1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "stringpool.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
37 #include "print-tree.h"
38 #include "langhooks.h"
39 #include "tree-inline.h"
40 #include "tree-dump.h"
44 /* Data type for the expressions representing sizes of data types.
45 It is the first integer type laid out. */
46 tree sizetype_tab
[(int) stk_type_kind_last
];
48 /* If nonzero, this is an upper limit on alignment of structure fields.
49 The value is measured in bits. */
50 unsigned int maximum_field_alignment
= TARGET_DEFAULT_PACK_STRUCT
* BITS_PER_UNIT
;
52 static tree
self_referential_size (tree
);
53 static void finalize_record_size (record_layout_info
);
54 static void finalize_type_size (tree
);
55 static void place_union_field (record_layout_info
, tree
);
56 static int excess_unit_span (HOST_WIDE_INT
, HOST_WIDE_INT
, HOST_WIDE_INT
,
58 extern void debug_rli (record_layout_info
);
60 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
61 to serve as the actual size-expression for a type or decl. */
64 variable_size (tree size
)
67 if (TREE_CONSTANT (size
))
70 /* If the size is self-referential, we can't make a SAVE_EXPR (see
71 save_expr for the rationale). But we can do something else. */
72 if (CONTAINS_PLACEHOLDER_P (size
))
73 return self_referential_size (size
);
75 /* If we are in the global binding level, we can't make a SAVE_EXPR
76 since it may end up being shared across functions, so it is up
77 to the front-end to deal with this case. */
78 if (lang_hooks
.decls
.global_bindings_p ())
81 return save_expr (size
);
84 /* An array of functions used for self-referential size computation. */
85 static GTY(()) vec
<tree
, va_gc
> *size_functions
;
87 /* Return true if T is a self-referential component reference. */
90 self_referential_component_ref_p (tree t
)
92 if (TREE_CODE (t
) != COMPONENT_REF
)
95 while (REFERENCE_CLASS_P (t
))
96 t
= TREE_OPERAND (t
, 0);
98 return (TREE_CODE (t
) == PLACEHOLDER_EXPR
);
101 /* Similar to copy_tree_r but do not copy component references involving
102 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
103 and substituted in substitute_in_expr. */
106 copy_self_referential_tree_r (tree
*tp
, int *walk_subtrees
, void *data
)
108 enum tree_code code
= TREE_CODE (*tp
);
110 /* Stop at types, decls, constants like copy_tree_r. */
111 if (TREE_CODE_CLASS (code
) == tcc_type
112 || TREE_CODE_CLASS (code
) == tcc_declaration
113 || TREE_CODE_CLASS (code
) == tcc_constant
)
119 /* This is the pattern built in ada/make_aligning_type. */
120 else if (code
== ADDR_EXPR
121 && TREE_CODE (TREE_OPERAND (*tp
, 0)) == PLACEHOLDER_EXPR
)
127 /* Default case: the component reference. */
128 else if (self_referential_component_ref_p (*tp
))
134 /* We're not supposed to have them in self-referential size trees
135 because we wouldn't properly control when they are evaluated.
136 However, not creating superfluous SAVE_EXPRs requires accurate
137 tracking of readonly-ness all the way down to here, which we
138 cannot always guarantee in practice. So punt in this case. */
139 else if (code
== SAVE_EXPR
)
140 return error_mark_node
;
142 else if (code
== STATEMENT_LIST
)
145 return copy_tree_r (tp
, walk_subtrees
, data
);
148 /* Given a SIZE expression that is self-referential, return an equivalent
149 expression to serve as the actual size expression for a type. */
152 self_referential_size (tree size
)
154 static unsigned HOST_WIDE_INT fnno
= 0;
155 vec
<tree
> self_refs
= vNULL
;
156 tree param_type_list
= NULL
, param_decl_list
= NULL
;
157 tree t
, ref
, return_type
, fntype
, fnname
, fndecl
;
160 vec
<tree
, va_gc
> *args
= NULL
;
162 /* Do not factor out simple operations. */
163 t
= skip_simple_constant_arithmetic (size
);
164 if (TREE_CODE (t
) == CALL_EXPR
|| self_referential_component_ref_p (t
))
167 /* Collect the list of self-references in the expression. */
168 find_placeholder_in_expr (size
, &self_refs
);
169 gcc_assert (self_refs
.length () > 0);
171 /* Obtain a private copy of the expression. */
173 if (walk_tree (&t
, copy_self_referential_tree_r
, NULL
, NULL
) != NULL_TREE
)
177 /* Build the parameter and argument lists in parallel; also
178 substitute the former for the latter in the expression. */
179 vec_alloc (args
, self_refs
.length ());
180 FOR_EACH_VEC_ELT (self_refs
, i
, ref
)
182 tree subst
, param_name
, param_type
, param_decl
;
186 /* We shouldn't have true variables here. */
187 gcc_assert (TREE_READONLY (ref
));
190 /* This is the pattern built in ada/make_aligning_type. */
191 else if (TREE_CODE (ref
) == ADDR_EXPR
)
193 /* Default case: the component reference. */
195 subst
= TREE_OPERAND (ref
, 1);
197 sprintf (buf
, "p%d", i
);
198 param_name
= get_identifier (buf
);
199 param_type
= TREE_TYPE (ref
);
201 = build_decl (input_location
, PARM_DECL
, param_name
, param_type
);
202 DECL_ARG_TYPE (param_decl
) = param_type
;
203 DECL_ARTIFICIAL (param_decl
) = 1;
204 TREE_READONLY (param_decl
) = 1;
206 size
= substitute_in_expr (size
, subst
, param_decl
);
208 param_type_list
= tree_cons (NULL_TREE
, param_type
, param_type_list
);
209 param_decl_list
= chainon (param_decl
, param_decl_list
);
210 args
->quick_push (ref
);
213 self_refs
.release ();
215 /* Append 'void' to indicate that the number of parameters is fixed. */
216 param_type_list
= tree_cons (NULL_TREE
, void_type_node
, param_type_list
);
218 /* The 3 lists have been created in reverse order. */
219 param_type_list
= nreverse (param_type_list
);
220 param_decl_list
= nreverse (param_decl_list
);
222 /* Build the function type. */
223 return_type
= TREE_TYPE (size
);
224 fntype
= build_function_type (return_type
, param_type_list
);
226 /* Build the function declaration. */
227 sprintf (buf
, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED
, fnno
++);
228 fnname
= get_file_function_name (buf
);
229 fndecl
= build_decl (input_location
, FUNCTION_DECL
, fnname
, fntype
);
230 for (t
= param_decl_list
; t
; t
= DECL_CHAIN (t
))
231 DECL_CONTEXT (t
) = fndecl
;
232 DECL_ARGUMENTS (fndecl
) = param_decl_list
;
234 = build_decl (input_location
, RESULT_DECL
, 0, return_type
);
235 DECL_CONTEXT (DECL_RESULT (fndecl
)) = fndecl
;
237 /* The function has been created by the compiler and we don't
238 want to emit debug info for it. */
239 DECL_ARTIFICIAL (fndecl
) = 1;
240 DECL_IGNORED_P (fndecl
) = 1;
242 /* It is supposed to be "const" and never throw. */
243 TREE_READONLY (fndecl
) = 1;
244 TREE_NOTHROW (fndecl
) = 1;
246 /* We want it to be inlined when this is deemed profitable, as
247 well as discarded if every call has been integrated. */
248 DECL_DECLARED_INLINE_P (fndecl
) = 1;
250 /* It is made up of a unique return statement. */
251 DECL_INITIAL (fndecl
) = make_node (BLOCK
);
252 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl
)) = fndecl
;
253 t
= build2 (MODIFY_EXPR
, return_type
, DECL_RESULT (fndecl
), size
);
254 DECL_SAVED_TREE (fndecl
) = build1 (RETURN_EXPR
, void_type_node
, t
);
255 TREE_STATIC (fndecl
) = 1;
257 /* Put it onto the list of size functions. */
258 vec_safe_push (size_functions
, fndecl
);
260 /* Replace the original expression with a call to the size function. */
261 return build_call_expr_loc_vec (UNKNOWN_LOCATION
, fndecl
, args
);
264 /* Take, queue and compile all the size functions. It is essential that
265 the size functions be gimplified at the very end of the compilation
266 in order to guarantee transparent handling of self-referential sizes.
267 Otherwise the GENERIC inliner would not be able to inline them back
268 at each of their call sites, thus creating artificial non-constant
269 size expressions which would trigger nasty problems later on. */
272 finalize_size_functions (void)
277 for (i
= 0; size_functions
&& size_functions
->iterate (i
, &fndecl
); i
++)
279 allocate_struct_function (fndecl
, false);
281 dump_function (TDI_original
, fndecl
);
283 /* As these functions are used to describe the layout of variable-length
284 structures, debug info generation needs their implementation. */
285 debug_hooks
->size_function (fndecl
);
286 gimplify_function_tree (fndecl
);
287 cgraph_node::finalize_function (fndecl
, false);
290 vec_free (size_functions
);
293 /* Return the machine mode to use for a nonscalar of SIZE bits. The
294 mode must be in class MCLASS, and have exactly that many value bits;
295 it may have padding as well. If LIMIT is nonzero, modes of wider
296 than MAX_FIXED_MODE_SIZE will not be used. */
299 mode_for_size (unsigned int size
, enum mode_class mclass
, int limit
)
304 if (limit
&& size
> MAX_FIXED_MODE_SIZE
)
307 /* Get the first mode which has this size, in the specified class. */
308 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
309 mode
= GET_MODE_WIDER_MODE (mode
))
310 if (GET_MODE_PRECISION (mode
) == size
)
313 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
314 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
315 if (int_n_data
[i
].bitsize
== size
316 && int_n_enabled_p
[i
])
317 return int_n_data
[i
].m
;
322 /* Similar, except passed a tree node. */
325 mode_for_size_tree (const_tree size
, enum mode_class mclass
, int limit
)
327 unsigned HOST_WIDE_INT uhwi
;
330 if (!tree_fits_uhwi_p (size
))
332 uhwi
= tree_to_uhwi (size
);
336 return mode_for_size (ui
, mclass
, limit
);
339 /* Similar, but never return BLKmode; return the narrowest mode that
340 contains at least the requested number of value bits. */
343 smallest_mode_for_size (unsigned int size
, enum mode_class mclass
)
345 machine_mode mode
= VOIDmode
;
348 /* Get the first mode which has at least this size, in the
350 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
351 mode
= GET_MODE_WIDER_MODE (mode
))
352 if (GET_MODE_PRECISION (mode
) >= size
)
355 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
356 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
357 if (int_n_data
[i
].bitsize
>= size
358 && int_n_data
[i
].bitsize
< GET_MODE_PRECISION (mode
)
359 && int_n_enabled_p
[i
])
360 mode
= int_n_data
[i
].m
;
362 if (mode
== VOIDmode
)
368 /* Find an integer mode of the exact same size, or BLKmode on failure. */
371 int_mode_for_mode (machine_mode mode
)
373 switch (GET_MODE_CLASS (mode
))
376 case MODE_PARTIAL_INT
:
379 case MODE_COMPLEX_INT
:
380 case MODE_COMPLEX_FLOAT
:
382 case MODE_DECIMAL_FLOAT
:
383 case MODE_VECTOR_INT
:
384 case MODE_VECTOR_FLOAT
:
389 case MODE_VECTOR_FRACT
:
390 case MODE_VECTOR_ACCUM
:
391 case MODE_VECTOR_UFRACT
:
392 case MODE_VECTOR_UACCUM
:
393 case MODE_POINTER_BOUNDS
:
394 mode
= mode_for_size (GET_MODE_BITSIZE (mode
), MODE_INT
, 0);
401 /* ... fall through ... */
411 /* Find a mode that can be used for efficient bitwise operations on MODE.
412 Return BLKmode if no such mode exists. */
415 bitwise_mode_for_mode (machine_mode mode
)
417 /* Quick exit if we already have a suitable mode. */
418 unsigned int bitsize
= GET_MODE_BITSIZE (mode
);
419 if (SCALAR_INT_MODE_P (mode
) && bitsize
<= MAX_FIXED_MODE_SIZE
)
422 /* Reuse the sanity checks from int_mode_for_mode. */
423 gcc_checking_assert ((int_mode_for_mode (mode
), true));
425 /* Try to replace complex modes with complex modes. In general we
426 expect both components to be processed independently, so we only
427 care whether there is a register for the inner mode. */
428 if (COMPLEX_MODE_P (mode
))
430 machine_mode trial
= mode
;
431 if (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
)
432 trial
= mode_for_size (bitsize
, MODE_COMPLEX_INT
, false);
434 && have_regs_of_mode
[GET_MODE_INNER (trial
)])
438 /* Try to replace vector modes with vector modes. Also try using vector
439 modes if an integer mode would be too big. */
440 if (VECTOR_MODE_P (mode
) || bitsize
> MAX_FIXED_MODE_SIZE
)
442 machine_mode trial
= mode
;
443 if (GET_MODE_CLASS (mode
) != MODE_VECTOR_INT
)
444 trial
= mode_for_size (bitsize
, MODE_VECTOR_INT
, 0);
446 && have_regs_of_mode
[trial
]
447 && targetm
.vector_mode_supported_p (trial
))
451 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
452 return mode_for_size (bitsize
, MODE_INT
, true);
455 /* Find a type that can be used for efficient bitwise operations on MODE.
456 Return null if no such mode exists. */
459 bitwise_type_for_mode (machine_mode mode
)
461 mode
= bitwise_mode_for_mode (mode
);
465 unsigned int inner_size
= GET_MODE_UNIT_BITSIZE (mode
);
466 tree inner_type
= build_nonstandard_integer_type (inner_size
, true);
468 if (VECTOR_MODE_P (mode
))
469 return build_vector_type_for_mode (inner_type
, mode
);
471 if (COMPLEX_MODE_P (mode
))
472 return build_complex_type (inner_type
);
474 gcc_checking_assert (GET_MODE_INNER (mode
) == mode
);
478 /* Find a mode that is suitable for representing a vector with
479 NUNITS elements of mode INNERMODE. Returns BLKmode if there
480 is no suitable mode. */
483 mode_for_vector (machine_mode innermode
, unsigned nunits
)
487 /* First, look for a supported vector type. */
488 if (SCALAR_FLOAT_MODE_P (innermode
))
489 mode
= MIN_MODE_VECTOR_FLOAT
;
490 else if (SCALAR_FRACT_MODE_P (innermode
))
491 mode
= MIN_MODE_VECTOR_FRACT
;
492 else if (SCALAR_UFRACT_MODE_P (innermode
))
493 mode
= MIN_MODE_VECTOR_UFRACT
;
494 else if (SCALAR_ACCUM_MODE_P (innermode
))
495 mode
= MIN_MODE_VECTOR_ACCUM
;
496 else if (SCALAR_UACCUM_MODE_P (innermode
))
497 mode
= MIN_MODE_VECTOR_UACCUM
;
499 mode
= MIN_MODE_VECTOR_INT
;
501 /* Do not check vector_mode_supported_p here. We'll do that
502 later in vector_type_mode. */
503 for (; mode
!= VOIDmode
; mode
= GET_MODE_WIDER_MODE (mode
))
504 if (GET_MODE_NUNITS (mode
) == nunits
505 && GET_MODE_INNER (mode
) == innermode
)
508 /* For integers, try mapping it to a same-sized scalar mode. */
510 && GET_MODE_CLASS (innermode
) == MODE_INT
)
511 mode
= mode_for_size (nunits
* GET_MODE_BITSIZE (innermode
),
515 || (GET_MODE_CLASS (mode
) == MODE_INT
516 && !have_regs_of_mode
[mode
]))
522 /* Return the alignment of MODE. This will be bounded by 1 and
523 BIGGEST_ALIGNMENT. */
526 get_mode_alignment (machine_mode mode
)
528 return MIN (BIGGEST_ALIGNMENT
, MAX (1, mode_base_align
[mode
]*BITS_PER_UNIT
));
531 /* Return the natural mode of an array, given that it is SIZE bytes in
532 total and has elements of type ELEM_TYPE. */
535 mode_for_array (tree elem_type
, tree size
)
538 unsigned HOST_WIDE_INT int_size
, int_elem_size
;
541 /* One-element arrays get the component type's mode. */
542 elem_size
= TYPE_SIZE (elem_type
);
543 if (simple_cst_equal (size
, elem_size
))
544 return TYPE_MODE (elem_type
);
547 if (tree_fits_uhwi_p (size
) && tree_fits_uhwi_p (elem_size
))
549 int_size
= tree_to_uhwi (size
);
550 int_elem_size
= tree_to_uhwi (elem_size
);
551 if (int_elem_size
> 0
552 && int_size
% int_elem_size
== 0
553 && targetm
.array_mode_supported_p (TYPE_MODE (elem_type
),
554 int_size
/ int_elem_size
))
557 return mode_for_size_tree (size
, MODE_INT
, limit_p
);
560 /* Subroutine of layout_decl: Force alignment required for the data type.
561 But if the decl itself wants greater alignment, don't override that. */
564 do_type_align (tree type
, tree decl
)
566 if (TYPE_ALIGN (type
) > DECL_ALIGN (decl
))
568 SET_DECL_ALIGN (decl
, TYPE_ALIGN (type
));
569 if (TREE_CODE (decl
) == FIELD_DECL
)
570 DECL_USER_ALIGN (decl
) = TYPE_USER_ALIGN (type
);
574 /* Set the size, mode and alignment of a ..._DECL node.
575 TYPE_DECL does need this for C++.
576 Note that LABEL_DECL and CONST_DECL nodes do not need this,
577 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
578 Don't call layout_decl for them.
580 KNOWN_ALIGN is the amount of alignment we can assume this
581 decl has with no special effort. It is relevant only for FIELD_DECLs
582 and depends on the previous fields.
583 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
584 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
585 the record will be aligned to suit. */
588 layout_decl (tree decl
, unsigned int known_align
)
590 tree type
= TREE_TYPE (decl
);
591 enum tree_code code
= TREE_CODE (decl
);
593 location_t loc
= DECL_SOURCE_LOCATION (decl
);
595 if (code
== CONST_DECL
)
598 gcc_assert (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
599 || code
== TYPE_DECL
||code
== FIELD_DECL
);
601 rtl
= DECL_RTL_IF_SET (decl
);
603 if (type
== error_mark_node
)
604 type
= void_type_node
;
606 /* Usually the size and mode come from the data type without change,
607 however, the front-end may set the explicit width of the field, so its
608 size may not be the same as the size of its type. This happens with
609 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
610 also happens with other fields. For example, the C++ front-end creates
611 zero-sized fields corresponding to empty base classes, and depends on
612 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
613 size in bytes from the size in bits. If we have already set the mode,
614 don't set it again since we can be called twice for FIELD_DECLs. */
616 DECL_UNSIGNED (decl
) = TYPE_UNSIGNED (type
);
617 if (DECL_MODE (decl
) == VOIDmode
)
618 DECL_MODE (decl
) = TYPE_MODE (type
);
620 if (DECL_SIZE (decl
) == 0)
622 DECL_SIZE (decl
) = TYPE_SIZE (type
);
623 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
625 else if (DECL_SIZE_UNIT (decl
) == 0)
626 DECL_SIZE_UNIT (decl
)
627 = fold_convert_loc (loc
, sizetype
,
628 size_binop_loc (loc
, CEIL_DIV_EXPR
, DECL_SIZE (decl
),
631 if (code
!= FIELD_DECL
)
632 /* For non-fields, update the alignment from the type. */
633 do_type_align (type
, decl
);
635 /* For fields, it's a bit more complicated... */
637 bool old_user_align
= DECL_USER_ALIGN (decl
);
638 bool zero_bitfield
= false;
639 bool packed_p
= DECL_PACKED (decl
);
642 if (DECL_BIT_FIELD (decl
))
644 DECL_BIT_FIELD_TYPE (decl
) = type
;
646 /* A zero-length bit-field affects the alignment of the next
647 field. In essence such bit-fields are not influenced by
648 any packing due to #pragma pack or attribute packed. */
649 if (integer_zerop (DECL_SIZE (decl
))
650 && ! targetm
.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl
)))
652 zero_bitfield
= true;
654 if (PCC_BITFIELD_TYPE_MATTERS
)
655 do_type_align (type
, decl
);
658 #ifdef EMPTY_FIELD_BOUNDARY
659 if (EMPTY_FIELD_BOUNDARY
> DECL_ALIGN (decl
))
661 SET_DECL_ALIGN (decl
, EMPTY_FIELD_BOUNDARY
);
662 DECL_USER_ALIGN (decl
) = 0;
668 /* See if we can use an ordinary integer mode for a bit-field.
669 Conditions are: a fixed size that is correct for another mode,
670 occupying a complete byte or bytes on proper boundary. */
671 if (TYPE_SIZE (type
) != 0
672 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
673 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
)
676 = mode_for_size_tree (DECL_SIZE (decl
), MODE_INT
, 1);
677 unsigned int xalign
= GET_MODE_ALIGNMENT (xmode
);
680 && !(xalign
> BITS_PER_UNIT
&& DECL_PACKED (decl
))
681 && (known_align
== 0 || known_align
>= xalign
))
683 SET_DECL_ALIGN (decl
, MAX (xalign
, DECL_ALIGN (decl
)));
684 DECL_MODE (decl
) = xmode
;
685 DECL_BIT_FIELD (decl
) = 0;
689 /* Turn off DECL_BIT_FIELD if we won't need it set. */
690 if (TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
691 && known_align
>= TYPE_ALIGN (type
)
692 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
))
693 DECL_BIT_FIELD (decl
) = 0;
695 else if (packed_p
&& DECL_USER_ALIGN (decl
))
696 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
697 round up; we'll reduce it again below. We want packing to
698 supersede USER_ALIGN inherited from the type, but defer to
699 alignment explicitly specified on the field decl. */;
701 do_type_align (type
, decl
);
703 /* If the field is packed and not explicitly aligned, give it the
704 minimum alignment. Note that do_type_align may set
705 DECL_USER_ALIGN, so we need to check old_user_align instead. */
708 SET_DECL_ALIGN (decl
, MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
));
710 if (! packed_p
&& ! DECL_USER_ALIGN (decl
))
712 /* Some targets (i.e. i386, VMS) limit struct field alignment
713 to a lower boundary than alignment of variables unless
714 it was overridden by attribute aligned. */
715 #ifdef BIGGEST_FIELD_ALIGNMENT
716 SET_DECL_ALIGN (decl
, MIN (DECL_ALIGN (decl
),
717 (unsigned) BIGGEST_FIELD_ALIGNMENT
));
719 #ifdef ADJUST_FIELD_ALIGN
720 SET_DECL_ALIGN (decl
, ADJUST_FIELD_ALIGN (decl
, DECL_ALIGN (decl
)));
725 mfa
= initial_max_fld_align
* BITS_PER_UNIT
;
727 mfa
= maximum_field_alignment
;
728 /* Should this be controlled by DECL_USER_ALIGN, too? */
730 SET_DECL_ALIGN (decl
, MIN (DECL_ALIGN (decl
), mfa
));
733 /* Evaluate nonconstant size only once, either now or as soon as safe. */
734 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
735 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
736 if (DECL_SIZE_UNIT (decl
) != 0
737 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
738 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
740 /* If requested, warn about definitions of large data objects. */
742 && (code
== VAR_DECL
|| code
== PARM_DECL
)
743 && ! DECL_EXTERNAL (decl
))
745 tree size
= DECL_SIZE_UNIT (decl
);
747 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
748 && compare_tree_int (size
, larger_than_size
) > 0)
750 int size_as_int
= TREE_INT_CST_LOW (size
);
752 if (compare_tree_int (size
, size_as_int
) == 0)
753 warning (OPT_Wlarger_than_
, "size of %q+D is %d bytes", decl
, size_as_int
);
755 warning (OPT_Wlarger_than_
, "size of %q+D is larger than %wd bytes",
756 decl
, larger_than_size
);
760 /* If the RTL was already set, update its mode and mem attributes. */
763 PUT_MODE (rtl
, DECL_MODE (decl
));
764 SET_DECL_RTL (decl
, 0);
766 set_mem_attributes (rtl
, decl
, 1);
767 SET_DECL_RTL (decl
, rtl
);
771 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
772 a previous call to layout_decl and calls it again. */
775 relayout_decl (tree decl
)
777 DECL_SIZE (decl
) = DECL_SIZE_UNIT (decl
) = 0;
778 DECL_MODE (decl
) = VOIDmode
;
779 if (!DECL_USER_ALIGN (decl
))
780 SET_DECL_ALIGN (decl
, 0);
781 SET_DECL_RTL (decl
, 0);
783 layout_decl (decl
, 0);
786 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
787 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
788 is to be passed to all other layout functions for this record. It is the
789 responsibility of the caller to call `free' for the storage returned.
790 Note that garbage collection is not permitted until we finish laying
794 start_record_layout (tree t
)
796 record_layout_info rli
= XNEW (struct record_layout_info_s
);
800 /* If the type has a minimum specified alignment (via an attribute
801 declaration, for example) use it -- otherwise, start with a
802 one-byte alignment. */
803 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
804 rli
->unpacked_align
= rli
->record_align
;
805 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
807 #ifdef STRUCTURE_SIZE_BOUNDARY
808 /* Packed structures don't need to have minimum size. */
809 if (! TYPE_PACKED (t
))
813 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
814 tmp
= (unsigned) STRUCTURE_SIZE_BOUNDARY
;
815 if (maximum_field_alignment
!= 0)
816 tmp
= MIN (tmp
, maximum_field_alignment
);
817 rli
->record_align
= MAX (rli
->record_align
, tmp
);
821 rli
->offset
= size_zero_node
;
822 rli
->bitpos
= bitsize_zero_node
;
824 rli
->pending_statics
= 0;
825 rli
->packed_maybe_necessary
= 0;
826 rli
->remaining_in_alignment
= 0;
831 /* Return the combined bit position for the byte offset OFFSET and the
834 These functions operate on byte and bit positions present in FIELD_DECLs
835 and assume that these expressions result in no (intermediate) overflow.
836 This assumption is necessary to fold the expressions as much as possible,
837 so as to avoid creating artificially variable-sized types in languages
838 supporting variable-sized types like Ada. */
841 bit_from_pos (tree offset
, tree bitpos
)
843 if (TREE_CODE (offset
) == PLUS_EXPR
)
844 offset
= size_binop (PLUS_EXPR
,
845 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 0)),
846 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 1)));
848 offset
= fold_convert (bitsizetype
, offset
);
849 return size_binop (PLUS_EXPR
, bitpos
,
850 size_binop (MULT_EXPR
, offset
, bitsize_unit_node
));
853 /* Return the combined truncated byte position for the byte offset OFFSET and
854 the bit position BITPOS. */
857 byte_from_pos (tree offset
, tree bitpos
)
860 if (TREE_CODE (bitpos
) == MULT_EXPR
861 && tree_int_cst_equal (TREE_OPERAND (bitpos
, 1), bitsize_unit_node
))
862 bytepos
= TREE_OPERAND (bitpos
, 0);
864 bytepos
= size_binop (TRUNC_DIV_EXPR
, bitpos
, bitsize_unit_node
);
865 return size_binop (PLUS_EXPR
, offset
, fold_convert (sizetype
, bytepos
));
868 /* Split the bit position POS into a byte offset *POFFSET and a bit
869 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
872 pos_from_bit (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
,
875 tree toff_align
= bitsize_int (off_align
);
876 if (TREE_CODE (pos
) == MULT_EXPR
877 && tree_int_cst_equal (TREE_OPERAND (pos
, 1), toff_align
))
879 *poffset
= size_binop (MULT_EXPR
,
880 fold_convert (sizetype
, TREE_OPERAND (pos
, 0)),
881 size_int (off_align
/ BITS_PER_UNIT
));
882 *pbitpos
= bitsize_zero_node
;
886 *poffset
= size_binop (MULT_EXPR
,
887 fold_convert (sizetype
,
888 size_binop (FLOOR_DIV_EXPR
, pos
,
890 size_int (off_align
/ BITS_PER_UNIT
));
891 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, toff_align
);
895 /* Given a pointer to bit and byte offsets and an offset alignment,
896 normalize the offsets so they are within the alignment. */
899 normalize_offset (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
)
901 /* If the bit position is now larger than it should be, adjust it
903 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
906 pos_from_bit (&offset
, &bitpos
, off_align
, *pbitpos
);
907 *poffset
= size_binop (PLUS_EXPR
, *poffset
, offset
);
912 /* Print debugging information about the information in RLI. */
915 debug_rli (record_layout_info rli
)
917 print_node_brief (stderr
, "type", rli
->t
, 0);
918 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
919 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
921 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, off = %u\n",
922 rli
->record_align
, rli
->unpacked_align
,
925 /* The ms_struct code is the only that uses this. */
926 if (targetm
.ms_bitfield_layout_p (rli
->t
))
927 fprintf (stderr
, "remaining in alignment = %u\n", rli
->remaining_in_alignment
);
929 if (rli
->packed_maybe_necessary
)
930 fprintf (stderr
, "packed may be necessary\n");
932 if (!vec_safe_is_empty (rli
->pending_statics
))
934 fprintf (stderr
, "pending statics:\n");
935 debug_vec_tree (rli
->pending_statics
);
939 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
940 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
943 normalize_rli (record_layout_info rli
)
945 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
948 /* Returns the size in bytes allocated so far. */
951 rli_size_unit_so_far (record_layout_info rli
)
953 return byte_from_pos (rli
->offset
, rli
->bitpos
);
956 /* Returns the size in bits allocated so far. */
959 rli_size_so_far (record_layout_info rli
)
961 return bit_from_pos (rli
->offset
, rli
->bitpos
);
964 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
965 the next available location within the record is given by KNOWN_ALIGN.
966 Update the variable alignment fields in RLI, and return the alignment
967 to give the FIELD. */
970 update_alignment_for_field (record_layout_info rli
, tree field
,
971 unsigned int known_align
)
973 /* The alignment required for FIELD. */
974 unsigned int desired_align
;
975 /* The type of this field. */
976 tree type
= TREE_TYPE (field
);
977 /* True if the field was explicitly aligned by the user. */
981 /* Do not attempt to align an ERROR_MARK node */
982 if (TREE_CODE (type
) == ERROR_MARK
)
985 /* Lay out the field so we know what alignment it needs. */
986 layout_decl (field
, known_align
);
987 desired_align
= DECL_ALIGN (field
);
988 user_align
= DECL_USER_ALIGN (field
);
990 is_bitfield
= (type
!= error_mark_node
991 && DECL_BIT_FIELD_TYPE (field
)
992 && ! integer_zerop (TYPE_SIZE (type
)));
994 /* Record must have at least as much alignment as any field.
995 Otherwise, the alignment of the field within the record is
997 if (targetm
.ms_bitfield_layout_p (rli
->t
))
999 /* Here, the alignment of the underlying type of a bitfield can
1000 affect the alignment of a record; even a zero-sized field
1001 can do this. The alignment should be to the alignment of
1002 the type, except that for zero-size bitfields this only
1003 applies if there was an immediately prior, nonzero-size
1004 bitfield. (That's the way it is, experimentally.) */
1005 if ((!is_bitfield
&& !DECL_PACKED (field
))
1006 || ((DECL_SIZE (field
) == NULL_TREE
1007 || !integer_zerop (DECL_SIZE (field
)))
1008 ? !DECL_PACKED (field
)
1010 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
1011 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))))
1013 unsigned int type_align
= TYPE_ALIGN (type
);
1014 type_align
= MAX (type_align
, desired_align
);
1015 if (maximum_field_alignment
!= 0)
1016 type_align
= MIN (type_align
, maximum_field_alignment
);
1017 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1018 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1021 else if (is_bitfield
&& PCC_BITFIELD_TYPE_MATTERS
)
1023 /* Named bit-fields cause the entire structure to have the
1024 alignment implied by their type. Some targets also apply the same
1025 rules to unnamed bitfields. */
1026 if (DECL_NAME (field
) != 0
1027 || targetm
.align_anon_bitfield ())
1029 unsigned int type_align
= TYPE_ALIGN (type
);
1031 #ifdef ADJUST_FIELD_ALIGN
1032 if (! TYPE_USER_ALIGN (type
))
1033 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1036 /* Targets might chose to handle unnamed and hence possibly
1037 zero-width bitfield. Those are not influenced by #pragmas
1038 or packed attributes. */
1039 if (integer_zerop (DECL_SIZE (field
)))
1041 if (initial_max_fld_align
)
1042 type_align
= MIN (type_align
,
1043 initial_max_fld_align
* BITS_PER_UNIT
);
1045 else if (maximum_field_alignment
!= 0)
1046 type_align
= MIN (type_align
, maximum_field_alignment
);
1047 else if (DECL_PACKED (field
))
1048 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1050 /* The alignment of the record is increased to the maximum
1051 of the current alignment, the alignment indicated on the
1052 field (i.e., the alignment specified by an __aligned__
1053 attribute), and the alignment indicated by the type of
1055 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1056 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1059 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1060 user_align
|= TYPE_USER_ALIGN (type
);
1065 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1066 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1069 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
1071 return desired_align
;
1074 /* Called from place_field to handle unions. */
1077 place_union_field (record_layout_info rli
, tree field
)
1079 update_alignment_for_field (rli
, field
, /*known_align=*/0);
1081 DECL_FIELD_OFFSET (field
) = size_zero_node
;
1082 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
1083 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
1085 /* If this is an ERROR_MARK return *after* having set the
1086 field at the start of the union. This helps when parsing
1088 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
)
1091 /* We assume the union's size will be a multiple of a byte so we don't
1092 bother with BITPOS. */
1093 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
1094 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1095 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
1096 rli
->offset
= fold_build3 (COND_EXPR
, sizetype
, DECL_QUALIFIER (field
),
1097 DECL_SIZE_UNIT (field
), rli
->offset
);
1100 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1101 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1102 units of alignment than the underlying TYPE. */
1104 excess_unit_span (HOST_WIDE_INT byte_offset
, HOST_WIDE_INT bit_offset
,
1105 HOST_WIDE_INT size
, HOST_WIDE_INT align
, tree type
)
1107 /* Note that the calculation of OFFSET might overflow; we calculate it so
1108 that we still get the right result as long as ALIGN is a power of two. */
1109 unsigned HOST_WIDE_INT offset
= byte_offset
* BITS_PER_UNIT
+ bit_offset
;
1111 offset
= offset
% align
;
1112 return ((offset
+ size
+ align
- 1) / align
1113 > tree_to_uhwi (TYPE_SIZE (type
)) / align
);
1116 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1117 is a FIELD_DECL to be added after those fields already present in
1118 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1119 callers that desire that behavior must manually perform that step.) */
1122 place_field (record_layout_info rli
, tree field
)
1124 /* The alignment required for FIELD. */
1125 unsigned int desired_align
;
1126 /* The alignment FIELD would have if we just dropped it into the
1127 record as it presently stands. */
1128 unsigned int known_align
;
1129 unsigned int actual_align
;
1130 /* The type of this field. */
1131 tree type
= TREE_TYPE (field
);
1133 gcc_assert (TREE_CODE (field
) != ERROR_MARK
);
1135 /* If FIELD is static, then treat it like a separate variable, not
1136 really like a structure field. If it is a FUNCTION_DECL, it's a
1137 method. In both cases, all we do is lay out the decl, and we do
1138 it *after* the record is laid out. */
1139 if (TREE_CODE (field
) == VAR_DECL
)
1141 vec_safe_push (rli
->pending_statics
, field
);
1145 /* Enumerators and enum types which are local to this class need not
1146 be laid out. Likewise for initialized constant fields. */
1147 else if (TREE_CODE (field
) != FIELD_DECL
)
1150 /* Unions are laid out very differently than records, so split
1151 that code off to another function. */
1152 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
1154 place_union_field (rli
, field
);
1158 else if (TREE_CODE (type
) == ERROR_MARK
)
1160 /* Place this field at the current allocation position, so we
1161 maintain monotonicity. */
1162 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1163 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1164 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1168 /* Work out the known alignment so far. Note that A & (-A) is the
1169 value of the least-significant bit in A that is one. */
1170 if (! integer_zerop (rli
->bitpos
))
1171 known_align
= (tree_to_uhwi (rli
->bitpos
)
1172 & - tree_to_uhwi (rli
->bitpos
));
1173 else if (integer_zerop (rli
->offset
))
1175 else if (tree_fits_uhwi_p (rli
->offset
))
1176 known_align
= (BITS_PER_UNIT
1177 * (tree_to_uhwi (rli
->offset
)
1178 & - tree_to_uhwi (rli
->offset
)));
1180 known_align
= rli
->offset_align
;
1182 desired_align
= update_alignment_for_field (rli
, field
, known_align
);
1183 if (known_align
== 0)
1184 known_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1186 if (warn_packed
&& DECL_PACKED (field
))
1188 if (known_align
>= TYPE_ALIGN (type
))
1190 if (TYPE_ALIGN (type
) > desired_align
)
1192 if (STRICT_ALIGNMENT
)
1193 warning (OPT_Wattributes
, "packed attribute causes "
1194 "inefficient alignment for %q+D", field
);
1195 /* Don't warn if DECL_PACKED was set by the type. */
1196 else if (!TYPE_PACKED (rli
->t
))
1197 warning (OPT_Wattributes
, "packed attribute is "
1198 "unnecessary for %q+D", field
);
1202 rli
->packed_maybe_necessary
= 1;
1205 /* Does this field automatically have alignment it needs by virtue
1206 of the fields that precede it and the record's own alignment? */
1207 if (known_align
< desired_align
)
1209 /* No, we need to skip space before this field.
1210 Bump the cumulative size to multiple of field alignment. */
1212 if (!targetm
.ms_bitfield_layout_p (rli
->t
)
1213 && DECL_SOURCE_LOCATION (field
) != BUILTINS_LOCATION
)
1214 warning (OPT_Wpadded
, "padding struct to align %q+D", field
);
1216 /* If the alignment is still within offset_align, just align
1217 the bit position. */
1218 if (desired_align
< rli
->offset_align
)
1219 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
1222 /* First adjust OFFSET by the partial bits, then align. */
1224 = size_binop (PLUS_EXPR
, rli
->offset
,
1225 fold_convert (sizetype
,
1226 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1227 bitsize_unit_node
)));
1228 rli
->bitpos
= bitsize_zero_node
;
1230 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
1233 if (! TREE_CONSTANT (rli
->offset
))
1234 rli
->offset_align
= desired_align
;
1235 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1236 rli
->prev_field
= NULL
;
1239 /* Handle compatibility with PCC. Note that if the record has any
1240 variable-sized fields, we need not worry about compatibility. */
1241 if (PCC_BITFIELD_TYPE_MATTERS
1242 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1243 && TREE_CODE (field
) == FIELD_DECL
1244 && type
!= error_mark_node
1245 && DECL_BIT_FIELD (field
)
1246 && (! DECL_PACKED (field
)
1247 /* Enter for these packed fields only to issue a warning. */
1248 || TYPE_ALIGN (type
) <= BITS_PER_UNIT
)
1249 && maximum_field_alignment
== 0
1250 && ! integer_zerop (DECL_SIZE (field
))
1251 && tree_fits_uhwi_p (DECL_SIZE (field
))
1252 && tree_fits_uhwi_p (rli
->offset
)
1253 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1255 unsigned int type_align
= TYPE_ALIGN (type
);
1256 tree dsize
= DECL_SIZE (field
);
1257 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1258 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1259 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1261 #ifdef ADJUST_FIELD_ALIGN
1262 if (! TYPE_USER_ALIGN (type
))
1263 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1266 /* A bit field may not span more units of alignment of its type
1267 than its type itself. Advance to next boundary if necessary. */
1268 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1270 if (DECL_PACKED (field
))
1272 if (warn_packed_bitfield_compat
== 1)
1275 "offset of packed bit-field %qD has changed in GCC 4.4",
1279 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1282 if (! DECL_PACKED (field
))
1283 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1286 #ifdef BITFIELD_NBYTES_LIMITED
1287 if (BITFIELD_NBYTES_LIMITED
1288 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1289 && TREE_CODE (field
) == FIELD_DECL
1290 && type
!= error_mark_node
1291 && DECL_BIT_FIELD_TYPE (field
)
1292 && ! DECL_PACKED (field
)
1293 && ! integer_zerop (DECL_SIZE (field
))
1294 && tree_fits_uhwi_p (DECL_SIZE (field
))
1295 && tree_fits_uhwi_p (rli
->offset
)
1296 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1298 unsigned int type_align
= TYPE_ALIGN (type
);
1299 tree dsize
= DECL_SIZE (field
);
1300 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1301 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1302 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1304 #ifdef ADJUST_FIELD_ALIGN
1305 if (! TYPE_USER_ALIGN (type
))
1306 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1309 if (maximum_field_alignment
!= 0)
1310 type_align
= MIN (type_align
, maximum_field_alignment
);
1311 /* ??? This test is opposite the test in the containing if
1312 statement, so this code is unreachable currently. */
1313 else if (DECL_PACKED (field
))
1314 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1316 /* A bit field may not span the unit of alignment of its type.
1317 Advance to next boundary if necessary. */
1318 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1319 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1321 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1325 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1327 When a bit field is inserted into a packed record, the whole
1328 size of the underlying type is used by one or more same-size
1329 adjacent bitfields. (That is, if its long:3, 32 bits is
1330 used in the record, and any additional adjacent long bitfields are
1331 packed into the same chunk of 32 bits. However, if the size
1332 changes, a new field of that size is allocated.) In an unpacked
1333 record, this is the same as using alignment, but not equivalent
1336 Note: for compatibility, we use the type size, not the type alignment
1337 to determine alignment, since that matches the documentation */
1339 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1341 tree prev_saved
= rli
->prev_field
;
1342 tree prev_type
= prev_saved
? DECL_BIT_FIELD_TYPE (prev_saved
) : NULL
;
1344 /* This is a bitfield if it exists. */
1345 if (rli
->prev_field
)
1347 /* If both are bitfields, nonzero, and the same size, this is
1348 the middle of a run. Zero declared size fields are special
1349 and handled as "end of run". (Note: it's nonzero declared
1350 size, but equal type sizes!) (Since we know that both
1351 the current and previous fields are bitfields by the
1352 time we check it, DECL_SIZE must be present for both.) */
1353 if (DECL_BIT_FIELD_TYPE (field
)
1354 && !integer_zerop (DECL_SIZE (field
))
1355 && !integer_zerop (DECL_SIZE (rli
->prev_field
))
1356 && tree_fits_shwi_p (DECL_SIZE (rli
->prev_field
))
1357 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1358 && simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
)))
1360 /* We're in the middle of a run of equal type size fields; make
1361 sure we realign if we run out of bits. (Not decl size,
1363 HOST_WIDE_INT bitsize
= tree_to_uhwi (DECL_SIZE (field
));
1365 if (rli
->remaining_in_alignment
< bitsize
)
1367 HOST_WIDE_INT typesize
= tree_to_uhwi (TYPE_SIZE (type
));
1369 /* out of bits; bump up to next 'word'. */
1371 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1372 bitsize_int (rli
->remaining_in_alignment
));
1373 rli
->prev_field
= field
;
1374 if (typesize
< bitsize
)
1375 rli
->remaining_in_alignment
= 0;
1377 rli
->remaining_in_alignment
= typesize
- bitsize
;
1380 rli
->remaining_in_alignment
-= bitsize
;
1384 /* End of a run: if leaving a run of bitfields of the same type
1385 size, we have to "use up" the rest of the bits of the type
1388 Compute the new position as the sum of the size for the prior
1389 type and where we first started working on that type.
1390 Note: since the beginning of the field was aligned then
1391 of course the end will be too. No round needed. */
1393 if (!integer_zerop (DECL_SIZE (rli
->prev_field
)))
1396 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1397 bitsize_int (rli
->remaining_in_alignment
));
1400 /* We "use up" size zero fields; the code below should behave
1401 as if the prior field was not a bitfield. */
1404 /* Cause a new bitfield to be captured, either this time (if
1405 currently a bitfield) or next time we see one. */
1406 if (!DECL_BIT_FIELD_TYPE (field
)
1407 || integer_zerop (DECL_SIZE (field
)))
1408 rli
->prev_field
= NULL
;
1411 normalize_rli (rli
);
1414 /* If we're starting a new run of same type size bitfields
1415 (or a run of non-bitfields), set up the "first of the run"
1418 That is, if the current field is not a bitfield, or if there
1419 was a prior bitfield the type sizes differ, or if there wasn't
1420 a prior bitfield the size of the current field is nonzero.
1422 Note: we must be sure to test ONLY the type size if there was
1423 a prior bitfield and ONLY for the current field being zero if
1426 if (!DECL_BIT_FIELD_TYPE (field
)
1427 || (prev_saved
!= NULL
1428 ? !simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
))
1429 : !integer_zerop (DECL_SIZE (field
)) ))
1431 /* Never smaller than a byte for compatibility. */
1432 unsigned int type_align
= BITS_PER_UNIT
;
1434 /* (When not a bitfield), we could be seeing a flex array (with
1435 no DECL_SIZE). Since we won't be using remaining_in_alignment
1436 until we see a bitfield (and come by here again) we just skip
1438 if (DECL_SIZE (field
) != NULL
1439 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field
)))
1440 && tree_fits_uhwi_p (DECL_SIZE (field
)))
1442 unsigned HOST_WIDE_INT bitsize
1443 = tree_to_uhwi (DECL_SIZE (field
));
1444 unsigned HOST_WIDE_INT typesize
1445 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field
)));
1447 if (typesize
< bitsize
)
1448 rli
->remaining_in_alignment
= 0;
1450 rli
->remaining_in_alignment
= typesize
- bitsize
;
1453 /* Now align (conventionally) for the new type. */
1454 type_align
= TYPE_ALIGN (TREE_TYPE (field
));
1456 if (maximum_field_alignment
!= 0)
1457 type_align
= MIN (type_align
, maximum_field_alignment
);
1459 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1461 /* If we really aligned, don't allow subsequent bitfields
1463 rli
->prev_field
= NULL
;
1467 /* Offset so far becomes the position of this field after normalizing. */
1468 normalize_rli (rli
);
1469 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1470 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1471 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1473 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1474 if (TREE_CODE (DECL_FIELD_OFFSET (field
)) != INTEGER_CST
)
1475 DECL_FIELD_OFFSET (field
) = variable_size (DECL_FIELD_OFFSET (field
));
1477 /* If this field ended up more aligned than we thought it would be (we
1478 approximate this by seeing if its position changed), lay out the field
1479 again; perhaps we can use an integral mode for it now. */
1480 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1481 actual_align
= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1482 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
)));
1483 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1484 actual_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1485 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
1486 actual_align
= (BITS_PER_UNIT
1487 * (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
1488 & - tree_to_uhwi (DECL_FIELD_OFFSET (field
))));
1490 actual_align
= DECL_OFFSET_ALIGN (field
);
1491 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1492 store / extract bit field operations will check the alignment of the
1493 record against the mode of bit fields. */
1495 if (known_align
!= actual_align
)
1496 layout_decl (field
, actual_align
);
1498 if (rli
->prev_field
== NULL
&& DECL_BIT_FIELD_TYPE (field
))
1499 rli
->prev_field
= field
;
1501 /* Now add size of this field to the size of the record. If the size is
1502 not constant, treat the field as being a multiple of bytes and just
1503 adjust the offset, resetting the bit position. Otherwise, apportion the
1504 size amongst the bit position and offset. First handle the case of an
1505 unspecified size, which can happen when we have an invalid nested struct
1506 definition, such as struct j { struct j { int i; } }. The error message
1507 is printed in finish_struct. */
1508 if (DECL_SIZE (field
) == 0)
1510 else if (TREE_CODE (DECL_SIZE (field
)) != INTEGER_CST
1511 || TREE_OVERFLOW (DECL_SIZE (field
)))
1514 = size_binop (PLUS_EXPR
, rli
->offset
,
1515 fold_convert (sizetype
,
1516 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1517 bitsize_unit_node
)));
1519 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1520 rli
->bitpos
= bitsize_zero_node
;
1521 rli
->offset_align
= MIN (rli
->offset_align
, desired_align
);
1523 else if (targetm
.ms_bitfield_layout_p (rli
->t
))
1525 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1527 /* If we ended a bitfield before the full length of the type then
1528 pad the struct out to the full length of the last type. */
1529 if ((DECL_CHAIN (field
) == NULL
1530 || TREE_CODE (DECL_CHAIN (field
)) != FIELD_DECL
)
1531 && DECL_BIT_FIELD_TYPE (field
)
1532 && !integer_zerop (DECL_SIZE (field
)))
1533 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
,
1534 bitsize_int (rli
->remaining_in_alignment
));
1536 normalize_rli (rli
);
1540 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1541 normalize_rli (rli
);
1545 /* Assuming that all the fields have been laid out, this function uses
1546 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1547 indicated by RLI. */
1550 finalize_record_size (record_layout_info rli
)
1552 tree unpadded_size
, unpadded_size_unit
;
1554 /* Now we want just byte and bit offsets, so set the offset alignment
1555 to be a byte and then normalize. */
1556 rli
->offset_align
= BITS_PER_UNIT
;
1557 normalize_rli (rli
);
1559 /* Determine the desired alignment. */
1560 #ifdef ROUND_TYPE_ALIGN
1561 SET_TYPE_ALIGN (rli
->t
, ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1562 rli
->record_align
));
1564 SET_TYPE_ALIGN (rli
->t
, MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
));
1567 /* Compute the size so far. Be sure to allow for extra bits in the
1568 size in bytes. We have guaranteed above that it will be no more
1569 than a single byte. */
1570 unpadded_size
= rli_size_so_far (rli
);
1571 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1572 if (! integer_zerop (rli
->bitpos
))
1574 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1576 /* Round the size up to be a multiple of the required alignment. */
1577 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1578 TYPE_SIZE_UNIT (rli
->t
)
1579 = round_up (unpadded_size_unit
, TYPE_ALIGN_UNIT (rli
->t
));
1581 if (TREE_CONSTANT (unpadded_size
)
1582 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0
1583 && input_location
!= BUILTINS_LOCATION
)
1584 warning (OPT_Wpadded
, "padding struct size to alignment boundary");
1586 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1587 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1588 && TREE_CONSTANT (unpadded_size
))
1592 #ifdef ROUND_TYPE_ALIGN
1594 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1596 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1599 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1600 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1602 if (TYPE_NAME (rli
->t
))
1606 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1607 name
= TYPE_NAME (rli
->t
);
1609 name
= DECL_NAME (TYPE_NAME (rli
->t
));
1611 if (STRICT_ALIGNMENT
)
1612 warning (OPT_Wpacked
, "packed attribute causes inefficient "
1613 "alignment for %qE", name
);
1615 warning (OPT_Wpacked
,
1616 "packed attribute is unnecessary for %qE", name
);
1620 if (STRICT_ALIGNMENT
)
1621 warning (OPT_Wpacked
,
1622 "packed attribute causes inefficient alignment");
1624 warning (OPT_Wpacked
, "packed attribute is unnecessary");
1630 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1633 compute_record_mode (tree type
)
1636 machine_mode mode
= VOIDmode
;
1638 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1639 However, if possible, we use a mode that fits in a register
1640 instead, in order to allow for better optimization down the
1642 SET_TYPE_MODE (type
, BLKmode
);
1644 if (! tree_fits_uhwi_p (TYPE_SIZE (type
)))
1647 /* A record which has any BLKmode members must itself be
1648 BLKmode; it can't go in a register. Unless the member is
1649 BLKmode only because it isn't aligned. */
1650 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
1652 if (TREE_CODE (field
) != FIELD_DECL
)
1655 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1656 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1657 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
))
1658 && !(TYPE_SIZE (TREE_TYPE (field
)) != 0
1659 && integer_zerop (TYPE_SIZE (TREE_TYPE (field
)))))
1660 || ! tree_fits_uhwi_p (bit_position (field
))
1661 || DECL_SIZE (field
) == 0
1662 || ! tree_fits_uhwi_p (DECL_SIZE (field
)))
1665 /* If this field is the whole struct, remember its mode so
1666 that, say, we can put a double in a class into a DF
1667 register instead of forcing it to live in the stack. */
1668 if (simple_cst_equal (TYPE_SIZE (type
), DECL_SIZE (field
)))
1669 mode
= DECL_MODE (field
);
1671 /* With some targets, it is sub-optimal to access an aligned
1672 BLKmode structure as a scalar. */
1673 if (targetm
.member_type_forces_blk (field
, mode
))
1677 /* If we only have one real field; use its mode if that mode's size
1678 matches the type's size. This only applies to RECORD_TYPE. This
1679 does not apply to unions. */
1680 if (TREE_CODE (type
) == RECORD_TYPE
&& mode
!= VOIDmode
1681 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1682 && GET_MODE_BITSIZE (mode
) == tree_to_uhwi (TYPE_SIZE (type
)))
1683 SET_TYPE_MODE (type
, mode
);
1685 SET_TYPE_MODE (type
, mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1));
1687 /* If structure's known alignment is less than what the scalar
1688 mode would need, and it matters, then stick with BLKmode. */
1689 if (TYPE_MODE (type
) != BLKmode
1691 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1692 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (TYPE_MODE (type
))))
1694 /* If this is the only reason this type is BLKmode, then
1695 don't force containing types to be BLKmode. */
1696 TYPE_NO_FORCE_BLK (type
) = 1;
1697 SET_TYPE_MODE (type
, BLKmode
);
1701 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1705 finalize_type_size (tree type
)
1707 /* Normally, use the alignment corresponding to the mode chosen.
1708 However, where strict alignment is not required, avoid
1709 over-aligning structures, since most compilers do not do this
1711 if (TYPE_MODE (type
) != BLKmode
1712 && TYPE_MODE (type
) != VOIDmode
1713 && (STRICT_ALIGNMENT
|| !AGGREGATE_TYPE_P (type
)))
1715 unsigned mode_align
= GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1717 /* Don't override a larger alignment requirement coming from a user
1718 alignment of one of the fields. */
1719 if (mode_align
>= TYPE_ALIGN (type
))
1721 SET_TYPE_ALIGN (type
, mode_align
);
1722 TYPE_USER_ALIGN (type
) = 0;
1726 /* Do machine-dependent extra alignment. */
1727 #ifdef ROUND_TYPE_ALIGN
1728 SET_TYPE_ALIGN (type
,
1729 ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
));
1732 /* If we failed to find a simple way to calculate the unit size
1733 of the type, find it by division. */
1734 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1735 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1736 result will fit in sizetype. We will get more efficient code using
1737 sizetype, so we force a conversion. */
1738 TYPE_SIZE_UNIT (type
)
1739 = fold_convert (sizetype
,
1740 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
1741 bitsize_unit_node
));
1743 if (TYPE_SIZE (type
) != 0)
1745 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
1746 TYPE_SIZE_UNIT (type
)
1747 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN_UNIT (type
));
1750 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1751 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1752 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
1753 if (TYPE_SIZE_UNIT (type
) != 0
1754 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
1755 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
1757 /* Also layout any other variants of the type. */
1758 if (TYPE_NEXT_VARIANT (type
)
1759 || type
!= TYPE_MAIN_VARIANT (type
))
1762 /* Record layout info of this variant. */
1763 tree size
= TYPE_SIZE (type
);
1764 tree size_unit
= TYPE_SIZE_UNIT (type
);
1765 unsigned int align
= TYPE_ALIGN (type
);
1766 unsigned int precision
= TYPE_PRECISION (type
);
1767 unsigned int user_align
= TYPE_USER_ALIGN (type
);
1768 machine_mode mode
= TYPE_MODE (type
);
1770 /* Copy it into all variants. */
1771 for (variant
= TYPE_MAIN_VARIANT (type
);
1773 variant
= TYPE_NEXT_VARIANT (variant
))
1775 TYPE_SIZE (variant
) = size
;
1776 TYPE_SIZE_UNIT (variant
) = size_unit
;
1777 unsigned valign
= align
;
1778 if (TYPE_USER_ALIGN (variant
))
1779 valign
= MAX (valign
, TYPE_ALIGN (variant
));
1781 TYPE_USER_ALIGN (variant
) = user_align
;
1782 SET_TYPE_ALIGN (variant
, valign
);
1783 TYPE_PRECISION (variant
) = precision
;
1784 SET_TYPE_MODE (variant
, mode
);
1789 /* Return a new underlying object for a bitfield started with FIELD. */
1792 start_bitfield_representative (tree field
)
1794 tree repr
= make_node (FIELD_DECL
);
1795 DECL_FIELD_OFFSET (repr
) = DECL_FIELD_OFFSET (field
);
1796 /* Force the representative to begin at a BITS_PER_UNIT aligned
1797 boundary - C++ may use tail-padding of a base object to
1798 continue packing bits so the bitfield region does not start
1799 at bit zero (see g++.dg/abi/bitfield5.C for example).
1800 Unallocated bits may happen for other reasons as well,
1801 for example Ada which allows explicit bit-granular structure layout. */
1802 DECL_FIELD_BIT_OFFSET (repr
)
1803 = size_binop (BIT_AND_EXPR
,
1804 DECL_FIELD_BIT_OFFSET (field
),
1805 bitsize_int (~(BITS_PER_UNIT
- 1)));
1806 SET_DECL_OFFSET_ALIGN (repr
, DECL_OFFSET_ALIGN (field
));
1807 DECL_SIZE (repr
) = DECL_SIZE (field
);
1808 DECL_SIZE_UNIT (repr
) = DECL_SIZE_UNIT (field
);
1809 DECL_PACKED (repr
) = DECL_PACKED (field
);
1810 DECL_CONTEXT (repr
) = DECL_CONTEXT (field
);
1814 /* Finish up a bitfield group that was started by creating the underlying
1815 object REPR with the last field in the bitfield group FIELD. */
1818 finish_bitfield_representative (tree repr
, tree field
)
1820 unsigned HOST_WIDE_INT bitsize
, maxbitsize
;
1824 size
= size_diffop (DECL_FIELD_OFFSET (field
),
1825 DECL_FIELD_OFFSET (repr
));
1826 while (TREE_CODE (size
) == COMPOUND_EXPR
)
1827 size
= TREE_OPERAND (size
, 1);
1828 gcc_assert (tree_fits_uhwi_p (size
));
1829 bitsize
= (tree_to_uhwi (size
) * BITS_PER_UNIT
1830 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1831 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
))
1832 + tree_to_uhwi (DECL_SIZE (field
)));
1834 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1835 bitsize
= (bitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1837 /* Now nothing tells us how to pad out bitsize ... */
1838 nextf
= DECL_CHAIN (field
);
1839 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
1840 nextf
= DECL_CHAIN (nextf
);
1844 /* If there was an error, the field may be not laid out
1845 correctly. Don't bother to do anything. */
1846 if (TREE_TYPE (nextf
) == error_mark_node
)
1848 maxsize
= size_diffop (DECL_FIELD_OFFSET (nextf
),
1849 DECL_FIELD_OFFSET (repr
));
1850 if (tree_fits_uhwi_p (maxsize
))
1852 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1853 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf
))
1854 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1855 /* If the group ends within a bitfield nextf does not need to be
1856 aligned to BITS_PER_UNIT. Thus round up. */
1857 maxbitsize
= (maxbitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1860 maxbitsize
= bitsize
;
1864 /* ??? If you consider that tail-padding of this struct might be
1865 re-used when deriving from it we cannot really do the following
1866 and thus need to set maxsize to bitsize? Also we cannot
1867 generally rely on maxsize to fold to an integer constant, so
1868 use bitsize as fallback for this case. */
1869 tree maxsize
= size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field
)),
1870 DECL_FIELD_OFFSET (repr
));
1871 if (tree_fits_uhwi_p (maxsize
))
1872 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1873 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1875 maxbitsize
= bitsize
;
1878 /* Only if we don't artificially break up the representative in
1879 the middle of a large bitfield with different possibly
1880 overlapping representatives. And all representatives start
1882 gcc_assert (maxbitsize
% BITS_PER_UNIT
== 0);
1884 /* Find the smallest nice mode to use. */
1885 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1886 mode
= GET_MODE_WIDER_MODE (mode
))
1887 if (GET_MODE_BITSIZE (mode
) >= bitsize
)
1889 if (mode
!= VOIDmode
1890 && (GET_MODE_BITSIZE (mode
) > maxbitsize
1891 || GET_MODE_BITSIZE (mode
) > MAX_FIXED_MODE_SIZE
))
1894 if (mode
== VOIDmode
)
1896 /* We really want a BLKmode representative only as a last resort,
1897 considering the member b in
1898 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1899 Otherwise we simply want to split the representative up
1900 allowing for overlaps within the bitfield region as required for
1901 struct { int a : 7; int b : 7;
1902 int c : 10; int d; } __attribute__((packed));
1903 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1904 DECL_SIZE (repr
) = bitsize_int (bitsize
);
1905 DECL_SIZE_UNIT (repr
) = size_int (bitsize
/ BITS_PER_UNIT
);
1906 DECL_MODE (repr
) = BLKmode
;
1907 TREE_TYPE (repr
) = build_array_type_nelts (unsigned_char_type_node
,
1908 bitsize
/ BITS_PER_UNIT
);
1912 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (mode
);
1913 DECL_SIZE (repr
) = bitsize_int (modesize
);
1914 DECL_SIZE_UNIT (repr
) = size_int (modesize
/ BITS_PER_UNIT
);
1915 DECL_MODE (repr
) = mode
;
1916 TREE_TYPE (repr
) = lang_hooks
.types
.type_for_mode (mode
, 1);
1919 /* Remember whether the bitfield group is at the end of the
1920 structure or not. */
1921 DECL_CHAIN (repr
) = nextf
;
1924 /* Compute and set FIELD_DECLs for the underlying objects we should
1925 use for bitfield access for the structure T. */
1928 finish_bitfield_layout (tree t
)
1931 tree repr
= NULL_TREE
;
1933 /* Unions would be special, for the ease of type-punning optimizations
1934 we could use the underlying type as hint for the representative
1935 if the bitfield would fit and the representative would not exceed
1936 the union in size. */
1937 if (TREE_CODE (t
) != RECORD_TYPE
)
1940 for (prev
= NULL_TREE
, field
= TYPE_FIELDS (t
);
1941 field
; field
= DECL_CHAIN (field
))
1943 if (TREE_CODE (field
) != FIELD_DECL
)
1946 /* In the C++ memory model, consecutive bit fields in a structure are
1947 considered one memory location and updating a memory location
1948 may not store into adjacent memory locations. */
1950 && DECL_BIT_FIELD_TYPE (field
))
1952 /* Start new representative. */
1953 repr
= start_bitfield_representative (field
);
1956 && ! DECL_BIT_FIELD_TYPE (field
))
1958 /* Finish off new representative. */
1959 finish_bitfield_representative (repr
, prev
);
1962 else if (DECL_BIT_FIELD_TYPE (field
))
1964 gcc_assert (repr
!= NULL_TREE
);
1966 /* Zero-size bitfields finish off a representative and
1967 do not have a representative themselves. This is
1968 required by the C++ memory model. */
1969 if (integer_zerop (DECL_SIZE (field
)))
1971 finish_bitfield_representative (repr
, prev
);
1975 /* We assume that either DECL_FIELD_OFFSET of the representative
1976 and each bitfield member is a constant or they are equal.
1977 This is because we need to be able to compute the bit-offset
1978 of each field relative to the representative in get_bit_range
1979 during RTL expansion.
1980 If these constraints are not met, simply force a new
1981 representative to be generated. That will at most
1982 generate worse code but still maintain correctness with
1983 respect to the C++ memory model. */
1984 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
))
1985 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
1986 || operand_equal_p (DECL_FIELD_OFFSET (repr
),
1987 DECL_FIELD_OFFSET (field
), 0)))
1989 finish_bitfield_representative (repr
, prev
);
1990 repr
= start_bitfield_representative (field
);
1997 DECL_BIT_FIELD_REPRESENTATIVE (field
) = repr
;
2003 finish_bitfield_representative (repr
, prev
);
2006 /* Do all of the work required to layout the type indicated by RLI,
2007 once the fields have been laid out. This function will call `free'
2008 for RLI, unless FREE_P is false. Passing a value other than false
2009 for FREE_P is bad practice; this option only exists to support the
2013 finish_record_layout (record_layout_info rli
, int free_p
)
2017 /* Compute the final size. */
2018 finalize_record_size (rli
);
2020 /* Compute the TYPE_MODE for the record. */
2021 compute_record_mode (rli
->t
);
2023 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2024 finalize_type_size (rli
->t
);
2026 /* Compute bitfield representatives. */
2027 finish_bitfield_layout (rli
->t
);
2029 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2030 With C++ templates, it is too early to do this when the attribute
2032 for (variant
= TYPE_NEXT_VARIANT (rli
->t
); variant
;
2033 variant
= TYPE_NEXT_VARIANT (variant
))
2035 TYPE_PACKED (variant
) = TYPE_PACKED (rli
->t
);
2036 TYPE_REVERSE_STORAGE_ORDER (variant
)
2037 = TYPE_REVERSE_STORAGE_ORDER (rli
->t
);
2040 /* Lay out any static members. This is done now because their type
2041 may use the record's type. */
2042 while (!vec_safe_is_empty (rli
->pending_statics
))
2043 layout_decl (rli
->pending_statics
->pop (), 0);
2048 vec_free (rli
->pending_statics
);
2054 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2055 NAME, its fields are chained in reverse on FIELDS.
2057 If ALIGN_TYPE is non-null, it is given the same alignment as
2061 finish_builtin_struct (tree type
, const char *name
, tree fields
,
2066 for (tail
= NULL_TREE
; fields
; tail
= fields
, fields
= next
)
2068 DECL_FIELD_CONTEXT (fields
) = type
;
2069 next
= DECL_CHAIN (fields
);
2070 DECL_CHAIN (fields
) = tail
;
2072 TYPE_FIELDS (type
) = tail
;
2076 SET_TYPE_ALIGN (type
, TYPE_ALIGN (align_type
));
2077 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (align_type
);
2081 #if 0 /* not yet, should get fixed properly later */
2082 TYPE_NAME (type
) = make_type_decl (get_identifier (name
), type
);
2084 TYPE_NAME (type
) = build_decl (BUILTINS_LOCATION
,
2085 TYPE_DECL
, get_identifier (name
), type
);
2087 TYPE_STUB_DECL (type
) = TYPE_NAME (type
);
2088 layout_decl (TYPE_NAME (type
), 0);
2091 /* Calculate the mode, size, and alignment for TYPE.
2092 For an array type, calculate the element separation as well.
2093 Record TYPE on the chain of permanent or temporary types
2094 so that dbxout will find out about it.
2096 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2097 layout_type does nothing on such a type.
2099 If the type is incomplete, its TYPE_SIZE remains zero. */
2102 layout_type (tree type
)
2106 if (type
== error_mark_node
)
2109 /* We don't want finalize_type_size to copy an alignment attribute to
2110 variants that don't have it. */
2111 type
= TYPE_MAIN_VARIANT (type
);
2113 /* Do nothing if type has been laid out before. */
2114 if (TYPE_SIZE (type
))
2117 switch (TREE_CODE (type
))
2120 /* This kind of type is the responsibility
2121 of the language-specific code. */
2127 SET_TYPE_MODE (type
,
2128 smallest_mode_for_size (TYPE_PRECISION (type
), MODE_INT
));
2129 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2130 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2131 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2135 SET_TYPE_MODE (type
,
2136 mode_for_size (TYPE_PRECISION (type
), MODE_FLOAT
, 0));
2137 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2138 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2141 case FIXED_POINT_TYPE
:
2142 /* TYPE_MODE (type) has been set already. */
2143 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2144 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2148 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2149 SET_TYPE_MODE (type
,
2150 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type
)),
2151 (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
2152 ? MODE_COMPLEX_FLOAT
: MODE_COMPLEX_INT
),
2154 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2155 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2160 int nunits
= TYPE_VECTOR_SUBPARTS (type
);
2161 tree innertype
= TREE_TYPE (type
);
2163 gcc_assert (!(nunits
& (nunits
- 1)));
2165 /* Find an appropriate mode for the vector type. */
2166 if (TYPE_MODE (type
) == VOIDmode
)
2167 SET_TYPE_MODE (type
,
2168 mode_for_vector (TYPE_MODE (innertype
), nunits
));
2170 TYPE_SATURATING (type
) = TYPE_SATURATING (TREE_TYPE (type
));
2171 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2172 /* Several boolean vector elements may fit in a single unit. */
2173 if (VECTOR_BOOLEAN_TYPE_P (type
)
2174 && type
->type_common
.mode
!= BLKmode
)
2175 TYPE_SIZE_UNIT (type
)
2176 = size_int (GET_MODE_SIZE (type
->type_common
.mode
));
2178 TYPE_SIZE_UNIT (type
) = int_const_binop (MULT_EXPR
,
2179 TYPE_SIZE_UNIT (innertype
),
2181 TYPE_SIZE (type
) = int_const_binop (MULT_EXPR
,
2182 TYPE_SIZE (innertype
),
2183 bitsize_int (nunits
));
2185 /* For vector types, we do not default to the mode's alignment.
2186 Instead, query a target hook, defaulting to natural alignment.
2187 This prevents ABI changes depending on whether or not native
2188 vector modes are supported. */
2189 SET_TYPE_ALIGN (type
, targetm
.vector_alignment (type
));
2191 /* However, if the underlying mode requires a bigger alignment than
2192 what the target hook provides, we cannot use the mode. For now,
2193 simply reject that case. */
2194 gcc_assert (TYPE_ALIGN (type
)
2195 >= GET_MODE_ALIGNMENT (TYPE_MODE (type
)));
2200 /* This is an incomplete type and so doesn't have a size. */
2201 SET_TYPE_ALIGN (type
, 1);
2202 TYPE_USER_ALIGN (type
) = 0;
2203 SET_TYPE_MODE (type
, VOIDmode
);
2206 case POINTER_BOUNDS_TYPE
:
2207 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2208 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2212 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
2213 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE_UNITS
);
2214 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2215 integral, which may be an __intN. */
2216 SET_TYPE_MODE (type
, mode_for_size (POINTER_SIZE
, MODE_INT
, 0));
2217 TYPE_PRECISION (type
) = POINTER_SIZE
;
2222 /* It's hard to see what the mode and size of a function ought to
2223 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2224 make it consistent with that. */
2225 SET_TYPE_MODE (type
, mode_for_size (FUNCTION_BOUNDARY
, MODE_INT
, 0));
2226 TYPE_SIZE (type
) = bitsize_int (FUNCTION_BOUNDARY
);
2227 TYPE_SIZE_UNIT (type
) = size_int (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
);
2231 case REFERENCE_TYPE
:
2233 machine_mode mode
= TYPE_MODE (type
);
2234 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2235 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2236 TYPE_UNSIGNED (type
) = 1;
2237 TYPE_PRECISION (type
) = GET_MODE_PRECISION (mode
);
2243 tree index
= TYPE_DOMAIN (type
);
2244 tree element
= TREE_TYPE (type
);
2246 /* We need to know both bounds in order to compute the size. */
2247 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
2248 && TYPE_SIZE (element
))
2250 tree ub
= TYPE_MAX_VALUE (index
);
2251 tree lb
= TYPE_MIN_VALUE (index
);
2252 tree element_size
= TYPE_SIZE (element
);
2255 /* Make sure that an array of zero-sized element is zero-sized
2256 regardless of its extent. */
2257 if (integer_zerop (element_size
))
2258 length
= size_zero_node
;
2260 /* The computation should happen in the original signedness so
2261 that (possible) negative values are handled appropriately
2262 when determining overflow. */
2265 /* ??? When it is obvious that the range is signed
2266 represent it using ssizetype. */
2267 if (TREE_CODE (lb
) == INTEGER_CST
2268 && TREE_CODE (ub
) == INTEGER_CST
2269 && TYPE_UNSIGNED (TREE_TYPE (lb
))
2270 && tree_int_cst_lt (ub
, lb
))
2272 lb
= wide_int_to_tree (ssizetype
,
2273 offset_int::from (lb
, SIGNED
));
2274 ub
= wide_int_to_tree (ssizetype
,
2275 offset_int::from (ub
, SIGNED
));
2278 = fold_convert (sizetype
,
2279 size_binop (PLUS_EXPR
,
2280 build_int_cst (TREE_TYPE (lb
), 1),
2281 size_binop (MINUS_EXPR
, ub
, lb
)));
2284 /* ??? We have no way to distinguish a null-sized array from an
2285 array spanning the whole sizetype range, so we arbitrarily
2286 decide that [0, -1] is the only valid representation. */
2287 if (integer_zerop (length
)
2288 && TREE_OVERFLOW (length
)
2289 && integer_zerop (lb
))
2290 length
= size_zero_node
;
2292 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
2293 fold_convert (bitsizetype
,
2296 /* If we know the size of the element, calculate the total size
2297 directly, rather than do some division thing below. This
2298 optimization helps Fortran assumed-size arrays (where the
2299 size of the array is determined at runtime) substantially. */
2300 if (TYPE_SIZE_UNIT (element
))
2301 TYPE_SIZE_UNIT (type
)
2302 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
2305 /* Now round the alignment and size,
2306 using machine-dependent criteria if any. */
2308 unsigned align
= TYPE_ALIGN (element
);
2309 if (TYPE_USER_ALIGN (type
))
2310 align
= MAX (align
, TYPE_ALIGN (type
));
2312 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
2313 #ifdef ROUND_TYPE_ALIGN
2314 align
= ROUND_TYPE_ALIGN (type
, align
, BITS_PER_UNIT
);
2316 align
= MAX (align
, BITS_PER_UNIT
);
2318 SET_TYPE_ALIGN (type
, align
);
2319 SET_TYPE_MODE (type
, BLKmode
);
2320 if (TYPE_SIZE (type
) != 0
2321 && ! targetm
.member_type_forces_blk (type
, VOIDmode
)
2322 /* BLKmode elements force BLKmode aggregate;
2323 else extract/store fields may lose. */
2324 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
2325 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
2327 SET_TYPE_MODE (type
, mode_for_array (TREE_TYPE (type
),
2329 if (TYPE_MODE (type
) != BLKmode
2330 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
2331 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
2333 TYPE_NO_FORCE_BLK (type
) = 1;
2334 SET_TYPE_MODE (type
, BLKmode
);
2337 /* When the element size is constant, check that it is at least as
2338 large as the element alignment. */
2339 if (TYPE_SIZE_UNIT (element
)
2340 && TREE_CODE (TYPE_SIZE_UNIT (element
)) == INTEGER_CST
2341 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2343 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element
))
2344 && !integer_zerop (TYPE_SIZE_UNIT (element
))
2345 && compare_tree_int (TYPE_SIZE_UNIT (element
),
2346 TYPE_ALIGN_UNIT (element
)) < 0)
2347 error ("alignment of array elements is greater than element size");
2353 case QUAL_UNION_TYPE
:
2356 record_layout_info rli
;
2358 /* Initialize the layout information. */
2359 rli
= start_record_layout (type
);
2361 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2362 in the reverse order in building the COND_EXPR that denotes
2363 its size. We reverse them again later. */
2364 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2365 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2367 /* Place all the fields. */
2368 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
2369 place_field (rli
, field
);
2371 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2372 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2374 /* Finish laying out the record. */
2375 finish_record_layout (rli
, /*free_p=*/true);
2383 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2384 records and unions, finish_record_layout already called this
2386 if (!RECORD_OR_UNION_TYPE_P (type
))
2387 finalize_type_size (type
);
2389 /* We should never see alias sets on incomplete aggregates. And we
2390 should not call layout_type on not incomplete aggregates. */
2391 if (AGGREGATE_TYPE_P (type
))
2392 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type
));
2395 /* Return the least alignment required for type TYPE. */
2398 min_align_of_type (tree type
)
2400 unsigned int align
= TYPE_ALIGN (type
);
2401 if (!TYPE_USER_ALIGN (type
))
2403 align
= MIN (align
, BIGGEST_ALIGNMENT
);
2404 #ifdef BIGGEST_FIELD_ALIGNMENT
2405 align
= MIN (align
, BIGGEST_FIELD_ALIGNMENT
);
2407 unsigned int field_align
= align
;
2408 #ifdef ADJUST_FIELD_ALIGN
2409 tree field
= build_decl (UNKNOWN_LOCATION
, FIELD_DECL
, NULL_TREE
, type
);
2410 field_align
= ADJUST_FIELD_ALIGN (field
, field_align
);
2413 align
= MIN (align
, field_align
);
2415 return align
/ BITS_PER_UNIT
;
2418 /* Vector types need to re-check the target flags each time we report
2419 the machine mode. We need to do this because attribute target can
2420 change the result of vector_mode_supported_p and have_regs_of_mode
2421 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2422 change on a per-function basis. */
2423 /* ??? Possibly a better solution is to run through all the types
2424 referenced by a function and re-compute the TYPE_MODE once, rather
2425 than make the TYPE_MODE macro call a function. */
2428 vector_type_mode (const_tree t
)
2432 gcc_assert (TREE_CODE (t
) == VECTOR_TYPE
);
2434 mode
= t
->type_common
.mode
;
2435 if (VECTOR_MODE_P (mode
)
2436 && (!targetm
.vector_mode_supported_p (mode
)
2437 || !have_regs_of_mode
[mode
]))
2439 machine_mode innermode
= TREE_TYPE (t
)->type_common
.mode
;
2441 /* For integers, try mapping it to a same-sized scalar mode. */
2442 if (GET_MODE_CLASS (innermode
) == MODE_INT
)
2444 mode
= mode_for_size (TYPE_VECTOR_SUBPARTS (t
)
2445 * GET_MODE_BITSIZE (innermode
), MODE_INT
, 0);
2447 if (mode
!= VOIDmode
&& have_regs_of_mode
[mode
])
2457 /* Create and return a type for signed integers of PRECISION bits. */
2460 make_signed_type (int precision
)
2462 tree type
= make_node (INTEGER_TYPE
);
2464 TYPE_PRECISION (type
) = precision
;
2466 fixup_signed_type (type
);
2470 /* Create and return a type for unsigned integers of PRECISION bits. */
2473 make_unsigned_type (int precision
)
2475 tree type
= make_node (INTEGER_TYPE
);
2477 TYPE_PRECISION (type
) = precision
;
2479 fixup_unsigned_type (type
);
2483 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2487 make_fract_type (int precision
, int unsignedp
, int satp
)
2489 tree type
= make_node (FIXED_POINT_TYPE
);
2491 TYPE_PRECISION (type
) = precision
;
2494 TYPE_SATURATING (type
) = 1;
2496 /* Lay out the type: set its alignment, size, etc. */
2499 TYPE_UNSIGNED (type
) = 1;
2500 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UFRACT
, 0));
2503 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_FRACT
, 0));
2509 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2513 make_accum_type (int precision
, int unsignedp
, int satp
)
2515 tree type
= make_node (FIXED_POINT_TYPE
);
2517 TYPE_PRECISION (type
) = precision
;
2520 TYPE_SATURATING (type
) = 1;
2522 /* Lay out the type: set its alignment, size, etc. */
2525 TYPE_UNSIGNED (type
) = 1;
2526 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UACCUM
, 0));
2529 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_ACCUM
, 0));
2535 /* Initialize sizetypes so layout_type can use them. */
2538 initialize_sizetypes (void)
2540 int precision
, bprecision
;
2542 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2543 if (strcmp (SIZETYPE
, "unsigned int") == 0)
2544 precision
= INT_TYPE_SIZE
;
2545 else if (strcmp (SIZETYPE
, "long unsigned int") == 0)
2546 precision
= LONG_TYPE_SIZE
;
2547 else if (strcmp (SIZETYPE
, "long long unsigned int") == 0)
2548 precision
= LONG_LONG_TYPE_SIZE
;
2549 else if (strcmp (SIZETYPE
, "short unsigned int") == 0)
2550 precision
= SHORT_TYPE_SIZE
;
2556 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
2557 if (int_n_enabled_p
[i
])
2560 sprintf (name
, "__int%d unsigned", int_n_data
[i
].bitsize
);
2562 if (strcmp (name
, SIZETYPE
) == 0)
2564 precision
= int_n_data
[i
].bitsize
;
2567 if (precision
== -1)
2572 = MIN (precision
+ BITS_PER_UNIT_LOG
+ 1, MAX_FIXED_MODE_SIZE
);
2574 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision
, MODE_INT
));
2575 if (bprecision
> HOST_BITS_PER_DOUBLE_INT
)
2576 bprecision
= HOST_BITS_PER_DOUBLE_INT
;
2578 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2579 sizetype
= make_node (INTEGER_TYPE
);
2580 TYPE_NAME (sizetype
) = get_identifier ("sizetype");
2581 TYPE_PRECISION (sizetype
) = precision
;
2582 TYPE_UNSIGNED (sizetype
) = 1;
2583 bitsizetype
= make_node (INTEGER_TYPE
);
2584 TYPE_NAME (bitsizetype
) = get_identifier ("bitsizetype");
2585 TYPE_PRECISION (bitsizetype
) = bprecision
;
2586 TYPE_UNSIGNED (bitsizetype
) = 1;
2588 /* Now layout both types manually. */
2589 SET_TYPE_MODE (sizetype
, smallest_mode_for_size (precision
, MODE_INT
));
2590 SET_TYPE_ALIGN (sizetype
, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype
)));
2591 TYPE_SIZE (sizetype
) = bitsize_int (precision
);
2592 TYPE_SIZE_UNIT (sizetype
) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype
)));
2593 set_min_and_max_values_for_integral_type (sizetype
, precision
, UNSIGNED
);
2595 SET_TYPE_MODE (bitsizetype
, smallest_mode_for_size (bprecision
, MODE_INT
));
2596 SET_TYPE_ALIGN (bitsizetype
, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype
)));
2597 TYPE_SIZE (bitsizetype
) = bitsize_int (bprecision
);
2598 TYPE_SIZE_UNIT (bitsizetype
)
2599 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype
)));
2600 set_min_and_max_values_for_integral_type (bitsizetype
, bprecision
, UNSIGNED
);
2602 /* Create the signed variants of *sizetype. */
2603 ssizetype
= make_signed_type (TYPE_PRECISION (sizetype
));
2604 TYPE_NAME (ssizetype
) = get_identifier ("ssizetype");
2605 sbitsizetype
= make_signed_type (TYPE_PRECISION (bitsizetype
));
2606 TYPE_NAME (sbitsizetype
) = get_identifier ("sbitsizetype");
2609 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2610 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2611 for TYPE, based on the PRECISION and whether or not the TYPE
2612 IS_UNSIGNED. PRECISION need not correspond to a width supported
2613 natively by the hardware; for example, on a machine with 8-bit,
2614 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2618 set_min_and_max_values_for_integral_type (tree type
,
2622 /* For bitfields with zero width we end up creating integer types
2623 with zero precision. Don't assign any minimum/maximum values
2624 to those types, they don't have any valid value. */
2628 TYPE_MIN_VALUE (type
)
2629 = wide_int_to_tree (type
, wi::min_value (precision
, sgn
));
2630 TYPE_MAX_VALUE (type
)
2631 = wide_int_to_tree (type
, wi::max_value (precision
, sgn
));
2634 /* Set the extreme values of TYPE based on its precision in bits,
2635 then lay it out. Used when make_signed_type won't do
2636 because the tree code is not INTEGER_TYPE.
2637 E.g. for Pascal, when the -fsigned-char option is given. */
2640 fixup_signed_type (tree type
)
2642 int precision
= TYPE_PRECISION (type
);
2644 set_min_and_max_values_for_integral_type (type
, precision
, SIGNED
);
2646 /* Lay out the type: set its alignment, size, etc. */
2650 /* Set the extreme values of TYPE based on its precision in bits,
2651 then lay it out. This is used both in `make_unsigned_type'
2652 and for enumeral types. */
2655 fixup_unsigned_type (tree type
)
2657 int precision
= TYPE_PRECISION (type
);
2659 TYPE_UNSIGNED (type
) = 1;
2661 set_min_and_max_values_for_integral_type (type
, precision
, UNSIGNED
);
2663 /* Lay out the type: set its alignment, size, etc. */
2667 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2670 BITREGION_START is the bit position of the first bit in this
2671 sequence of bit fields. BITREGION_END is the last bit in this
2672 sequence. If these two fields are non-zero, we should restrict the
2673 memory access to that range. Otherwise, we are allowed to touch
2674 any adjacent non bit-fields.
2676 ALIGN is the alignment of the underlying object in bits.
2677 VOLATILEP says whether the bitfield is volatile. */
2679 bit_field_mode_iterator
2680 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
2681 HOST_WIDE_INT bitregion_start
,
2682 HOST_WIDE_INT bitregion_end
,
2683 unsigned int align
, bool volatilep
)
2684 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT
)), m_bitsize (bitsize
),
2685 m_bitpos (bitpos
), m_bitregion_start (bitregion_start
),
2686 m_bitregion_end (bitregion_end
), m_align (align
),
2687 m_volatilep (volatilep
), m_count (0)
2689 if (!m_bitregion_end
)
2691 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2692 the bitfield is mapped and won't trap, provided that ALIGN isn't
2693 too large. The cap is the biggest required alignment for data,
2694 or at least the word size. And force one such chunk at least. */
2695 unsigned HOST_WIDE_INT units
2696 = MIN (align
, MAX (BIGGEST_ALIGNMENT
, BITS_PER_WORD
));
2699 m_bitregion_end
= bitpos
+ bitsize
+ units
- 1;
2700 m_bitregion_end
-= m_bitregion_end
% units
+ 1;
2704 /* Calls to this function return successively larger modes that can be used
2705 to represent the bitfield. Return true if another bitfield mode is
2706 available, storing it in *OUT_MODE if so. */
2709 bit_field_mode_iterator::next_mode (machine_mode
*out_mode
)
2711 for (; m_mode
!= VOIDmode
; m_mode
= GET_MODE_WIDER_MODE (m_mode
))
2713 unsigned int unit
= GET_MODE_BITSIZE (m_mode
);
2715 /* Skip modes that don't have full precision. */
2716 if (unit
!= GET_MODE_PRECISION (m_mode
))
2719 /* Stop if the mode is too wide to handle efficiently. */
2720 if (unit
> MAX_FIXED_MODE_SIZE
)
2723 /* Don't deliver more than one multiword mode; the smallest one
2725 if (m_count
> 0 && unit
> BITS_PER_WORD
)
2728 /* Skip modes that are too small. */
2729 unsigned HOST_WIDE_INT substart
= (unsigned HOST_WIDE_INT
) m_bitpos
% unit
;
2730 unsigned HOST_WIDE_INT subend
= substart
+ m_bitsize
;
2734 /* Stop if the mode goes outside the bitregion. */
2735 HOST_WIDE_INT start
= m_bitpos
- substart
;
2736 if (m_bitregion_start
&& start
< m_bitregion_start
)
2738 HOST_WIDE_INT end
= start
+ unit
;
2739 if (end
> m_bitregion_end
+ 1)
2742 /* Stop if the mode requires too much alignment. */
2743 if (GET_MODE_ALIGNMENT (m_mode
) > m_align
2744 && SLOW_UNALIGNED_ACCESS (m_mode
, m_align
))
2748 m_mode
= GET_MODE_WIDER_MODE (m_mode
);
2755 /* Return true if smaller modes are generally preferred for this kind
2759 bit_field_mode_iterator::prefer_smaller_modes ()
2762 ? targetm
.narrow_volatile_bitfield ()
2763 : !SLOW_BYTE_ACCESS
);
2766 /* Find the best machine mode to use when referencing a bit field of length
2767 BITSIZE bits starting at BITPOS.
2769 BITREGION_START is the bit position of the first bit in this
2770 sequence of bit fields. BITREGION_END is the last bit in this
2771 sequence. If these two fields are non-zero, we should restrict the
2772 memory access to that range. Otherwise, we are allowed to touch
2773 any adjacent non bit-fields.
2775 The underlying object is known to be aligned to a boundary of ALIGN bits.
2776 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2777 larger than LARGEST_MODE (usually SImode).
2779 If no mode meets all these conditions, we return VOIDmode.
2781 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2782 smallest mode meeting these conditions.
2784 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2785 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2788 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2789 decide which of the above modes should be used. */
2792 get_best_mode (int bitsize
, int bitpos
,
2793 unsigned HOST_WIDE_INT bitregion_start
,
2794 unsigned HOST_WIDE_INT bitregion_end
,
2796 machine_mode largest_mode
, bool volatilep
)
2798 bit_field_mode_iterator
iter (bitsize
, bitpos
, bitregion_start
,
2799 bitregion_end
, align
, volatilep
);
2800 machine_mode widest_mode
= VOIDmode
;
2802 while (iter
.next_mode (&mode
)
2803 /* ??? For historical reasons, reject modes that would normally
2804 receive greater alignment, even if unaligned accesses are
2805 acceptable. This has both advantages and disadvantages.
2806 Removing this check means that something like:
2808 struct s { unsigned int x; unsigned int y; };
2809 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2811 can be implemented using a single load and compare on
2812 64-bit machines that have no alignment restrictions.
2813 For example, on powerpc64-linux-gnu, we would generate:
2835 However, accessing more than one field can make life harder
2836 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2837 has a series of unsigned short copies followed by a series of
2838 unsigned short comparisons. With this check, both the copies
2839 and comparisons remain 16-bit accesses and FRE is able
2840 to eliminate the latter. Without the check, the comparisons
2841 can be done using 2 64-bit operations, which FRE isn't able
2842 to handle in the same way.
2844 Either way, it would probably be worth disabling this check
2845 during expand. One particular example where removing the
2846 check would help is the get_best_mode call in store_bit_field.
2847 If we are given a memory bitregion of 128 bits that is aligned
2848 to a 64-bit boundary, and the bitfield we want to modify is
2849 in the second half of the bitregion, this check causes
2850 store_bitfield to turn the memory into a 64-bit reference
2851 to the _first_ half of the region. We later use
2852 adjust_bitfield_address to get a reference to the correct half,
2853 but doing so looks to adjust_bitfield_address as though we are
2854 moving past the end of the original object, so it drops the
2855 associated MEM_EXPR and MEM_OFFSET. Removing the check
2856 causes store_bit_field to keep a 128-bit memory reference,
2857 so that the final bitfield reference still has a MEM_EXPR
2859 && GET_MODE_ALIGNMENT (mode
) <= align
2860 && (largest_mode
== VOIDmode
2861 || GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (largest_mode
)))
2864 if (iter
.prefer_smaller_modes ())
2870 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2871 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2874 get_mode_bounds (machine_mode mode
, int sign
,
2875 machine_mode target_mode
,
2876 rtx
*mmin
, rtx
*mmax
)
2878 unsigned size
= GET_MODE_PRECISION (mode
);
2879 unsigned HOST_WIDE_INT min_val
, max_val
;
2881 gcc_assert (size
<= HOST_BITS_PER_WIDE_INT
);
2883 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2886 if (STORE_FLAG_VALUE
< 0)
2888 min_val
= STORE_FLAG_VALUE
;
2894 max_val
= STORE_FLAG_VALUE
;
2899 min_val
= -((unsigned HOST_WIDE_INT
) 1 << (size
- 1));
2900 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)) - 1;
2905 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1) << 1) - 1;
2908 *mmin
= gen_int_mode (min_val
, target_mode
);
2909 *mmax
= gen_int_mode (max_val
, target_mode
);
2912 #include "gt-stor-layout.h"