Merge branches/gcc-4_8-branch rev 208968.
[official-gcc.git] / gcc-4_8-branch / gcc / tree-vect-data-refs.c
blob2fe2abbb47fae216612a33c695f66f62cc5791d7
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "target.h"
31 #include "basic-block.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "dumpfile.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "diagnostic-core.h"
41 /* Need to include rtl.h, expr.h, etc. for optabs. */
42 #include "expr.h"
43 #include "optabs.h"
45 /* Return true if load- or store-lanes optab OPTAB is implemented for
46 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
48 static bool
49 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
50 tree vectype, unsigned HOST_WIDE_INT count)
52 enum machine_mode mode, array_mode;
53 bool limit_p;
55 mode = TYPE_MODE (vectype);
56 limit_p = !targetm.array_mode_supported_p (mode, count);
57 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
58 MODE_INT, limit_p);
60 if (array_mode == BLKmode)
62 if (dump_enabled_p ())
63 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
64 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]",
65 GET_MODE_NAME (mode), count);
66 return false;
69 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
71 if (dump_enabled_p ())
72 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
73 "cannot use %s<%s><%s>", name,
74 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
75 return false;
78 if (dump_enabled_p ())
79 dump_printf_loc (MSG_NOTE, vect_location,
80 "can use %s<%s><%s>", name, GET_MODE_NAME (array_mode),
81 GET_MODE_NAME (mode));
83 return true;
87 /* Return the smallest scalar part of STMT.
88 This is used to determine the vectype of the stmt. We generally set the
89 vectype according to the type of the result (lhs). For stmts whose
90 result-type is different than the type of the arguments (e.g., demotion,
91 promotion), vectype will be reset appropriately (later). Note that we have
92 to visit the smallest datatype in this function, because that determines the
93 VF. If the smallest datatype in the loop is present only as the rhs of a
94 promotion operation - we'd miss it.
95 Such a case, where a variable of this datatype does not appear in the lhs
96 anywhere in the loop, can only occur if it's an invariant: e.g.:
97 'int_x = (int) short_inv', which we'd expect to have been optimized away by
98 invariant motion. However, we cannot rely on invariant motion to always
99 take invariants out of the loop, and so in the case of promotion we also
100 have to check the rhs.
101 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
102 types. */
104 tree
105 vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
106 HOST_WIDE_INT *rhs_size_unit)
108 tree scalar_type = gimple_expr_type (stmt);
109 HOST_WIDE_INT lhs, rhs;
111 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
113 if (is_gimple_assign (stmt)
114 && (gimple_assign_cast_p (stmt)
115 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
116 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
117 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
119 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
121 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
122 if (rhs < lhs)
123 scalar_type = rhs_type;
126 *lhs_size_unit = lhs;
127 *rhs_size_unit = rhs;
128 return scalar_type;
132 /* Find the place of the data-ref in STMT in the interleaving chain that starts
133 from FIRST_STMT. Return -1 if the data-ref is not a part of the chain. */
136 vect_get_place_in_interleaving_chain (gimple stmt, gimple first_stmt)
138 gimple next_stmt = first_stmt;
139 int result = 0;
141 if (first_stmt != GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
142 return -1;
144 while (next_stmt && next_stmt != stmt)
146 result++;
147 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
150 if (next_stmt)
151 return result;
152 else
153 return -1;
157 /* Function vect_insert_into_interleaving_chain.
159 Insert DRA into the interleaving chain of DRB according to DRA's INIT. */
161 static void
162 vect_insert_into_interleaving_chain (struct data_reference *dra,
163 struct data_reference *drb)
165 gimple prev, next;
166 tree next_init;
167 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
168 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
170 prev = GROUP_FIRST_ELEMENT (stmtinfo_b);
171 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
172 while (next)
174 next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
175 if (tree_int_cst_compare (next_init, DR_INIT (dra)) > 0)
177 /* Insert here. */
178 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = DR_STMT (dra);
179 GROUP_NEXT_ELEMENT (stmtinfo_a) = next;
180 return;
182 prev = next;
183 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
186 /* We got to the end of the list. Insert here. */
187 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = DR_STMT (dra);
188 GROUP_NEXT_ELEMENT (stmtinfo_a) = NULL;
192 /* Function vect_update_interleaving_chain.
194 For two data-refs DRA and DRB that are a part of a chain interleaved data
195 accesses, update the interleaving chain. DRB's INIT is smaller than DRA's.
197 There are four possible cases:
198 1. New stmts - both DRA and DRB are not a part of any chain:
199 FIRST_DR = DRB
200 NEXT_DR (DRB) = DRA
201 2. DRB is a part of a chain and DRA is not:
202 no need to update FIRST_DR
203 no need to insert DRB
204 insert DRA according to init
205 3. DRA is a part of a chain and DRB is not:
206 if (init of FIRST_DR > init of DRB)
207 FIRST_DR = DRB
208 NEXT(FIRST_DR) = previous FIRST_DR
209 else
210 insert DRB according to its init
211 4. both DRA and DRB are in some interleaving chains:
212 choose the chain with the smallest init of FIRST_DR
213 insert the nodes of the second chain into the first one. */
215 static void
216 vect_update_interleaving_chain (struct data_reference *drb,
217 struct data_reference *dra)
219 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
220 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
221 tree next_init, init_dra_chain, init_drb_chain;
222 gimple first_a, first_b;
223 tree node_init;
224 gimple node, prev, next, first_stmt;
226 /* 1. New stmts - both DRA and DRB are not a part of any chain. */
227 if (!GROUP_FIRST_ELEMENT (stmtinfo_a) && !GROUP_FIRST_ELEMENT (stmtinfo_b))
229 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (drb);
230 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (drb);
231 GROUP_NEXT_ELEMENT (stmtinfo_b) = DR_STMT (dra);
232 return;
235 /* 2. DRB is a part of a chain and DRA is not. */
236 if (!GROUP_FIRST_ELEMENT (stmtinfo_a) && GROUP_FIRST_ELEMENT (stmtinfo_b))
238 GROUP_FIRST_ELEMENT (stmtinfo_a) = GROUP_FIRST_ELEMENT (stmtinfo_b);
239 /* Insert DRA into the chain of DRB. */
240 vect_insert_into_interleaving_chain (dra, drb);
241 return;
244 /* 3. DRA is a part of a chain and DRB is not. */
245 if (GROUP_FIRST_ELEMENT (stmtinfo_a) && !GROUP_FIRST_ELEMENT (stmtinfo_b))
247 gimple old_first_stmt = GROUP_FIRST_ELEMENT (stmtinfo_a);
248 tree init_old = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (
249 old_first_stmt)));
250 gimple tmp;
252 if (tree_int_cst_compare (init_old, DR_INIT (drb)) > 0)
254 /* DRB's init is smaller than the init of the stmt previously marked
255 as the first stmt of the interleaving chain of DRA. Therefore, we
256 update FIRST_STMT and put DRB in the head of the list. */
257 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (drb);
258 GROUP_NEXT_ELEMENT (stmtinfo_b) = old_first_stmt;
260 /* Update all the stmts in the list to point to the new FIRST_STMT. */
261 tmp = old_first_stmt;
262 while (tmp)
264 GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) = DR_STMT (drb);
265 tmp = GROUP_NEXT_ELEMENT (vinfo_for_stmt (tmp));
268 else
270 /* Insert DRB in the list of DRA. */
271 vect_insert_into_interleaving_chain (drb, dra);
272 GROUP_FIRST_ELEMENT (stmtinfo_b) = GROUP_FIRST_ELEMENT (stmtinfo_a);
274 return;
277 /* 4. both DRA and DRB are in some interleaving chains. */
278 first_a = GROUP_FIRST_ELEMENT (stmtinfo_a);
279 first_b = GROUP_FIRST_ELEMENT (stmtinfo_b);
280 if (first_a == first_b)
281 return;
282 init_dra_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_a)));
283 init_drb_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_b)));
285 if (tree_int_cst_compare (init_dra_chain, init_drb_chain) > 0)
287 /* Insert the nodes of DRA chain into the DRB chain.
288 After inserting a node, continue from this node of the DRB chain (don't
289 start from the beginning. */
290 node = GROUP_FIRST_ELEMENT (stmtinfo_a);
291 prev = GROUP_FIRST_ELEMENT (stmtinfo_b);
292 first_stmt = first_b;
294 else
296 /* Insert the nodes of DRB chain into the DRA chain.
297 After inserting a node, continue from this node of the DRA chain (don't
298 start from the beginning. */
299 node = GROUP_FIRST_ELEMENT (stmtinfo_b);
300 prev = GROUP_FIRST_ELEMENT (stmtinfo_a);
301 first_stmt = first_a;
304 while (node)
306 node_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (node)));
307 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
308 while (next)
310 next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
311 if (tree_int_cst_compare (next_init, node_init) > 0)
313 /* Insert here. */
314 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = node;
315 GROUP_NEXT_ELEMENT (vinfo_for_stmt (node)) = next;
316 prev = node;
317 break;
319 prev = next;
320 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev));
322 if (!next)
324 /* We got to the end of the list. Insert here. */
325 GROUP_NEXT_ELEMENT (vinfo_for_stmt (prev)) = node;
326 GROUP_NEXT_ELEMENT (vinfo_for_stmt (node)) = NULL;
327 prev = node;
329 GROUP_FIRST_ELEMENT (vinfo_for_stmt (node)) = first_stmt;
330 node = GROUP_NEXT_ELEMENT (vinfo_for_stmt (node));
334 /* Check dependence between DRA and DRB for basic block vectorization.
335 If the accesses share same bases and offsets, we can compare their initial
336 constant offsets to decide whether they differ or not. In case of a read-
337 write dependence we check that the load is before the store to ensure that
338 vectorization will not change the order of the accesses. */
340 static bool
341 vect_drs_dependent_in_basic_block (struct data_reference *dra,
342 struct data_reference *drb)
344 HOST_WIDE_INT type_size_a, type_size_b, init_a, init_b;
345 gimple earlier_stmt;
347 /* We only call this function for pairs of loads and stores, but we verify
348 it here. */
349 if (DR_IS_READ (dra) == DR_IS_READ (drb))
351 if (DR_IS_READ (dra))
352 return false;
353 else
354 return true;
357 /* Check that the data-refs have same bases and offsets. If not, we can't
358 determine if they are dependent. */
359 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
360 || !dr_equal_offsets_p (dra, drb))
361 return true;
363 /* Check the types. */
364 type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
365 type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
367 if (type_size_a != type_size_b
368 || !types_compatible_p (TREE_TYPE (DR_REF (dra)),
369 TREE_TYPE (DR_REF (drb))))
370 return true;
372 init_a = TREE_INT_CST_LOW (DR_INIT (dra));
373 init_b = TREE_INT_CST_LOW (DR_INIT (drb));
375 /* Two different locations - no dependence. */
376 if (init_a != init_b)
377 return false;
379 /* We have a read-write dependence. Check that the load is before the store.
380 When we vectorize basic blocks, vector load can be only before
381 corresponding scalar load, and vector store can be only after its
382 corresponding scalar store. So the order of the acceses is preserved in
383 case the load is before the store. */
384 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
385 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
386 return false;
388 return true;
392 /* Function vect_check_interleaving.
394 Check if DRA and DRB are a part of interleaving. In case they are, insert
395 DRA and DRB in an interleaving chain. */
397 static bool
398 vect_check_interleaving (struct data_reference *dra,
399 struct data_reference *drb)
401 HOST_WIDE_INT type_size_a, type_size_b, diff_mod_size, step, init_a, init_b;
403 /* Check that the data-refs have same first location (except init) and they
404 are both either store or load (not load and store). */
405 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0)
406 || !dr_equal_offsets_p (dra, drb)
407 || !tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb))
408 || DR_IS_READ (dra) != DR_IS_READ (drb))
409 return false;
411 /* Check:
412 1. data-refs are of the same type
413 2. their steps are equal
414 3. the step (if greater than zero) is greater than the difference between
415 data-refs' inits. */
416 type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
417 type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
419 if (type_size_a != type_size_b
420 || tree_int_cst_compare (DR_STEP (dra), DR_STEP (drb))
421 || !types_compatible_p (TREE_TYPE (DR_REF (dra)),
422 TREE_TYPE (DR_REF (drb))))
423 return false;
425 init_a = TREE_INT_CST_LOW (DR_INIT (dra));
426 init_b = TREE_INT_CST_LOW (DR_INIT (drb));
427 step = TREE_INT_CST_LOW (DR_STEP (dra));
429 if (init_a > init_b)
431 /* If init_a == init_b + the size of the type * k, we have an interleaving,
432 and DRB is accessed before DRA. */
433 diff_mod_size = (init_a - init_b) % type_size_a;
435 if (step && (init_a - init_b) > step)
436 return false;
438 if (diff_mod_size == 0)
440 vect_update_interleaving_chain (drb, dra);
441 if (dump_enabled_p ())
443 dump_printf_loc (MSG_NOTE, vect_location,
444 "Detected interleaving ");
445 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
446 dump_printf (MSG_NOTE, " and ");
447 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
449 return true;
452 else
454 /* If init_b == init_a + the size of the type * k, we have an
455 interleaving, and DRA is accessed before DRB. */
456 diff_mod_size = (init_b - init_a) % type_size_a;
458 if (step && (init_b - init_a) > step)
459 return false;
461 if (diff_mod_size == 0)
463 vect_update_interleaving_chain (dra, drb);
464 if (dump_enabled_p ())
466 dump_printf_loc (MSG_NOTE, vect_location,
467 "Detected interleaving ");
468 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
469 dump_printf (MSG_NOTE, " and ");
470 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
472 return true;
476 return false;
479 /* Check if data references pointed by DR_I and DR_J are same or
480 belong to same interleaving group. Return FALSE if drs are
481 different, otherwise return TRUE. */
483 static bool
484 vect_same_range_drs (data_reference_p dr_i, data_reference_p dr_j)
486 gimple stmt_i = DR_STMT (dr_i);
487 gimple stmt_j = DR_STMT (dr_j);
489 if (operand_equal_p (DR_REF (dr_i), DR_REF (dr_j), 0)
490 || (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_i))
491 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_j))
492 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_i))
493 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_j)))))
494 return true;
495 else
496 return false;
499 /* If address ranges represented by DDR_I and DDR_J are equal,
500 return TRUE, otherwise return FALSE. */
502 static bool
503 vect_vfa_range_equal (ddr_p ddr_i, ddr_p ddr_j)
505 if ((vect_same_range_drs (DDR_A (ddr_i), DDR_A (ddr_j))
506 && vect_same_range_drs (DDR_B (ddr_i), DDR_B (ddr_j)))
507 || (vect_same_range_drs (DDR_A (ddr_i), DDR_B (ddr_j))
508 && vect_same_range_drs (DDR_B (ddr_i), DDR_A (ddr_j))))
509 return true;
510 else
511 return false;
514 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
515 tested at run-time. Return TRUE if DDR was successfully inserted.
516 Return false if versioning is not supported. */
518 static bool
519 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
521 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
523 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
524 return false;
526 if (dump_enabled_p ())
528 dump_printf_loc (MSG_NOTE, vect_location,
529 "mark for run-time aliasing test between ");
530 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
531 dump_printf (MSG_NOTE, " and ");
532 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
535 if (optimize_loop_nest_for_size_p (loop))
537 if (dump_enabled_p ())
538 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
539 "versioning not supported when optimizing for size.");
540 return false;
543 /* FORNOW: We don't support versioning with outer-loop vectorization. */
544 if (loop->inner)
546 if (dump_enabled_p ())
547 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
548 "versioning not yet supported for outer-loops.");
549 return false;
552 /* FORNOW: We don't support creating runtime alias tests for non-constant
553 step. */
554 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
555 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
557 if (dump_enabled_p ())
558 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
559 "versioning not yet supported for non-constant "
560 "step");
561 return false;
564 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
565 return true;
569 /* Function vect_analyze_data_ref_dependence.
571 Return TRUE if there (might) exist a dependence between a memory-reference
572 DRA and a memory-reference DRB. When versioning for alias may check a
573 dependence at run-time, return FALSE. Adjust *MAX_VF according to
574 the data dependence. */
576 static bool
577 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
578 loop_vec_info loop_vinfo, int *max_vf)
580 unsigned int i;
581 struct loop *loop = NULL;
582 struct data_reference *dra = DDR_A (ddr);
583 struct data_reference *drb = DDR_B (ddr);
584 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
585 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
586 lambda_vector dist_v;
587 unsigned int loop_depth;
589 /* Don't bother to analyze statements marked as unvectorizable. */
590 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
591 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
592 return false;
594 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
596 /* Independent data accesses. */
597 vect_check_interleaving (dra, drb);
598 return false;
601 if (loop_vinfo)
602 loop = LOOP_VINFO_LOOP (loop_vinfo);
604 if ((DR_IS_READ (dra) && DR_IS_READ (drb) && loop_vinfo) || dra == drb)
605 return false;
607 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
609 gimple earlier_stmt;
611 if (loop_vinfo)
613 if (dump_enabled_p ())
615 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
616 "versioning for alias required: "
617 "can't determine dependence between ");
618 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
619 DR_REF (dra));
620 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
621 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
622 DR_REF (drb));
625 /* Add to list of ddrs that need to be tested at run-time. */
626 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
629 /* When vectorizing a basic block unknown depnedence can still mean
630 grouped access. */
631 if (vect_check_interleaving (dra, drb))
632 return false;
634 /* Read-read is OK (we need this check here, after checking for
635 interleaving). */
636 if (DR_IS_READ (dra) && DR_IS_READ (drb))
637 return false;
639 if (dump_enabled_p ())
641 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
642 "can't determine dependence between ");
643 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
644 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
645 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
648 /* We do not vectorize basic blocks with write-write dependencies. */
649 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
650 return true;
652 /* Check that it's not a load-after-store dependence. */
653 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
654 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
655 return true;
657 return false;
660 /* Versioning for alias is not yet supported for basic block SLP, and
661 dependence distance is unapplicable, hence, in case of known data
662 dependence, basic block vectorization is impossible for now. */
663 if (!loop_vinfo)
665 if (dra != drb && vect_check_interleaving (dra, drb))
666 return false;
668 if (dump_enabled_p ())
670 dump_printf_loc (MSG_NOTE, vect_location,
671 "determined dependence between ");
672 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
673 dump_printf (MSG_NOTE, " and ");
674 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
677 /* Do not vectorize basic blcoks with write-write dependences. */
678 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
679 return true;
681 /* Check if this dependence is allowed in basic block vectorization. */
682 return vect_drs_dependent_in_basic_block (dra, drb);
685 /* Loop-based vectorization and known data dependence. */
686 if (DDR_NUM_DIST_VECTS (ddr) == 0)
688 if (dump_enabled_p ())
690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
691 "versioning for alias required: "
692 "bad dist vector for ");
693 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
694 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
695 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
697 /* Add to list of ddrs that need to be tested at run-time. */
698 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
701 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
702 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
704 int dist = dist_v[loop_depth];
706 if (dump_enabled_p ())
707 dump_printf_loc (MSG_NOTE, vect_location,
708 "dependence distance = %d.", dist);
710 if (dist == 0)
712 if (dump_enabled_p ())
714 dump_printf_loc (MSG_NOTE, vect_location,
715 "dependence distance == 0 between ");
716 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
717 dump_printf (MSG_NOTE, " and ");
718 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
721 /* For interleaving, mark that there is a read-write dependency if
722 necessary. We check before that one of the data-refs is store. */
723 if (DR_IS_READ (dra))
724 GROUP_READ_WRITE_DEPENDENCE (stmtinfo_a) = true;
725 else
727 if (DR_IS_READ (drb))
728 GROUP_READ_WRITE_DEPENDENCE (stmtinfo_b) = true;
731 continue;
734 if (dist > 0 && DDR_REVERSED_P (ddr))
736 /* If DDR_REVERSED_P the order of the data-refs in DDR was
737 reversed (to make distance vector positive), and the actual
738 distance is negative. */
739 if (dump_enabled_p ())
740 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
741 "dependence distance negative.");
742 /* Record a negative dependence distance to later limit the
743 amount of stmt copying / unrolling we can perform.
744 Only need to handle read-after-write dependence. */
745 if (DR_IS_READ (drb)
746 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
747 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
748 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
749 continue;
752 if (abs (dist) >= 2
753 && abs (dist) < *max_vf)
755 /* The dependence distance requires reduction of the maximal
756 vectorization factor. */
757 *max_vf = abs (dist);
758 if (dump_enabled_p ())
759 dump_printf_loc (MSG_NOTE, vect_location,
760 "adjusting maximal vectorization factor to %i",
761 *max_vf);
764 if (abs (dist) >= *max_vf)
766 /* Dependence distance does not create dependence, as far as
767 vectorization is concerned, in this case. */
768 if (dump_enabled_p ())
769 dump_printf_loc (MSG_NOTE, vect_location,
770 "dependence distance >= VF.");
771 continue;
774 if (dump_enabled_p ())
776 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
777 "not vectorized, possible dependence "
778 "between data-refs ");
779 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
780 dump_printf (MSG_NOTE, " and ");
781 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
784 return true;
787 return false;
790 /* Function vect_analyze_data_ref_dependences.
792 Examine all the data references in the loop, and make sure there do not
793 exist any data dependences between them. Set *MAX_VF according to
794 the maximum vectorization factor the data dependences allow. */
796 bool
797 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
798 bb_vec_info bb_vinfo, int *max_vf)
800 unsigned int i;
801 vec<ddr_p> ddrs = vNULL;
802 struct data_dependence_relation *ddr;
804 if (dump_enabled_p ())
805 dump_printf_loc (MSG_NOTE, vect_location,
806 "=== vect_analyze_dependences ===");
807 if (loop_vinfo)
808 ddrs = LOOP_VINFO_DDRS (loop_vinfo);
809 else
810 ddrs = BB_VINFO_DDRS (bb_vinfo);
812 FOR_EACH_VEC_ELT (ddrs, i, ddr)
813 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
814 return false;
816 return true;
820 /* Function vect_compute_data_ref_alignment
822 Compute the misalignment of the data reference DR.
824 Output:
825 1. If during the misalignment computation it is found that the data reference
826 cannot be vectorized then false is returned.
827 2. DR_MISALIGNMENT (DR) is defined.
829 FOR NOW: No analysis is actually performed. Misalignment is calculated
830 only for trivial cases. TODO. */
832 static bool
833 vect_compute_data_ref_alignment (struct data_reference *dr)
835 gimple stmt = DR_STMT (dr);
836 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
837 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
838 struct loop *loop = NULL;
839 tree ref = DR_REF (dr);
840 tree vectype;
841 tree base, base_addr;
842 bool base_aligned;
843 tree misalign;
844 tree aligned_to, alignment;
846 if (dump_enabled_p ())
847 dump_printf_loc (MSG_NOTE, vect_location,
848 "vect_compute_data_ref_alignment:");
850 if (loop_vinfo)
851 loop = LOOP_VINFO_LOOP (loop_vinfo);
853 /* Initialize misalignment to unknown. */
854 SET_DR_MISALIGNMENT (dr, -1);
856 /* Strided loads perform only component accesses, misalignment information
857 is irrelevant for them. */
858 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
859 return true;
861 misalign = DR_INIT (dr);
862 aligned_to = DR_ALIGNED_TO (dr);
863 base_addr = DR_BASE_ADDRESS (dr);
864 vectype = STMT_VINFO_VECTYPE (stmt_info);
866 /* In case the dataref is in an inner-loop of the loop that is being
867 vectorized (LOOP), we use the base and misalignment information
868 relative to the outer-loop (LOOP). This is ok only if the misalignment
869 stays the same throughout the execution of the inner-loop, which is why
870 we have to check that the stride of the dataref in the inner-loop evenly
871 divides by the vector size. */
872 if (loop && nested_in_vect_loop_p (loop, stmt))
874 tree step = DR_STEP (dr);
875 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
877 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
879 if (dump_enabled_p ())
880 dump_printf_loc (MSG_NOTE, vect_location,
881 "inner step divides the vector-size.");
882 misalign = STMT_VINFO_DR_INIT (stmt_info);
883 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
884 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
886 else
888 if (dump_enabled_p ())
889 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
890 "inner step doesn't divide the vector-size.");
891 misalign = NULL_TREE;
895 /* Similarly, if we're doing basic-block vectorization, we can only use
896 base and misalignment information relative to an innermost loop if the
897 misalignment stays the same throughout the execution of the loop.
898 As above, this is the case if the stride of the dataref evenly divides
899 by the vector size. */
900 if (!loop)
902 tree step = DR_STEP (dr);
903 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
905 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
907 if (dump_enabled_p ())
908 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
909 "SLP: step doesn't divide the vector-size.");
910 misalign = NULL_TREE;
914 base = build_fold_indirect_ref (base_addr);
915 alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
917 if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
918 || !misalign)
920 if (dump_enabled_p ())
922 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
923 "Unknown alignment for access: ");
924 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, base);
926 return true;
929 if ((DECL_P (base)
930 && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
931 alignment) >= 0)
932 || (TREE_CODE (base_addr) == SSA_NAME
933 && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
934 TREE_TYPE (base_addr)))),
935 alignment) >= 0)
936 || (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
937 base_aligned = true;
938 else
939 base_aligned = false;
941 if (!base_aligned)
943 /* Do not change the alignment of global variables here if
944 flag_section_anchors is enabled as we already generated
945 RTL for other functions. Most global variables should
946 have been aligned during the IPA increase_alignment pass. */
947 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
948 || (TREE_STATIC (base) && flag_section_anchors))
950 if (dump_enabled_p ())
952 dump_printf_loc (MSG_NOTE, vect_location,
953 "can't force alignment of ref: ");
954 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
956 return true;
959 /* Force the alignment of the decl.
960 NOTE: This is the only change to the code we make during
961 the analysis phase, before deciding to vectorize the loop. */
962 if (dump_enabled_p ())
964 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
965 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
968 DECL_ALIGN (base) = TYPE_ALIGN (vectype);
969 DECL_USER_ALIGN (base) = 1;
972 /* At this point we assume that the base is aligned. */
973 gcc_assert (base_aligned
974 || (TREE_CODE (base) == VAR_DECL
975 && DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
977 /* If this is a backward running DR then first access in the larger
978 vectype actually is N-1 elements before the address in the DR.
979 Adjust misalign accordingly. */
980 if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
982 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
983 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
984 otherwise we wouldn't be here. */
985 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
986 /* PLUS because DR_STEP was negative. */
987 misalign = size_binop (PLUS_EXPR, misalign, offset);
990 /* Modulo alignment. */
991 misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
993 if (!host_integerp (misalign, 1))
995 /* Negative or overflowed misalignment value. */
996 if (dump_enabled_p ())
997 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
998 "unexpected misalign value");
999 return false;
1002 SET_DR_MISALIGNMENT (dr, TREE_INT_CST_LOW (misalign));
1004 if (dump_enabled_p ())
1006 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1007 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
1008 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
1011 return true;
1015 /* Function vect_compute_data_refs_alignment
1017 Compute the misalignment of data references in the loop.
1018 Return FALSE if a data reference is found that cannot be vectorized. */
1020 static bool
1021 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
1022 bb_vec_info bb_vinfo)
1024 vec<data_reference_p> datarefs;
1025 struct data_reference *dr;
1026 unsigned int i;
1028 if (loop_vinfo)
1029 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1030 else
1031 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
1033 FOR_EACH_VEC_ELT (datarefs, i, dr)
1034 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
1035 && !vect_compute_data_ref_alignment (dr))
1037 if (bb_vinfo)
1039 /* Mark unsupported statement as unvectorizable. */
1040 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
1041 continue;
1043 else
1044 return false;
1047 return true;
1051 /* Function vect_update_misalignment_for_peel
1053 DR - the data reference whose misalignment is to be adjusted.
1054 DR_PEEL - the data reference whose misalignment is being made
1055 zero in the vector loop by the peel.
1056 NPEEL - the number of iterations in the peel loop if the misalignment
1057 of DR_PEEL is known at compile time. */
1059 static void
1060 vect_update_misalignment_for_peel (struct data_reference *dr,
1061 struct data_reference *dr_peel, int npeel)
1063 unsigned int i;
1064 vec<dr_p> same_align_drs;
1065 struct data_reference *current_dr;
1066 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
1067 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
1068 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
1069 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
1071 /* For interleaved data accesses the step in the loop must be multiplied by
1072 the size of the interleaving group. */
1073 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1074 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
1075 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
1076 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
1078 /* It can be assumed that the data refs with the same alignment as dr_peel
1079 are aligned in the vector loop. */
1080 same_align_drs
1081 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
1082 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
1084 if (current_dr != dr)
1085 continue;
1086 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
1087 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
1088 SET_DR_MISALIGNMENT (dr, 0);
1089 return;
1092 if (known_alignment_for_access_p (dr)
1093 && known_alignment_for_access_p (dr_peel))
1095 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1096 int misal = DR_MISALIGNMENT (dr);
1097 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1098 misal += negative ? -npeel * dr_size : npeel * dr_size;
1099 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
1100 SET_DR_MISALIGNMENT (dr, misal);
1101 return;
1104 if (dump_enabled_p ())
1105 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.");
1106 SET_DR_MISALIGNMENT (dr, -1);
1110 /* Function vect_verify_datarefs_alignment
1112 Return TRUE if all data references in the loop can be
1113 handled with respect to alignment. */
1115 bool
1116 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
1118 vec<data_reference_p> datarefs;
1119 struct data_reference *dr;
1120 enum dr_alignment_support supportable_dr_alignment;
1121 unsigned int i;
1123 if (loop_vinfo)
1124 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1125 else
1126 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
1128 FOR_EACH_VEC_ELT (datarefs, i, dr)
1130 gimple stmt = DR_STMT (dr);
1131 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1133 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1134 continue;
1136 /* For interleaving, only the alignment of the first access matters.
1137 Skip statements marked as not vectorizable. */
1138 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
1139 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1140 || !STMT_VINFO_VECTORIZABLE (stmt_info))
1141 continue;
1143 /* Strided loads perform only component accesses, alignment is
1144 irrelevant for them. */
1145 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1146 continue;
1148 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1149 if (!supportable_dr_alignment)
1151 if (dump_enabled_p ())
1153 if (DR_IS_READ (dr))
1154 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1155 "not vectorized: unsupported unaligned load.");
1156 else
1157 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1158 "not vectorized: unsupported unaligned "
1159 "store.");
1161 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
1162 DR_REF (dr));
1164 return false;
1166 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
1167 dump_printf_loc (MSG_NOTE, vect_location,
1168 "Vectorizing an unaligned access.");
1170 return true;
1173 /* Given an memory reference EXP return whether its alignment is less
1174 than its size. */
1176 static bool
1177 not_size_aligned (tree exp)
1179 if (!host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1))
1180 return true;
1182 return (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))
1183 > get_object_alignment (exp));
1186 /* Function vector_alignment_reachable_p
1188 Return true if vector alignment for DR is reachable by peeling
1189 a few loop iterations. Return false otherwise. */
1191 static bool
1192 vector_alignment_reachable_p (struct data_reference *dr)
1194 gimple stmt = DR_STMT (dr);
1195 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1196 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1198 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1200 /* For interleaved access we peel only if number of iterations in
1201 the prolog loop ({VF - misalignment}), is a multiple of the
1202 number of the interleaved accesses. */
1203 int elem_size, mis_in_elements;
1204 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1206 /* FORNOW: handle only known alignment. */
1207 if (!known_alignment_for_access_p (dr))
1208 return false;
1210 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
1211 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1213 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
1214 return false;
1217 /* If misalignment is known at the compile time then allow peeling
1218 only if natural alignment is reachable through peeling. */
1219 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1221 HOST_WIDE_INT elmsize =
1222 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1223 if (dump_enabled_p ())
1225 dump_printf_loc (MSG_NOTE, vect_location,
1226 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1227 dump_printf (MSG_NOTE,
1228 ". misalignment = %d. ", DR_MISALIGNMENT (dr));
1230 if (DR_MISALIGNMENT (dr) % elmsize)
1232 if (dump_enabled_p ())
1233 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1234 "data size does not divide the misalignment.\n");
1235 return false;
1239 if (!known_alignment_for_access_p (dr))
1241 tree type = TREE_TYPE (DR_REF (dr));
1242 bool is_packed = not_size_aligned (DR_REF (dr));
1243 if (dump_enabled_p ())
1244 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1245 "Unknown misalignment, is_packed = %d",is_packed);
1246 if (targetm.vectorize.vector_alignment_reachable (type, is_packed))
1247 return true;
1248 else
1249 return false;
1252 return true;
1256 /* Calculate the cost of the memory access represented by DR. */
1258 static void
1259 vect_get_data_access_cost (struct data_reference *dr,
1260 unsigned int *inside_cost,
1261 unsigned int *outside_cost,
1262 stmt_vector_for_cost *body_cost_vec)
1264 gimple stmt = DR_STMT (dr);
1265 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1266 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1267 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1268 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1269 int ncopies = vf / nunits;
1271 if (DR_IS_READ (dr))
1272 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1273 NULL, body_cost_vec, false);
1274 else
1275 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1277 if (dump_enabled_p ())
1278 dump_printf_loc (MSG_NOTE, vect_location,
1279 "vect_get_data_access_cost: inside_cost = %d, "
1280 "outside_cost = %d.", *inside_cost, *outside_cost);
1284 static hashval_t
1285 vect_peeling_hash (const void *elem)
1287 const struct _vect_peel_info *peel_info;
1289 peel_info = (const struct _vect_peel_info *) elem;
1290 return (hashval_t) peel_info->npeel;
1294 static int
1295 vect_peeling_hash_eq (const void *elem1, const void *elem2)
1297 const struct _vect_peel_info *a, *b;
1299 a = (const struct _vect_peel_info *) elem1;
1300 b = (const struct _vect_peel_info *) elem2;
1301 return (a->npeel == b->npeel);
1305 /* Insert DR into peeling hash table with NPEEL as key. */
1307 static void
1308 vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
1309 int npeel)
1311 struct _vect_peel_info elem, *slot;
1312 void **new_slot;
1313 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1315 elem.npeel = npeel;
1316 slot = (vect_peel_info) htab_find (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
1317 &elem);
1318 if (slot)
1319 slot->count++;
1320 else
1322 slot = XNEW (struct _vect_peel_info);
1323 slot->npeel = npeel;
1324 slot->dr = dr;
1325 slot->count = 1;
1326 new_slot = htab_find_slot (LOOP_VINFO_PEELING_HTAB (loop_vinfo), slot,
1327 INSERT);
1328 *new_slot = slot;
1331 if (!supportable_dr_alignment && unlimited_cost_model ())
1332 slot->count += VECT_MAX_COST;
1336 /* Traverse peeling hash table to find peeling option that aligns maximum
1337 number of data accesses. */
1339 static int
1340 vect_peeling_hash_get_most_frequent (void **slot, void *data)
1342 vect_peel_info elem = (vect_peel_info) *slot;
1343 vect_peel_extended_info max = (vect_peel_extended_info) data;
1345 if (elem->count > max->peel_info.count
1346 || (elem->count == max->peel_info.count
1347 && max->peel_info.npeel > elem->npeel))
1349 max->peel_info.npeel = elem->npeel;
1350 max->peel_info.count = elem->count;
1351 max->peel_info.dr = elem->dr;
1354 return 1;
1358 /* Traverse peeling hash table and calculate cost for each peeling option.
1359 Find the one with the lowest cost. */
1361 static int
1362 vect_peeling_hash_get_lowest_cost (void **slot, void *data)
1364 vect_peel_info elem = (vect_peel_info) *slot;
1365 vect_peel_extended_info min = (vect_peel_extended_info) data;
1366 int save_misalignment, dummy;
1367 unsigned int inside_cost = 0, outside_cost = 0, i;
1368 gimple stmt = DR_STMT (elem->dr);
1369 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1370 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1371 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1372 struct data_reference *dr;
1373 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1374 int single_iter_cost;
1376 prologue_cost_vec.create (2);
1377 body_cost_vec.create (2);
1378 epilogue_cost_vec.create (2);
1380 FOR_EACH_VEC_ELT (datarefs, i, dr)
1382 stmt = DR_STMT (dr);
1383 stmt_info = vinfo_for_stmt (stmt);
1384 /* For interleaving, only the alignment of the first access
1385 matters. */
1386 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1387 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1388 continue;
1390 save_misalignment = DR_MISALIGNMENT (dr);
1391 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
1392 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1393 &body_cost_vec);
1394 SET_DR_MISALIGNMENT (dr, save_misalignment);
1397 single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
1398 outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel,
1399 &dummy, single_iter_cost,
1400 &prologue_cost_vec,
1401 &epilogue_cost_vec);
1403 /* Prologue and epilogue costs are added to the target model later.
1404 These costs depend only on the scalar iteration cost, the
1405 number of peeling iterations finally chosen, and the number of
1406 misaligned statements. So discard the information found here. */
1407 prologue_cost_vec.release ();
1408 epilogue_cost_vec.release ();
1410 if (inside_cost < min->inside_cost
1411 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1413 min->inside_cost = inside_cost;
1414 min->outside_cost = outside_cost;
1415 min->body_cost_vec.release ();
1416 min->body_cost_vec = body_cost_vec;
1417 min->peel_info.dr = elem->dr;
1418 min->peel_info.npeel = elem->npeel;
1420 else
1421 body_cost_vec.release ();
1423 return 1;
1427 /* Choose best peeling option by traversing peeling hash table and either
1428 choosing an option with the lowest cost (if cost model is enabled) or the
1429 option that aligns as many accesses as possible. */
1431 static struct data_reference *
1432 vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
1433 unsigned int *npeel,
1434 stmt_vector_for_cost *body_cost_vec)
1436 struct _vect_peel_extended_info res;
1438 res.peel_info.dr = NULL;
1439 res.body_cost_vec = stmt_vector_for_cost();
1441 if (!unlimited_cost_model ())
1443 res.inside_cost = INT_MAX;
1444 res.outside_cost = INT_MAX;
1445 htab_traverse (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
1446 vect_peeling_hash_get_lowest_cost, &res);
1448 else
1450 res.peel_info.count = 0;
1451 htab_traverse (LOOP_VINFO_PEELING_HTAB (loop_vinfo),
1452 vect_peeling_hash_get_most_frequent, &res);
1455 *npeel = res.peel_info.npeel;
1456 *body_cost_vec = res.body_cost_vec;
1457 return res.peel_info.dr;
1461 /* Function vect_enhance_data_refs_alignment
1463 This pass will use loop versioning and loop peeling in order to enhance
1464 the alignment of data references in the loop.
1466 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1467 original loop is to be vectorized. Any other loops that are created by
1468 the transformations performed in this pass - are not supposed to be
1469 vectorized. This restriction will be relaxed.
1471 This pass will require a cost model to guide it whether to apply peeling
1472 or versioning or a combination of the two. For example, the scheme that
1473 intel uses when given a loop with several memory accesses, is as follows:
1474 choose one memory access ('p') which alignment you want to force by doing
1475 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1476 other accesses are not necessarily aligned, or (2) use loop versioning to
1477 generate one loop in which all accesses are aligned, and another loop in
1478 which only 'p' is necessarily aligned.
1480 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1481 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1482 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1484 Devising a cost model is the most critical aspect of this work. It will
1485 guide us on which access to peel for, whether to use loop versioning, how
1486 many versions to create, etc. The cost model will probably consist of
1487 generic considerations as well as target specific considerations (on
1488 powerpc for example, misaligned stores are more painful than misaligned
1489 loads).
1491 Here are the general steps involved in alignment enhancements:
1493 -- original loop, before alignment analysis:
1494 for (i=0; i<N; i++){
1495 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1496 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1499 -- After vect_compute_data_refs_alignment:
1500 for (i=0; i<N; i++){
1501 x = q[i]; # DR_MISALIGNMENT(q) = 3
1502 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1505 -- Possibility 1: we do loop versioning:
1506 if (p is aligned) {
1507 for (i=0; i<N; i++){ # loop 1A
1508 x = q[i]; # DR_MISALIGNMENT(q) = 3
1509 p[i] = y; # DR_MISALIGNMENT(p) = 0
1512 else {
1513 for (i=0; i<N; i++){ # loop 1B
1514 x = q[i]; # DR_MISALIGNMENT(q) = 3
1515 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1519 -- Possibility 2: we do loop peeling:
1520 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1521 x = q[i];
1522 p[i] = y;
1524 for (i = 3; i < N; i++){ # loop 2A
1525 x = q[i]; # DR_MISALIGNMENT(q) = 0
1526 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1529 -- Possibility 3: combination of loop peeling and versioning:
1530 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1531 x = q[i];
1532 p[i] = y;
1534 if (p is aligned) {
1535 for (i = 3; i<N; i++){ # loop 3A
1536 x = q[i]; # DR_MISALIGNMENT(q) = 0
1537 p[i] = y; # DR_MISALIGNMENT(p) = 0
1540 else {
1541 for (i = 3; i<N; i++){ # loop 3B
1542 x = q[i]; # DR_MISALIGNMENT(q) = 0
1543 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1547 These loops are later passed to loop_transform to be vectorized. The
1548 vectorizer will use the alignment information to guide the transformation
1549 (whether to generate regular loads/stores, or with special handling for
1550 misalignment). */
1552 bool
1553 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1555 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1556 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1557 enum dr_alignment_support supportable_dr_alignment;
1558 struct data_reference *dr0 = NULL, *first_store = NULL;
1559 struct data_reference *dr;
1560 unsigned int i, j;
1561 bool do_peeling = false;
1562 bool do_versioning = false;
1563 bool stat;
1564 gimple stmt;
1565 stmt_vec_info stmt_info;
1566 int vect_versioning_for_alias_required;
1567 unsigned int npeel = 0;
1568 bool all_misalignments_unknown = true;
1569 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1570 unsigned possible_npeel_number = 1;
1571 tree vectype;
1572 unsigned int nelements, mis, same_align_drs_max = 0;
1573 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost();
1575 if (dump_enabled_p ())
1576 dump_printf_loc (MSG_NOTE, vect_location,
1577 "=== vect_enhance_data_refs_alignment ===");
1579 /* While cost model enhancements are expected in the future, the high level
1580 view of the code at this time is as follows:
1582 A) If there is a misaligned access then see if peeling to align
1583 this access can make all data references satisfy
1584 vect_supportable_dr_alignment. If so, update data structures
1585 as needed and return true.
1587 B) If peeling wasn't possible and there is a data reference with an
1588 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1589 then see if loop versioning checks can be used to make all data
1590 references satisfy vect_supportable_dr_alignment. If so, update
1591 data structures as needed and return true.
1593 C) If neither peeling nor versioning were successful then return false if
1594 any data reference does not satisfy vect_supportable_dr_alignment.
1596 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1598 Note, Possibility 3 above (which is peeling and versioning together) is not
1599 being done at this time. */
1601 /* (1) Peeling to force alignment. */
1603 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1604 Considerations:
1605 + How many accesses will become aligned due to the peeling
1606 - How many accesses will become unaligned due to the peeling,
1607 and the cost of misaligned accesses.
1608 - The cost of peeling (the extra runtime checks, the increase
1609 in code size). */
1611 FOR_EACH_VEC_ELT (datarefs, i, dr)
1613 stmt = DR_STMT (dr);
1614 stmt_info = vinfo_for_stmt (stmt);
1616 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1617 continue;
1619 /* For interleaving, only the alignment of the first access
1620 matters. */
1621 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1622 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1623 continue;
1625 /* For invariant accesses there is nothing to enhance. */
1626 if (integer_zerop (DR_STEP (dr)))
1627 continue;
1629 /* Strided loads perform only component accesses, alignment is
1630 irrelevant for them. */
1631 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1632 continue;
1634 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1635 do_peeling = vector_alignment_reachable_p (dr);
1636 if (do_peeling)
1638 if (known_alignment_for_access_p (dr))
1640 unsigned int npeel_tmp;
1641 bool negative = tree_int_cst_compare (DR_STEP (dr),
1642 size_zero_node) < 0;
1644 /* Save info about DR in the hash table. */
1645 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
1646 LOOP_VINFO_PEELING_HTAB (loop_vinfo) =
1647 htab_create (1, vect_peeling_hash,
1648 vect_peeling_hash_eq, free);
1650 vectype = STMT_VINFO_VECTYPE (stmt_info);
1651 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1652 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1653 TREE_TYPE (DR_REF (dr))));
1654 npeel_tmp = (negative
1655 ? (mis - nelements) : (nelements - mis))
1656 & (nelements - 1);
1658 /* For multiple types, it is possible that the bigger type access
1659 will have more than one peeling option. E.g., a loop with two
1660 types: one of size (vector size / 4), and the other one of
1661 size (vector size / 8). Vectorization factor will 8. If both
1662 access are misaligned by 3, the first one needs one scalar
1663 iteration to be aligned, and the second one needs 5. But the
1664 the first one will be aligned also by peeling 5 scalar
1665 iterations, and in that case both accesses will be aligned.
1666 Hence, except for the immediate peeling amount, we also want
1667 to try to add full vector size, while we don't exceed
1668 vectorization factor.
1669 We do this automtically for cost model, since we calculate cost
1670 for every peeling option. */
1671 if (unlimited_cost_model ())
1672 possible_npeel_number = vf /nelements;
1674 /* Handle the aligned case. We may decide to align some other
1675 access, making DR unaligned. */
1676 if (DR_MISALIGNMENT (dr) == 0)
1678 npeel_tmp = 0;
1679 if (unlimited_cost_model ())
1680 possible_npeel_number++;
1683 for (j = 0; j < possible_npeel_number; j++)
1685 gcc_assert (npeel_tmp <= vf);
1686 vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
1687 npeel_tmp += nelements;
1690 all_misalignments_unknown = false;
1691 /* Data-ref that was chosen for the case that all the
1692 misalignments are unknown is not relevant anymore, since we
1693 have a data-ref with known alignment. */
1694 dr0 = NULL;
1696 else
1698 /* If we don't know all the misalignment values, we prefer
1699 peeling for data-ref that has maximum number of data-refs
1700 with the same alignment, unless the target prefers to align
1701 stores over load. */
1702 if (all_misalignments_unknown)
1704 if (same_align_drs_max
1705 < STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ()
1706 || !dr0)
1708 same_align_drs_max
1709 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1710 dr0 = dr;
1713 if (!first_store && DR_IS_WRITE (dr))
1714 first_store = dr;
1717 /* If there are both known and unknown misaligned accesses in the
1718 loop, we choose peeling amount according to the known
1719 accesses. */
1722 if (!supportable_dr_alignment)
1724 dr0 = dr;
1725 if (!first_store && DR_IS_WRITE (dr))
1726 first_store = dr;
1730 else
1732 if (!aligned_access_p (dr))
1734 if (dump_enabled_p ())
1735 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1736 "vector alignment may not be reachable");
1737 break;
1742 vect_versioning_for_alias_required
1743 = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
1745 /* Temporarily, if versioning for alias is required, we disable peeling
1746 until we support peeling and versioning. Often peeling for alignment
1747 will require peeling for loop-bound, which in turn requires that we
1748 know how to adjust the loop ivs after the loop. */
1749 if (vect_versioning_for_alias_required
1750 || !vect_can_advance_ivs_p (loop_vinfo)
1751 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1752 do_peeling = false;
1754 if (do_peeling && all_misalignments_unknown
1755 && vect_supportable_dr_alignment (dr0, false))
1758 /* Check if the target requires to prefer stores over loads, i.e., if
1759 misaligned stores are more expensive than misaligned loads (taking
1760 drs with same alignment into account). */
1761 if (first_store && DR_IS_READ (dr0))
1763 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1764 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1765 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1766 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
1767 stmt_vector_for_cost dummy;
1768 dummy.create (2);
1770 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1771 &dummy);
1772 vect_get_data_access_cost (first_store, &store_inside_cost,
1773 &store_outside_cost, &dummy);
1775 dummy.release ();
1777 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1778 aligning the load DR0). */
1779 load_inside_penalty = store_inside_cost;
1780 load_outside_penalty = store_outside_cost;
1781 for (i = 0;
1782 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1783 DR_STMT (first_store))).iterate (i, &dr);
1784 i++)
1785 if (DR_IS_READ (dr))
1787 load_inside_penalty += load_inside_cost;
1788 load_outside_penalty += load_outside_cost;
1790 else
1792 load_inside_penalty += store_inside_cost;
1793 load_outside_penalty += store_outside_cost;
1796 /* Calculate the penalty for leaving DR0 unaligned (by
1797 aligning the FIRST_STORE). */
1798 store_inside_penalty = load_inside_cost;
1799 store_outside_penalty = load_outside_cost;
1800 for (i = 0;
1801 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1802 DR_STMT (dr0))).iterate (i, &dr);
1803 i++)
1804 if (DR_IS_READ (dr))
1806 store_inside_penalty += load_inside_cost;
1807 store_outside_penalty += load_outside_cost;
1809 else
1811 store_inside_penalty += store_inside_cost;
1812 store_outside_penalty += store_outside_cost;
1815 if (load_inside_penalty > store_inside_penalty
1816 || (load_inside_penalty == store_inside_penalty
1817 && load_outside_penalty > store_outside_penalty))
1818 dr0 = first_store;
1821 /* In case there are only loads with different unknown misalignments, use
1822 peeling only if it may help to align other accesses in the loop. */
1823 if (!first_store
1824 && !STMT_VINFO_SAME_ALIGN_REFS (
1825 vinfo_for_stmt (DR_STMT (dr0))).length ()
1826 && vect_supportable_dr_alignment (dr0, false)
1827 != dr_unaligned_supported)
1828 do_peeling = false;
1831 if (do_peeling && !dr0)
1833 /* Peeling is possible, but there is no data access that is not supported
1834 unless aligned. So we try to choose the best possible peeling. */
1836 /* We should get here only if there are drs with known misalignment. */
1837 gcc_assert (!all_misalignments_unknown);
1839 /* Choose the best peeling from the hash table. */
1840 dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
1841 &body_cost_vec);
1842 if (!dr0 || !npeel)
1843 do_peeling = false;
1846 if (do_peeling)
1848 stmt = DR_STMT (dr0);
1849 stmt_info = vinfo_for_stmt (stmt);
1850 vectype = STMT_VINFO_VECTYPE (stmt_info);
1851 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1853 if (known_alignment_for_access_p (dr0))
1855 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1856 size_zero_node) < 0;
1857 if (!npeel)
1859 /* Since it's known at compile time, compute the number of
1860 iterations in the peeled loop (the peeling factor) for use in
1861 updating DR_MISALIGNMENT values. The peeling factor is the
1862 vectorization factor minus the misalignment as an element
1863 count. */
1864 mis = DR_MISALIGNMENT (dr0);
1865 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1866 npeel = ((negative ? mis - nelements : nelements - mis)
1867 & (nelements - 1));
1870 /* For interleaved data access every iteration accesses all the
1871 members of the group, therefore we divide the number of iterations
1872 by the group size. */
1873 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1874 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1875 npeel /= GROUP_SIZE (stmt_info);
1877 if (dump_enabled_p ())
1878 dump_printf_loc (MSG_NOTE, vect_location,
1879 "Try peeling by %d", npeel);
1882 /* Ensure that all data refs can be vectorized after the peel. */
1883 FOR_EACH_VEC_ELT (datarefs, i, dr)
1885 int save_misalignment;
1887 if (dr == dr0)
1888 continue;
1890 stmt = DR_STMT (dr);
1891 stmt_info = vinfo_for_stmt (stmt);
1892 /* For interleaving, only the alignment of the first access
1893 matters. */
1894 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1895 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1896 continue;
1898 /* Strided loads perform only component accesses, alignment is
1899 irrelevant for them. */
1900 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1901 continue;
1903 save_misalignment = DR_MISALIGNMENT (dr);
1904 vect_update_misalignment_for_peel (dr, dr0, npeel);
1905 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1906 SET_DR_MISALIGNMENT (dr, save_misalignment);
1908 if (!supportable_dr_alignment)
1910 do_peeling = false;
1911 break;
1915 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1917 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1918 if (!stat)
1919 do_peeling = false;
1920 else
1922 body_cost_vec.release ();
1923 return stat;
1927 if (do_peeling)
1929 unsigned max_allowed_peel
1930 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1931 if (max_allowed_peel != (unsigned)-1)
1933 unsigned max_peel = npeel;
1934 if (max_peel == 0)
1936 gimple dr_stmt = DR_STMT (dr0);
1937 stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
1938 tree vtype = STMT_VINFO_VECTYPE (vinfo);
1939 max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
1941 if (max_peel > max_allowed_peel)
1943 do_peeling = false;
1944 if (dump_enabled_p ())
1945 dump_printf_loc (MSG_NOTE, vect_location,
1946 "Disable peeling, max peels reached: %d\n", max_peel);
1951 if (do_peeling)
1953 stmt_info_for_cost *si;
1954 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
1956 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1957 If the misalignment of DR_i is identical to that of dr0 then set
1958 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1959 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1960 by the peeling factor times the element size of DR_i (MOD the
1961 vectorization factor times the size). Otherwise, the
1962 misalignment of DR_i must be set to unknown. */
1963 FOR_EACH_VEC_ELT (datarefs, i, dr)
1964 if (dr != dr0)
1965 vect_update_misalignment_for_peel (dr, dr0, npeel);
1967 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1968 if (npeel)
1969 LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
1970 else
1971 LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
1972 SET_DR_MISALIGNMENT (dr0, 0);
1973 if (dump_enabled_p ())
1975 dump_printf_loc (MSG_NOTE, vect_location,
1976 "Alignment of access forced using peeling.");
1977 dump_printf_loc (MSG_NOTE, vect_location,
1978 "Peeling for alignment will be applied.");
1980 /* We've delayed passing the inside-loop peeling costs to the
1981 target cost model until we were sure peeling would happen.
1982 Do so now. */
1983 if (body_cost_vec.exists ())
1985 FOR_EACH_VEC_ELT (body_cost_vec, i, si)
1987 struct _stmt_vec_info *stmt_info
1988 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
1989 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
1990 si->misalign, vect_body);
1992 body_cost_vec.release ();
1995 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1996 gcc_assert (stat);
1997 return stat;
2001 body_cost_vec.release ();
2003 /* (2) Versioning to force alignment. */
2005 /* Try versioning if:
2006 1) optimize loop for speed
2007 2) there is at least one unsupported misaligned data ref with an unknown
2008 misalignment, and
2009 3) all misaligned data refs with a known misalignment are supported, and
2010 4) the number of runtime alignment checks is within reason. */
2012 do_versioning =
2013 optimize_loop_nest_for_speed_p (loop)
2014 && (!loop->inner); /* FORNOW */
2016 if (do_versioning)
2018 FOR_EACH_VEC_ELT (datarefs, i, dr)
2020 stmt = DR_STMT (dr);
2021 stmt_info = vinfo_for_stmt (stmt);
2023 /* For interleaving, only the alignment of the first access
2024 matters. */
2025 if (aligned_access_p (dr)
2026 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
2027 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
2028 continue;
2030 /* Strided loads perform only component accesses, alignment is
2031 irrelevant for them. */
2032 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
2033 continue;
2035 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
2037 if (!supportable_dr_alignment)
2039 gimple stmt;
2040 int mask;
2041 tree vectype;
2043 if (known_alignment_for_access_p (dr)
2044 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
2045 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
2047 do_versioning = false;
2048 break;
2051 stmt = DR_STMT (dr);
2052 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
2053 gcc_assert (vectype);
2055 /* The rightmost bits of an aligned address must be zeros.
2056 Construct the mask needed for this test. For example,
2057 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
2058 mask must be 15 = 0xf. */
2059 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
2061 /* FORNOW: use the same mask to test all potentially unaligned
2062 references in the loop. The vectorizer currently supports
2063 a single vector size, see the reference to
2064 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
2065 vectorization factor is computed. */
2066 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
2067 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
2068 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
2069 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
2070 DR_STMT (dr));
2074 /* Versioning requires at least one misaligned data reference. */
2075 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2076 do_versioning = false;
2077 else if (!do_versioning)
2078 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
2081 if (do_versioning)
2083 vec<gimple> may_misalign_stmts
2084 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2085 gimple stmt;
2087 /* It can now be assumed that the data references in the statements
2088 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
2089 of the loop being vectorized. */
2090 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
2092 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2093 dr = STMT_VINFO_DATA_REF (stmt_info);
2094 SET_DR_MISALIGNMENT (dr, 0);
2095 if (dump_enabled_p ())
2096 dump_printf_loc (MSG_NOTE, vect_location,
2097 "Alignment of access forced using versioning.");
2100 if (dump_enabled_p ())
2101 dump_printf_loc (MSG_NOTE, vect_location,
2102 "Versioning for alignment will be applied.");
2104 /* Peeling and versioning can't be done together at this time. */
2105 gcc_assert (! (do_peeling && do_versioning));
2107 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
2108 gcc_assert (stat);
2109 return stat;
2112 /* This point is reached if neither peeling nor versioning is being done. */
2113 gcc_assert (! (do_peeling || do_versioning));
2115 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
2116 return stat;
2120 /* Function vect_find_same_alignment_drs.
2122 Update group and alignment relations according to the chosen
2123 vectorization factor. */
2125 static void
2126 vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
2127 loop_vec_info loop_vinfo)
2129 unsigned int i;
2130 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2131 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2132 struct data_reference *dra = DDR_A (ddr);
2133 struct data_reference *drb = DDR_B (ddr);
2134 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2135 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2136 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
2137 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
2138 lambda_vector dist_v;
2139 unsigned int loop_depth;
2141 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
2142 return;
2144 if (dra == drb)
2145 return;
2147 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2148 return;
2150 /* Loop-based vectorization and known data dependence. */
2151 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2152 return;
2154 /* Data-dependence analysis reports a distance vector of zero
2155 for data-references that overlap only in the first iteration
2156 but have different sign step (see PR45764).
2157 So as a sanity check require equal DR_STEP. */
2158 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2159 return;
2161 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
2162 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
2164 int dist = dist_v[loop_depth];
2166 if (dump_enabled_p ())
2167 dump_printf_loc (MSG_NOTE, vect_location,
2168 "dependence distance = %d.", dist);
2170 /* Same loop iteration. */
2171 if (dist == 0
2172 || (dist % vectorization_factor == 0 && dra_size == drb_size))
2174 /* Two references with distance zero have the same alignment. */
2175 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
2176 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
2177 if (dump_enabled_p ())
2179 dump_printf_loc (MSG_NOTE, vect_location,
2180 "accesses have the same alignment.");
2181 dump_printf (MSG_NOTE,
2182 "dependence distance modulo vf == 0 between ");
2183 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2184 dump_printf (MSG_NOTE, " and ");
2185 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2192 /* Function vect_analyze_data_refs_alignment
2194 Analyze the alignment of the data-references in the loop.
2195 Return FALSE if a data reference is found that cannot be vectorized. */
2197 bool
2198 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
2199 bb_vec_info bb_vinfo)
2201 if (dump_enabled_p ())
2202 dump_printf_loc (MSG_NOTE, vect_location,
2203 "=== vect_analyze_data_refs_alignment ===");
2205 /* Mark groups of data references with same alignment using
2206 data dependence information. */
2207 if (loop_vinfo)
2209 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
2210 struct data_dependence_relation *ddr;
2211 unsigned int i;
2213 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2214 vect_find_same_alignment_drs (ddr, loop_vinfo);
2217 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
2219 if (dump_enabled_p ())
2220 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2221 "not vectorized: can't calculate alignment "
2222 "for data ref.");
2223 return false;
2226 return true;
2230 /* Analyze groups of accesses: check that DR belongs to a group of
2231 accesses of legal size, step, etc. Detect gaps, single element
2232 interleaving, and other special cases. Set grouped access info.
2233 Collect groups of strided stores for further use in SLP analysis. */
2235 static bool
2236 vect_analyze_group_access (struct data_reference *dr)
2238 tree step = DR_STEP (dr);
2239 tree scalar_type = TREE_TYPE (DR_REF (dr));
2240 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2241 gimple stmt = DR_STMT (dr);
2242 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2243 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2244 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2245 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2246 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2247 bool slp_impossible = false;
2248 struct loop *loop = NULL;
2250 if (loop_vinfo)
2251 loop = LOOP_VINFO_LOOP (loop_vinfo);
2253 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2254 size of the interleaving group (including gaps). */
2255 groupsize = dr_step / type_size;
2257 /* Not consecutive access is possible only if it is a part of interleaving. */
2258 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2260 /* Check if it this DR is a part of interleaving, and is a single
2261 element of the group that is accessed in the loop. */
2263 /* Gaps are supported only for loads. STEP must be a multiple of the type
2264 size. The size of the group must be a power of 2. */
2265 if (DR_IS_READ (dr)
2266 && (dr_step % type_size) == 0
2267 && groupsize > 0
2268 && exact_log2 (groupsize) != -1)
2270 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2271 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2272 if (dump_enabled_p ())
2274 dump_printf_loc (MSG_NOTE, vect_location,
2275 "Detected single element interleaving ");
2276 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2277 dump_printf (MSG_NOTE, " step ");
2278 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2281 if (loop_vinfo)
2283 if (dump_enabled_p ())
2284 dump_printf_loc (MSG_NOTE, vect_location,
2285 "Data access with gaps requires scalar "
2286 "epilogue loop");
2287 if (loop->inner)
2289 if (dump_enabled_p ())
2290 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2291 "Peeling for outer loop is not"
2292 " supported");
2293 return false;
2296 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2299 return true;
2302 if (dump_enabled_p ())
2304 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2305 "not consecutive access ");
2306 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2309 if (bb_vinfo)
2311 /* Mark the statement as unvectorizable. */
2312 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2313 return true;
2316 return false;
2319 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2321 /* First stmt in the interleaving chain. Check the chain. */
2322 gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2323 struct data_reference *data_ref = dr;
2324 unsigned int count = 1;
2325 tree next_step;
2326 tree prev_init = DR_INIT (data_ref);
2327 gimple prev = stmt;
2328 HOST_WIDE_INT diff, count_in_bytes, gaps = 0;
2330 while (next)
2332 /* Skip same data-refs. In case that two or more stmts share
2333 data-ref (supported only for loads), we vectorize only the first
2334 stmt, and the rest get their vectorized loads from the first
2335 one. */
2336 if (!tree_int_cst_compare (DR_INIT (data_ref),
2337 DR_INIT (STMT_VINFO_DATA_REF (
2338 vinfo_for_stmt (next)))))
2340 if (DR_IS_WRITE (data_ref))
2342 if (dump_enabled_p ())
2343 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2344 "Two store stmts share the same dr.");
2345 return false;
2348 /* Check that there is no load-store dependencies for this loads
2349 to prevent a case of load-store-load to the same location. */
2350 if (GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (next))
2351 || GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (prev)))
2353 if (dump_enabled_p ())
2354 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2355 "READ_WRITE dependence in interleaving.");
2356 return false;
2359 /* For load use the same data-ref load. */
2360 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2362 prev = next;
2363 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2364 continue;
2367 prev = next;
2369 /* Check that all the accesses have the same STEP. */
2370 next_step = DR_STEP (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
2371 if (tree_int_cst_compare (step, next_step))
2373 if (dump_enabled_p ())
2374 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2375 "not consecutive access in interleaving");
2376 return false;
2379 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2380 /* Check that the distance between two accesses is equal to the type
2381 size. Otherwise, we have gaps. */
2382 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2383 - TREE_INT_CST_LOW (prev_init)) / type_size;
2384 if (diff != 1)
2386 /* FORNOW: SLP of accesses with gaps is not supported. */
2387 slp_impossible = true;
2388 if (DR_IS_WRITE (data_ref))
2390 if (dump_enabled_p ())
2391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2392 "interleaved store with gaps");
2393 return false;
2396 gaps += diff - 1;
2399 last_accessed_element += diff;
2401 /* Store the gap from the previous member of the group. If there is no
2402 gap in the access, GROUP_GAP is always 1. */
2403 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2405 prev_init = DR_INIT (data_ref);
2406 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2407 /* Count the number of data-refs in the chain. */
2408 count++;
2411 /* COUNT is the number of accesses found, we multiply it by the size of
2412 the type to get COUNT_IN_BYTES. */
2413 count_in_bytes = type_size * count;
2415 /* Check that the size of the interleaving (including gaps) is not
2416 greater than STEP. */
2417 if (dr_step && dr_step < count_in_bytes + gaps * type_size)
2419 if (dump_enabled_p ())
2421 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2422 "interleaving size is greater than step for ");
2423 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dr));
2425 return false;
2428 /* Check that the size of the interleaving is equal to STEP for stores,
2429 i.e., that there are no gaps. */
2430 if (dr_step && dr_step != count_in_bytes)
2432 if (DR_IS_READ (dr))
2434 slp_impossible = true;
2435 /* There is a gap after the last load in the group. This gap is a
2436 difference between the groupsize and the number of elements.
2437 When there is no gap, this difference should be 0. */
2438 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
2440 else
2442 if (dump_enabled_p ())
2443 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2444 "interleaved store with gaps");
2445 return false;
2449 /* Check that STEP is a multiple of type size. */
2450 if (dr_step && (dr_step % type_size) != 0)
2452 if (dump_enabled_p ())
2454 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2455 "step is not a multiple of type size: step ");
2456 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, step);
2457 dump_printf (MSG_MISSED_OPTIMIZATION, " size ");
2458 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2459 TYPE_SIZE_UNIT (scalar_type));
2461 return false;
2464 if (groupsize == 0)
2465 groupsize = count;
2467 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2468 if (dump_enabled_p ())
2469 dump_printf_loc (MSG_NOTE, vect_location,
2470 "Detected interleaving of size %d", (int)groupsize);
2472 /* SLP: create an SLP data structure for every interleaving group of
2473 stores for further analysis in vect_analyse_slp. */
2474 if (DR_IS_WRITE (dr) && !slp_impossible)
2476 if (loop_vinfo)
2477 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2478 if (bb_vinfo)
2479 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2482 /* There is a gap in the end of the group. */
2483 if (groupsize - last_accessed_element > 0 && loop_vinfo)
2485 if (dump_enabled_p ())
2486 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2487 "Data access with gaps requires scalar "
2488 "epilogue loop");
2489 if (loop->inner)
2491 if (dump_enabled_p ())
2492 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2493 "Peeling for outer loop is not supported");
2494 return false;
2497 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2501 return true;
2505 /* Analyze the access pattern of the data-reference DR.
2506 In case of non-consecutive accesses call vect_analyze_group_access() to
2507 analyze groups of accesses. */
2509 static bool
2510 vect_analyze_data_ref_access (struct data_reference *dr)
2512 tree step = DR_STEP (dr);
2513 tree scalar_type = TREE_TYPE (DR_REF (dr));
2514 gimple stmt = DR_STMT (dr);
2515 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2516 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2517 struct loop *loop = NULL;
2519 if (loop_vinfo)
2520 loop = LOOP_VINFO_LOOP (loop_vinfo);
2522 if (loop_vinfo && !step)
2524 if (dump_enabled_p ())
2525 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2526 "bad data-ref access in loop");
2527 return false;
2530 /* Allow invariant loads in not nested loops. */
2531 if (loop_vinfo && integer_zerop (step))
2533 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2534 if (nested_in_vect_loop_p (loop, stmt))
2536 if (dump_enabled_p ())
2537 dump_printf_loc (MSG_NOTE, vect_location,
2538 "zero step in inner loop of nest");
2539 return false;
2541 return DR_IS_READ (dr);
2544 if (loop && nested_in_vect_loop_p (loop, stmt))
2546 /* Interleaved accesses are not yet supported within outer-loop
2547 vectorization for references in the inner-loop. */
2548 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2550 /* For the rest of the analysis we use the outer-loop step. */
2551 step = STMT_VINFO_DR_STEP (stmt_info);
2552 if (integer_zerop (step))
2554 if (dump_enabled_p ())
2555 dump_printf_loc (MSG_NOTE, vect_location,
2556 "zero step in outer loop.");
2557 if (DR_IS_READ (dr))
2558 return true;
2559 else
2560 return false;
2564 /* Consecutive? */
2565 if (TREE_CODE (step) == INTEGER_CST)
2567 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2568 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2569 || (dr_step < 0
2570 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2572 /* Mark that it is not interleaving. */
2573 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2574 return true;
2578 if (loop && nested_in_vect_loop_p (loop, stmt))
2580 if (dump_enabled_p ())
2581 dump_printf_loc (MSG_NOTE, vect_location,
2582 "grouped access in outer loop.");
2583 return false;
2586 /* Assume this is a DR handled by non-constant strided load case. */
2587 if (TREE_CODE (step) != INTEGER_CST)
2588 return STMT_VINFO_STRIDE_LOAD_P (stmt_info);
2590 /* Not consecutive access - check if it's a part of interleaving group. */
2591 return vect_analyze_group_access (dr);
2595 /* Function vect_analyze_data_ref_accesses.
2597 Analyze the access pattern of all the data references in the loop.
2599 FORNOW: the only access pattern that is considered vectorizable is a
2600 simple step 1 (consecutive) access.
2602 FORNOW: handle only arrays and pointer accesses. */
2604 bool
2605 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
2607 unsigned int i;
2608 vec<data_reference_p> datarefs;
2609 struct data_reference *dr;
2611 if (dump_enabled_p ())
2612 dump_printf_loc (MSG_NOTE, vect_location,
2613 "=== vect_analyze_data_ref_accesses ===");
2615 if (loop_vinfo)
2616 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2617 else
2618 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
2620 FOR_EACH_VEC_ELT (datarefs, i, dr)
2621 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2622 && !vect_analyze_data_ref_access (dr))
2624 if (dump_enabled_p ())
2625 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2626 "not vectorized: complicated access pattern.");
2628 if (bb_vinfo)
2630 /* Mark the statement as not vectorizable. */
2631 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2632 continue;
2634 else
2635 return false;
2638 return true;
2641 /* Function vect_prune_runtime_alias_test_list.
2643 Prune a list of ddrs to be tested at run-time by versioning for alias.
2644 Return FALSE if resulting list of ddrs is longer then allowed by
2645 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2647 bool
2648 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2650 vec<ddr_p> ddrs =
2651 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2652 unsigned i, j;
2654 if (dump_enabled_p ())
2655 dump_printf_loc (MSG_NOTE, vect_location,
2656 "=== vect_prune_runtime_alias_test_list ===");
2658 for (i = 0; i < ddrs.length (); )
2660 bool found;
2661 ddr_p ddr_i;
2663 ddr_i = ddrs[i];
2664 found = false;
2666 for (j = 0; j < i; j++)
2668 ddr_p ddr_j = ddrs[j];
2670 if (vect_vfa_range_equal (ddr_i, ddr_j))
2672 if (dump_enabled_p ())
2674 dump_printf_loc (MSG_NOTE, vect_location,
2675 "found equal ranges ");
2676 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr_i)));
2677 dump_printf (MSG_NOTE, ", ");
2678 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr_i)));
2679 dump_printf (MSG_NOTE, " and ");
2680 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr_j)));
2681 dump_printf (MSG_NOTE, ", ");
2682 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr_j)));
2684 found = true;
2685 break;
2689 if (found)
2691 ddrs.ordered_remove (i);
2692 continue;
2694 i++;
2697 if (ddrs.length () >
2698 (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
2700 if (dump_enabled_p ())
2702 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2703 "disable versioning for alias - max number of "
2704 "generated checks exceeded.");
2707 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).truncate (0);
2709 return false;
2712 return true;
2715 /* Check whether a non-affine read in stmt is suitable for gather load
2716 and if so, return a builtin decl for that operation. */
2718 tree
2719 vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
2720 tree *offp, int *scalep)
2722 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
2723 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2724 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2725 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2726 tree offtype = NULL_TREE;
2727 tree decl, base, off;
2728 enum machine_mode pmode;
2729 int punsignedp, pvolatilep;
2731 /* The gather builtins need address of the form
2732 loop_invariant + vector * {1, 2, 4, 8}
2734 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
2735 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
2736 of loop invariants/SSA_NAMEs defined in the loop, with casts,
2737 multiplications and additions in it. To get a vector, we need
2738 a single SSA_NAME that will be defined in the loop and will
2739 contain everything that is not loop invariant and that can be
2740 vectorized. The following code attempts to find such a preexistng
2741 SSA_NAME OFF and put the loop invariants into a tree BASE
2742 that can be gimplified before the loop. */
2743 base = get_inner_reference (DR_REF (dr), &pbitsize, &pbitpos, &off,
2744 &pmode, &punsignedp, &pvolatilep, false);
2745 gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
2747 if (TREE_CODE (base) == MEM_REF)
2749 if (!integer_zerop (TREE_OPERAND (base, 1)))
2751 if (off == NULL_TREE)
2753 double_int moff = mem_ref_offset (base);
2754 off = double_int_to_tree (sizetype, moff);
2756 else
2757 off = size_binop (PLUS_EXPR, off,
2758 fold_convert (sizetype, TREE_OPERAND (base, 1)));
2760 base = TREE_OPERAND (base, 0);
2762 else
2763 base = build_fold_addr_expr (base);
2765 if (off == NULL_TREE)
2766 off = size_zero_node;
2768 /* If base is not loop invariant, either off is 0, then we start with just
2769 the constant offset in the loop invariant BASE and continue with base
2770 as OFF, otherwise give up.
2771 We could handle that case by gimplifying the addition of base + off
2772 into some SSA_NAME and use that as off, but for now punt. */
2773 if (!expr_invariant_in_loop_p (loop, base))
2775 if (!integer_zerop (off))
2776 return NULL_TREE;
2777 off = base;
2778 base = size_int (pbitpos / BITS_PER_UNIT);
2780 /* Otherwise put base + constant offset into the loop invariant BASE
2781 and continue with OFF. */
2782 else
2784 base = fold_convert (sizetype, base);
2785 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
2788 /* OFF at this point may be either a SSA_NAME or some tree expression
2789 from get_inner_reference. Try to peel off loop invariants from it
2790 into BASE as long as possible. */
2791 STRIP_NOPS (off);
2792 while (offtype == NULL_TREE)
2794 enum tree_code code;
2795 tree op0, op1, add = NULL_TREE;
2797 if (TREE_CODE (off) == SSA_NAME)
2799 gimple def_stmt = SSA_NAME_DEF_STMT (off);
2801 if (expr_invariant_in_loop_p (loop, off))
2802 return NULL_TREE;
2804 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2805 break;
2807 op0 = gimple_assign_rhs1 (def_stmt);
2808 code = gimple_assign_rhs_code (def_stmt);
2809 op1 = gimple_assign_rhs2 (def_stmt);
2811 else
2813 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
2814 return NULL_TREE;
2815 code = TREE_CODE (off);
2816 extract_ops_from_tree (off, &code, &op0, &op1);
2818 switch (code)
2820 case POINTER_PLUS_EXPR:
2821 case PLUS_EXPR:
2822 if (expr_invariant_in_loop_p (loop, op0))
2824 add = op0;
2825 off = op1;
2826 do_add:
2827 add = fold_convert (sizetype, add);
2828 if (scale != 1)
2829 add = size_binop (MULT_EXPR, add, size_int (scale));
2830 base = size_binop (PLUS_EXPR, base, add);
2831 continue;
2833 if (expr_invariant_in_loop_p (loop, op1))
2835 add = op1;
2836 off = op0;
2837 goto do_add;
2839 break;
2840 case MINUS_EXPR:
2841 if (expr_invariant_in_loop_p (loop, op1))
2843 add = fold_convert (sizetype, op1);
2844 add = size_binop (MINUS_EXPR, size_zero_node, add);
2845 off = op0;
2846 goto do_add;
2848 break;
2849 case MULT_EXPR:
2850 if (scale == 1 && host_integerp (op1, 0))
2852 scale = tree_low_cst (op1, 0);
2853 off = op0;
2854 continue;
2856 break;
2857 case SSA_NAME:
2858 off = op0;
2859 continue;
2860 CASE_CONVERT:
2861 if (!POINTER_TYPE_P (TREE_TYPE (op0))
2862 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2863 break;
2864 if (TYPE_PRECISION (TREE_TYPE (op0))
2865 == TYPE_PRECISION (TREE_TYPE (off)))
2867 off = op0;
2868 continue;
2870 if (TYPE_PRECISION (TREE_TYPE (op0))
2871 < TYPE_PRECISION (TREE_TYPE (off)))
2873 off = op0;
2874 offtype = TREE_TYPE (off);
2875 STRIP_NOPS (off);
2876 continue;
2878 break;
2879 default:
2880 break;
2882 break;
2885 /* If at the end OFF still isn't a SSA_NAME or isn't
2886 defined in the loop, punt. */
2887 if (TREE_CODE (off) != SSA_NAME
2888 || expr_invariant_in_loop_p (loop, off))
2889 return NULL_TREE;
2891 if (offtype == NULL_TREE)
2892 offtype = TREE_TYPE (off);
2894 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
2895 offtype, scale);
2896 if (decl == NULL_TREE)
2897 return NULL_TREE;
2899 if (basep)
2900 *basep = base;
2901 if (offp)
2902 *offp = off;
2903 if (scalep)
2904 *scalep = scale;
2905 return decl;
2908 /* Check wether a non-affine load in STMT (being in the loop referred to
2909 in LOOP_VINFO) is suitable for handling as strided load. That is the case
2910 if its address is a simple induction variable. If so return the base
2911 of that induction variable in *BASEP and the (loop-invariant) step
2912 in *STEPP, both only when that pointer is non-zero.
2914 This handles ARRAY_REFs (with variant index) and MEM_REFs (with variant
2915 base pointer) only. */
2917 static bool
2918 vect_check_strided_load (gimple stmt, loop_vec_info loop_vinfo)
2920 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2921 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2922 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2923 tree base, off;
2924 affine_iv iv;
2926 if (!DR_IS_READ (dr))
2927 return false;
2929 base = DR_REF (dr);
2931 if (TREE_CODE (base) == ARRAY_REF)
2933 off = TREE_OPERAND (base, 1);
2934 base = TREE_OPERAND (base, 0);
2936 else if (TREE_CODE (base) == MEM_REF)
2938 off = TREE_OPERAND (base, 0);
2939 base = TREE_OPERAND (base, 1);
2941 else
2942 return false;
2944 if (TREE_CODE (off) != SSA_NAME)
2945 return false;
2947 if (!expr_invariant_in_loop_p (loop, base)
2948 || !simple_iv (loop, loop_containing_stmt (stmt), off, &iv, true))
2949 return false;
2951 return true;
2954 /* Function vect_analyze_data_refs.
2956 Find all the data references in the loop or basic block.
2958 The general structure of the analysis of data refs in the vectorizer is as
2959 follows:
2960 1- vect_analyze_data_refs(loop/bb): call
2961 compute_data_dependences_for_loop/bb to find and analyze all data-refs
2962 in the loop/bb and their dependences.
2963 2- vect_analyze_dependences(): apply dependence testing using ddrs.
2964 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
2965 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
2969 bool
2970 vect_analyze_data_refs (loop_vec_info loop_vinfo,
2971 bb_vec_info bb_vinfo,
2972 int *min_vf)
2974 struct loop *loop = NULL;
2975 basic_block bb = NULL;
2976 unsigned int i;
2977 vec<data_reference_p> datarefs;
2978 struct data_reference *dr;
2979 tree scalar_type;
2980 bool res, stop_bb_analysis = false;
2982 if (dump_enabled_p ())
2983 dump_printf_loc (MSG_NOTE, vect_location,
2984 "=== vect_analyze_data_refs ===\n");
2986 if (loop_vinfo)
2988 loop = LOOP_VINFO_LOOP (loop_vinfo);
2989 res = compute_data_dependences_for_loop
2990 (loop, true,
2991 &LOOP_VINFO_LOOP_NEST (loop_vinfo),
2992 &LOOP_VINFO_DATAREFS (loop_vinfo),
2993 &LOOP_VINFO_DDRS (loop_vinfo));
2995 if (!res)
2997 if (dump_enabled_p ())
2998 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2999 "not vectorized: loop contains function calls"
3000 " or data references that cannot be analyzed");
3001 return false;
3004 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
3006 else
3008 gimple_stmt_iterator gsi;
3010 bb = BB_VINFO_BB (bb_vinfo);
3011 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3013 gimple stmt = gsi_stmt (gsi);
3014 if (!find_data_references_in_stmt (NULL, stmt,
3015 &BB_VINFO_DATAREFS (bb_vinfo)))
3017 /* Mark the rest of the basic-block as unvectorizable. */
3018 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3020 stmt = gsi_stmt (gsi);
3021 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
3023 break;
3026 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
3027 &BB_VINFO_DDRS (bb_vinfo),
3028 vNULL, true))
3030 if (dump_enabled_p ())
3031 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3032 "not vectorized: basic block contains function"
3033 " calls or data references that cannot be"
3034 " analyzed");
3035 return false;
3038 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
3041 /* Go through the data-refs, check that the analysis succeeded. Update
3042 pointer from stmt_vec_info struct to DR and vectype. */
3044 FOR_EACH_VEC_ELT (datarefs, i, dr)
3046 gimple stmt;
3047 stmt_vec_info stmt_info;
3048 tree base, offset, init;
3049 bool gather = false;
3050 int vf;
3052 if (!dr || !DR_REF (dr))
3054 if (dump_enabled_p ())
3055 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3056 "not vectorized: unhandled data-ref ");
3057 return false;
3060 stmt = DR_STMT (dr);
3061 stmt_info = vinfo_for_stmt (stmt);
3063 if (stop_bb_analysis)
3065 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3066 continue;
3069 /* Check that analysis of the data-ref succeeded. */
3070 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3071 || !DR_STEP (dr))
3073 /* If target supports vector gather loads, see if they can't
3074 be used. */
3075 if (loop_vinfo
3076 && DR_IS_READ (dr)
3077 && !TREE_THIS_VOLATILE (DR_REF (dr))
3078 && targetm.vectorize.builtin_gather != NULL
3079 && !nested_in_vect_loop_p (loop, stmt))
3081 struct data_reference *newdr
3082 = create_data_ref (NULL, loop_containing_stmt (stmt),
3083 DR_REF (dr), stmt, true);
3084 gcc_assert (newdr != NULL && DR_REF (newdr));
3085 if (DR_BASE_ADDRESS (newdr)
3086 && DR_OFFSET (newdr)
3087 && DR_INIT (newdr)
3088 && DR_STEP (newdr)
3089 && integer_zerop (DR_STEP (newdr)))
3091 dr = newdr;
3092 gather = true;
3094 else
3095 free_data_ref (newdr);
3098 if (!gather)
3100 if (dump_enabled_p ())
3102 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3103 "not vectorized: data ref analysis "
3104 "failed ");
3105 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3108 if (bb_vinfo)
3110 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3111 stop_bb_analysis = true;
3112 continue;
3115 return false;
3119 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3121 if (dump_enabled_p ())
3122 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3123 "not vectorized: base addr of dr is a "
3124 "constant");
3126 if (bb_vinfo)
3128 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3129 stop_bb_analysis = true;
3130 continue;
3133 if (gather)
3134 free_data_ref (dr);
3135 return false;
3138 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3140 if (dump_enabled_p ())
3142 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3143 "not vectorized: volatile type ");
3144 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3147 if (bb_vinfo)
3149 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3150 stop_bb_analysis = true;
3151 continue;
3154 return false;
3157 if (stmt_can_throw_internal (stmt))
3159 if (dump_enabled_p ())
3161 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3162 "not vectorized: statement can throw an "
3163 "exception ");
3164 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3167 if (bb_vinfo)
3169 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3170 stop_bb_analysis = true;
3171 continue;
3174 if (gather)
3175 free_data_ref (dr);
3176 return false;
3179 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3180 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3182 if (dump_enabled_p ())
3184 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3185 "not vectorized: statement is bitfield "
3186 "access ");
3187 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3190 if (bb_vinfo)
3192 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3193 stop_bb_analysis = true;
3194 continue;
3197 if (gather)
3198 free_data_ref (dr);
3199 return false;
3202 base = unshare_expr (DR_BASE_ADDRESS (dr));
3203 offset = unshare_expr (DR_OFFSET (dr));
3204 init = unshare_expr (DR_INIT (dr));
3206 if (is_gimple_call (stmt))
3208 if (dump_enabled_p ())
3210 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3211 "not vectorized: dr in a call ");
3212 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3215 if (bb_vinfo)
3217 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3218 stop_bb_analysis = true;
3219 continue;
3222 if (gather)
3223 free_data_ref (dr);
3224 return false;
3227 /* Update DR field in stmt_vec_info struct. */
3229 /* If the dataref is in an inner-loop of the loop that is considered for
3230 for vectorization, we also want to analyze the access relative to
3231 the outer-loop (DR contains information only relative to the
3232 inner-most enclosing loop). We do that by building a reference to the
3233 first location accessed by the inner-loop, and analyze it relative to
3234 the outer-loop. */
3235 if (loop && nested_in_vect_loop_p (loop, stmt))
3237 tree outer_step, outer_base, outer_init;
3238 HOST_WIDE_INT pbitsize, pbitpos;
3239 tree poffset;
3240 enum machine_mode pmode;
3241 int punsignedp, pvolatilep;
3242 affine_iv base_iv, offset_iv;
3243 tree dinit;
3245 /* Build a reference to the first location accessed by the
3246 inner-loop: *(BASE+INIT). (The first location is actually
3247 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3248 tree inner_base = build_fold_indirect_ref
3249 (fold_build_pointer_plus (base, init));
3251 if (dump_enabled_p ())
3253 dump_printf_loc (MSG_NOTE, vect_location,
3254 "analyze in outer-loop: ");
3255 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
3258 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
3259 &poffset, &pmode, &punsignedp, &pvolatilep, false);
3260 gcc_assert (outer_base != NULL_TREE);
3262 if (pbitpos % BITS_PER_UNIT != 0)
3264 if (dump_enabled_p ())
3265 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3266 "failed: bit offset alignment.\n");
3267 return false;
3270 outer_base = build_fold_addr_expr (outer_base);
3271 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
3272 &base_iv, false))
3274 if (dump_enabled_p ())
3275 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3276 "failed: evolution of base is not affine.\n");
3277 return false;
3280 if (offset)
3282 if (poffset)
3283 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
3284 poffset);
3285 else
3286 poffset = offset;
3289 if (!poffset)
3291 offset_iv.base = ssize_int (0);
3292 offset_iv.step = ssize_int (0);
3294 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
3295 &offset_iv, false))
3297 if (dump_enabled_p ())
3298 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3299 "evolution of offset is not affine.\n");
3300 return false;
3303 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3304 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3305 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3306 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3307 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3309 outer_step = size_binop (PLUS_EXPR,
3310 fold_convert (ssizetype, base_iv.step),
3311 fold_convert (ssizetype, offset_iv.step));
3313 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3314 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3315 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
3316 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
3317 STMT_VINFO_DR_OFFSET (stmt_info) =
3318 fold_convert (ssizetype, offset_iv.base);
3319 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
3320 size_int (highest_pow2_factor (offset_iv.base));
3322 if (dump_enabled_p ())
3324 dump_printf_loc (MSG_NOTE, vect_location,
3325 "\touter base_address: ");
3326 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3327 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3328 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3329 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3330 STMT_VINFO_DR_OFFSET (stmt_info));
3331 dump_printf (MSG_NOTE,
3332 "\n\touter constant offset from base address: ");
3333 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3334 STMT_VINFO_DR_INIT (stmt_info));
3335 dump_printf (MSG_NOTE, "\n\touter step: ");
3336 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3337 STMT_VINFO_DR_STEP (stmt_info));
3338 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3339 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3340 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
3344 if (STMT_VINFO_DATA_REF (stmt_info))
3346 if (dump_enabled_p ())
3348 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3349 "not vectorized: more than one data ref "
3350 "in stmt: ");
3351 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3354 if (bb_vinfo)
3356 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3357 stop_bb_analysis = true;
3358 continue;
3361 if (gather)
3362 free_data_ref (dr);
3363 return false;
3366 STMT_VINFO_DATA_REF (stmt_info) = dr;
3368 /* Set vectype for STMT. */
3369 scalar_type = TREE_TYPE (DR_REF (dr));
3370 STMT_VINFO_VECTYPE (stmt_info) =
3371 get_vectype_for_scalar_type (scalar_type);
3372 if (!STMT_VINFO_VECTYPE (stmt_info))
3374 if (dump_enabled_p ())
3376 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3377 "not vectorized: no vectype for stmt: ");
3378 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3379 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3380 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3381 scalar_type);
3384 if (bb_vinfo)
3386 /* Mark the statement as not vectorizable. */
3387 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3388 stop_bb_analysis = true;
3389 continue;
3392 if (gather)
3394 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3395 free_data_ref (dr);
3397 return false;
3400 /* Adjust the minimal vectorization factor according to the
3401 vector type. */
3402 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3403 if (vf > *min_vf)
3404 *min_vf = vf;
3406 if (gather)
3408 unsigned int j, k, n;
3409 struct data_reference *olddr
3410 = datarefs[i];
3411 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
3412 struct data_dependence_relation *ddr, *newddr;
3413 bool bad = false;
3414 tree off;
3415 vec<loop_p> nest = LOOP_VINFO_LOOP_NEST (loop_vinfo);
3417 gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
3418 if (gather
3419 && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3420 gather = false;
3421 if (!gather)
3423 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3424 free_data_ref (dr);
3425 if (dump_enabled_p ())
3427 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3428 "not vectorized: not suitable for gather "
3429 "load ");
3430 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3432 return false;
3435 n = datarefs.length () - 1;
3436 for (j = 0, k = i - 1; j < i; j++)
3438 ddr = ddrs[k];
3439 gcc_assert (DDR_B (ddr) == olddr);
3440 newddr = initialize_data_dependence_relation (DDR_A (ddr), dr,
3441 nest);
3442 ddrs[k] = newddr;
3443 free_dependence_relation (ddr);
3444 if (!bad
3445 && DR_IS_WRITE (DDR_A (newddr))
3446 && DDR_ARE_DEPENDENT (newddr) != chrec_known)
3447 bad = true;
3448 k += --n;
3451 k++;
3452 n = k + datarefs.length () - i - 1;
3453 for (; k < n; k++)
3455 ddr = ddrs[k];
3456 gcc_assert (DDR_A (ddr) == olddr);
3457 newddr = initialize_data_dependence_relation (dr, DDR_B (ddr),
3458 nest);
3459 ddrs[k] = newddr;
3460 free_dependence_relation (ddr);
3461 if (!bad
3462 && DR_IS_WRITE (DDR_B (newddr))
3463 && DDR_ARE_DEPENDENT (newddr) != chrec_known)
3464 bad = true;
3467 k = ddrs.length ()
3468 - datarefs.length () + i;
3469 ddr = ddrs[k];
3470 gcc_assert (DDR_A (ddr) == olddr && DDR_B (ddr) == olddr);
3471 newddr = initialize_data_dependence_relation (dr, dr, nest);
3472 ddrs[k] = newddr;
3473 free_dependence_relation (ddr);
3474 datarefs[i] = dr;
3476 if (bad)
3478 if (dump_enabled_p ())
3480 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3481 "not vectorized: data dependence conflict"
3482 " prevents gather load");
3483 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3485 return false;
3488 STMT_VINFO_GATHER_P (stmt_info) = true;
3490 else if (loop_vinfo
3491 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3493 bool strided_load = false;
3494 if (!nested_in_vect_loop_p (loop, stmt))
3495 strided_load = vect_check_strided_load (stmt, loop_vinfo);
3496 if (!strided_load)
3498 if (dump_enabled_p ())
3500 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3501 "not vectorized: not suitable for strided "
3502 "load ");
3503 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3505 return false;
3507 STMT_VINFO_STRIDE_LOAD_P (stmt_info) = true;
3511 return true;
3515 /* Function vect_get_new_vect_var.
3517 Returns a name for a new variable. The current naming scheme appends the
3518 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3519 the name of vectorizer generated variables, and appends that to NAME if
3520 provided. */
3522 tree
3523 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3525 const char *prefix;
3526 tree new_vect_var;
3528 switch (var_kind)
3530 case vect_simple_var:
3531 prefix = "vect_";
3532 break;
3533 case vect_scalar_var:
3534 prefix = "stmp_";
3535 break;
3536 case vect_pointer_var:
3537 prefix = "vect_p";
3538 break;
3539 default:
3540 gcc_unreachable ();
3543 if (name)
3545 char* tmp = concat (prefix, name, NULL);
3546 new_vect_var = create_tmp_reg (type, tmp);
3547 free (tmp);
3549 else
3550 new_vect_var = create_tmp_reg (type, prefix);
3552 return new_vect_var;
3556 /* Function vect_create_addr_base_for_vector_ref.
3558 Create an expression that computes the address of the first memory location
3559 that will be accessed for a data reference.
3561 Input:
3562 STMT: The statement containing the data reference.
3563 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3564 OFFSET: Optional. If supplied, it is be added to the initial address.
3565 LOOP: Specify relative to which loop-nest should the address be computed.
3566 For example, when the dataref is in an inner-loop nested in an
3567 outer-loop that is now being vectorized, LOOP can be either the
3568 outer-loop, or the inner-loop. The first memory location accessed
3569 by the following dataref ('in' points to short):
3571 for (i=0; i<N; i++)
3572 for (j=0; j<M; j++)
3573 s += in[i+j]
3575 is as follows:
3576 if LOOP=i_loop: &in (relative to i_loop)
3577 if LOOP=j_loop: &in+i*2B (relative to j_loop)
3579 Output:
3580 1. Return an SSA_NAME whose value is the address of the memory location of
3581 the first vector of the data reference.
3582 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3583 these statement(s) which define the returned SSA_NAME.
3585 FORNOW: We are only handling array accesses with step 1. */
3587 tree
3588 vect_create_addr_base_for_vector_ref (gimple stmt,
3589 gimple_seq *new_stmt_list,
3590 tree offset,
3591 struct loop *loop)
3593 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3594 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3595 tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
3596 const char *base_name;
3597 tree data_ref_base_var;
3598 tree vec_stmt;
3599 tree addr_base, addr_expr;
3600 tree dest;
3601 gimple_seq seq = NULL;
3602 tree base_offset = unshare_expr (DR_OFFSET (dr));
3603 tree init = unshare_expr (DR_INIT (dr));
3604 tree vect_ptr_type;
3605 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
3606 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3607 tree base;
3609 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
3611 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
3613 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
3615 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3616 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
3617 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
3620 if (loop_vinfo)
3621 base_name = get_name (data_ref_base);
3622 else
3624 base_offset = ssize_int (0);
3625 init = ssize_int (0);
3626 base_name = get_name (DR_REF (dr));
3629 data_ref_base_var = create_tmp_var (TREE_TYPE (data_ref_base), "batmp");
3630 data_ref_base = force_gimple_operand (data_ref_base, &seq, true,
3631 data_ref_base_var);
3632 gimple_seq_add_seq (new_stmt_list, seq);
3634 /* Create base_offset */
3635 base_offset = size_binop (PLUS_EXPR,
3636 fold_convert (sizetype, base_offset),
3637 fold_convert (sizetype, init));
3638 dest = create_tmp_var (sizetype, "base_off");
3639 base_offset = force_gimple_operand (base_offset, &seq, true, dest);
3640 gimple_seq_add_seq (new_stmt_list, seq);
3642 if (offset)
3644 tree tmp = create_tmp_var (sizetype, "offset");
3646 offset = fold_build2 (MULT_EXPR, sizetype,
3647 fold_convert (sizetype, offset), step);
3648 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3649 base_offset, offset);
3650 base_offset = force_gimple_operand (base_offset, &seq, false, tmp);
3651 gimple_seq_add_seq (new_stmt_list, seq);
3654 /* base + base_offset */
3655 if (loop_vinfo)
3656 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
3657 else
3659 addr_base = build1 (ADDR_EXPR,
3660 build_pointer_type (TREE_TYPE (DR_REF (dr))),
3661 unshare_expr (DR_REF (dr)));
3664 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
3665 base = get_base_address (DR_REF (dr));
3666 if (base
3667 && TREE_CODE (base) == MEM_REF)
3668 vect_ptr_type
3669 = build_qualified_type (vect_ptr_type,
3670 TYPE_QUALS (TREE_TYPE (TREE_OPERAND (base, 0))));
3672 vec_stmt = fold_convert (vect_ptr_type, addr_base);
3673 addr_expr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
3674 base_name);
3675 vec_stmt = force_gimple_operand (vec_stmt, &seq, false, addr_expr);
3676 gimple_seq_add_seq (new_stmt_list, seq);
3678 if (DR_PTR_INFO (dr)
3679 && TREE_CODE (vec_stmt) == SSA_NAME)
3681 duplicate_ssa_name_ptr_info (vec_stmt, DR_PTR_INFO (dr));
3682 if (offset)
3683 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (vec_stmt));
3686 if (dump_enabled_p ())
3688 dump_printf_loc (MSG_NOTE, vect_location, "created ");
3689 dump_generic_expr (MSG_NOTE, TDF_SLIM, vec_stmt);
3692 return vec_stmt;
3696 /* Function vect_create_data_ref_ptr.
3698 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
3699 location accessed in the loop by STMT, along with the def-use update
3700 chain to appropriately advance the pointer through the loop iterations.
3701 Also set aliasing information for the pointer. This pointer is used by
3702 the callers to this function to create a memory reference expression for
3703 vector load/store access.
3705 Input:
3706 1. STMT: a stmt that references memory. Expected to be of the form
3707 GIMPLE_ASSIGN <name, data-ref> or
3708 GIMPLE_ASSIGN <data-ref, name>.
3709 2. AGGR_TYPE: the type of the reference, which should be either a vector
3710 or an array.
3711 3. AT_LOOP: the loop where the vector memref is to be created.
3712 4. OFFSET (optional): an offset to be added to the initial address accessed
3713 by the data-ref in STMT.
3714 5. BSI: location where the new stmts are to be placed if there is no loop
3715 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
3716 pointing to the initial address.
3718 Output:
3719 1. Declare a new ptr to vector_type, and have it point to the base of the
3720 data reference (initial addressed accessed by the data reference).
3721 For example, for vector of type V8HI, the following code is generated:
3723 v8hi *ap;
3724 ap = (v8hi *)initial_address;
3726 if OFFSET is not supplied:
3727 initial_address = &a[init];
3728 if OFFSET is supplied:
3729 initial_address = &a[init + OFFSET];
3731 Return the initial_address in INITIAL_ADDRESS.
3733 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
3734 update the pointer in each iteration of the loop.
3736 Return the increment stmt that updates the pointer in PTR_INCR.
3738 3. Set INV_P to true if the access pattern of the data reference in the
3739 vectorized loop is invariant. Set it to false otherwise.
3741 4. Return the pointer. */
3743 tree
3744 vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
3745 tree offset, tree *initial_address,
3746 gimple_stmt_iterator *gsi, gimple *ptr_incr,
3747 bool only_init, bool *inv_p)
3749 const char *base_name;
3750 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3751 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3752 struct loop *loop = NULL;
3753 bool nested_in_vect_loop = false;
3754 struct loop *containing_loop = NULL;
3755 tree aggr_ptr_type;
3756 tree aggr_ptr;
3757 tree new_temp;
3758 gimple vec_stmt;
3759 gimple_seq new_stmt_list = NULL;
3760 edge pe = NULL;
3761 basic_block new_bb;
3762 tree aggr_ptr_init;
3763 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3764 tree aptr;
3765 gimple_stmt_iterator incr_gsi;
3766 bool insert_after;
3767 bool negative;
3768 tree indx_before_incr, indx_after_incr;
3769 gimple incr;
3770 tree step;
3771 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3772 tree base;
3774 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
3775 || TREE_CODE (aggr_type) == VECTOR_TYPE);
3777 if (loop_vinfo)
3779 loop = LOOP_VINFO_LOOP (loop_vinfo);
3780 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
3781 containing_loop = (gimple_bb (stmt))->loop_father;
3782 pe = loop_preheader_edge (loop);
3784 else
3786 gcc_assert (bb_vinfo);
3787 only_init = true;
3788 *ptr_incr = NULL;
3791 /* Check the step (evolution) of the load in LOOP, and record
3792 whether it's invariant. */
3793 if (nested_in_vect_loop)
3794 step = STMT_VINFO_DR_STEP (stmt_info);
3795 else
3796 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
3798 if (tree_int_cst_compare (step, size_zero_node) == 0)
3799 *inv_p = true;
3800 else
3801 *inv_p = false;
3802 negative = tree_int_cst_compare (step, size_zero_node) < 0;
3804 /* Create an expression for the first address accessed by this load
3805 in LOOP. */
3806 base_name = get_name (DR_BASE_ADDRESS (dr));
3808 if (dump_enabled_p ())
3810 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
3811 dump_printf_loc (MSG_NOTE, vect_location,
3812 "create %s-pointer variable to type: ",
3813 tree_code_name[(int) TREE_CODE (aggr_type)]);
3814 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
3815 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
3816 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
3817 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
3818 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
3819 else
3820 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
3821 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
3824 /* (1) Create the new aggregate-pointer variable. */
3825 aggr_ptr_type = build_pointer_type (aggr_type);
3826 base = get_base_address (DR_REF (dr));
3827 if (base
3828 && TREE_CODE (base) == MEM_REF)
3829 aggr_ptr_type
3830 = build_qualified_type (aggr_ptr_type,
3831 TYPE_QUALS (TREE_TYPE (TREE_OPERAND (base, 0))));
3832 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
3834 /* Vector and array types inherit the alias set of their component
3835 type by default so we need to use a ref-all pointer if the data
3836 reference does not conflict with the created aggregated data
3837 reference because it is not addressable. */
3838 if (!alias_sets_conflict_p (get_deref_alias_set (aggr_ptr),
3839 get_alias_set (DR_REF (dr))))
3841 aggr_ptr_type
3842 = build_pointer_type_for_mode (aggr_type,
3843 TYPE_MODE (aggr_ptr_type), true);
3844 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
3845 base_name);
3848 /* Likewise for any of the data references in the stmt group. */
3849 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
3851 gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
3854 tree lhs = gimple_assign_lhs (orig_stmt);
3855 if (!alias_sets_conflict_p (get_deref_alias_set (aggr_ptr),
3856 get_alias_set (lhs)))
3858 aggr_ptr_type
3859 = build_pointer_type_for_mode (aggr_type,
3860 TYPE_MODE (aggr_ptr_type), true);
3861 aggr_ptr
3862 = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var,
3863 base_name);
3864 break;
3867 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo_for_stmt (orig_stmt));
3869 while (orig_stmt);
3872 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
3873 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
3874 def-use update cycles for the pointer: one relative to the outer-loop
3875 (LOOP), which is what steps (3) and (4) below do. The other is relative
3876 to the inner-loop (which is the inner-most loop containing the dataref),
3877 and this is done be step (5) below.
3879 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
3880 inner-most loop, and so steps (3),(4) work the same, and step (5) is
3881 redundant. Steps (3),(4) create the following:
3883 vp0 = &base_addr;
3884 LOOP: vp1 = phi(vp0,vp2)
3887 vp2 = vp1 + step
3888 goto LOOP
3890 If there is an inner-loop nested in loop, then step (5) will also be
3891 applied, and an additional update in the inner-loop will be created:
3893 vp0 = &base_addr;
3894 LOOP: vp1 = phi(vp0,vp2)
3896 inner: vp3 = phi(vp1,vp4)
3897 vp4 = vp3 + inner_step
3898 if () goto inner
3900 vp2 = vp1 + step
3901 if () goto LOOP */
3903 /* (2) Calculate the initial address of the aggregate-pointer, and set
3904 the aggregate-pointer to point to it before the loop. */
3906 /* Create: (&(base[init_val+offset]) in the loop preheader. */
3908 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
3909 offset, loop);
3910 if (new_stmt_list)
3912 if (pe)
3914 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
3915 gcc_assert (!new_bb);
3917 else
3918 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
3921 *initial_address = new_temp;
3923 /* Create: p = (aggr_type *) initial_base */
3924 if (TREE_CODE (new_temp) != SSA_NAME
3925 || !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
3927 vec_stmt = gimple_build_assign (aggr_ptr,
3928 fold_convert (aggr_ptr_type, new_temp));
3929 aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
3930 /* Copy the points-to information if it exists. */
3931 if (DR_PTR_INFO (dr))
3932 duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
3933 gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
3934 if (pe)
3936 new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
3937 gcc_assert (!new_bb);
3939 else
3940 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
3942 else
3943 aggr_ptr_init = new_temp;
3945 /* (3) Handle the updating of the aggregate-pointer inside the loop.
3946 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
3947 inner-loop nested in LOOP (during outer-loop vectorization). */
3949 /* No update in loop is required. */
3950 if (only_init && (!loop_vinfo || at_loop == loop))
3951 aptr = aggr_ptr_init;
3952 else
3954 /* The step of the aggregate pointer is the type size. */
3955 tree step = TYPE_SIZE_UNIT (aggr_type);
3956 /* One exception to the above is when the scalar step of the load in
3957 LOOP is zero. In this case the step here is also zero. */
3958 if (*inv_p)
3959 step = size_zero_node;
3960 else if (negative)
3961 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
3963 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
3965 create_iv (aggr_ptr_init,
3966 fold_convert (aggr_ptr_type, step),
3967 aggr_ptr, loop, &incr_gsi, insert_after,
3968 &indx_before_incr, &indx_after_incr);
3969 incr = gsi_stmt (incr_gsi);
3970 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
3972 /* Copy the points-to information if it exists. */
3973 if (DR_PTR_INFO (dr))
3975 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
3976 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
3978 if (ptr_incr)
3979 *ptr_incr = incr;
3981 aptr = indx_before_incr;
3984 if (!nested_in_vect_loop || only_init)
3985 return aptr;
3988 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
3989 nested in LOOP, if exists. */
3991 gcc_assert (nested_in_vect_loop);
3992 if (!only_init)
3994 standard_iv_increment_position (containing_loop, &incr_gsi,
3995 &insert_after);
3996 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
3997 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
3998 &indx_after_incr);
3999 incr = gsi_stmt (incr_gsi);
4000 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4002 /* Copy the points-to information if it exists. */
4003 if (DR_PTR_INFO (dr))
4005 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
4006 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
4008 if (ptr_incr)
4009 *ptr_incr = incr;
4011 return indx_before_incr;
4013 else
4014 gcc_unreachable ();
4018 /* Function bump_vector_ptr
4020 Increment a pointer (to a vector type) by vector-size. If requested,
4021 i.e. if PTR-INCR is given, then also connect the new increment stmt
4022 to the existing def-use update-chain of the pointer, by modifying
4023 the PTR_INCR as illustrated below:
4025 The pointer def-use update-chain before this function:
4026 DATAREF_PTR = phi (p_0, p_2)
4027 ....
4028 PTR_INCR: p_2 = DATAREF_PTR + step
4030 The pointer def-use update-chain after this function:
4031 DATAREF_PTR = phi (p_0, p_2)
4032 ....
4033 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4034 ....
4035 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4037 Input:
4038 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4039 in the loop.
4040 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4041 the loop. The increment amount across iterations is expected
4042 to be vector_size.
4043 BSI - location where the new update stmt is to be placed.
4044 STMT - the original scalar memory-access stmt that is being vectorized.
4045 BUMP - optional. The offset by which to bump the pointer. If not given,
4046 the offset is assumed to be vector_size.
4048 Output: Return NEW_DATAREF_PTR as illustrated above.
4052 tree
4053 bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
4054 gimple stmt, tree bump)
4056 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4057 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4058 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4059 tree update = TYPE_SIZE_UNIT (vectype);
4060 gimple incr_stmt;
4061 ssa_op_iter iter;
4062 use_operand_p use_p;
4063 tree new_dataref_ptr;
4065 if (bump)
4066 update = bump;
4068 new_dataref_ptr = copy_ssa_name (dataref_ptr, NULL);
4069 incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, new_dataref_ptr,
4070 dataref_ptr, update);
4071 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4073 /* Copy the points-to information if it exists. */
4074 if (DR_PTR_INFO (dr))
4076 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4077 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4080 if (!ptr_incr)
4081 return new_dataref_ptr;
4083 /* Update the vector-pointer's cross-iteration increment. */
4084 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4086 tree use = USE_FROM_PTR (use_p);
4088 if (use == dataref_ptr)
4089 SET_USE (use_p, new_dataref_ptr);
4090 else
4091 gcc_assert (tree_int_cst_compare (use, update) == 0);
4094 return new_dataref_ptr;
4098 /* Function vect_create_destination_var.
4100 Create a new temporary of type VECTYPE. */
4102 tree
4103 vect_create_destination_var (tree scalar_dest, tree vectype)
4105 tree vec_dest;
4106 const char *new_name;
4107 tree type;
4108 enum vect_var_kind kind;
4110 kind = vectype ? vect_simple_var : vect_scalar_var;
4111 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4113 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4115 new_name = get_name (scalar_dest);
4116 if (!new_name)
4117 new_name = "var_";
4118 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4120 return vec_dest;
4123 /* Function vect_grouped_store_supported.
4125 Returns TRUE if interleave high and interleave low permutations
4126 are supported, and FALSE otherwise. */
4128 bool
4129 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4131 enum machine_mode mode = TYPE_MODE (vectype);
4133 /* vect_permute_store_chain requires the group size to be a power of two. */
4134 if (exact_log2 (count) == -1)
4136 if (dump_enabled_p ())
4137 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4138 "the size of the group of accesses"
4139 " is not a power of 2");
4140 return false;
4143 /* Check that the permutation is supported. */
4144 if (VECTOR_MODE_P (mode))
4146 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4147 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4148 for (i = 0; i < nelt / 2; i++)
4150 sel[i * 2] = i;
4151 sel[i * 2 + 1] = i + nelt;
4153 if (can_vec_perm_p (mode, false, sel))
4155 for (i = 0; i < nelt; i++)
4156 sel[i] += nelt / 2;
4157 if (can_vec_perm_p (mode, false, sel))
4158 return true;
4162 if (dump_enabled_p ())
4163 dump_printf (MSG_MISSED_OPTIMIZATION,
4164 "interleave op not supported by target.");
4165 return false;
4169 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4170 type VECTYPE. */
4172 bool
4173 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4175 return vect_lanes_optab_supported_p ("vec_store_lanes",
4176 vec_store_lanes_optab,
4177 vectype, count);
4181 /* Function vect_permute_store_chain.
4183 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4184 a power of 2, generate interleave_high/low stmts to reorder the data
4185 correctly for the stores. Return the final references for stores in
4186 RESULT_CHAIN.
4188 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4189 The input is 4 vectors each containing 8 elements. We assign a number to
4190 each element, the input sequence is:
4192 1st vec: 0 1 2 3 4 5 6 7
4193 2nd vec: 8 9 10 11 12 13 14 15
4194 3rd vec: 16 17 18 19 20 21 22 23
4195 4th vec: 24 25 26 27 28 29 30 31
4197 The output sequence should be:
4199 1st vec: 0 8 16 24 1 9 17 25
4200 2nd vec: 2 10 18 26 3 11 19 27
4201 3rd vec: 4 12 20 28 5 13 21 30
4202 4th vec: 6 14 22 30 7 15 23 31
4204 i.e., we interleave the contents of the four vectors in their order.
4206 We use interleave_high/low instructions to create such output. The input of
4207 each interleave_high/low operation is two vectors:
4208 1st vec 2nd vec
4209 0 1 2 3 4 5 6 7
4210 the even elements of the result vector are obtained left-to-right from the
4211 high/low elements of the first vector. The odd elements of the result are
4212 obtained left-to-right from the high/low elements of the second vector.
4213 The output of interleave_high will be: 0 4 1 5
4214 and of interleave_low: 2 6 3 7
4217 The permutation is done in log LENGTH stages. In each stage interleave_high
4218 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4219 where the first argument is taken from the first half of DR_CHAIN and the
4220 second argument from it's second half.
4221 In our example,
4223 I1: interleave_high (1st vec, 3rd vec)
4224 I2: interleave_low (1st vec, 3rd vec)
4225 I3: interleave_high (2nd vec, 4th vec)
4226 I4: interleave_low (2nd vec, 4th vec)
4228 The output for the first stage is:
4230 I1: 0 16 1 17 2 18 3 19
4231 I2: 4 20 5 21 6 22 7 23
4232 I3: 8 24 9 25 10 26 11 27
4233 I4: 12 28 13 29 14 30 15 31
4235 The output of the second stage, i.e. the final result is:
4237 I1: 0 8 16 24 1 9 17 25
4238 I2: 2 10 18 26 3 11 19 27
4239 I3: 4 12 20 28 5 13 21 30
4240 I4: 6 14 22 30 7 15 23 31. */
4242 void
4243 vect_permute_store_chain (vec<tree> dr_chain,
4244 unsigned int length,
4245 gimple stmt,
4246 gimple_stmt_iterator *gsi,
4247 vec<tree> *result_chain)
4249 tree vect1, vect2, high, low;
4250 gimple perm_stmt;
4251 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4252 tree perm_mask_low, perm_mask_high;
4253 unsigned int i, n;
4254 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4255 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4257 result_chain->quick_grow (length);
4258 memcpy (result_chain->address (), dr_chain.address (),
4259 length * sizeof (tree));
4261 for (i = 0, n = nelt / 2; i < n; i++)
4263 sel[i * 2] = i;
4264 sel[i * 2 + 1] = i + nelt;
4266 perm_mask_high = vect_gen_perm_mask (vectype, sel);
4267 gcc_assert (perm_mask_high != NULL);
4269 for (i = 0; i < nelt; i++)
4270 sel[i] += nelt / 2;
4271 perm_mask_low = vect_gen_perm_mask (vectype, sel);
4272 gcc_assert (perm_mask_low != NULL);
4274 for (i = 0, n = exact_log2 (length); i < n; i++)
4276 for (j = 0; j < length/2; j++)
4278 vect1 = dr_chain[j];
4279 vect2 = dr_chain[j+length/2];
4281 /* Create interleaving stmt:
4282 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1, ...}> */
4283 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4284 perm_stmt
4285 = gimple_build_assign_with_ops (VEC_PERM_EXPR, high,
4286 vect1, vect2, perm_mask_high);
4287 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4288 (*result_chain)[2*j] = high;
4290 /* Create interleaving stmt:
4291 low = VEC_PERM_EXPR <vect1, vect2, {nelt/2, nelt*3/2, nelt/2+1,
4292 nelt*3/2+1, ...}> */
4293 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4294 perm_stmt
4295 = gimple_build_assign_with_ops (VEC_PERM_EXPR, low,
4296 vect1, vect2, perm_mask_low);
4297 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4298 (*result_chain)[2*j+1] = low;
4300 memcpy (dr_chain.address (), result_chain->address (),
4301 length * sizeof (tree));
4305 /* Function vect_setup_realignment
4307 This function is called when vectorizing an unaligned load using
4308 the dr_explicit_realign[_optimized] scheme.
4309 This function generates the following code at the loop prolog:
4311 p = initial_addr;
4312 x msq_init = *(floor(p)); # prolog load
4313 realignment_token = call target_builtin;
4314 loop:
4315 x msq = phi (msq_init, ---)
4317 The stmts marked with x are generated only for the case of
4318 dr_explicit_realign_optimized.
4320 The code above sets up a new (vector) pointer, pointing to the first
4321 location accessed by STMT, and a "floor-aligned" load using that pointer.
4322 It also generates code to compute the "realignment-token" (if the relevant
4323 target hook was defined), and creates a phi-node at the loop-header bb
4324 whose arguments are the result of the prolog-load (created by this
4325 function) and the result of a load that takes place in the loop (to be
4326 created by the caller to this function).
4328 For the case of dr_explicit_realign_optimized:
4329 The caller to this function uses the phi-result (msq) to create the
4330 realignment code inside the loop, and sets up the missing phi argument,
4331 as follows:
4332 loop:
4333 msq = phi (msq_init, lsq)
4334 lsq = *(floor(p')); # load in loop
4335 result = realign_load (msq, lsq, realignment_token);
4337 For the case of dr_explicit_realign:
4338 loop:
4339 msq = *(floor(p)); # load in loop
4340 p' = p + (VS-1);
4341 lsq = *(floor(p')); # load in loop
4342 result = realign_load (msq, lsq, realignment_token);
4344 Input:
4345 STMT - (scalar) load stmt to be vectorized. This load accesses
4346 a memory location that may be unaligned.
4347 BSI - place where new code is to be inserted.
4348 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4349 is used.
4351 Output:
4352 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4353 target hook, if defined.
4354 Return value - the result of the loop-header phi node. */
4356 tree
4357 vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
4358 tree *realignment_token,
4359 enum dr_alignment_support alignment_support_scheme,
4360 tree init_addr,
4361 struct loop **at_loop)
4363 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4364 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4365 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4366 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4367 struct loop *loop = NULL;
4368 edge pe = NULL;
4369 tree scalar_dest = gimple_assign_lhs (stmt);
4370 tree vec_dest;
4371 gimple inc;
4372 tree ptr;
4373 tree data_ref;
4374 gimple new_stmt;
4375 basic_block new_bb;
4376 tree msq_init = NULL_TREE;
4377 tree new_temp;
4378 gimple phi_stmt;
4379 tree msq = NULL_TREE;
4380 gimple_seq stmts = NULL;
4381 bool inv_p;
4382 bool compute_in_loop = false;
4383 bool nested_in_vect_loop = false;
4384 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4385 struct loop *loop_for_initial_load = NULL;
4387 if (loop_vinfo)
4389 loop = LOOP_VINFO_LOOP (loop_vinfo);
4390 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4393 gcc_assert (alignment_support_scheme == dr_explicit_realign
4394 || alignment_support_scheme == dr_explicit_realign_optimized);
4396 /* We need to generate three things:
4397 1. the misalignment computation
4398 2. the extra vector load (for the optimized realignment scheme).
4399 3. the phi node for the two vectors from which the realignment is
4400 done (for the optimized realignment scheme). */
4402 /* 1. Determine where to generate the misalignment computation.
4404 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4405 calculation will be generated by this function, outside the loop (in the
4406 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4407 caller, inside the loop.
4409 Background: If the misalignment remains fixed throughout the iterations of
4410 the loop, then both realignment schemes are applicable, and also the
4411 misalignment computation can be done outside LOOP. This is because we are
4412 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4413 are a multiple of VS (the Vector Size), and therefore the misalignment in
4414 different vectorized LOOP iterations is always the same.
4415 The problem arises only if the memory access is in an inner-loop nested
4416 inside LOOP, which is now being vectorized using outer-loop vectorization.
4417 This is the only case when the misalignment of the memory access may not
4418 remain fixed throughout the iterations of the inner-loop (as explained in
4419 detail in vect_supportable_dr_alignment). In this case, not only is the
4420 optimized realignment scheme not applicable, but also the misalignment
4421 computation (and generation of the realignment token that is passed to
4422 REALIGN_LOAD) have to be done inside the loop.
4424 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4425 or not, which in turn determines if the misalignment is computed inside
4426 the inner-loop, or outside LOOP. */
4428 if (init_addr != NULL_TREE || !loop_vinfo)
4430 compute_in_loop = true;
4431 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4435 /* 2. Determine where to generate the extra vector load.
4437 For the optimized realignment scheme, instead of generating two vector
4438 loads in each iteration, we generate a single extra vector load in the
4439 preheader of the loop, and in each iteration reuse the result of the
4440 vector load from the previous iteration. In case the memory access is in
4441 an inner-loop nested inside LOOP, which is now being vectorized using
4442 outer-loop vectorization, we need to determine whether this initial vector
4443 load should be generated at the preheader of the inner-loop, or can be
4444 generated at the preheader of LOOP. If the memory access has no evolution
4445 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4446 to be generated inside LOOP (in the preheader of the inner-loop). */
4448 if (nested_in_vect_loop)
4450 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4451 bool invariant_in_outerloop =
4452 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4453 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4455 else
4456 loop_for_initial_load = loop;
4457 if (at_loop)
4458 *at_loop = loop_for_initial_load;
4460 if (loop_for_initial_load)
4461 pe = loop_preheader_edge (loop_for_initial_load);
4463 /* 3. For the case of the optimized realignment, create the first vector
4464 load at the loop preheader. */
4466 if (alignment_support_scheme == dr_explicit_realign_optimized)
4468 /* Create msq_init = *(floor(p1)) in the loop preheader */
4470 gcc_assert (!compute_in_loop);
4471 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4472 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
4473 NULL_TREE, &init_addr, NULL, &inc,
4474 true, &inv_p);
4475 new_temp = copy_ssa_name (ptr, NULL);
4476 new_stmt = gimple_build_assign_with_ops
4477 (BIT_AND_EXPR, new_temp, ptr,
4478 build_int_cst (TREE_TYPE (ptr),
4479 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
4480 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4481 gcc_assert (!new_bb);
4482 data_ref
4483 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
4484 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
4485 new_stmt = gimple_build_assign (vec_dest, data_ref);
4486 new_temp = make_ssa_name (vec_dest, new_stmt);
4487 gimple_assign_set_lhs (new_stmt, new_temp);
4488 if (pe)
4490 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4491 gcc_assert (!new_bb);
4493 else
4494 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4496 msq_init = gimple_assign_lhs (new_stmt);
4499 /* 4. Create realignment token using a target builtin, if available.
4500 It is done either inside the containing loop, or before LOOP (as
4501 determined above). */
4503 if (targetm.vectorize.builtin_mask_for_load)
4505 tree builtin_decl;
4507 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
4508 if (!init_addr)
4510 /* Generate the INIT_ADDR computation outside LOOP. */
4511 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
4512 NULL_TREE, loop);
4513 if (loop)
4515 pe = loop_preheader_edge (loop);
4516 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
4517 gcc_assert (!new_bb);
4519 else
4520 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
4523 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
4524 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
4525 vec_dest =
4526 vect_create_destination_var (scalar_dest,
4527 gimple_call_return_type (new_stmt));
4528 new_temp = make_ssa_name (vec_dest, new_stmt);
4529 gimple_call_set_lhs (new_stmt, new_temp);
4531 if (compute_in_loop)
4532 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4533 else
4535 /* Generate the misalignment computation outside LOOP. */
4536 pe = loop_preheader_edge (loop);
4537 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4538 gcc_assert (!new_bb);
4541 *realignment_token = gimple_call_lhs (new_stmt);
4543 /* The result of the CALL_EXPR to this builtin is determined from
4544 the value of the parameter and no global variables are touched
4545 which makes the builtin a "const" function. Requiring the
4546 builtin to have the "const" attribute makes it unnecessary
4547 to call mark_call_clobbered. */
4548 gcc_assert (TREE_READONLY (builtin_decl));
4551 if (alignment_support_scheme == dr_explicit_realign)
4552 return msq;
4554 gcc_assert (!compute_in_loop);
4555 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
4558 /* 5. Create msq = phi <msq_init, lsq> in loop */
4560 pe = loop_preheader_edge (containing_loop);
4561 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4562 msq = make_ssa_name (vec_dest, NULL);
4563 phi_stmt = create_phi_node (msq, containing_loop->header);
4564 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
4566 return msq;
4570 /* Function vect_grouped_load_supported.
4572 Returns TRUE if even and odd permutations are supported,
4573 and FALSE otherwise. */
4575 bool
4576 vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
4578 enum machine_mode mode = TYPE_MODE (vectype);
4580 /* vect_permute_load_chain requires the group size to be a power of two. */
4581 if (exact_log2 (count) == -1)
4583 if (dump_enabled_p ())
4584 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4585 "the size of the group of accesses"
4586 " is not a power of 2");
4587 return false;
4590 /* Check that the permutation is supported. */
4591 if (VECTOR_MODE_P (mode))
4593 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4594 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4596 for (i = 0; i < nelt; i++)
4597 sel[i] = i * 2;
4598 if (can_vec_perm_p (mode, false, sel))
4600 for (i = 0; i < nelt; i++)
4601 sel[i] = i * 2 + 1;
4602 if (can_vec_perm_p (mode, false, sel))
4603 return true;
4607 if (dump_enabled_p ())
4608 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4609 "extract even/odd not supported by target");
4610 return false;
4613 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
4614 type VECTYPE. */
4616 bool
4617 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4619 return vect_lanes_optab_supported_p ("vec_load_lanes",
4620 vec_load_lanes_optab,
4621 vectype, count);
4624 /* Function vect_permute_load_chain.
4626 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
4627 a power of 2, generate extract_even/odd stmts to reorder the input data
4628 correctly. Return the final references for loads in RESULT_CHAIN.
4630 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4631 The input is 4 vectors each containing 8 elements. We assign a number to each
4632 element, the input sequence is:
4634 1st vec: 0 1 2 3 4 5 6 7
4635 2nd vec: 8 9 10 11 12 13 14 15
4636 3rd vec: 16 17 18 19 20 21 22 23
4637 4th vec: 24 25 26 27 28 29 30 31
4639 The output sequence should be:
4641 1st vec: 0 4 8 12 16 20 24 28
4642 2nd vec: 1 5 9 13 17 21 25 29
4643 3rd vec: 2 6 10 14 18 22 26 30
4644 4th vec: 3 7 11 15 19 23 27 31
4646 i.e., the first output vector should contain the first elements of each
4647 interleaving group, etc.
4649 We use extract_even/odd instructions to create such output. The input of
4650 each extract_even/odd operation is two vectors
4651 1st vec 2nd vec
4652 0 1 2 3 4 5 6 7
4654 and the output is the vector of extracted even/odd elements. The output of
4655 extract_even will be: 0 2 4 6
4656 and of extract_odd: 1 3 5 7
4659 The permutation is done in log LENGTH stages. In each stage extract_even
4660 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
4661 their order. In our example,
4663 E1: extract_even (1st vec, 2nd vec)
4664 E2: extract_odd (1st vec, 2nd vec)
4665 E3: extract_even (3rd vec, 4th vec)
4666 E4: extract_odd (3rd vec, 4th vec)
4668 The output for the first stage will be:
4670 E1: 0 2 4 6 8 10 12 14
4671 E2: 1 3 5 7 9 11 13 15
4672 E3: 16 18 20 22 24 26 28 30
4673 E4: 17 19 21 23 25 27 29 31
4675 In order to proceed and create the correct sequence for the next stage (or
4676 for the correct output, if the second stage is the last one, as in our
4677 example), we first put the output of extract_even operation and then the
4678 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
4679 The input for the second stage is:
4681 1st vec (E1): 0 2 4 6 8 10 12 14
4682 2nd vec (E3): 16 18 20 22 24 26 28 30
4683 3rd vec (E2): 1 3 5 7 9 11 13 15
4684 4th vec (E4): 17 19 21 23 25 27 29 31
4686 The output of the second stage:
4688 E1: 0 4 8 12 16 20 24 28
4689 E2: 2 6 10 14 18 22 26 30
4690 E3: 1 5 9 13 17 21 25 29
4691 E4: 3 7 11 15 19 23 27 31
4693 And RESULT_CHAIN after reordering:
4695 1st vec (E1): 0 4 8 12 16 20 24 28
4696 2nd vec (E3): 1 5 9 13 17 21 25 29
4697 3rd vec (E2): 2 6 10 14 18 22 26 30
4698 4th vec (E4): 3 7 11 15 19 23 27 31. */
4700 static void
4701 vect_permute_load_chain (vec<tree> dr_chain,
4702 unsigned int length,
4703 gimple stmt,
4704 gimple_stmt_iterator *gsi,
4705 vec<tree> *result_chain)
4707 tree data_ref, first_vect, second_vect;
4708 tree perm_mask_even, perm_mask_odd;
4709 gimple perm_stmt;
4710 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4711 unsigned int i, j, log_length = exact_log2 (length);
4712 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
4713 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4715 result_chain->quick_grow (length);
4716 memcpy (result_chain->address (), dr_chain.address (),
4717 length * sizeof (tree));
4719 for (i = 0; i < nelt; ++i)
4720 sel[i] = i * 2;
4721 perm_mask_even = vect_gen_perm_mask (vectype, sel);
4722 gcc_assert (perm_mask_even != NULL);
4724 for (i = 0; i < nelt; ++i)
4725 sel[i] = i * 2 + 1;
4726 perm_mask_odd = vect_gen_perm_mask (vectype, sel);
4727 gcc_assert (perm_mask_odd != NULL);
4729 for (i = 0; i < log_length; i++)
4731 for (j = 0; j < length; j += 2)
4733 first_vect = dr_chain[j];
4734 second_vect = dr_chain[j+1];
4736 /* data_ref = permute_even (first_data_ref, second_data_ref); */
4737 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
4738 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4739 first_vect, second_vect,
4740 perm_mask_even);
4741 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4742 (*result_chain)[j/2] = data_ref;
4744 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
4745 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
4746 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4747 first_vect, second_vect,
4748 perm_mask_odd);
4749 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4750 (*result_chain)[j/2+length/2] = data_ref;
4752 memcpy (dr_chain.address (), result_chain->address (),
4753 length * sizeof (tree));
4758 /* Function vect_transform_grouped_load.
4760 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
4761 to perform their permutation and ascribe the result vectorized statements to
4762 the scalar statements.
4765 void
4766 vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
4767 gimple_stmt_iterator *gsi)
4769 vec<tree> result_chain = vNULL;
4771 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
4772 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
4773 vectors, that are ready for vector computation. */
4774 result_chain.create (size);
4775 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
4776 vect_record_grouped_load_vectors (stmt, result_chain);
4777 result_chain.release ();
4780 /* RESULT_CHAIN contains the output of a group of grouped loads that were
4781 generated as part of the vectorization of STMT. Assign the statement
4782 for each vector to the associated scalar statement. */
4784 void
4785 vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
4787 gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
4788 gimple next_stmt, new_stmt;
4789 unsigned int i, gap_count;
4790 tree tmp_data_ref;
4792 /* Put a permuted data-ref in the VECTORIZED_STMT field.
4793 Since we scan the chain starting from it's first node, their order
4794 corresponds the order of data-refs in RESULT_CHAIN. */
4795 next_stmt = first_stmt;
4796 gap_count = 1;
4797 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
4799 if (!next_stmt)
4800 break;
4802 /* Skip the gaps. Loads created for the gaps will be removed by dead
4803 code elimination pass later. No need to check for the first stmt in
4804 the group, since it always exists.
4805 GROUP_GAP is the number of steps in elements from the previous
4806 access (if there is no gap GROUP_GAP is 1). We skip loads that
4807 correspond to the gaps. */
4808 if (next_stmt != first_stmt
4809 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
4811 gap_count++;
4812 continue;
4815 while (next_stmt)
4817 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
4818 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
4819 copies, and we put the new vector statement in the first available
4820 RELATED_STMT. */
4821 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
4822 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
4823 else
4825 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
4827 gimple prev_stmt =
4828 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
4829 gimple rel_stmt =
4830 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
4831 while (rel_stmt)
4833 prev_stmt = rel_stmt;
4834 rel_stmt =
4835 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
4838 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
4839 new_stmt;
4843 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
4844 gap_count = 1;
4845 /* If NEXT_STMT accesses the same DR as the previous statement,
4846 put the same TMP_DATA_REF as its vectorized statement; otherwise
4847 get the next data-ref from RESULT_CHAIN. */
4848 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
4849 break;
4854 /* Function vect_force_dr_alignment_p.
4856 Returns whether the alignment of a DECL can be forced to be aligned
4857 on ALIGNMENT bit boundary. */
4859 bool
4860 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
4862 if (TREE_CODE (decl) != VAR_DECL)
4863 return false;
4865 /* We cannot change alignment of common or external symbols as another
4866 translation unit may contain a definition with lower alignment.
4867 The rules of common symbol linking mean that the definition
4868 will override the common symbol. The same is true for constant
4869 pool entries which may be shared and are not properly merged
4870 by LTO. */
4871 if (DECL_EXTERNAL (decl)
4872 || DECL_COMMON (decl)
4873 || DECL_IN_CONSTANT_POOL (decl))
4874 return false;
4876 if (TREE_ASM_WRITTEN (decl))
4877 return false;
4879 /* Do not override the alignment as specified by the ABI when the used
4880 attribute is set. */
4881 if (DECL_PRESERVE_P (decl))
4882 return false;
4884 /* Do not override explicit alignment set by the user when an explicit
4885 section name is also used. This is a common idiom used by many
4886 software projects. */
4887 if (DECL_SECTION_NAME (decl) != NULL_TREE
4888 && !DECL_HAS_IMPLICIT_SECTION_NAME_P (decl))
4889 return false;
4891 if (TREE_STATIC (decl))
4892 return (alignment <= MAX_OFILE_ALIGNMENT);
4893 else
4894 return (alignment <= MAX_STACK_ALIGNMENT);
4898 /* Return whether the data reference DR is supported with respect to its
4899 alignment.
4900 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
4901 it is aligned, i.e., check if it is possible to vectorize it with different
4902 alignment. */
4904 enum dr_alignment_support
4905 vect_supportable_dr_alignment (struct data_reference *dr,
4906 bool check_aligned_accesses)
4908 gimple stmt = DR_STMT (dr);
4909 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4910 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4911 enum machine_mode mode = TYPE_MODE (vectype);
4912 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4913 struct loop *vect_loop = NULL;
4914 bool nested_in_vect_loop = false;
4916 if (aligned_access_p (dr) && !check_aligned_accesses)
4917 return dr_aligned;
4919 if (loop_vinfo)
4921 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
4922 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
4925 /* Possibly unaligned access. */
4927 /* We can choose between using the implicit realignment scheme (generating
4928 a misaligned_move stmt) and the explicit realignment scheme (generating
4929 aligned loads with a REALIGN_LOAD). There are two variants to the
4930 explicit realignment scheme: optimized, and unoptimized.
4931 We can optimize the realignment only if the step between consecutive
4932 vector loads is equal to the vector size. Since the vector memory
4933 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
4934 is guaranteed that the misalignment amount remains the same throughout the
4935 execution of the vectorized loop. Therefore, we can create the
4936 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
4937 at the loop preheader.
4939 However, in the case of outer-loop vectorization, when vectorizing a
4940 memory access in the inner-loop nested within the LOOP that is now being
4941 vectorized, while it is guaranteed that the misalignment of the
4942 vectorized memory access will remain the same in different outer-loop
4943 iterations, it is *not* guaranteed that is will remain the same throughout
4944 the execution of the inner-loop. This is because the inner-loop advances
4945 with the original scalar step (and not in steps of VS). If the inner-loop
4946 step happens to be a multiple of VS, then the misalignment remains fixed
4947 and we can use the optimized realignment scheme. For example:
4949 for (i=0; i<N; i++)
4950 for (j=0; j<M; j++)
4951 s += a[i+j];
4953 When vectorizing the i-loop in the above example, the step between
4954 consecutive vector loads is 1, and so the misalignment does not remain
4955 fixed across the execution of the inner-loop, and the realignment cannot
4956 be optimized (as illustrated in the following pseudo vectorized loop):
4958 for (i=0; i<N; i+=4)
4959 for (j=0; j<M; j++){
4960 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
4961 // when j is {0,1,2,3,4,5,6,7,...} respectively.
4962 // (assuming that we start from an aligned address).
4965 We therefore have to use the unoptimized realignment scheme:
4967 for (i=0; i<N; i+=4)
4968 for (j=k; j<M; j+=4)
4969 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
4970 // that the misalignment of the initial address is
4971 // 0).
4973 The loop can then be vectorized as follows:
4975 for (k=0; k<4; k++){
4976 rt = get_realignment_token (&vp[k]);
4977 for (i=0; i<N; i+=4){
4978 v1 = vp[i+k];
4979 for (j=k; j<M; j+=4){
4980 v2 = vp[i+j+VS-1];
4981 va = REALIGN_LOAD <v1,v2,rt>;
4982 vs += va;
4983 v1 = v2;
4986 } */
4988 if (DR_IS_READ (dr))
4990 bool is_packed = false;
4991 tree type = (TREE_TYPE (DR_REF (dr)));
4993 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
4994 && (!targetm.vectorize.builtin_mask_for_load
4995 || targetm.vectorize.builtin_mask_for_load ()))
4997 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4998 if ((nested_in_vect_loop
4999 && (TREE_INT_CST_LOW (DR_STEP (dr))
5000 != GET_MODE_SIZE (TYPE_MODE (vectype))))
5001 || !loop_vinfo)
5002 return dr_explicit_realign;
5003 else
5004 return dr_explicit_realign_optimized;
5006 if (!known_alignment_for_access_p (dr))
5007 is_packed = not_size_aligned (DR_REF (dr));
5009 if (targetm.vectorize.
5010 support_vector_misalignment (mode, type,
5011 DR_MISALIGNMENT (dr), is_packed))
5012 /* Can't software pipeline the loads, but can at least do them. */
5013 return dr_unaligned_supported;
5015 else
5017 bool is_packed = false;
5018 tree type = (TREE_TYPE (DR_REF (dr)));
5020 if (!known_alignment_for_access_p (dr))
5021 is_packed = not_size_aligned (DR_REF (dr));
5023 if (targetm.vectorize.
5024 support_vector_misalignment (mode, type,
5025 DR_MISALIGNMENT (dr), is_packed))
5026 return dr_unaligned_supported;
5029 /* Unsupported. */
5030 return dr_unaligned_unsupported;