/c-family
[official-gcc.git] / libquadmath / math / asinq.c
blob7bd4d768c978ac97c2b1960d81bd911907513538
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
13 __float128 expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15 and are incorporated herein by permission of the author. The author
16 reserves the right to distribute this material elsewhere under different
17 copying permissions. These modifications are distributed here under the
18 following terms:
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
30 You should have received a copy of the GNU Lesser General Public
31 License along with this library; if not, write to the Free Software
32 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
34 /* asinq(x)
35 * Method :
36 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
37 * we approximate asin(x) on [0,0.5] by
38 * asin(x) = x + x*x^2*R(x^2)
39 * Between .5 and .625 the approximation is
40 * asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
41 * For x in [0.625,1]
42 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
43 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
44 * then for x>0.98
45 * asin(x) = pi/2 - 2*(s+s*z*R(z))
46 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
47 * For x<=0.98, let pio4_hi = pio2_hi/2, then
48 * f = hi part of s;
49 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
50 * and
51 * asin(x) = pi/2 - 2*(s+s*z*R(z))
52 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
53 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
55 * Special cases:
56 * if x is NaN, return x itself;
57 * if |x|>1, return NaN with invalid signal.
62 #include "quadmath-imp.h"
64 static const __float128
65 one = 1.0Q,
66 huge = 1.0e+4932Q,
67 pio2_hi = 1.5707963267948966192313216916397514420986Q,
68 pio2_lo = 4.3359050650618905123985220130216759843812E-35Q,
69 pio4_hi = 7.8539816339744830961566084581987569936977E-1Q,
71 /* coefficient for R(x^2) */
73 /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
74 0 <= x <= 0.5
75 peak relative error 1.9e-35 */
76 pS0 = -8.358099012470680544198472400254596543711E2Q,
77 pS1 = 3.674973957689619490312782828051860366493E3Q,
78 pS2 = -6.730729094812979665807581609853656623219E3Q,
79 pS3 = 6.643843795209060298375552684423454077633E3Q,
80 pS4 = -3.817341990928606692235481812252049415993E3Q,
81 pS5 = 1.284635388402653715636722822195716476156E3Q,
82 pS6 = -2.410736125231549204856567737329112037867E2Q,
83 pS7 = 2.219191969382402856557594215833622156220E1Q,
84 pS8 = -7.249056260830627156600112195061001036533E-1Q,
85 pS9 = 1.055923570937755300061509030361395604448E-3Q,
87 qS0 = -5.014859407482408326519083440151745519205E3Q,
88 qS1 = 2.430653047950480068881028451580393430537E4Q,
89 qS2 = -4.997904737193653607449250593976069726962E4Q,
90 qS3 = 5.675712336110456923807959930107347511086E4Q,
91 qS4 = -3.881523118339661268482937768522572588022E4Q,
92 qS5 = 1.634202194895541569749717032234510811216E4Q,
93 qS6 = -4.151452662440709301601820849901296953752E3Q,
94 qS7 = 5.956050864057192019085175976175695342168E2Q,
95 qS8 = -4.175375777334867025769346564600396877176E1Q,
96 /* 1.000000000000000000000000000000000000000E0 */
98 /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
99 -0.0625 <= x <= 0.0625
100 peak relative error 3.3e-35 */
101 rS0 = -5.619049346208901520945464704848780243887E0Q,
102 rS1 = 4.460504162777731472539175700169871920352E1Q,
103 rS2 = -1.317669505315409261479577040530751477488E2Q,
104 rS3 = 1.626532582423661989632442410808596009227E2Q,
105 rS4 = -3.144806644195158614904369445440583873264E1Q,
106 rS5 = -9.806674443470740708765165604769099559553E1Q,
107 rS6 = 5.708468492052010816555762842394927806920E1Q,
108 rS7 = 1.396540499232262112248553357962639431922E1Q,
109 rS8 = -1.126243289311910363001762058295832610344E1Q,
110 rS9 = -4.956179821329901954211277873774472383512E-1Q,
111 rS10 = 3.313227657082367169241333738391762525780E-1Q,
113 sS0 = -4.645814742084009935700221277307007679325E0Q,
114 sS1 = 3.879074822457694323970438316317961918430E1Q,
115 sS2 = -1.221986588013474694623973554726201001066E2Q,
116 sS3 = 1.658821150347718105012079876756201905822E2Q,
117 sS4 = -4.804379630977558197953176474426239748977E1Q,
118 sS5 = -1.004296417397316948114344573811562952793E2Q,
119 sS6 = 7.530281592861320234941101403870010111138E1Q,
120 sS7 = 1.270735595411673647119592092304357226607E1Q,
121 sS8 = -1.815144839646376500705105967064792930282E1Q,
122 sS9 = -7.821597334910963922204235247786840828217E-2Q,
123 /* 1.000000000000000000000000000000000000000E0 */
125 asinr5625 = 5.9740641664535021430381036628424864397707E-1Q;
129 __float128
130 asinq (__float128 x)
132 __float128 t = 0;
133 __float128 w, p, q, c, r, s;
134 int32_t ix, sign, flag;
135 ieee854_float128 u;
137 flag = 0;
138 u.value = x;
139 sign = u.words32.w0;
140 ix = sign & 0x7fffffff;
141 u.words32.w0 = ix; /* |x| */
142 if (ix >= 0x3fff0000) /* |x|>= 1 */
144 if (ix == 0x3fff0000
145 && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
146 /* asin(1)=+-pi/2 with inexact */
147 return x * pio2_hi + x * pio2_lo;
148 return (x - x) / (x - x); /* asin(|x|>1) is NaN */
150 else if (ix < 0x3ffe0000) /* |x| < 0.5 */
152 if (ix < 0x3fc60000) /* |x| < 2**-57 */
154 if (huge + x > one)
155 return x; /* return x with inexact if x!=0 */
157 else
159 t = x * x;
160 /* Mark to use pS, qS later on. */
161 flag = 1;
164 else if (ix < 0x3ffe4000) /* 0.625 */
166 t = u.value - 0.5625;
167 p = ((((((((((rS10 * t
168 + rS9) * t
169 + rS8) * t
170 + rS7) * t
171 + rS6) * t
172 + rS5) * t
173 + rS4) * t
174 + rS3) * t
175 + rS2) * t
176 + rS1) * t
177 + rS0) * t;
179 q = ((((((((( t
180 + sS9) * t
181 + sS8) * t
182 + sS7) * t
183 + sS6) * t
184 + sS5) * t
185 + sS4) * t
186 + sS3) * t
187 + sS2) * t
188 + sS1) * t
189 + sS0;
190 t = asinr5625 + p / q;
191 if ((sign & 0x80000000) == 0)
192 return t;
193 else
194 return -t;
196 else
198 /* 1 > |x| >= 0.625 */
199 w = one - u.value;
200 t = w * 0.5;
203 p = (((((((((pS9 * t
204 + pS8) * t
205 + pS7) * t
206 + pS6) * t
207 + pS5) * t
208 + pS4) * t
209 + pS3) * t
210 + pS2) * t
211 + pS1) * t
212 + pS0) * t;
214 q = (((((((( t
215 + qS8) * t
216 + qS7) * t
217 + qS6) * t
218 + qS5) * t
219 + qS4) * t
220 + qS3) * t
221 + qS2) * t
222 + qS1) * t
223 + qS0;
225 if (flag) /* 2^-57 < |x| < 0.5 */
227 w = p / q;
228 return x + x * w;
231 s = sqrtq (t);
232 if (ix >= 0x3ffef333) /* |x| > 0.975 */
234 w = p / q;
235 t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
237 else
239 u.value = s;
240 u.words32.w3 = 0;
241 u.words32.w2 = 0;
242 w = u.value;
243 c = (t - w * w) / (s + w);
244 r = p / q;
245 p = 2.0 * s * r - (pio2_lo - 2.0 * c);
246 q = pio4_hi - 2.0 * w;
247 t = pio4_hi - (p - q);
250 if ((sign & 0x80000000) == 0)
251 return t;
252 else
253 return -t;