2010-11-27 François Dumont <francois.cppdevs@free.fr>
[official-gcc.git] / gcc / function.c
blobc69a5c55554ef741418afd2194d216deca1e865a
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "integrate.h"
58 #include "langhooks.h"
59 #include "target.h"
60 #include "cfglayout.h"
61 #include "gimple.h"
62 #include "tree-pass.h"
63 #include "predict.h"
64 #include "df.h"
65 #include "timevar.h"
66 #include "vecprim.h"
68 /* So we can assign to cfun in this file. */
69 #undef cfun
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 pass_stack_ptr_mod has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 /* These hashes record the prologue and epilogue insns. */
127 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t prologue_insn_hash;
129 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
130 htab_t epilogue_insn_hash;
133 htab_t types_used_by_vars_hash = NULL;
134 VEC(tree,gc) *types_used_by_cur_var_decl;
136 /* Forward declarations. */
138 static struct temp_slot *find_temp_slot_from_address (rtx);
139 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
140 static void pad_below (struct args_size *, enum machine_mode, tree);
141 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
142 static int all_blocks (tree, tree *);
143 static tree *get_block_vector (tree, int *);
144 extern tree debug_find_var_in_block_tree (tree, tree);
145 /* We always define `record_insns' even if it's not used so that we
146 can always export `prologue_epilogue_contains'. */
147 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
148 static bool contains (const_rtx, htab_t);
149 #ifdef HAVE_return
150 static void emit_return_into_block (basic_block);
151 #endif
152 static void prepare_function_start (void);
153 static void do_clobber_return_reg (rtx, void *);
154 static void do_use_return_reg (rtx, void *);
155 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
157 /* Stack of nested functions. */
158 /* Keep track of the cfun stack. */
160 typedef struct function *function_p;
162 DEF_VEC_P(function_p);
163 DEF_VEC_ALLOC_P(function_p,heap);
164 static VEC(function_p,heap) *function_context_stack;
166 /* Save the current context for compilation of a nested function.
167 This is called from language-specific code. */
169 void
170 push_function_context (void)
172 if (cfun == 0)
173 allocate_struct_function (NULL, false);
175 VEC_safe_push (function_p, heap, function_context_stack, cfun);
176 set_cfun (NULL);
179 /* Restore the last saved context, at the end of a nested function.
180 This function is called from language-specific code. */
182 void
183 pop_function_context (void)
185 struct function *p = VEC_pop (function_p, function_context_stack);
186 set_cfun (p);
187 current_function_decl = p->decl;
189 /* Reset variables that have known state during rtx generation. */
190 virtuals_instantiated = 0;
191 generating_concat_p = 1;
194 /* Clear out all parts of the state in F that can safely be discarded
195 after the function has been parsed, but not compiled, to let
196 garbage collection reclaim the memory. */
198 void
199 free_after_parsing (struct function *f)
201 f->language = 0;
204 /* Clear out all parts of the state in F that can safely be discarded
205 after the function has been compiled, to let garbage collection
206 reclaim the memory. */
208 void
209 free_after_compilation (struct function *f)
211 prologue_insn_hash = NULL;
212 epilogue_insn_hash = NULL;
214 if (crtl->emit.regno_pointer_align)
215 free (crtl->emit.regno_pointer_align);
217 memset (crtl, 0, sizeof (struct rtl_data));
218 f->eh = NULL;
219 f->machine = NULL;
220 f->cfg = NULL;
222 regno_reg_rtx = NULL;
223 insn_locators_free ();
226 /* Return size needed for stack frame based on slots so far allocated.
227 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
228 the caller may have to do that. */
230 HOST_WIDE_INT
231 get_frame_size (void)
233 if (FRAME_GROWS_DOWNWARD)
234 return -frame_offset;
235 else
236 return frame_offset;
239 /* Issue an error message and return TRUE if frame OFFSET overflows in
240 the signed target pointer arithmetics for function FUNC. Otherwise
241 return FALSE. */
243 bool
244 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
246 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
248 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
249 /* Leave room for the fixed part of the frame. */
250 - 64 * UNITS_PER_WORD)
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects too large");
254 return TRUE;
257 return FALSE;
260 /* Return stack slot alignment in bits for TYPE and MODE. */
262 static unsigned int
263 get_stack_local_alignment (tree type, enum machine_mode mode)
265 unsigned int alignment;
267 if (mode == BLKmode)
268 alignment = BIGGEST_ALIGNMENT;
269 else
270 alignment = GET_MODE_ALIGNMENT (mode);
272 /* Allow the frond-end to (possibly) increase the alignment of this
273 stack slot. */
274 if (! type)
275 type = lang_hooks.types.type_for_mode (mode, 0);
277 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
280 /* Determine whether it is possible to fit a stack slot of size SIZE and
281 alignment ALIGNMENT into an area in the stack frame that starts at
282 frame offset START and has a length of LENGTH. If so, store the frame
283 offset to be used for the stack slot in *POFFSET and return true;
284 return false otherwise. This function will extend the frame size when
285 given a start/length pair that lies at the end of the frame. */
287 static bool
288 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
289 HOST_WIDE_INT size, unsigned int alignment,
290 HOST_WIDE_INT *poffset)
292 HOST_WIDE_INT this_frame_offset;
293 int frame_off, frame_alignment, frame_phase;
295 /* Calculate how many bytes the start of local variables is off from
296 stack alignment. */
297 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
298 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
299 frame_phase = frame_off ? frame_alignment - frame_off : 0;
301 /* Round the frame offset to the specified alignment. */
303 /* We must be careful here, since FRAME_OFFSET might be negative and
304 division with a negative dividend isn't as well defined as we might
305 like. So we instead assume that ALIGNMENT is a power of two and
306 use logical operations which are unambiguous. */
307 if (FRAME_GROWS_DOWNWARD)
308 this_frame_offset
309 = (FLOOR_ROUND (start + length - size - frame_phase,
310 (unsigned HOST_WIDE_INT) alignment)
311 + frame_phase);
312 else
313 this_frame_offset
314 = (CEIL_ROUND (start - frame_phase,
315 (unsigned HOST_WIDE_INT) alignment)
316 + frame_phase);
318 /* See if it fits. If this space is at the edge of the frame,
319 consider extending the frame to make it fit. Our caller relies on
320 this when allocating a new slot. */
321 if (frame_offset == start && this_frame_offset < frame_offset)
322 frame_offset = this_frame_offset;
323 else if (this_frame_offset < start)
324 return false;
325 else if (start + length == frame_offset
326 && this_frame_offset + size > start + length)
327 frame_offset = this_frame_offset + size;
328 else if (this_frame_offset + size > start + length)
329 return false;
331 *poffset = this_frame_offset;
332 return true;
335 /* Create a new frame_space structure describing free space in the stack
336 frame beginning at START and ending at END, and chain it into the
337 function's frame_space_list. */
339 static void
340 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
342 struct frame_space *space = ggc_alloc_frame_space ();
343 space->next = crtl->frame_space_list;
344 crtl->frame_space_list = space;
345 space->start = start;
346 space->length = end - start;
349 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
350 with machine mode MODE.
352 ALIGN controls the amount of alignment for the address of the slot:
353 0 means according to MODE,
354 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
355 -2 means use BITS_PER_UNIT,
356 positive specifies alignment boundary in bits.
358 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
360 We do not round to stack_boundary here. */
363 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
364 int align,
365 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
367 rtx x, addr;
368 int bigend_correction = 0;
369 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
370 unsigned int alignment, alignment_in_bits;
372 if (align == 0)
374 alignment = get_stack_local_alignment (NULL, mode);
375 alignment /= BITS_PER_UNIT;
377 else if (align == -1)
379 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
380 size = CEIL_ROUND (size, alignment);
382 else if (align == -2)
383 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
384 else
385 alignment = align / BITS_PER_UNIT;
387 alignment_in_bits = alignment * BITS_PER_UNIT;
389 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
390 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
392 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
396 if (SUPPORTS_STACK_ALIGNMENT)
398 if (crtl->stack_alignment_estimated < alignment_in_bits)
400 if (!crtl->stack_realign_processed)
401 crtl->stack_alignment_estimated = alignment_in_bits;
402 else
404 /* If stack is realigned and stack alignment value
405 hasn't been finalized, it is OK not to increase
406 stack_alignment_estimated. The bigger alignment
407 requirement is recorded in stack_alignment_needed
408 below. */
409 gcc_assert (!crtl->stack_realign_finalized);
410 if (!crtl->stack_realign_needed)
412 /* It is OK to reduce the alignment as long as the
413 requested size is 0 or the estimated stack
414 alignment >= mode alignment. */
415 gcc_assert (reduce_alignment_ok
416 || size == 0
417 || (crtl->stack_alignment_estimated
418 >= GET_MODE_ALIGNMENT (mode)));
419 alignment_in_bits = crtl->stack_alignment_estimated;
420 alignment = alignment_in_bits / BITS_PER_UNIT;
426 if (crtl->stack_alignment_needed < alignment_in_bits)
427 crtl->stack_alignment_needed = alignment_in_bits;
428 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
429 crtl->max_used_stack_slot_alignment = alignment_in_bits;
431 if (mode != BLKmode || size != 0)
433 struct frame_space **psp;
435 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
437 struct frame_space *space = *psp;
438 if (!try_fit_stack_local (space->start, space->length, size,
439 alignment, &slot_offset))
440 continue;
441 *psp = space->next;
442 if (slot_offset > space->start)
443 add_frame_space (space->start, slot_offset);
444 if (slot_offset + size < space->start + space->length)
445 add_frame_space (slot_offset + size,
446 space->start + space->length);
447 goto found_space;
450 else if (!STACK_ALIGNMENT_NEEDED)
452 slot_offset = frame_offset;
453 goto found_space;
456 old_frame_offset = frame_offset;
458 if (FRAME_GROWS_DOWNWARD)
460 frame_offset -= size;
461 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
463 if (slot_offset > frame_offset)
464 add_frame_space (frame_offset, slot_offset);
465 if (slot_offset + size < old_frame_offset)
466 add_frame_space (slot_offset + size, old_frame_offset);
468 else
470 frame_offset += size;
471 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
473 if (slot_offset > old_frame_offset)
474 add_frame_space (old_frame_offset, slot_offset);
475 if (slot_offset + size < frame_offset)
476 add_frame_space (slot_offset + size, frame_offset);
479 found_space:
480 /* On a big-endian machine, if we are allocating more space than we will use,
481 use the least significant bytes of those that are allocated. */
482 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
483 bigend_correction = size - GET_MODE_SIZE (mode);
485 /* If we have already instantiated virtual registers, return the actual
486 address relative to the frame pointer. */
487 if (virtuals_instantiated)
488 addr = plus_constant (frame_pointer_rtx,
489 trunc_int_for_mode
490 (slot_offset + bigend_correction
491 + STARTING_FRAME_OFFSET, Pmode));
492 else
493 addr = plus_constant (virtual_stack_vars_rtx,
494 trunc_int_for_mode
495 (slot_offset + bigend_correction,
496 Pmode));
498 x = gen_rtx_MEM (mode, addr);
499 set_mem_align (x, alignment_in_bits);
500 MEM_NOTRAP_P (x) = 1;
502 stack_slot_list
503 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
505 if (frame_offset_overflow (frame_offset, current_function_decl))
506 frame_offset = 0;
508 return x;
511 /* Wrap up assign_stack_local_1 with last parameter as false. */
514 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
516 return assign_stack_local_1 (mode, size, align, false);
520 /* In order to evaluate some expressions, such as function calls returning
521 structures in memory, we need to temporarily allocate stack locations.
522 We record each allocated temporary in the following structure.
524 Associated with each temporary slot is a nesting level. When we pop up
525 one level, all temporaries associated with the previous level are freed.
526 Normally, all temporaries are freed after the execution of the statement
527 in which they were created. However, if we are inside a ({...}) grouping,
528 the result may be in a temporary and hence must be preserved. If the
529 result could be in a temporary, we preserve it if we can determine which
530 one it is in. If we cannot determine which temporary may contain the
531 result, all temporaries are preserved. A temporary is preserved by
532 pretending it was allocated at the previous nesting level.
534 Automatic variables are also assigned temporary slots, at the nesting
535 level where they are defined. They are marked a "kept" so that
536 free_temp_slots will not free them. */
538 struct GTY(()) temp_slot {
539 /* Points to next temporary slot. */
540 struct temp_slot *next;
541 /* Points to previous temporary slot. */
542 struct temp_slot *prev;
543 /* The rtx to used to reference the slot. */
544 rtx slot;
545 /* The size, in units, of the slot. */
546 HOST_WIDE_INT size;
547 /* The type of the object in the slot, or zero if it doesn't correspond
548 to a type. We use this to determine whether a slot can be reused.
549 It can be reused if objects of the type of the new slot will always
550 conflict with objects of the type of the old slot. */
551 tree type;
552 /* The alignment (in bits) of the slot. */
553 unsigned int align;
554 /* Nonzero if this temporary is currently in use. */
555 char in_use;
556 /* Nonzero if this temporary has its address taken. */
557 char addr_taken;
558 /* Nesting level at which this slot is being used. */
559 int level;
560 /* Nonzero if this should survive a call to free_temp_slots. */
561 int keep;
562 /* The offset of the slot from the frame_pointer, including extra space
563 for alignment. This info is for combine_temp_slots. */
564 HOST_WIDE_INT base_offset;
565 /* The size of the slot, including extra space for alignment. This
566 info is for combine_temp_slots. */
567 HOST_WIDE_INT full_size;
570 /* A table of addresses that represent a stack slot. The table is a mapping
571 from address RTXen to a temp slot. */
572 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
574 /* Entry for the above hash table. */
575 struct GTY(()) temp_slot_address_entry {
576 hashval_t hash;
577 rtx address;
578 struct temp_slot *temp_slot;
581 /* Removes temporary slot TEMP from LIST. */
583 static void
584 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
586 if (temp->next)
587 temp->next->prev = temp->prev;
588 if (temp->prev)
589 temp->prev->next = temp->next;
590 else
591 *list = temp->next;
593 temp->prev = temp->next = NULL;
596 /* Inserts temporary slot TEMP to LIST. */
598 static void
599 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
601 temp->next = *list;
602 if (*list)
603 (*list)->prev = temp;
604 temp->prev = NULL;
605 *list = temp;
608 /* Returns the list of used temp slots at LEVEL. */
610 static struct temp_slot **
611 temp_slots_at_level (int level)
613 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
614 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
616 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
619 /* Returns the maximal temporary slot level. */
621 static int
622 max_slot_level (void)
624 if (!used_temp_slots)
625 return -1;
627 return VEC_length (temp_slot_p, used_temp_slots) - 1;
630 /* Moves temporary slot TEMP to LEVEL. */
632 static void
633 move_slot_to_level (struct temp_slot *temp, int level)
635 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
636 insert_slot_to_list (temp, temp_slots_at_level (level));
637 temp->level = level;
640 /* Make temporary slot TEMP available. */
642 static void
643 make_slot_available (struct temp_slot *temp)
645 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
646 insert_slot_to_list (temp, &avail_temp_slots);
647 temp->in_use = 0;
648 temp->level = -1;
651 /* Compute the hash value for an address -> temp slot mapping.
652 The value is cached on the mapping entry. */
653 static hashval_t
654 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
656 int do_not_record = 0;
657 return hash_rtx (t->address, GET_MODE (t->address),
658 &do_not_record, NULL, false);
661 /* Return the hash value for an address -> temp slot mapping. */
662 static hashval_t
663 temp_slot_address_hash (const void *p)
665 const struct temp_slot_address_entry *t;
666 t = (const struct temp_slot_address_entry *) p;
667 return t->hash;
670 /* Compare two address -> temp slot mapping entries. */
671 static int
672 temp_slot_address_eq (const void *p1, const void *p2)
674 const struct temp_slot_address_entry *t1, *t2;
675 t1 = (const struct temp_slot_address_entry *) p1;
676 t2 = (const struct temp_slot_address_entry *) p2;
677 return exp_equiv_p (t1->address, t2->address, 0, true);
680 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
681 static void
682 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
684 void **slot;
685 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
686 t->address = address;
687 t->temp_slot = temp_slot;
688 t->hash = temp_slot_address_compute_hash (t);
689 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
690 *slot = t;
693 /* Remove an address -> temp slot mapping entry if the temp slot is
694 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
695 static int
696 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
698 const struct temp_slot_address_entry *t;
699 t = (const struct temp_slot_address_entry *) *slot;
700 if (! t->temp_slot->in_use)
701 *slot = NULL;
702 return 1;
705 /* Remove all mappings of addresses to unused temp slots. */
706 static void
707 remove_unused_temp_slot_addresses (void)
709 htab_traverse (temp_slot_address_table,
710 remove_unused_temp_slot_addresses_1,
711 NULL);
714 /* Find the temp slot corresponding to the object at address X. */
716 static struct temp_slot *
717 find_temp_slot_from_address (rtx x)
719 struct temp_slot *p;
720 struct temp_slot_address_entry tmp, *t;
722 /* First try the easy way:
723 See if X exists in the address -> temp slot mapping. */
724 tmp.address = x;
725 tmp.temp_slot = NULL;
726 tmp.hash = temp_slot_address_compute_hash (&tmp);
727 t = (struct temp_slot_address_entry *)
728 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
729 if (t)
730 return t->temp_slot;
732 /* If we have a sum involving a register, see if it points to a temp
733 slot. */
734 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
735 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
736 return p;
737 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
738 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
739 return p;
741 /* Last resort: Address is a virtual stack var address. */
742 if (GET_CODE (x) == PLUS
743 && XEXP (x, 0) == virtual_stack_vars_rtx
744 && CONST_INT_P (XEXP (x, 1)))
746 int i;
747 for (i = max_slot_level (); i >= 0; i--)
748 for (p = *temp_slots_at_level (i); p; p = p->next)
750 if (INTVAL (XEXP (x, 1)) >= p->base_offset
751 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
752 return p;
756 return NULL;
759 /* Allocate a temporary stack slot and record it for possible later
760 reuse.
762 MODE is the machine mode to be given to the returned rtx.
764 SIZE is the size in units of the space required. We do no rounding here
765 since assign_stack_local will do any required rounding.
767 KEEP is 1 if this slot is to be retained after a call to
768 free_temp_slots. Automatic variables for a block are allocated
769 with this flag. KEEP values of 2 or 3 were needed respectively
770 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
771 or for SAVE_EXPRs, but they are now unused.
773 TYPE is the type that will be used for the stack slot. */
776 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
777 int keep, tree type)
779 unsigned int align;
780 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
781 rtx slot;
783 /* If SIZE is -1 it means that somebody tried to allocate a temporary
784 of a variable size. */
785 gcc_assert (size != -1);
787 /* These are now unused. */
788 gcc_assert (keep <= 1);
790 align = get_stack_local_alignment (type, mode);
792 /* Try to find an available, already-allocated temporary of the proper
793 mode which meets the size and alignment requirements. Choose the
794 smallest one with the closest alignment.
796 If assign_stack_temp is called outside of the tree->rtl expansion,
797 we cannot reuse the stack slots (that may still refer to
798 VIRTUAL_STACK_VARS_REGNUM). */
799 if (!virtuals_instantiated)
801 for (p = avail_temp_slots; p; p = p->next)
803 if (p->align >= align && p->size >= size
804 && GET_MODE (p->slot) == mode
805 && objects_must_conflict_p (p->type, type)
806 && (best_p == 0 || best_p->size > p->size
807 || (best_p->size == p->size && best_p->align > p->align)))
809 if (p->align == align && p->size == size)
811 selected = p;
812 cut_slot_from_list (selected, &avail_temp_slots);
813 best_p = 0;
814 break;
816 best_p = p;
821 /* Make our best, if any, the one to use. */
822 if (best_p)
824 selected = best_p;
825 cut_slot_from_list (selected, &avail_temp_slots);
827 /* If there are enough aligned bytes left over, make them into a new
828 temp_slot so that the extra bytes don't get wasted. Do this only
829 for BLKmode slots, so that we can be sure of the alignment. */
830 if (GET_MODE (best_p->slot) == BLKmode)
832 int alignment = best_p->align / BITS_PER_UNIT;
833 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
835 if (best_p->size - rounded_size >= alignment)
837 p = ggc_alloc_temp_slot ();
838 p->in_use = p->addr_taken = 0;
839 p->size = best_p->size - rounded_size;
840 p->base_offset = best_p->base_offset + rounded_size;
841 p->full_size = best_p->full_size - rounded_size;
842 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
843 p->align = best_p->align;
844 p->type = best_p->type;
845 insert_slot_to_list (p, &avail_temp_slots);
847 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
848 stack_slot_list);
850 best_p->size = rounded_size;
851 best_p->full_size = rounded_size;
856 /* If we still didn't find one, make a new temporary. */
857 if (selected == 0)
859 HOST_WIDE_INT frame_offset_old = frame_offset;
861 p = ggc_alloc_temp_slot ();
863 /* We are passing an explicit alignment request to assign_stack_local.
864 One side effect of that is assign_stack_local will not round SIZE
865 to ensure the frame offset remains suitably aligned.
867 So for requests which depended on the rounding of SIZE, we go ahead
868 and round it now. We also make sure ALIGNMENT is at least
869 BIGGEST_ALIGNMENT. */
870 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
871 p->slot = assign_stack_local (mode,
872 (mode == BLKmode
873 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
874 : size),
875 align);
877 p->align = align;
879 /* The following slot size computation is necessary because we don't
880 know the actual size of the temporary slot until assign_stack_local
881 has performed all the frame alignment and size rounding for the
882 requested temporary. Note that extra space added for alignment
883 can be either above or below this stack slot depending on which
884 way the frame grows. We include the extra space if and only if it
885 is above this slot. */
886 if (FRAME_GROWS_DOWNWARD)
887 p->size = frame_offset_old - frame_offset;
888 else
889 p->size = size;
891 /* Now define the fields used by combine_temp_slots. */
892 if (FRAME_GROWS_DOWNWARD)
894 p->base_offset = frame_offset;
895 p->full_size = frame_offset_old - frame_offset;
897 else
899 p->base_offset = frame_offset_old;
900 p->full_size = frame_offset - frame_offset_old;
903 selected = p;
906 p = selected;
907 p->in_use = 1;
908 p->addr_taken = 0;
909 p->type = type;
910 p->level = temp_slot_level;
911 p->keep = keep;
913 pp = temp_slots_at_level (p->level);
914 insert_slot_to_list (p, pp);
915 insert_temp_slot_address (XEXP (p->slot, 0), p);
917 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
918 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
919 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
921 /* If we know the alias set for the memory that will be used, use
922 it. If there's no TYPE, then we don't know anything about the
923 alias set for the memory. */
924 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
925 set_mem_align (slot, align);
927 /* If a type is specified, set the relevant flags. */
928 if (type != 0)
930 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
931 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
932 || TREE_CODE (type) == COMPLEX_TYPE));
934 MEM_NOTRAP_P (slot) = 1;
936 return slot;
939 /* Allocate a temporary stack slot and record it for possible later
940 reuse. First three arguments are same as in preceding function. */
943 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
945 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
948 /* Assign a temporary.
949 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
950 and so that should be used in error messages. In either case, we
951 allocate of the given type.
952 KEEP is as for assign_stack_temp.
953 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
954 it is 0 if a register is OK.
955 DONT_PROMOTE is 1 if we should not promote values in register
956 to wider modes. */
959 assign_temp (tree type_or_decl, int keep, int memory_required,
960 int dont_promote ATTRIBUTE_UNUSED)
962 tree type, decl;
963 enum machine_mode mode;
964 #ifdef PROMOTE_MODE
965 int unsignedp;
966 #endif
968 if (DECL_P (type_or_decl))
969 decl = type_or_decl, type = TREE_TYPE (decl);
970 else
971 decl = NULL, type = type_or_decl;
973 mode = TYPE_MODE (type);
974 #ifdef PROMOTE_MODE
975 unsignedp = TYPE_UNSIGNED (type);
976 #endif
978 if (mode == BLKmode || memory_required)
980 HOST_WIDE_INT size = int_size_in_bytes (type);
981 rtx tmp;
983 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
984 problems with allocating the stack space. */
985 if (size == 0)
986 size = 1;
988 /* Unfortunately, we don't yet know how to allocate variable-sized
989 temporaries. However, sometimes we can find a fixed upper limit on
990 the size, so try that instead. */
991 else if (size == -1)
992 size = max_int_size_in_bytes (type);
994 /* The size of the temporary may be too large to fit into an integer. */
995 /* ??? Not sure this should happen except for user silliness, so limit
996 this to things that aren't compiler-generated temporaries. The
997 rest of the time we'll die in assign_stack_temp_for_type. */
998 if (decl && size == -1
999 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1001 error ("size of variable %q+D is too large", decl);
1002 size = 1;
1005 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1006 return tmp;
1009 #ifdef PROMOTE_MODE
1010 if (! dont_promote)
1011 mode = promote_mode (type, mode, &unsignedp);
1012 #endif
1014 return gen_reg_rtx (mode);
1017 /* Combine temporary stack slots which are adjacent on the stack.
1019 This allows for better use of already allocated stack space. This is only
1020 done for BLKmode slots because we can be sure that we won't have alignment
1021 problems in this case. */
1023 static void
1024 combine_temp_slots (void)
1026 struct temp_slot *p, *q, *next, *next_q;
1027 int num_slots;
1029 /* We can't combine slots, because the information about which slot
1030 is in which alias set will be lost. */
1031 if (flag_strict_aliasing)
1032 return;
1034 /* If there are a lot of temp slots, don't do anything unless
1035 high levels of optimization. */
1036 if (! flag_expensive_optimizations)
1037 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1038 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1039 return;
1041 for (p = avail_temp_slots; p; p = next)
1043 int delete_p = 0;
1045 next = p->next;
1047 if (GET_MODE (p->slot) != BLKmode)
1048 continue;
1050 for (q = p->next; q; q = next_q)
1052 int delete_q = 0;
1054 next_q = q->next;
1056 if (GET_MODE (q->slot) != BLKmode)
1057 continue;
1059 if (p->base_offset + p->full_size == q->base_offset)
1061 /* Q comes after P; combine Q into P. */
1062 p->size += q->size;
1063 p->full_size += q->full_size;
1064 delete_q = 1;
1066 else if (q->base_offset + q->full_size == p->base_offset)
1068 /* P comes after Q; combine P into Q. */
1069 q->size += p->size;
1070 q->full_size += p->full_size;
1071 delete_p = 1;
1072 break;
1074 if (delete_q)
1075 cut_slot_from_list (q, &avail_temp_slots);
1078 /* Either delete P or advance past it. */
1079 if (delete_p)
1080 cut_slot_from_list (p, &avail_temp_slots);
1084 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1085 slot that previously was known by OLD_RTX. */
1087 void
1088 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1090 struct temp_slot *p;
1092 if (rtx_equal_p (old_rtx, new_rtx))
1093 return;
1095 p = find_temp_slot_from_address (old_rtx);
1097 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1098 NEW_RTX is a register, see if one operand of the PLUS is a
1099 temporary location. If so, NEW_RTX points into it. Otherwise,
1100 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1101 in common between them. If so, try a recursive call on those
1102 values. */
1103 if (p == 0)
1105 if (GET_CODE (old_rtx) != PLUS)
1106 return;
1108 if (REG_P (new_rtx))
1110 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1111 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1112 return;
1114 else if (GET_CODE (new_rtx) != PLUS)
1115 return;
1117 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1118 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1119 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1120 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1121 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1122 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1123 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1124 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1126 return;
1129 /* Otherwise add an alias for the temp's address. */
1130 insert_temp_slot_address (new_rtx, p);
1133 /* If X could be a reference to a temporary slot, mark the fact that its
1134 address was taken. */
1136 void
1137 mark_temp_addr_taken (rtx x)
1139 struct temp_slot *p;
1141 if (x == 0)
1142 return;
1144 /* If X is not in memory or is at a constant address, it cannot be in
1145 a temporary slot. */
1146 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1147 return;
1149 p = find_temp_slot_from_address (XEXP (x, 0));
1150 if (p != 0)
1151 p->addr_taken = 1;
1154 /* If X could be a reference to a temporary slot, mark that slot as
1155 belonging to the to one level higher than the current level. If X
1156 matched one of our slots, just mark that one. Otherwise, we can't
1157 easily predict which it is, so upgrade all of them. Kept slots
1158 need not be touched.
1160 This is called when an ({...}) construct occurs and a statement
1161 returns a value in memory. */
1163 void
1164 preserve_temp_slots (rtx x)
1166 struct temp_slot *p = 0, *next;
1168 /* If there is no result, we still might have some objects whose address
1169 were taken, so we need to make sure they stay around. */
1170 if (x == 0)
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1176 if (p->addr_taken)
1177 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1183 /* If X is a register that is being used as a pointer, see if we have
1184 a temporary slot we know it points to. To be consistent with
1185 the code below, we really should preserve all non-kept slots
1186 if we can't find a match, but that seems to be much too costly. */
1187 if (REG_P (x) && REG_POINTER (x))
1188 p = find_temp_slot_from_address (x);
1190 /* If X is not in memory or is at a constant address, it cannot be in
1191 a temporary slot, but it can contain something whose address was
1192 taken. */
1193 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1195 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1197 next = p->next;
1199 if (p->addr_taken)
1200 move_slot_to_level (p, temp_slot_level - 1);
1203 return;
1206 /* First see if we can find a match. */
1207 if (p == 0)
1208 p = find_temp_slot_from_address (XEXP (x, 0));
1210 if (p != 0)
1212 /* Move everything at our level whose address was taken to our new
1213 level in case we used its address. */
1214 struct temp_slot *q;
1216 if (p->level == temp_slot_level)
1218 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1220 next = q->next;
1222 if (p != q && q->addr_taken)
1223 move_slot_to_level (q, temp_slot_level - 1);
1226 move_slot_to_level (p, temp_slot_level - 1);
1227 p->addr_taken = 0;
1229 return;
1232 /* Otherwise, preserve all non-kept slots at this level. */
1233 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1235 next = p->next;
1237 if (!p->keep)
1238 move_slot_to_level (p, temp_slot_level - 1);
1242 /* Free all temporaries used so far. This is normally called at the
1243 end of generating code for a statement. */
1245 void
1246 free_temp_slots (void)
1248 struct temp_slot *p, *next;
1249 bool some_available = false;
1251 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1253 next = p->next;
1255 if (!p->keep)
1257 make_slot_available (p);
1258 some_available = true;
1262 if (some_available)
1264 remove_unused_temp_slot_addresses ();
1265 combine_temp_slots ();
1269 /* Push deeper into the nesting level for stack temporaries. */
1271 void
1272 push_temp_slots (void)
1274 temp_slot_level++;
1277 /* Pop a temporary nesting level. All slots in use in the current level
1278 are freed. */
1280 void
1281 pop_temp_slots (void)
1283 struct temp_slot *p, *next;
1284 bool some_available = false;
1286 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1288 next = p->next;
1289 make_slot_available (p);
1290 some_available = true;
1293 if (some_available)
1295 remove_unused_temp_slot_addresses ();
1296 combine_temp_slots ();
1299 temp_slot_level--;
1302 /* Initialize temporary slots. */
1304 void
1305 init_temp_slots (void)
1307 /* We have not allocated any temporaries yet. */
1308 avail_temp_slots = 0;
1309 used_temp_slots = 0;
1310 temp_slot_level = 0;
1312 /* Set up the table to map addresses to temp slots. */
1313 if (! temp_slot_address_table)
1314 temp_slot_address_table = htab_create_ggc (32,
1315 temp_slot_address_hash,
1316 temp_slot_address_eq,
1317 NULL);
1318 else
1319 htab_empty (temp_slot_address_table);
1322 /* These routines are responsible for converting virtual register references
1323 to the actual hard register references once RTL generation is complete.
1325 The following four variables are used for communication between the
1326 routines. They contain the offsets of the virtual registers from their
1327 respective hard registers. */
1329 static int in_arg_offset;
1330 static int var_offset;
1331 static int dynamic_offset;
1332 static int out_arg_offset;
1333 static int cfa_offset;
1335 /* In most machines, the stack pointer register is equivalent to the bottom
1336 of the stack. */
1338 #ifndef STACK_POINTER_OFFSET
1339 #define STACK_POINTER_OFFSET 0
1340 #endif
1342 /* If not defined, pick an appropriate default for the offset of dynamically
1343 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1344 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1346 #ifndef STACK_DYNAMIC_OFFSET
1348 /* The bottom of the stack points to the actual arguments. If
1349 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1350 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1351 stack space for register parameters is not pushed by the caller, but
1352 rather part of the fixed stack areas and hence not included in
1353 `crtl->outgoing_args_size'. Nevertheless, we must allow
1354 for it when allocating stack dynamic objects. */
1356 #if defined(REG_PARM_STACK_SPACE)
1357 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1358 ((ACCUMULATE_OUTGOING_ARGS \
1359 ? (crtl->outgoing_args_size \
1360 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1361 : REG_PARM_STACK_SPACE (FNDECL))) \
1362 : 0) + (STACK_POINTER_OFFSET))
1363 #else
1364 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1365 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1366 + (STACK_POINTER_OFFSET))
1367 #endif
1368 #endif
1371 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1372 is a virtual register, return the equivalent hard register and set the
1373 offset indirectly through the pointer. Otherwise, return 0. */
1375 static rtx
1376 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1378 rtx new_rtx;
1379 HOST_WIDE_INT offset;
1381 if (x == virtual_incoming_args_rtx)
1383 if (stack_realign_drap)
1385 /* Replace virtual_incoming_args_rtx with internal arg
1386 pointer if DRAP is used to realign stack. */
1387 new_rtx = crtl->args.internal_arg_pointer;
1388 offset = 0;
1390 else
1391 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1393 else if (x == virtual_stack_vars_rtx)
1394 new_rtx = frame_pointer_rtx, offset = var_offset;
1395 else if (x == virtual_stack_dynamic_rtx)
1396 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1397 else if (x == virtual_outgoing_args_rtx)
1398 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1399 else if (x == virtual_cfa_rtx)
1401 #ifdef FRAME_POINTER_CFA_OFFSET
1402 new_rtx = frame_pointer_rtx;
1403 #else
1404 new_rtx = arg_pointer_rtx;
1405 #endif
1406 offset = cfa_offset;
1408 else if (x == virtual_preferred_stack_boundary_rtx)
1410 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1411 offset = 0;
1413 else
1414 return NULL_RTX;
1416 *poffset = offset;
1417 return new_rtx;
1420 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1421 Instantiate any virtual registers present inside of *LOC. The expression
1422 is simplified, as much as possible, but is not to be considered "valid"
1423 in any sense implied by the target. If any change is made, set CHANGED
1424 to true. */
1426 static int
1427 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1429 HOST_WIDE_INT offset;
1430 bool *changed = (bool *) data;
1431 rtx x, new_rtx;
1433 x = *loc;
1434 if (x == 0)
1435 return 0;
1437 switch (GET_CODE (x))
1439 case REG:
1440 new_rtx = instantiate_new_reg (x, &offset);
1441 if (new_rtx)
1443 *loc = plus_constant (new_rtx, offset);
1444 if (changed)
1445 *changed = true;
1447 return -1;
1449 case PLUS:
1450 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1451 if (new_rtx)
1453 new_rtx = plus_constant (new_rtx, offset);
1454 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1455 if (changed)
1456 *changed = true;
1457 return -1;
1460 /* FIXME -- from old code */
1461 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1462 we can commute the PLUS and SUBREG because pointers into the
1463 frame are well-behaved. */
1464 break;
1466 default:
1467 break;
1470 return 0;
1473 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1474 matches the predicate for insn CODE operand OPERAND. */
1476 static int
1477 safe_insn_predicate (int code, int operand, rtx x)
1479 const struct insn_operand_data *op_data;
1481 if (code < 0)
1482 return true;
1484 op_data = &insn_data[code].operand[operand];
1485 if (op_data->predicate == NULL)
1486 return true;
1488 return op_data->predicate (x, op_data->mode);
1491 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1492 registers present inside of insn. The result will be a valid insn. */
1494 static void
1495 instantiate_virtual_regs_in_insn (rtx insn)
1497 HOST_WIDE_INT offset;
1498 int insn_code, i;
1499 bool any_change = false;
1500 rtx set, new_rtx, x, seq;
1502 /* There are some special cases to be handled first. */
1503 set = single_set (insn);
1504 if (set)
1506 /* We're allowed to assign to a virtual register. This is interpreted
1507 to mean that the underlying register gets assigned the inverse
1508 transformation. This is used, for example, in the handling of
1509 non-local gotos. */
1510 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1511 if (new_rtx)
1513 start_sequence ();
1515 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1516 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1517 GEN_INT (-offset));
1518 x = force_operand (x, new_rtx);
1519 if (x != new_rtx)
1520 emit_move_insn (new_rtx, x);
1522 seq = get_insns ();
1523 end_sequence ();
1525 emit_insn_before (seq, insn);
1526 delete_insn (insn);
1527 return;
1530 /* Handle a straight copy from a virtual register by generating a
1531 new add insn. The difference between this and falling through
1532 to the generic case is avoiding a new pseudo and eliminating a
1533 move insn in the initial rtl stream. */
1534 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1535 if (new_rtx && offset != 0
1536 && REG_P (SET_DEST (set))
1537 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1539 start_sequence ();
1541 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1542 new_rtx, GEN_INT (offset), SET_DEST (set),
1543 1, OPTAB_LIB_WIDEN);
1544 if (x != SET_DEST (set))
1545 emit_move_insn (SET_DEST (set), x);
1547 seq = get_insns ();
1548 end_sequence ();
1550 emit_insn_before (seq, insn);
1551 delete_insn (insn);
1552 return;
1555 extract_insn (insn);
1556 insn_code = INSN_CODE (insn);
1558 /* Handle a plus involving a virtual register by determining if the
1559 operands remain valid if they're modified in place. */
1560 if (GET_CODE (SET_SRC (set)) == PLUS
1561 && recog_data.n_operands >= 3
1562 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1563 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1564 && CONST_INT_P (recog_data.operand[2])
1565 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1567 offset += INTVAL (recog_data.operand[2]);
1569 /* If the sum is zero, then replace with a plain move. */
1570 if (offset == 0
1571 && REG_P (SET_DEST (set))
1572 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1574 start_sequence ();
1575 emit_move_insn (SET_DEST (set), new_rtx);
1576 seq = get_insns ();
1577 end_sequence ();
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1584 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1586 /* Using validate_change and apply_change_group here leaves
1587 recog_data in an invalid state. Since we know exactly what
1588 we want to check, do those two by hand. */
1589 if (safe_insn_predicate (insn_code, 1, new_rtx)
1590 && safe_insn_predicate (insn_code, 2, x))
1592 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1593 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1594 any_change = true;
1596 /* Fall through into the regular operand fixup loop in
1597 order to take care of operands other than 1 and 2. */
1601 else
1603 extract_insn (insn);
1604 insn_code = INSN_CODE (insn);
1607 /* In the general case, we expect virtual registers to appear only in
1608 operands, and then only as either bare registers or inside memories. */
1609 for (i = 0; i < recog_data.n_operands; ++i)
1611 x = recog_data.operand[i];
1612 switch (GET_CODE (x))
1614 case MEM:
1616 rtx addr = XEXP (x, 0);
1617 bool changed = false;
1619 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1620 if (!changed)
1621 continue;
1623 start_sequence ();
1624 x = replace_equiv_address (x, addr);
1625 /* It may happen that the address with the virtual reg
1626 was valid (e.g. based on the virtual stack reg, which might
1627 be acceptable to the predicates with all offsets), whereas
1628 the address now isn't anymore, for instance when the address
1629 is still offsetted, but the base reg isn't virtual-stack-reg
1630 anymore. Below we would do a force_reg on the whole operand,
1631 but this insn might actually only accept memory. Hence,
1632 before doing that last resort, try to reload the address into
1633 a register, so this operand stays a MEM. */
1634 if (!safe_insn_predicate (insn_code, i, x))
1636 addr = force_reg (GET_MODE (addr), addr);
1637 x = replace_equiv_address (x, addr);
1639 seq = get_insns ();
1640 end_sequence ();
1641 if (seq)
1642 emit_insn_before (seq, insn);
1644 break;
1646 case REG:
1647 new_rtx = instantiate_new_reg (x, &offset);
1648 if (new_rtx == NULL)
1649 continue;
1650 if (offset == 0)
1651 x = new_rtx;
1652 else
1654 start_sequence ();
1656 /* Careful, special mode predicates may have stuff in
1657 insn_data[insn_code].operand[i].mode that isn't useful
1658 to us for computing a new value. */
1659 /* ??? Recognize address_operand and/or "p" constraints
1660 to see if (plus new offset) is a valid before we put
1661 this through expand_simple_binop. */
1662 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1663 GEN_INT (offset), NULL_RTX,
1664 1, OPTAB_LIB_WIDEN);
1665 seq = get_insns ();
1666 end_sequence ();
1667 emit_insn_before (seq, insn);
1669 break;
1671 case SUBREG:
1672 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1673 if (new_rtx == NULL)
1674 continue;
1675 if (offset != 0)
1677 start_sequence ();
1678 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1679 GEN_INT (offset), NULL_RTX,
1680 1, OPTAB_LIB_WIDEN);
1681 seq = get_insns ();
1682 end_sequence ();
1683 emit_insn_before (seq, insn);
1685 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1686 GET_MODE (new_rtx), SUBREG_BYTE (x));
1687 gcc_assert (x);
1688 break;
1690 default:
1691 continue;
1694 /* At this point, X contains the new value for the operand.
1695 Validate the new value vs the insn predicate. Note that
1696 asm insns will have insn_code -1 here. */
1697 if (!safe_insn_predicate (insn_code, i, x))
1699 start_sequence ();
1700 if (REG_P (x))
1702 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1703 x = copy_to_reg (x);
1705 else
1706 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1707 seq = get_insns ();
1708 end_sequence ();
1709 if (seq)
1710 emit_insn_before (seq, insn);
1713 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1714 any_change = true;
1717 if (any_change)
1719 /* Propagate operand changes into the duplicates. */
1720 for (i = 0; i < recog_data.n_dups; ++i)
1721 *recog_data.dup_loc[i]
1722 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1724 /* Force re-recognition of the instruction for validation. */
1725 INSN_CODE (insn) = -1;
1728 if (asm_noperands (PATTERN (insn)) >= 0)
1730 if (!check_asm_operands (PATTERN (insn)))
1732 error_for_asm (insn, "impossible constraint in %<asm%>");
1733 delete_insn (insn);
1736 else
1738 if (recog_memoized (insn) < 0)
1739 fatal_insn_not_found (insn);
1743 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1744 do any instantiation required. */
1746 void
1747 instantiate_decl_rtl (rtx x)
1749 rtx addr;
1751 if (x == 0)
1752 return;
1754 /* If this is a CONCAT, recurse for the pieces. */
1755 if (GET_CODE (x) == CONCAT)
1757 instantiate_decl_rtl (XEXP (x, 0));
1758 instantiate_decl_rtl (XEXP (x, 1));
1759 return;
1762 /* If this is not a MEM, no need to do anything. Similarly if the
1763 address is a constant or a register that is not a virtual register. */
1764 if (!MEM_P (x))
1765 return;
1767 addr = XEXP (x, 0);
1768 if (CONSTANT_P (addr)
1769 || (REG_P (addr)
1770 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1771 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1772 return;
1774 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1777 /* Helper for instantiate_decls called via walk_tree: Process all decls
1778 in the given DECL_VALUE_EXPR. */
1780 static tree
1781 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1783 tree t = *tp;
1784 if (! EXPR_P (t))
1786 *walk_subtrees = 0;
1787 if (DECL_P (t) && DECL_RTL_SET_P (t))
1788 instantiate_decl_rtl (DECL_RTL (t));
1790 return NULL;
1793 /* Subroutine of instantiate_decls: Process all decls in the given
1794 BLOCK node and all its subblocks. */
1796 static void
1797 instantiate_decls_1 (tree let)
1799 tree t;
1801 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1803 if (DECL_RTL_SET_P (t))
1804 instantiate_decl_rtl (DECL_RTL (t));
1805 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1807 tree v = DECL_VALUE_EXPR (t);
1808 walk_tree (&v, instantiate_expr, NULL, NULL);
1812 /* Process all subblocks. */
1813 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1814 instantiate_decls_1 (t);
1817 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1818 all virtual registers in their DECL_RTL's. */
1820 static void
1821 instantiate_decls (tree fndecl)
1823 tree decl;
1824 unsigned ix;
1826 /* Process all parameters of the function. */
1827 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1829 instantiate_decl_rtl (DECL_RTL (decl));
1830 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1831 if (DECL_HAS_VALUE_EXPR_P (decl))
1833 tree v = DECL_VALUE_EXPR (decl);
1834 walk_tree (&v, instantiate_expr, NULL, NULL);
1838 /* Now process all variables defined in the function or its subblocks. */
1839 instantiate_decls_1 (DECL_INITIAL (fndecl));
1841 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1842 if (DECL_RTL_SET_P (decl))
1843 instantiate_decl_rtl (DECL_RTL (decl));
1844 VEC_free (tree, gc, cfun->local_decls);
1847 /* Pass through the INSNS of function FNDECL and convert virtual register
1848 references to hard register references. */
1850 static unsigned int
1851 instantiate_virtual_regs (void)
1853 rtx insn;
1855 /* Compute the offsets to use for this function. */
1856 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1857 var_offset = STARTING_FRAME_OFFSET;
1858 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1859 out_arg_offset = STACK_POINTER_OFFSET;
1860 #ifdef FRAME_POINTER_CFA_OFFSET
1861 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1862 #else
1863 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1864 #endif
1866 /* Initialize recognition, indicating that volatile is OK. */
1867 init_recog ();
1869 /* Scan through all the insns, instantiating every virtual register still
1870 present. */
1871 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1872 if (INSN_P (insn))
1874 /* These patterns in the instruction stream can never be recognized.
1875 Fortunately, they shouldn't contain virtual registers either. */
1876 if (GET_CODE (PATTERN (insn)) == USE
1877 || GET_CODE (PATTERN (insn)) == CLOBBER
1878 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1879 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1880 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1881 continue;
1882 else if (DEBUG_INSN_P (insn))
1883 for_each_rtx (&INSN_VAR_LOCATION (insn),
1884 instantiate_virtual_regs_in_rtx, NULL);
1885 else
1886 instantiate_virtual_regs_in_insn (insn);
1888 if (INSN_DELETED_P (insn))
1889 continue;
1891 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1893 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1894 if (CALL_P (insn))
1895 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1896 instantiate_virtual_regs_in_rtx, NULL);
1899 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1900 instantiate_decls (current_function_decl);
1902 targetm.instantiate_decls ();
1904 /* Indicate that, from now on, assign_stack_local should use
1905 frame_pointer_rtx. */
1906 virtuals_instantiated = 1;
1908 /* See allocate_dynamic_stack_space for the rationale. */
1909 #ifdef SETJMP_VIA_SAVE_AREA
1910 if (flag_stack_usage && cfun->calls_setjmp)
1912 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1913 dynamic_offset = (dynamic_offset + align - 1) / align * align;
1914 current_function_dynamic_stack_size
1915 += current_function_dynamic_alloc_count * dynamic_offset;
1917 #endif
1919 return 0;
1922 struct rtl_opt_pass pass_instantiate_virtual_regs =
1925 RTL_PASS,
1926 "vregs", /* name */
1927 NULL, /* gate */
1928 instantiate_virtual_regs, /* execute */
1929 NULL, /* sub */
1930 NULL, /* next */
1931 0, /* static_pass_number */
1932 TV_NONE, /* tv_id */
1933 0, /* properties_required */
1934 0, /* properties_provided */
1935 0, /* properties_destroyed */
1936 0, /* todo_flags_start */
1937 TODO_dump_func /* todo_flags_finish */
1942 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1943 This means a type for which function calls must pass an address to the
1944 function or get an address back from the function.
1945 EXP may be a type node or an expression (whose type is tested). */
1948 aggregate_value_p (const_tree exp, const_tree fntype)
1950 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1951 int i, regno, nregs;
1952 rtx reg;
1954 if (fntype)
1955 switch (TREE_CODE (fntype))
1957 case CALL_EXPR:
1959 tree fndecl = get_callee_fndecl (fntype);
1960 fntype = (fndecl
1961 ? TREE_TYPE (fndecl)
1962 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1964 break;
1965 case FUNCTION_DECL:
1966 fntype = TREE_TYPE (fntype);
1967 break;
1968 case FUNCTION_TYPE:
1969 case METHOD_TYPE:
1970 break;
1971 case IDENTIFIER_NODE:
1972 fntype = NULL_TREE;
1973 break;
1974 default:
1975 /* We don't expect other tree types here. */
1976 gcc_unreachable ();
1979 if (VOID_TYPE_P (type))
1980 return 0;
1982 /* If a record should be passed the same as its first (and only) member
1983 don't pass it as an aggregate. */
1984 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
1985 return aggregate_value_p (first_field (type), fntype);
1987 /* If the front end has decided that this needs to be passed by
1988 reference, do so. */
1989 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1990 && DECL_BY_REFERENCE (exp))
1991 return 1;
1993 /* Function types that are TREE_ADDRESSABLE force return in memory. */
1994 if (fntype && TREE_ADDRESSABLE (fntype))
1995 return 1;
1997 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1998 and thus can't be returned in registers. */
1999 if (TREE_ADDRESSABLE (type))
2000 return 1;
2002 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2003 return 1;
2005 if (targetm.calls.return_in_memory (type, fntype))
2006 return 1;
2008 /* Make sure we have suitable call-clobbered regs to return
2009 the value in; if not, we must return it in memory. */
2010 reg = hard_function_value (type, 0, fntype, 0);
2012 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2013 it is OK. */
2014 if (!REG_P (reg))
2015 return 0;
2017 regno = REGNO (reg);
2018 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2019 for (i = 0; i < nregs; i++)
2020 if (! call_used_regs[regno + i])
2021 return 1;
2023 return 0;
2026 /* Return true if we should assign DECL a pseudo register; false if it
2027 should live on the local stack. */
2029 bool
2030 use_register_for_decl (const_tree decl)
2032 if (!targetm.calls.allocate_stack_slots_for_args())
2033 return true;
2035 /* Honor volatile. */
2036 if (TREE_SIDE_EFFECTS (decl))
2037 return false;
2039 /* Honor addressability. */
2040 if (TREE_ADDRESSABLE (decl))
2041 return false;
2043 /* Only register-like things go in registers. */
2044 if (DECL_MODE (decl) == BLKmode)
2045 return false;
2047 /* If -ffloat-store specified, don't put explicit float variables
2048 into registers. */
2049 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2050 propagates values across these stores, and it probably shouldn't. */
2051 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2052 return false;
2054 /* If we're not interested in tracking debugging information for
2055 this decl, then we can certainly put it in a register. */
2056 if (DECL_IGNORED_P (decl))
2057 return true;
2059 if (optimize)
2060 return true;
2062 if (!DECL_REGISTER (decl))
2063 return false;
2065 switch (TREE_CODE (TREE_TYPE (decl)))
2067 case RECORD_TYPE:
2068 case UNION_TYPE:
2069 case QUAL_UNION_TYPE:
2070 /* When not optimizing, disregard register keyword for variables with
2071 types containing methods, otherwise the methods won't be callable
2072 from the debugger. */
2073 if (TYPE_METHODS (TREE_TYPE (decl)))
2074 return false;
2075 break;
2076 default:
2077 break;
2080 return true;
2083 /* Return true if TYPE should be passed by invisible reference. */
2085 bool
2086 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2087 tree type, bool named_arg)
2089 if (type)
2091 /* If this type contains non-trivial constructors, then it is
2092 forbidden for the middle-end to create any new copies. */
2093 if (TREE_ADDRESSABLE (type))
2094 return true;
2096 /* GCC post 3.4 passes *all* variable sized types by reference. */
2097 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2098 return true;
2100 /* If a record type should be passed the same as its first (and only)
2101 member, use the type and mode of that member. */
2102 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2104 type = TREE_TYPE (first_field (type));
2105 mode = TYPE_MODE (type);
2109 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2112 /* Return true if TYPE, which is passed by reference, should be callee
2113 copied instead of caller copied. */
2115 bool
2116 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2117 tree type, bool named_arg)
2119 if (type && TREE_ADDRESSABLE (type))
2120 return false;
2121 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2124 /* Structures to communicate between the subroutines of assign_parms.
2125 The first holds data persistent across all parameters, the second
2126 is cleared out for each parameter. */
2128 struct assign_parm_data_all
2130 CUMULATIVE_ARGS args_so_far;
2131 struct args_size stack_args_size;
2132 tree function_result_decl;
2133 tree orig_fnargs;
2134 rtx first_conversion_insn;
2135 rtx last_conversion_insn;
2136 HOST_WIDE_INT pretend_args_size;
2137 HOST_WIDE_INT extra_pretend_bytes;
2138 int reg_parm_stack_space;
2141 struct assign_parm_data_one
2143 tree nominal_type;
2144 tree passed_type;
2145 rtx entry_parm;
2146 rtx stack_parm;
2147 enum machine_mode nominal_mode;
2148 enum machine_mode passed_mode;
2149 enum machine_mode promoted_mode;
2150 struct locate_and_pad_arg_data locate;
2151 int partial;
2152 BOOL_BITFIELD named_arg : 1;
2153 BOOL_BITFIELD passed_pointer : 1;
2154 BOOL_BITFIELD on_stack : 1;
2155 BOOL_BITFIELD loaded_in_reg : 1;
2158 /* A subroutine of assign_parms. Initialize ALL. */
2160 static void
2161 assign_parms_initialize_all (struct assign_parm_data_all *all)
2163 tree fntype ATTRIBUTE_UNUSED;
2165 memset (all, 0, sizeof (*all));
2167 fntype = TREE_TYPE (current_function_decl);
2169 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2170 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2171 #else
2172 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2173 current_function_decl, -1);
2174 #endif
2176 #ifdef REG_PARM_STACK_SPACE
2177 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2178 #endif
2181 /* If ARGS contains entries with complex types, split the entry into two
2182 entries of the component type. Return a new list of substitutions are
2183 needed, else the old list. */
2185 static void
2186 split_complex_args (VEC(tree, heap) **args)
2188 unsigned i;
2189 tree p;
2191 FOR_EACH_VEC_ELT (tree, *args, i, p)
2193 tree type = TREE_TYPE (p);
2194 if (TREE_CODE (type) == COMPLEX_TYPE
2195 && targetm.calls.split_complex_arg (type))
2197 tree decl;
2198 tree subtype = TREE_TYPE (type);
2199 bool addressable = TREE_ADDRESSABLE (p);
2201 /* Rewrite the PARM_DECL's type with its component. */
2202 p = copy_node (p);
2203 TREE_TYPE (p) = subtype;
2204 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2205 DECL_MODE (p) = VOIDmode;
2206 DECL_SIZE (p) = NULL;
2207 DECL_SIZE_UNIT (p) = NULL;
2208 /* If this arg must go in memory, put it in a pseudo here.
2209 We can't allow it to go in memory as per normal parms,
2210 because the usual place might not have the imag part
2211 adjacent to the real part. */
2212 DECL_ARTIFICIAL (p) = addressable;
2213 DECL_IGNORED_P (p) = addressable;
2214 TREE_ADDRESSABLE (p) = 0;
2215 layout_decl (p, 0);
2216 VEC_replace (tree, *args, i, p);
2218 /* Build a second synthetic decl. */
2219 decl = build_decl (EXPR_LOCATION (p),
2220 PARM_DECL, NULL_TREE, subtype);
2221 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2222 DECL_ARTIFICIAL (decl) = addressable;
2223 DECL_IGNORED_P (decl) = addressable;
2224 layout_decl (decl, 0);
2225 VEC_safe_insert (tree, heap, *args, ++i, decl);
2230 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2231 the hidden struct return argument, and (abi willing) complex args.
2232 Return the new parameter list. */
2234 static VEC(tree, heap) *
2235 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2237 tree fndecl = current_function_decl;
2238 tree fntype = TREE_TYPE (fndecl);
2239 VEC(tree, heap) *fnargs = NULL;
2240 tree arg;
2242 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2243 VEC_safe_push (tree, heap, fnargs, arg);
2245 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2247 /* If struct value address is treated as the first argument, make it so. */
2248 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2249 && ! cfun->returns_pcc_struct
2250 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2252 tree type = build_pointer_type (TREE_TYPE (fntype));
2253 tree decl;
2255 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2256 PARM_DECL, NULL_TREE, type);
2257 DECL_ARG_TYPE (decl) = type;
2258 DECL_ARTIFICIAL (decl) = 1;
2259 DECL_IGNORED_P (decl) = 1;
2261 DECL_CHAIN (decl) = all->orig_fnargs;
2262 all->orig_fnargs = decl;
2263 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2265 all->function_result_decl = decl;
2268 /* If the target wants to split complex arguments into scalars, do so. */
2269 if (targetm.calls.split_complex_arg)
2270 split_complex_args (&fnargs);
2272 return fnargs;
2275 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2276 data for the parameter. Incorporate ABI specifics such as pass-by-
2277 reference and type promotion. */
2279 static void
2280 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2281 struct assign_parm_data_one *data)
2283 tree nominal_type, passed_type;
2284 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2285 int unsignedp;
2287 memset (data, 0, sizeof (*data));
2289 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2290 if (!cfun->stdarg)
2291 data->named_arg = 1; /* No variadic parms. */
2292 else if (DECL_CHAIN (parm))
2293 data->named_arg = 1; /* Not the last non-variadic parm. */
2294 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2295 data->named_arg = 1; /* Only variadic ones are unnamed. */
2296 else
2297 data->named_arg = 0; /* Treat as variadic. */
2299 nominal_type = TREE_TYPE (parm);
2300 passed_type = DECL_ARG_TYPE (parm);
2302 /* Look out for errors propagating this far. Also, if the parameter's
2303 type is void then its value doesn't matter. */
2304 if (TREE_TYPE (parm) == error_mark_node
2305 /* This can happen after weird syntax errors
2306 or if an enum type is defined among the parms. */
2307 || TREE_CODE (parm) != PARM_DECL
2308 || passed_type == NULL
2309 || VOID_TYPE_P (nominal_type))
2311 nominal_type = passed_type = void_type_node;
2312 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2313 goto egress;
2316 /* Find mode of arg as it is passed, and mode of arg as it should be
2317 during execution of this function. */
2318 passed_mode = TYPE_MODE (passed_type);
2319 nominal_mode = TYPE_MODE (nominal_type);
2321 /* If the parm is to be passed as a transparent union or record, use the
2322 type of the first field for the tests below. We have already verified
2323 that the modes are the same. */
2324 if ((TREE_CODE (passed_type) == UNION_TYPE
2325 || TREE_CODE (passed_type) == RECORD_TYPE)
2326 && TYPE_TRANSPARENT_AGGR (passed_type))
2327 passed_type = TREE_TYPE (first_field (passed_type));
2329 /* See if this arg was passed by invisible reference. */
2330 if (pass_by_reference (&all->args_so_far, passed_mode,
2331 passed_type, data->named_arg))
2333 passed_type = nominal_type = build_pointer_type (passed_type);
2334 data->passed_pointer = true;
2335 passed_mode = nominal_mode = Pmode;
2338 /* Find mode as it is passed by the ABI. */
2339 unsignedp = TYPE_UNSIGNED (passed_type);
2340 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2341 TREE_TYPE (current_function_decl), 0);
2343 egress:
2344 data->nominal_type = nominal_type;
2345 data->passed_type = passed_type;
2346 data->nominal_mode = nominal_mode;
2347 data->passed_mode = passed_mode;
2348 data->promoted_mode = promoted_mode;
2351 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2353 static void
2354 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2355 struct assign_parm_data_one *data, bool no_rtl)
2357 int varargs_pretend_bytes = 0;
2359 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2360 data->promoted_mode,
2361 data->passed_type,
2362 &varargs_pretend_bytes, no_rtl);
2364 /* If the back-end has requested extra stack space, record how much is
2365 needed. Do not change pretend_args_size otherwise since it may be
2366 nonzero from an earlier partial argument. */
2367 if (varargs_pretend_bytes > 0)
2368 all->pretend_args_size = varargs_pretend_bytes;
2371 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2372 the incoming location of the current parameter. */
2374 static void
2375 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2376 struct assign_parm_data_one *data)
2378 HOST_WIDE_INT pretend_bytes = 0;
2379 rtx entry_parm;
2380 bool in_regs;
2382 if (data->promoted_mode == VOIDmode)
2384 data->entry_parm = data->stack_parm = const0_rtx;
2385 return;
2388 entry_parm = targetm.calls.function_incoming_arg (&all->args_so_far,
2389 data->promoted_mode,
2390 data->passed_type,
2391 data->named_arg);
2393 if (entry_parm == 0)
2394 data->promoted_mode = data->passed_mode;
2396 /* Determine parm's home in the stack, in case it arrives in the stack
2397 or we should pretend it did. Compute the stack position and rtx where
2398 the argument arrives and its size.
2400 There is one complexity here: If this was a parameter that would
2401 have been passed in registers, but wasn't only because it is
2402 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2403 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2404 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2405 as it was the previous time. */
2406 in_regs = entry_parm != 0;
2407 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2408 in_regs = true;
2409 #endif
2410 if (!in_regs && !data->named_arg)
2412 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2414 rtx tem;
2415 tem = targetm.calls.function_incoming_arg (&all->args_so_far,
2416 data->promoted_mode,
2417 data->passed_type, true);
2418 in_regs = tem != NULL;
2422 /* If this parameter was passed both in registers and in the stack, use
2423 the copy on the stack. */
2424 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2425 data->passed_type))
2426 entry_parm = 0;
2428 if (entry_parm)
2430 int partial;
2432 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2433 data->promoted_mode,
2434 data->passed_type,
2435 data->named_arg);
2436 data->partial = partial;
2438 /* The caller might already have allocated stack space for the
2439 register parameters. */
2440 if (partial != 0 && all->reg_parm_stack_space == 0)
2442 /* Part of this argument is passed in registers and part
2443 is passed on the stack. Ask the prologue code to extend
2444 the stack part so that we can recreate the full value.
2446 PRETEND_BYTES is the size of the registers we need to store.
2447 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2448 stack space that the prologue should allocate.
2450 Internally, gcc assumes that the argument pointer is aligned
2451 to STACK_BOUNDARY bits. This is used both for alignment
2452 optimizations (see init_emit) and to locate arguments that are
2453 aligned to more than PARM_BOUNDARY bits. We must preserve this
2454 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2455 a stack boundary. */
2457 /* We assume at most one partial arg, and it must be the first
2458 argument on the stack. */
2459 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2461 pretend_bytes = partial;
2462 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2464 /* We want to align relative to the actual stack pointer, so
2465 don't include this in the stack size until later. */
2466 all->extra_pretend_bytes = all->pretend_args_size;
2470 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2471 entry_parm ? data->partial : 0, current_function_decl,
2472 &all->stack_args_size, &data->locate);
2474 /* Update parm_stack_boundary if this parameter is passed in the
2475 stack. */
2476 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2477 crtl->parm_stack_boundary = data->locate.boundary;
2479 /* Adjust offsets to include the pretend args. */
2480 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2481 data->locate.slot_offset.constant += pretend_bytes;
2482 data->locate.offset.constant += pretend_bytes;
2484 data->entry_parm = entry_parm;
2487 /* A subroutine of assign_parms. If there is actually space on the stack
2488 for this parm, count it in stack_args_size and return true. */
2490 static bool
2491 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2492 struct assign_parm_data_one *data)
2494 /* Trivially true if we've no incoming register. */
2495 if (data->entry_parm == NULL)
2497 /* Also true if we're partially in registers and partially not,
2498 since we've arranged to drop the entire argument on the stack. */
2499 else if (data->partial != 0)
2501 /* Also true if the target says that it's passed in both registers
2502 and on the stack. */
2503 else if (GET_CODE (data->entry_parm) == PARALLEL
2504 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2506 /* Also true if the target says that there's stack allocated for
2507 all register parameters. */
2508 else if (all->reg_parm_stack_space > 0)
2510 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2511 else
2512 return false;
2514 all->stack_args_size.constant += data->locate.size.constant;
2515 if (data->locate.size.var)
2516 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2518 return true;
2521 /* A subroutine of assign_parms. Given that this parameter is allocated
2522 stack space by the ABI, find it. */
2524 static void
2525 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2527 rtx offset_rtx, stack_parm;
2528 unsigned int align, boundary;
2530 /* If we're passing this arg using a reg, make its stack home the
2531 aligned stack slot. */
2532 if (data->entry_parm)
2533 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2534 else
2535 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2537 stack_parm = crtl->args.internal_arg_pointer;
2538 if (offset_rtx != const0_rtx)
2539 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2540 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2542 if (!data->passed_pointer)
2544 set_mem_attributes (stack_parm, parm, 1);
2545 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2546 while promoted mode's size is needed. */
2547 if (data->promoted_mode != BLKmode
2548 && data->promoted_mode != DECL_MODE (parm))
2550 set_mem_size (stack_parm,
2551 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2552 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2554 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2555 data->promoted_mode);
2556 if (offset)
2557 set_mem_offset (stack_parm,
2558 plus_constant (MEM_OFFSET (stack_parm),
2559 -offset));
2564 boundary = data->locate.boundary;
2565 align = BITS_PER_UNIT;
2567 /* If we're padding upward, we know that the alignment of the slot
2568 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2569 intentionally forcing upward padding. Otherwise we have to come
2570 up with a guess at the alignment based on OFFSET_RTX. */
2571 if (data->locate.where_pad != downward || data->entry_parm)
2572 align = boundary;
2573 else if (CONST_INT_P (offset_rtx))
2575 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2576 align = align & -align;
2578 set_mem_align (stack_parm, align);
2580 if (data->entry_parm)
2581 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2583 data->stack_parm = stack_parm;
2586 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2587 always valid and contiguous. */
2589 static void
2590 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2592 rtx entry_parm = data->entry_parm;
2593 rtx stack_parm = data->stack_parm;
2595 /* If this parm was passed part in regs and part in memory, pretend it
2596 arrived entirely in memory by pushing the register-part onto the stack.
2597 In the special case of a DImode or DFmode that is split, we could put
2598 it together in a pseudoreg directly, but for now that's not worth
2599 bothering with. */
2600 if (data->partial != 0)
2602 /* Handle calls that pass values in multiple non-contiguous
2603 locations. The Irix 6 ABI has examples of this. */
2604 if (GET_CODE (entry_parm) == PARALLEL)
2605 emit_group_store (validize_mem (stack_parm), entry_parm,
2606 data->passed_type,
2607 int_size_in_bytes (data->passed_type));
2608 else
2610 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2611 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2612 data->partial / UNITS_PER_WORD);
2615 entry_parm = stack_parm;
2618 /* If we didn't decide this parm came in a register, by default it came
2619 on the stack. */
2620 else if (entry_parm == NULL)
2621 entry_parm = stack_parm;
2623 /* When an argument is passed in multiple locations, we can't make use
2624 of this information, but we can save some copying if the whole argument
2625 is passed in a single register. */
2626 else if (GET_CODE (entry_parm) == PARALLEL
2627 && data->nominal_mode != BLKmode
2628 && data->passed_mode != BLKmode)
2630 size_t i, len = XVECLEN (entry_parm, 0);
2632 for (i = 0; i < len; i++)
2633 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2634 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2635 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2636 == data->passed_mode)
2637 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2639 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2640 break;
2644 data->entry_parm = entry_parm;
2647 /* A subroutine of assign_parms. Reconstitute any values which were
2648 passed in multiple registers and would fit in a single register. */
2650 static void
2651 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2653 rtx entry_parm = data->entry_parm;
2655 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2656 This can be done with register operations rather than on the
2657 stack, even if we will store the reconstituted parameter on the
2658 stack later. */
2659 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2661 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2662 emit_group_store (parmreg, entry_parm, data->passed_type,
2663 GET_MODE_SIZE (GET_MODE (entry_parm)));
2664 entry_parm = parmreg;
2667 data->entry_parm = entry_parm;
2670 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2671 always valid and properly aligned. */
2673 static void
2674 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2676 rtx stack_parm = data->stack_parm;
2678 /* If we can't trust the parm stack slot to be aligned enough for its
2679 ultimate type, don't use that slot after entry. We'll make another
2680 stack slot, if we need one. */
2681 if (stack_parm
2682 && ((STRICT_ALIGNMENT
2683 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2684 || (data->nominal_type
2685 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2686 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2687 stack_parm = NULL;
2689 /* If parm was passed in memory, and we need to convert it on entry,
2690 don't store it back in that same slot. */
2691 else if (data->entry_parm == stack_parm
2692 && data->nominal_mode != BLKmode
2693 && data->nominal_mode != data->passed_mode)
2694 stack_parm = NULL;
2696 /* If stack protection is in effect for this function, don't leave any
2697 pointers in their passed stack slots. */
2698 else if (crtl->stack_protect_guard
2699 && (flag_stack_protect == 2
2700 || data->passed_pointer
2701 || POINTER_TYPE_P (data->nominal_type)))
2702 stack_parm = NULL;
2704 data->stack_parm = stack_parm;
2707 /* A subroutine of assign_parms. Return true if the current parameter
2708 should be stored as a BLKmode in the current frame. */
2710 static bool
2711 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2713 if (data->nominal_mode == BLKmode)
2714 return true;
2715 if (GET_MODE (data->entry_parm) == BLKmode)
2716 return true;
2718 #ifdef BLOCK_REG_PADDING
2719 /* Only assign_parm_setup_block knows how to deal with register arguments
2720 that are padded at the least significant end. */
2721 if (REG_P (data->entry_parm)
2722 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2723 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2724 == (BYTES_BIG_ENDIAN ? upward : downward)))
2725 return true;
2726 #endif
2728 return false;
2731 /* A subroutine of assign_parms. Arrange for the parameter to be
2732 present and valid in DATA->STACK_RTL. */
2734 static void
2735 assign_parm_setup_block (struct assign_parm_data_all *all,
2736 tree parm, struct assign_parm_data_one *data)
2738 rtx entry_parm = data->entry_parm;
2739 rtx stack_parm = data->stack_parm;
2740 HOST_WIDE_INT size;
2741 HOST_WIDE_INT size_stored;
2743 if (GET_CODE (entry_parm) == PARALLEL)
2744 entry_parm = emit_group_move_into_temps (entry_parm);
2746 size = int_size_in_bytes (data->passed_type);
2747 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2748 if (stack_parm == 0)
2750 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2751 stack_parm = assign_stack_local (BLKmode, size_stored,
2752 DECL_ALIGN (parm));
2753 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2754 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2755 set_mem_attributes (stack_parm, parm, 1);
2758 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2759 calls that pass values in multiple non-contiguous locations. */
2760 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2762 rtx mem;
2764 /* Note that we will be storing an integral number of words.
2765 So we have to be careful to ensure that we allocate an
2766 integral number of words. We do this above when we call
2767 assign_stack_local if space was not allocated in the argument
2768 list. If it was, this will not work if PARM_BOUNDARY is not
2769 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2770 if it becomes a problem. Exception is when BLKmode arrives
2771 with arguments not conforming to word_mode. */
2773 if (data->stack_parm == 0)
2775 else if (GET_CODE (entry_parm) == PARALLEL)
2777 else
2778 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2780 mem = validize_mem (stack_parm);
2782 /* Handle values in multiple non-contiguous locations. */
2783 if (GET_CODE (entry_parm) == PARALLEL)
2785 push_to_sequence2 (all->first_conversion_insn,
2786 all->last_conversion_insn);
2787 emit_group_store (mem, entry_parm, data->passed_type, size);
2788 all->first_conversion_insn = get_insns ();
2789 all->last_conversion_insn = get_last_insn ();
2790 end_sequence ();
2793 else if (size == 0)
2796 /* If SIZE is that of a mode no bigger than a word, just use
2797 that mode's store operation. */
2798 else if (size <= UNITS_PER_WORD)
2800 enum machine_mode mode
2801 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2803 if (mode != BLKmode
2804 #ifdef BLOCK_REG_PADDING
2805 && (size == UNITS_PER_WORD
2806 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2807 != (BYTES_BIG_ENDIAN ? upward : downward)))
2808 #endif
2811 rtx reg;
2813 /* We are really truncating a word_mode value containing
2814 SIZE bytes into a value of mode MODE. If such an
2815 operation requires no actual instructions, we can refer
2816 to the value directly in mode MODE, otherwise we must
2817 start with the register in word_mode and explicitly
2818 convert it. */
2819 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2820 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2821 else
2823 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2824 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2826 emit_move_insn (change_address (mem, mode, 0), reg);
2829 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2830 machine must be aligned to the left before storing
2831 to memory. Note that the previous test doesn't
2832 handle all cases (e.g. SIZE == 3). */
2833 else if (size != UNITS_PER_WORD
2834 #ifdef BLOCK_REG_PADDING
2835 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2836 == downward)
2837 #else
2838 && BYTES_BIG_ENDIAN
2839 #endif
2842 rtx tem, x;
2843 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2844 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2846 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2847 build_int_cst (NULL_TREE, by),
2848 NULL_RTX, 1);
2849 tem = change_address (mem, word_mode, 0);
2850 emit_move_insn (tem, x);
2852 else
2853 move_block_from_reg (REGNO (entry_parm), mem,
2854 size_stored / UNITS_PER_WORD);
2856 else
2857 move_block_from_reg (REGNO (entry_parm), mem,
2858 size_stored / UNITS_PER_WORD);
2860 else if (data->stack_parm == 0)
2862 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2863 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2864 BLOCK_OP_NORMAL);
2865 all->first_conversion_insn = get_insns ();
2866 all->last_conversion_insn = get_last_insn ();
2867 end_sequence ();
2870 data->stack_parm = stack_parm;
2871 SET_DECL_RTL (parm, stack_parm);
2874 /* A subroutine of assign_parm_setup_reg, called through note_stores.
2875 This collects sets and clobbers of hard registers in a HARD_REG_SET,
2876 which is pointed to by DATA. */
2877 static void
2878 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2880 HARD_REG_SET *pset = (HARD_REG_SET *)data;
2881 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
2883 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
2884 while (nregs-- > 0)
2885 SET_HARD_REG_BIT (*pset, REGNO (x) + nregs);
2889 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2890 parameter. Get it there. Perform all ABI specified conversions. */
2892 static void
2893 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2894 struct assign_parm_data_one *data)
2896 rtx parmreg, validated_mem;
2897 rtx equiv_stack_parm;
2898 enum machine_mode promoted_nominal_mode;
2899 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2900 bool did_conversion = false;
2901 bool need_conversion, moved;
2903 /* Store the parm in a pseudoregister during the function, but we may
2904 need to do it in a wider mode. Using 2 here makes the result
2905 consistent with promote_decl_mode and thus expand_expr_real_1. */
2906 promoted_nominal_mode
2907 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2908 TREE_TYPE (current_function_decl), 2);
2910 parmreg = gen_reg_rtx (promoted_nominal_mode);
2912 if (!DECL_ARTIFICIAL (parm))
2913 mark_user_reg (parmreg);
2915 /* If this was an item that we received a pointer to,
2916 set DECL_RTL appropriately. */
2917 if (data->passed_pointer)
2919 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2920 set_mem_attributes (x, parm, 1);
2921 SET_DECL_RTL (parm, x);
2923 else
2924 SET_DECL_RTL (parm, parmreg);
2926 assign_parm_remove_parallels (data);
2928 /* Copy the value into the register, thus bridging between
2929 assign_parm_find_data_types and expand_expr_real_1. */
2931 equiv_stack_parm = data->stack_parm;
2932 validated_mem = validize_mem (data->entry_parm);
2934 need_conversion = (data->nominal_mode != data->passed_mode
2935 || promoted_nominal_mode != data->promoted_mode);
2936 moved = false;
2938 if (need_conversion
2939 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2940 && data->nominal_mode == data->passed_mode
2941 && data->nominal_mode == GET_MODE (data->entry_parm))
2943 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2944 mode, by the caller. We now have to convert it to
2945 NOMINAL_MODE, if different. However, PARMREG may be in
2946 a different mode than NOMINAL_MODE if it is being stored
2947 promoted.
2949 If ENTRY_PARM is a hard register, it might be in a register
2950 not valid for operating in its mode (e.g., an odd-numbered
2951 register for a DFmode). In that case, moves are the only
2952 thing valid, so we can't do a convert from there. This
2953 occurs when the calling sequence allow such misaligned
2954 usages.
2956 In addition, the conversion may involve a call, which could
2957 clobber parameters which haven't been copied to pseudo
2958 registers yet.
2960 First, we try to emit an insn which performs the necessary
2961 conversion. We verify that this insn does not clobber any
2962 hard registers. */
2964 enum insn_code icode;
2965 rtx op0, op1;
2967 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2968 unsignedp);
2970 op0 = parmreg;
2971 op1 = validated_mem;
2972 if (icode != CODE_FOR_nothing
2973 && insn_data[icode].operand[0].predicate (op0, promoted_nominal_mode)
2974 && insn_data[icode].operand[1].predicate (op1, data->passed_mode))
2976 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2977 rtx insn, insns;
2978 HARD_REG_SET hardregs;
2980 start_sequence ();
2981 insn = gen_extend_insn (op0, op1, promoted_nominal_mode,
2982 data->passed_mode, unsignedp);
2983 emit_insn (insn);
2984 insns = get_insns ();
2986 moved = true;
2987 CLEAR_HARD_REG_SET (hardregs);
2988 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
2990 if (INSN_P (insn))
2991 note_stores (PATTERN (insn), record_hard_reg_sets,
2992 &hardregs);
2993 if (!hard_reg_set_empty_p (hardregs))
2994 moved = false;
2997 end_sequence ();
2999 if (moved)
3001 emit_insn (insns);
3002 if (equiv_stack_parm != NULL_RTX)
3003 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3004 equiv_stack_parm);
3009 if (moved)
3010 /* Nothing to do. */
3012 else if (need_conversion)
3014 /* We did not have an insn to convert directly, or the sequence
3015 generated appeared unsafe. We must first copy the parm to a
3016 pseudo reg, and save the conversion until after all
3017 parameters have been moved. */
3019 int save_tree_used;
3020 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3022 emit_move_insn (tempreg, validated_mem);
3024 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3025 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3027 if (GET_CODE (tempreg) == SUBREG
3028 && GET_MODE (tempreg) == data->nominal_mode
3029 && REG_P (SUBREG_REG (tempreg))
3030 && data->nominal_mode == data->passed_mode
3031 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3032 && GET_MODE_SIZE (GET_MODE (tempreg))
3033 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3035 /* The argument is already sign/zero extended, so note it
3036 into the subreg. */
3037 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3038 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3041 /* TREE_USED gets set erroneously during expand_assignment. */
3042 save_tree_used = TREE_USED (parm);
3043 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3044 TREE_USED (parm) = save_tree_used;
3045 all->first_conversion_insn = get_insns ();
3046 all->last_conversion_insn = get_last_insn ();
3047 end_sequence ();
3049 did_conversion = true;
3051 else
3052 emit_move_insn (parmreg, validated_mem);
3054 /* If we were passed a pointer but the actual value can safely live
3055 in a register, put it in one. */
3056 if (data->passed_pointer
3057 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3058 /* If by-reference argument was promoted, demote it. */
3059 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3060 || use_register_for_decl (parm)))
3062 /* We can't use nominal_mode, because it will have been set to
3063 Pmode above. We must use the actual mode of the parm. */
3064 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3065 mark_user_reg (parmreg);
3067 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3069 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3070 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3072 push_to_sequence2 (all->first_conversion_insn,
3073 all->last_conversion_insn);
3074 emit_move_insn (tempreg, DECL_RTL (parm));
3075 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3076 emit_move_insn (parmreg, tempreg);
3077 all->first_conversion_insn = get_insns ();
3078 all->last_conversion_insn = get_last_insn ();
3079 end_sequence ();
3081 did_conversion = true;
3083 else
3084 emit_move_insn (parmreg, DECL_RTL (parm));
3086 SET_DECL_RTL (parm, parmreg);
3088 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3089 now the parm. */
3090 data->stack_parm = NULL;
3093 /* Mark the register as eliminable if we did no conversion and it was
3094 copied from memory at a fixed offset, and the arg pointer was not
3095 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3096 offset formed an invalid address, such memory-equivalences as we
3097 make here would screw up life analysis for it. */
3098 if (data->nominal_mode == data->passed_mode
3099 && !did_conversion
3100 && data->stack_parm != 0
3101 && MEM_P (data->stack_parm)
3102 && data->locate.offset.var == 0
3103 && reg_mentioned_p (virtual_incoming_args_rtx,
3104 XEXP (data->stack_parm, 0)))
3106 rtx linsn = get_last_insn ();
3107 rtx sinsn, set;
3109 /* Mark complex types separately. */
3110 if (GET_CODE (parmreg) == CONCAT)
3112 enum machine_mode submode
3113 = GET_MODE_INNER (GET_MODE (parmreg));
3114 int regnor = REGNO (XEXP (parmreg, 0));
3115 int regnoi = REGNO (XEXP (parmreg, 1));
3116 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3117 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3118 GET_MODE_SIZE (submode));
3120 /* Scan backwards for the set of the real and
3121 imaginary parts. */
3122 for (sinsn = linsn; sinsn != 0;
3123 sinsn = prev_nonnote_insn (sinsn))
3125 set = single_set (sinsn);
3126 if (set == 0)
3127 continue;
3129 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3130 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3131 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3132 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3135 else if ((set = single_set (linsn)) != 0
3136 && SET_DEST (set) == parmreg)
3137 set_unique_reg_note (linsn, REG_EQUIV, equiv_stack_parm);
3140 /* For pointer data type, suggest pointer register. */
3141 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3142 mark_reg_pointer (parmreg,
3143 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3146 /* A subroutine of assign_parms. Allocate stack space to hold the current
3147 parameter. Get it there. Perform all ABI specified conversions. */
3149 static void
3150 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3151 struct assign_parm_data_one *data)
3153 /* Value must be stored in the stack slot STACK_PARM during function
3154 execution. */
3155 bool to_conversion = false;
3157 assign_parm_remove_parallels (data);
3159 if (data->promoted_mode != data->nominal_mode)
3161 /* Conversion is required. */
3162 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3164 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3166 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3167 to_conversion = true;
3169 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3170 TYPE_UNSIGNED (TREE_TYPE (parm)));
3172 if (data->stack_parm)
3174 int offset = subreg_lowpart_offset (data->nominal_mode,
3175 GET_MODE (data->stack_parm));
3176 /* ??? This may need a big-endian conversion on sparc64. */
3177 data->stack_parm
3178 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3179 if (offset && MEM_OFFSET (data->stack_parm))
3180 set_mem_offset (data->stack_parm,
3181 plus_constant (MEM_OFFSET (data->stack_parm),
3182 offset));
3186 if (data->entry_parm != data->stack_parm)
3188 rtx src, dest;
3190 if (data->stack_parm == 0)
3192 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3193 GET_MODE (data->entry_parm),
3194 TYPE_ALIGN (data->passed_type));
3195 data->stack_parm
3196 = assign_stack_local (GET_MODE (data->entry_parm),
3197 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3198 align);
3199 set_mem_attributes (data->stack_parm, parm, 1);
3202 dest = validize_mem (data->stack_parm);
3203 src = validize_mem (data->entry_parm);
3205 if (MEM_P (src))
3207 /* Use a block move to handle potentially misaligned entry_parm. */
3208 if (!to_conversion)
3209 push_to_sequence2 (all->first_conversion_insn,
3210 all->last_conversion_insn);
3211 to_conversion = true;
3213 emit_block_move (dest, src,
3214 GEN_INT (int_size_in_bytes (data->passed_type)),
3215 BLOCK_OP_NORMAL);
3217 else
3218 emit_move_insn (dest, src);
3221 if (to_conversion)
3223 all->first_conversion_insn = get_insns ();
3224 all->last_conversion_insn = get_last_insn ();
3225 end_sequence ();
3228 SET_DECL_RTL (parm, data->stack_parm);
3231 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3232 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3234 static void
3235 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3236 VEC(tree, heap) *fnargs)
3238 tree parm;
3239 tree orig_fnargs = all->orig_fnargs;
3240 unsigned i = 0;
3242 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3244 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3245 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3247 rtx tmp, real, imag;
3248 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3250 real = DECL_RTL (VEC_index (tree, fnargs, i));
3251 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3252 if (inner != GET_MODE (real))
3254 real = gen_lowpart_SUBREG (inner, real);
3255 imag = gen_lowpart_SUBREG (inner, imag);
3258 if (TREE_ADDRESSABLE (parm))
3260 rtx rmem, imem;
3261 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3262 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3263 DECL_MODE (parm),
3264 TYPE_ALIGN (TREE_TYPE (parm)));
3266 /* split_complex_arg put the real and imag parts in
3267 pseudos. Move them to memory. */
3268 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3269 set_mem_attributes (tmp, parm, 1);
3270 rmem = adjust_address_nv (tmp, inner, 0);
3271 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3272 push_to_sequence2 (all->first_conversion_insn,
3273 all->last_conversion_insn);
3274 emit_move_insn (rmem, real);
3275 emit_move_insn (imem, imag);
3276 all->first_conversion_insn = get_insns ();
3277 all->last_conversion_insn = get_last_insn ();
3278 end_sequence ();
3280 else
3281 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3282 SET_DECL_RTL (parm, tmp);
3284 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3285 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3286 if (inner != GET_MODE (real))
3288 real = gen_lowpart_SUBREG (inner, real);
3289 imag = gen_lowpart_SUBREG (inner, imag);
3291 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3292 set_decl_incoming_rtl (parm, tmp, false);
3293 i++;
3298 /* Assign RTL expressions to the function's parameters. This may involve
3299 copying them into registers and using those registers as the DECL_RTL. */
3301 static void
3302 assign_parms (tree fndecl)
3304 struct assign_parm_data_all all;
3305 tree parm;
3306 VEC(tree, heap) *fnargs;
3307 unsigned i;
3309 crtl->args.internal_arg_pointer
3310 = targetm.calls.internal_arg_pointer ();
3312 assign_parms_initialize_all (&all);
3313 fnargs = assign_parms_augmented_arg_list (&all);
3315 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3317 struct assign_parm_data_one data;
3319 /* Extract the type of PARM; adjust it according to ABI. */
3320 assign_parm_find_data_types (&all, parm, &data);
3322 /* Early out for errors and void parameters. */
3323 if (data.passed_mode == VOIDmode)
3325 SET_DECL_RTL (parm, const0_rtx);
3326 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3327 continue;
3330 /* Estimate stack alignment from parameter alignment. */
3331 if (SUPPORTS_STACK_ALIGNMENT)
3333 unsigned int align
3334 = targetm.calls.function_arg_boundary (data.promoted_mode,
3335 data.passed_type);
3336 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3337 align);
3338 if (TYPE_ALIGN (data.nominal_type) > align)
3339 align = MINIMUM_ALIGNMENT (data.nominal_type,
3340 TYPE_MODE (data.nominal_type),
3341 TYPE_ALIGN (data.nominal_type));
3342 if (crtl->stack_alignment_estimated < align)
3344 gcc_assert (!crtl->stack_realign_processed);
3345 crtl->stack_alignment_estimated = align;
3349 if (cfun->stdarg && !DECL_CHAIN (parm))
3350 assign_parms_setup_varargs (&all, &data, false);
3352 /* Find out where the parameter arrives in this function. */
3353 assign_parm_find_entry_rtl (&all, &data);
3355 /* Find out where stack space for this parameter might be. */
3356 if (assign_parm_is_stack_parm (&all, &data))
3358 assign_parm_find_stack_rtl (parm, &data);
3359 assign_parm_adjust_entry_rtl (&data);
3362 /* Record permanently how this parm was passed. */
3363 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3365 /* Update info on where next arg arrives in registers. */
3366 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3367 data.passed_type, data.named_arg);
3369 assign_parm_adjust_stack_rtl (&data);
3371 if (assign_parm_setup_block_p (&data))
3372 assign_parm_setup_block (&all, parm, &data);
3373 else if (data.passed_pointer || use_register_for_decl (parm))
3374 assign_parm_setup_reg (&all, parm, &data);
3375 else
3376 assign_parm_setup_stack (&all, parm, &data);
3379 if (targetm.calls.split_complex_arg)
3380 assign_parms_unsplit_complex (&all, fnargs);
3382 VEC_free (tree, heap, fnargs);
3384 /* Output all parameter conversion instructions (possibly including calls)
3385 now that all parameters have been copied out of hard registers. */
3386 emit_insn (all.first_conversion_insn);
3388 /* Estimate reload stack alignment from scalar return mode. */
3389 if (SUPPORTS_STACK_ALIGNMENT)
3391 if (DECL_RESULT (fndecl))
3393 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3394 enum machine_mode mode = TYPE_MODE (type);
3396 if (mode != BLKmode
3397 && mode != VOIDmode
3398 && !AGGREGATE_TYPE_P (type))
3400 unsigned int align = GET_MODE_ALIGNMENT (mode);
3401 if (crtl->stack_alignment_estimated < align)
3403 gcc_assert (!crtl->stack_realign_processed);
3404 crtl->stack_alignment_estimated = align;
3410 /* If we are receiving a struct value address as the first argument, set up
3411 the RTL for the function result. As this might require code to convert
3412 the transmitted address to Pmode, we do this here to ensure that possible
3413 preliminary conversions of the address have been emitted already. */
3414 if (all.function_result_decl)
3416 tree result = DECL_RESULT (current_function_decl);
3417 rtx addr = DECL_RTL (all.function_result_decl);
3418 rtx x;
3420 if (DECL_BY_REFERENCE (result))
3421 x = addr;
3422 else
3424 addr = convert_memory_address (Pmode, addr);
3425 x = gen_rtx_MEM (DECL_MODE (result), addr);
3426 set_mem_attributes (x, result, 1);
3428 SET_DECL_RTL (result, x);
3431 /* We have aligned all the args, so add space for the pretend args. */
3432 crtl->args.pretend_args_size = all.pretend_args_size;
3433 all.stack_args_size.constant += all.extra_pretend_bytes;
3434 crtl->args.size = all.stack_args_size.constant;
3436 /* Adjust function incoming argument size for alignment and
3437 minimum length. */
3439 #ifdef REG_PARM_STACK_SPACE
3440 crtl->args.size = MAX (crtl->args.size,
3441 REG_PARM_STACK_SPACE (fndecl));
3442 #endif
3444 crtl->args.size = CEIL_ROUND (crtl->args.size,
3445 PARM_BOUNDARY / BITS_PER_UNIT);
3447 #ifdef ARGS_GROW_DOWNWARD
3448 crtl->args.arg_offset_rtx
3449 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3450 : expand_expr (size_diffop (all.stack_args_size.var,
3451 size_int (-all.stack_args_size.constant)),
3452 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3453 #else
3454 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3455 #endif
3457 /* See how many bytes, if any, of its args a function should try to pop
3458 on return. */
3460 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3461 TREE_TYPE (fndecl),
3462 crtl->args.size);
3464 /* For stdarg.h function, save info about
3465 regs and stack space used by the named args. */
3467 crtl->args.info = all.args_so_far;
3469 /* Set the rtx used for the function return value. Put this in its
3470 own variable so any optimizers that need this information don't have
3471 to include tree.h. Do this here so it gets done when an inlined
3472 function gets output. */
3474 crtl->return_rtx
3475 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3476 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3478 /* If scalar return value was computed in a pseudo-reg, or was a named
3479 return value that got dumped to the stack, copy that to the hard
3480 return register. */
3481 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3483 tree decl_result = DECL_RESULT (fndecl);
3484 rtx decl_rtl = DECL_RTL (decl_result);
3486 if (REG_P (decl_rtl)
3487 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3488 : DECL_REGISTER (decl_result))
3490 rtx real_decl_rtl;
3492 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3493 fndecl, true);
3494 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3495 /* The delay slot scheduler assumes that crtl->return_rtx
3496 holds the hard register containing the return value, not a
3497 temporary pseudo. */
3498 crtl->return_rtx = real_decl_rtl;
3503 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3504 For all seen types, gimplify their sizes. */
3506 static tree
3507 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3509 tree t = *tp;
3511 *walk_subtrees = 0;
3512 if (TYPE_P (t))
3514 if (POINTER_TYPE_P (t))
3515 *walk_subtrees = 1;
3516 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3517 && !TYPE_SIZES_GIMPLIFIED (t))
3519 gimplify_type_sizes (t, (gimple_seq *) data);
3520 *walk_subtrees = 1;
3524 return NULL;
3527 /* Gimplify the parameter list for current_function_decl. This involves
3528 evaluating SAVE_EXPRs of variable sized parameters and generating code
3529 to implement callee-copies reference parameters. Returns a sequence of
3530 statements to add to the beginning of the function. */
3532 gimple_seq
3533 gimplify_parameters (void)
3535 struct assign_parm_data_all all;
3536 tree parm;
3537 gimple_seq stmts = NULL;
3538 VEC(tree, heap) *fnargs;
3539 unsigned i;
3541 assign_parms_initialize_all (&all);
3542 fnargs = assign_parms_augmented_arg_list (&all);
3544 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3546 struct assign_parm_data_one data;
3548 /* Extract the type of PARM; adjust it according to ABI. */
3549 assign_parm_find_data_types (&all, parm, &data);
3551 /* Early out for errors and void parameters. */
3552 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3553 continue;
3555 /* Update info on where next arg arrives in registers. */
3556 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3557 data.passed_type, data.named_arg);
3559 /* ??? Once upon a time variable_size stuffed parameter list
3560 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3561 turned out to be less than manageable in the gimple world.
3562 Now we have to hunt them down ourselves. */
3563 walk_tree_without_duplicates (&data.passed_type,
3564 gimplify_parm_type, &stmts);
3566 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3568 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3569 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3572 if (data.passed_pointer)
3574 tree type = TREE_TYPE (data.passed_type);
3575 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3576 type, data.named_arg))
3578 tree local, t;
3580 /* For constant-sized objects, this is trivial; for
3581 variable-sized objects, we have to play games. */
3582 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3583 && !(flag_stack_check == GENERIC_STACK_CHECK
3584 && compare_tree_int (DECL_SIZE_UNIT (parm),
3585 STACK_CHECK_MAX_VAR_SIZE) > 0))
3587 local = create_tmp_reg (type, get_name (parm));
3588 DECL_IGNORED_P (local) = 0;
3589 /* If PARM was addressable, move that flag over
3590 to the local copy, as its address will be taken,
3591 not the PARMs. Keep the parms address taken
3592 as we'll query that flag during gimplification. */
3593 if (TREE_ADDRESSABLE (parm))
3594 TREE_ADDRESSABLE (local) = 1;
3596 else
3598 tree ptr_type, addr;
3600 ptr_type = build_pointer_type (type);
3601 addr = create_tmp_reg (ptr_type, get_name (parm));
3602 DECL_IGNORED_P (addr) = 0;
3603 local = build_fold_indirect_ref (addr);
3605 t = built_in_decls[BUILT_IN_ALLOCA];
3606 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3607 /* The call has been built for a variable-sized object. */
3608 ALLOCA_FOR_VAR_P (t) = 1;
3609 t = fold_convert (ptr_type, t);
3610 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3611 gimplify_and_add (t, &stmts);
3614 gimplify_assign (local, parm, &stmts);
3616 SET_DECL_VALUE_EXPR (parm, local);
3617 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3622 VEC_free (tree, heap, fnargs);
3624 return stmts;
3627 /* Compute the size and offset from the start of the stacked arguments for a
3628 parm passed in mode PASSED_MODE and with type TYPE.
3630 INITIAL_OFFSET_PTR points to the current offset into the stacked
3631 arguments.
3633 The starting offset and size for this parm are returned in
3634 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3635 nonzero, the offset is that of stack slot, which is returned in
3636 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3637 padding required from the initial offset ptr to the stack slot.
3639 IN_REGS is nonzero if the argument will be passed in registers. It will
3640 never be set if REG_PARM_STACK_SPACE is not defined.
3642 FNDECL is the function in which the argument was defined.
3644 There are two types of rounding that are done. The first, controlled by
3645 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3646 argument list to be aligned to the specific boundary (in bits). This
3647 rounding affects the initial and starting offsets, but not the argument
3648 size.
3650 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3651 optionally rounds the size of the parm to PARM_BOUNDARY. The
3652 initial offset is not affected by this rounding, while the size always
3653 is and the starting offset may be. */
3655 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3656 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3657 callers pass in the total size of args so far as
3658 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3660 void
3661 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3662 int partial, tree fndecl ATTRIBUTE_UNUSED,
3663 struct args_size *initial_offset_ptr,
3664 struct locate_and_pad_arg_data *locate)
3666 tree sizetree;
3667 enum direction where_pad;
3668 unsigned int boundary;
3669 int reg_parm_stack_space = 0;
3670 int part_size_in_regs;
3672 #ifdef REG_PARM_STACK_SPACE
3673 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3675 /* If we have found a stack parm before we reach the end of the
3676 area reserved for registers, skip that area. */
3677 if (! in_regs)
3679 if (reg_parm_stack_space > 0)
3681 if (initial_offset_ptr->var)
3683 initial_offset_ptr->var
3684 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3685 ssize_int (reg_parm_stack_space));
3686 initial_offset_ptr->constant = 0;
3688 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3689 initial_offset_ptr->constant = reg_parm_stack_space;
3692 #endif /* REG_PARM_STACK_SPACE */
3694 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3696 sizetree
3697 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3698 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3699 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3700 locate->where_pad = where_pad;
3702 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3703 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3704 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3706 locate->boundary = boundary;
3708 if (SUPPORTS_STACK_ALIGNMENT)
3710 /* stack_alignment_estimated can't change after stack has been
3711 realigned. */
3712 if (crtl->stack_alignment_estimated < boundary)
3714 if (!crtl->stack_realign_processed)
3715 crtl->stack_alignment_estimated = boundary;
3716 else
3718 /* If stack is realigned and stack alignment value
3719 hasn't been finalized, it is OK not to increase
3720 stack_alignment_estimated. The bigger alignment
3721 requirement is recorded in stack_alignment_needed
3722 below. */
3723 gcc_assert (!crtl->stack_realign_finalized
3724 && crtl->stack_realign_needed);
3729 /* Remember if the outgoing parameter requires extra alignment on the
3730 calling function side. */
3731 if (crtl->stack_alignment_needed < boundary)
3732 crtl->stack_alignment_needed = boundary;
3733 if (crtl->preferred_stack_boundary < boundary)
3734 crtl->preferred_stack_boundary = boundary;
3736 #ifdef ARGS_GROW_DOWNWARD
3737 locate->slot_offset.constant = -initial_offset_ptr->constant;
3738 if (initial_offset_ptr->var)
3739 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3740 initial_offset_ptr->var);
3743 tree s2 = sizetree;
3744 if (where_pad != none
3745 && (!host_integerp (sizetree, 1)
3746 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3747 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3748 SUB_PARM_SIZE (locate->slot_offset, s2);
3751 locate->slot_offset.constant += part_size_in_regs;
3753 if (!in_regs
3754 #ifdef REG_PARM_STACK_SPACE
3755 || REG_PARM_STACK_SPACE (fndecl) > 0
3756 #endif
3758 pad_to_arg_alignment (&locate->slot_offset, boundary,
3759 &locate->alignment_pad);
3761 locate->size.constant = (-initial_offset_ptr->constant
3762 - locate->slot_offset.constant);
3763 if (initial_offset_ptr->var)
3764 locate->size.var = size_binop (MINUS_EXPR,
3765 size_binop (MINUS_EXPR,
3766 ssize_int (0),
3767 initial_offset_ptr->var),
3768 locate->slot_offset.var);
3770 /* Pad_below needs the pre-rounded size to know how much to pad
3771 below. */
3772 locate->offset = locate->slot_offset;
3773 if (where_pad == downward)
3774 pad_below (&locate->offset, passed_mode, sizetree);
3776 #else /* !ARGS_GROW_DOWNWARD */
3777 if (!in_regs
3778 #ifdef REG_PARM_STACK_SPACE
3779 || REG_PARM_STACK_SPACE (fndecl) > 0
3780 #endif
3782 pad_to_arg_alignment (initial_offset_ptr, boundary,
3783 &locate->alignment_pad);
3784 locate->slot_offset = *initial_offset_ptr;
3786 #ifdef PUSH_ROUNDING
3787 if (passed_mode != BLKmode)
3788 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3789 #endif
3791 /* Pad_below needs the pre-rounded size to know how much to pad below
3792 so this must be done before rounding up. */
3793 locate->offset = locate->slot_offset;
3794 if (where_pad == downward)
3795 pad_below (&locate->offset, passed_mode, sizetree);
3797 if (where_pad != none
3798 && (!host_integerp (sizetree, 1)
3799 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3800 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3802 ADD_PARM_SIZE (locate->size, sizetree);
3804 locate->size.constant -= part_size_in_regs;
3805 #endif /* ARGS_GROW_DOWNWARD */
3807 #ifdef FUNCTION_ARG_OFFSET
3808 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3809 #endif
3812 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3813 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3815 static void
3816 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3817 struct args_size *alignment_pad)
3819 tree save_var = NULL_TREE;
3820 HOST_WIDE_INT save_constant = 0;
3821 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3822 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3824 #ifdef SPARC_STACK_BOUNDARY_HACK
3825 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3826 the real alignment of %sp. However, when it does this, the
3827 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3828 if (SPARC_STACK_BOUNDARY_HACK)
3829 sp_offset = 0;
3830 #endif
3832 if (boundary > PARM_BOUNDARY)
3834 save_var = offset_ptr->var;
3835 save_constant = offset_ptr->constant;
3838 alignment_pad->var = NULL_TREE;
3839 alignment_pad->constant = 0;
3841 if (boundary > BITS_PER_UNIT)
3843 if (offset_ptr->var)
3845 tree sp_offset_tree = ssize_int (sp_offset);
3846 tree offset = size_binop (PLUS_EXPR,
3847 ARGS_SIZE_TREE (*offset_ptr),
3848 sp_offset_tree);
3849 #ifdef ARGS_GROW_DOWNWARD
3850 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3851 #else
3852 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3853 #endif
3855 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3856 /* ARGS_SIZE_TREE includes constant term. */
3857 offset_ptr->constant = 0;
3858 if (boundary > PARM_BOUNDARY)
3859 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3860 save_var);
3862 else
3864 offset_ptr->constant = -sp_offset +
3865 #ifdef ARGS_GROW_DOWNWARD
3866 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3867 #else
3868 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3869 #endif
3870 if (boundary > PARM_BOUNDARY)
3871 alignment_pad->constant = offset_ptr->constant - save_constant;
3876 static void
3877 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3879 if (passed_mode != BLKmode)
3881 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3882 offset_ptr->constant
3883 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3884 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3885 - GET_MODE_SIZE (passed_mode));
3887 else
3889 if (TREE_CODE (sizetree) != INTEGER_CST
3890 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3892 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3893 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3894 /* Add it in. */
3895 ADD_PARM_SIZE (*offset_ptr, s2);
3896 SUB_PARM_SIZE (*offset_ptr, sizetree);
3902 /* True if register REGNO was alive at a place where `setjmp' was
3903 called and was set more than once or is an argument. Such regs may
3904 be clobbered by `longjmp'. */
3906 static bool
3907 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3909 /* There appear to be cases where some local vars never reach the
3910 backend but have bogus regnos. */
3911 if (regno >= max_reg_num ())
3912 return false;
3914 return ((REG_N_SETS (regno) > 1
3915 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3916 && REGNO_REG_SET_P (setjmp_crosses, regno));
3919 /* Walk the tree of blocks describing the binding levels within a
3920 function and warn about variables the might be killed by setjmp or
3921 vfork. This is done after calling flow_analysis before register
3922 allocation since that will clobber the pseudo-regs to hard
3923 regs. */
3925 static void
3926 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3928 tree decl, sub;
3930 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3932 if (TREE_CODE (decl) == VAR_DECL
3933 && DECL_RTL_SET_P (decl)
3934 && REG_P (DECL_RTL (decl))
3935 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3936 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3937 " %<longjmp%> or %<vfork%>", decl);
3940 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3941 setjmp_vars_warning (setjmp_crosses, sub);
3944 /* Do the appropriate part of setjmp_vars_warning
3945 but for arguments instead of local variables. */
3947 static void
3948 setjmp_args_warning (bitmap setjmp_crosses)
3950 tree decl;
3951 for (decl = DECL_ARGUMENTS (current_function_decl);
3952 decl; decl = DECL_CHAIN (decl))
3953 if (DECL_RTL (decl) != 0
3954 && REG_P (DECL_RTL (decl))
3955 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3956 warning (OPT_Wclobbered,
3957 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3958 decl);
3961 /* Generate warning messages for variables live across setjmp. */
3963 void
3964 generate_setjmp_warnings (void)
3966 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3968 if (n_basic_blocks == NUM_FIXED_BLOCKS
3969 || bitmap_empty_p (setjmp_crosses))
3970 return;
3972 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3973 setjmp_args_warning (setjmp_crosses);
3977 /* Reverse the order of elements in the fragment chain T of blocks,
3978 and return the new head of the chain (old last element). */
3980 static tree
3981 block_fragments_nreverse (tree t)
3983 tree prev = 0, block, next;
3984 for (block = t; block; block = next)
3986 next = BLOCK_FRAGMENT_CHAIN (block);
3987 BLOCK_FRAGMENT_CHAIN (block) = prev;
3988 prev = block;
3990 return prev;
3993 /* Reverse the order of elements in the chain T of blocks,
3994 and return the new head of the chain (old last element).
3995 Also do the same on subblocks and reverse the order of elements
3996 in BLOCK_FRAGMENT_CHAIN as well. */
3998 static tree
3999 blocks_nreverse_all (tree t)
4001 tree prev = 0, block, next;
4002 for (block = t; block; block = next)
4004 next = BLOCK_CHAIN (block);
4005 BLOCK_CHAIN (block) = prev;
4006 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4007 if (BLOCK_FRAGMENT_CHAIN (block)
4008 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4009 BLOCK_FRAGMENT_CHAIN (block)
4010 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4011 prev = block;
4013 return prev;
4017 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4018 and create duplicate blocks. */
4019 /* ??? Need an option to either create block fragments or to create
4020 abstract origin duplicates of a source block. It really depends
4021 on what optimization has been performed. */
4023 void
4024 reorder_blocks (void)
4026 tree block = DECL_INITIAL (current_function_decl);
4027 VEC(tree,heap) *block_stack;
4029 if (block == NULL_TREE)
4030 return;
4032 block_stack = VEC_alloc (tree, heap, 10);
4034 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4035 clear_block_marks (block);
4037 /* Prune the old trees away, so that they don't get in the way. */
4038 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4039 BLOCK_CHAIN (block) = NULL_TREE;
4041 /* Recreate the block tree from the note nesting. */
4042 reorder_blocks_1 (get_insns (), block, &block_stack);
4043 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4045 VEC_free (tree, heap, block_stack);
4048 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4050 void
4051 clear_block_marks (tree block)
4053 while (block)
4055 TREE_ASM_WRITTEN (block) = 0;
4056 clear_block_marks (BLOCK_SUBBLOCKS (block));
4057 block = BLOCK_CHAIN (block);
4061 static void
4062 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4064 rtx insn;
4066 for (insn = insns; insn; insn = NEXT_INSN (insn))
4068 if (NOTE_P (insn))
4070 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4072 tree block = NOTE_BLOCK (insn);
4073 tree origin;
4075 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4076 origin = block;
4078 /* If we have seen this block before, that means it now
4079 spans multiple address regions. Create a new fragment. */
4080 if (TREE_ASM_WRITTEN (block))
4082 tree new_block = copy_node (block);
4084 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4085 BLOCK_FRAGMENT_CHAIN (new_block)
4086 = BLOCK_FRAGMENT_CHAIN (origin);
4087 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4089 NOTE_BLOCK (insn) = new_block;
4090 block = new_block;
4093 BLOCK_SUBBLOCKS (block) = 0;
4094 TREE_ASM_WRITTEN (block) = 1;
4095 /* When there's only one block for the entire function,
4096 current_block == block and we mustn't do this, it
4097 will cause infinite recursion. */
4098 if (block != current_block)
4100 if (block != origin)
4101 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
4103 BLOCK_SUPERCONTEXT (block) = current_block;
4104 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4105 BLOCK_SUBBLOCKS (current_block) = block;
4106 current_block = origin;
4108 VEC_safe_push (tree, heap, *p_block_stack, block);
4110 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4112 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4113 current_block = BLOCK_SUPERCONTEXT (current_block);
4119 /* Reverse the order of elements in the chain T of blocks,
4120 and return the new head of the chain (old last element). */
4122 tree
4123 blocks_nreverse (tree t)
4125 tree prev = 0, block, next;
4126 for (block = t; block; block = next)
4128 next = BLOCK_CHAIN (block);
4129 BLOCK_CHAIN (block) = prev;
4130 prev = block;
4132 return prev;
4135 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4136 non-NULL, list them all into VECTOR, in a depth-first preorder
4137 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4138 blocks. */
4140 static int
4141 all_blocks (tree block, tree *vector)
4143 int n_blocks = 0;
4145 while (block)
4147 TREE_ASM_WRITTEN (block) = 0;
4149 /* Record this block. */
4150 if (vector)
4151 vector[n_blocks] = block;
4153 ++n_blocks;
4155 /* Record the subblocks, and their subblocks... */
4156 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4157 vector ? vector + n_blocks : 0);
4158 block = BLOCK_CHAIN (block);
4161 return n_blocks;
4164 /* Return a vector containing all the blocks rooted at BLOCK. The
4165 number of elements in the vector is stored in N_BLOCKS_P. The
4166 vector is dynamically allocated; it is the caller's responsibility
4167 to call `free' on the pointer returned. */
4169 static tree *
4170 get_block_vector (tree block, int *n_blocks_p)
4172 tree *block_vector;
4174 *n_blocks_p = all_blocks (block, NULL);
4175 block_vector = XNEWVEC (tree, *n_blocks_p);
4176 all_blocks (block, block_vector);
4178 return block_vector;
4181 static GTY(()) int next_block_index = 2;
4183 /* Set BLOCK_NUMBER for all the blocks in FN. */
4185 void
4186 number_blocks (tree fn)
4188 int i;
4189 int n_blocks;
4190 tree *block_vector;
4192 /* For SDB and XCOFF debugging output, we start numbering the blocks
4193 from 1 within each function, rather than keeping a running
4194 count. */
4195 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4196 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4197 next_block_index = 1;
4198 #endif
4200 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4202 /* The top-level BLOCK isn't numbered at all. */
4203 for (i = 1; i < n_blocks; ++i)
4204 /* We number the blocks from two. */
4205 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4207 free (block_vector);
4209 return;
4212 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4214 DEBUG_FUNCTION tree
4215 debug_find_var_in_block_tree (tree var, tree block)
4217 tree t;
4219 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4220 if (t == var)
4221 return block;
4223 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4225 tree ret = debug_find_var_in_block_tree (var, t);
4226 if (ret)
4227 return ret;
4230 return NULL_TREE;
4233 /* Keep track of whether we're in a dummy function context. If we are,
4234 we don't want to invoke the set_current_function hook, because we'll
4235 get into trouble if the hook calls target_reinit () recursively or
4236 when the initial initialization is not yet complete. */
4238 static bool in_dummy_function;
4240 /* Invoke the target hook when setting cfun. Update the optimization options
4241 if the function uses different options than the default. */
4243 static void
4244 invoke_set_current_function_hook (tree fndecl)
4246 if (!in_dummy_function)
4248 tree opts = ((fndecl)
4249 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4250 : optimization_default_node);
4252 if (!opts)
4253 opts = optimization_default_node;
4255 /* Change optimization options if needed. */
4256 if (optimization_current_node != opts)
4258 optimization_current_node = opts;
4259 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4262 targetm.set_current_function (fndecl);
4266 /* cfun should never be set directly; use this function. */
4268 void
4269 set_cfun (struct function *new_cfun)
4271 if (cfun != new_cfun)
4273 cfun = new_cfun;
4274 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4278 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4280 static VEC(function_p,heap) *cfun_stack;
4282 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4284 void
4285 push_cfun (struct function *new_cfun)
4287 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4288 set_cfun (new_cfun);
4291 /* Pop cfun from the stack. */
4293 void
4294 pop_cfun (void)
4296 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4297 set_cfun (new_cfun);
4300 /* Return value of funcdef and increase it. */
4302 get_next_funcdef_no (void)
4304 return funcdef_no++;
4307 /* Allocate a function structure for FNDECL and set its contents
4308 to the defaults. Set cfun to the newly-allocated object.
4309 Some of the helper functions invoked during initialization assume
4310 that cfun has already been set. Therefore, assign the new object
4311 directly into cfun and invoke the back end hook explicitly at the
4312 very end, rather than initializing a temporary and calling set_cfun
4313 on it.
4315 ABSTRACT_P is true if this is a function that will never be seen by
4316 the middle-end. Such functions are front-end concepts (like C++
4317 function templates) that do not correspond directly to functions
4318 placed in object files. */
4320 void
4321 allocate_struct_function (tree fndecl, bool abstract_p)
4323 tree result;
4324 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4326 cfun = ggc_alloc_cleared_function ();
4328 init_eh_for_function ();
4330 if (init_machine_status)
4331 cfun->machine = (*init_machine_status) ();
4333 #ifdef OVERRIDE_ABI_FORMAT
4334 OVERRIDE_ABI_FORMAT (fndecl);
4335 #endif
4337 invoke_set_current_function_hook (fndecl);
4339 if (fndecl != NULL_TREE)
4341 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4342 cfun->decl = fndecl;
4343 current_function_funcdef_no = get_next_funcdef_no ();
4345 result = DECL_RESULT (fndecl);
4346 if (!abstract_p && aggregate_value_p (result, fndecl))
4348 #ifdef PCC_STATIC_STRUCT_RETURN
4349 cfun->returns_pcc_struct = 1;
4350 #endif
4351 cfun->returns_struct = 1;
4354 cfun->stdarg = stdarg_p (fntype);
4356 /* Assume all registers in stdarg functions need to be saved. */
4357 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4358 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4360 /* ??? This could be set on a per-function basis by the front-end
4361 but is this worth the hassle? */
4362 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4366 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4367 instead of just setting it. */
4369 void
4370 push_struct_function (tree fndecl)
4372 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4373 allocate_struct_function (fndecl, false);
4376 /* Reset crtl and other non-struct-function variables to defaults as
4377 appropriate for emitting rtl at the start of a function. */
4379 static void
4380 prepare_function_start (void)
4382 gcc_assert (!crtl->emit.x_last_insn);
4383 init_temp_slots ();
4384 init_emit ();
4385 init_varasm_status ();
4386 init_expr ();
4387 default_rtl_profile ();
4389 if (flag_stack_usage)
4391 cfun->su = ggc_alloc_cleared_stack_usage ();
4392 cfun->su->static_stack_size = -1;
4395 cse_not_expected = ! optimize;
4397 /* Caller save not needed yet. */
4398 caller_save_needed = 0;
4400 /* We haven't done register allocation yet. */
4401 reg_renumber = 0;
4403 /* Indicate that we have not instantiated virtual registers yet. */
4404 virtuals_instantiated = 0;
4406 /* Indicate that we want CONCATs now. */
4407 generating_concat_p = 1;
4409 /* Indicate we have no need of a frame pointer yet. */
4410 frame_pointer_needed = 0;
4413 /* Initialize the rtl expansion mechanism so that we can do simple things
4414 like generate sequences. This is used to provide a context during global
4415 initialization of some passes. You must call expand_dummy_function_end
4416 to exit this context. */
4418 void
4419 init_dummy_function_start (void)
4421 gcc_assert (!in_dummy_function);
4422 in_dummy_function = true;
4423 push_struct_function (NULL_TREE);
4424 prepare_function_start ();
4427 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4428 and initialize static variables for generating RTL for the statements
4429 of the function. */
4431 void
4432 init_function_start (tree subr)
4434 if (subr && DECL_STRUCT_FUNCTION (subr))
4435 set_cfun (DECL_STRUCT_FUNCTION (subr));
4436 else
4437 allocate_struct_function (subr, false);
4438 prepare_function_start ();
4440 /* Warn if this value is an aggregate type,
4441 regardless of which calling convention we are using for it. */
4442 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4443 warning (OPT_Waggregate_return, "function returns an aggregate");
4446 /* Make sure all values used by the optimization passes have sane defaults. */
4447 unsigned int
4448 init_function_for_compilation (void)
4450 reg_renumber = 0;
4451 return 0;
4454 struct rtl_opt_pass pass_init_function =
4457 RTL_PASS,
4458 "*init_function", /* name */
4459 NULL, /* gate */
4460 init_function_for_compilation, /* execute */
4461 NULL, /* sub */
4462 NULL, /* next */
4463 0, /* static_pass_number */
4464 TV_NONE, /* tv_id */
4465 0, /* properties_required */
4466 0, /* properties_provided */
4467 0, /* properties_destroyed */
4468 0, /* todo_flags_start */
4469 0 /* todo_flags_finish */
4474 void
4475 expand_main_function (void)
4477 #if (defined(INVOKE__main) \
4478 || (!defined(HAS_INIT_SECTION) \
4479 && !defined(INIT_SECTION_ASM_OP) \
4480 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4481 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4482 #endif
4485 /* Expand code to initialize the stack_protect_guard. This is invoked at
4486 the beginning of a function to be protected. */
4488 #ifndef HAVE_stack_protect_set
4489 # define HAVE_stack_protect_set 0
4490 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4491 #endif
4493 void
4494 stack_protect_prologue (void)
4496 tree guard_decl = targetm.stack_protect_guard ();
4497 rtx x, y;
4499 x = expand_normal (crtl->stack_protect_guard);
4500 y = expand_normal (guard_decl);
4502 /* Allow the target to copy from Y to X without leaking Y into a
4503 register. */
4504 if (HAVE_stack_protect_set)
4506 rtx insn = gen_stack_protect_set (x, y);
4507 if (insn)
4509 emit_insn (insn);
4510 return;
4514 /* Otherwise do a straight move. */
4515 emit_move_insn (x, y);
4518 /* Expand code to verify the stack_protect_guard. This is invoked at
4519 the end of a function to be protected. */
4521 #ifndef HAVE_stack_protect_test
4522 # define HAVE_stack_protect_test 0
4523 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4524 #endif
4526 void
4527 stack_protect_epilogue (void)
4529 tree guard_decl = targetm.stack_protect_guard ();
4530 rtx label = gen_label_rtx ();
4531 rtx x, y, tmp;
4533 x = expand_normal (crtl->stack_protect_guard);
4534 y = expand_normal (guard_decl);
4536 /* Allow the target to compare Y with X without leaking either into
4537 a register. */
4538 switch (HAVE_stack_protect_test != 0)
4540 case 1:
4541 tmp = gen_stack_protect_test (x, y, label);
4542 if (tmp)
4544 emit_insn (tmp);
4545 break;
4547 /* FALLTHRU */
4549 default:
4550 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4551 break;
4554 /* The noreturn predictor has been moved to the tree level. The rtl-level
4555 predictors estimate this branch about 20%, which isn't enough to get
4556 things moved out of line. Since this is the only extant case of adding
4557 a noreturn function at the rtl level, it doesn't seem worth doing ought
4558 except adding the prediction by hand. */
4559 tmp = get_last_insn ();
4560 if (JUMP_P (tmp))
4561 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4563 expand_expr_stmt (targetm.stack_protect_fail ());
4564 emit_label (label);
4567 /* Start the RTL for a new function, and set variables used for
4568 emitting RTL.
4569 SUBR is the FUNCTION_DECL node.
4570 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4571 the function's parameters, which must be run at any return statement. */
4573 void
4574 expand_function_start (tree subr)
4576 /* Make sure volatile mem refs aren't considered
4577 valid operands of arithmetic insns. */
4578 init_recog_no_volatile ();
4580 crtl->profile
4581 = (profile_flag
4582 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4584 crtl->limit_stack
4585 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4587 /* Make the label for return statements to jump to. Do not special
4588 case machines with special return instructions -- they will be
4589 handled later during jump, ifcvt, or epilogue creation. */
4590 return_label = gen_label_rtx ();
4592 /* Initialize rtx used to return the value. */
4593 /* Do this before assign_parms so that we copy the struct value address
4594 before any library calls that assign parms might generate. */
4596 /* Decide whether to return the value in memory or in a register. */
4597 if (aggregate_value_p (DECL_RESULT (subr), subr))
4599 /* Returning something that won't go in a register. */
4600 rtx value_address = 0;
4602 #ifdef PCC_STATIC_STRUCT_RETURN
4603 if (cfun->returns_pcc_struct)
4605 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4606 value_address = assemble_static_space (size);
4608 else
4609 #endif
4611 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4612 /* Expect to be passed the address of a place to store the value.
4613 If it is passed as an argument, assign_parms will take care of
4614 it. */
4615 if (sv)
4617 value_address = gen_reg_rtx (Pmode);
4618 emit_move_insn (value_address, sv);
4621 if (value_address)
4623 rtx x = value_address;
4624 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4626 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4627 set_mem_attributes (x, DECL_RESULT (subr), 1);
4629 SET_DECL_RTL (DECL_RESULT (subr), x);
4632 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4633 /* If return mode is void, this decl rtl should not be used. */
4634 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4635 else
4637 /* Compute the return values into a pseudo reg, which we will copy
4638 into the true return register after the cleanups are done. */
4639 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4640 if (TYPE_MODE (return_type) != BLKmode
4641 && targetm.calls.return_in_msb (return_type))
4642 /* expand_function_end will insert the appropriate padding in
4643 this case. Use the return value's natural (unpadded) mode
4644 within the function proper. */
4645 SET_DECL_RTL (DECL_RESULT (subr),
4646 gen_reg_rtx (TYPE_MODE (return_type)));
4647 else
4649 /* In order to figure out what mode to use for the pseudo, we
4650 figure out what the mode of the eventual return register will
4651 actually be, and use that. */
4652 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4654 /* Structures that are returned in registers are not
4655 aggregate_value_p, so we may see a PARALLEL or a REG. */
4656 if (REG_P (hard_reg))
4657 SET_DECL_RTL (DECL_RESULT (subr),
4658 gen_reg_rtx (GET_MODE (hard_reg)));
4659 else
4661 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4662 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4666 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4667 result to the real return register(s). */
4668 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4671 /* Initialize rtx for parameters and local variables.
4672 In some cases this requires emitting insns. */
4673 assign_parms (subr);
4675 /* If function gets a static chain arg, store it. */
4676 if (cfun->static_chain_decl)
4678 tree parm = cfun->static_chain_decl;
4679 rtx local, chain, insn;
4681 local = gen_reg_rtx (Pmode);
4682 chain = targetm.calls.static_chain (current_function_decl, true);
4684 set_decl_incoming_rtl (parm, chain, false);
4685 SET_DECL_RTL (parm, local);
4686 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4688 insn = emit_move_insn (local, chain);
4690 /* Mark the register as eliminable, similar to parameters. */
4691 if (MEM_P (chain)
4692 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4693 set_unique_reg_note (insn, REG_EQUIV, chain);
4696 /* If the function receives a non-local goto, then store the
4697 bits we need to restore the frame pointer. */
4698 if (cfun->nonlocal_goto_save_area)
4700 tree t_save;
4701 rtx r_save;
4703 /* ??? We need to do this save early. Unfortunately here is
4704 before the frame variable gets declared. Help out... */
4705 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4706 if (!DECL_RTL_SET_P (var))
4707 expand_decl (var);
4709 t_save = build4 (ARRAY_REF, ptr_type_node,
4710 cfun->nonlocal_goto_save_area,
4711 integer_zero_node, NULL_TREE, NULL_TREE);
4712 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4713 r_save = convert_memory_address (Pmode, r_save);
4715 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4716 update_nonlocal_goto_save_area ();
4719 /* The following was moved from init_function_start.
4720 The move is supposed to make sdb output more accurate. */
4721 /* Indicate the beginning of the function body,
4722 as opposed to parm setup. */
4723 emit_note (NOTE_INSN_FUNCTION_BEG);
4725 gcc_assert (NOTE_P (get_last_insn ()));
4727 parm_birth_insn = get_last_insn ();
4729 if (crtl->profile)
4731 #ifdef PROFILE_HOOK
4732 PROFILE_HOOK (current_function_funcdef_no);
4733 #endif
4736 /* After the display initializations is where the stack checking
4737 probe should go. */
4738 if(flag_stack_check)
4739 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4741 /* Make sure there is a line number after the function entry setup code. */
4742 force_next_line_note ();
4745 /* Undo the effects of init_dummy_function_start. */
4746 void
4747 expand_dummy_function_end (void)
4749 gcc_assert (in_dummy_function);
4751 /* End any sequences that failed to be closed due to syntax errors. */
4752 while (in_sequence_p ())
4753 end_sequence ();
4755 /* Outside function body, can't compute type's actual size
4756 until next function's body starts. */
4758 free_after_parsing (cfun);
4759 free_after_compilation (cfun);
4760 pop_cfun ();
4761 in_dummy_function = false;
4764 /* Call DOIT for each hard register used as a return value from
4765 the current function. */
4767 void
4768 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4770 rtx outgoing = crtl->return_rtx;
4772 if (! outgoing)
4773 return;
4775 if (REG_P (outgoing))
4776 (*doit) (outgoing, arg);
4777 else if (GET_CODE (outgoing) == PARALLEL)
4779 int i;
4781 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4783 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4785 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4786 (*doit) (x, arg);
4791 static void
4792 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4794 emit_clobber (reg);
4797 void
4798 clobber_return_register (void)
4800 diddle_return_value (do_clobber_return_reg, NULL);
4802 /* In case we do use pseudo to return value, clobber it too. */
4803 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4805 tree decl_result = DECL_RESULT (current_function_decl);
4806 rtx decl_rtl = DECL_RTL (decl_result);
4807 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4809 do_clobber_return_reg (decl_rtl, NULL);
4814 static void
4815 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4817 emit_use (reg);
4820 static void
4821 use_return_register (void)
4823 diddle_return_value (do_use_return_reg, NULL);
4826 /* Possibly warn about unused parameters. */
4827 void
4828 do_warn_unused_parameter (tree fn)
4830 tree decl;
4832 for (decl = DECL_ARGUMENTS (fn);
4833 decl; decl = DECL_CHAIN (decl))
4834 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4835 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4836 && !TREE_NO_WARNING (decl))
4837 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4840 static GTY(()) rtx initial_trampoline;
4842 /* Generate RTL for the end of the current function. */
4844 void
4845 expand_function_end (void)
4847 rtx clobber_after;
4849 /* If arg_pointer_save_area was referenced only from a nested
4850 function, we will not have initialized it yet. Do that now. */
4851 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4852 get_arg_pointer_save_area ();
4854 /* If we are doing generic stack checking and this function makes calls,
4855 do a stack probe at the start of the function to ensure we have enough
4856 space for another stack frame. */
4857 if (flag_stack_check == GENERIC_STACK_CHECK)
4859 rtx insn, seq;
4861 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4862 if (CALL_P (insn))
4864 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4865 start_sequence ();
4866 if (STACK_CHECK_MOVING_SP)
4867 anti_adjust_stack_and_probe (max_frame_size, true);
4868 else
4869 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4870 seq = get_insns ();
4871 end_sequence ();
4872 set_insn_locators (seq, prologue_locator);
4873 emit_insn_before (seq, stack_check_probe_note);
4874 break;
4878 /* End any sequences that failed to be closed due to syntax errors. */
4879 while (in_sequence_p ())
4880 end_sequence ();
4882 clear_pending_stack_adjust ();
4883 do_pending_stack_adjust ();
4885 /* Output a linenumber for the end of the function.
4886 SDB depends on this. */
4887 force_next_line_note ();
4888 set_curr_insn_source_location (input_location);
4890 /* Before the return label (if any), clobber the return
4891 registers so that they are not propagated live to the rest of
4892 the function. This can only happen with functions that drop
4893 through; if there had been a return statement, there would
4894 have either been a return rtx, or a jump to the return label.
4896 We delay actual code generation after the current_function_value_rtx
4897 is computed. */
4898 clobber_after = get_last_insn ();
4900 /* Output the label for the actual return from the function. */
4901 emit_label (return_label);
4903 if (targetm.except_unwind_info (&global_options) == UI_SJLJ)
4905 /* Let except.c know where it should emit the call to unregister
4906 the function context for sjlj exceptions. */
4907 if (flag_exceptions)
4908 sjlj_emit_function_exit_after (get_last_insn ());
4910 else
4912 /* We want to ensure that instructions that may trap are not
4913 moved into the epilogue by scheduling, because we don't
4914 always emit unwind information for the epilogue. */
4915 if (cfun->can_throw_non_call_exceptions)
4916 emit_insn (gen_blockage ());
4919 /* If this is an implementation of throw, do what's necessary to
4920 communicate between __builtin_eh_return and the epilogue. */
4921 expand_eh_return ();
4923 /* If scalar return value was computed in a pseudo-reg, or was a named
4924 return value that got dumped to the stack, copy that to the hard
4925 return register. */
4926 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4928 tree decl_result = DECL_RESULT (current_function_decl);
4929 rtx decl_rtl = DECL_RTL (decl_result);
4931 if (REG_P (decl_rtl)
4932 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4933 : DECL_REGISTER (decl_result))
4935 rtx real_decl_rtl = crtl->return_rtx;
4937 /* This should be set in assign_parms. */
4938 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4940 /* If this is a BLKmode structure being returned in registers,
4941 then use the mode computed in expand_return. Note that if
4942 decl_rtl is memory, then its mode may have been changed,
4943 but that crtl->return_rtx has not. */
4944 if (GET_MODE (real_decl_rtl) == BLKmode)
4945 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4947 /* If a non-BLKmode return value should be padded at the least
4948 significant end of the register, shift it left by the appropriate
4949 amount. BLKmode results are handled using the group load/store
4950 machinery. */
4951 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4952 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4954 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4955 REGNO (real_decl_rtl)),
4956 decl_rtl);
4957 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4959 /* If a named return value dumped decl_return to memory, then
4960 we may need to re-do the PROMOTE_MODE signed/unsigned
4961 extension. */
4962 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4964 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4965 promote_function_mode (TREE_TYPE (decl_result),
4966 GET_MODE (decl_rtl), &unsignedp,
4967 TREE_TYPE (current_function_decl), 1);
4969 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4971 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4973 /* If expand_function_start has created a PARALLEL for decl_rtl,
4974 move the result to the real return registers. Otherwise, do
4975 a group load from decl_rtl for a named return. */
4976 if (GET_CODE (decl_rtl) == PARALLEL)
4977 emit_group_move (real_decl_rtl, decl_rtl);
4978 else
4979 emit_group_load (real_decl_rtl, decl_rtl,
4980 TREE_TYPE (decl_result),
4981 int_size_in_bytes (TREE_TYPE (decl_result)));
4983 /* In the case of complex integer modes smaller than a word, we'll
4984 need to generate some non-trivial bitfield insertions. Do that
4985 on a pseudo and not the hard register. */
4986 else if (GET_CODE (decl_rtl) == CONCAT
4987 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4988 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4990 int old_generating_concat_p;
4991 rtx tmp;
4993 old_generating_concat_p = generating_concat_p;
4994 generating_concat_p = 0;
4995 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4996 generating_concat_p = old_generating_concat_p;
4998 emit_move_insn (tmp, decl_rtl);
4999 emit_move_insn (real_decl_rtl, tmp);
5001 else
5002 emit_move_insn (real_decl_rtl, decl_rtl);
5006 /* If returning a structure, arrange to return the address of the value
5007 in a place where debuggers expect to find it.
5009 If returning a structure PCC style,
5010 the caller also depends on this value.
5011 And cfun->returns_pcc_struct is not necessarily set. */
5012 if (cfun->returns_struct
5013 || cfun->returns_pcc_struct)
5015 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5016 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5017 rtx outgoing;
5019 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5020 type = TREE_TYPE (type);
5021 else
5022 value_address = XEXP (value_address, 0);
5024 outgoing = targetm.calls.function_value (build_pointer_type (type),
5025 current_function_decl, true);
5027 /* Mark this as a function return value so integrate will delete the
5028 assignment and USE below when inlining this function. */
5029 REG_FUNCTION_VALUE_P (outgoing) = 1;
5031 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5032 value_address = convert_memory_address (GET_MODE (outgoing),
5033 value_address);
5035 emit_move_insn (outgoing, value_address);
5037 /* Show return register used to hold result (in this case the address
5038 of the result. */
5039 crtl->return_rtx = outgoing;
5042 /* Emit the actual code to clobber return register. */
5044 rtx seq;
5046 start_sequence ();
5047 clobber_return_register ();
5048 seq = get_insns ();
5049 end_sequence ();
5051 emit_insn_after (seq, clobber_after);
5054 /* Output the label for the naked return from the function. */
5055 if (naked_return_label)
5056 emit_label (naked_return_label);
5058 /* @@@ This is a kludge. We want to ensure that instructions that
5059 may trap are not moved into the epilogue by scheduling, because
5060 we don't always emit unwind information for the epilogue. */
5061 if (cfun->can_throw_non_call_exceptions
5062 && targetm.except_unwind_info (&global_options) != UI_SJLJ)
5063 emit_insn (gen_blockage ());
5065 /* If stack protection is enabled for this function, check the guard. */
5066 if (crtl->stack_protect_guard)
5067 stack_protect_epilogue ();
5069 /* If we had calls to alloca, and this machine needs
5070 an accurate stack pointer to exit the function,
5071 insert some code to save and restore the stack pointer. */
5072 if (! EXIT_IGNORE_STACK
5073 && cfun->calls_alloca)
5075 rtx tem = 0;
5077 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
5078 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
5081 /* ??? This should no longer be necessary since stupid is no longer with
5082 us, but there are some parts of the compiler (eg reload_combine, and
5083 sh mach_dep_reorg) that still try and compute their own lifetime info
5084 instead of using the general framework. */
5085 use_return_register ();
5089 get_arg_pointer_save_area (void)
5091 rtx ret = arg_pointer_save_area;
5093 if (! ret)
5095 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5096 arg_pointer_save_area = ret;
5099 if (! crtl->arg_pointer_save_area_init)
5101 rtx seq;
5103 /* Save the arg pointer at the beginning of the function. The
5104 generated stack slot may not be a valid memory address, so we
5105 have to check it and fix it if necessary. */
5106 start_sequence ();
5107 emit_move_insn (validize_mem (ret),
5108 crtl->args.internal_arg_pointer);
5109 seq = get_insns ();
5110 end_sequence ();
5112 push_topmost_sequence ();
5113 emit_insn_after (seq, entry_of_function ());
5114 pop_topmost_sequence ();
5116 crtl->arg_pointer_save_area_init = true;
5119 return ret;
5122 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5123 for the first time. */
5125 static void
5126 record_insns (rtx insns, rtx end, htab_t *hashp)
5128 rtx tmp;
5129 htab_t hash = *hashp;
5131 if (hash == NULL)
5132 *hashp = hash
5133 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5135 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5137 void **slot = htab_find_slot (hash, tmp, INSERT);
5138 gcc_assert (*slot == NULL);
5139 *slot = tmp;
5143 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5144 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5145 insn, then record COPY as well. */
5147 void
5148 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5150 htab_t hash;
5151 void **slot;
5153 hash = epilogue_insn_hash;
5154 if (!hash || !htab_find (hash, insn))
5156 hash = prologue_insn_hash;
5157 if (!hash || !htab_find (hash, insn))
5158 return;
5161 slot = htab_find_slot (hash, copy, INSERT);
5162 gcc_assert (*slot == NULL);
5163 *slot = copy;
5166 /* Set the locator of the insn chain starting at INSN to LOC. */
5167 static void
5168 set_insn_locators (rtx insn, int loc)
5170 while (insn != NULL_RTX)
5172 if (INSN_P (insn))
5173 INSN_LOCATOR (insn) = loc;
5174 insn = NEXT_INSN (insn);
5178 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5179 we can be running after reorg, SEQUENCE rtl is possible. */
5181 static bool
5182 contains (const_rtx insn, htab_t hash)
5184 if (hash == NULL)
5185 return false;
5187 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5189 int i;
5190 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5191 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5192 return true;
5193 return false;
5196 return htab_find (hash, insn) != NULL;
5200 prologue_epilogue_contains (const_rtx insn)
5202 if (contains (insn, prologue_insn_hash))
5203 return 1;
5204 if (contains (insn, epilogue_insn_hash))
5205 return 1;
5206 return 0;
5209 #ifdef HAVE_return
5210 /* Insert gen_return at the end of block BB. This also means updating
5211 block_for_insn appropriately. */
5213 static void
5214 emit_return_into_block (basic_block bb)
5216 emit_jump_insn_after (gen_return (), BB_END (bb));
5218 #endif /* HAVE_return */
5220 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5221 this into place with notes indicating where the prologue ends and where
5222 the epilogue begins. Update the basic block information when possible. */
5224 static void
5225 thread_prologue_and_epilogue_insns (void)
5227 bool inserted;
5228 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5229 edge entry_edge ATTRIBUTE_UNUSED;
5230 edge e;
5231 edge_iterator ei;
5233 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5235 inserted = false;
5236 seq = NULL_RTX;
5237 epilogue_end = NULL_RTX;
5239 /* Can't deal with multiple successors of the entry block at the
5240 moment. Function should always have at least one entry
5241 point. */
5242 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5243 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5245 if (flag_split_stack
5246 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5247 == NULL))
5249 #ifndef HAVE_split_stack_prologue
5250 gcc_unreachable ();
5251 #else
5252 gcc_assert (HAVE_split_stack_prologue);
5254 start_sequence ();
5255 emit_insn (gen_split_stack_prologue ());
5256 seq = get_insns ();
5257 end_sequence ();
5259 record_insns (seq, NULL, &prologue_insn_hash);
5260 set_insn_locators (seq, prologue_locator);
5262 /* This relies on the fact that committing the edge insertion
5263 will look for basic blocks within the inserted instructions,
5264 which in turn relies on the fact that we are not in CFG
5265 layout mode here. */
5266 insert_insn_on_edge (seq, entry_edge);
5267 inserted = true;
5268 #endif
5271 #ifdef HAVE_prologue
5272 if (HAVE_prologue)
5274 start_sequence ();
5275 seq = gen_prologue ();
5276 emit_insn (seq);
5278 /* Insert an explicit USE for the frame pointer
5279 if the profiling is on and the frame pointer is required. */
5280 if (crtl->profile && frame_pointer_needed)
5281 emit_use (hard_frame_pointer_rtx);
5283 /* Retain a map of the prologue insns. */
5284 record_insns (seq, NULL, &prologue_insn_hash);
5285 emit_note (NOTE_INSN_PROLOGUE_END);
5287 /* Ensure that instructions are not moved into the prologue when
5288 profiling is on. The call to the profiling routine can be
5289 emitted within the live range of a call-clobbered register. */
5290 if (!targetm.profile_before_prologue () && crtl->profile)
5291 emit_insn (gen_blockage ());
5293 seq = get_insns ();
5294 end_sequence ();
5295 set_insn_locators (seq, prologue_locator);
5297 insert_insn_on_edge (seq, entry_edge);
5298 inserted = true;
5300 #endif
5302 /* If the exit block has no non-fake predecessors, we don't need
5303 an epilogue. */
5304 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5305 if ((e->flags & EDGE_FAKE) == 0)
5306 break;
5307 if (e == NULL)
5308 goto epilogue_done;
5310 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5311 #ifdef HAVE_return
5312 if (optimize && HAVE_return)
5314 /* If we're allowed to generate a simple return instruction,
5315 then by definition we don't need a full epilogue. Examine
5316 the block that falls through to EXIT. If it does not
5317 contain any code, examine its predecessors and try to
5318 emit (conditional) return instructions. */
5320 basic_block last;
5321 rtx label;
5323 e = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
5324 if (e == NULL)
5325 goto epilogue_done;
5326 last = e->src;
5328 /* Verify that there are no active instructions in the last block. */
5329 label = BB_END (last);
5330 while (label && !LABEL_P (label))
5332 if (active_insn_p (label))
5333 break;
5334 label = PREV_INSN (label);
5337 if (BB_HEAD (last) == label && LABEL_P (label))
5339 edge_iterator ei2;
5341 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5343 basic_block bb = e->src;
5344 rtx jump;
5346 if (bb == ENTRY_BLOCK_PTR)
5348 ei_next (&ei2);
5349 continue;
5352 jump = BB_END (bb);
5353 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5355 ei_next (&ei2);
5356 continue;
5359 /* If we have an unconditional jump, we can replace that
5360 with a simple return instruction. */
5361 if (simplejump_p (jump))
5363 emit_return_into_block (bb);
5364 delete_insn (jump);
5367 /* If we have a conditional jump, we can try to replace
5368 that with a conditional return instruction. */
5369 else if (condjump_p (jump))
5371 if (! redirect_jump (jump, 0, 0))
5373 ei_next (&ei2);
5374 continue;
5377 /* If this block has only one successor, it both jumps
5378 and falls through to the fallthru block, so we can't
5379 delete the edge. */
5380 if (single_succ_p (bb))
5382 ei_next (&ei2);
5383 continue;
5386 else
5388 ei_next (&ei2);
5389 continue;
5392 /* Fix up the CFG for the successful change we just made. */
5393 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5396 /* Emit a return insn for the exit fallthru block. Whether
5397 this is still reachable will be determined later. */
5399 emit_barrier_after (BB_END (last));
5400 emit_return_into_block (last);
5401 epilogue_end = BB_END (last);
5402 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5403 goto epilogue_done;
5406 #endif
5408 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5409 this marker for the splits of EH_RETURN patterns, and nothing else
5410 uses the flag in the meantime. */
5411 epilogue_completed = 1;
5413 #ifdef HAVE_eh_return
5414 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5415 some targets, these get split to a special version of the epilogue
5416 code. In order to be able to properly annotate these with unwind
5417 info, try to split them now. If we get a valid split, drop an
5418 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5419 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5421 rtx prev, last, trial;
5423 if (e->flags & EDGE_FALLTHRU)
5424 continue;
5425 last = BB_END (e->src);
5426 if (!eh_returnjump_p (last))
5427 continue;
5429 prev = PREV_INSN (last);
5430 trial = try_split (PATTERN (last), last, 1);
5431 if (trial == last)
5432 continue;
5434 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5435 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5437 #endif
5439 /* Find the edge that falls through to EXIT. Other edges may exist
5440 due to RETURN instructions, but those don't need epilogues.
5441 There really shouldn't be a mixture -- either all should have
5442 been converted or none, however... */
5444 e = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
5445 if (e == NULL)
5446 goto epilogue_done;
5448 #ifdef HAVE_epilogue
5449 if (HAVE_epilogue)
5451 start_sequence ();
5452 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5453 seq = gen_epilogue ();
5454 emit_jump_insn (seq);
5456 /* Retain a map of the epilogue insns. */
5457 record_insns (seq, NULL, &epilogue_insn_hash);
5458 set_insn_locators (seq, epilogue_locator);
5460 seq = get_insns ();
5461 end_sequence ();
5463 insert_insn_on_edge (seq, e);
5464 inserted = true;
5466 else
5467 #endif
5469 basic_block cur_bb;
5471 if (! next_active_insn (BB_END (e->src)))
5472 goto epilogue_done;
5473 /* We have a fall-through edge to the exit block, the source is not
5474 at the end of the function, and there will be an assembler epilogue
5475 at the end of the function.
5476 We can't use force_nonfallthru here, because that would try to
5477 use return. Inserting a jump 'by hand' is extremely messy, so
5478 we take advantage of cfg_layout_finalize using
5479 fixup_fallthru_exit_predecessor. */
5480 cfg_layout_initialize (0);
5481 FOR_EACH_BB (cur_bb)
5482 if (cur_bb->index >= NUM_FIXED_BLOCKS
5483 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5484 cur_bb->aux = cur_bb->next_bb;
5485 cfg_layout_finalize ();
5487 epilogue_done:
5488 default_rtl_profile ();
5490 if (inserted)
5492 commit_edge_insertions ();
5494 /* The epilogue insns we inserted may cause the exit edge to no longer
5495 be fallthru. */
5496 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5498 if (((e->flags & EDGE_FALLTHRU) != 0)
5499 && returnjump_p (BB_END (e->src)))
5500 e->flags &= ~EDGE_FALLTHRU;
5504 #ifdef HAVE_sibcall_epilogue
5505 /* Emit sibling epilogues before any sibling call sites. */
5506 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5508 basic_block bb = e->src;
5509 rtx insn = BB_END (bb);
5511 if (!CALL_P (insn)
5512 || ! SIBLING_CALL_P (insn))
5514 ei_next (&ei);
5515 continue;
5518 start_sequence ();
5519 emit_note (NOTE_INSN_EPILOGUE_BEG);
5520 emit_insn (gen_sibcall_epilogue ());
5521 seq = get_insns ();
5522 end_sequence ();
5524 /* Retain a map of the epilogue insns. Used in life analysis to
5525 avoid getting rid of sibcall epilogue insns. Do this before we
5526 actually emit the sequence. */
5527 record_insns (seq, NULL, &epilogue_insn_hash);
5528 set_insn_locators (seq, epilogue_locator);
5530 emit_insn_before (seq, insn);
5531 ei_next (&ei);
5533 #endif
5535 #ifdef HAVE_epilogue
5536 if (epilogue_end)
5538 rtx insn, next;
5540 /* Similarly, move any line notes that appear after the epilogue.
5541 There is no need, however, to be quite so anal about the existence
5542 of such a note. Also possibly move
5543 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5544 info generation. */
5545 for (insn = epilogue_end; insn; insn = next)
5547 next = NEXT_INSN (insn);
5548 if (NOTE_P (insn)
5549 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5550 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5553 #endif
5555 /* Threading the prologue and epilogue changes the artificial refs
5556 in the entry and exit blocks. */
5557 epilogue_completed = 1;
5558 df_update_entry_exit_and_calls ();
5561 /* Reposition the prologue-end and epilogue-begin notes after
5562 instruction scheduling. */
5564 void
5565 reposition_prologue_and_epilogue_notes (void)
5567 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5568 || defined (HAVE_sibcall_epilogue)
5569 /* Since the hash table is created on demand, the fact that it is
5570 non-null is a signal that it is non-empty. */
5571 if (prologue_insn_hash != NULL)
5573 size_t len = htab_elements (prologue_insn_hash);
5574 rtx insn, last = NULL, note = NULL;
5576 /* Scan from the beginning until we reach the last prologue insn. */
5577 /* ??? While we do have the CFG intact, there are two problems:
5578 (1) The prologue can contain loops (typically probing the stack),
5579 which means that the end of the prologue isn't in the first bb.
5580 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5581 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5583 if (NOTE_P (insn))
5585 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5586 note = insn;
5588 else if (contains (insn, prologue_insn_hash))
5590 last = insn;
5591 if (--len == 0)
5592 break;
5596 if (last)
5598 if (note == NULL)
5600 /* Scan forward looking for the PROLOGUE_END note. It should
5601 be right at the beginning of the block, possibly with other
5602 insn notes that got moved there. */
5603 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5605 if (NOTE_P (note)
5606 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5607 break;
5611 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5612 if (LABEL_P (last))
5613 last = NEXT_INSN (last);
5614 reorder_insns (note, note, last);
5618 if (epilogue_insn_hash != NULL)
5620 edge_iterator ei;
5621 edge e;
5623 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5625 rtx insn, first = NULL, note = NULL;
5626 basic_block bb = e->src;
5628 /* Scan from the beginning until we reach the first epilogue insn. */
5629 FOR_BB_INSNS (bb, insn)
5631 if (NOTE_P (insn))
5633 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5635 note = insn;
5636 if (first != NULL)
5637 break;
5640 else if (first == NULL && contains (insn, epilogue_insn_hash))
5642 first = insn;
5643 if (note != NULL)
5644 break;
5648 if (note)
5650 /* If the function has a single basic block, and no real
5651 epilogue insns (e.g. sibcall with no cleanup), the
5652 epilogue note can get scheduled before the prologue
5653 note. If we have frame related prologue insns, having
5654 them scanned during the epilogue will result in a crash.
5655 In this case re-order the epilogue note to just before
5656 the last insn in the block. */
5657 if (first == NULL)
5658 first = BB_END (bb);
5660 if (PREV_INSN (first) != note)
5661 reorder_insns (note, note, PREV_INSN (first));
5665 #endif /* HAVE_prologue or HAVE_epilogue */
5668 /* Returns the name of the current function. */
5669 const char *
5670 current_function_name (void)
5672 if (cfun == NULL)
5673 return "<none>";
5674 return lang_hooks.decl_printable_name (cfun->decl, 2);
5678 static unsigned int
5679 rest_of_handle_check_leaf_regs (void)
5681 #ifdef LEAF_REGISTERS
5682 current_function_uses_only_leaf_regs
5683 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5684 #endif
5685 return 0;
5688 /* Insert a TYPE into the used types hash table of CFUN. */
5690 static void
5691 used_types_insert_helper (tree type, struct function *func)
5693 if (type != NULL && func != NULL)
5695 void **slot;
5697 if (func->used_types_hash == NULL)
5698 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5699 htab_eq_pointer, NULL);
5700 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5701 if (*slot == NULL)
5702 *slot = type;
5706 /* Given a type, insert it into the used hash table in cfun. */
5707 void
5708 used_types_insert (tree t)
5710 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5711 if (TYPE_NAME (t))
5712 break;
5713 else
5714 t = TREE_TYPE (t);
5715 if (TYPE_NAME (t) == NULL_TREE
5716 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5717 t = TYPE_MAIN_VARIANT (t);
5718 if (debug_info_level > DINFO_LEVEL_NONE)
5720 if (cfun)
5721 used_types_insert_helper (t, cfun);
5722 else
5723 /* So this might be a type referenced by a global variable.
5724 Record that type so that we can later decide to emit its debug
5725 information. */
5726 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
5730 /* Helper to Hash a struct types_used_by_vars_entry. */
5732 static hashval_t
5733 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5735 gcc_assert (entry && entry->var_decl && entry->type);
5737 return iterative_hash_object (entry->type,
5738 iterative_hash_object (entry->var_decl, 0));
5741 /* Hash function of the types_used_by_vars_entry hash table. */
5743 hashval_t
5744 types_used_by_vars_do_hash (const void *x)
5746 const struct types_used_by_vars_entry *entry =
5747 (const struct types_used_by_vars_entry *) x;
5749 return hash_types_used_by_vars_entry (entry);
5752 /*Equality function of the types_used_by_vars_entry hash table. */
5755 types_used_by_vars_eq (const void *x1, const void *x2)
5757 const struct types_used_by_vars_entry *e1 =
5758 (const struct types_used_by_vars_entry *) x1;
5759 const struct types_used_by_vars_entry *e2 =
5760 (const struct types_used_by_vars_entry *)x2;
5762 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5765 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5767 void
5768 types_used_by_var_decl_insert (tree type, tree var_decl)
5770 if (type != NULL && var_decl != NULL)
5772 void **slot;
5773 struct types_used_by_vars_entry e;
5774 e.var_decl = var_decl;
5775 e.type = type;
5776 if (types_used_by_vars_hash == NULL)
5777 types_used_by_vars_hash =
5778 htab_create_ggc (37, types_used_by_vars_do_hash,
5779 types_used_by_vars_eq, NULL);
5780 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5781 hash_types_used_by_vars_entry (&e), INSERT);
5782 if (*slot == NULL)
5784 struct types_used_by_vars_entry *entry;
5785 entry = ggc_alloc_types_used_by_vars_entry ();
5786 entry->type = type;
5787 entry->var_decl = var_decl;
5788 *slot = entry;
5793 struct rtl_opt_pass pass_leaf_regs =
5796 RTL_PASS,
5797 "*leaf_regs", /* name */
5798 NULL, /* gate */
5799 rest_of_handle_check_leaf_regs, /* execute */
5800 NULL, /* sub */
5801 NULL, /* next */
5802 0, /* static_pass_number */
5803 TV_NONE, /* tv_id */
5804 0, /* properties_required */
5805 0, /* properties_provided */
5806 0, /* properties_destroyed */
5807 0, /* todo_flags_start */
5808 0 /* todo_flags_finish */
5812 static unsigned int
5813 rest_of_handle_thread_prologue_and_epilogue (void)
5815 if (optimize)
5816 cleanup_cfg (CLEANUP_EXPENSIVE);
5818 /* On some machines, the prologue and epilogue code, or parts thereof,
5819 can be represented as RTL. Doing so lets us schedule insns between
5820 it and the rest of the code and also allows delayed branch
5821 scheduling to operate in the epilogue. */
5822 thread_prologue_and_epilogue_insns ();
5824 /* The stack usage info is finalized during prologue expansion. */
5825 if (flag_stack_usage)
5826 output_stack_usage ();
5828 return 0;
5831 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5834 RTL_PASS,
5835 "pro_and_epilogue", /* name */
5836 NULL, /* gate */
5837 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5838 NULL, /* sub */
5839 NULL, /* next */
5840 0, /* static_pass_number */
5841 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5842 0, /* properties_required */
5843 0, /* properties_provided */
5844 0, /* properties_destroyed */
5845 TODO_verify_flow, /* todo_flags_start */
5846 TODO_dump_func |
5847 TODO_df_verify |
5848 TODO_df_finish | TODO_verify_rtl_sharing |
5849 TODO_ggc_collect /* todo_flags_finish */
5854 /* This mini-pass fixes fall-out from SSA in asm statements that have
5855 in-out constraints. Say you start with
5857 orig = inout;
5858 asm ("": "+mr" (inout));
5859 use (orig);
5861 which is transformed very early to use explicit output and match operands:
5863 orig = inout;
5864 asm ("": "=mr" (inout) : "0" (inout));
5865 use (orig);
5867 Or, after SSA and copyprop,
5869 asm ("": "=mr" (inout_2) : "0" (inout_1));
5870 use (inout_1);
5872 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5873 they represent two separate values, so they will get different pseudo
5874 registers during expansion. Then, since the two operands need to match
5875 per the constraints, but use different pseudo registers, reload can
5876 only register a reload for these operands. But reloads can only be
5877 satisfied by hardregs, not by memory, so we need a register for this
5878 reload, just because we are presented with non-matching operands.
5879 So, even though we allow memory for this operand, no memory can be
5880 used for it, just because the two operands don't match. This can
5881 cause reload failures on register-starved targets.
5883 So it's a symptom of reload not being able to use memory for reloads
5884 or, alternatively it's also a symptom of both operands not coming into
5885 reload as matching (in which case the pseudo could go to memory just
5886 fine, as the alternative allows it, and no reload would be necessary).
5887 We fix the latter problem here, by transforming
5889 asm ("": "=mr" (inout_2) : "0" (inout_1));
5891 back to
5893 inout_2 = inout_1;
5894 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5896 static void
5897 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5899 int i;
5900 bool changed = false;
5901 rtx op = SET_SRC (p_sets[0]);
5902 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5903 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5904 bool *output_matched = XALLOCAVEC (bool, noutputs);
5906 memset (output_matched, 0, noutputs * sizeof (bool));
5907 for (i = 0; i < ninputs; i++)
5909 rtx input, output, insns;
5910 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5911 char *end;
5912 int match, j;
5914 if (*constraint == '%')
5915 constraint++;
5917 match = strtoul (constraint, &end, 10);
5918 if (end == constraint)
5919 continue;
5921 gcc_assert (match < noutputs);
5922 output = SET_DEST (p_sets[match]);
5923 input = RTVEC_ELT (inputs, i);
5924 /* Only do the transformation for pseudos. */
5925 if (! REG_P (output)
5926 || rtx_equal_p (output, input)
5927 || (GET_MODE (input) != VOIDmode
5928 && GET_MODE (input) != GET_MODE (output)))
5929 continue;
5931 /* We can't do anything if the output is also used as input,
5932 as we're going to overwrite it. */
5933 for (j = 0; j < ninputs; j++)
5934 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5935 break;
5936 if (j != ninputs)
5937 continue;
5939 /* Avoid changing the same input several times. For
5940 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5941 only change in once (to out1), rather than changing it
5942 first to out1 and afterwards to out2. */
5943 if (i > 0)
5945 for (j = 0; j < noutputs; j++)
5946 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5947 break;
5948 if (j != noutputs)
5949 continue;
5951 output_matched[match] = true;
5953 start_sequence ();
5954 emit_move_insn (output, input);
5955 insns = get_insns ();
5956 end_sequence ();
5957 emit_insn_before (insns, insn);
5959 /* Now replace all mentions of the input with output. We can't
5960 just replace the occurrence in inputs[i], as the register might
5961 also be used in some other input (or even in an address of an
5962 output), which would mean possibly increasing the number of
5963 inputs by one (namely 'output' in addition), which might pose
5964 a too complicated problem for reload to solve. E.g. this situation:
5966 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5968 Here 'input' is used in two occurrences as input (once for the
5969 input operand, once for the address in the second output operand).
5970 If we would replace only the occurrence of the input operand (to
5971 make the matching) we would be left with this:
5973 output = input
5974 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5976 Now we suddenly have two different input values (containing the same
5977 value, but different pseudos) where we formerly had only one.
5978 With more complicated asms this might lead to reload failures
5979 which wouldn't have happen without this pass. So, iterate over
5980 all operands and replace all occurrences of the register used. */
5981 for (j = 0; j < noutputs; j++)
5982 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5983 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5984 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5985 input, output);
5986 for (j = 0; j < ninputs; j++)
5987 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5988 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5989 input, output);
5991 changed = true;
5994 if (changed)
5995 df_insn_rescan (insn);
5998 static unsigned
5999 rest_of_match_asm_constraints (void)
6001 basic_block bb;
6002 rtx insn, pat, *p_sets;
6003 int noutputs;
6005 if (!crtl->has_asm_statement)
6006 return 0;
6008 df_set_flags (DF_DEFER_INSN_RESCAN);
6009 FOR_EACH_BB (bb)
6011 FOR_BB_INSNS (bb, insn)
6013 if (!INSN_P (insn))
6014 continue;
6016 pat = PATTERN (insn);
6017 if (GET_CODE (pat) == PARALLEL)
6018 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6019 else if (GET_CODE (pat) == SET)
6020 p_sets = &PATTERN (insn), noutputs = 1;
6021 else
6022 continue;
6024 if (GET_CODE (*p_sets) == SET
6025 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6026 match_asm_constraints_1 (insn, p_sets, noutputs);
6030 return TODO_df_finish;
6033 struct rtl_opt_pass pass_match_asm_constraints =
6036 RTL_PASS,
6037 "asmcons", /* name */
6038 NULL, /* gate */
6039 rest_of_match_asm_constraints, /* execute */
6040 NULL, /* sub */
6041 NULL, /* next */
6042 0, /* static_pass_number */
6043 TV_NONE, /* tv_id */
6044 0, /* properties_required */
6045 0, /* properties_provided */
6046 0, /* properties_destroyed */
6047 0, /* todo_flags_start */
6048 TODO_dump_func /* todo_flags_finish */
6053 #include "gt-function.h"