1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 91, 94, 95, 96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
27 #include "hard-reg-set.h"
28 #include "insn-config.h"
30 #include "insn-flags.h"
31 #include "insn-codes.h"
33 static rtx break_out_memory_refs
PROTO((rtx
));
35 /* Return an rtx for the sum of X and the integer C.
37 This function should be used via the `plus_constant' macro. */
40 plus_constant_wide (x
, c
)
42 register HOST_WIDE_INT c
;
44 register RTX_CODE code
;
45 register enum machine_mode mode
;
59 return GEN_INT (INTVAL (x
) + c
);
63 HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
64 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
66 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
69 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
71 return immed_double_const (lv
, hv
, VOIDmode
);
75 /* If this is a reference to the constant pool, try replacing it with
76 a reference to a new constant. If the resulting address isn't
77 valid, don't return it because we have no way to validize it. */
78 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
79 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
82 = force_const_mem (GET_MODE (x
),
83 plus_constant (get_pool_constant (XEXP (x
, 0)),
85 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
91 /* If adding to something entirely constant, set a flag
92 so that we can add a CONST around the result. */
103 /* The interesting case is adding the integer to a sum.
104 Look for constant term in the sum and combine
105 with C. For an integer constant term, we make a combined
106 integer. For a constant term that is not an explicit integer,
107 we cannot really combine, but group them together anyway.
109 Use a recursive call in case the remaining operand is something
110 that we handle specially, such as a SYMBOL_REF. */
112 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
113 return plus_constant (XEXP (x
, 0), c
+ INTVAL (XEXP (x
, 1)));
114 else if (CONSTANT_P (XEXP (x
, 0)))
115 return gen_rtx (PLUS
, mode
,
116 plus_constant (XEXP (x
, 0), c
),
118 else if (CONSTANT_P (XEXP (x
, 1)))
119 return gen_rtx (PLUS
, mode
,
121 plus_constant (XEXP (x
, 1), c
));
125 x
= gen_rtx (PLUS
, mode
, x
, GEN_INT (c
));
127 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
129 else if (all_constant
)
130 return gen_rtx (CONST
, mode
, x
);
135 /* This is the same as `plus_constant', except that it handles LO_SUM.
137 This function should be used via the `plus_constant_for_output' macro. */
140 plus_constant_for_output_wide (x
, c
)
142 register HOST_WIDE_INT c
;
144 register RTX_CODE code
= GET_CODE (x
);
145 register enum machine_mode mode
= GET_MODE (x
);
146 int all_constant
= 0;
148 if (GET_CODE (x
) == LO_SUM
)
149 return gen_rtx (LO_SUM
, mode
, XEXP (x
, 0),
150 plus_constant_for_output (XEXP (x
, 1), c
));
153 return plus_constant (x
, c
);
156 /* If X is a sum, return a new sum like X but lacking any constant terms.
157 Add all the removed constant terms into *CONSTPTR.
158 X itself is not altered. The result != X if and only if
159 it is not isomorphic to X. */
162 eliminate_constant_term (x
, constptr
)
169 if (GET_CODE (x
) != PLUS
)
172 /* First handle constants appearing at this level explicitly. */
173 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
174 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
176 && GET_CODE (tem
) == CONST_INT
)
179 return eliminate_constant_term (XEXP (x
, 0), constptr
);
183 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
184 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
185 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
186 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
188 && GET_CODE (tem
) == CONST_INT
)
191 return gen_rtx (PLUS
, GET_MODE (x
), x0
, x1
);
197 /* Returns the insn that next references REG after INSN, or 0
198 if REG is clobbered before next referenced or we cannot find
199 an insn that references REG in a straight-line piece of code. */
202 find_next_ref (reg
, insn
)
208 for (insn
= NEXT_INSN (insn
); insn
; insn
= next
)
210 next
= NEXT_INSN (insn
);
211 if (GET_CODE (insn
) == NOTE
)
213 if (GET_CODE (insn
) == CODE_LABEL
214 || GET_CODE (insn
) == BARRIER
)
216 if (GET_CODE (insn
) == INSN
217 || GET_CODE (insn
) == JUMP_INSN
218 || GET_CODE (insn
) == CALL_INSN
)
220 if (reg_set_p (reg
, insn
))
222 if (reg_mentioned_p (reg
, PATTERN (insn
)))
224 if (GET_CODE (insn
) == JUMP_INSN
)
226 if (simplejump_p (insn
))
227 next
= JUMP_LABEL (insn
);
231 if (GET_CODE (insn
) == CALL_INSN
232 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
233 && call_used_regs
[REGNO (reg
)])
242 /* Return an rtx for the size in bytes of the value of EXP. */
248 tree size
= size_in_bytes (TREE_TYPE (exp
));
250 if (TREE_CODE (size
) != INTEGER_CST
251 && contains_placeholder_p (size
))
252 size
= build (WITH_RECORD_EXPR
, sizetype
, size
, exp
);
254 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), 0);
257 /* Return a copy of X in which all memory references
258 and all constants that involve symbol refs
259 have been replaced with new temporary registers.
260 Also emit code to load the memory locations and constants
261 into those registers.
263 If X contains no such constants or memory references,
264 X itself (not a copy) is returned.
266 If a constant is found in the address that is not a legitimate constant
267 in an insn, it is left alone in the hope that it might be valid in the
270 X may contain no arithmetic except addition, subtraction and multiplication.
271 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
274 break_out_memory_refs (x
)
277 if (GET_CODE (x
) == MEM
278 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
279 && GET_MODE (x
) != VOIDmode
))
280 x
= force_reg (GET_MODE (x
), x
);
281 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
282 || GET_CODE (x
) == MULT
)
284 register rtx op0
= break_out_memory_refs (XEXP (x
, 0));
285 register rtx op1
= break_out_memory_refs (XEXP (x
, 1));
287 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
288 x
= gen_rtx (GET_CODE (x
), Pmode
, op0
, op1
);
294 #ifdef POINTERS_EXTEND_UNSIGNED
296 /* Given X, a memory address in ptr_mode, convert it to an address
297 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
298 the fact that pointers are not allowed to overflow by commuting arithmetic
299 operations over conversions so that address arithmetic insns can be
303 convert_memory_address (to_mode
, x
)
304 enum machine_mode to_mode
;
307 enum machine_mode from_mode
= to_mode
== ptr_mode
? Pmode
: ptr_mode
;
310 /* Here we handle some special cases. If none of them apply, fall through
311 to the default case. */
312 switch (GET_CODE (x
))
319 return gen_rtx (LABEL_REF
, to_mode
, XEXP (x
, 0));
322 temp
= gen_rtx (SYMBOL_REF
, to_mode
, XSTR (x
, 0));
323 SYMBOL_REF_FLAG (temp
) = SYMBOL_REF_FLAG (x
);
324 CONSTANT_POOL_ADDRESS_P (temp
) = CONSTANT_POOL_ADDRESS_P (x
);
328 return gen_rtx (CONST
, to_mode
,
329 convert_memory_address (to_mode
, XEXP (x
, 0)));
333 /* For addition the second operand is a small constant, we can safely
334 permute the converstion and addition operation. We can always safely
335 permute them if we are making the address narrower. In addition,
336 always permute the operations if this is a constant. */
337 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
338 || (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
339 && (INTVAL (XEXP (x
, 1)) + 20000 < 40000
340 || CONSTANT_P (XEXP (x
, 0)))))
341 return gen_rtx (GET_CODE (x
), to_mode
,
342 convert_memory_address (to_mode
, XEXP (x
, 0)),
343 convert_memory_address (to_mode
, XEXP (x
, 1)));
346 return convert_modes (to_mode
, from_mode
,
347 x
, POINTERS_EXTEND_UNSIGNED
);
351 /* Given a memory address or facsimile X, construct a new address,
352 currently equivalent, that is stable: future stores won't change it.
354 X must be composed of constants, register and memory references
355 combined with addition, subtraction and multiplication:
356 in other words, just what you can get from expand_expr if sum_ok is 1.
358 Works by making copies of all regs and memory locations used
359 by X and combining them the same way X does.
360 You could also stabilize the reference to this address
361 by copying the address to a register with copy_to_reg;
362 but then you wouldn't get indexed addressing in the reference. */
368 if (GET_CODE (x
) == REG
)
370 if (REGNO (x
) != FRAME_POINTER_REGNUM
371 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
372 && REGNO (x
) != HARD_FRAME_POINTER_REGNUM
377 else if (GET_CODE (x
) == MEM
)
379 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
380 || GET_CODE (x
) == MULT
)
382 register rtx op0
= copy_all_regs (XEXP (x
, 0));
383 register rtx op1
= copy_all_regs (XEXP (x
, 1));
384 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
385 x
= gen_rtx (GET_CODE (x
), Pmode
, op0
, op1
);
390 /* Return something equivalent to X but valid as a memory address
391 for something of mode MODE. When X is not itself valid, this
392 works by copying X or subexpressions of it into registers. */
395 memory_address (mode
, x
)
396 enum machine_mode mode
;
399 register rtx oldx
= x
;
401 #ifdef POINTERS_EXTEND_UNSIGNED
402 if (GET_MODE (x
) == ptr_mode
)
403 x
= convert_memory_address (Pmode
, x
);
406 /* By passing constant addresses thru registers
407 we get a chance to cse them. */
408 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
409 x
= force_reg (Pmode
, x
);
411 /* Accept a QUEUED that refers to a REG
412 even though that isn't a valid address.
413 On attempting to put this in an insn we will call protect_from_queue
414 which will turn it into a REG, which is valid. */
415 else if (GET_CODE (x
) == QUEUED
416 && GET_CODE (QUEUED_VAR (x
)) == REG
)
419 /* We get better cse by rejecting indirect addressing at this stage.
420 Let the combiner create indirect addresses where appropriate.
421 For now, generate the code so that the subexpressions useful to share
422 are visible. But not if cse won't be done! */
425 if (! cse_not_expected
&& GET_CODE (x
) != REG
)
426 x
= break_out_memory_refs (x
);
428 /* At this point, any valid address is accepted. */
429 GO_IF_LEGITIMATE_ADDRESS (mode
, x
, win
);
431 /* If it was valid before but breaking out memory refs invalidated it,
432 use it the old way. */
433 if (memory_address_p (mode
, oldx
))
436 /* Perform machine-dependent transformations on X
437 in certain cases. This is not necessary since the code
438 below can handle all possible cases, but machine-dependent
439 transformations can make better code. */
440 LEGITIMIZE_ADDRESS (x
, oldx
, mode
, win
);
442 /* PLUS and MULT can appear in special ways
443 as the result of attempts to make an address usable for indexing.
444 Usually they are dealt with by calling force_operand, below.
445 But a sum containing constant terms is special
446 if removing them makes the sum a valid address:
447 then we generate that address in a register
448 and index off of it. We do this because it often makes
449 shorter code, and because the addresses thus generated
450 in registers often become common subexpressions. */
451 if (GET_CODE (x
) == PLUS
)
453 rtx constant_term
= const0_rtx
;
454 rtx y
= eliminate_constant_term (x
, &constant_term
);
455 if (constant_term
== const0_rtx
456 || ! memory_address_p (mode
, y
))
457 x
= force_operand (x
, NULL_RTX
);
460 y
= gen_rtx (PLUS
, GET_MODE (x
), copy_to_reg (y
), constant_term
);
461 if (! memory_address_p (mode
, y
))
462 x
= force_operand (x
, NULL_RTX
);
468 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
469 x
= force_operand (x
, NULL_RTX
);
471 /* If we have a register that's an invalid address,
472 it must be a hard reg of the wrong class. Copy it to a pseudo. */
473 else if (GET_CODE (x
) == REG
)
476 /* Last resort: copy the value to a register, since
477 the register is a valid address. */
479 x
= force_reg (Pmode
, x
);
486 if (flag_force_addr
&& ! cse_not_expected
&& GET_CODE (x
) != REG
487 /* Don't copy an addr via a reg if it is one of our stack slots. */
488 && ! (GET_CODE (x
) == PLUS
489 && (XEXP (x
, 0) == virtual_stack_vars_rtx
490 || XEXP (x
, 0) == virtual_incoming_args_rtx
)))
492 if (general_operand (x
, Pmode
))
493 x
= force_reg (Pmode
, x
);
495 x
= force_operand (x
, NULL_RTX
);
501 /* If we didn't change the address, we are done. Otherwise, mark
502 a reg as a pointer if we have REG or REG + CONST_INT. */
505 else if (GET_CODE (x
) == REG
)
506 mark_reg_pointer (x
, 1);
507 else if (GET_CODE (x
) == PLUS
508 && GET_CODE (XEXP (x
, 0)) == REG
509 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
510 mark_reg_pointer (XEXP (x
, 0), 1);
512 /* OLDX may have been the address on a temporary. Update the address
513 to indicate that X is now used. */
514 update_temp_slot_address (oldx
, x
);
519 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
522 memory_address_noforce (mode
, x
)
523 enum machine_mode mode
;
526 int ambient_force_addr
= flag_force_addr
;
530 val
= memory_address (mode
, x
);
531 flag_force_addr
= ambient_force_addr
;
535 /* Convert a mem ref into one with a valid memory address.
536 Pass through anything else unchanged. */
542 if (GET_CODE (ref
) != MEM
)
544 if (memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
546 /* Don't alter REF itself, since that is probably a stack slot. */
547 return change_address (ref
, GET_MODE (ref
), XEXP (ref
, 0));
550 /* Return a modified copy of X with its memory address copied
551 into a temporary register to protect it from side effects.
552 If X is not a MEM, it is returned unchanged (and not copied).
553 Perhaps even if it is a MEM, if there is no need to change it. */
560 if (GET_CODE (x
) != MEM
)
563 if (rtx_unstable_p (addr
))
565 rtx temp
= copy_all_regs (addr
);
567 if (GET_CODE (temp
) != REG
)
568 temp
= copy_to_reg (temp
);
569 mem
= gen_rtx (MEM
, GET_MODE (x
), temp
);
571 /* Mark returned memref with in_struct if it's in an array or
572 structure. Copy const and volatile from original memref. */
574 MEM_IN_STRUCT_P (mem
) = MEM_IN_STRUCT_P (x
) || GET_CODE (addr
) == PLUS
;
575 RTX_UNCHANGING_P (mem
) = RTX_UNCHANGING_P (x
);
576 MEM_VOLATILE_P (mem
) = MEM_VOLATILE_P (x
);
582 /* Copy the value or contents of X to a new temp reg and return that reg. */
588 register rtx temp
= gen_reg_rtx (GET_MODE (x
));
590 /* If not an operand, must be an address with PLUS and MULT so
591 do the computation. */
592 if (! general_operand (x
, VOIDmode
))
593 x
= force_operand (x
, temp
);
596 emit_move_insn (temp
, x
);
601 /* Like copy_to_reg but always give the new register mode Pmode
602 in case X is a constant. */
608 return copy_to_mode_reg (Pmode
, x
);
611 /* Like copy_to_reg but always give the new register mode MODE
612 in case X is a constant. */
615 copy_to_mode_reg (mode
, x
)
616 enum machine_mode mode
;
619 register rtx temp
= gen_reg_rtx (mode
);
621 /* If not an operand, must be an address with PLUS and MULT so
622 do the computation. */
623 if (! general_operand (x
, VOIDmode
))
624 x
= force_operand (x
, temp
);
626 if (GET_MODE (x
) != mode
&& GET_MODE (x
) != VOIDmode
)
629 emit_move_insn (temp
, x
);
633 /* Load X into a register if it is not already one.
634 Use mode MODE for the register.
635 X should be valid for mode MODE, but it may be a constant which
636 is valid for all integer modes; that's why caller must specify MODE.
638 The caller must not alter the value in the register we return,
639 since we mark it as a "constant" register. */
643 enum machine_mode mode
;
646 register rtx temp
, insn
, set
;
648 if (GET_CODE (x
) == REG
)
650 temp
= gen_reg_rtx (mode
);
651 insn
= emit_move_insn (temp
, x
);
653 /* Let optimizers know that TEMP's value never changes
654 and that X can be substituted for it. Don't get confused
655 if INSN set something else (such as a SUBREG of TEMP). */
657 && (set
= single_set (insn
)) != 0
658 && SET_DEST (set
) == temp
)
660 rtx note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
665 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_EQUAL
, x
, REG_NOTES (insn
));
670 /* If X is a memory ref, copy its contents to a new temp reg and return
671 that reg. Otherwise, return X. */
678 if (GET_CODE (x
) != MEM
|| GET_MODE (x
) == BLKmode
)
680 temp
= gen_reg_rtx (GET_MODE (x
));
681 emit_move_insn (temp
, x
);
685 /* Copy X to TARGET (if it's nonzero and a reg)
686 or to a new temp reg and return that reg.
687 MODE is the mode to use for X in case it is a constant. */
690 copy_to_suggested_reg (x
, target
, mode
)
692 enum machine_mode mode
;
696 if (target
&& GET_CODE (target
) == REG
)
699 temp
= gen_reg_rtx (mode
);
701 emit_move_insn (temp
, x
);
705 /* Return the mode to use to store a scalar of TYPE and MODE.
706 PUNSIGNEDP points to the signedness of the type and may be adjusted
707 to show what signedness to use on extension operations.
709 FOR_CALL is non-zero if this call is promoting args for a call. */
712 promote_mode (type
, mode
, punsignedp
, for_call
)
714 enum machine_mode mode
;
718 enum tree_code code
= TREE_CODE (type
);
719 int unsignedp
= *punsignedp
;
721 #ifdef PROMOTE_FOR_CALL_ONLY
729 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
730 case CHAR_TYPE
: case REAL_TYPE
: case OFFSET_TYPE
:
731 PROMOTE_MODE (mode
, unsignedp
, type
);
735 #ifdef POINTERS_EXTEND_UNSIGNED
739 unsignedp
= POINTERS_EXTEND_UNSIGNED
;
744 *punsignedp
= unsignedp
;
748 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
749 This pops when ADJUST is positive. ADJUST need not be constant. */
752 adjust_stack (adjust
)
756 adjust
= protect_from_queue (adjust
, 0);
758 if (adjust
== const0_rtx
)
761 temp
= expand_binop (Pmode
,
762 #ifdef STACK_GROWS_DOWNWARD
767 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
770 if (temp
!= stack_pointer_rtx
)
771 emit_move_insn (stack_pointer_rtx
, temp
);
774 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
775 This pushes when ADJUST is positive. ADJUST need not be constant. */
778 anti_adjust_stack (adjust
)
782 adjust
= protect_from_queue (adjust
, 0);
784 if (adjust
== const0_rtx
)
787 temp
= expand_binop (Pmode
,
788 #ifdef STACK_GROWS_DOWNWARD
793 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
796 if (temp
!= stack_pointer_rtx
)
797 emit_move_insn (stack_pointer_rtx
, temp
);
800 /* Round the size of a block to be pushed up to the boundary required
801 by this machine. SIZE is the desired size, which need not be constant. */
807 #ifdef STACK_BOUNDARY
808 int align
= STACK_BOUNDARY
/ BITS_PER_UNIT
;
811 if (GET_CODE (size
) == CONST_INT
)
813 int new = (INTVAL (size
) + align
- 1) / align
* align
;
814 if (INTVAL (size
) != new)
815 size
= GEN_INT (new);
819 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
820 but we know it can't. So add ourselves and then do
822 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
823 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
824 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
826 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
828 #endif /* STACK_BOUNDARY */
832 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
833 to a previously-created save area. If no save area has been allocated,
834 this function will allocate one. If a save area is specified, it
835 must be of the proper mode.
837 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
838 are emitted at the current position. */
841 emit_stack_save (save_level
, psave
, after
)
842 enum save_level save_level
;
847 /* The default is that we use a move insn and save in a Pmode object. */
848 rtx (*fcn
) () = gen_move_insn
;
849 enum machine_mode mode
= Pmode
;
851 /* See if this machine has anything special to do for this kind of save. */
854 #ifdef HAVE_save_stack_block
856 if (HAVE_save_stack_block
)
858 fcn
= gen_save_stack_block
;
859 mode
= insn_operand_mode
[CODE_FOR_save_stack_block
][0];
863 #ifdef HAVE_save_stack_function
865 if (HAVE_save_stack_function
)
867 fcn
= gen_save_stack_function
;
868 mode
= insn_operand_mode
[CODE_FOR_save_stack_function
][0];
872 #ifdef HAVE_save_stack_nonlocal
874 if (HAVE_save_stack_nonlocal
)
876 fcn
= gen_save_stack_nonlocal
;
877 mode
= insn_operand_mode
[(int) CODE_FOR_save_stack_nonlocal
][0];
883 /* If there is no save area and we have to allocate one, do so. Otherwise
884 verify the save area is the proper mode. */
888 if (mode
!= VOIDmode
)
890 if (save_level
== SAVE_NONLOCAL
)
891 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
893 *psave
= sa
= gen_reg_rtx (mode
);
898 if (mode
== VOIDmode
|| GET_MODE (sa
) != mode
)
907 /* We must validize inside the sequence, to ensure that any instructions
908 created by the validize call also get moved to the right place. */
910 sa
= validize_mem (sa
);
911 emit_insn (fcn (sa
, stack_pointer_rtx
));
912 seq
= gen_sequence ();
914 emit_insn_after (seq
, after
);
919 sa
= validize_mem (sa
);
920 emit_insn (fcn (sa
, stack_pointer_rtx
));
924 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
925 area made by emit_stack_save. If it is zero, we have nothing to do.
927 Put any emitted insns after insn AFTER, if nonzero, otherwise at
931 emit_stack_restore (save_level
, sa
, after
)
932 enum save_level save_level
;
936 /* The default is that we use a move insn. */
937 rtx (*fcn
) () = gen_move_insn
;
939 /* See if this machine has anything special to do for this kind of save. */
942 #ifdef HAVE_restore_stack_block
944 if (HAVE_restore_stack_block
)
945 fcn
= gen_restore_stack_block
;
948 #ifdef HAVE_restore_stack_function
950 if (HAVE_restore_stack_function
)
951 fcn
= gen_restore_stack_function
;
954 #ifdef HAVE_restore_stack_nonlocal
957 if (HAVE_restore_stack_nonlocal
)
958 fcn
= gen_restore_stack_nonlocal
;
964 sa
= validize_mem (sa
);
971 emit_insn (fcn (stack_pointer_rtx
, sa
));
972 seq
= gen_sequence ();
974 emit_insn_after (seq
, after
);
977 emit_insn (fcn (stack_pointer_rtx
, sa
));
980 /* Return an rtx representing the address of an area of memory dynamically
981 pushed on the stack. This region of memory is always aligned to
982 a multiple of BIGGEST_ALIGNMENT.
984 Any required stack pointer alignment is preserved.
986 SIZE is an rtx representing the size of the area.
987 TARGET is a place in which the address can be placed.
989 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
992 allocate_dynamic_stack_space (size
, target
, known_align
)
997 /* If we're asking for zero bytes, it doesn't matter what we point
998 to since we can't dereference it. But return a reasonable
1000 if (size
== const0_rtx
)
1001 return virtual_stack_dynamic_rtx
;
1003 /* Otherwise, show we're calling alloca or equivalent. */
1004 current_function_calls_alloca
= 1;
1006 /* Ensure the size is in the proper mode. */
1007 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1008 size
= convert_to_mode (Pmode
, size
, 1);
1010 /* We will need to ensure that the address we return is aligned to
1011 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1012 always know its final value at this point in the compilation (it
1013 might depend on the size of the outgoing parameter lists, for
1014 example), so we must align the value to be returned in that case.
1015 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1016 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1017 We must also do an alignment operation on the returned value if
1018 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1020 If we have to align, we must leave space in SIZE for the hole
1021 that might result from the alignment operation. */
1023 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (STACK_BOUNDARY)
1024 #define MUST_ALIGN 1
1026 #define MUST_ALIGN (STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1031 if (GET_CODE (size
) == CONST_INT
)
1032 size
= GEN_INT (INTVAL (size
)
1033 + (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1));
1035 size
= expand_binop (Pmode
, add_optab
, size
,
1036 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1037 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1040 #ifdef SETJMP_VIA_SAVE_AREA
1041 /* If setjmp restores regs from a save area in the stack frame,
1042 avoid clobbering the reg save area. Note that the offset of
1043 virtual_incoming_args_rtx includes the preallocated stack args space.
1044 It would be no problem to clobber that, but it's on the wrong side
1045 of the old save area. */
1048 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1049 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1050 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1051 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1053 #endif /* SETJMP_VIA_SAVE_AREA */
1055 /* Round the size to a multiple of the required stack alignment.
1056 Since the stack if presumed to be rounded before this allocation,
1057 this will maintain the required alignment.
1059 If the stack grows downward, we could save an insn by subtracting
1060 SIZE from the stack pointer and then aligning the stack pointer.
1061 The problem with this is that the stack pointer may be unaligned
1062 between the execution of the subtraction and alignment insns and
1063 some machines do not allow this. Even on those that do, some
1064 signal handlers malfunction if a signal should occur between those
1065 insns. Since this is an extremely rare event, we have no reliable
1066 way of knowing which systems have this problem. So we avoid even
1067 momentarily mis-aligning the stack. */
1069 #ifdef STACK_BOUNDARY
1070 /* If we added a variable amount to SIZE,
1071 we can no longer assume it is aligned. */
1072 #if !defined (SETJMP_VIA_SAVE_AREA)
1073 if (MUST_ALIGN
|| known_align
% STACK_BOUNDARY
!= 0)
1075 size
= round_push (size
);
1078 do_pending_stack_adjust ();
1080 /* Don't use a TARGET that isn't a pseudo. */
1081 if (target
== 0 || GET_CODE (target
) != REG
1082 || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
1083 target
= gen_reg_rtx (Pmode
);
1085 mark_reg_pointer (target
, known_align
/ BITS_PER_UNIT
);
1087 #ifndef STACK_GROWS_DOWNWARD
1088 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1091 /* Perform the required allocation from the stack. Some systems do
1092 this differently than simply incrementing/decrementing from the
1094 #ifdef HAVE_allocate_stack
1095 if (HAVE_allocate_stack
)
1097 enum machine_mode mode
1098 = insn_operand_mode
[(int) CODE_FOR_allocate_stack
][0];
1100 size
= convert_modes (mode
, ptr_mode
, size
, 1);
1102 if (insn_operand_predicate
[(int) CODE_FOR_allocate_stack
][0]
1103 && ! ((*insn_operand_predicate
[(int) CODE_FOR_allocate_stack
][0])
1105 size
= copy_to_mode_reg (mode
, size
);
1107 emit_insn (gen_allocate_stack (size
));
1112 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
1113 anti_adjust_stack (size
);
1116 #ifdef STACK_GROWS_DOWNWARD
1117 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1122 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1123 but we know it can't. So add ourselves and then do
1125 target
= expand_binop (Pmode
, add_optab
, target
,
1126 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1127 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1128 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1129 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1131 target
= expand_mult (Pmode
, target
,
1132 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1136 /* Some systems require a particular insn to refer to the stack
1137 to make the pages exist. */
1140 emit_insn (gen_probe ());
1143 /* Record the new stack level for nonlocal gotos. */
1144 if (nonlocal_goto_handler_slot
!= 0)
1145 emit_stack_save (SAVE_NONLOCAL
, &nonlocal_goto_stack_level
, NULL_RTX
);
1150 /* Return an rtx representing the register or memory location
1151 in which a scalar value of data type VALTYPE
1152 was returned by a function call to function FUNC.
1153 FUNC is a FUNCTION_DECL node if the precise function is known,
1157 hard_function_value (valtype
, func
)
1161 rtx val
= FUNCTION_VALUE (valtype
, func
);
1162 if (GET_CODE (val
) == REG
1163 && GET_MODE (val
) == BLKmode
)
1165 int bytes
= int_size_in_bytes (valtype
);
1166 enum machine_mode tmpmode
;
1167 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1168 tmpmode
!= MAX_MACHINE_MODE
;
1169 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1171 /* Have we found a large enough mode? */
1172 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1176 /* No suitable mode found. */
1177 if (tmpmode
== MAX_MACHINE_MODE
)
1180 PUT_MODE (val
, tmpmode
);
1185 /* Return an rtx representing the register or memory location
1186 in which a scalar value of mode MODE was returned by a library call. */
1189 hard_libcall_value (mode
)
1190 enum machine_mode mode
;
1192 return LIBCALL_VALUE (mode
);
1195 /* Look up the tree code for a given rtx code
1196 to provide the arithmetic operation for REAL_ARITHMETIC.
1197 The function returns an int because the caller may not know
1198 what `enum tree_code' means. */
1201 rtx_to_tree_code (code
)
1204 enum tree_code tcode
;
1227 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1230 return ((int) tcode
);