2010-11-27 François Dumont <francois.cppdevs@free.fr>
[official-gcc.git] / gcc / tree-ssa-coalesce.c
blob7615612e67bfbe0d52a8d8f2a5e2a036fe33d094
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tree-pretty-print.h"
29 #include "bitmap.h"
30 #include "tree-flow.h"
31 #include "hashtab.h"
32 #include "tree-dump.h"
33 #include "tree-ssa-live.h"
34 #include "diagnostic-core.h"
35 #include "toplev.h"
38 /* This set of routines implements a coalesce_list. This is an object which
39 is used to track pairs of ssa_names which are desirable to coalesce
40 together to avoid copies. Costs are associated with each pair, and when
41 all desired information has been collected, the object can be used to
42 order the pairs for processing. */
44 /* This structure defines a pair entry. */
46 typedef struct coalesce_pair
48 int first_element;
49 int second_element;
50 int cost;
51 } * coalesce_pair_p;
52 typedef const struct coalesce_pair *const_coalesce_pair_p;
54 typedef struct cost_one_pair_d
56 int first_element;
57 int second_element;
58 struct cost_one_pair_d *next;
59 } * cost_one_pair_p;
61 /* This structure maintains the list of coalesce pairs. */
63 typedef struct coalesce_list_d
65 htab_t list; /* Hash table. */
66 coalesce_pair_p *sorted; /* List when sorted. */
67 int num_sorted; /* Number in the sorted list. */
68 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
69 } *coalesce_list_p;
71 #define NO_BEST_COALESCE -1
72 #define MUST_COALESCE_COST INT_MAX
75 /* Return cost of execution of copy instruction with FREQUENCY. */
77 static inline int
78 coalesce_cost (int frequency, bool optimize_for_size)
80 /* Base costs on BB frequencies bounded by 1. */
81 int cost = frequency;
83 if (!cost)
84 cost = 1;
86 if (optimize_for_size)
87 cost = 1;
89 return cost;
93 /* Return the cost of executing a copy instruction in basic block BB. */
95 static inline int
96 coalesce_cost_bb (basic_block bb)
98 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
102 /* Return the cost of executing a copy instruction on edge E. */
104 static inline int
105 coalesce_cost_edge (edge e)
107 int mult = 1;
109 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
110 if (EDGE_CRITICAL_P (e))
111 mult = 2;
112 if (e->flags & EDGE_ABNORMAL)
113 return MUST_COALESCE_COST;
114 if (e->flags & EDGE_EH)
116 edge e2;
117 edge_iterator ei;
118 FOR_EACH_EDGE (e2, ei, e->dest->preds)
119 if (e2 != e)
121 /* Putting code on EH edge that leads to BB
122 with multiple predecestors imply splitting of
123 edge too. */
124 if (mult < 2)
125 mult = 2;
126 /* If there are multiple EH predecestors, we
127 also copy EH regions and produce separate
128 landing pad. This is expensive. */
129 if (e2->flags & EDGE_EH)
131 mult = 5;
132 break;
137 return coalesce_cost (EDGE_FREQUENCY (e),
138 optimize_edge_for_size_p (e)) * mult;
142 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
143 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
144 NO_BEST_COALESCE is returned if there aren't any. */
146 static inline int
147 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
149 cost_one_pair_p ptr;
151 ptr = cl->cost_one_list;
152 if (!ptr)
153 return NO_BEST_COALESCE;
155 *p1 = ptr->first_element;
156 *p2 = ptr->second_element;
157 cl->cost_one_list = ptr->next;
159 free (ptr);
161 return 1;
164 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
165 2 elements via P1 and P2. Their calculated cost is returned by the function.
166 NO_BEST_COALESCE is returned if the coalesce list is empty. */
168 static inline int
169 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
171 coalesce_pair_p node;
172 int ret;
174 if (cl->sorted == NULL)
175 return pop_cost_one_pair (cl, p1, p2);
177 if (cl->num_sorted == 0)
178 return pop_cost_one_pair (cl, p1, p2);
180 node = cl->sorted[--(cl->num_sorted)];
181 *p1 = node->first_element;
182 *p2 = node->second_element;
183 ret = node->cost;
184 free (node);
186 return ret;
190 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
192 /* Hash function for coalesce list. Calculate hash for PAIR. */
194 static unsigned int
195 coalesce_pair_map_hash (const void *pair)
197 hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
198 hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
200 return COALESCE_HASH_FN (a,b);
204 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
205 returning TRUE if the two pairs are equivalent. */
207 static int
208 coalesce_pair_map_eq (const void *pair1, const void *pair2)
210 const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
211 const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
213 return (p1->first_element == p2->first_element
214 && p1->second_element == p2->second_element);
218 /* Create a new empty coalesce list object and return it. */
220 static inline coalesce_list_p
221 create_coalesce_list (void)
223 coalesce_list_p list;
224 unsigned size = num_ssa_names * 3;
226 if (size < 40)
227 size = 40;
229 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
230 list->list = htab_create (size, coalesce_pair_map_hash,
231 coalesce_pair_map_eq, NULL);
232 list->sorted = NULL;
233 list->num_sorted = 0;
234 list->cost_one_list = NULL;
235 return list;
239 /* Delete coalesce list CL. */
241 static inline void
242 delete_coalesce_list (coalesce_list_p cl)
244 gcc_assert (cl->cost_one_list == NULL);
245 htab_delete (cl->list);
246 if (cl->sorted)
247 free (cl->sorted);
248 gcc_assert (cl->num_sorted == 0);
249 free (cl);
253 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
254 one isn't found, return NULL if CREATE is false, otherwise create a new
255 coalesce pair object and return it. */
257 static coalesce_pair_p
258 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
260 struct coalesce_pair p;
261 void **slot;
262 unsigned int hash;
264 /* Normalize so that p1 is the smaller value. */
265 if (p2 < p1)
267 p.first_element = p2;
268 p.second_element = p1;
270 else
272 p.first_element = p1;
273 p.second_element = p2;
276 hash = coalesce_pair_map_hash (&p);
277 slot = htab_find_slot_with_hash (cl->list, &p, hash,
278 create ? INSERT : NO_INSERT);
279 if (!slot)
280 return NULL;
282 if (!*slot)
284 struct coalesce_pair * pair = XNEW (struct coalesce_pair);
285 gcc_assert (cl->sorted == NULL);
286 pair->first_element = p.first_element;
287 pair->second_element = p.second_element;
288 pair->cost = 0;
289 *slot = (void *)pair;
292 return (struct coalesce_pair *) *slot;
295 static inline void
296 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
298 cost_one_pair_p pair;
300 pair = XNEW (struct cost_one_pair_d);
301 pair->first_element = p1;
302 pair->second_element = p2;
303 pair->next = cl->cost_one_list;
304 cl->cost_one_list = pair;
308 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
310 static inline void
311 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
313 coalesce_pair_p node;
315 gcc_assert (cl->sorted == NULL);
316 if (p1 == p2)
317 return;
319 node = find_coalesce_pair (cl, p1, p2, true);
321 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
322 if (node->cost < MUST_COALESCE_COST - 1)
324 if (value < MUST_COALESCE_COST - 1)
325 node->cost += value;
326 else
327 node->cost = value;
332 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
334 static int
335 compare_pairs (const void *p1, const void *p2)
337 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
338 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
339 int result;
341 result = (* pp1)->cost - (* pp2)->cost;
342 /* Since qsort does not guarantee stability we use the elements
343 as a secondary key. This provides us with independence from
344 the host's implementation of the sorting algorithm. */
345 if (result == 0)
347 result = (* pp2)->first_element - (* pp1)->first_element;
348 if (result == 0)
349 result = (* pp2)->second_element - (* pp1)->second_element;
352 return result;
356 /* Return the number of unique coalesce pairs in CL. */
358 static inline int
359 num_coalesce_pairs (coalesce_list_p cl)
361 return htab_elements (cl->list);
365 /* Iterator over hash table pairs. */
366 typedef struct
368 htab_iterator hti;
369 } coalesce_pair_iterator;
372 /* Return first partition pair from list CL, initializing iterator ITER. */
374 static inline coalesce_pair_p
375 first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
377 coalesce_pair_p pair;
379 pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
380 return pair;
384 /* Return TRUE if there are no more partitions in for ITER to process. */
386 static inline bool
387 end_coalesce_pair_p (coalesce_pair_iterator *iter)
389 return end_htab_p (&(iter->hti));
393 /* Return the next partition pair to be visited by ITER. */
395 static inline coalesce_pair_p
396 next_coalesce_pair (coalesce_pair_iterator *iter)
398 coalesce_pair_p pair;
400 pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
401 return pair;
405 /* Iterate over CL using ITER, returning values in PAIR. */
407 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
408 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
409 !end_coalesce_pair_p (&(ITER)); \
410 (PAIR) = next_coalesce_pair (&(ITER)))
413 /* Prepare CL for removal of preferred pairs. When finished they are sorted
414 in order from most important coalesce to least important. */
416 static void
417 sort_coalesce_list (coalesce_list_p cl)
419 unsigned x, num;
420 coalesce_pair_p p;
421 coalesce_pair_iterator ppi;
423 gcc_assert (cl->sorted == NULL);
425 num = num_coalesce_pairs (cl);
426 cl->num_sorted = num;
427 if (num == 0)
428 return;
430 /* Allocate a vector for the pair pointers. */
431 cl->sorted = XNEWVEC (coalesce_pair_p, num);
433 /* Populate the vector with pointers to the pairs. */
434 x = 0;
435 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
436 cl->sorted[x++] = p;
437 gcc_assert (x == num);
439 /* Already sorted. */
440 if (num == 1)
441 return;
443 /* If there are only 2, just pick swap them if the order isn't correct. */
444 if (num == 2)
446 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
448 p = cl->sorted[0];
449 cl->sorted[0] = cl->sorted[1];
450 cl->sorted[1] = p;
452 return;
455 /* Only call qsort if there are more than 2 items. */
456 if (num > 2)
457 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
461 /* Send debug info for coalesce list CL to file F. */
463 static void
464 dump_coalesce_list (FILE *f, coalesce_list_p cl)
466 coalesce_pair_p node;
467 coalesce_pair_iterator ppi;
468 int x;
469 tree var;
471 if (cl->sorted == NULL)
473 fprintf (f, "Coalesce List:\n");
474 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
476 tree var1 = ssa_name (node->first_element);
477 tree var2 = ssa_name (node->second_element);
478 print_generic_expr (f, var1, TDF_SLIM);
479 fprintf (f, " <-> ");
480 print_generic_expr (f, var2, TDF_SLIM);
481 fprintf (f, " (%1d), ", node->cost);
482 fprintf (f, "\n");
485 else
487 fprintf (f, "Sorted Coalesce list:\n");
488 for (x = cl->num_sorted - 1 ; x >=0; x--)
490 node = cl->sorted[x];
491 fprintf (f, "(%d) ", node->cost);
492 var = ssa_name (node->first_element);
493 print_generic_expr (f, var, TDF_SLIM);
494 fprintf (f, " <-> ");
495 var = ssa_name (node->second_element);
496 print_generic_expr (f, var, TDF_SLIM);
497 fprintf (f, "\n");
503 /* This represents a conflict graph. Implemented as an array of bitmaps.
504 A full matrix is used for conflicts rather than just upper triangular form.
505 this make sit much simpler and faster to perform conflict merges. */
507 typedef struct ssa_conflicts_d
509 unsigned size;
510 bitmap *conflicts;
511 } * ssa_conflicts_p;
514 /* Return an empty new conflict graph for SIZE elements. */
516 static inline ssa_conflicts_p
517 ssa_conflicts_new (unsigned size)
519 ssa_conflicts_p ptr;
521 ptr = XNEW (struct ssa_conflicts_d);
522 ptr->conflicts = XCNEWVEC (bitmap, size);
523 ptr->size = size;
524 return ptr;
528 /* Free storage for conflict graph PTR. */
530 static inline void
531 ssa_conflicts_delete (ssa_conflicts_p ptr)
533 unsigned x;
534 for (x = 0; x < ptr->size; x++)
535 if (ptr->conflicts[x])
536 BITMAP_FREE (ptr->conflicts[x]);
538 free (ptr->conflicts);
539 free (ptr);
543 /* Test if elements X and Y conflict in graph PTR. */
545 static inline bool
546 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
548 bitmap b;
550 gcc_checking_assert (x < ptr->size);
551 gcc_checking_assert (y < ptr->size);
552 gcc_checking_assert (x != y);
554 b = ptr->conflicts[x];
555 if (b)
556 /* Avoid the lookup if Y has no conflicts. */
557 return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
558 else
559 return false;
563 /* Add a conflict with Y to the bitmap for X in graph PTR. */
565 static inline void
566 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
568 /* If there are no conflicts yet, allocate the bitmap and set bit. */
569 if (!ptr->conflicts[x])
570 ptr->conflicts[x] = BITMAP_ALLOC (NULL);
571 bitmap_set_bit (ptr->conflicts[x], y);
575 /* Add conflicts between X and Y in graph PTR. */
577 static inline void
578 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
580 gcc_checking_assert (x < ptr->size);
581 gcc_checking_assert (y < ptr->size);
582 gcc_checking_assert (x != y);
583 ssa_conflicts_add_one (ptr, x, y);
584 ssa_conflicts_add_one (ptr, y, x);
588 /* Merge all Y's conflict into X in graph PTR. */
590 static inline void
591 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
593 unsigned z;
594 bitmap_iterator bi;
596 gcc_assert (x != y);
597 if (!(ptr->conflicts[y]))
598 return;
600 /* Add a conflict between X and every one Y has. If the bitmap doesn't
601 exist, then it has already been coalesced, and we don't need to add a
602 conflict. */
603 EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
604 if (ptr->conflicts[z])
605 bitmap_set_bit (ptr->conflicts[z], x);
607 if (ptr->conflicts[x])
609 /* If X has conflicts, add Y's to X. */
610 bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
611 BITMAP_FREE (ptr->conflicts[y]);
613 else
615 /* If X has no conflicts, simply use Y's. */
616 ptr->conflicts[x] = ptr->conflicts[y];
617 ptr->conflicts[y] = NULL;
622 /* Dump a conflicts graph. */
624 static void
625 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
627 unsigned x;
629 fprintf (file, "\nConflict graph:\n");
631 for (x = 0; x < ptr->size; x++)
632 if (ptr->conflicts[x])
634 fprintf (dump_file, "%d: ", x);
635 dump_bitmap (file, ptr->conflicts[x]);
640 /* This structure is used to efficiently record the current status of live
641 SSA_NAMES when building a conflict graph.
642 LIVE_BASE_VAR has a bit set for each base variable which has at least one
643 ssa version live.
644 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
645 index, and is used to track what partitions of each base variable are
646 live. This makes it easy to add conflicts between just live partitions
647 with the same base variable.
648 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
649 marked as being live. This delays clearing of these bitmaps until
650 they are actually needed again. */
652 typedef struct live_track_d
654 bitmap live_base_var; /* Indicates if a basevar is live. */
655 bitmap *live_base_partitions; /* Live partitions for each basevar. */
656 var_map map; /* Var_map being used for partition mapping. */
657 } * live_track_p;
660 /* This routine will create a new live track structure based on the partitions
661 in MAP. */
663 static live_track_p
664 new_live_track (var_map map)
666 live_track_p ptr;
667 int lim, x;
669 /* Make sure there is a partition view in place. */
670 gcc_assert (map->partition_to_base_index != NULL);
672 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
673 ptr->map = map;
674 lim = num_basevars (map);
675 ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
676 ptr->live_base_var = BITMAP_ALLOC (NULL);
677 for (x = 0; x < lim; x++)
678 ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
679 return ptr;
683 /* This routine will free the memory associated with PTR. */
685 static void
686 delete_live_track (live_track_p ptr)
688 int x, lim;
690 lim = num_basevars (ptr->map);
691 for (x = 0; x < lim; x++)
692 BITMAP_FREE (ptr->live_base_partitions[x]);
693 BITMAP_FREE (ptr->live_base_var);
694 free (ptr->live_base_partitions);
695 free (ptr);
699 /* This function will remove PARTITION from the live list in PTR. */
701 static inline void
702 live_track_remove_partition (live_track_p ptr, int partition)
704 int root;
706 root = basevar_index (ptr->map, partition);
707 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
708 /* If the element list is empty, make the base variable not live either. */
709 if (bitmap_empty_p (ptr->live_base_partitions[root]))
710 bitmap_clear_bit (ptr->live_base_var, root);
714 /* This function will adds PARTITION to the live list in PTR. */
716 static inline void
717 live_track_add_partition (live_track_p ptr, int partition)
719 int root;
721 root = basevar_index (ptr->map, partition);
722 /* If this base var wasn't live before, it is now. Clear the element list
723 since it was delayed until needed. */
724 if (bitmap_set_bit (ptr->live_base_var, root))
725 bitmap_clear (ptr->live_base_partitions[root]);
726 bitmap_set_bit (ptr->live_base_partitions[root], partition);
731 /* Clear the live bit for VAR in PTR. */
733 static inline void
734 live_track_clear_var (live_track_p ptr, tree var)
736 int p;
738 p = var_to_partition (ptr->map, var);
739 if (p != NO_PARTITION)
740 live_track_remove_partition (ptr, p);
744 /* Return TRUE if VAR is live in PTR. */
746 static inline bool
747 live_track_live_p (live_track_p ptr, tree var)
749 int p, root;
751 p = var_to_partition (ptr->map, var);
752 if (p != NO_PARTITION)
754 root = basevar_index (ptr->map, p);
755 if (bitmap_bit_p (ptr->live_base_var, root))
756 return bitmap_bit_p (ptr->live_base_partitions[root], p);
758 return false;
762 /* This routine will add USE to PTR. USE will be marked as live in both the
763 ssa live map and the live bitmap for the root of USE. */
765 static inline void
766 live_track_process_use (live_track_p ptr, tree use)
768 int p;
770 p = var_to_partition (ptr->map, use);
771 if (p == NO_PARTITION)
772 return;
774 /* Mark as live in the appropriate live list. */
775 live_track_add_partition (ptr, p);
779 /* This routine will process a DEF in PTR. DEF will be removed from the live
780 lists, and if there are any other live partitions with the same base
781 variable, conflicts will be added to GRAPH. */
783 static inline void
784 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
786 int p, root;
787 bitmap b;
788 unsigned x;
789 bitmap_iterator bi;
791 p = var_to_partition (ptr->map, def);
792 if (p == NO_PARTITION)
793 return;
795 /* Clear the liveness bit. */
796 live_track_remove_partition (ptr, p);
798 /* If the bitmap isn't empty now, conflicts need to be added. */
799 root = basevar_index (ptr->map, p);
800 if (bitmap_bit_p (ptr->live_base_var, root))
802 b = ptr->live_base_partitions[root];
803 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
804 ssa_conflicts_add (graph, p, x);
809 /* Initialize PTR with the partitions set in INIT. */
811 static inline void
812 live_track_init (live_track_p ptr, bitmap init)
814 unsigned p;
815 bitmap_iterator bi;
817 /* Mark all live on exit partitions. */
818 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
819 live_track_add_partition (ptr, p);
823 /* This routine will clear all live partitions in PTR. */
825 static inline void
826 live_track_clear_base_vars (live_track_p ptr)
828 /* Simply clear the live base list. Anything marked as live in the element
829 lists will be cleared later if/when the base variable ever comes alive
830 again. */
831 bitmap_clear (ptr->live_base_var);
835 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
836 partition view of the var_map liveinfo is based on get entries in the
837 conflict graph. Only conflicts between ssa_name partitions with the same
838 base variable are added. */
840 static ssa_conflicts_p
841 build_ssa_conflict_graph (tree_live_info_p liveinfo)
843 ssa_conflicts_p graph;
844 var_map map;
845 basic_block bb;
846 ssa_op_iter iter;
847 live_track_p live;
849 map = live_var_map (liveinfo);
850 graph = ssa_conflicts_new (num_var_partitions (map));
852 live = new_live_track (map);
854 FOR_EACH_BB (bb)
856 gimple_stmt_iterator gsi;
858 /* Start with live on exit temporaries. */
859 live_track_init (live, live_on_exit (liveinfo, bb));
861 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
863 tree var;
864 gimple stmt = gsi_stmt (gsi);
866 /* A copy between 2 partitions does not introduce an interference
867 by itself. If they did, you would never be able to coalesce
868 two things which are copied. If the two variables really do
869 conflict, they will conflict elsewhere in the program.
871 This is handled by simply removing the SRC of the copy from the
872 live list, and processing the stmt normally. */
873 if (is_gimple_assign (stmt))
875 tree lhs = gimple_assign_lhs (stmt);
876 tree rhs1 = gimple_assign_rhs1 (stmt);
877 if (gimple_assign_copy_p (stmt)
878 && TREE_CODE (lhs) == SSA_NAME
879 && TREE_CODE (rhs1) == SSA_NAME)
880 live_track_clear_var (live, rhs1);
882 else if (is_gimple_debug (stmt))
883 continue;
885 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
886 live_track_process_def (live, var, graph);
888 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
889 live_track_process_use (live, var);
892 /* If result of a PHI is unused, looping over the statements will not
893 record any conflicts since the def was never live. Since the PHI node
894 is going to be translated out of SSA form, it will insert a copy.
895 There must be a conflict recorded between the result of the PHI and
896 any variables that are live. Otherwise the out-of-ssa translation
897 may create incorrect code. */
898 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
900 gimple phi = gsi_stmt (gsi);
901 tree result = PHI_RESULT (phi);
902 if (live_track_live_p (live, result))
903 live_track_process_def (live, result, graph);
906 live_track_clear_base_vars (live);
909 delete_live_track (live);
910 return graph;
914 /* Shortcut routine to print messages to file F of the form:
915 "STR1 EXPR1 STR2 EXPR2 STR3." */
917 static inline void
918 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
919 tree expr2, const char *str3)
921 fprintf (f, "%s", str1);
922 print_generic_expr (f, expr1, TDF_SLIM);
923 fprintf (f, "%s", str2);
924 print_generic_expr (f, expr2, TDF_SLIM);
925 fprintf (f, "%s", str3);
929 /* Called if a coalesce across and abnormal edge cannot be performed. PHI is
930 the phi node at fault, I is the argument index at fault. A message is
931 printed and compilation is then terminated. */
933 static inline void
934 abnormal_corrupt (gimple phi, int i)
936 edge e = gimple_phi_arg_edge (phi, i);
937 tree res = gimple_phi_result (phi);
938 tree arg = gimple_phi_arg_def (phi, i);
940 fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
941 e->src->index, e->dest->index);
942 fprintf (stderr, "Argument %d (", i);
943 print_generic_expr (stderr, arg, TDF_SLIM);
944 if (TREE_CODE (arg) != SSA_NAME)
945 fprintf (stderr, ") is not an SSA_NAME.\n");
946 else
948 gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
949 fprintf (stderr, ") does not have the same base variable as the result ");
950 print_generic_stmt (stderr, res, TDF_SLIM);
953 internal_error ("SSA corruption");
957 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
959 static inline void
960 fail_abnormal_edge_coalesce (int x, int y)
962 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
963 fprintf (stderr, " which are marked as MUST COALESCE.\n");
964 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
965 fprintf (stderr, " and ");
966 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
968 internal_error ("SSA corruption");
972 /* This function creates a var_map for the current function as well as creating
973 a coalesce list for use later in the out of ssa process. */
975 static var_map
976 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
978 gimple_stmt_iterator gsi;
979 basic_block bb;
980 tree var;
981 gimple stmt;
982 tree first;
983 var_map map;
984 ssa_op_iter iter;
985 int v1, v2, cost;
986 unsigned i;
988 #ifdef ENABLE_CHECKING
989 bitmap used_in_real_ops;
990 bitmap used_in_virtual_ops;
992 used_in_real_ops = BITMAP_ALLOC (NULL);
993 used_in_virtual_ops = BITMAP_ALLOC (NULL);
994 #endif
996 map = init_var_map (num_ssa_names);
998 FOR_EACH_BB (bb)
1000 tree arg;
1002 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1004 gimple phi = gsi_stmt (gsi);
1005 size_t i;
1006 int ver;
1007 tree res;
1008 bool saw_copy = false;
1010 res = gimple_phi_result (phi);
1011 ver = SSA_NAME_VERSION (res);
1012 register_ssa_partition (map, res);
1014 /* Register ssa_names and coalesces between the args and the result
1015 of all PHI. */
1016 for (i = 0; i < gimple_phi_num_args (phi); i++)
1018 edge e = gimple_phi_arg_edge (phi, i);
1019 arg = PHI_ARG_DEF (phi, i);
1020 if (TREE_CODE (arg) == SSA_NAME)
1021 register_ssa_partition (map, arg);
1022 if (TREE_CODE (arg) == SSA_NAME
1023 && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
1025 saw_copy = true;
1026 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
1027 if ((e->flags & EDGE_ABNORMAL) == 0)
1029 int cost = coalesce_cost_edge (e);
1030 if (cost == 1 && has_single_use (arg))
1031 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
1032 else
1033 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1036 else
1037 if (e->flags & EDGE_ABNORMAL)
1038 abnormal_corrupt (phi, i);
1040 if (saw_copy)
1041 bitmap_set_bit (used_in_copy, ver);
1044 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1046 stmt = gsi_stmt (gsi);
1048 if (is_gimple_debug (stmt))
1049 continue;
1051 /* Register USE and DEF operands in each statement. */
1052 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1053 register_ssa_partition (map, var);
1055 /* Check for copy coalesces. */
1056 switch (gimple_code (stmt))
1058 case GIMPLE_ASSIGN:
1060 tree lhs = gimple_assign_lhs (stmt);
1061 tree rhs1 = gimple_assign_rhs1 (stmt);
1063 if (gimple_assign_copy_p (stmt)
1064 && TREE_CODE (lhs) == SSA_NAME
1065 && TREE_CODE (rhs1) == SSA_NAME
1066 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs1))
1068 v1 = SSA_NAME_VERSION (lhs);
1069 v2 = SSA_NAME_VERSION (rhs1);
1070 cost = coalesce_cost_bb (bb);
1071 add_coalesce (cl, v1, v2, cost);
1072 bitmap_set_bit (used_in_copy, v1);
1073 bitmap_set_bit (used_in_copy, v2);
1076 break;
1078 case GIMPLE_ASM:
1080 unsigned long noutputs, i;
1081 unsigned long ninputs;
1082 tree *outputs, link;
1083 noutputs = gimple_asm_noutputs (stmt);
1084 ninputs = gimple_asm_ninputs (stmt);
1085 outputs = (tree *) alloca (noutputs * sizeof (tree));
1086 for (i = 0; i < noutputs; ++i) {
1087 link = gimple_asm_output_op (stmt, i);
1088 outputs[i] = TREE_VALUE (link);
1091 for (i = 0; i < ninputs; ++i)
1093 const char *constraint;
1094 tree input;
1095 char *end;
1096 unsigned long match;
1098 link = gimple_asm_input_op (stmt, i);
1099 constraint
1100 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1101 input = TREE_VALUE (link);
1103 if (TREE_CODE (input) != SSA_NAME)
1104 continue;
1106 match = strtoul (constraint, &end, 10);
1107 if (match >= noutputs || end == constraint)
1108 continue;
1110 if (TREE_CODE (outputs[match]) != SSA_NAME)
1111 continue;
1113 v1 = SSA_NAME_VERSION (outputs[match]);
1114 v2 = SSA_NAME_VERSION (input);
1116 if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
1118 cost = coalesce_cost (REG_BR_PROB_BASE,
1119 optimize_bb_for_size_p (bb));
1120 add_coalesce (cl, v1, v2, cost);
1121 bitmap_set_bit (used_in_copy, v1);
1122 bitmap_set_bit (used_in_copy, v2);
1125 break;
1128 default:
1129 break;
1132 #ifdef ENABLE_CHECKING
1133 /* Mark real uses and defs. */
1134 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1135 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var)));
1137 /* Validate that virtual ops don't get used in funny ways. */
1138 if (gimple_vuse (stmt))
1139 bitmap_set_bit (used_in_virtual_ops,
1140 DECL_UID (SSA_NAME_VAR (gimple_vuse (stmt))));
1141 #endif /* ENABLE_CHECKING */
1145 /* Now process result decls and live on entry variables for entry into
1146 the coalesce list. */
1147 first = NULL_TREE;
1148 for (i = 1; i < num_ssa_names; i++)
1150 var = ssa_name (i);
1151 if (var != NULL_TREE && is_gimple_reg (var))
1153 /* Add coalesces between all the result decls. */
1154 if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1156 if (first == NULL_TREE)
1157 first = var;
1158 else
1160 gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
1161 v1 = SSA_NAME_VERSION (first);
1162 v2 = SSA_NAME_VERSION (var);
1163 bitmap_set_bit (used_in_copy, v1);
1164 bitmap_set_bit (used_in_copy, v2);
1165 cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
1166 add_coalesce (cl, v1, v2, cost);
1169 /* Mark any default_def variables as being in the coalesce list
1170 since they will have to be coalesced with the base variable. If
1171 not marked as present, they won't be in the coalesce view. */
1172 if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var
1173 && !has_zero_uses (var))
1174 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1178 #if defined ENABLE_CHECKING
1180 unsigned i;
1181 bitmap both = BITMAP_ALLOC (NULL);
1182 bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
1183 if (!bitmap_empty_p (both))
1185 bitmap_iterator bi;
1187 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
1188 fprintf (stderr, "Variable %s used in real and virtual operands\n",
1189 get_name (referenced_var (i)));
1190 internal_error ("SSA corruption");
1193 BITMAP_FREE (used_in_real_ops);
1194 BITMAP_FREE (used_in_virtual_ops);
1195 BITMAP_FREE (both);
1197 #endif
1199 return map;
1203 /* Attempt to coalesce ssa versions X and Y together using the partition
1204 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1205 DEBUG, if it is nun-NULL. */
1207 static inline bool
1208 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1209 FILE *debug)
1211 int z;
1212 tree var1, var2;
1213 int p1, p2;
1215 p1 = var_to_partition (map, ssa_name (x));
1216 p2 = var_to_partition (map, ssa_name (y));
1218 if (debug)
1220 fprintf (debug, "(%d)", x);
1221 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1222 fprintf (debug, " & (%d)", y);
1223 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1226 if (p1 == p2)
1228 if (debug)
1229 fprintf (debug, ": Already Coalesced.\n");
1230 return true;
1233 if (debug)
1234 fprintf (debug, " [map: %d, %d] ", p1, p2);
1237 if (!ssa_conflicts_test_p (graph, p1, p2))
1239 var1 = partition_to_var (map, p1);
1240 var2 = partition_to_var (map, p2);
1241 z = var_union (map, var1, var2);
1242 if (z == NO_PARTITION)
1244 if (debug)
1245 fprintf (debug, ": Unable to perform partition union.\n");
1246 return false;
1249 /* z is the new combined partition. Remove the other partition from
1250 the list, and merge the conflicts. */
1251 if (z == p1)
1252 ssa_conflicts_merge (graph, p1, p2);
1253 else
1254 ssa_conflicts_merge (graph, p2, p1);
1256 if (debug)
1257 fprintf (debug, ": Success -> %d\n", z);
1258 return true;
1261 if (debug)
1262 fprintf (debug, ": Fail due to conflict\n");
1264 return false;
1268 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1269 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1271 static void
1272 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1273 FILE *debug)
1275 int x = 0, y = 0;
1276 tree var1, var2;
1277 int cost;
1278 basic_block bb;
1279 edge e;
1280 edge_iterator ei;
1282 /* First, coalesce all the copies across abnormal edges. These are not placed
1283 in the coalesce list because they do not need to be sorted, and simply
1284 consume extra memory/compilation time in large programs. */
1286 FOR_EACH_BB (bb)
1288 FOR_EACH_EDGE (e, ei, bb->preds)
1289 if (e->flags & EDGE_ABNORMAL)
1291 gimple_stmt_iterator gsi;
1292 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1293 gsi_next (&gsi))
1295 gimple phi = gsi_stmt (gsi);
1296 tree res = PHI_RESULT (phi);
1297 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1298 int v1 = SSA_NAME_VERSION (res);
1299 int v2 = SSA_NAME_VERSION (arg);
1301 if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
1302 abnormal_corrupt (phi, e->dest_idx);
1304 if (debug)
1305 fprintf (debug, "Abnormal coalesce: ");
1307 if (!attempt_coalesce (map, graph, v1, v2, debug))
1308 fail_abnormal_edge_coalesce (v1, v2);
1313 /* Now process the items in the coalesce list. */
1315 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1317 var1 = ssa_name (x);
1318 var2 = ssa_name (y);
1320 /* Assert the coalesces have the same base variable. */
1321 gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
1323 if (debug)
1324 fprintf (debug, "Coalesce list: ");
1325 attempt_coalesce (map, graph, x, y, debug);
1329 /* Returns a hash code for P. */
1331 static hashval_t
1332 hash_ssa_name_by_var (const void *p)
1334 const_tree n = (const_tree) p;
1335 return (hashval_t) htab_hash_pointer (SSA_NAME_VAR (n));
1338 /* Returns nonzero if P1 and P2 are equal. */
1340 static int
1341 eq_ssa_name_by_var (const void *p1, const void *p2)
1343 const_tree n1 = (const_tree) p1;
1344 const_tree n2 = (const_tree) p2;
1345 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1348 /* Reduce the number of copies by coalescing variables in the function. Return
1349 a partition map with the resulting coalesces. */
1351 extern var_map
1352 coalesce_ssa_name (void)
1354 tree_live_info_p liveinfo;
1355 ssa_conflicts_p graph;
1356 coalesce_list_p cl;
1357 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1358 var_map map;
1359 unsigned int i;
1360 static htab_t ssa_name_hash;
1362 cl = create_coalesce_list ();
1363 map = create_outofssa_var_map (cl, used_in_copies);
1365 /* We need to coalesce all names originating same SSA_NAME_VAR
1366 so debug info remains undisturbed. */
1367 if (!optimize)
1369 ssa_name_hash = htab_create (10, hash_ssa_name_by_var,
1370 eq_ssa_name_by_var, NULL);
1371 for (i = 1; i < num_ssa_names; i++)
1373 tree a = ssa_name (i);
1375 if (a
1376 && SSA_NAME_VAR (a)
1377 && !DECL_ARTIFICIAL (SSA_NAME_VAR (a))
1378 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)))
1380 tree *slot = (tree *) htab_find_slot (ssa_name_hash, a, INSERT);
1382 if (!*slot)
1383 *slot = a;
1384 else
1386 add_coalesce (cl, SSA_NAME_VERSION (a), SSA_NAME_VERSION (*slot),
1387 MUST_COALESCE_COST - 1);
1388 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1389 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1393 htab_delete (ssa_name_hash);
1395 if (dump_file && (dump_flags & TDF_DETAILS))
1396 dump_var_map (dump_file, map);
1398 /* Don't calculate live ranges for variables not in the coalesce list. */
1399 partition_view_bitmap (map, used_in_copies, true);
1400 BITMAP_FREE (used_in_copies);
1402 if (num_var_partitions (map) < 1)
1404 delete_coalesce_list (cl);
1405 return map;
1408 if (dump_file && (dump_flags & TDF_DETAILS))
1409 dump_var_map (dump_file, map);
1411 liveinfo = calculate_live_ranges (map);
1413 if (dump_file && (dump_flags & TDF_DETAILS))
1414 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1416 /* Build a conflict graph. */
1417 graph = build_ssa_conflict_graph (liveinfo);
1418 delete_tree_live_info (liveinfo);
1419 if (dump_file && (dump_flags & TDF_DETAILS))
1420 ssa_conflicts_dump (dump_file, graph);
1422 sort_coalesce_list (cl);
1424 if (dump_file && (dump_flags & TDF_DETAILS))
1426 fprintf (dump_file, "\nAfter sorting:\n");
1427 dump_coalesce_list (dump_file, cl);
1430 /* First, coalesce all live on entry variables to their base variable.
1431 This will ensure the first use is coming from the correct location. */
1433 if (dump_file && (dump_flags & TDF_DETAILS))
1434 dump_var_map (dump_file, map);
1436 /* Now coalesce everything in the list. */
1437 coalesce_partitions (map, graph, cl,
1438 ((dump_flags & TDF_DETAILS) ? dump_file
1439 : NULL));
1441 delete_coalesce_list (cl);
1442 ssa_conflicts_delete (graph);
1444 return map;