compiler, runtime: Use function descriptors.
[official-gcc.git] / libgo / go / reflect / value.go
blobf8126e676d8f5818224639df4b93d25356a60d53
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package reflect
7 import (
8 "math"
9 "runtime"
10 "strconv"
11 "unsafe"
14 const bigEndian = false // can be smarter if we find a big-endian machine
15 const ptrSize = unsafe.Sizeof((*byte)(nil))
16 const cannotSet = "cannot set value obtained from unexported struct field"
18 // TODO: This will have to go away when
19 // the new gc goes in.
20 func memmove(adst, asrc unsafe.Pointer, n uintptr) {
21 dst := uintptr(adst)
22 src := uintptr(asrc)
23 switch {
24 case src < dst && src+n > dst:
25 // byte copy backward
26 // careful: i is unsigned
27 for i := n; i > 0; {
28 i--
29 *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
31 case (n|src|dst)&(ptrSize-1) != 0:
32 // byte copy forward
33 for i := uintptr(0); i < n; i++ {
34 *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
36 default:
37 // word copy forward
38 for i := uintptr(0); i < n; i += ptrSize {
39 *(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))
44 // Value is the reflection interface to a Go value.
46 // Not all methods apply to all kinds of values. Restrictions,
47 // if any, are noted in the documentation for each method.
48 // Use the Kind method to find out the kind of value before
49 // calling kind-specific methods. Calling a method
50 // inappropriate to the kind of type causes a run time panic.
52 // The zero Value represents no value.
53 // Its IsValid method returns false, its Kind method returns Invalid,
54 // its String method returns "<invalid Value>", and all other methods panic.
55 // Most functions and methods never return an invalid value.
56 // If one does, its documentation states the conditions explicitly.
58 // A Value can be used concurrently by multiple goroutines provided that
59 // the underlying Go value can be used concurrently for the equivalent
60 // direct operations.
61 type Value struct {
62 // typ holds the type of the value represented by a Value.
63 typ *rtype
65 // val holds the 1-word representation of the value.
66 // If flag's flagIndir bit is set, then val is a pointer to the data.
67 // Otherwise val is a word holding the actual data.
68 // When the data is smaller than a word, it begins at
69 // the first byte (in the memory address sense) of val.
70 // We use unsafe.Pointer so that the garbage collector
71 // knows that val could be a pointer.
72 val unsafe.Pointer
74 // flag holds metadata about the value.
75 // The lowest bits are flag bits:
76 // - flagRO: obtained via unexported field, so read-only
77 // - flagIndir: val holds a pointer to the data
78 // - flagAddr: v.CanAddr is true (implies flagIndir)
79 // - flagMethod: v is a method value.
80 // The next five bits give the Kind of the value.
81 // This repeats typ.Kind() except for method values.
82 // The remaining 23+ bits give a method number for method values.
83 // If flag.kind() != Func, code can assume that flagMethod is unset.
84 // If typ.size > ptrSize, code can assume that flagIndir is set.
85 flag
87 // A method value represents a curried method invocation
88 // like r.Read for some receiver r. The typ+val+flag bits describe
89 // the receiver r, but the flag's Kind bits say Func (methods are
90 // functions), and the top bits of the flag give the method number
91 // in r's type's method table.
94 type flag uintptr
96 const (
97 flagRO flag = 1 << iota
98 flagIndir
99 flagAddr
100 flagMethod
101 flagKindShift = iota
102 flagKindWidth = 5 // there are 27 kinds
103 flagKindMask flag = 1<<flagKindWidth - 1
104 flagMethodShift = flagKindShift + flagKindWidth
107 func (f flag) kind() Kind {
108 return Kind((f >> flagKindShift) & flagKindMask)
111 // A ValueError occurs when a Value method is invoked on
112 // a Value that does not support it. Such cases are documented
113 // in the description of each method.
114 type ValueError struct {
115 Method string
116 Kind Kind
119 func (e *ValueError) Error() string {
120 if e.Kind == 0 {
121 return "reflect: call of " + e.Method + " on zero Value"
123 return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
126 // methodName returns the name of the calling method,
127 // assumed to be two stack frames above.
128 func methodName() string {
129 pc, _, _, _ := runtime.Caller(2)
130 f := runtime.FuncForPC(pc)
131 if f == nil {
132 return "unknown method"
134 return f.Name()
137 // An iword is the word that would be stored in an
138 // interface to represent a given value v. Specifically, if v is
139 // bigger than a pointer, its word is a pointer to v's data.
140 // Otherwise, its word holds the data stored
141 // in its leading bytes (so is not a pointer).
142 // Because the value sometimes holds a pointer, we use
143 // unsafe.Pointer to represent it, so that if iword appears
144 // in a struct, the garbage collector knows that might be
145 // a pointer.
146 type iword unsafe.Pointer
148 func (v Value) iword() iword {
149 if v.flag&flagIndir != 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) {
150 // Have indirect but want direct word.
151 return loadIword(v.val, v.typ.size)
153 return iword(v.val)
156 // loadIword loads n bytes at p from memory into an iword.
157 func loadIword(p unsafe.Pointer, n uintptr) iword {
158 // Run the copy ourselves instead of calling memmove
159 // to avoid moving w to the heap.
160 var w iword
161 switch n {
162 default:
163 panic("reflect: internal error: loadIword of " + strconv.Itoa(int(n)) + "-byte value")
164 case 0:
165 case 1:
166 *(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
167 case 2:
168 *(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)
169 case 3:
170 *(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)
171 case 4:
172 *(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)
173 case 5:
174 *(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)
175 case 6:
176 *(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)
177 case 7:
178 *(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)
179 case 8:
180 *(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)
182 return w
185 // storeIword stores n bytes from w into p.
186 func storeIword(p unsafe.Pointer, w iword, n uintptr) {
187 // Run the copy ourselves instead of calling memmove
188 // to avoid moving w to the heap.
189 switch n {
190 default:
191 panic("reflect: internal error: storeIword of " + strconv.Itoa(int(n)) + "-byte value")
192 case 0:
193 case 1:
194 *(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
195 case 2:
196 *(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))
197 case 3:
198 *(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))
199 case 4:
200 *(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))
201 case 5:
202 *(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))
203 case 6:
204 *(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))
205 case 7:
206 *(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))
207 case 8:
208 *(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))
212 // emptyInterface is the header for an interface{} value.
213 type emptyInterface struct {
214 typ *rtype
215 word iword
218 // nonEmptyInterface is the header for a interface value with methods.
219 type nonEmptyInterface struct {
220 // see ../runtime/iface.c:/Itab
221 itab *struct {
222 typ *rtype // dynamic concrete type
223 fun [100000]unsafe.Pointer // method table
225 word iword
228 // mustBe panics if f's kind is not expected.
229 // Making this a method on flag instead of on Value
230 // (and embedding flag in Value) means that we can write
231 // the very clear v.mustBe(Bool) and have it compile into
232 // v.flag.mustBe(Bool), which will only bother to copy the
233 // single important word for the receiver.
234 func (f flag) mustBe(expected Kind) {
235 k := f.kind()
236 if k != expected {
237 panic(&ValueError{methodName(), k})
241 // mustBeExported panics if f records that the value was obtained using
242 // an unexported field.
243 func (f flag) mustBeExported() {
244 if f == 0 {
245 panic(&ValueError{methodName(), 0})
247 if f&flagRO != 0 {
248 panic(methodName() + " using value obtained using unexported field")
252 // mustBeAssignable panics if f records that the value is not assignable,
253 // which is to say that either it was obtained using an unexported field
254 // or it is not addressable.
255 func (f flag) mustBeAssignable() {
256 if f == 0 {
257 panic(&ValueError{methodName(), Invalid})
259 // Assignable if addressable and not read-only.
260 if f&flagRO != 0 {
261 panic(methodName() + " using value obtained using unexported field")
263 if f&flagAddr == 0 {
264 panic(methodName() + " using unaddressable value")
268 // Addr returns a pointer value representing the address of v.
269 // It panics if CanAddr() returns false.
270 // Addr is typically used to obtain a pointer to a struct field
271 // or slice element in order to call a method that requires a
272 // pointer receiver.
273 func (v Value) Addr() Value {
274 if v.flag&flagAddr == 0 {
275 panic("reflect.Value.Addr of unaddressable value")
277 return Value{v.typ.ptrTo(), v.val, (v.flag & flagRO) | flag(Ptr)<<flagKindShift}
280 // Bool returns v's underlying value.
281 // It panics if v's kind is not Bool.
282 func (v Value) Bool() bool {
283 v.mustBe(Bool)
284 if v.flag&flagIndir != 0 {
285 return *(*bool)(v.val)
287 return *(*bool)(unsafe.Pointer(&v.val))
290 // Bytes returns v's underlying value.
291 // It panics if v's underlying value is not a slice of bytes.
292 func (v Value) Bytes() []byte {
293 v.mustBe(Slice)
294 if v.typ.Elem().Kind() != Uint8 {
295 panic("reflect.Value.Bytes of non-byte slice")
297 // Slice is always bigger than a word; assume flagIndir.
298 return *(*[]byte)(v.val)
301 // runes returns v's underlying value.
302 // It panics if v's underlying value is not a slice of runes (int32s).
303 func (v Value) runes() []rune {
304 v.mustBe(Slice)
305 if v.typ.Elem().Kind() != Int32 {
306 panic("reflect.Value.Bytes of non-rune slice")
308 // Slice is always bigger than a word; assume flagIndir.
309 return *(*[]rune)(v.val)
312 // CanAddr returns true if the value's address can be obtained with Addr.
313 // Such values are called addressable. A value is addressable if it is
314 // an element of a slice, an element of an addressable array,
315 // a field of an addressable struct, or the result of dereferencing a pointer.
316 // If CanAddr returns false, calling Addr will panic.
317 func (v Value) CanAddr() bool {
318 return v.flag&flagAddr != 0
321 // CanSet returns true if the value of v can be changed.
322 // A Value can be changed only if it is addressable and was not
323 // obtained by the use of unexported struct fields.
324 // If CanSet returns false, calling Set or any type-specific
325 // setter (e.g., SetBool, SetInt64) will panic.
326 func (v Value) CanSet() bool {
327 return v.flag&(flagAddr|flagRO) == flagAddr
330 // Call calls the function v with the input arguments in.
331 // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
332 // Call panics if v's Kind is not Func.
333 // It returns the output results as Values.
334 // As in Go, each input argument must be assignable to the
335 // type of the function's corresponding input parameter.
336 // If v is a variadic function, Call creates the variadic slice parameter
337 // itself, copying in the corresponding values.
338 func (v Value) Call(in []Value) []Value {
339 v.mustBe(Func)
340 v.mustBeExported()
341 return v.call("Call", in)
344 // CallSlice calls the variadic function v with the input arguments in,
345 // assigning the slice in[len(in)-1] to v's final variadic argument.
346 // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
347 // Call panics if v's Kind is not Func or if v is not variadic.
348 // It returns the output results as Values.
349 // As in Go, each input argument must be assignable to the
350 // type of the function's corresponding input parameter.
351 func (v Value) CallSlice(in []Value) []Value {
352 v.mustBe(Func)
353 v.mustBeExported()
354 return v.call("CallSlice", in)
357 func (v Value) call(method string, in []Value) []Value {
358 // Get function pointer, type.
359 t := v.typ
360 var (
361 fn unsafe.Pointer
362 rcvr iword
364 if v.flag&flagMethod != 0 {
365 i := int(v.flag) >> flagMethodShift
366 if v.typ.Kind() == Interface {
367 tt := (*interfaceType)(unsafe.Pointer(v.typ))
368 if i < 0 || i >= len(tt.methods) {
369 panic("reflect: broken Value")
371 m := &tt.methods[i]
372 if m.pkgPath != nil {
373 panic(method + " of unexported method")
375 t = m.typ
376 iface := (*nonEmptyInterface)(v.val)
377 if iface.itab == nil {
378 panic(method + " of method on nil interface value")
380 fn = unsafe.Pointer(&iface.itab.fun[i])
381 rcvr = iface.word
382 } else {
383 ut := v.typ.uncommon()
384 if ut == nil || i < 0 || i >= len(ut.methods) {
385 panic("reflect: broken Value")
387 m := &ut.methods[i]
388 if m.pkgPath != nil {
389 panic(method + " of unexported method")
391 fn = unsafe.Pointer(&m.tfn)
392 t = m.mtyp
393 rcvr = v.iword()
395 } else if v.flag&flagIndir != 0 {
396 fn = *(*unsafe.Pointer)(v.val)
397 } else {
398 fn = v.val
401 if fn == nil {
402 panic("reflect.Value.Call: call of nil function")
405 isSlice := method == "CallSlice"
406 n := t.NumIn()
407 if isSlice {
408 if !t.IsVariadic() {
409 panic("reflect: CallSlice of non-variadic function")
411 if len(in) < n {
412 panic("reflect: CallSlice with too few input arguments")
414 if len(in) > n {
415 panic("reflect: CallSlice with too many input arguments")
417 } else {
418 if t.IsVariadic() {
421 if len(in) < n {
422 panic("reflect: Call with too few input arguments")
424 if !t.IsVariadic() && len(in) > n {
425 panic("reflect: Call with too many input arguments")
428 for _, x := range in {
429 if x.Kind() == Invalid {
430 panic("reflect: " + method + " using zero Value argument")
433 for i := 0; i < n; i++ {
434 if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
435 panic("reflect: " + method + " using " + xt.String() + " as type " + targ.String())
438 if !isSlice && t.IsVariadic() {
439 // prepare slice for remaining values
440 m := len(in) - n
441 slice := MakeSlice(t.In(n), m, m)
442 elem := t.In(n).Elem()
443 for i := 0; i < m; i++ {
444 x := in[n+i]
445 if xt := x.Type(); !xt.AssignableTo(elem) {
446 panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + method)
448 slice.Index(i).Set(x)
450 origIn := in
451 in = make([]Value, n+1)
452 copy(in[:n], origIn)
453 in[n] = slice
456 nin := len(in)
457 if nin != t.NumIn() {
458 panic("reflect.Value.Call: wrong argument count")
460 nout := t.NumOut()
462 if v.flag&flagMethod != 0 {
463 nin++
465 firstPointer := len(in) > 0 && Kind(t.In(0).(*rtype).kind) != Ptr && v.flag&flagMethod == 0 && isMethod(v.typ)
466 if v.flag&flagMethod == 0 && !firstPointer {
467 nin++
469 params := make([]unsafe.Pointer, nin)
470 off := 0
471 if v.flag&flagMethod != 0 {
472 // Hard-wired first argument.
473 p := new(iword)
474 *p = rcvr
475 params[0] = unsafe.Pointer(p)
476 off = 1
478 for i, pv := range in {
479 pv.mustBeExported()
480 targ := t.In(i).(*rtype)
481 pv = pv.assignTo("reflect.Value.Call", targ, nil)
482 if pv.flag&flagIndir == 0 {
483 p := new(unsafe.Pointer)
484 *p = pv.val
485 params[off] = unsafe.Pointer(p)
486 } else {
487 params[off] = pv.val
489 if i == 0 && firstPointer {
490 p := new(unsafe.Pointer)
491 *p = params[off]
492 params[off] = unsafe.Pointer(p)
494 off++
496 if v.flag&flagMethod == 0 && !firstPointer {
497 // Closure argument.
498 params[off] = unsafe.Pointer(&fn)
501 ret := make([]Value, nout)
502 results := make([]unsafe.Pointer, nout)
503 for i := 0; i < nout; i++ {
504 v := New(t.Out(i))
505 results[i] = unsafe.Pointer(v.Pointer())
506 ret[i] = Indirect(v)
509 var pp *unsafe.Pointer
510 if len(params) > 0 {
511 pp = &params[0]
513 var pr *unsafe.Pointer
514 if len(results) > 0 {
515 pr = &results[0]
518 call(t, fn, v.flag&flagMethod != 0, firstPointer, pp, pr)
520 return ret
523 // gccgo specific test to see if typ is a method. We can tell by
524 // looking at the string to see if there is a receiver. We need this
525 // because for gccgo all methods take pointer receivers.
526 func isMethod(t *rtype) bool {
527 if Kind(t.kind) != Func {
528 return false
530 s := *t.string
531 parens := 0
532 params := 0
533 sawRet := false
534 for i, c := range s {
535 if c == '(' {
536 parens++
537 params++
538 } else if c == ')' {
539 parens--
540 } else if parens == 0 && c == ' ' && s[i+1] != '(' && !sawRet {
541 params++
542 sawRet = true
545 return params > 2
548 // callReflect is the call implementation used by a function
549 // returned by MakeFunc. In many ways it is the opposite of the
550 // method Value.call above. The method above converts a call using Values
551 // into a call of a function with a concrete argument frame, while
552 // callReflect converts a call of a function with a concrete argument
553 // frame into a call using Values.
554 // It is in this file so that it can be next to the call method above.
555 // The remainder of the MakeFunc implementation is in makefunc.go.
556 func callReflect(ftyp *funcType, f func([]Value) []Value, frame unsafe.Pointer) {
557 // Copy argument frame into Values.
558 ptr := frame
559 off := uintptr(0)
560 in := make([]Value, 0, len(ftyp.in))
561 for _, arg := range ftyp.in {
562 typ := arg
563 off += -off & uintptr(typ.align-1)
564 v := Value{typ, nil, flag(typ.Kind()) << flagKindShift}
565 if typ.size <= ptrSize {
566 // value fits in word.
567 v.val = unsafe.Pointer(loadIword(unsafe.Pointer(uintptr(ptr)+off), typ.size))
568 } else {
569 // value does not fit in word.
570 // Must make a copy, because f might keep a reference to it,
571 // and we cannot let f keep a reference to the stack frame
572 // after this function returns, not even a read-only reference.
573 v.val = unsafe_New(typ)
574 memmove(v.val, unsafe.Pointer(uintptr(ptr)+off), typ.size)
575 v.flag |= flagIndir
577 in = append(in, v)
578 off += typ.size
581 // Call underlying function.
582 out := f(in)
583 if len(out) != len(ftyp.out) {
584 panic("reflect: wrong return count from function created by MakeFunc")
587 // Copy results back into argument frame.
588 if len(ftyp.out) > 0 {
589 off += -off & (ptrSize - 1)
590 for i, arg := range ftyp.out {
591 typ := arg
592 v := out[i]
593 if v.typ != typ {
594 panic("reflect: function created by MakeFunc using " + funcName(f) +
595 " returned wrong type: have " +
596 out[i].typ.String() + " for " + typ.String())
598 if v.flag&flagRO != 0 {
599 panic("reflect: function created by MakeFunc using " + funcName(f) +
600 " returned value obtained from unexported field")
602 off += -off & uintptr(typ.align-1)
603 addr := unsafe.Pointer(uintptr(ptr) + off)
604 if v.flag&flagIndir == 0 {
605 storeIword(addr, iword(v.val), typ.size)
606 } else {
607 memmove(addr, v.val, typ.size)
609 off += typ.size
614 // funcName returns the name of f, for use in error messages.
615 func funcName(f func([]Value) []Value) string {
616 pc := *(*uintptr)(unsafe.Pointer(&f))
617 rf := runtime.FuncForPC(pc)
618 if rf != nil {
619 return rf.Name()
621 return "closure"
624 // Cap returns v's capacity.
625 // It panics if v's Kind is not Array, Chan, or Slice.
626 func (v Value) Cap() int {
627 k := v.kind()
628 switch k {
629 case Array:
630 return v.typ.Len()
631 case Chan:
632 return int(chancap(*(*iword)(v.iword())))
633 case Slice:
634 // Slice is always bigger than a word; assume flagIndir.
635 return (*SliceHeader)(v.val).Cap
637 panic(&ValueError{"reflect.Value.Cap", k})
640 // Close closes the channel v.
641 // It panics if v's Kind is not Chan.
642 func (v Value) Close() {
643 v.mustBe(Chan)
644 v.mustBeExported()
645 chanclose(*(*iword)(v.iword()))
648 // Complex returns v's underlying value, as a complex128.
649 // It panics if v's Kind is not Complex64 or Complex128
650 func (v Value) Complex() complex128 {
651 k := v.kind()
652 switch k {
653 case Complex64:
654 if v.flag&flagIndir != 0 {
655 return complex128(*(*complex64)(v.val))
657 return complex128(*(*complex64)(unsafe.Pointer(&v.val)))
658 case Complex128:
659 // complex128 is always bigger than a word; assume flagIndir.
660 return *(*complex128)(v.val)
662 panic(&ValueError{"reflect.Value.Complex", k})
665 // Elem returns the value that the interface v contains
666 // or that the pointer v points to.
667 // It panics if v's Kind is not Interface or Ptr.
668 // It returns the zero Value if v is nil.
669 func (v Value) Elem() Value {
670 k := v.kind()
671 switch k {
672 case Interface:
673 var (
674 typ *rtype
675 val unsafe.Pointer
677 if v.typ.NumMethod() == 0 {
678 eface := (*emptyInterface)(v.val)
679 if eface.typ == nil {
680 // nil interface value
681 return Value{}
683 typ = eface.typ
684 val = unsafe.Pointer(eface.word)
685 } else {
686 iface := (*nonEmptyInterface)(v.val)
687 if iface.itab == nil {
688 // nil interface value
689 return Value{}
691 typ = iface.itab.typ
692 val = unsafe.Pointer(iface.word)
694 fl := v.flag & flagRO
695 fl |= flag(typ.Kind()) << flagKindShift
696 if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
697 fl |= flagIndir
699 return Value{typ, val, fl}
701 case Ptr:
702 val := v.val
703 if v.flag&flagIndir != 0 {
704 val = *(*unsafe.Pointer)(val)
706 // The returned value's address is v's value.
707 if val == nil {
708 return Value{}
710 tt := (*ptrType)(unsafe.Pointer(v.typ))
711 typ := tt.elem
712 fl := v.flag&flagRO | flagIndir | flagAddr
713 fl |= flag(typ.Kind() << flagKindShift)
714 return Value{typ, val, fl}
716 panic(&ValueError{"reflect.Value.Elem", k})
719 // Field returns the i'th field of the struct v.
720 // It panics if v's Kind is not Struct or i is out of range.
721 func (v Value) Field(i int) Value {
722 v.mustBe(Struct)
723 tt := (*structType)(unsafe.Pointer(v.typ))
724 if i < 0 || i >= len(tt.fields) {
725 panic("reflect: Field index out of range")
727 field := &tt.fields[i]
728 typ := field.typ
730 // Inherit permission bits from v.
731 fl := v.flag & (flagRO | flagIndir | flagAddr)
732 // Using an unexported field forces flagRO.
733 if field.pkgPath != nil {
734 fl |= flagRO
736 fl |= flag(typ.Kind()) << flagKindShift
738 var val unsafe.Pointer
739 switch {
740 case fl&flagIndir != 0:
741 // Indirect. Just bump pointer.
742 val = unsafe.Pointer(uintptr(v.val) + field.offset)
743 case bigEndian:
744 // Direct. Discard leading bytes.
745 val = unsafe.Pointer(uintptr(v.val) << (field.offset * 8))
746 default:
747 // Direct. Discard leading bytes.
748 val = unsafe.Pointer(uintptr(v.val) >> (field.offset * 8))
751 return Value{typ, val, fl}
754 // FieldByIndex returns the nested field corresponding to index.
755 // It panics if v's Kind is not struct.
756 func (v Value) FieldByIndex(index []int) Value {
757 v.mustBe(Struct)
758 for i, x := range index {
759 if i > 0 {
760 if v.Kind() == Ptr && v.Elem().Kind() == Struct {
761 v = v.Elem()
764 v = v.Field(x)
766 return v
769 // FieldByName returns the struct field with the given name.
770 // It returns the zero Value if no field was found.
771 // It panics if v's Kind is not struct.
772 func (v Value) FieldByName(name string) Value {
773 v.mustBe(Struct)
774 if f, ok := v.typ.FieldByName(name); ok {
775 return v.FieldByIndex(f.Index)
777 return Value{}
780 // FieldByNameFunc returns the struct field with a name
781 // that satisfies the match function.
782 // It panics if v's Kind is not struct.
783 // It returns the zero Value if no field was found.
784 func (v Value) FieldByNameFunc(match func(string) bool) Value {
785 v.mustBe(Struct)
786 if f, ok := v.typ.FieldByNameFunc(match); ok {
787 return v.FieldByIndex(f.Index)
789 return Value{}
792 // Float returns v's underlying value, as a float64.
793 // It panics if v's Kind is not Float32 or Float64
794 func (v Value) Float() float64 {
795 k := v.kind()
796 switch k {
797 case Float32:
798 if v.flag&flagIndir != 0 {
799 return float64(*(*float32)(v.val))
801 return float64(*(*float32)(unsafe.Pointer(&v.val)))
802 case Float64:
803 if v.flag&flagIndir != 0 {
804 return *(*float64)(v.val)
806 return *(*float64)(unsafe.Pointer(&v.val))
808 panic(&ValueError{"reflect.Value.Float", k})
811 var uint8Type = TypeOf(uint8(0)).(*rtype)
813 // Index returns v's i'th element.
814 // It panics if v's Kind is not Array, Slice, or String or i is out of range.
815 func (v Value) Index(i int) Value {
816 k := v.kind()
817 switch k {
818 case Array:
819 tt := (*arrayType)(unsafe.Pointer(v.typ))
820 if i < 0 || i > int(tt.len) {
821 panic("reflect: array index out of range")
823 typ := tt.elem
824 fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array
825 fl |= flag(typ.Kind()) << flagKindShift
826 offset := uintptr(i) * typ.size
828 var val unsafe.Pointer
829 switch {
830 case fl&flagIndir != 0:
831 // Indirect. Just bump pointer.
832 val = unsafe.Pointer(uintptr(v.val) + offset)
833 case bigEndian:
834 // Direct. Discard leading bytes.
835 val = unsafe.Pointer(uintptr(v.val) << (offset * 8))
836 default:
837 // Direct. Discard leading bytes.
838 val = unsafe.Pointer(uintptr(v.val) >> (offset * 8))
840 return Value{typ, val, fl}
842 case Slice:
843 // Element flag same as Elem of Ptr.
844 // Addressable, indirect, possibly read-only.
845 fl := flagAddr | flagIndir | v.flag&flagRO
846 s := (*SliceHeader)(v.val)
847 if i < 0 || i >= s.Len {
848 panic("reflect: slice index out of range")
850 tt := (*sliceType)(unsafe.Pointer(v.typ))
851 typ := tt.elem
852 fl |= flag(typ.Kind()) << flagKindShift
853 val := unsafe.Pointer(s.Data + uintptr(i)*typ.size)
854 return Value{typ, val, fl}
856 case String:
857 fl := v.flag&flagRO | flag(Uint8<<flagKindShift) | flagIndir
858 s := (*StringHeader)(v.val)
859 if i < 0 || i >= s.Len {
860 panic("reflect: string index out of range")
862 val := *(*byte)(unsafe.Pointer(s.Data + uintptr(i)))
863 return Value{uint8Type, unsafe.Pointer(&val), fl}
865 panic(&ValueError{"reflect.Value.Index", k})
868 // Int returns v's underlying value, as an int64.
869 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
870 func (v Value) Int() int64 {
871 k := v.kind()
872 var p unsafe.Pointer
873 if v.flag&flagIndir != 0 {
874 p = v.val
875 } else {
876 // The escape analysis is good enough that &v.val
877 // does not trigger a heap allocation.
878 p = unsafe.Pointer(&v.val)
880 switch k {
881 case Int:
882 return int64(*(*int)(p))
883 case Int8:
884 return int64(*(*int8)(p))
885 case Int16:
886 return int64(*(*int16)(p))
887 case Int32:
888 return int64(*(*int32)(p))
889 case Int64:
890 return int64(*(*int64)(p))
892 panic(&ValueError{"reflect.Value.Int", k})
895 // CanInterface returns true if Interface can be used without panicking.
896 func (v Value) CanInterface() bool {
897 if v.flag == 0 {
898 panic(&ValueError{"reflect.Value.CanInterface", Invalid})
900 return v.flag&(flagMethod|flagRO) == 0
903 // Interface returns v's current value as an interface{}.
904 // It is equivalent to:
905 // var i interface{} = (v's underlying value)
906 // If v is a method obtained by invoking Value.Method
907 // (as opposed to Type.Method), Interface cannot return an
908 // interface value, so it panics.
909 // It also panics if the Value was obtained by accessing
910 // unexported struct fields.
911 func (v Value) Interface() (i interface{}) {
912 return valueInterface(v, true)
915 func valueInterface(v Value, safe bool) interface{} {
916 if v.flag == 0 {
917 panic(&ValueError{"reflect.Value.Interface", 0})
919 if v.flag&flagMethod != 0 {
920 panic("reflect.Value.Interface: cannot create interface value for method with bound receiver")
923 if safe && v.flag&flagRO != 0 {
924 // Do not allow access to unexported values via Interface,
925 // because they might be pointers that should not be
926 // writable or methods or function that should not be callable.
927 panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
930 k := v.kind()
931 if k == Interface {
932 // Special case: return the element inside the interface.
933 // Empty interface has one layout, all interfaces with
934 // methods have a second layout.
935 if v.NumMethod() == 0 {
936 return *(*interface{})(v.val)
938 return *(*interface {
940 })(v.val)
943 // Non-interface value.
944 var eface emptyInterface
945 eface.typ = toType(v.typ).common()
946 eface.word = v.iword()
948 if v.flag&flagIndir != 0 && v.kind() != Ptr && v.kind() != UnsafePointer {
949 // eface.word is a pointer to the actual data,
950 // which might be changed. We need to return
951 // a pointer to unchanging data, so make a copy.
952 ptr := unsafe_New(v.typ)
953 memmove(ptr, unsafe.Pointer(eface.word), v.typ.size)
954 eface.word = iword(ptr)
957 if v.flag&flagIndir == 0 && v.kind() != Ptr && v.kind() != UnsafePointer {
958 panic("missing flagIndir")
961 return *(*interface{})(unsafe.Pointer(&eface))
964 // InterfaceData returns the interface v's value as a uintptr pair.
965 // It panics if v's Kind is not Interface.
966 func (v Value) InterfaceData() [2]uintptr {
967 v.mustBe(Interface)
968 // We treat this as a read operation, so we allow
969 // it even for unexported data, because the caller
970 // has to import "unsafe" to turn it into something
971 // that can be abused.
972 // Interface value is always bigger than a word; assume flagIndir.
973 return *(*[2]uintptr)(v.val)
976 // IsNil returns true if v is a nil value.
977 // It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
978 func (v Value) IsNil() bool {
979 k := v.kind()
980 switch k {
981 case Chan, Func, Map, Ptr:
982 if v.flag&flagMethod != 0 {
983 panic("reflect: IsNil of method Value")
985 ptr := v.val
986 if v.flag&flagIndir != 0 {
987 ptr = *(*unsafe.Pointer)(ptr)
989 return ptr == nil
990 case Interface, Slice:
991 // Both interface and slice are nil if first word is 0.
992 // Both are always bigger than a word; assume flagIndir.
993 return *(*unsafe.Pointer)(v.val) == nil
995 panic(&ValueError{"reflect.Value.IsNil", k})
998 // IsValid returns true if v represents a value.
999 // It returns false if v is the zero Value.
1000 // If IsValid returns false, all other methods except String panic.
1001 // Most functions and methods never return an invalid value.
1002 // If one does, its documentation states the conditions explicitly.
1003 func (v Value) IsValid() bool {
1004 return v.flag != 0
1007 // Kind returns v's Kind.
1008 // If v is the zero Value (IsValid returns false), Kind returns Invalid.
1009 func (v Value) Kind() Kind {
1010 return v.kind()
1013 // Len returns v's length.
1014 // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
1015 func (v Value) Len() int {
1016 k := v.kind()
1017 switch k {
1018 case Array:
1019 tt := (*arrayType)(unsafe.Pointer(v.typ))
1020 return int(tt.len)
1021 case Chan:
1022 return chanlen(*(*iword)(v.iword()))
1023 case Map:
1024 return maplen(*(*iword)(v.iword()))
1025 case Slice:
1026 // Slice is bigger than a word; assume flagIndir.
1027 return (*SliceHeader)(v.val).Len
1028 case String:
1029 // String is bigger than a word; assume flagIndir.
1030 return (*StringHeader)(v.val).Len
1032 panic(&ValueError{"reflect.Value.Len", k})
1035 // MapIndex returns the value associated with key in the map v.
1036 // It panics if v's Kind is not Map.
1037 // It returns the zero Value if key is not found in the map or if v represents a nil map.
1038 // As in Go, the key's value must be assignable to the map's key type.
1039 func (v Value) MapIndex(key Value) Value {
1040 v.mustBe(Map)
1041 tt := (*mapType)(unsafe.Pointer(v.typ))
1043 // Do not require key to be exported, so that DeepEqual
1044 // and other programs can use all the keys returned by
1045 // MapKeys as arguments to MapIndex. If either the map
1046 // or the key is unexported, though, the result will be
1047 // considered unexported. This is consistent with the
1048 // behavior for structs, which allow read but not write
1049 // of unexported fields.
1050 key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
1052 word, ok := mapaccess(v.typ, *(*iword)(v.iword()), key.iword())
1053 if !ok {
1054 return Value{}
1056 typ := tt.elem
1057 fl := (v.flag | key.flag) & flagRO
1058 if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
1059 fl |= flagIndir
1061 fl |= flag(typ.Kind()) << flagKindShift
1062 return Value{typ, unsafe.Pointer(word), fl}
1065 // MapKeys returns a slice containing all the keys present in the map,
1066 // in unspecified order.
1067 // It panics if v's Kind is not Map.
1068 // It returns an empty slice if v represents a nil map.
1069 func (v Value) MapKeys() []Value {
1070 v.mustBe(Map)
1071 tt := (*mapType)(unsafe.Pointer(v.typ))
1072 keyType := tt.key
1074 fl := v.flag & flagRO
1075 fl |= flag(keyType.Kind()) << flagKindShift
1076 if keyType.Kind() != Ptr && keyType.Kind() != UnsafePointer {
1077 fl |= flagIndir
1080 m := *(*iword)(v.iword())
1081 mlen := int(0)
1082 if m != nil {
1083 mlen = maplen(m)
1085 it := mapiterinit(v.typ, m)
1086 a := make([]Value, mlen)
1087 var i int
1088 for i = 0; i < len(a); i++ {
1089 keyWord, ok := mapiterkey(it)
1090 if !ok {
1091 break
1093 a[i] = Value{keyType, unsafe.Pointer(keyWord), fl}
1094 mapiternext(it)
1096 return a[:i]
1099 // Method returns a function value corresponding to v's i'th method.
1100 // The arguments to a Call on the returned function should not include
1101 // a receiver; the returned function will always use v as the receiver.
1102 // Method panics if i is out of range.
1103 func (v Value) Method(i int) Value {
1104 if v.typ == nil {
1105 panic(&ValueError{"reflect.Value.Method", Invalid})
1107 if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() {
1108 panic("reflect: Method index out of range")
1110 fl := v.flag & (flagRO | flagAddr | flagIndir)
1111 fl |= flag(Func) << flagKindShift
1112 fl |= flag(i)<<flagMethodShift | flagMethod
1113 return Value{v.typ, v.val, fl}
1116 // NumMethod returns the number of methods in the value's method set.
1117 func (v Value) NumMethod() int {
1118 if v.typ == nil {
1119 panic(&ValueError{"reflect.Value.NumMethod", Invalid})
1121 if v.flag&flagMethod != 0 {
1122 return 0
1124 return v.typ.NumMethod()
1127 // MethodByName returns a function value corresponding to the method
1128 // of v with the given name.
1129 // The arguments to a Call on the returned function should not include
1130 // a receiver; the returned function will always use v as the receiver.
1131 // It returns the zero Value if no method was found.
1132 func (v Value) MethodByName(name string) Value {
1133 if v.typ == nil {
1134 panic(&ValueError{"reflect.Value.MethodByName", Invalid})
1136 if v.flag&flagMethod != 0 {
1137 return Value{}
1139 m, ok := v.typ.MethodByName(name)
1140 if !ok {
1141 return Value{}
1143 return v.Method(m.Index)
1146 // NumField returns the number of fields in the struct v.
1147 // It panics if v's Kind is not Struct.
1148 func (v Value) NumField() int {
1149 v.mustBe(Struct)
1150 tt := (*structType)(unsafe.Pointer(v.typ))
1151 return len(tt.fields)
1154 // OverflowComplex returns true if the complex128 x cannot be represented by v's type.
1155 // It panics if v's Kind is not Complex64 or Complex128.
1156 func (v Value) OverflowComplex(x complex128) bool {
1157 k := v.kind()
1158 switch k {
1159 case Complex64:
1160 return overflowFloat32(real(x)) || overflowFloat32(imag(x))
1161 case Complex128:
1162 return false
1164 panic(&ValueError{"reflect.Value.OverflowComplex", k})
1167 // OverflowFloat returns true if the float64 x cannot be represented by v's type.
1168 // It panics if v's Kind is not Float32 or Float64.
1169 func (v Value) OverflowFloat(x float64) bool {
1170 k := v.kind()
1171 switch k {
1172 case Float32:
1173 return overflowFloat32(x)
1174 case Float64:
1175 return false
1177 panic(&ValueError{"reflect.Value.OverflowFloat", k})
1180 func overflowFloat32(x float64) bool {
1181 if x < 0 {
1182 x = -x
1184 return math.MaxFloat32 < x && x <= math.MaxFloat64
1187 // OverflowInt returns true if the int64 x cannot be represented by v's type.
1188 // It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
1189 func (v Value) OverflowInt(x int64) bool {
1190 k := v.kind()
1191 switch k {
1192 case Int, Int8, Int16, Int32, Int64:
1193 bitSize := v.typ.size * 8
1194 trunc := (x << (64 - bitSize)) >> (64 - bitSize)
1195 return x != trunc
1197 panic(&ValueError{"reflect.Value.OverflowInt", k})
1200 // OverflowUint returns true if the uint64 x cannot be represented by v's type.
1201 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
1202 func (v Value) OverflowUint(x uint64) bool {
1203 k := v.kind()
1204 switch k {
1205 case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
1206 bitSize := v.typ.size * 8
1207 trunc := (x << (64 - bitSize)) >> (64 - bitSize)
1208 return x != trunc
1210 panic(&ValueError{"reflect.Value.OverflowUint", k})
1213 // Pointer returns v's value as a uintptr.
1214 // It returns uintptr instead of unsafe.Pointer so that
1215 // code using reflect cannot obtain unsafe.Pointers
1216 // without importing the unsafe package explicitly.
1217 // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
1219 // If v's Kind is Func, the returned pointer is an underlying
1220 // code pointer, but not necessarily enough to identify a
1221 // single function uniquely. The only guarantee is that the
1222 // result is zero if and only if v is a nil func Value.
1223 func (v Value) Pointer() uintptr {
1224 k := v.kind()
1225 switch k {
1226 case Chan, Map, Ptr, UnsafePointer:
1227 p := v.val
1228 if v.flag&flagIndir != 0 {
1229 p = *(*unsafe.Pointer)(p)
1231 return uintptr(p)
1232 case Func:
1233 if v.flag&flagMethod != 0 {
1234 panic("reflect.Value.Pointer of method Value")
1236 p := v.val
1237 if v.flag&flagIndir != 0 {
1238 p = *(*unsafe.Pointer)(p)
1240 // Non-nil func value points at data block.
1241 // First word of data block is actual code.
1242 if p != nil {
1243 p = *(*unsafe.Pointer)(p)
1245 return uintptr(p)
1247 case Slice:
1248 return (*SliceHeader)(v.val).Data
1250 panic(&ValueError{"reflect.Value.Pointer", k})
1253 // Recv receives and returns a value from the channel v.
1254 // It panics if v's Kind is not Chan.
1255 // The receive blocks until a value is ready.
1256 // The boolean value ok is true if the value x corresponds to a send
1257 // on the channel, false if it is a zero value received because the channel is closed.
1258 func (v Value) Recv() (x Value, ok bool) {
1259 v.mustBe(Chan)
1260 v.mustBeExported()
1261 return v.recv(false)
1264 // internal recv, possibly non-blocking (nb).
1265 // v is known to be a channel.
1266 func (v Value) recv(nb bool) (val Value, ok bool) {
1267 tt := (*chanType)(unsafe.Pointer(v.typ))
1268 if ChanDir(tt.dir)&RecvDir == 0 {
1269 panic("recv on send-only channel")
1271 word, selected, ok := chanrecv(v.typ, *(*iword)(v.iword()), nb)
1272 if selected {
1273 typ := tt.elem
1274 fl := flag(typ.Kind()) << flagKindShift
1275 if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
1276 fl |= flagIndir
1278 val = Value{typ, unsafe.Pointer(word), fl}
1280 return
1283 // Send sends x on the channel v.
1284 // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
1285 // As in Go, x's value must be assignable to the channel's element type.
1286 func (v Value) Send(x Value) {
1287 v.mustBe(Chan)
1288 v.mustBeExported()
1289 v.send(x, false)
1292 // internal send, possibly non-blocking.
1293 // v is known to be a channel.
1294 func (v Value) send(x Value, nb bool) (selected bool) {
1295 tt := (*chanType)(unsafe.Pointer(v.typ))
1296 if ChanDir(tt.dir)&SendDir == 0 {
1297 panic("send on recv-only channel")
1299 x.mustBeExported()
1300 x = x.assignTo("reflect.Value.Send", tt.elem, nil)
1301 return chansend(v.typ, *(*iword)(v.iword()), x.iword(), nb)
1304 // Set assigns x to the value v.
1305 // It panics if CanSet returns false.
1306 // As in Go, x's value must be assignable to v's type.
1307 func (v Value) Set(x Value) {
1308 v.mustBeAssignable()
1309 x.mustBeExported() // do not let unexported x leak
1310 var target *interface{}
1311 if v.kind() == Interface {
1312 target = (*interface{})(v.val)
1314 x = x.assignTo("reflect.Set", v.typ, target)
1315 if x.flag&flagIndir != 0 {
1316 memmove(v.val, x.val, v.typ.size)
1317 } else {
1318 storeIword(v.val, iword(x.val), v.typ.size)
1322 // SetBool sets v's underlying value.
1323 // It panics if v's Kind is not Bool or if CanSet() is false.
1324 func (v Value) SetBool(x bool) {
1325 v.mustBeAssignable()
1326 v.mustBe(Bool)
1327 *(*bool)(v.val) = x
1330 // SetBytes sets v's underlying value.
1331 // It panics if v's underlying value is not a slice of bytes.
1332 func (v Value) SetBytes(x []byte) {
1333 v.mustBeAssignable()
1334 v.mustBe(Slice)
1335 if v.typ.Elem().Kind() != Uint8 {
1336 panic("reflect.Value.SetBytes of non-byte slice")
1338 *(*[]byte)(v.val) = x
1341 // setRunes sets v's underlying value.
1342 // It panics if v's underlying value is not a slice of runes (int32s).
1343 func (v Value) setRunes(x []rune) {
1344 v.mustBeAssignable()
1345 v.mustBe(Slice)
1346 if v.typ.Elem().Kind() != Int32 {
1347 panic("reflect.Value.setRunes of non-rune slice")
1349 *(*[]rune)(v.val) = x
1352 // SetComplex sets v's underlying value to x.
1353 // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
1354 func (v Value) SetComplex(x complex128) {
1355 v.mustBeAssignable()
1356 switch k := v.kind(); k {
1357 default:
1358 panic(&ValueError{"reflect.Value.SetComplex", k})
1359 case Complex64:
1360 *(*complex64)(v.val) = complex64(x)
1361 case Complex128:
1362 *(*complex128)(v.val) = x
1366 // SetFloat sets v's underlying value to x.
1367 // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
1368 func (v Value) SetFloat(x float64) {
1369 v.mustBeAssignable()
1370 switch k := v.kind(); k {
1371 default:
1372 panic(&ValueError{"reflect.Value.SetFloat", k})
1373 case Float32:
1374 *(*float32)(v.val) = float32(x)
1375 case Float64:
1376 *(*float64)(v.val) = x
1380 // SetInt sets v's underlying value to x.
1381 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
1382 func (v Value) SetInt(x int64) {
1383 v.mustBeAssignable()
1384 switch k := v.kind(); k {
1385 default:
1386 panic(&ValueError{"reflect.Value.SetInt", k})
1387 case Int:
1388 *(*int)(v.val) = int(x)
1389 case Int8:
1390 *(*int8)(v.val) = int8(x)
1391 case Int16:
1392 *(*int16)(v.val) = int16(x)
1393 case Int32:
1394 *(*int32)(v.val) = int32(x)
1395 case Int64:
1396 *(*int64)(v.val) = x
1400 // SetLen sets v's length to n.
1401 // It panics if v's Kind is not Slice or if n is negative or
1402 // greater than the capacity of the slice.
1403 func (v Value) SetLen(n int) {
1404 v.mustBeAssignable()
1405 v.mustBe(Slice)
1406 s := (*SliceHeader)(v.val)
1407 if n < 0 || n > int(s.Cap) {
1408 panic("reflect: slice length out of range in SetLen")
1410 s.Len = n
1413 // SetMapIndex sets the value associated with key in the map v to val.
1414 // It panics if v's Kind is not Map.
1415 // If val is the zero Value, SetMapIndex deletes the key from the map.
1416 // As in Go, key's value must be assignable to the map's key type,
1417 // and val's value must be assignable to the map's value type.
1418 func (v Value) SetMapIndex(key, val Value) {
1419 v.mustBe(Map)
1420 v.mustBeExported()
1421 key.mustBeExported()
1422 tt := (*mapType)(unsafe.Pointer(v.typ))
1423 key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
1424 if val.typ != nil {
1425 val.mustBeExported()
1426 val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
1428 mapassign(v.typ, *(*iword)(v.iword()), key.iword(), val.iword(), val.typ != nil)
1431 // SetUint sets v's underlying value to x.
1432 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
1433 func (v Value) SetUint(x uint64) {
1434 v.mustBeAssignable()
1435 switch k := v.kind(); k {
1436 default:
1437 panic(&ValueError{"reflect.Value.SetUint", k})
1438 case Uint:
1439 *(*uint)(v.val) = uint(x)
1440 case Uint8:
1441 *(*uint8)(v.val) = uint8(x)
1442 case Uint16:
1443 *(*uint16)(v.val) = uint16(x)
1444 case Uint32:
1445 *(*uint32)(v.val) = uint32(x)
1446 case Uint64:
1447 *(*uint64)(v.val) = x
1448 case Uintptr:
1449 *(*uintptr)(v.val) = uintptr(x)
1453 // SetPointer sets the unsafe.Pointer value v to x.
1454 // It panics if v's Kind is not UnsafePointer.
1455 func (v Value) SetPointer(x unsafe.Pointer) {
1456 v.mustBeAssignable()
1457 v.mustBe(UnsafePointer)
1458 *(*unsafe.Pointer)(v.val) = x
1461 // SetString sets v's underlying value to x.
1462 // It panics if v's Kind is not String or if CanSet() is false.
1463 func (v Value) SetString(x string) {
1464 v.mustBeAssignable()
1465 v.mustBe(String)
1466 *(*string)(v.val) = x
1469 // Slice returns a slice of v.
1470 // It panics if v's Kind is not Array, Slice, or String.
1471 func (v Value) Slice(beg, end int) Value {
1472 var (
1473 cap int
1474 typ *sliceType
1475 base unsafe.Pointer
1477 switch k := v.kind(); k {
1478 default:
1479 panic(&ValueError{"reflect.Value.Slice", k})
1481 case Array:
1482 if v.flag&flagAddr == 0 {
1483 panic("reflect.Value.Slice: slice of unaddressable array")
1485 tt := (*arrayType)(unsafe.Pointer(v.typ))
1486 cap = int(tt.len)
1487 typ = (*sliceType)(unsafe.Pointer(tt.slice))
1488 base = v.val
1490 case Slice:
1491 typ = (*sliceType)(unsafe.Pointer(v.typ))
1492 s := (*SliceHeader)(v.val)
1493 base = unsafe.Pointer(s.Data)
1494 cap = s.Cap
1496 case String:
1497 s := (*StringHeader)(v.val)
1498 if beg < 0 || end < beg || end > s.Len {
1499 panic("reflect.Value.Slice: string slice index out of bounds")
1501 var x string
1502 val := (*StringHeader)(unsafe.Pointer(&x))
1503 val.Data = s.Data + uintptr(beg)
1504 val.Len = end - beg
1505 return Value{v.typ, unsafe.Pointer(&x), v.flag}
1508 if beg < 0 || end < beg || end > cap {
1509 panic("reflect.Value.Slice: slice index out of bounds")
1512 // Declare slice so that gc can see the base pointer in it.
1513 var x []unsafe.Pointer
1515 // Reinterpret as *SliceHeader to edit.
1516 s := (*SliceHeader)(unsafe.Pointer(&x))
1517 s.Data = uintptr(base) + uintptr(beg)*typ.elem.Size()
1518 s.Len = end - beg
1519 s.Cap = cap - beg
1521 fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
1522 return Value{typ.common(), unsafe.Pointer(&x), fl}
1525 // String returns the string v's underlying value, as a string.
1526 // String is a special case because of Go's String method convention.
1527 // Unlike the other getters, it does not panic if v's Kind is not String.
1528 // Instead, it returns a string of the form "<T value>" where T is v's type.
1529 func (v Value) String() string {
1530 switch k := v.kind(); k {
1531 case Invalid:
1532 return "<invalid Value>"
1533 case String:
1534 return *(*string)(v.val)
1536 // If you call String on a reflect.Value of other type, it's better to
1537 // print something than to panic. Useful in debugging.
1538 return "<" + v.typ.String() + " Value>"
1541 // TryRecv attempts to receive a value from the channel v but will not block.
1542 // It panics if v's Kind is not Chan.
1543 // If the receive cannot finish without blocking, x is the zero Value.
1544 // The boolean ok is true if the value x corresponds to a send
1545 // on the channel, false if it is a zero value received because the channel is closed.
1546 func (v Value) TryRecv() (x Value, ok bool) {
1547 v.mustBe(Chan)
1548 v.mustBeExported()
1549 return v.recv(true)
1552 // TrySend attempts to send x on the channel v but will not block.
1553 // It panics if v's Kind is not Chan.
1554 // It returns true if the value was sent, false otherwise.
1555 // As in Go, x's value must be assignable to the channel's element type.
1556 func (v Value) TrySend(x Value) bool {
1557 v.mustBe(Chan)
1558 v.mustBeExported()
1559 return v.send(x, true)
1562 // Type returns v's type.
1563 func (v Value) Type() Type {
1564 f := v.flag
1565 if f == 0 {
1566 panic(&ValueError{"reflect.Value.Type", Invalid})
1568 if f&flagMethod == 0 {
1569 // Easy case
1570 return toType(v.typ)
1573 // Method value.
1574 // v.typ describes the receiver, not the method type.
1575 i := int(v.flag) >> flagMethodShift
1576 if v.typ.Kind() == Interface {
1577 // Method on interface.
1578 tt := (*interfaceType)(unsafe.Pointer(v.typ))
1579 if i < 0 || i >= len(tt.methods) {
1580 panic("reflect: broken Value")
1582 m := &tt.methods[i]
1583 return toType(m.typ)
1585 // Method on concrete type.
1586 ut := v.typ.uncommon()
1587 if ut == nil || i < 0 || i >= len(ut.methods) {
1588 panic("reflect: broken Value")
1590 m := &ut.methods[i]
1591 return toType(m.mtyp)
1594 // Uint returns v's underlying value, as a uint64.
1595 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
1596 func (v Value) Uint() uint64 {
1597 k := v.kind()
1598 var p unsafe.Pointer
1599 if v.flag&flagIndir != 0 {
1600 p = v.val
1601 } else {
1602 // The escape analysis is good enough that &v.val
1603 // does not trigger a heap allocation.
1604 p = unsafe.Pointer(&v.val)
1606 switch k {
1607 case Uint:
1608 return uint64(*(*uint)(p))
1609 case Uint8:
1610 return uint64(*(*uint8)(p))
1611 case Uint16:
1612 return uint64(*(*uint16)(p))
1613 case Uint32:
1614 return uint64(*(*uint32)(p))
1615 case Uint64:
1616 return uint64(*(*uint64)(p))
1617 case Uintptr:
1618 return uint64(*(*uintptr)(p))
1620 panic(&ValueError{"reflect.Value.Uint", k})
1623 // UnsafeAddr returns a pointer to v's data.
1624 // It is for advanced clients that also import the "unsafe" package.
1625 // It panics if v is not addressable.
1626 func (v Value) UnsafeAddr() uintptr {
1627 if v.typ == nil {
1628 panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
1630 if v.flag&flagAddr == 0 {
1631 panic("reflect.Value.UnsafeAddr of unaddressable value")
1633 return uintptr(v.val)
1636 // StringHeader is the runtime representation of a string.
1637 // It cannot be used safely or portably.
1638 type StringHeader struct {
1639 Data uintptr
1640 Len int
1643 // SliceHeader is the runtime representation of a slice.
1644 // It cannot be used safely or portably.
1645 type SliceHeader struct {
1646 Data uintptr
1647 Len int
1648 Cap int
1651 func typesMustMatch(what string, t1, t2 Type) {
1652 if t1 != t2 {
1653 panic(what + ": " + t1.String() + " != " + t2.String())
1657 // grow grows the slice s so that it can hold extra more values, allocating
1658 // more capacity if needed. It also returns the old and new slice lengths.
1659 func grow(s Value, extra int) (Value, int, int) {
1660 i0 := s.Len()
1661 i1 := i0 + extra
1662 if i1 < i0 {
1663 panic("reflect.Append: slice overflow")
1665 m := s.Cap()
1666 if i1 <= m {
1667 return s.Slice(0, i1), i0, i1
1669 if m == 0 {
1670 m = extra
1671 } else {
1672 for m < i1 {
1673 if i0 < 1024 {
1674 m += m
1675 } else {
1676 m += m / 4
1680 t := MakeSlice(s.Type(), i1, m)
1681 Copy(t, s)
1682 return t, i0, i1
1685 // Append appends the values x to a slice s and returns the resulting slice.
1686 // As in Go, each x's value must be assignable to the slice's element type.
1687 func Append(s Value, x ...Value) Value {
1688 s.mustBe(Slice)
1689 s, i0, i1 := grow(s, len(x))
1690 for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
1691 s.Index(i).Set(x[j])
1693 return s
1696 // AppendSlice appends a slice t to a slice s and returns the resulting slice.
1697 // The slices s and t must have the same element type.
1698 func AppendSlice(s, t Value) Value {
1699 s.mustBe(Slice)
1700 t.mustBe(Slice)
1701 typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
1702 s, i0, i1 := grow(s, t.Len())
1703 Copy(s.Slice(i0, i1), t)
1704 return s
1707 // Copy copies the contents of src into dst until either
1708 // dst has been filled or src has been exhausted.
1709 // It returns the number of elements copied.
1710 // Dst and src each must have kind Slice or Array, and
1711 // dst and src must have the same element type.
1712 func Copy(dst, src Value) int {
1713 dk := dst.kind()
1714 if dk != Array && dk != Slice {
1715 panic(&ValueError{"reflect.Copy", dk})
1717 if dk == Array {
1718 dst.mustBeAssignable()
1720 dst.mustBeExported()
1722 sk := src.kind()
1723 if sk != Array && sk != Slice {
1724 panic(&ValueError{"reflect.Copy", sk})
1726 src.mustBeExported()
1728 de := dst.typ.Elem()
1729 se := src.typ.Elem()
1730 typesMustMatch("reflect.Copy", de, se)
1732 n := dst.Len()
1733 if sn := src.Len(); n > sn {
1734 n = sn
1737 // If sk is an in-line array, cannot take its address.
1738 // Instead, copy element by element.
1739 if src.flag&flagIndir == 0 {
1740 for i := 0; i < n; i++ {
1741 dst.Index(i).Set(src.Index(i))
1743 return n
1746 // Copy via memmove.
1747 var da, sa unsafe.Pointer
1748 if dk == Array {
1749 da = dst.val
1750 } else {
1751 da = unsafe.Pointer((*SliceHeader)(dst.val).Data)
1753 if sk == Array {
1754 sa = src.val
1755 } else {
1756 sa = unsafe.Pointer((*SliceHeader)(src.val).Data)
1758 memmove(da, sa, uintptr(n)*de.Size())
1759 return n
1762 // A runtimeSelect is a single case passed to rselect.
1763 // This must match ../runtime/chan.c:/runtimeSelect
1764 type runtimeSelect struct {
1765 dir uintptr // 0, SendDir, or RecvDir
1766 typ *rtype // channel type
1767 ch iword // interface word for channel
1768 val iword // interface word for value (for SendDir)
1771 // rselect runs a select. It returns the index of the chosen case,
1772 // and if the case was a receive, the interface word of the received
1773 // value and the conventional OK bool to indicate whether the receive
1774 // corresponds to a sent value.
1775 func rselect([]runtimeSelect) (chosen int, recv iword, recvOK bool)
1777 // A SelectDir describes the communication direction of a select case.
1778 type SelectDir int
1780 // NOTE: These values must match ../runtime/chan.c:/SelectDir.
1782 const (
1783 _ SelectDir = iota
1784 SelectSend // case Chan <- Send
1785 SelectRecv // case <-Chan:
1786 SelectDefault // default
1789 // A SelectCase describes a single case in a select operation.
1790 // The kind of case depends on Dir, the communication direction.
1792 // If Dir is SelectDefault, the case represents a default case.
1793 // Chan and Send must be zero Values.
1795 // If Dir is SelectSend, the case represents a send operation.
1796 // Normally Chan's underlying value must be a channel, and Send's underlying value must be
1797 // assignable to the channel's element type. As a special case, if Chan is a zero Value,
1798 // then the case is ignored, and the field Send will also be ignored and may be either zero
1799 // or non-zero.
1801 // If Dir is SelectRecv, the case represents a receive operation.
1802 // Normally Chan's underlying value must be a channel and Send must be a zero Value.
1803 // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
1804 // When a receive operation is selected, the received Value is returned by Select.
1806 type SelectCase struct {
1807 Dir SelectDir // direction of case
1808 Chan Value // channel to use (for send or receive)
1809 Send Value // value to send (for send)
1812 // Select executes a select operation described by the list of cases.
1813 // Like the Go select statement, it blocks until one of the cases can
1814 // proceed and then executes that case. It returns the index of the chosen case
1815 // and, if that case was a receive operation, the value received and a
1816 // boolean indicating whether the value corresponds to a send on the channel
1817 // (as opposed to a zero value received because the channel is closed).
1818 func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
1819 // NOTE: Do not trust that caller is not modifying cases data underfoot.
1820 // The range is safe because the caller cannot modify our copy of the len
1821 // and each iteration makes its own copy of the value c.
1822 runcases := make([]runtimeSelect, len(cases))
1823 haveDefault := false
1824 for i, c := range cases {
1825 rc := &runcases[i]
1826 rc.dir = uintptr(c.Dir)
1827 switch c.Dir {
1828 default:
1829 panic("reflect.Select: invalid Dir")
1831 case SelectDefault: // default
1832 if haveDefault {
1833 panic("reflect.Select: multiple default cases")
1835 haveDefault = true
1836 if c.Chan.IsValid() {
1837 panic("reflect.Select: default case has Chan value")
1839 if c.Send.IsValid() {
1840 panic("reflect.Select: default case has Send value")
1843 case SelectSend:
1844 ch := c.Chan
1845 if !ch.IsValid() {
1846 break
1848 ch.mustBe(Chan)
1849 ch.mustBeExported()
1850 tt := (*chanType)(unsafe.Pointer(ch.typ))
1851 if ChanDir(tt.dir)&SendDir == 0 {
1852 panic("reflect.Select: SendDir case using recv-only channel")
1854 rc.ch = *(*iword)(ch.iword())
1855 rc.typ = &tt.rtype
1856 v := c.Send
1857 if !v.IsValid() {
1858 panic("reflect.Select: SendDir case missing Send value")
1860 v.mustBeExported()
1861 v = v.assignTo("reflect.Select", tt.elem, nil)
1862 rc.val = v.iword()
1864 case SelectRecv:
1865 if c.Send.IsValid() {
1866 panic("reflect.Select: RecvDir case has Send value")
1868 ch := c.Chan
1869 if !ch.IsValid() {
1870 break
1872 ch.mustBe(Chan)
1873 ch.mustBeExported()
1874 tt := (*chanType)(unsafe.Pointer(ch.typ))
1875 rc.typ = &tt.rtype
1876 if ChanDir(tt.dir)&RecvDir == 0 {
1877 panic("reflect.Select: RecvDir case using send-only channel")
1879 rc.ch = *(*iword)(ch.iword())
1883 chosen, word, recvOK := rselect(runcases)
1884 if runcases[chosen].dir == uintptr(SelectRecv) {
1885 tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
1886 typ := tt.elem
1887 fl := flag(typ.Kind()) << flagKindShift
1888 if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
1889 fl |= flagIndir
1891 recv = Value{typ, unsafe.Pointer(word), fl}
1893 return chosen, recv, recvOK
1897 * constructors
1900 // implemented in package runtime
1901 func unsafe_New(*rtype) unsafe.Pointer
1902 func unsafe_NewArray(*rtype, int) unsafe.Pointer
1904 // MakeSlice creates a new zero-initialized slice value
1905 // for the specified slice type, length, and capacity.
1906 func MakeSlice(typ Type, len, cap int) Value {
1907 if typ.Kind() != Slice {
1908 panic("reflect.MakeSlice of non-slice type")
1910 if len < 0 {
1911 panic("reflect.MakeSlice: negative len")
1913 if cap < 0 {
1914 panic("reflect.MakeSlice: negative cap")
1916 if len > cap {
1917 panic("reflect.MakeSlice: len > cap")
1920 // Declare slice so that gc can see the base pointer in it.
1921 var x []unsafe.Pointer
1923 // Reinterpret as *SliceHeader to edit.
1924 s := (*SliceHeader)(unsafe.Pointer(&x))
1925 s.Data = uintptr(unsafe_NewArray(typ.Elem().(*rtype), cap))
1926 s.Len = len
1927 s.Cap = cap
1929 return Value{typ.common(), unsafe.Pointer(&x), flagIndir | flag(Slice)<<flagKindShift}
1932 // MakeChan creates a new channel with the specified type and buffer size.
1933 func MakeChan(typ Type, buffer int) Value {
1934 if typ.Kind() != Chan {
1935 panic("reflect.MakeChan of non-chan type")
1937 if buffer < 0 {
1938 panic("reflect.MakeChan: negative buffer size")
1940 if typ.ChanDir() != BothDir {
1941 panic("reflect.MakeChan: unidirectional channel type")
1943 ch := makechan(typ.(*rtype), uint64(buffer))
1944 return Value{typ.common(), unsafe.Pointer(ch), flagIndir | (flag(Chan) << flagKindShift)}
1947 // MakeMap creates a new map of the specified type.
1948 func MakeMap(typ Type) Value {
1949 if typ.Kind() != Map {
1950 panic("reflect.MakeMap of non-map type")
1952 m := makemap(typ.(*rtype))
1953 return Value{typ.common(), unsafe.Pointer(m), flagIndir | (flag(Map) << flagKindShift)}
1956 // Indirect returns the value that v points to.
1957 // If v is a nil pointer, Indirect returns a zero Value.
1958 // If v is not a pointer, Indirect returns v.
1959 func Indirect(v Value) Value {
1960 if v.Kind() != Ptr {
1961 return v
1963 return v.Elem()
1966 // ValueOf returns a new Value initialized to the concrete value
1967 // stored in the interface i. ValueOf(nil) returns the zero Value.
1968 func ValueOf(i interface{}) Value {
1969 if i == nil {
1970 return Value{}
1973 // TODO(rsc): Eliminate this terrible hack.
1974 // In the call to packValue, eface.typ doesn't escape,
1975 // and eface.word is an integer. So it looks like
1976 // i (= eface) doesn't escape. But really it does,
1977 // because eface.word is actually a pointer.
1978 escapes(i)
1980 // For an interface value with the noAddr bit set,
1981 // the representation is identical to an empty interface.
1982 eface := *(*emptyInterface)(unsafe.Pointer(&i))
1983 typ := eface.typ
1984 fl := flag(typ.Kind()) << flagKindShift
1985 if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
1986 fl |= flagIndir
1988 return Value{typ, unsafe.Pointer(eface.word), fl}
1991 // Zero returns a Value representing the zero value for the specified type.
1992 // The result is different from the zero value of the Value struct,
1993 // which represents no value at all.
1994 // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
1995 // The returned value is neither addressable nor settable.
1996 func Zero(typ Type) Value {
1997 if typ == nil {
1998 panic("reflect: Zero(nil)")
2000 t := typ.common()
2001 fl := flag(t.Kind()) << flagKindShift
2002 if t.Kind() == Ptr || t.Kind() == UnsafePointer {
2003 return Value{t, nil, fl}
2005 return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir}
2008 // New returns a Value representing a pointer to a new zero value
2009 // for the specified type. That is, the returned Value's Type is PtrTo(t).
2010 func New(typ Type) Value {
2011 if typ == nil {
2012 panic("reflect: New(nil)")
2014 ptr := unsafe_New(typ.(*rtype))
2015 fl := flag(Ptr) << flagKindShift
2016 return Value{typ.common().ptrTo(), ptr, fl}
2019 // NewAt returns a Value representing a pointer to a value of the
2020 // specified type, using p as that pointer.
2021 func NewAt(typ Type, p unsafe.Pointer) Value {
2022 fl := flag(Ptr) << flagKindShift
2023 return Value{typ.common().ptrTo(), p, fl}
2026 // assignTo returns a value v that can be assigned directly to typ.
2027 // It panics if v is not assignable to typ.
2028 // For a conversion to an interface type, target is a suggested scratch space to use.
2029 func (v Value) assignTo(context string, dst *rtype, target *interface{}) Value {
2030 if v.flag&flagMethod != 0 {
2031 panic(context + ": cannot assign method value to type " + dst.String())
2034 switch {
2035 case directlyAssignable(dst, v.typ):
2036 // Overwrite type so that they match.
2037 // Same memory layout, so no harm done.
2038 v.typ = dst
2039 fl := v.flag & (flagRO | flagAddr | flagIndir)
2040 fl |= flag(dst.Kind()) << flagKindShift
2041 return Value{dst, v.val, fl}
2043 case implements(dst, v.typ):
2044 if target == nil {
2045 target = new(interface{})
2047 x := valueInterface(v, false)
2048 if dst.NumMethod() == 0 {
2049 *target = x
2050 } else {
2051 ifaceE2I(dst, x, unsafe.Pointer(target))
2053 return Value{dst, unsafe.Pointer(target), flagIndir | flag(Interface)<<flagKindShift}
2056 // Failed.
2057 panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
2060 // Convert returns the value v converted to type t.
2061 // If the usual Go conversion rules do not allow conversion
2062 // of the value v to type t, Convert panics.
2063 func (v Value) Convert(t Type) Value {
2064 if v.flag&flagMethod != 0 {
2065 panic("reflect.Value.Convert: cannot convert method values")
2067 op := convertOp(t.common(), v.typ)
2068 if op == nil {
2069 panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
2071 return op(v, t)
2074 // convertOp returns the function to convert a value of type src
2075 // to a value of type dst. If the conversion is illegal, convertOp returns nil.
2076 func convertOp(dst, src *rtype) func(Value, Type) Value {
2077 switch src.Kind() {
2078 case Int, Int8, Int16, Int32, Int64:
2079 switch dst.Kind() {
2080 case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
2081 return cvtInt
2082 case Float32, Float64:
2083 return cvtIntFloat
2084 case String:
2085 return cvtIntString
2088 case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
2089 switch dst.Kind() {
2090 case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
2091 return cvtUint
2092 case Float32, Float64:
2093 return cvtUintFloat
2094 case String:
2095 return cvtUintString
2098 case Float32, Float64:
2099 switch dst.Kind() {
2100 case Int, Int8, Int16, Int32, Int64:
2101 return cvtFloatInt
2102 case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
2103 return cvtFloatUint
2104 case Float32, Float64:
2105 return cvtFloat
2108 case Complex64, Complex128:
2109 switch dst.Kind() {
2110 case Complex64, Complex128:
2111 return cvtComplex
2114 case String:
2115 if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
2116 switch dst.Elem().Kind() {
2117 case Uint8:
2118 return cvtStringBytes
2119 case Int32:
2120 return cvtStringRunes
2124 case Slice:
2125 if dst.Kind() == String && src.Elem().PkgPath() == "" {
2126 switch src.Elem().Kind() {
2127 case Uint8:
2128 return cvtBytesString
2129 case Int32:
2130 return cvtRunesString
2135 // dst and src have same underlying type.
2136 if haveIdenticalUnderlyingType(dst, src) {
2137 return cvtDirect
2140 // dst and src are unnamed pointer types with same underlying base type.
2141 if dst.Kind() == Ptr && dst.Name() == "" &&
2142 src.Kind() == Ptr && src.Name() == "" &&
2143 haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) {
2144 return cvtDirect
2147 if implements(dst, src) {
2148 if src.Kind() == Interface {
2149 return cvtI2I
2151 return cvtT2I
2154 return nil
2157 // makeInt returns a Value of type t equal to bits (possibly truncated),
2158 // where t is a signed or unsigned int type.
2159 func makeInt(f flag, bits uint64, t Type) Value {
2160 typ := t.common()
2161 if typ.size > ptrSize {
2162 // Assume ptrSize >= 4, so this must be uint64.
2163 ptr := unsafe_New(typ)
2164 *(*uint64)(unsafe.Pointer(ptr)) = bits
2165 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())<<flagKindShift}
2167 var w iword
2168 switch typ.size {
2169 case 1:
2170 *(*uint8)(unsafe.Pointer(&w)) = uint8(bits)
2171 case 2:
2172 *(*uint16)(unsafe.Pointer(&w)) = uint16(bits)
2173 case 4:
2174 *(*uint32)(unsafe.Pointer(&w)) = uint32(bits)
2175 case 8:
2176 *(*uint64)(unsafe.Pointer(&w)) = uint64(bits)
2178 return Value{typ, unsafe.Pointer(&w), f | flag(typ.Kind())<<flagKindShift | flagIndir}
2181 // makeFloat returns a Value of type t equal to v (possibly truncated to float32),
2182 // where t is a float32 or float64 type.
2183 func makeFloat(f flag, v float64, t Type) Value {
2184 typ := t.common()
2185 if typ.size > ptrSize {
2186 // Assume ptrSize >= 4, so this must be float64.
2187 ptr := unsafe_New(typ)
2188 *(*float64)(unsafe.Pointer(ptr)) = v
2189 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())<<flagKindShift}
2192 var w iword
2193 switch typ.size {
2194 case 4:
2195 *(*float32)(unsafe.Pointer(&w)) = float32(v)
2196 case 8:
2197 *(*float64)(unsafe.Pointer(&w)) = v
2199 return Value{typ, unsafe.Pointer(&w), f | flag(typ.Kind())<<flagKindShift | flagIndir}
2202 // makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
2203 // where t is a complex64 or complex128 type.
2204 func makeComplex(f flag, v complex128, t Type) Value {
2205 typ := t.common()
2206 if typ.size > ptrSize {
2207 ptr := unsafe_New(typ)
2208 switch typ.size {
2209 case 8:
2210 *(*complex64)(unsafe.Pointer(ptr)) = complex64(v)
2211 case 16:
2212 *(*complex128)(unsafe.Pointer(ptr)) = v
2214 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())<<flagKindShift}
2217 // Assume ptrSize <= 8 so this must be complex64.
2218 var w iword
2219 *(*complex64)(unsafe.Pointer(&w)) = complex64(v)
2220 return Value{typ, unsafe.Pointer(&w), f | flag(typ.Kind())<<flagKindShift | flagIndir}
2223 func makeString(f flag, v string, t Type) Value {
2224 ret := New(t).Elem()
2225 ret.SetString(v)
2226 ret.flag = ret.flag&^flagAddr | f | flagIndir
2227 return ret
2230 func makeBytes(f flag, v []byte, t Type) Value {
2231 ret := New(t).Elem()
2232 ret.SetBytes(v)
2233 ret.flag = ret.flag&^flagAddr | f | flagIndir
2234 return ret
2237 func makeRunes(f flag, v []rune, t Type) Value {
2238 ret := New(t).Elem()
2239 ret.setRunes(v)
2240 ret.flag = ret.flag&^flagAddr | f | flagIndir
2241 return ret
2244 // These conversion functions are returned by convertOp
2245 // for classes of conversions. For example, the first function, cvtInt,
2246 // takes any value v of signed int type and returns the value converted
2247 // to type t, where t is any signed or unsigned int type.
2249 // convertOp: intXX -> [u]intXX
2250 func cvtInt(v Value, t Type) Value {
2251 return makeInt(v.flag&flagRO, uint64(v.Int()), t)
2254 // convertOp: uintXX -> [u]intXX
2255 func cvtUint(v Value, t Type) Value {
2256 return makeInt(v.flag&flagRO, v.Uint(), t)
2259 // convertOp: floatXX -> intXX
2260 func cvtFloatInt(v Value, t Type) Value {
2261 return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
2264 // convertOp: floatXX -> uintXX
2265 func cvtFloatUint(v Value, t Type) Value {
2266 return makeInt(v.flag&flagRO, uint64(v.Float()), t)
2269 // convertOp: intXX -> floatXX
2270 func cvtIntFloat(v Value, t Type) Value {
2271 return makeFloat(v.flag&flagRO, float64(v.Int()), t)
2274 // convertOp: uintXX -> floatXX
2275 func cvtUintFloat(v Value, t Type) Value {
2276 return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
2279 // convertOp: floatXX -> floatXX
2280 func cvtFloat(v Value, t Type) Value {
2281 return makeFloat(v.flag&flagRO, v.Float(), t)
2284 // convertOp: complexXX -> complexXX
2285 func cvtComplex(v Value, t Type) Value {
2286 return makeComplex(v.flag&flagRO, v.Complex(), t)
2289 // convertOp: intXX -> string
2290 func cvtIntString(v Value, t Type) Value {
2291 return makeString(v.flag&flagRO, string(v.Int()), t)
2294 // convertOp: uintXX -> string
2295 func cvtUintString(v Value, t Type) Value {
2296 return makeString(v.flag&flagRO, string(v.Uint()), t)
2299 // convertOp: []byte -> string
2300 func cvtBytesString(v Value, t Type) Value {
2301 return makeString(v.flag&flagRO, string(v.Bytes()), t)
2304 // convertOp: string -> []byte
2305 func cvtStringBytes(v Value, t Type) Value {
2306 return makeBytes(v.flag&flagRO, []byte(v.String()), t)
2309 // convertOp: []rune -> string
2310 func cvtRunesString(v Value, t Type) Value {
2311 return makeString(v.flag&flagRO, string(v.runes()), t)
2314 // convertOp: string -> []rune
2315 func cvtStringRunes(v Value, t Type) Value {
2316 return makeRunes(v.flag&flagRO, []rune(v.String()), t)
2319 // convertOp: direct copy
2320 func cvtDirect(v Value, typ Type) Value {
2321 f := v.flag
2322 t := typ.common()
2323 val := v.val
2324 if f&flagAddr != 0 {
2325 // indirect, mutable word - make a copy
2326 ptr := unsafe_New(t)
2327 memmove(ptr, val, t.size)
2328 val = ptr
2329 f &^= flagAddr
2331 return Value{t, val, v.flag&flagRO | f}
2334 // convertOp: concrete -> interface
2335 func cvtT2I(v Value, typ Type) Value {
2336 target := new(interface{})
2337 x := valueInterface(v, false)
2338 if typ.NumMethod() == 0 {
2339 *target = x
2340 } else {
2341 ifaceE2I(typ.(*rtype), x, unsafe.Pointer(target))
2343 return Value{typ.common(), unsafe.Pointer(target), v.flag&flagRO | flagIndir | flag(Interface)<<flagKindShift}
2346 // convertOp: interface -> interface
2347 func cvtI2I(v Value, typ Type) Value {
2348 if v.IsNil() {
2349 ret := Zero(typ)
2350 ret.flag |= v.flag & flagRO
2351 return ret
2353 return cvtT2I(v.Elem(), typ)
2356 // implemented in ../pkg/runtime
2357 func chancap(ch iword) int
2358 func chanclose(ch iword)
2359 func chanlen(ch iword) int
2360 func chanrecv(t *rtype, ch iword, nb bool) (val iword, selected, received bool)
2361 func chansend(t *rtype, ch iword, val iword, nb bool) bool
2363 func makechan(typ *rtype, size uint64) (ch iword)
2364 func makemap(t *rtype) (m iword)
2365 func mapaccess(t *rtype, m iword, key iword) (val iword, ok bool)
2366 func mapassign(t *rtype, m iword, key, val iword, ok bool)
2367 func mapiterinit(t *rtype, m iword) *byte
2368 func mapiterkey(it *byte) (key iword, ok bool)
2369 func mapiternext(it *byte)
2370 func maplen(m iword) int
2372 func call(typ *rtype, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer)
2373 func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
2375 // Dummy annotation marking that the value x escapes,
2376 // for use in cases where the reflect code is so clever that
2377 // the compiler cannot follow.
2378 func escapes(x interface{}) {
2379 if dummy.b {
2380 dummy.x = x
2384 var dummy struct {
2385 b bool
2386 x interface{}