. */
2024 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2025 copy = get_last_insn ();
2026 pattern = PATTERN (copy);
2028 else
2030 pattern = copy_rtx_and_substitute (pattern, map, 0);
2031 copy = emit_insn (pattern);
2033 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2034 INSN_SCOPE (copy) = INSN_SCOPE (insn);
2036 #ifdef HAVE_cc0
2037 /* If this insn is setting CC0, it may need to look at
2038 the insn that uses CC0 to see what type of insn it is.
2039 In that case, the call to recog via validate_change will
2040 fail. So don't substitute constants here. Instead,
2041 do it when we emit the following insn.
2043 For example, see the pyr.md file. That machine has signed and
2044 unsigned compares. The compare patterns must check the
2045 following branch insn to see which what kind of compare to
2046 emit.
2048 If the previous insn set CC0, substitute constants on it as
2049 well. */
2050 if (sets_cc0_p (PATTERN (copy)) != 0)
2051 cc0_insn = copy;
2052 else
2054 if (cc0_insn)
2055 try_constants (cc0_insn, map);
2056 cc0_insn = 0;
2057 try_constants (copy, map);
2059 #else
2060 try_constants (copy, map);
2061 #endif
2063 /* Make split induction variable constants `permanent' since we
2064 know there are no backward branches across iteration variable
2065 settings which would invalidate this. */
2066 if (dest_reg_was_split)
2068 int regno = REGNO (SET_DEST (set));
2070 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2071 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2072 == map->const_age))
2073 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2075 break;
2077 case JUMP_INSN:
2078 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2079 copy = emit_jump_insn (pattern);
2080 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2081 INSN_SCOPE (copy) = INSN_SCOPE (insn);
2083 if (JUMP_LABEL (insn))
2085 JUMP_LABEL (copy) = get_label_from_map (map,
2086 CODE_LABEL_NUMBER
2087 (JUMP_LABEL (insn)));
2088 LABEL_NUSES (JUMP_LABEL (copy))++;
2090 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2091 && ! last_iteration)
2094 /* This is a branch to the beginning of the loop; this is the
2095 last insn being copied; and this is not the last iteration.
2096 In this case, we want to change the original fall through
2097 case to be a branch past the end of the loop, and the
2098 original jump label case to fall_through. */
2100 if (!invert_jump (copy, exit_label, 0))
2102 rtx jmp;
2103 rtx lab = gen_label_rtx ();
2104 /* Can't do it by reversing the jump (probably because we
2105 couldn't reverse the conditions), so emit a new
2106 jump_insn after COPY, and redirect the jump around
2107 that. */
2108 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2109 JUMP_LABEL (jmp) = exit_label;
2110 LABEL_NUSES (exit_label)++;
2111 jmp = emit_barrier_after (jmp);
2112 emit_label_after (lab, jmp);
2113 LABEL_NUSES (lab) = 0;
2114 if (!redirect_jump (copy, lab, 0))
2115 abort ();
2119 #ifdef HAVE_cc0
2120 if (cc0_insn)
2121 try_constants (cc0_insn, map);
2122 cc0_insn = 0;
2123 #endif
2124 try_constants (copy, map);
2126 /* Set the jump label of COPY correctly to avoid problems with
2127 later passes of unroll_loop, if INSN had jump label set. */
2128 if (JUMP_LABEL (insn))
2130 rtx label = 0;
2132 /* Can't use the label_map for every insn, since this may be
2133 the backward branch, and hence the label was not mapped. */
2134 if ((set = single_set (copy)))
2136 tem = SET_SRC (set);
2137 if (GET_CODE (tem) == LABEL_REF)
2138 label = XEXP (tem, 0);
2139 else if (GET_CODE (tem) == IF_THEN_ELSE)
2141 if (XEXP (tem, 1) != pc_rtx)
2142 label = XEXP (XEXP (tem, 1), 0);
2143 else
2144 label = XEXP (XEXP (tem, 2), 0);
2148 if (label && GET_CODE (label) == CODE_LABEL)
2149 JUMP_LABEL (copy) = label;
2150 else
2152 /* An unrecognizable jump insn, probably the entry jump
2153 for a switch statement. This label must have been mapped,
2154 so just use the label_map to get the new jump label. */
2155 JUMP_LABEL (copy)
2156 = get_label_from_map (map,
2157 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2160 /* If this is a non-local jump, then must increase the label
2161 use count so that the label will not be deleted when the
2162 original jump is deleted. */
2163 LABEL_NUSES (JUMP_LABEL (copy))++;
2165 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2166 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2168 rtx pat = PATTERN (copy);
2169 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2170 int len = XVECLEN (pat, diff_vec_p);
2171 int i;
2173 for (i = 0; i < len; i++)
2174 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2177 /* If this used to be a conditional jump insn but whose branch
2178 direction is now known, we must do something special. */
2179 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2181 #ifdef HAVE_cc0
2182 /* If the previous insn set cc0 for us, delete it. */
2183 if (only_sets_cc0_p (PREV_INSN (copy)))
2184 delete_related_insns (PREV_INSN (copy));
2185 #endif
2187 /* If this is now a no-op, delete it. */
2188 if (map->last_pc_value == pc_rtx)
2190 delete_insn (copy);
2191 copy = 0;
2193 else
2194 /* Otherwise, this is unconditional jump so we must put a
2195 BARRIER after it. We could do some dead code elimination
2196 here, but jump.c will do it just as well. */
2197 emit_barrier ();
2199 break;
2201 case CALL_INSN:
2202 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2203 copy = emit_call_insn (pattern);
2204 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2205 INSN_SCOPE (copy) = INSN_SCOPE (insn);
2206 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2208 /* Because the USAGE information potentially contains objects other
2209 than hard registers, we need to copy it. */
2210 CALL_INSN_FUNCTION_USAGE (copy)
2211 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2212 map, 0);
2214 #ifdef HAVE_cc0
2215 if (cc0_insn)
2216 try_constants (cc0_insn, map);
2217 cc0_insn = 0;
2218 #endif
2219 try_constants (copy, map);
2221 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2222 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2223 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2224 break;
2226 case CODE_LABEL:
2227 /* If this is the loop start label, then we don't need to emit a
2228 copy of this label since no one will use it. */
2230 if (insn != start_label)
2232 copy = emit_label (get_label_from_map (map,
2233 CODE_LABEL_NUMBER (insn)));
2234 map->const_age++;
2236 break;
2238 case BARRIER:
2239 copy = emit_barrier ();
2240 break;
2242 case NOTE:
2243 /* VTOP and CONT notes are valid only before the loop exit test.
2244 If placed anywhere else, loop may generate bad code. */
2245 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2246 the associated rtl. We do not want to share the structure in
2247 this new block. */
2249 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2250 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2251 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2252 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2253 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2254 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2255 copy = emit_note (NOTE_SOURCE_FILE (insn),
2256 NOTE_LINE_NUMBER (insn));
2257 else
2258 copy = 0;
2259 break;
2261 default:
2262 abort ();
2265 map->insn_map[INSN_UID (insn)] = copy;
2267 while (insn != copy_end);
2269 /* Now finish coping the REG_NOTES. */
2270 insn = copy_start;
2273 insn = NEXT_INSN (insn);
2274 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2275 || GET_CODE (insn) == CALL_INSN)
2276 && map->insn_map[INSN_UID (insn)])
2277 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2279 while (insn != copy_end);
2281 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2282 each of these notes here, since there may be some important ones, such as
2283 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2284 iteration, because the original notes won't be deleted.
2286 We can't use insert_before here, because when from preconditioning,
2287 insert_before points before the loop. We can't use copy_end, because
2288 there may be insns already inserted after it (which we don't want to
2289 copy) when not from preconditioning code. */
2291 if (! last_iteration)
2293 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2295 /* VTOP notes are valid only before the loop exit test.
2296 If placed anywhere else, loop may generate bad code.
2297 Although COPY_NOTES_FROM will be at most one or two (for cc0)
2298 instructions before the last insn in the loop, COPY_NOTES_FROM
2299 can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2300 as in a do .. while loop. */
2301 if (GET_CODE (insn) == NOTE
2302 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2303 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2304 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2305 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2306 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2310 if (final_label && LABEL_NUSES (final_label) > 0)
2311 emit_label (final_label);
2313 tem = get_insns ();
2314 end_sequence ();
2315 loop_insn_emit_before (loop, 0, insert_before, tem);
2318 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2319 emitted. This will correctly handle the case where the increment value
2320 won't fit in the immediate field of a PLUS insns. */
2322 void
2323 emit_unrolled_add (dest_reg, src_reg, increment)
2324 rtx dest_reg, src_reg, increment;
2326 rtx result;
2328 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2329 dest_reg, 0, OPTAB_LIB_WIDEN);
2331 if (dest_reg != result)
2332 emit_move_insn (dest_reg, result);
2335 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2336 is a backward branch in that range that branches to somewhere between
2337 LOOP->START and INSN. Returns 0 otherwise. */
2339 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2340 In practice, this is not a problem, because this function is seldom called,
2341 and uses a negligible amount of CPU time on average. */
2344 back_branch_in_range_p (loop, insn)
2345 const struct loop *loop;
2346 rtx insn;
2348 rtx p, q, target_insn;
2349 rtx loop_start = loop->start;
2350 rtx loop_end = loop->end;
2351 rtx orig_loop_end = loop->end;
2353 /* Stop before we get to the backward branch at the end of the loop. */
2354 loop_end = prev_nonnote_insn (loop_end);
2355 if (GET_CODE (loop_end) == BARRIER)
2356 loop_end = PREV_INSN (loop_end);
2358 /* Check in case insn has been deleted, search forward for first non
2359 deleted insn following it. */
2360 while (INSN_DELETED_P (insn))
2361 insn = NEXT_INSN (insn);
2363 /* Check for the case where insn is the last insn in the loop. Deal
2364 with the case where INSN was a deleted loop test insn, in which case
2365 it will now be the NOTE_LOOP_END. */
2366 if (insn == loop_end || insn == orig_loop_end)
2367 return 0;
2369 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2371 if (GET_CODE (p) == JUMP_INSN)
2373 target_insn = JUMP_LABEL (p);
2375 /* Search from loop_start to insn, to see if one of them is
2376 the target_insn. We can't use INSN_LUID comparisons here,
2377 since insn may not have an LUID entry. */
2378 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2379 if (q == target_insn)
2380 return 1;
2384 return 0;
2387 /* Try to generate the simplest rtx for the expression
2388 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2389 value of giv's. */
2391 static rtx
2392 fold_rtx_mult_add (mult1, mult2, add1, mode)
2393 rtx mult1, mult2, add1;
2394 enum machine_mode mode;
2396 rtx temp, mult_res;
2397 rtx result;
2399 /* The modes must all be the same. This should always be true. For now,
2400 check to make sure. */
2401 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2402 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2403 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2404 abort ();
2406 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2407 will be a constant. */
2408 if (GET_CODE (mult1) == CONST_INT)
2410 temp = mult2;
2411 mult2 = mult1;
2412 mult1 = temp;
2415 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2416 if (! mult_res)
2417 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2419 /* Again, put the constant second. */
2420 if (GET_CODE (add1) == CONST_INT)
2422 temp = add1;
2423 add1 = mult_res;
2424 mult_res = temp;
2427 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2428 if (! result)
2429 result = gen_rtx_PLUS (mode, add1, mult_res);
2431 return result;
2434 /* Searches the list of induction struct's for the biv BL, to try to calculate
2435 the total increment value for one iteration of the loop as a constant.
2437 Returns the increment value as an rtx, simplified as much as possible,
2438 if it can be calculated. Otherwise, returns 0. */
2441 biv_total_increment (bl)
2442 const struct iv_class *bl;
2444 struct induction *v;
2445 rtx result;
2447 /* For increment, must check every instruction that sets it. Each
2448 instruction must be executed only once each time through the loop.
2449 To verify this, we check that the insn is always executed, and that
2450 there are no backward branches after the insn that branch to before it.
2451 Also, the insn must have a mult_val of one (to make sure it really is
2452 an increment). */
2454 result = const0_rtx;
2455 for (v = bl->biv; v; v = v->next_iv)
2457 if (v->always_computable && v->mult_val == const1_rtx
2458 && ! v->maybe_multiple
2459 && SCALAR_INT_MODE_P (v->mode))
2460 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2461 else
2462 return 0;
2465 return result;
2468 /* For each biv and giv, determine whether it can be safely split into
2469 a different variable for each unrolled copy of the loop body. If it
2470 is safe to split, then indicate that by saving some useful info
2471 in the splittable_regs array.
2473 If the loop is being completely unrolled, then splittable_regs will hold
2474 the current value of the induction variable while the loop is unrolled.
2475 It must be set to the initial value of the induction variable here.
2476 Otherwise, splittable_regs will hold the difference between the current
2477 value of the induction variable and the value the induction variable had
2478 at the top of the loop. It must be set to the value 0 here.
2480 Returns the total number of instructions that set registers that are
2481 splittable. */
2483 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2484 constant values are unnecessary, since we can easily calculate increment
2485 values in this case even if nothing is constant. The increment value
2486 should not involve a multiply however. */
2488 /* ?? Even if the biv/giv increment values aren't constant, it may still
2489 be beneficial to split the variable if the loop is only unrolled a few
2490 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2492 static int
2493 find_splittable_regs (loop, unroll_type, unroll_number)
2494 const struct loop *loop;
2495 enum unroll_types unroll_type;
2496 int unroll_number;
2498 struct loop_ivs *ivs = LOOP_IVS (loop);
2499 struct iv_class *bl;
2500 struct induction *v;
2501 rtx increment, tem;
2502 rtx biv_final_value;
2503 int biv_splittable;
2504 int result = 0;
2506 for (bl = ivs->list; bl; bl = bl->next)
2508 /* Biv_total_increment must return a constant value,
2509 otherwise we can not calculate the split values. */
2511 increment = biv_total_increment (bl);
2512 if (! increment || GET_CODE (increment) != CONST_INT)
2513 continue;
2515 /* The loop must be unrolled completely, or else have a known number
2516 of iterations and only one exit, or else the biv must be dead
2517 outside the loop, or else the final value must be known. Otherwise,
2518 it is unsafe to split the biv since it may not have the proper
2519 value on loop exit. */
2521 /* loop_number_exit_count is nonzero if the loop has an exit other than
2522 a fall through at the end. */
2524 biv_splittable = 1;
2525 biv_final_value = 0;
2526 if (unroll_type != UNROLL_COMPLETELY
2527 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2528 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2529 || ! bl->init_insn
2530 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2531 || (REGNO_FIRST_LUID (bl->regno)
2532 < INSN_LUID (bl->init_insn))
2533 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2534 && ! (biv_final_value = final_biv_value (loop, bl)))
2535 biv_splittable = 0;
2537 /* If any of the insns setting the BIV don't do so with a simple
2538 PLUS, we don't know how to split it. */
2539 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2540 if ((tem = single_set (v->insn)) == 0
2541 || GET_CODE (SET_DEST (tem)) != REG
2542 || REGNO (SET_DEST (tem)) != bl->regno
2543 || GET_CODE (SET_SRC (tem)) != PLUS)
2544 biv_splittable = 0;
2546 /* If final value is nonzero, then must emit an instruction which sets
2547 the value of the biv to the proper value. This is done after
2548 handling all of the givs, since some of them may need to use the
2549 biv's value in their initialization code. */
2551 /* This biv is splittable. If completely unrolling the loop, save
2552 the biv's initial value. Otherwise, save the constant zero. */
2554 if (biv_splittable == 1)
2556 if (unroll_type == UNROLL_COMPLETELY)
2558 /* If the initial value of the biv is itself (i.e. it is too
2559 complicated for strength_reduce to compute), or is a hard
2560 register, or it isn't invariant, then we must create a new
2561 pseudo reg to hold the initial value of the biv. */
2563 if (GET_CODE (bl->initial_value) == REG
2564 && (REGNO (bl->initial_value) == bl->regno
2565 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2566 || ! loop_invariant_p (loop, bl->initial_value)))
2568 rtx tem = gen_reg_rtx (bl->biv->mode);
2570 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2571 loop_insn_hoist (loop,
2572 gen_move_insn (tem, bl->biv->src_reg));
2574 if (loop_dump_stream)
2575 fprintf (loop_dump_stream,
2576 "Biv %d initial value remapped to %d.\n",
2577 bl->regno, REGNO (tem));
2579 splittable_regs[bl->regno] = tem;
2581 else
2582 splittable_regs[bl->regno] = bl->initial_value;
2584 else
2585 splittable_regs[bl->regno] = const0_rtx;
2587 /* Save the number of instructions that modify the biv, so that
2588 we can treat the last one specially. */
2590 splittable_regs_updates[bl->regno] = bl->biv_count;
2591 result += bl->biv_count;
2593 if (loop_dump_stream)
2594 fprintf (loop_dump_stream,
2595 "Biv %d safe to split.\n", bl->regno);
2598 /* Check every giv that depends on this biv to see whether it is
2599 splittable also. Even if the biv isn't splittable, givs which
2600 depend on it may be splittable if the biv is live outside the
2601 loop, and the givs aren't. */
2603 result += find_splittable_givs (loop, bl, unroll_type, increment,
2604 unroll_number);
2606 /* If final value is nonzero, then must emit an instruction which sets
2607 the value of the biv to the proper value. This is done after
2608 handling all of the givs, since some of them may need to use the
2609 biv's value in their initialization code. */
2610 if (biv_final_value)
2612 /* If the loop has multiple exits, emit the insns before the
2613 loop to ensure that it will always be executed no matter
2614 how the loop exits. Otherwise emit the insn after the loop,
2615 since this is slightly more efficient. */
2616 if (! loop->exit_count)
2617 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2618 biv_final_value));
2619 else
2621 /* Create a new register to hold the value of the biv, and then
2622 set the biv to its final value before the loop start. The biv
2623 is set to its final value before loop start to ensure that
2624 this insn will always be executed, no matter how the loop
2625 exits. */
2626 rtx tem = gen_reg_rtx (bl->biv->mode);
2627 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2629 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2630 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2631 biv_final_value));
2633 if (loop_dump_stream)
2634 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2635 REGNO (bl->biv->src_reg), REGNO (tem));
2637 /* Set up the mapping from the original biv register to the new
2638 register. */
2639 bl->biv->src_reg = tem;
2643 return result;
2646 /* For every giv based on the biv BL, check to determine whether it is
2647 splittable. This is a subroutine to find_splittable_regs ().
2649 Return the number of instructions that set splittable registers. */
2651 static int
2652 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2653 const struct loop *loop;
2654 struct iv_class *bl;
2655 enum unroll_types unroll_type;
2656 rtx increment;
2657 int unroll_number ATTRIBUTE_UNUSED;
2659 struct loop_ivs *ivs = LOOP_IVS (loop);
2660 struct induction *v, *v2;
2661 rtx final_value;
2662 rtx tem;
2663 int result = 0;
2665 /* Scan the list of givs, and set the same_insn field when there are
2666 multiple identical givs in the same insn. */
2667 for (v = bl->giv; v; v = v->next_iv)
2668 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2669 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2670 && ! v2->same_insn)
2671 v2->same_insn = v;
2673 for (v = bl->giv; v; v = v->next_iv)
2675 rtx giv_inc, value;
2677 /* Only split the giv if it has already been reduced, or if the loop is
2678 being completely unrolled. */
2679 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2680 continue;
2682 /* The giv can be split if the insn that sets the giv is executed once
2683 and only once on every iteration of the loop. */
2684 /* An address giv can always be split. v->insn is just a use not a set,
2685 and hence it does not matter whether it is always executed. All that
2686 matters is that all the biv increments are always executed, and we
2687 won't reach here if they aren't. */
2688 if (v->giv_type != DEST_ADDR
2689 && (! v->always_computable
2690 || back_branch_in_range_p (loop, v->insn)))
2691 continue;
2693 /* The giv increment value must be a constant. */
2694 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2695 v->mode);
2696 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2697 continue;
2699 /* The loop must be unrolled completely, or else have a known number of
2700 iterations and only one exit, or else the giv must be dead outside
2701 the loop, or else the final value of the giv must be known.
2702 Otherwise, it is not safe to split the giv since it may not have the
2703 proper value on loop exit. */
2705 /* The used outside loop test will fail for DEST_ADDR givs. They are
2706 never used outside the loop anyways, so it is always safe to split a
2707 DEST_ADDR giv. */
2709 final_value = 0;
2710 if (unroll_type != UNROLL_COMPLETELY
2711 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2712 && v->giv_type != DEST_ADDR
2713 /* The next part is true if the pseudo is used outside the loop.
2714 We assume that this is true for any pseudo created after loop
2715 starts, because we don't have a reg_n_info entry for them. */
2716 && (REGNO (v->dest_reg) >= max_reg_before_loop
2717 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2718 /* Check for the case where the pseudo is set by a shift/add
2719 sequence, in which case the first insn setting the pseudo
2720 is the first insn of the shift/add sequence. */
2721 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2722 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2723 != INSN_UID (XEXP (tem, 0)))))
2724 /* Line above always fails if INSN was moved by loop opt. */
2725 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2726 >= INSN_LUID (loop->end)))
2727 && ! (final_value = v->final_value))
2728 continue;
2730 #if 0
2731 /* Currently, non-reduced/final-value givs are never split. */
2732 /* Should emit insns after the loop if possible, as the biv final value
2733 code below does. */
2735 /* If the final value is nonzero, and the giv has not been reduced,
2736 then must emit an instruction to set the final value. */
2737 if (final_value && !v->new_reg)
2739 /* Create a new register to hold the value of the giv, and then set
2740 the giv to its final value before the loop start. The giv is set
2741 to its final value before loop start to ensure that this insn
2742 will always be executed, no matter how we exit. */
2743 tem = gen_reg_rtx (v->mode);
2744 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2745 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2747 if (loop_dump_stream)
2748 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2749 REGNO (v->dest_reg), REGNO (tem));
2751 v->src_reg = tem;
2753 #endif
2755 /* This giv is splittable. If completely unrolling the loop, save the
2756 giv's initial value. Otherwise, save the constant zero for it. */
2758 if (unroll_type == UNROLL_COMPLETELY)
2760 /* It is not safe to use bl->initial_value here, because it may not
2761 be invariant. It is safe to use the initial value stored in
2762 the splittable_regs array if it is set. In rare cases, it won't
2763 be set, so then we do exactly the same thing as
2764 find_splittable_regs does to get a safe value. */
2765 rtx biv_initial_value;
2767 if (splittable_regs[bl->regno])
2768 biv_initial_value = splittable_regs[bl->regno];
2769 else if (GET_CODE (bl->initial_value) != REG
2770 || (REGNO (bl->initial_value) != bl->regno
2771 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2772 biv_initial_value = bl->initial_value;
2773 else
2775 rtx tem = gen_reg_rtx (bl->biv->mode);
2777 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2778 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2779 biv_initial_value = tem;
2781 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2782 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2783 v->add_val, v->mode);
2785 else
2786 value = const0_rtx;
2788 if (v->new_reg)
2790 /* If a giv was combined with another giv, then we can only split
2791 this giv if the giv it was combined with was reduced. This
2792 is because the value of v->new_reg is meaningless in this
2793 case. */
2794 if (v->same && ! v->same->new_reg)
2796 if (loop_dump_stream)
2797 fprintf (loop_dump_stream,
2798 "giv combined with unreduced giv not split.\n");
2799 continue;
2801 /* If the giv is an address destination, it could be something other
2802 than a simple register, these have to be treated differently. */
2803 else if (v->giv_type == DEST_REG)
2805 /* If value is not a constant, register, or register plus
2806 constant, then compute its value into a register before
2807 loop start. This prevents invalid rtx sharing, and should
2808 generate better code. We can use bl->initial_value here
2809 instead of splittable_regs[bl->regno] because this code
2810 is going before the loop start. */
2811 if (unroll_type == UNROLL_COMPLETELY
2812 && GET_CODE (value) != CONST_INT
2813 && GET_CODE (value) != REG
2814 && (GET_CODE (value) != PLUS
2815 || GET_CODE (XEXP (value, 0)) != REG
2816 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2818 rtx tem = gen_reg_rtx (v->mode);
2819 record_base_value (REGNO (tem), v->add_val, 0);
2820 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2821 v->add_val, tem);
2822 value = tem;
2825 splittable_regs[reg_or_subregno (v->new_reg)] = value;
2827 else
2828 continue;
2830 else
2832 #if 0
2833 /* Currently, unreduced giv's can't be split. This is not too much
2834 of a problem since unreduced giv's are not live across loop
2835 iterations anyways. When unrolling a loop completely though,
2836 it makes sense to reduce&split givs when possible, as this will
2837 result in simpler instructions, and will not require that a reg
2838 be live across loop iterations. */
2840 splittable_regs[REGNO (v->dest_reg)] = value;
2841 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2842 REGNO (v->dest_reg), INSN_UID (v->insn));
2843 #else
2844 continue;
2845 #endif
2848 /* Unreduced givs are only updated once by definition. Reduced givs
2849 are updated as many times as their biv is. Mark it so if this is
2850 a splittable register. Don't need to do anything for address givs
2851 where this may not be a register. */
2853 if (GET_CODE (v->new_reg) == REG)
2855 int count = 1;
2856 if (! v->ignore)
2857 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
2859 splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
2862 result++;
2864 if (loop_dump_stream)
2866 int regnum;
2868 if (GET_CODE (v->dest_reg) == CONST_INT)
2869 regnum = -1;
2870 else if (GET_CODE (v->dest_reg) != REG)
2871 regnum = REGNO (XEXP (v->dest_reg, 0));
2872 else
2873 regnum = REGNO (v->dest_reg);
2874 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2875 regnum, INSN_UID (v->insn));
2879 return result;
2882 /* Try to prove that the register is dead after the loop exits. Trace every
2883 loop exit looking for an insn that will always be executed, which sets
2884 the register to some value, and appears before the first use of the register
2885 is found. If successful, then return 1, otherwise return 0. */
2887 /* ?? Could be made more intelligent in the handling of jumps, so that
2888 it can search past if statements and other similar structures. */
2890 static int
2891 reg_dead_after_loop (loop, reg)
2892 const struct loop *loop;
2893 rtx reg;
2895 rtx insn, label;
2896 enum rtx_code code;
2897 int jump_count = 0;
2898 int label_count = 0;
2900 /* In addition to checking all exits of this loop, we must also check
2901 all exits of inner nested loops that would exit this loop. We don't
2902 have any way to identify those, so we just give up if there are any
2903 such inner loop exits. */
2905 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
2906 label_count++;
2908 if (label_count != loop->exit_count)
2909 return 0;
2911 /* HACK: Must also search the loop fall through exit, create a label_ref
2912 here which points to the loop->end, and append the loop_number_exit_labels
2913 list to it. */
2914 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
2915 LABEL_NEXTREF (label) = loop->exit_labels;
2917 for (; label; label = LABEL_NEXTREF (label))
2919 /* Succeed if find an insn which sets the biv or if reach end of
2920 function. Fail if find an insn that uses the biv, or if come to
2921 a conditional jump. */
2923 insn = NEXT_INSN (XEXP (label, 0));
2924 while (insn)
2926 code = GET_CODE (insn);
2927 if (GET_RTX_CLASS (code) == 'i')
2929 rtx set;
2931 if (reg_referenced_p (reg, PATTERN (insn)))
2932 return 0;
2934 set = single_set (insn);
2935 if (set && rtx_equal_p (SET_DEST (set), reg))
2936 break;
2939 if (code == JUMP_INSN)
2941 if (GET_CODE (PATTERN (insn)) == RETURN)
2942 break;
2943 else if (!any_uncondjump_p (insn)
2944 /* Prevent infinite loop following infinite loops. */
2945 || jump_count++ > 20)
2946 return 0;
2947 else
2948 insn = JUMP_LABEL (insn);
2951 insn = NEXT_INSN (insn);
2955 /* Success, the register is dead on all loop exits. */
2956 return 1;
2959 /* Try to calculate the final value of the biv, the value it will have at
2960 the end of the loop. If we can do it, return that value. */
2963 final_biv_value (loop, bl)
2964 const struct loop *loop;
2965 struct iv_class *bl;
2967 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
2968 rtx increment, tem;
2970 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2972 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2973 return 0;
2975 /* The final value for reversed bivs must be calculated differently than
2976 for ordinary bivs. In this case, there is already an insn after the
2977 loop which sets this biv's final value (if necessary), and there are
2978 no other loop exits, so we can return any value. */
2979 if (bl->reversed)
2981 if (loop_dump_stream)
2982 fprintf (loop_dump_stream,
2983 "Final biv value for %d, reversed biv.\n", bl->regno);
2985 return const0_rtx;
2988 /* Try to calculate the final value as initial value + (number of iterations
2989 * increment). For this to work, increment must be invariant, the only
2990 exit from the loop must be the fall through at the bottom (otherwise
2991 it may not have its final value when the loop exits), and the initial
2992 value of the biv must be invariant. */
2994 if (n_iterations != 0
2995 && ! loop->exit_count
2996 && loop_invariant_p (loop, bl->initial_value))
2998 increment = biv_total_increment (bl);
3000 if (increment && loop_invariant_p (loop, increment))
3002 /* Can calculate the loop exit value, emit insns after loop
3003 end to calculate this value into a temporary register in
3004 case it is needed later. */
3006 tem = gen_reg_rtx (bl->biv->mode);
3007 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3008 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3009 bl->initial_value, tem);
3011 if (loop_dump_stream)
3012 fprintf (loop_dump_stream,
3013 "Final biv value for %d, calculated.\n", bl->regno);
3015 return tem;
3019 /* Check to see if the biv is dead at all loop exits. */
3020 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3022 if (loop_dump_stream)
3023 fprintf (loop_dump_stream,
3024 "Final biv value for %d, biv dead after loop exit.\n",
3025 bl->regno);
3027 return const0_rtx;
3030 return 0;
3033 /* Try to calculate the final value of the giv, the value it will have at
3034 the end of the loop. If we can do it, return that value. */
3037 final_giv_value (loop, v)
3038 const struct loop *loop;
3039 struct induction *v;
3041 struct loop_ivs *ivs = LOOP_IVS (loop);
3042 struct iv_class *bl;
3043 rtx insn;
3044 rtx increment, tem;
3045 rtx seq;
3046 rtx loop_end = loop->end;
3047 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3049 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3051 /* The final value for givs which depend on reversed bivs must be calculated
3052 differently than for ordinary givs. In this case, there is already an
3053 insn after the loop which sets this giv's final value (if necessary),
3054 and there are no other loop exits, so we can return any value. */
3055 if (bl->reversed)
3057 if (loop_dump_stream)
3058 fprintf (loop_dump_stream,
3059 "Final giv value for %d, depends on reversed biv\n",
3060 REGNO (v->dest_reg));
3061 return const0_rtx;
3064 /* Try to calculate the final value as a function of the biv it depends
3065 upon. The only exit from the loop must be the fall through at the bottom
3066 and the insn that sets the giv must be executed on every iteration
3067 (otherwise the giv may not have its final value when the loop exits). */
3069 /* ??? Can calculate the final giv value by subtracting off the
3070 extra biv increments times the giv's mult_val. The loop must have
3071 only one exit for this to work, but the loop iterations does not need
3072 to be known. */
3074 if (n_iterations != 0
3075 && ! loop->exit_count
3076 && v->always_executed)
3078 /* ?? It is tempting to use the biv's value here since these insns will
3079 be put after the loop, and hence the biv will have its final value
3080 then. However, this fails if the biv is subsequently eliminated.
3081 Perhaps determine whether biv's are eliminable before trying to
3082 determine whether giv's are replaceable so that we can use the
3083 biv value here if it is not eliminable. */
3085 /* We are emitting code after the end of the loop, so we must make
3086 sure that bl->initial_value is still valid then. It will still
3087 be valid if it is invariant. */
3089 increment = biv_total_increment (bl);
3091 if (increment && loop_invariant_p (loop, increment)
3092 && loop_invariant_p (loop, bl->initial_value))
3094 /* Can calculate the loop exit value of its biv as
3095 (n_iterations * increment) + initial_value */
3097 /* The loop exit value of the giv is then
3098 (final_biv_value - extra increments) * mult_val + add_val.
3099 The extra increments are any increments to the biv which
3100 occur in the loop after the giv's value is calculated.
3101 We must search from the insn that sets the giv to the end
3102 of the loop to calculate this value. */
3104 /* Put the final biv value in tem. */
3105 tem = gen_reg_rtx (v->mode);
3106 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3107 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3108 GEN_INT (n_iterations),
3109 extend_value_for_giv (v, bl->initial_value),
3110 tem);
3112 /* Subtract off extra increments as we find them. */
3113 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3114 insn = NEXT_INSN (insn))
3116 struct induction *biv;
3118 for (biv = bl->biv; biv; biv = biv->next_iv)
3119 if (biv->insn == insn)
3121 start_sequence ();
3122 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3123 biv->add_val, NULL_RTX, 0,
3124 OPTAB_LIB_WIDEN);
3125 seq = get_insns ();
3126 end_sequence ();
3127 loop_insn_sink (loop, seq);
3131 /* Now calculate the giv's final value. */
3132 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3134 if (loop_dump_stream)
3135 fprintf (loop_dump_stream,
3136 "Final giv value for %d, calc from biv's value.\n",
3137 REGNO (v->dest_reg));
3139 return tem;
3143 /* Replaceable giv's should never reach here. */
3144 if (v->replaceable)
3145 abort ();
3147 /* Check to see if the biv is dead at all loop exits. */
3148 if (reg_dead_after_loop (loop, v->dest_reg))
3150 if (loop_dump_stream)
3151 fprintf (loop_dump_stream,
3152 "Final giv value for %d, giv dead after loop exit.\n",
3153 REGNO (v->dest_reg));
3155 return const0_rtx;
3158 return 0;
3161 /* Look back before LOOP->START for the insn that sets REG and return
3162 the equivalent constant if there is a REG_EQUAL note otherwise just
3163 the SET_SRC of REG. */
3165 static rtx
3166 loop_find_equiv_value (loop, reg)
3167 const struct loop *loop;
3168 rtx reg;
3170 rtx loop_start = loop->start;
3171 rtx insn, set;
3172 rtx ret;
3174 ret = reg;
3175 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3177 if (GET_CODE (insn) == CODE_LABEL)
3178 break;
3180 else if (INSN_P (insn) && reg_set_p (reg, insn))
3182 /* We found the last insn before the loop that sets the register.
3183 If it sets the entire register, and has a REG_EQUAL note,
3184 then use the value of the REG_EQUAL note. */
3185 if ((set = single_set (insn))
3186 && (SET_DEST (set) == reg))
3188 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3190 /* Only use the REG_EQUAL note if it is a constant.
3191 Other things, divide in particular, will cause
3192 problems later if we use them. */
3193 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3194 && CONSTANT_P (XEXP (note, 0)))
3195 ret = XEXP (note, 0);
3196 else
3197 ret = SET_SRC (set);
3199 /* We cannot do this if it changes between the
3200 assignment and loop start though. */
3201 if (modified_between_p (ret, insn, loop_start))
3202 ret = reg;
3204 break;
3207 return ret;
3210 /* Return a simplified rtx for the expression OP - REG.
3212 REG must appear in OP, and OP must be a register or the sum of a register
3213 and a second term.
3215 Thus, the return value must be const0_rtx or the second term.
3217 The caller is responsible for verifying that REG appears in OP and OP has
3218 the proper form. */
3220 static rtx
3221 subtract_reg_term (op, reg)
3222 rtx op, reg;
3224 if (op == reg)
3225 return const0_rtx;
3226 if (GET_CODE (op) == PLUS)
3228 if (XEXP (op, 0) == reg)
3229 return XEXP (op, 1);
3230 else if (XEXP (op, 1) == reg)
3231 return XEXP (op, 0);
3233 /* OP does not contain REG as a term. */
3234 abort ();
3237 /* Find and return register term common to both expressions OP0 and
3238 OP1 or NULL_RTX if no such term exists. Each expression must be a
3239 REG or a PLUS of a REG. */
3241 static rtx
3242 find_common_reg_term (op0, op1)
3243 rtx op0, op1;
3245 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3246 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3248 rtx op00;
3249 rtx op01;
3250 rtx op10;
3251 rtx op11;
3253 if (GET_CODE (op0) == PLUS)
3254 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3255 else
3256 op01 = const0_rtx, op00 = op0;
3258 if (GET_CODE (op1) == PLUS)
3259 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3260 else
3261 op11 = const0_rtx, op10 = op1;
3263 /* Find and return common register term if present. */
3264 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3265 return op00;
3266 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3267 return op01;
3270 /* No common register term found. */
3271 return NULL_RTX;
3274 /* Determine the loop iterator and calculate the number of loop
3275 iterations. Returns the exact number of loop iterations if it can
3276 be calculated, otherwise returns zero. */
3278 unsigned HOST_WIDE_INT
3279 loop_iterations (loop)
3280 struct loop *loop;
3282 struct loop_info *loop_info = LOOP_INFO (loop);
3283 struct loop_ivs *ivs = LOOP_IVS (loop);
3284 rtx comparison, comparison_value;
3285 rtx iteration_var, initial_value, increment, final_value;
3286 enum rtx_code comparison_code;
3287 HOST_WIDE_INT inc;
3288 unsigned HOST_WIDE_INT abs_inc;
3289 unsigned HOST_WIDE_INT abs_diff;
3290 int off_by_one;
3291 int increment_dir;
3292 int unsigned_p, compare_dir, final_larger;
3293 rtx last_loop_insn;
3294 rtx reg_term;
3295 struct iv_class *bl;
3297 loop_info->n_iterations = 0;
3298 loop_info->initial_value = 0;
3299 loop_info->initial_equiv_value = 0;
3300 loop_info->comparison_value = 0;
3301 loop_info->final_value = 0;
3302 loop_info->final_equiv_value = 0;
3303 loop_info->increment = 0;
3304 loop_info->iteration_var = 0;
3305 loop_info->unroll_number = 1;
3306 loop_info->iv = 0;
3308 /* We used to use prev_nonnote_insn here, but that fails because it might
3309 accidentally get the branch for a contained loop if the branch for this
3310 loop was deleted. We can only trust branches immediately before the
3311 loop_end. */
3312 last_loop_insn = prev_nonnote_insn (loop->end);
3314 /* ??? We should probably try harder to find the jump insn
3315 at the end of the loop. The following code assumes that
3316 the last loop insn is a jump to the top of the loop. */
3317 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3319 if (loop_dump_stream)
3320 fprintf (loop_dump_stream,
3321 "Loop iterations: No final conditional branch found.\n");
3322 return 0;
3325 /* If there is a more than a single jump to the top of the loop
3326 we cannot (easily) determine the iteration count. */
3327 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3329 if (loop_dump_stream)
3330 fprintf (loop_dump_stream,
3331 "Loop iterations: Loop has multiple back edges.\n");
3332 return 0;
3335 /* If there are multiple conditionalized loop exit tests, they may jump
3336 back to differing CODE_LABELs. */
3337 if (loop->top && loop->cont)
3339 rtx temp = PREV_INSN (last_loop_insn);
3343 if (GET_CODE (temp) == JUMP_INSN)
3345 /* There are some kinds of jumps we can't deal with easily. */
3346 if (JUMP_LABEL (temp) == 0)
3348 if (loop_dump_stream)
3349 fprintf
3350 (loop_dump_stream,
3351 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3352 return 0;
3355 if (/* Previous unrolling may have generated new insns not
3356 covered by the uid_luid array. */
3357 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3358 /* Check if we jump back into the loop body. */
3359 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3360 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3362 if (loop_dump_stream)
3363 fprintf
3364 (loop_dump_stream,
3365 "Loop iterations: Loop has multiple back edges.\n");
3366 return 0;
3370 while ((temp = PREV_INSN (temp)) != loop->cont);
3373 /* Find the iteration variable. If the last insn is a conditional
3374 branch, and the insn before tests a register value, make that the
3375 iteration variable. */
3377 comparison = get_condition_for_loop (loop, last_loop_insn);
3378 if (comparison == 0)
3380 if (loop_dump_stream)
3381 fprintf (loop_dump_stream,
3382 "Loop iterations: No final comparison found.\n");
3383 return 0;
3386 /* ??? Get_condition may switch position of induction variable and
3387 invariant register when it canonicalizes the comparison. */
3389 comparison_code = GET_CODE (comparison);
3390 iteration_var = XEXP (comparison, 0);
3391 comparison_value = XEXP (comparison, 1);
3393 if (GET_CODE (iteration_var) != REG)
3395 if (loop_dump_stream)
3396 fprintf (loop_dump_stream,
3397 "Loop iterations: Comparison not against register.\n");
3398 return 0;
3401 /* The only new registers that are created before loop iterations
3402 are givs made from biv increments or registers created by
3403 load_mems. In the latter case, it is possible that try_copy_prop
3404 will propagate a new pseudo into the old iteration register but
3405 this will be marked by having the REG_USERVAR_P bit set. */
3407 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3408 && ! REG_USERVAR_P (iteration_var))
3409 abort ();
3411 /* Determine the initial value of the iteration variable, and the amount
3412 that it is incremented each loop. Use the tables constructed by
3413 the strength reduction pass to calculate these values. */
3415 /* Clear the result values, in case no answer can be found. */
3416 initial_value = 0;
3417 increment = 0;
3419 /* The iteration variable can be either a giv or a biv. Check to see
3420 which it is, and compute the variable's initial value, and increment
3421 value if possible. */
3423 /* If this is a new register, can't handle it since we don't have any
3424 reg_iv_type entry for it. */
3425 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3427 if (loop_dump_stream)
3428 fprintf (loop_dump_stream,
3429 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3430 return 0;
3433 /* Reject iteration variables larger than the host wide int size, since they
3434 could result in a number of iterations greater than the range of our
3435 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3436 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3437 > HOST_BITS_PER_WIDE_INT))
3439 if (loop_dump_stream)
3440 fprintf (loop_dump_stream,
3441 "Loop iterations: Iteration var rejected because mode too large.\n");
3442 return 0;
3444 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3446 if (loop_dump_stream)
3447 fprintf (loop_dump_stream,
3448 "Loop iterations: Iteration var not an integer.\n");
3449 return 0;
3451 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3453 if (REGNO (iteration_var) >= ivs->n_regs)
3454 abort ();
3456 /* Grab initial value, only useful if it is a constant. */
3457 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3458 initial_value = bl->initial_value;
3459 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3461 if (loop_dump_stream)
3462 fprintf (loop_dump_stream,
3463 "Loop iterations: Basic induction var not set once in each iteration.\n");
3464 return 0;
3467 increment = biv_total_increment (bl);
3469 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3471 HOST_WIDE_INT offset = 0;
3472 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3473 rtx biv_initial_value;
3475 if (REGNO (v->src_reg) >= ivs->n_regs)
3476 abort ();
3478 if (!v->always_executed || v->maybe_multiple)
3480 if (loop_dump_stream)
3481 fprintf (loop_dump_stream,
3482 "Loop iterations: General induction var not set once in each iteration.\n");
3483 return 0;
3486 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3488 /* Increment value is mult_val times the increment value of the biv. */
3490 increment = biv_total_increment (bl);
3491 if (increment)
3493 struct induction *biv_inc;
3495 increment = fold_rtx_mult_add (v->mult_val,
3496 extend_value_for_giv (v, increment),
3497 const0_rtx, v->mode);
3498 /* The caller assumes that one full increment has occurred at the
3499 first loop test. But that's not true when the biv is incremented
3500 after the giv is set (which is the usual case), e.g.:
3501 i = 6; do {;} while (i++ < 9) .
3502 Therefore, we bias the initial value by subtracting the amount of
3503 the increment that occurs between the giv set and the giv test. */
3504 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3506 if (loop_insn_first_p (v->insn, biv_inc->insn))
3508 if (REG_P (biv_inc->add_val))
3510 if (loop_dump_stream)
3511 fprintf (loop_dump_stream,
3512 "Loop iterations: Basic induction var add_val is REG %d.\n",
3513 REGNO (biv_inc->add_val));
3514 return 0;
3517 offset -= INTVAL (biv_inc->add_val);
3521 if (loop_dump_stream)
3522 fprintf (loop_dump_stream,
3523 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3524 (long) offset);
3526 /* Initial value is mult_val times the biv's initial value plus
3527 add_val. Only useful if it is a constant. */
3528 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3529 initial_value
3530 = fold_rtx_mult_add (v->mult_val,
3531 plus_constant (biv_initial_value, offset),
3532 v->add_val, v->mode);
3534 else
3536 if (loop_dump_stream)
3537 fprintf (loop_dump_stream,
3538 "Loop iterations: Not basic or general induction var.\n");
3539 return 0;
3542 if (initial_value == 0)
3543 return 0;
3545 unsigned_p = 0;
3546 off_by_one = 0;
3547 switch (comparison_code)
3549 case LEU:
3550 unsigned_p = 1;
3551 case LE:
3552 compare_dir = 1;
3553 off_by_one = 1;
3554 break;
3555 case GEU:
3556 unsigned_p = 1;
3557 case GE:
3558 compare_dir = -1;
3559 off_by_one = -1;
3560 break;
3561 case EQ:
3562 /* Cannot determine loop iterations with this case. */
3563 compare_dir = 0;
3564 break;
3565 case LTU:
3566 unsigned_p = 1;
3567 case LT:
3568 compare_dir = 1;
3569 break;
3570 case GTU:
3571 unsigned_p = 1;
3572 case GT:
3573 compare_dir = -1;
3574 case NE:
3575 compare_dir = 0;
3576 break;
3577 default:
3578 abort ();
3581 /* If the comparison value is an invariant register, then try to find
3582 its value from the insns before the start of the loop. */
3584 final_value = comparison_value;
3585 if (GET_CODE (comparison_value) == REG
3586 && loop_invariant_p (loop, comparison_value))
3588 final_value = loop_find_equiv_value (loop, comparison_value);
3590 /* If we don't get an invariant final value, we are better
3591 off with the original register. */
3592 if (! loop_invariant_p (loop, final_value))
3593 final_value = comparison_value;
3596 /* Calculate the approximate final value of the induction variable
3597 (on the last successful iteration). The exact final value
3598 depends on the branch operator, and increment sign. It will be
3599 wrong if the iteration variable is not incremented by one each
3600 time through the loop and (comparison_value + off_by_one -
3601 initial_value) % increment != 0.
3602 ??? Note that the final_value may overflow and thus final_larger
3603 will be bogus. A potentially infinite loop will be classified
3604 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3605 if (off_by_one)
3606 final_value = plus_constant (final_value, off_by_one);
3608 /* Save the calculated values describing this loop's bounds, in case
3609 precondition_loop_p will need them later. These values can not be
3610 recalculated inside precondition_loop_p because strength reduction
3611 optimizations may obscure the loop's structure.
3613 These values are only required by precondition_loop_p and insert_bct
3614 whenever the number of iterations cannot be computed at compile time.
3615 Only the difference between final_value and initial_value is
3616 important. Note that final_value is only approximate. */
3617 loop_info->initial_value = initial_value;
3618 loop_info->comparison_value = comparison_value;
3619 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3620 loop_info->increment = increment;
3621 loop_info->iteration_var = iteration_var;
3622 loop_info->comparison_code = comparison_code;
3623 loop_info->iv = bl;
3625 /* Try to determine the iteration count for loops such
3626 as (for i = init; i < init + const; i++). When running the
3627 loop optimization twice, the first pass often converts simple
3628 loops into this form. */
3630 if (REG_P (initial_value))
3632 rtx reg1;
3633 rtx reg2;
3634 rtx const2;
3636 reg1 = initial_value;
3637 if (GET_CODE (final_value) == PLUS)
3638 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3639 else
3640 reg2 = final_value, const2 = const0_rtx;
3642 /* Check for initial_value = reg1, final_value = reg2 + const2,
3643 where reg1 != reg2. */
3644 if (REG_P (reg2) && reg2 != reg1)
3646 rtx temp;
3648 /* Find what reg1 is equivalent to. Hopefully it will
3649 either be reg2 or reg2 plus a constant. */
3650 temp = loop_find_equiv_value (loop, reg1);
3652 if (find_common_reg_term (temp, reg2))
3653 initial_value = temp;
3654 else
3656 /* Find what reg2 is equivalent to. Hopefully it will
3657 either be reg1 or reg1 plus a constant. Let's ignore
3658 the latter case for now since it is not so common. */
3659 temp = loop_find_equiv_value (loop, reg2);
3661 if (temp == loop_info->iteration_var)
3662 temp = initial_value;
3663 if (temp == reg1)
3664 final_value = (const2 == const0_rtx)
3665 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3668 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3670 rtx temp;
3672 /* When running the loop optimizer twice, check_dbra_loop
3673 further obfuscates reversible loops of the form:
3674 for (i = init; i < init + const; i++). We often end up with
3675 final_value = 0, initial_value = temp, temp = temp2 - init,
3676 where temp2 = init + const. If the loop has a vtop we
3677 can replace initial_value with const. */
3679 temp = loop_find_equiv_value (loop, reg1);
3681 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3683 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3685 if (GET_CODE (temp2) == PLUS
3686 && XEXP (temp2, 0) == XEXP (temp, 1))
3687 initial_value = XEXP (temp2, 1);
3692 /* If have initial_value = reg + const1 and final_value = reg +
3693 const2, then replace initial_value with const1 and final_value
3694 with const2. This should be safe since we are protected by the
3695 initial comparison before entering the loop if we have a vtop.
3696 For example, a + b < a + c is not equivalent to b < c for all a
3697 when using modulo arithmetic.
3699 ??? Without a vtop we could still perform the optimization if we check
3700 the initial and final values carefully. */
3701 if (loop->vtop
3702 && (reg_term = find_common_reg_term (initial_value, final_value)))
3704 initial_value = subtract_reg_term (initial_value, reg_term);
3705 final_value = subtract_reg_term (final_value, reg_term);
3708 loop_info->initial_equiv_value = initial_value;
3709 loop_info->final_equiv_value = final_value;
3711 /* For EQ comparison loops, we don't have a valid final value.
3712 Check this now so that we won't leave an invalid value if we
3713 return early for any other reason. */
3714 if (comparison_code == EQ)
3715 loop_info->final_equiv_value = loop_info->final_value = 0;
3717 if (increment == 0)
3719 if (loop_dump_stream)
3720 fprintf (loop_dump_stream,
3721 "Loop iterations: Increment value can't be calculated.\n");
3722 return 0;
3725 if (GET_CODE (increment) != CONST_INT)
3727 /* If we have a REG, check to see if REG holds a constant value. */
3728 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3729 clear if it is worthwhile to try to handle such RTL. */
3730 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3731 increment = loop_find_equiv_value (loop, increment);
3733 if (GET_CODE (increment) != CONST_INT)
3735 if (loop_dump_stream)
3737 fprintf (loop_dump_stream,
3738 "Loop iterations: Increment value not constant ");
3739 print_simple_rtl (loop_dump_stream, increment);
3740 fprintf (loop_dump_stream, ".\n");
3742 return 0;
3744 loop_info->increment = increment;
3747 if (GET_CODE (initial_value) != CONST_INT)
3749 if (loop_dump_stream)
3751 fprintf (loop_dump_stream,
3752 "Loop iterations: Initial value not constant ");
3753 print_simple_rtl (loop_dump_stream, initial_value);
3754 fprintf (loop_dump_stream, ".\n");
3756 return 0;
3758 else if (GET_CODE (final_value) != CONST_INT)
3760 if (loop_dump_stream)
3762 fprintf (loop_dump_stream,
3763 "Loop iterations: Final value not constant ");
3764 print_simple_rtl (loop_dump_stream, final_value);
3765 fprintf (loop_dump_stream, ".\n");
3767 return 0;
3769 else if (comparison_code == EQ)
3771 rtx inc_once;
3773 if (loop_dump_stream)
3774 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3776 inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3777 GET_MODE (iteration_var));
3779 if (inc_once == final_value)
3781 /* The iterator value once through the loop is equal to the
3782 comparision value. Either we have an infinite loop, or
3783 we'll loop twice. */
3784 if (increment == const0_rtx)
3785 return 0;
3786 loop_info->n_iterations = 2;
3788 else
3789 loop_info->n_iterations = 1;
3791 if (GET_CODE (loop_info->initial_value) == CONST_INT)
3792 loop_info->final_value
3793 = gen_int_mode ((INTVAL (loop_info->initial_value)
3794 + loop_info->n_iterations * INTVAL (increment)),
3795 GET_MODE (iteration_var));
3796 else
3797 loop_info->final_value
3798 = plus_constant (loop_info->initial_value,
3799 loop_info->n_iterations * INTVAL (increment));
3800 loop_info->final_equiv_value
3801 = gen_int_mode ((INTVAL (initial_value)
3802 + loop_info->n_iterations * INTVAL (increment)),
3803 GET_MODE (iteration_var));
3804 return loop_info->n_iterations;
3807 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3808 if (unsigned_p)
3809 final_larger
3810 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3811 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3812 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3813 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3814 else
3815 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3816 - (INTVAL (final_value) < INTVAL (initial_value));
3818 if (INTVAL (increment) > 0)
3819 increment_dir = 1;
3820 else if (INTVAL (increment) == 0)
3821 increment_dir = 0;
3822 else
3823 increment_dir = -1;
3825 /* There are 27 different cases: compare_dir = -1, 0, 1;
3826 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3827 There are 4 normal cases, 4 reverse cases (where the iteration variable
3828 will overflow before the loop exits), 4 infinite loop cases, and 15
3829 immediate exit (0 or 1 iteration depending on loop type) cases.
3830 Only try to optimize the normal cases. */
3832 /* (compare_dir/final_larger/increment_dir)
3833 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3834 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3835 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3836 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3838 /* ?? If the meaning of reverse loops (where the iteration variable
3839 will overflow before the loop exits) is undefined, then could
3840 eliminate all of these special checks, and just always assume
3841 the loops are normal/immediate/infinite. Note that this means
3842 the sign of increment_dir does not have to be known. Also,
3843 since it does not really hurt if immediate exit loops or infinite loops
3844 are optimized, then that case could be ignored also, and hence all
3845 loops can be optimized.
3847 According to ANSI Spec, the reverse loop case result is undefined,
3848 because the action on overflow is undefined.
3850 See also the special test for NE loops below. */
3852 if (final_larger == increment_dir && final_larger != 0
3853 && (final_larger == compare_dir || compare_dir == 0))
3854 /* Normal case. */
3856 else
3858 if (loop_dump_stream)
3859 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3860 return 0;
3863 /* Calculate the number of iterations, final_value is only an approximation,
3864 so correct for that. Note that abs_diff and n_iterations are
3865 unsigned, because they can be as large as 2^n - 1. */
3867 inc = INTVAL (increment);
3868 if (inc > 0)
3870 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3871 abs_inc = inc;
3873 else if (inc < 0)
3875 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3876 abs_inc = -inc;
3878 else
3879 abort ();
3881 /* Given that iteration_var is going to iterate over its own mode,
3882 not HOST_WIDE_INT, disregard higher bits that might have come
3883 into the picture due to sign extension of initial and final
3884 values. */
3885 abs_diff &= ((unsigned HOST_WIDE_INT) 1
3886 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3887 << 1) - 1;
3889 /* For NE tests, make sure that the iteration variable won't miss
3890 the final value. If abs_diff mod abs_incr is not zero, then the
3891 iteration variable will overflow before the loop exits, and we
3892 can not calculate the number of iterations. */
3893 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3894 return 0;
3896 /* Note that the number of iterations could be calculated using
3897 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3898 handle potential overflow of the summation. */
3899 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3900 return loop_info->n_iterations;
3903 /* Replace uses of split bivs with their split pseudo register. This is
3904 for original instructions which remain after loop unrolling without
3905 copying. */
3907 static rtx
3908 remap_split_bivs (loop, x)
3909 struct loop *loop;
3910 rtx x;
3912 struct loop_ivs *ivs = LOOP_IVS (loop);
3913 enum rtx_code code;
3914 int i;
3915 const char *fmt;
3917 if (x == 0)
3918 return x;
3920 code = GET_CODE (x);
3921 switch (code)
3923 case SCRATCH:
3924 case PC:
3925 case CC0:
3926 case CONST_INT:
3927 case CONST_DOUBLE:
3928 case CONST:
3929 case SYMBOL_REF:
3930 case LABEL_REF:
3931 return x;
3933 case REG:
3934 #if 0
3935 /* If non-reduced/final-value givs were split, then this would also
3936 have to remap those givs also. */
3937 #endif
3938 if (REGNO (x) < ivs->n_regs
3939 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
3940 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
3941 break;
3943 default:
3944 break;
3947 fmt = GET_RTX_FORMAT (code);
3948 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3950 if (fmt[i] == 'e')
3951 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
3952 else if (fmt[i] == 'E')
3954 int j;
3955 for (j = 0; j < XVECLEN (x, i); j++)
3956 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
3959 return x;
3962 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3963 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3964 return 0. COPY_START is where we can start looking for the insns
3965 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3966 insns.
3968 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3969 must dominate LAST_UID.
3971 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3972 may not dominate LAST_UID.
3974 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3975 must dominate LAST_UID. */
3978 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3979 int regno;
3980 int first_uid;
3981 int last_uid;
3982 rtx copy_start;
3983 rtx copy_end;
3985 int passed_jump = 0;
3986 rtx p = NEXT_INSN (copy_start);
3988 while (INSN_UID (p) != first_uid)
3990 if (GET_CODE (p) == JUMP_INSN)
3991 passed_jump = 1;
3992 /* Could not find FIRST_UID. */
3993 if (p == copy_end)
3994 return 0;
3995 p = NEXT_INSN (p);
3998 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3999 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
4000 return 0;
4002 /* FIRST_UID is always executed. */
4003 if (passed_jump == 0)
4004 return 1;
4006 while (INSN_UID (p) != last_uid)
4008 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4009 can not be sure that FIRST_UID dominates LAST_UID. */
4010 if (GET_CODE (p) == CODE_LABEL)
4011 return 0;
4012 /* Could not find LAST_UID, but we reached the end of the loop, so
4013 it must be safe. */
4014 else if (p == copy_end)
4015 return 1;
4016 p = NEXT_INSN (p);
4019 /* FIRST_UID is always executed if LAST_UID is executed. */
4020 return 1;
4023 /* This routine is called when the number of iterations for the unrolled
4024 loop is one. The goal is to identify a loop that begins with an
4025 unconditional branch to the loop continuation note (or a label just after).
4026 In this case, the unconditional branch that starts the loop needs to be
4027 deleted so that we execute the single iteration. */
4029 static rtx
4030 ujump_to_loop_cont (loop_start, loop_cont)
4031 rtx loop_start;
4032 rtx loop_cont;
4034 rtx x, label, label_ref;
4036 /* See if loop start, or the next insn is an unconditional jump. */
4037 loop_start = next_nonnote_insn (loop_start);
4039 x = pc_set (loop_start);
4040 if (!x)
4041 return NULL_RTX;
4043 label_ref = SET_SRC (x);
4044 if (!label_ref)
4045 return NULL_RTX;
4047 /* Examine insn after loop continuation note. Return if not a label. */
4048 label = next_nonnote_insn (loop_cont);
4049 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4050 return NULL_RTX;
4052 /* Return the loop start if the branch label matches the code label. */
4053 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4054 return loop_start;
4055 else
4056 return NULL_RTX;