Merge branches/gcc-4_8-branch rev 208968.
[official-gcc.git] / gcc-4_8-branch / gcc / tree-ssa-reassoc.c
blob14eae6b3f7b05833bad29e9d53b7b1468ae3a32a
1 /* Reassociation for trees.
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "tree-inline.h"
29 #include "tree-flow.h"
30 #include "gimple.h"
31 #include "tree-iterator.h"
32 #include "tree-pass.h"
33 #include "alloc-pool.h"
34 #include "vec.h"
35 #include "langhooks.h"
36 #include "pointer-set.h"
37 #include "cfgloop.h"
38 #include "flags.h"
39 #include "target.h"
40 #include "params.h"
41 #include "diagnostic-core.h"
43 /* This is a simple global reassociation pass. It is, in part, based
44 on the LLVM pass of the same name (They do some things more/less
45 than we do, in different orders, etc).
47 It consists of five steps:
49 1. Breaking up subtract operations into addition + negate, where
50 it would promote the reassociation of adds.
52 2. Left linearization of the expression trees, so that (A+B)+(C+D)
53 becomes (((A+B)+C)+D), which is easier for us to rewrite later.
54 During linearization, we place the operands of the binary
55 expressions into a vector of operand_entry_t
57 3. Optimization of the operand lists, eliminating things like a +
58 -a, a & a, etc.
60 3a. Combine repeated factors with the same occurrence counts
61 into a __builtin_powi call that will later be optimized into
62 an optimal number of multiplies.
64 4. Rewrite the expression trees we linearized and optimized so
65 they are in proper rank order.
67 5. Repropagate negates, as nothing else will clean it up ATM.
69 A bit of theory on #4, since nobody seems to write anything down
70 about why it makes sense to do it the way they do it:
72 We could do this much nicer theoretically, but don't (for reasons
73 explained after how to do it theoretically nice :P).
75 In order to promote the most redundancy elimination, you want
76 binary expressions whose operands are the same rank (or
77 preferably, the same value) exposed to the redundancy eliminator,
78 for possible elimination.
80 So the way to do this if we really cared, is to build the new op
81 tree from the leaves to the roots, merging as you go, and putting the
82 new op on the end of the worklist, until you are left with one
83 thing on the worklist.
85 IE if you have to rewrite the following set of operands (listed with
86 rank in parentheses), with opcode PLUS_EXPR:
88 a (1), b (1), c (1), d (2), e (2)
91 We start with our merge worklist empty, and the ops list with all of
92 those on it.
94 You want to first merge all leaves of the same rank, as much as
95 possible.
97 So first build a binary op of
99 mergetmp = a + b, and put "mergetmp" on the merge worklist.
101 Because there is no three operand form of PLUS_EXPR, c is not going to
102 be exposed to redundancy elimination as a rank 1 operand.
104 So you might as well throw it on the merge worklist (you could also
105 consider it to now be a rank two operand, and merge it with d and e,
106 but in this case, you then have evicted e from a binary op. So at
107 least in this situation, you can't win.)
109 Then build a binary op of d + e
110 mergetmp2 = d + e
112 and put mergetmp2 on the merge worklist.
114 so merge worklist = {mergetmp, c, mergetmp2}
116 Continue building binary ops of these operations until you have only
117 one operation left on the worklist.
119 So we have
121 build binary op
122 mergetmp3 = mergetmp + c
124 worklist = {mergetmp2, mergetmp3}
126 mergetmp4 = mergetmp2 + mergetmp3
128 worklist = {mergetmp4}
130 because we have one operation left, we can now just set the original
131 statement equal to the result of that operation.
133 This will at least expose a + b and d + e to redundancy elimination
134 as binary operations.
136 For extra points, you can reuse the old statements to build the
137 mergetmps, since you shouldn't run out.
139 So why don't we do this?
141 Because it's expensive, and rarely will help. Most trees we are
142 reassociating have 3 or less ops. If they have 2 ops, they already
143 will be written into a nice single binary op. If you have 3 ops, a
144 single simple check suffices to tell you whether the first two are of the
145 same rank. If so, you know to order it
147 mergetmp = op1 + op2
148 newstmt = mergetmp + op3
150 instead of
151 mergetmp = op2 + op3
152 newstmt = mergetmp + op1
154 If all three are of the same rank, you can't expose them all in a
155 single binary operator anyway, so the above is *still* the best you
156 can do.
158 Thus, this is what we do. When we have three ops left, we check to see
159 what order to put them in, and call it a day. As a nod to vector sum
160 reduction, we check if any of the ops are really a phi node that is a
161 destructive update for the associating op, and keep the destructive
162 update together for vector sum reduction recognition. */
165 /* Statistics */
166 static struct
168 int linearized;
169 int constants_eliminated;
170 int ops_eliminated;
171 int rewritten;
172 int pows_encountered;
173 int pows_created;
174 } reassociate_stats;
176 /* Operator, rank pair. */
177 typedef struct operand_entry
179 unsigned int rank;
180 int id;
181 tree op;
182 unsigned int count;
183 } *operand_entry_t;
185 static alloc_pool operand_entry_pool;
187 /* This is used to assign a unique ID to each struct operand_entry
188 so that qsort results are identical on different hosts. */
189 static int next_operand_entry_id;
191 /* Starting rank number for a given basic block, so that we can rank
192 operations using unmovable instructions in that BB based on the bb
193 depth. */
194 static long *bb_rank;
196 /* Operand->rank hashtable. */
197 static struct pointer_map_t *operand_rank;
199 /* Forward decls. */
200 static long get_rank (tree);
203 /* Bias amount for loop-carried phis. We want this to be larger than
204 the depth of any reassociation tree we can see, but not larger than
205 the rank difference between two blocks. */
206 #define PHI_LOOP_BIAS (1 << 15)
208 /* Rank assigned to a phi statement. If STMT is a loop-carried phi of
209 an innermost loop, and the phi has only a single use which is inside
210 the loop, then the rank is the block rank of the loop latch plus an
211 extra bias for the loop-carried dependence. This causes expressions
212 calculated into an accumulator variable to be independent for each
213 iteration of the loop. If STMT is some other phi, the rank is the
214 block rank of its containing block. */
215 static long
216 phi_rank (gimple stmt)
218 basic_block bb = gimple_bb (stmt);
219 struct loop *father = bb->loop_father;
220 tree res;
221 unsigned i;
222 use_operand_p use;
223 gimple use_stmt;
225 /* We only care about real loops (those with a latch). */
226 if (!father->latch)
227 return bb_rank[bb->index];
229 /* Interesting phis must be in headers of innermost loops. */
230 if (bb != father->header
231 || father->inner)
232 return bb_rank[bb->index];
234 /* Ignore virtual SSA_NAMEs. */
235 res = gimple_phi_result (stmt);
236 if (virtual_operand_p (res))
237 return bb_rank[bb->index];
239 /* The phi definition must have a single use, and that use must be
240 within the loop. Otherwise this isn't an accumulator pattern. */
241 if (!single_imm_use (res, &use, &use_stmt)
242 || gimple_bb (use_stmt)->loop_father != father)
243 return bb_rank[bb->index];
245 /* Look for phi arguments from within the loop. If found, bias this phi. */
246 for (i = 0; i < gimple_phi_num_args (stmt); i++)
248 tree arg = gimple_phi_arg_def (stmt, i);
249 if (TREE_CODE (arg) == SSA_NAME
250 && !SSA_NAME_IS_DEFAULT_DEF (arg))
252 gimple def_stmt = SSA_NAME_DEF_STMT (arg);
253 if (gimple_bb (def_stmt)->loop_father == father)
254 return bb_rank[father->latch->index] + PHI_LOOP_BIAS;
258 /* Must be an uninteresting phi. */
259 return bb_rank[bb->index];
262 /* If EXP is an SSA_NAME defined by a PHI statement that represents a
263 loop-carried dependence of an innermost loop, return TRUE; else
264 return FALSE. */
265 static bool
266 loop_carried_phi (tree exp)
268 gimple phi_stmt;
269 long block_rank;
271 if (TREE_CODE (exp) != SSA_NAME
272 || SSA_NAME_IS_DEFAULT_DEF (exp))
273 return false;
275 phi_stmt = SSA_NAME_DEF_STMT (exp);
277 if (gimple_code (SSA_NAME_DEF_STMT (exp)) != GIMPLE_PHI)
278 return false;
280 /* Non-loop-carried phis have block rank. Loop-carried phis have
281 an additional bias added in. If this phi doesn't have block rank,
282 it's biased and should not be propagated. */
283 block_rank = bb_rank[gimple_bb (phi_stmt)->index];
285 if (phi_rank (phi_stmt) != block_rank)
286 return true;
288 return false;
291 /* Return the maximum of RANK and the rank that should be propagated
292 from expression OP. For most operands, this is just the rank of OP.
293 For loop-carried phis, the value is zero to avoid undoing the bias
294 in favor of the phi. */
295 static long
296 propagate_rank (long rank, tree op)
298 long op_rank;
300 if (loop_carried_phi (op))
301 return rank;
303 op_rank = get_rank (op);
305 return MAX (rank, op_rank);
308 /* Look up the operand rank structure for expression E. */
310 static inline long
311 find_operand_rank (tree e)
313 void **slot = pointer_map_contains (operand_rank, e);
314 return slot ? (long) (intptr_t) *slot : -1;
317 /* Insert {E,RANK} into the operand rank hashtable. */
319 static inline void
320 insert_operand_rank (tree e, long rank)
322 void **slot;
323 gcc_assert (rank > 0);
324 slot = pointer_map_insert (operand_rank, e);
325 gcc_assert (!*slot);
326 *slot = (void *) (intptr_t) rank;
329 /* Given an expression E, return the rank of the expression. */
331 static long
332 get_rank (tree e)
334 /* Constants have rank 0. */
335 if (is_gimple_min_invariant (e))
336 return 0;
338 /* SSA_NAME's have the rank of the expression they are the result
340 For globals and uninitialized values, the rank is 0.
341 For function arguments, use the pre-setup rank.
342 For PHI nodes, stores, asm statements, etc, we use the rank of
343 the BB.
344 For simple operations, the rank is the maximum rank of any of
345 its operands, or the bb_rank, whichever is less.
346 I make no claims that this is optimal, however, it gives good
347 results. */
349 /* We make an exception to the normal ranking system to break
350 dependences of accumulator variables in loops. Suppose we
351 have a simple one-block loop containing:
353 x_1 = phi(x_0, x_2)
354 b = a + x_1
355 c = b + d
356 x_2 = c + e
358 As shown, each iteration of the calculation into x is fully
359 dependent upon the iteration before it. We would prefer to
360 see this in the form:
362 x_1 = phi(x_0, x_2)
363 b = a + d
364 c = b + e
365 x_2 = c + x_1
367 If the loop is unrolled, the calculations of b and c from
368 different iterations can be interleaved.
370 To obtain this result during reassociation, we bias the rank
371 of the phi definition x_1 upward, when it is recognized as an
372 accumulator pattern. The artificial rank causes it to be
373 added last, providing the desired independence. */
375 if (TREE_CODE (e) == SSA_NAME)
377 gimple stmt;
378 long rank;
379 int i, n;
380 tree op;
382 if (SSA_NAME_IS_DEFAULT_DEF (e))
383 return find_operand_rank (e);
385 stmt = SSA_NAME_DEF_STMT (e);
386 if (gimple_code (stmt) == GIMPLE_PHI)
387 return phi_rank (stmt);
389 if (!is_gimple_assign (stmt)
390 || gimple_vdef (stmt))
391 return bb_rank[gimple_bb (stmt)->index];
393 /* If we already have a rank for this expression, use that. */
394 rank = find_operand_rank (e);
395 if (rank != -1)
396 return rank;
398 /* Otherwise, find the maximum rank for the operands. As an
399 exception, remove the bias from loop-carried phis when propagating
400 the rank so that dependent operations are not also biased. */
401 rank = 0;
402 if (gimple_assign_single_p (stmt))
404 tree rhs = gimple_assign_rhs1 (stmt);
405 n = TREE_OPERAND_LENGTH (rhs);
406 if (n == 0)
407 rank = propagate_rank (rank, rhs);
408 else
410 for (i = 0; i < n; i++)
412 op = TREE_OPERAND (rhs, i);
414 if (op != NULL_TREE)
415 rank = propagate_rank (rank, op);
419 else
421 n = gimple_num_ops (stmt);
422 for (i = 1; i < n; i++)
424 op = gimple_op (stmt, i);
425 gcc_assert (op);
426 rank = propagate_rank (rank, op);
430 if (dump_file && (dump_flags & TDF_DETAILS))
432 fprintf (dump_file, "Rank for ");
433 print_generic_expr (dump_file, e, 0);
434 fprintf (dump_file, " is %ld\n", (rank + 1));
437 /* Note the rank in the hashtable so we don't recompute it. */
438 insert_operand_rank (e, (rank + 1));
439 return (rank + 1);
442 /* Globals, etc, are rank 0 */
443 return 0;
447 /* We want integer ones to end up last no matter what, since they are
448 the ones we can do the most with. */
449 #define INTEGER_CONST_TYPE 1 << 3
450 #define FLOAT_CONST_TYPE 1 << 2
451 #define OTHER_CONST_TYPE 1 << 1
453 /* Classify an invariant tree into integer, float, or other, so that
454 we can sort them to be near other constants of the same type. */
455 static inline int
456 constant_type (tree t)
458 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
459 return INTEGER_CONST_TYPE;
460 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
461 return FLOAT_CONST_TYPE;
462 else
463 return OTHER_CONST_TYPE;
466 /* qsort comparison function to sort operand entries PA and PB by rank
467 so that the sorted array is ordered by rank in decreasing order. */
468 static int
469 sort_by_operand_rank (const void *pa, const void *pb)
471 const operand_entry_t oea = *(const operand_entry_t *)pa;
472 const operand_entry_t oeb = *(const operand_entry_t *)pb;
474 /* It's nicer for optimize_expression if constants that are likely
475 to fold when added/multiplied//whatever are put next to each
476 other. Since all constants have rank 0, order them by type. */
477 if (oeb->rank == 0 && oea->rank == 0)
479 if (constant_type (oeb->op) != constant_type (oea->op))
480 return constant_type (oeb->op) - constant_type (oea->op);
481 else
482 /* To make sorting result stable, we use unique IDs to determine
483 order. */
484 return oeb->id - oea->id;
487 /* Lastly, make sure the versions that are the same go next to each
488 other. We use SSA_NAME_VERSION because it's stable. */
489 if ((oeb->rank - oea->rank == 0)
490 && TREE_CODE (oea->op) == SSA_NAME
491 && TREE_CODE (oeb->op) == SSA_NAME)
493 if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
494 return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
495 else
496 return oeb->id - oea->id;
499 if (oeb->rank != oea->rank)
500 return oeb->rank - oea->rank;
501 else
502 return oeb->id - oea->id;
505 /* Add an operand entry to *OPS for the tree operand OP. */
507 static void
508 add_to_ops_vec (vec<operand_entry_t> *ops, tree op)
510 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
512 oe->op = op;
513 oe->rank = get_rank (op);
514 oe->id = next_operand_entry_id++;
515 oe->count = 1;
516 ops->safe_push (oe);
519 /* Add an operand entry to *OPS for the tree operand OP with repeat
520 count REPEAT. */
522 static void
523 add_repeat_to_ops_vec (vec<operand_entry_t> *ops, tree op,
524 HOST_WIDE_INT repeat)
526 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
528 oe->op = op;
529 oe->rank = get_rank (op);
530 oe->id = next_operand_entry_id++;
531 oe->count = repeat;
532 ops->safe_push (oe);
534 reassociate_stats.pows_encountered++;
537 /* Return true if STMT is reassociable operation containing a binary
538 operation with tree code CODE, and is inside LOOP. */
540 static bool
541 is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
543 basic_block bb = gimple_bb (stmt);
545 if (gimple_bb (stmt) == NULL)
546 return false;
548 if (!flow_bb_inside_loop_p (loop, bb))
549 return false;
551 if (is_gimple_assign (stmt)
552 && gimple_assign_rhs_code (stmt) == code
553 && has_single_use (gimple_assign_lhs (stmt)))
554 return true;
556 return false;
560 /* Given NAME, if NAME is defined by a unary operation OPCODE, return the
561 operand of the negate operation. Otherwise, return NULL. */
563 static tree
564 get_unary_op (tree name, enum tree_code opcode)
566 gimple stmt = SSA_NAME_DEF_STMT (name);
568 if (!is_gimple_assign (stmt))
569 return NULL_TREE;
571 if (gimple_assign_rhs_code (stmt) == opcode)
572 return gimple_assign_rhs1 (stmt);
573 return NULL_TREE;
576 /* If CURR and LAST are a pair of ops that OPCODE allows us to
577 eliminate through equivalences, do so, remove them from OPS, and
578 return true. Otherwise, return false. */
580 static bool
581 eliminate_duplicate_pair (enum tree_code opcode,
582 vec<operand_entry_t> *ops,
583 bool *all_done,
584 unsigned int i,
585 operand_entry_t curr,
586 operand_entry_t last)
589 /* If we have two of the same op, and the opcode is & |, min, or max,
590 we can eliminate one of them.
591 If we have two of the same op, and the opcode is ^, we can
592 eliminate both of them. */
594 if (last && last->op == curr->op)
596 switch (opcode)
598 case MAX_EXPR:
599 case MIN_EXPR:
600 case BIT_IOR_EXPR:
601 case BIT_AND_EXPR:
602 if (dump_file && (dump_flags & TDF_DETAILS))
604 fprintf (dump_file, "Equivalence: ");
605 print_generic_expr (dump_file, curr->op, 0);
606 fprintf (dump_file, " [&|minmax] ");
607 print_generic_expr (dump_file, last->op, 0);
608 fprintf (dump_file, " -> ");
609 print_generic_stmt (dump_file, last->op, 0);
612 ops->ordered_remove (i);
613 reassociate_stats.ops_eliminated ++;
615 return true;
617 case BIT_XOR_EXPR:
618 if (dump_file && (dump_flags & TDF_DETAILS))
620 fprintf (dump_file, "Equivalence: ");
621 print_generic_expr (dump_file, curr->op, 0);
622 fprintf (dump_file, " ^ ");
623 print_generic_expr (dump_file, last->op, 0);
624 fprintf (dump_file, " -> nothing\n");
627 reassociate_stats.ops_eliminated += 2;
629 if (ops->length () == 2)
631 ops->create (0);
632 add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op)));
633 *all_done = true;
635 else
637 ops->ordered_remove (i-1);
638 ops->ordered_remove (i-1);
641 return true;
643 default:
644 break;
647 return false;
650 static vec<tree> plus_negates;
652 /* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
653 expression, look in OPS for a corresponding positive operation to cancel
654 it out. If we find one, remove the other from OPS, replace
655 OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
656 return false. */
658 static bool
659 eliminate_plus_minus_pair (enum tree_code opcode,
660 vec<operand_entry_t> *ops,
661 unsigned int currindex,
662 operand_entry_t curr)
664 tree negateop;
665 tree notop;
666 unsigned int i;
667 operand_entry_t oe;
669 if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
670 return false;
672 negateop = get_unary_op (curr->op, NEGATE_EXPR);
673 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
674 if (negateop == NULL_TREE && notop == NULL_TREE)
675 return false;
677 /* Any non-negated version will have a rank that is one less than
678 the current rank. So once we hit those ranks, if we don't find
679 one, we can stop. */
681 for (i = currindex + 1;
682 ops->iterate (i, &oe)
683 && oe->rank >= curr->rank - 1 ;
684 i++)
686 if (oe->op == negateop)
689 if (dump_file && (dump_flags & TDF_DETAILS))
691 fprintf (dump_file, "Equivalence: ");
692 print_generic_expr (dump_file, negateop, 0);
693 fprintf (dump_file, " + -");
694 print_generic_expr (dump_file, oe->op, 0);
695 fprintf (dump_file, " -> 0\n");
698 ops->ordered_remove (i);
699 add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op)));
700 ops->ordered_remove (currindex);
701 reassociate_stats.ops_eliminated ++;
703 return true;
705 else if (oe->op == notop)
707 tree op_type = TREE_TYPE (oe->op);
709 if (dump_file && (dump_flags & TDF_DETAILS))
711 fprintf (dump_file, "Equivalence: ");
712 print_generic_expr (dump_file, notop, 0);
713 fprintf (dump_file, " + ~");
714 print_generic_expr (dump_file, oe->op, 0);
715 fprintf (dump_file, " -> -1\n");
718 ops->ordered_remove (i);
719 add_to_ops_vec (ops, build_int_cst_type (op_type, -1));
720 ops->ordered_remove (currindex);
721 reassociate_stats.ops_eliminated ++;
723 return true;
727 /* CURR->OP is a negate expr in a plus expr: save it for later
728 inspection in repropagate_negates(). */
729 if (negateop != NULL_TREE)
730 plus_negates.safe_push (curr->op);
732 return false;
735 /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
736 bitwise not expression, look in OPS for a corresponding operand to
737 cancel it out. If we find one, remove the other from OPS, replace
738 OPS[CURRINDEX] with 0, and return true. Otherwise, return
739 false. */
741 static bool
742 eliminate_not_pairs (enum tree_code opcode,
743 vec<operand_entry_t> *ops,
744 unsigned int currindex,
745 operand_entry_t curr)
747 tree notop;
748 unsigned int i;
749 operand_entry_t oe;
751 if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
752 || TREE_CODE (curr->op) != SSA_NAME)
753 return false;
755 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
756 if (notop == NULL_TREE)
757 return false;
759 /* Any non-not version will have a rank that is one less than
760 the current rank. So once we hit those ranks, if we don't find
761 one, we can stop. */
763 for (i = currindex + 1;
764 ops->iterate (i, &oe)
765 && oe->rank >= curr->rank - 1;
766 i++)
768 if (oe->op == notop)
770 if (dump_file && (dump_flags & TDF_DETAILS))
772 fprintf (dump_file, "Equivalence: ");
773 print_generic_expr (dump_file, notop, 0);
774 if (opcode == BIT_AND_EXPR)
775 fprintf (dump_file, " & ~");
776 else if (opcode == BIT_IOR_EXPR)
777 fprintf (dump_file, " | ~");
778 print_generic_expr (dump_file, oe->op, 0);
779 if (opcode == BIT_AND_EXPR)
780 fprintf (dump_file, " -> 0\n");
781 else if (opcode == BIT_IOR_EXPR)
782 fprintf (dump_file, " -> -1\n");
785 if (opcode == BIT_AND_EXPR)
786 oe->op = build_zero_cst (TREE_TYPE (oe->op));
787 else if (opcode == BIT_IOR_EXPR)
788 oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
789 TYPE_PRECISION (TREE_TYPE (oe->op)));
791 reassociate_stats.ops_eliminated += ops->length () - 1;
792 ops->truncate (0);
793 ops->quick_push (oe);
794 return true;
798 return false;
801 /* Use constant value that may be present in OPS to try to eliminate
802 operands. Note that this function is only really used when we've
803 eliminated ops for other reasons, or merged constants. Across
804 single statements, fold already does all of this, plus more. There
805 is little point in duplicating logic, so I've only included the
806 identities that I could ever construct testcases to trigger. */
808 static void
809 eliminate_using_constants (enum tree_code opcode,
810 vec<operand_entry_t> *ops)
812 operand_entry_t oelast = ops->last ();
813 tree type = TREE_TYPE (oelast->op);
815 if (oelast->rank == 0
816 && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
818 switch (opcode)
820 case BIT_AND_EXPR:
821 if (integer_zerop (oelast->op))
823 if (ops->length () != 1)
825 if (dump_file && (dump_flags & TDF_DETAILS))
826 fprintf (dump_file, "Found & 0, removing all other ops\n");
828 reassociate_stats.ops_eliminated += ops->length () - 1;
830 ops->truncate (0);
831 ops->quick_push (oelast);
832 return;
835 else if (integer_all_onesp (oelast->op))
837 if (ops->length () != 1)
839 if (dump_file && (dump_flags & TDF_DETAILS))
840 fprintf (dump_file, "Found & -1, removing\n");
841 ops->pop ();
842 reassociate_stats.ops_eliminated++;
845 break;
846 case BIT_IOR_EXPR:
847 if (integer_all_onesp (oelast->op))
849 if (ops->length () != 1)
851 if (dump_file && (dump_flags & TDF_DETAILS))
852 fprintf (dump_file, "Found | -1, removing all other ops\n");
854 reassociate_stats.ops_eliminated += ops->length () - 1;
856 ops->truncate (0);
857 ops->quick_push (oelast);
858 return;
861 else if (integer_zerop (oelast->op))
863 if (ops->length () != 1)
865 if (dump_file && (dump_flags & TDF_DETAILS))
866 fprintf (dump_file, "Found | 0, removing\n");
867 ops->pop ();
868 reassociate_stats.ops_eliminated++;
871 break;
872 case MULT_EXPR:
873 if (integer_zerop (oelast->op)
874 || (FLOAT_TYPE_P (type)
875 && !HONOR_NANS (TYPE_MODE (type))
876 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
877 && real_zerop (oelast->op)))
879 if (ops->length () != 1)
881 if (dump_file && (dump_flags & TDF_DETAILS))
882 fprintf (dump_file, "Found * 0, removing all other ops\n");
884 reassociate_stats.ops_eliminated += ops->length () - 1;
885 ops->truncate (1);
886 ops->quick_push (oelast);
887 return;
890 else if (integer_onep (oelast->op)
891 || (FLOAT_TYPE_P (type)
892 && !HONOR_SNANS (TYPE_MODE (type))
893 && real_onep (oelast->op)))
895 if (ops->length () != 1)
897 if (dump_file && (dump_flags & TDF_DETAILS))
898 fprintf (dump_file, "Found * 1, removing\n");
899 ops->pop ();
900 reassociate_stats.ops_eliminated++;
901 return;
904 break;
905 case BIT_XOR_EXPR:
906 case PLUS_EXPR:
907 case MINUS_EXPR:
908 if (integer_zerop (oelast->op)
909 || (FLOAT_TYPE_P (type)
910 && (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
911 && fold_real_zero_addition_p (type, oelast->op,
912 opcode == MINUS_EXPR)))
914 if (ops->length () != 1)
916 if (dump_file && (dump_flags & TDF_DETAILS))
917 fprintf (dump_file, "Found [|^+] 0, removing\n");
918 ops->pop ();
919 reassociate_stats.ops_eliminated++;
920 return;
923 break;
924 default:
925 break;
931 static void linearize_expr_tree (vec<operand_entry_t> *, gimple,
932 bool, bool);
934 /* Structure for tracking and counting operands. */
935 typedef struct oecount_s {
936 int cnt;
937 int id;
938 enum tree_code oecode;
939 tree op;
940 } oecount;
943 /* The heap for the oecount hashtable and the sorted list of operands. */
944 static vec<oecount> cvec;
946 /* Hash function for oecount. */
948 static hashval_t
949 oecount_hash (const void *p)
951 const oecount *c = &cvec[(size_t)p - 42];
952 return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
955 /* Comparison function for oecount. */
957 static int
958 oecount_eq (const void *p1, const void *p2)
960 const oecount *c1 = &cvec[(size_t)p1 - 42];
961 const oecount *c2 = &cvec[(size_t)p2 - 42];
962 return (c1->oecode == c2->oecode
963 && c1->op == c2->op);
966 /* Comparison function for qsort sorting oecount elements by count. */
968 static int
969 oecount_cmp (const void *p1, const void *p2)
971 const oecount *c1 = (const oecount *)p1;
972 const oecount *c2 = (const oecount *)p2;
973 if (c1->cnt != c2->cnt)
974 return c1->cnt - c2->cnt;
975 else
976 /* If counts are identical, use unique IDs to stabilize qsort. */
977 return c1->id - c2->id;
980 /* Return TRUE iff STMT represents a builtin call that raises OP
981 to some exponent. */
983 static bool
984 stmt_is_power_of_op (gimple stmt, tree op)
986 tree fndecl;
988 if (!is_gimple_call (stmt))
989 return false;
991 fndecl = gimple_call_fndecl (stmt);
993 if (!fndecl
994 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
995 return false;
997 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
999 CASE_FLT_FN (BUILT_IN_POW):
1000 CASE_FLT_FN (BUILT_IN_POWI):
1001 return (operand_equal_p (gimple_call_arg (stmt, 0), op, 0));
1003 default:
1004 return false;
1008 /* Given STMT which is a __builtin_pow* call, decrement its exponent
1009 in place and return the result. Assumes that stmt_is_power_of_op
1010 was previously called for STMT and returned TRUE. */
1012 static HOST_WIDE_INT
1013 decrement_power (gimple stmt)
1015 REAL_VALUE_TYPE c, cint;
1016 HOST_WIDE_INT power;
1017 tree arg1;
1019 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
1021 CASE_FLT_FN (BUILT_IN_POW):
1022 arg1 = gimple_call_arg (stmt, 1);
1023 c = TREE_REAL_CST (arg1);
1024 power = real_to_integer (&c) - 1;
1025 real_from_integer (&cint, VOIDmode, power, 0, 0);
1026 gimple_call_set_arg (stmt, 1, build_real (TREE_TYPE (arg1), cint));
1027 return power;
1029 CASE_FLT_FN (BUILT_IN_POWI):
1030 arg1 = gimple_call_arg (stmt, 1);
1031 power = TREE_INT_CST_LOW (arg1) - 1;
1032 gimple_call_set_arg (stmt, 1, build_int_cst (TREE_TYPE (arg1), power));
1033 return power;
1035 default:
1036 gcc_unreachable ();
1040 /* Find the single immediate use of STMT's LHS, and replace it
1041 with OP. Remove STMT. If STMT's LHS is the same as *DEF,
1042 replace *DEF with OP as well. */
1044 static void
1045 propagate_op_to_single_use (tree op, gimple stmt, tree *def)
1047 tree lhs;
1048 gimple use_stmt;
1049 use_operand_p use;
1050 gimple_stmt_iterator gsi;
1052 if (is_gimple_call (stmt))
1053 lhs = gimple_call_lhs (stmt);
1054 else
1055 lhs = gimple_assign_lhs (stmt);
1057 gcc_assert (has_single_use (lhs));
1058 single_imm_use (lhs, &use, &use_stmt);
1059 if (lhs == *def)
1060 *def = op;
1061 SET_USE (use, op);
1062 if (TREE_CODE (op) != SSA_NAME)
1063 update_stmt (use_stmt);
1064 gsi = gsi_for_stmt (stmt);
1065 unlink_stmt_vdef (stmt);
1066 gsi_remove (&gsi, true);
1067 release_defs (stmt);
1070 /* Walks the linear chain with result *DEF searching for an operation
1071 with operand OP and code OPCODE removing that from the chain. *DEF
1072 is updated if there is only one operand but no operation left. */
1074 static void
1075 zero_one_operation (tree *def, enum tree_code opcode, tree op)
1077 gimple stmt = SSA_NAME_DEF_STMT (*def);
1081 tree name;
1083 if (opcode == MULT_EXPR
1084 && stmt_is_power_of_op (stmt, op))
1086 if (decrement_power (stmt) == 1)
1087 propagate_op_to_single_use (op, stmt, def);
1088 return;
1091 name = gimple_assign_rhs1 (stmt);
1093 /* If this is the operation we look for and one of the operands
1094 is ours simply propagate the other operand into the stmts
1095 single use. */
1096 if (gimple_assign_rhs_code (stmt) == opcode
1097 && (name == op
1098 || gimple_assign_rhs2 (stmt) == op))
1100 if (name == op)
1101 name = gimple_assign_rhs2 (stmt);
1102 propagate_op_to_single_use (name, stmt, def);
1103 return;
1106 /* We might have a multiply of two __builtin_pow* calls, and
1107 the operand might be hiding in the rightmost one. */
1108 if (opcode == MULT_EXPR
1109 && gimple_assign_rhs_code (stmt) == opcode
1110 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
1111 && has_single_use (gimple_assign_rhs2 (stmt)))
1113 gimple stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
1114 if (stmt_is_power_of_op (stmt2, op))
1116 if (decrement_power (stmt2) == 1)
1117 propagate_op_to_single_use (op, stmt2, def);
1118 return;
1122 /* Continue walking the chain. */
1123 gcc_assert (name != op
1124 && TREE_CODE (name) == SSA_NAME);
1125 stmt = SSA_NAME_DEF_STMT (name);
1127 while (1);
1130 /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
1131 the result. Places the statement after the definition of either
1132 OP1 or OP2. Returns the new statement. */
1134 static gimple
1135 build_and_add_sum (tree type, tree op1, tree op2, enum tree_code opcode)
1137 gimple op1def = NULL, op2def = NULL;
1138 gimple_stmt_iterator gsi;
1139 tree op;
1140 gimple sum;
1142 /* Create the addition statement. */
1143 op = make_ssa_name (type, NULL);
1144 sum = gimple_build_assign_with_ops (opcode, op, op1, op2);
1146 /* Find an insertion place and insert. */
1147 if (TREE_CODE (op1) == SSA_NAME)
1148 op1def = SSA_NAME_DEF_STMT (op1);
1149 if (TREE_CODE (op2) == SSA_NAME)
1150 op2def = SSA_NAME_DEF_STMT (op2);
1151 if ((!op1def || gimple_nop_p (op1def))
1152 && (!op2def || gimple_nop_p (op2def)))
1154 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1155 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
1157 else if ((!op1def || gimple_nop_p (op1def))
1158 || (op2def && !gimple_nop_p (op2def)
1159 && stmt_dominates_stmt_p (op1def, op2def)))
1161 if (gimple_code (op2def) == GIMPLE_PHI)
1163 gsi = gsi_after_labels (gimple_bb (op2def));
1164 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
1166 else
1168 if (!stmt_ends_bb_p (op2def))
1170 gsi = gsi_for_stmt (op2def);
1171 gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
1173 else
1175 edge e;
1176 edge_iterator ei;
1178 FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
1179 if (e->flags & EDGE_FALLTHRU)
1180 gsi_insert_on_edge_immediate (e, sum);
1184 else
1186 if (gimple_code (op1def) == GIMPLE_PHI)
1188 gsi = gsi_after_labels (gimple_bb (op1def));
1189 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
1191 else
1193 if (!stmt_ends_bb_p (op1def))
1195 gsi = gsi_for_stmt (op1def);
1196 gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
1198 else
1200 edge e;
1201 edge_iterator ei;
1203 FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
1204 if (e->flags & EDGE_FALLTHRU)
1205 gsi_insert_on_edge_immediate (e, sum);
1209 update_stmt (sum);
1211 return sum;
1214 /* Perform un-distribution of divisions and multiplications.
1215 A * X + B * X is transformed into (A + B) * X and A / X + B / X
1216 to (A + B) / X for real X.
1218 The algorithm is organized as follows.
1220 - First we walk the addition chain *OPS looking for summands that
1221 are defined by a multiplication or a real division. This results
1222 in the candidates bitmap with relevant indices into *OPS.
1224 - Second we build the chains of multiplications or divisions for
1225 these candidates, counting the number of occurrences of (operand, code)
1226 pairs in all of the candidates chains.
1228 - Third we sort the (operand, code) pairs by number of occurrence and
1229 process them starting with the pair with the most uses.
1231 * For each such pair we walk the candidates again to build a
1232 second candidate bitmap noting all multiplication/division chains
1233 that have at least one occurrence of (operand, code).
1235 * We build an alternate addition chain only covering these
1236 candidates with one (operand, code) operation removed from their
1237 multiplication/division chain.
1239 * The first candidate gets replaced by the alternate addition chain
1240 multiplied/divided by the operand.
1242 * All candidate chains get disabled for further processing and
1243 processing of (operand, code) pairs continues.
1245 The alternate addition chains built are re-processed by the main
1246 reassociation algorithm which allows optimizing a * x * y + b * y * x
1247 to (a + b ) * x * y in one invocation of the reassociation pass. */
1249 static bool
1250 undistribute_ops_list (enum tree_code opcode,
1251 vec<operand_entry_t> *ops, struct loop *loop)
1253 unsigned int length = ops->length ();
1254 operand_entry_t oe1;
1255 unsigned i, j;
1256 sbitmap candidates, candidates2;
1257 unsigned nr_candidates, nr_candidates2;
1258 sbitmap_iterator sbi0;
1259 vec<operand_entry_t> *subops;
1260 htab_t ctable;
1261 bool changed = false;
1262 int next_oecount_id = 0;
1264 if (length <= 1
1265 || opcode != PLUS_EXPR)
1266 return false;
1268 /* Build a list of candidates to process. */
1269 candidates = sbitmap_alloc (length);
1270 bitmap_clear (candidates);
1271 nr_candidates = 0;
1272 FOR_EACH_VEC_ELT (*ops, i, oe1)
1274 enum tree_code dcode;
1275 gimple oe1def;
1277 if (TREE_CODE (oe1->op) != SSA_NAME)
1278 continue;
1279 oe1def = SSA_NAME_DEF_STMT (oe1->op);
1280 if (!is_gimple_assign (oe1def))
1281 continue;
1282 dcode = gimple_assign_rhs_code (oe1def);
1283 if ((dcode != MULT_EXPR
1284 && dcode != RDIV_EXPR)
1285 || !is_reassociable_op (oe1def, dcode, loop))
1286 continue;
1288 bitmap_set_bit (candidates, i);
1289 nr_candidates++;
1292 if (nr_candidates < 2)
1294 sbitmap_free (candidates);
1295 return false;
1298 if (dump_file && (dump_flags & TDF_DETAILS))
1300 fprintf (dump_file, "searching for un-distribute opportunities ");
1301 print_generic_expr (dump_file,
1302 (*ops)[bitmap_first_set_bit (candidates)]->op, 0);
1303 fprintf (dump_file, " %d\n", nr_candidates);
1306 /* Build linearized sub-operand lists and the counting table. */
1307 cvec.create (0);
1308 ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
1309 /* ??? Macro arguments cannot have multi-argument template types in
1310 them. This typedef is needed to workaround that limitation. */
1311 typedef vec<operand_entry_t> vec_operand_entry_t_heap;
1312 subops = XCNEWVEC (vec_operand_entry_t_heap, ops->length ());
1313 EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
1315 gimple oedef;
1316 enum tree_code oecode;
1317 unsigned j;
1319 oedef = SSA_NAME_DEF_STMT ((*ops)[i]->op);
1320 oecode = gimple_assign_rhs_code (oedef);
1321 linearize_expr_tree (&subops[i], oedef,
1322 associative_tree_code (oecode), false);
1324 FOR_EACH_VEC_ELT (subops[i], j, oe1)
1326 oecount c;
1327 void **slot;
1328 size_t idx;
1329 c.oecode = oecode;
1330 c.cnt = 1;
1331 c.id = next_oecount_id++;
1332 c.op = oe1->op;
1333 cvec.safe_push (c);
1334 idx = cvec.length () + 41;
1335 slot = htab_find_slot (ctable, (void *)idx, INSERT);
1336 if (!*slot)
1338 *slot = (void *)idx;
1340 else
1342 cvec.pop ();
1343 cvec[(size_t)*slot - 42].cnt++;
1347 htab_delete (ctable);
1349 /* Sort the counting table. */
1350 cvec.qsort (oecount_cmp);
1352 if (dump_file && (dump_flags & TDF_DETAILS))
1354 oecount *c;
1355 fprintf (dump_file, "Candidates:\n");
1356 FOR_EACH_VEC_ELT (cvec, j, c)
1358 fprintf (dump_file, " %u %s: ", c->cnt,
1359 c->oecode == MULT_EXPR
1360 ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
1361 print_generic_expr (dump_file, c->op, 0);
1362 fprintf (dump_file, "\n");
1366 /* Process the (operand, code) pairs in order of most occurence. */
1367 candidates2 = sbitmap_alloc (length);
1368 while (!cvec.is_empty ())
1370 oecount *c = &cvec.last ();
1371 if (c->cnt < 2)
1372 break;
1374 /* Now collect the operands in the outer chain that contain
1375 the common operand in their inner chain. */
1376 bitmap_clear (candidates2);
1377 nr_candidates2 = 0;
1378 EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
1380 gimple oedef;
1381 enum tree_code oecode;
1382 unsigned j;
1383 tree op = (*ops)[i]->op;
1385 /* If we undistributed in this chain already this may be
1386 a constant. */
1387 if (TREE_CODE (op) != SSA_NAME)
1388 continue;
1390 oedef = SSA_NAME_DEF_STMT (op);
1391 oecode = gimple_assign_rhs_code (oedef);
1392 if (oecode != c->oecode)
1393 continue;
1395 FOR_EACH_VEC_ELT (subops[i], j, oe1)
1397 if (oe1->op == c->op)
1399 bitmap_set_bit (candidates2, i);
1400 ++nr_candidates2;
1401 break;
1406 if (nr_candidates2 >= 2)
1408 operand_entry_t oe1, oe2;
1409 gimple prod;
1410 int first = bitmap_first_set_bit (candidates2);
1412 /* Build the new addition chain. */
1413 oe1 = (*ops)[first];
1414 if (dump_file && (dump_flags & TDF_DETAILS))
1416 fprintf (dump_file, "Building (");
1417 print_generic_expr (dump_file, oe1->op, 0);
1419 zero_one_operation (&oe1->op, c->oecode, c->op);
1420 EXECUTE_IF_SET_IN_BITMAP (candidates2, first+1, i, sbi0)
1422 gimple sum;
1423 oe2 = (*ops)[i];
1424 if (dump_file && (dump_flags & TDF_DETAILS))
1426 fprintf (dump_file, " + ");
1427 print_generic_expr (dump_file, oe2->op, 0);
1429 zero_one_operation (&oe2->op, c->oecode, c->op);
1430 sum = build_and_add_sum (TREE_TYPE (oe1->op),
1431 oe1->op, oe2->op, opcode);
1432 oe2->op = build_zero_cst (TREE_TYPE (oe2->op));
1433 oe2->rank = 0;
1434 oe1->op = gimple_get_lhs (sum);
1437 /* Apply the multiplication/division. */
1438 prod = build_and_add_sum (TREE_TYPE (oe1->op),
1439 oe1->op, c->op, c->oecode);
1440 if (dump_file && (dump_flags & TDF_DETAILS))
1442 fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
1443 print_generic_expr (dump_file, c->op, 0);
1444 fprintf (dump_file, "\n");
1447 /* Record it in the addition chain and disable further
1448 undistribution with this op. */
1449 oe1->op = gimple_assign_lhs (prod);
1450 oe1->rank = get_rank (oe1->op);
1451 subops[first].release ();
1453 changed = true;
1456 cvec.pop ();
1459 for (i = 0; i < ops->length (); ++i)
1460 subops[i].release ();
1461 free (subops);
1462 cvec.release ();
1463 sbitmap_free (candidates);
1464 sbitmap_free (candidates2);
1466 return changed;
1469 /* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
1470 expression, examine the other OPS to see if any of them are comparisons
1471 of the same values, which we may be able to combine or eliminate.
1472 For example, we can rewrite (a < b) | (a == b) as (a <= b). */
1474 static bool
1475 eliminate_redundant_comparison (enum tree_code opcode,
1476 vec<operand_entry_t> *ops,
1477 unsigned int currindex,
1478 operand_entry_t curr)
1480 tree op1, op2;
1481 enum tree_code lcode, rcode;
1482 gimple def1, def2;
1483 int i;
1484 operand_entry_t oe;
1486 if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
1487 return false;
1489 /* Check that CURR is a comparison. */
1490 if (TREE_CODE (curr->op) != SSA_NAME)
1491 return false;
1492 def1 = SSA_NAME_DEF_STMT (curr->op);
1493 if (!is_gimple_assign (def1))
1494 return false;
1495 lcode = gimple_assign_rhs_code (def1);
1496 if (TREE_CODE_CLASS (lcode) != tcc_comparison)
1497 return false;
1498 op1 = gimple_assign_rhs1 (def1);
1499 op2 = gimple_assign_rhs2 (def1);
1501 /* Now look for a similar comparison in the remaining OPS. */
1502 for (i = currindex + 1; ops->iterate (i, &oe); i++)
1504 tree t;
1506 if (TREE_CODE (oe->op) != SSA_NAME)
1507 continue;
1508 def2 = SSA_NAME_DEF_STMT (oe->op);
1509 if (!is_gimple_assign (def2))
1510 continue;
1511 rcode = gimple_assign_rhs_code (def2);
1512 if (TREE_CODE_CLASS (rcode) != tcc_comparison)
1513 continue;
1515 /* If we got here, we have a match. See if we can combine the
1516 two comparisons. */
1517 if (opcode == BIT_IOR_EXPR)
1518 t = maybe_fold_or_comparisons (lcode, op1, op2,
1519 rcode, gimple_assign_rhs1 (def2),
1520 gimple_assign_rhs2 (def2));
1521 else
1522 t = maybe_fold_and_comparisons (lcode, op1, op2,
1523 rcode, gimple_assign_rhs1 (def2),
1524 gimple_assign_rhs2 (def2));
1525 if (!t)
1526 continue;
1528 /* maybe_fold_and_comparisons and maybe_fold_or_comparisons
1529 always give us a boolean_type_node value back. If the original
1530 BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
1531 we need to convert. */
1532 if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
1533 t = fold_convert (TREE_TYPE (curr->op), t);
1535 if (TREE_CODE (t) != INTEGER_CST
1536 && !operand_equal_p (t, curr->op, 0))
1538 enum tree_code subcode;
1539 tree newop1, newop2;
1540 if (!COMPARISON_CLASS_P (t))
1541 continue;
1542 extract_ops_from_tree (t, &subcode, &newop1, &newop2);
1543 STRIP_USELESS_TYPE_CONVERSION (newop1);
1544 STRIP_USELESS_TYPE_CONVERSION (newop2);
1545 if (!is_gimple_val (newop1) || !is_gimple_val (newop2))
1546 continue;
1549 if (dump_file && (dump_flags & TDF_DETAILS))
1551 fprintf (dump_file, "Equivalence: ");
1552 print_generic_expr (dump_file, curr->op, 0);
1553 fprintf (dump_file, " %s ", op_symbol_code (opcode));
1554 print_generic_expr (dump_file, oe->op, 0);
1555 fprintf (dump_file, " -> ");
1556 print_generic_expr (dump_file, t, 0);
1557 fprintf (dump_file, "\n");
1560 /* Now we can delete oe, as it has been subsumed by the new combined
1561 expression t. */
1562 ops->ordered_remove (i);
1563 reassociate_stats.ops_eliminated ++;
1565 /* If t is the same as curr->op, we're done. Otherwise we must
1566 replace curr->op with t. Special case is if we got a constant
1567 back, in which case we add it to the end instead of in place of
1568 the current entry. */
1569 if (TREE_CODE (t) == INTEGER_CST)
1571 ops->ordered_remove (currindex);
1572 add_to_ops_vec (ops, t);
1574 else if (!operand_equal_p (t, curr->op, 0))
1576 gimple sum;
1577 enum tree_code subcode;
1578 tree newop1;
1579 tree newop2;
1580 gcc_assert (COMPARISON_CLASS_P (t));
1581 extract_ops_from_tree (t, &subcode, &newop1, &newop2);
1582 STRIP_USELESS_TYPE_CONVERSION (newop1);
1583 STRIP_USELESS_TYPE_CONVERSION (newop2);
1584 gcc_checking_assert (is_gimple_val (newop1)
1585 && is_gimple_val (newop2));
1586 sum = build_and_add_sum (TREE_TYPE (t), newop1, newop2, subcode);
1587 curr->op = gimple_get_lhs (sum);
1589 return true;
1592 return false;
1595 /* Perform various identities and other optimizations on the list of
1596 operand entries, stored in OPS. The tree code for the binary
1597 operation between all the operands is OPCODE. */
1599 static void
1600 optimize_ops_list (enum tree_code opcode,
1601 vec<operand_entry_t> *ops)
1603 unsigned int length = ops->length ();
1604 unsigned int i;
1605 operand_entry_t oe;
1606 operand_entry_t oelast = NULL;
1607 bool iterate = false;
1609 if (length == 1)
1610 return;
1612 oelast = ops->last ();
1614 /* If the last two are constants, pop the constants off, merge them
1615 and try the next two. */
1616 if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
1618 operand_entry_t oelm1 = (*ops)[length - 2];
1620 if (oelm1->rank == 0
1621 && is_gimple_min_invariant (oelm1->op)
1622 && useless_type_conversion_p (TREE_TYPE (oelm1->op),
1623 TREE_TYPE (oelast->op)))
1625 tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
1626 oelm1->op, oelast->op);
1628 if (folded && is_gimple_min_invariant (folded))
1630 if (dump_file && (dump_flags & TDF_DETAILS))
1631 fprintf (dump_file, "Merging constants\n");
1633 ops->pop ();
1634 ops->pop ();
1636 add_to_ops_vec (ops, folded);
1637 reassociate_stats.constants_eliminated++;
1639 optimize_ops_list (opcode, ops);
1640 return;
1645 eliminate_using_constants (opcode, ops);
1646 oelast = NULL;
1648 for (i = 0; ops->iterate (i, &oe);)
1650 bool done = false;
1652 if (eliminate_not_pairs (opcode, ops, i, oe))
1653 return;
1654 if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
1655 || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
1656 || (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
1658 if (done)
1659 return;
1660 iterate = true;
1661 oelast = NULL;
1662 continue;
1664 oelast = oe;
1665 i++;
1668 length = ops->length ();
1669 oelast = ops->last ();
1671 if (iterate)
1672 optimize_ops_list (opcode, ops);
1675 /* The following functions are subroutines to optimize_range_tests and allow
1676 it to try to change a logical combination of comparisons into a range
1677 test.
1679 For example, both
1680 X == 2 || X == 5 || X == 3 || X == 4
1682 X >= 2 && X <= 5
1683 are converted to
1684 (unsigned) (X - 2) <= 3
1686 For more information see comments above fold_test_range in fold-const.c,
1687 this implementation is for GIMPLE. */
1689 struct range_entry
1691 tree exp;
1692 tree low;
1693 tree high;
1694 bool in_p;
1695 bool strict_overflow_p;
1696 unsigned int idx, next;
1699 /* This is similar to make_range in fold-const.c, but on top of
1700 GIMPLE instead of trees. If EXP is non-NULL, it should be
1701 an SSA_NAME and STMT argument is ignored, otherwise STMT
1702 argument should be a GIMPLE_COND. */
1704 static void
1705 init_range_entry (struct range_entry *r, tree exp, gimple stmt)
1707 int in_p;
1708 tree low, high;
1709 bool is_bool, strict_overflow_p;
1711 r->exp = NULL_TREE;
1712 r->in_p = false;
1713 r->strict_overflow_p = false;
1714 r->low = NULL_TREE;
1715 r->high = NULL_TREE;
1716 if (exp != NULL_TREE
1717 && (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp))))
1718 return;
1720 /* Start with simply saying "EXP != 0" and then look at the code of EXP
1721 and see if we can refine the range. Some of the cases below may not
1722 happen, but it doesn't seem worth worrying about this. We "continue"
1723 the outer loop when we've changed something; otherwise we "break"
1724 the switch, which will "break" the while. */
1725 low = exp ? build_int_cst (TREE_TYPE (exp), 0) : boolean_false_node;
1726 high = low;
1727 in_p = 0;
1728 strict_overflow_p = false;
1729 is_bool = false;
1730 if (exp == NULL_TREE)
1731 is_bool = true;
1732 else if (TYPE_PRECISION (TREE_TYPE (exp)) == 1)
1734 if (TYPE_UNSIGNED (TREE_TYPE (exp)))
1735 is_bool = true;
1736 else
1737 return;
1739 else if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
1740 is_bool = true;
1742 while (1)
1744 enum tree_code code;
1745 tree arg0, arg1, exp_type;
1746 tree nexp;
1747 location_t loc;
1749 if (exp != NULL_TREE)
1751 if (TREE_CODE (exp) != SSA_NAME)
1752 break;
1754 stmt = SSA_NAME_DEF_STMT (exp);
1755 if (!is_gimple_assign (stmt))
1756 break;
1758 code = gimple_assign_rhs_code (stmt);
1759 arg0 = gimple_assign_rhs1 (stmt);
1760 arg1 = gimple_assign_rhs2 (stmt);
1761 exp_type = TREE_TYPE (exp);
1763 else
1765 code = gimple_cond_code (stmt);
1766 arg0 = gimple_cond_lhs (stmt);
1767 arg1 = gimple_cond_rhs (stmt);
1768 exp_type = boolean_type_node;
1771 if (TREE_CODE (arg0) != SSA_NAME)
1772 break;
1773 loc = gimple_location (stmt);
1774 switch (code)
1776 case BIT_NOT_EXPR:
1777 if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE
1778 /* Ensure the range is either +[-,0], +[0,0],
1779 -[-,0], -[0,0] or +[1,-], +[1,1], -[1,-] or
1780 -[1,1]. If it is e.g. +[-,-] or -[-,-]
1781 or similar expression of unconditional true or
1782 false, it should not be negated. */
1783 && ((high && integer_zerop (high))
1784 || (low && integer_onep (low))))
1786 in_p = !in_p;
1787 exp = arg0;
1788 continue;
1790 break;
1791 case SSA_NAME:
1792 exp = arg0;
1793 continue;
1794 CASE_CONVERT:
1795 if (is_bool)
1796 goto do_default;
1797 if (TYPE_PRECISION (TREE_TYPE (arg0)) == 1)
1799 if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
1800 is_bool = true;
1801 else
1802 return;
1804 else if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE)
1805 is_bool = true;
1806 goto do_default;
1807 case EQ_EXPR:
1808 case NE_EXPR:
1809 case LT_EXPR:
1810 case LE_EXPR:
1811 case GE_EXPR:
1812 case GT_EXPR:
1813 is_bool = true;
1814 /* FALLTHRU */
1815 default:
1816 if (!is_bool)
1817 return;
1818 do_default:
1819 nexp = make_range_step (loc, code, arg0, arg1, exp_type,
1820 &low, &high, &in_p,
1821 &strict_overflow_p);
1822 if (nexp != NULL_TREE)
1824 exp = nexp;
1825 gcc_assert (TREE_CODE (exp) == SSA_NAME);
1826 continue;
1828 break;
1830 break;
1832 if (is_bool)
1834 r->exp = exp;
1835 r->in_p = in_p;
1836 r->low = low;
1837 r->high = high;
1838 r->strict_overflow_p = strict_overflow_p;
1842 /* Comparison function for qsort. Sort entries
1843 without SSA_NAME exp first, then with SSA_NAMEs sorted
1844 by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
1845 by increasing ->low and if ->low is the same, by increasing
1846 ->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE
1847 maximum. */
1849 static int
1850 range_entry_cmp (const void *a, const void *b)
1852 const struct range_entry *p = (const struct range_entry *) a;
1853 const struct range_entry *q = (const struct range_entry *) b;
1855 if (p->exp != NULL_TREE && TREE_CODE (p->exp) == SSA_NAME)
1857 if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
1859 /* Group range_entries for the same SSA_NAME together. */
1860 if (SSA_NAME_VERSION (p->exp) < SSA_NAME_VERSION (q->exp))
1861 return -1;
1862 else if (SSA_NAME_VERSION (p->exp) > SSA_NAME_VERSION (q->exp))
1863 return 1;
1864 /* If ->low is different, NULL low goes first, then by
1865 ascending low. */
1866 if (p->low != NULL_TREE)
1868 if (q->low != NULL_TREE)
1870 tree tem = fold_binary (LT_EXPR, boolean_type_node,
1871 p->low, q->low);
1872 if (tem && integer_onep (tem))
1873 return -1;
1874 tem = fold_binary (GT_EXPR, boolean_type_node,
1875 p->low, q->low);
1876 if (tem && integer_onep (tem))
1877 return 1;
1879 else
1880 return 1;
1882 else if (q->low != NULL_TREE)
1883 return -1;
1884 /* If ->high is different, NULL high goes last, before that by
1885 ascending high. */
1886 if (p->high != NULL_TREE)
1888 if (q->high != NULL_TREE)
1890 tree tem = fold_binary (LT_EXPR, boolean_type_node,
1891 p->high, q->high);
1892 if (tem && integer_onep (tem))
1893 return -1;
1894 tem = fold_binary (GT_EXPR, boolean_type_node,
1895 p->high, q->high);
1896 if (tem && integer_onep (tem))
1897 return 1;
1899 else
1900 return -1;
1902 else if (p->high != NULL_TREE)
1903 return 1;
1904 /* If both ranges are the same, sort below by ascending idx. */
1906 else
1907 return 1;
1909 else if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
1910 return -1;
1912 if (p->idx < q->idx)
1913 return -1;
1914 else
1916 gcc_checking_assert (p->idx > q->idx);
1917 return 1;
1921 /* Helper routine of optimize_range_test.
1922 [EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
1923 RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
1924 OPCODE and OPS are arguments of optimize_range_tests. Return
1925 true if the range merge has been successful.
1926 If OPCODE is ERROR_MARK, this is called from within
1927 maybe_optimize_range_tests and is performing inter-bb range optimization.
1928 Changes should be then performed right away, and whether an op is
1929 BIT_AND_EXPR or BIT_IOR_EXPR is found in oe->rank. */
1931 static bool
1932 update_range_test (struct range_entry *range, struct range_entry *otherrange,
1933 unsigned int count, enum tree_code opcode,
1934 vec<operand_entry_t> *ops, tree exp, bool in_p,
1935 tree low, tree high, bool strict_overflow_p)
1937 operand_entry_t oe = (*ops)[range->idx];
1938 tree op = oe->op;
1939 gimple stmt = op ? SSA_NAME_DEF_STMT (op) : last_stmt (BASIC_BLOCK (oe->id));
1940 location_t loc = gimple_location (stmt);
1941 tree optype = op ? TREE_TYPE (op) : boolean_type_node;
1942 tree tem = build_range_check (loc, optype, exp, in_p, low, high);
1943 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
1944 gimple_stmt_iterator gsi;
1946 if (tem == NULL_TREE)
1947 return false;
1949 if (strict_overflow_p && issue_strict_overflow_warning (wc))
1950 warning_at (loc, OPT_Wstrict_overflow,
1951 "assuming signed overflow does not occur "
1952 "when simplifying range test");
1954 if (dump_file && (dump_flags & TDF_DETAILS))
1956 struct range_entry *r;
1957 fprintf (dump_file, "Optimizing range tests ");
1958 print_generic_expr (dump_file, range->exp, 0);
1959 fprintf (dump_file, " %c[", range->in_p ? '+' : '-');
1960 print_generic_expr (dump_file, range->low, 0);
1961 fprintf (dump_file, ", ");
1962 print_generic_expr (dump_file, range->high, 0);
1963 fprintf (dump_file, "]");
1964 for (r = otherrange; r < otherrange + count; r++)
1966 fprintf (dump_file, " and %c[", r->in_p ? '+' : '-');
1967 print_generic_expr (dump_file, r->low, 0);
1968 fprintf (dump_file, ", ");
1969 print_generic_expr (dump_file, r->high, 0);
1970 fprintf (dump_file, "]");
1972 fprintf (dump_file, "\n into ");
1973 print_generic_expr (dump_file, tem, 0);
1974 fprintf (dump_file, "\n");
1977 if (opcode == BIT_IOR_EXPR
1978 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
1979 tem = invert_truthvalue_loc (loc, tem);
1981 tem = fold_convert_loc (loc, optype, tem);
1982 gsi = gsi_for_stmt (stmt);
1983 /* In rare cases range->exp can be equal to lhs of stmt.
1984 In that case we have to insert after the stmt rather then before
1985 it. */
1986 if (op == range->exp)
1987 tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, false,
1988 GSI_SAME_STMT);
1989 else
1990 tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
1991 GSI_SAME_STMT);
1993 /* If doing inter-bb range test optimization, update the
1994 stmts immediately. Start with changing the first range test
1995 immediate use to the new value (TEM), or, if the first range
1996 test is a GIMPLE_COND stmt, change that condition. */
1997 if (opcode == ERROR_MARK)
1999 if (op)
2001 imm_use_iterator iter;
2002 use_operand_p use_p;
2003 gimple use_stmt;
2005 FOR_EACH_IMM_USE_STMT (use_stmt, iter, op)
2007 if (is_gimple_debug (use_stmt))
2008 continue;
2009 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2010 SET_USE (use_p, tem);
2011 update_stmt (use_stmt);
2014 else
2016 gimple_cond_set_code (stmt, NE_EXPR);
2017 gimple_cond_set_lhs (stmt, tem);
2018 gimple_cond_set_rhs (stmt, boolean_false_node);
2019 update_stmt (stmt);
2022 oe->op = tem;
2023 range->exp = exp;
2024 range->low = low;
2025 range->high = high;
2026 range->in_p = in_p;
2027 range->strict_overflow_p = false;
2029 for (range = otherrange; range < otherrange + count; range++)
2031 oe = (*ops)[range->idx];
2032 /* Now change all the other range test immediate uses, so that
2033 those tests will be optimized away. */
2034 if (opcode == ERROR_MARK)
2036 if (oe->op)
2038 imm_use_iterator iter;
2039 use_operand_p use_p;
2040 gimple use_stmt;
2042 FOR_EACH_IMM_USE_STMT (use_stmt, iter, oe->op)
2044 if (is_gimple_debug (use_stmt))
2045 continue;
2046 /* If imm use of _8 is a statement like _7 = _8 | _9;,
2047 adjust it into _7 = _9;. */
2048 if (is_gimple_assign (use_stmt)
2049 && gimple_assign_rhs_code (use_stmt) == oe->rank)
2051 tree expr = NULL_TREE;
2052 if (oe->op == gimple_assign_rhs1 (use_stmt))
2053 expr = gimple_assign_rhs2 (use_stmt);
2054 else if (oe->op == gimple_assign_rhs2 (use_stmt))
2055 expr = gimple_assign_rhs1 (use_stmt);
2056 if (expr
2057 && expr != oe->op
2058 && TREE_CODE (expr) == SSA_NAME)
2060 gimple_stmt_iterator gsi2 = gsi_for_stmt (use_stmt);
2061 gimple_assign_set_rhs_with_ops (&gsi2, SSA_NAME,
2062 expr, NULL_TREE);
2063 update_stmt (use_stmt);
2064 continue;
2067 /* If imm use of _8 is a statement like _7 = (int) _8;,
2068 adjust it into _7 = 0; or _7 = 1;. */
2069 if (gimple_assign_cast_p (use_stmt)
2070 && oe->op == gimple_assign_rhs1 (use_stmt))
2072 tree lhs = gimple_assign_lhs (use_stmt);
2073 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
2075 gimple_stmt_iterator gsi2
2076 = gsi_for_stmt (use_stmt);
2077 tree expr = build_int_cst (TREE_TYPE (lhs),
2078 oe->rank == BIT_IOR_EXPR
2079 ? 0 : 1);
2080 gimple_assign_set_rhs_with_ops (&gsi2,
2081 INTEGER_CST,
2082 expr, NULL_TREE);
2083 update_stmt (use_stmt);
2084 continue;
2087 /* Otherwise replace the use with 0 or 1. */
2088 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2089 SET_USE (use_p,
2090 build_int_cst (TREE_TYPE (oe->op),
2091 oe->rank == BIT_IOR_EXPR
2092 ? 0 : 1));
2093 update_stmt (use_stmt);
2096 else
2098 /* If range test was a GIMPLE_COND, simply change it
2099 into an always false or always true condition. */
2100 stmt = last_stmt (BASIC_BLOCK (oe->id));
2101 if (oe->rank == BIT_IOR_EXPR)
2102 gimple_cond_make_false (stmt);
2103 else
2104 gimple_cond_make_true (stmt);
2105 update_stmt (stmt);
2108 oe->op = error_mark_node;
2109 range->exp = NULL_TREE;
2111 return true;
2114 /* Optimize range tests, similarly how fold_range_test optimizes
2115 it on trees. The tree code for the binary
2116 operation between all the operands is OPCODE.
2117 If OPCODE is ERROR_MARK, optimize_range_tests is called from within
2118 maybe_optimize_range_tests for inter-bb range optimization.
2119 In that case if oe->op is NULL, oe->id is bb->index whose
2120 GIMPLE_COND is && or ||ed into the test, and oe->rank says
2121 the actual opcode. */
2123 static void
2124 optimize_range_tests (enum tree_code opcode,
2125 vec<operand_entry_t> *ops)
2127 unsigned int length = ops->length (), i, j, first;
2128 operand_entry_t oe;
2129 struct range_entry *ranges;
2130 bool any_changes = false;
2132 if (length == 1)
2133 return;
2135 ranges = XNEWVEC (struct range_entry, length);
2136 for (i = 0; i < length; i++)
2138 oe = (*ops)[i];
2139 ranges[i].idx = i;
2140 init_range_entry (ranges + i, oe->op,
2141 oe->op ? NULL : last_stmt (BASIC_BLOCK (oe->id)));
2142 /* For | invert it now, we will invert it again before emitting
2143 the optimized expression. */
2144 if (opcode == BIT_IOR_EXPR
2145 || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
2146 ranges[i].in_p = !ranges[i].in_p;
2149 qsort (ranges, length, sizeof (*ranges), range_entry_cmp);
2150 for (i = 0; i < length; i++)
2151 if (ranges[i].exp != NULL_TREE && TREE_CODE (ranges[i].exp) == SSA_NAME)
2152 break;
2154 /* Try to merge ranges. */
2155 for (first = i; i < length; i++)
2157 tree low = ranges[i].low;
2158 tree high = ranges[i].high;
2159 int in_p = ranges[i].in_p;
2160 bool strict_overflow_p = ranges[i].strict_overflow_p;
2161 int update_fail_count = 0;
2163 for (j = i + 1; j < length; j++)
2165 if (ranges[i].exp != ranges[j].exp)
2166 break;
2167 if (!merge_ranges (&in_p, &low, &high, in_p, low, high,
2168 ranges[j].in_p, ranges[j].low, ranges[j].high))
2169 break;
2170 strict_overflow_p |= ranges[j].strict_overflow_p;
2173 if (j == i + 1)
2174 continue;
2176 if (update_range_test (ranges + i, ranges + i + 1, j - i - 1, opcode,
2177 ops, ranges[i].exp, in_p, low, high,
2178 strict_overflow_p))
2180 i = j - 1;
2181 any_changes = true;
2183 /* Avoid quadratic complexity if all merge_ranges calls would succeed,
2184 while update_range_test would fail. */
2185 else if (update_fail_count == 64)
2186 i = j - 1;
2187 else
2188 ++update_fail_count;
2191 /* Optimize X == CST1 || X == CST2
2192 if popcount (CST1 ^ CST2) == 1 into
2193 (X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
2194 Similarly for ranges. E.g.
2195 X != 2 && X != 3 && X != 10 && X != 11
2196 will be transformed by the above loop into
2197 (X - 2U) <= 1U && (X - 10U) <= 1U
2198 and this loop can transform that into
2199 ((X & ~8) - 2U) <= 1U. */
2200 for (i = first; i < length; i++)
2202 tree lowi, highi, lowj, highj, type, lowxor, highxor, tem, exp;
2204 if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
2205 continue;
2206 type = TREE_TYPE (ranges[i].exp);
2207 if (!INTEGRAL_TYPE_P (type))
2208 continue;
2209 lowi = ranges[i].low;
2210 if (lowi == NULL_TREE)
2211 lowi = TYPE_MIN_VALUE (type);
2212 highi = ranges[i].high;
2213 if (highi == NULL_TREE)
2214 continue;
2215 for (j = i + 1; j < length && j < i + 64; j++)
2217 if (ranges[j].exp == NULL_TREE)
2218 continue;
2219 if (ranges[i].exp != ranges[j].exp)
2220 break;
2221 if (ranges[j].in_p)
2222 continue;
2223 lowj = ranges[j].low;
2224 if (lowj == NULL_TREE)
2225 continue;
2226 highj = ranges[j].high;
2227 if (highj == NULL_TREE)
2228 highj = TYPE_MAX_VALUE (type);
2229 tem = fold_binary (GT_EXPR, boolean_type_node,
2230 lowj, highi);
2231 if (tem == NULL_TREE || !integer_onep (tem))
2232 continue;
2233 lowxor = fold_binary (BIT_XOR_EXPR, type, lowi, lowj);
2234 if (lowxor == NULL_TREE || TREE_CODE (lowxor) != INTEGER_CST)
2235 continue;
2236 gcc_checking_assert (!integer_zerop (lowxor));
2237 tem = fold_binary (MINUS_EXPR, type, lowxor,
2238 build_int_cst (type, 1));
2239 if (tem == NULL_TREE)
2240 continue;
2241 tem = fold_binary (BIT_AND_EXPR, type, lowxor, tem);
2242 if (tem == NULL_TREE || !integer_zerop (tem))
2243 continue;
2244 highxor = fold_binary (BIT_XOR_EXPR, type, highi, highj);
2245 if (!tree_int_cst_equal (lowxor, highxor))
2246 continue;
2247 tem = fold_build1 (BIT_NOT_EXPR, type, lowxor);
2248 exp = fold_build2 (BIT_AND_EXPR, type, ranges[i].exp, tem);
2249 lowj = fold_build2 (BIT_AND_EXPR, type, lowi, tem);
2250 highj = fold_build2 (BIT_AND_EXPR, type, highi, tem);
2251 if (update_range_test (ranges + i, ranges + j, 1, opcode, ops, exp,
2252 ranges[i].in_p, lowj, highj,
2253 ranges[i].strict_overflow_p
2254 || ranges[j].strict_overflow_p))
2256 any_changes = true;
2257 break;
2262 if (any_changes && opcode != ERROR_MARK)
2264 j = 0;
2265 FOR_EACH_VEC_ELT (*ops, i, oe)
2267 if (oe->op == error_mark_node)
2268 continue;
2269 else if (i != j)
2270 (*ops)[j] = oe;
2271 j++;
2273 ops->truncate (j);
2276 XDELETEVEC (ranges);
2279 /* Return true if STMT is a cast like:
2280 <bb N>:
2282 _123 = (int) _234;
2284 <bb M>:
2285 # _345 = PHI <_123(N), 1(...), 1(...)>
2286 where _234 has bool type, _123 has single use and
2287 bb N has a single successor M. This is commonly used in
2288 the last block of a range test. */
2290 static bool
2291 final_range_test_p (gimple stmt)
2293 basic_block bb, rhs_bb;
2294 edge e;
2295 tree lhs, rhs;
2296 use_operand_p use_p;
2297 gimple use_stmt;
2299 if (!gimple_assign_cast_p (stmt))
2300 return false;
2301 bb = gimple_bb (stmt);
2302 if (!single_succ_p (bb))
2303 return false;
2304 e = single_succ_edge (bb);
2305 if (e->flags & EDGE_COMPLEX)
2306 return false;
2308 lhs = gimple_assign_lhs (stmt);
2309 rhs = gimple_assign_rhs1 (stmt);
2310 if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2311 || TREE_CODE (rhs) != SSA_NAME
2312 || TREE_CODE (TREE_TYPE (rhs)) != BOOLEAN_TYPE)
2313 return false;
2315 /* Test whether lhs is consumed only by a PHI in the only successor bb. */
2316 if (!single_imm_use (lhs, &use_p, &use_stmt))
2317 return false;
2319 if (gimple_code (use_stmt) != GIMPLE_PHI
2320 || gimple_bb (use_stmt) != e->dest)
2321 return false;
2323 /* And that the rhs is defined in the same loop. */
2324 rhs_bb = gimple_bb (SSA_NAME_DEF_STMT (rhs));
2325 if (rhs_bb == NULL
2326 || !flow_bb_inside_loop_p (loop_containing_stmt (stmt), rhs_bb))
2327 return false;
2329 return true;
2332 /* Return true if BB is suitable basic block for inter-bb range test
2333 optimization. If BACKWARD is true, BB should be the only predecessor
2334 of TEST_BB, and *OTHER_BB is either NULL and filled by the routine,
2335 or compared with to find a common basic block to which all conditions
2336 branch to if true resp. false. If BACKWARD is false, TEST_BB should
2337 be the only predecessor of BB. */
2339 static bool
2340 suitable_cond_bb (basic_block bb, basic_block test_bb, basic_block *other_bb,
2341 bool backward)
2343 edge_iterator ei, ei2;
2344 edge e, e2;
2345 gimple stmt;
2346 gimple_stmt_iterator gsi;
2347 bool other_edge_seen = false;
2348 bool is_cond;
2350 if (test_bb == bb)
2351 return false;
2352 /* Check last stmt first. */
2353 stmt = last_stmt (bb);
2354 if (stmt == NULL
2355 || (gimple_code (stmt) != GIMPLE_COND
2356 && (backward || !final_range_test_p (stmt)))
2357 || gimple_visited_p (stmt)
2358 || stmt_could_throw_p (stmt)
2359 || *other_bb == bb)
2360 return false;
2361 is_cond = gimple_code (stmt) == GIMPLE_COND;
2362 if (is_cond)
2364 /* If last stmt is GIMPLE_COND, verify that one of the succ edges
2365 goes to the next bb (if BACKWARD, it is TEST_BB), and the other
2366 to *OTHER_BB (if not set yet, try to find it out). */
2367 if (EDGE_COUNT (bb->succs) != 2)
2368 return false;
2369 FOR_EACH_EDGE (e, ei, bb->succs)
2371 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2372 return false;
2373 if (e->dest == test_bb)
2375 if (backward)
2376 continue;
2377 else
2378 return false;
2380 if (e->dest == bb)
2381 return false;
2382 if (*other_bb == NULL)
2384 FOR_EACH_EDGE (e2, ei2, test_bb->succs)
2385 if (!(e2->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2386 return false;
2387 else if (e->dest == e2->dest)
2388 *other_bb = e->dest;
2389 if (*other_bb == NULL)
2390 return false;
2392 if (e->dest == *other_bb)
2393 other_edge_seen = true;
2394 else if (backward)
2395 return false;
2397 if (*other_bb == NULL || !other_edge_seen)
2398 return false;
2400 else if (single_succ (bb) != *other_bb)
2401 return false;
2403 /* Now check all PHIs of *OTHER_BB. */
2404 e = find_edge (bb, *other_bb);
2405 e2 = find_edge (test_bb, *other_bb);
2406 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2408 gimple phi = gsi_stmt (gsi);
2409 /* If both BB and TEST_BB end with GIMPLE_COND, all PHI arguments
2410 corresponding to BB and TEST_BB predecessor must be the same. */
2411 if (!operand_equal_p (gimple_phi_arg_def (phi, e->dest_idx),
2412 gimple_phi_arg_def (phi, e2->dest_idx), 0))
2414 /* Otherwise, if one of the blocks doesn't end with GIMPLE_COND,
2415 one of the PHIs should have the lhs of the last stmt in
2416 that block as PHI arg and that PHI should have 0 or 1
2417 corresponding to it in all other range test basic blocks
2418 considered. */
2419 if (!is_cond)
2421 if (gimple_phi_arg_def (phi, e->dest_idx)
2422 == gimple_assign_lhs (stmt)
2423 && (integer_zerop (gimple_phi_arg_def (phi, e2->dest_idx))
2424 || integer_onep (gimple_phi_arg_def (phi,
2425 e2->dest_idx))))
2426 continue;
2428 else
2430 gimple test_last = last_stmt (test_bb);
2431 if (gimple_code (test_last) != GIMPLE_COND
2432 && gimple_phi_arg_def (phi, e2->dest_idx)
2433 == gimple_assign_lhs (test_last)
2434 && (integer_zerop (gimple_phi_arg_def (phi, e->dest_idx))
2435 || integer_onep (gimple_phi_arg_def (phi, e->dest_idx))))
2436 continue;
2439 return false;
2442 return true;
2445 /* Return true if BB doesn't have side-effects that would disallow
2446 range test optimization, all SSA_NAMEs set in the bb are consumed
2447 in the bb and there are no PHIs. */
2449 static bool
2450 no_side_effect_bb (basic_block bb)
2452 gimple_stmt_iterator gsi;
2453 gimple last;
2455 if (!gimple_seq_empty_p (phi_nodes (bb)))
2456 return false;
2457 last = last_stmt (bb);
2458 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2460 gimple stmt = gsi_stmt (gsi);
2461 tree lhs;
2462 imm_use_iterator imm_iter;
2463 use_operand_p use_p;
2465 if (is_gimple_debug (stmt))
2466 continue;
2467 if (gimple_has_side_effects (stmt))
2468 return false;
2469 if (stmt == last)
2470 return true;
2471 if (!is_gimple_assign (stmt))
2472 return false;
2473 lhs = gimple_assign_lhs (stmt);
2474 if (TREE_CODE (lhs) != SSA_NAME)
2475 return false;
2476 if (gimple_assign_rhs_could_trap_p (stmt))
2477 return false;
2478 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2480 gimple use_stmt = USE_STMT (use_p);
2481 if (is_gimple_debug (use_stmt))
2482 continue;
2483 if (gimple_bb (use_stmt) != bb)
2484 return false;
2487 return false;
2490 /* If VAR is set by CODE (BIT_{AND,IOR}_EXPR) which is reassociable,
2491 return true and fill in *OPS recursively. */
2493 static bool
2494 get_ops (tree var, enum tree_code code, vec<operand_entry_t> *ops,
2495 struct loop *loop)
2497 gimple stmt = SSA_NAME_DEF_STMT (var);
2498 tree rhs[2];
2499 int i;
2501 if (!is_reassociable_op (stmt, code, loop))
2502 return false;
2504 rhs[0] = gimple_assign_rhs1 (stmt);
2505 rhs[1] = gimple_assign_rhs2 (stmt);
2506 gimple_set_visited (stmt, true);
2507 for (i = 0; i < 2; i++)
2508 if (TREE_CODE (rhs[i]) == SSA_NAME
2509 && !get_ops (rhs[i], code, ops, loop)
2510 && has_single_use (rhs[i]))
2512 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
2514 oe->op = rhs[i];
2515 oe->rank = code;
2516 oe->id = 0;
2517 oe->count = 1;
2518 ops->safe_push (oe);
2520 return true;
2523 /* Inter-bb range test optimization. */
2525 static void
2526 maybe_optimize_range_tests (gimple stmt)
2528 basic_block first_bb = gimple_bb (stmt);
2529 basic_block last_bb = first_bb;
2530 basic_block other_bb = NULL;
2531 basic_block bb;
2532 edge_iterator ei;
2533 edge e;
2534 vec<operand_entry_t> ops = vNULL;
2536 /* Consider only basic blocks that end with GIMPLE_COND or
2537 a cast statement satisfying final_range_test_p. All
2538 but the last bb in the first_bb .. last_bb range
2539 should end with GIMPLE_COND. */
2540 if (gimple_code (stmt) == GIMPLE_COND)
2542 if (EDGE_COUNT (first_bb->succs) != 2)
2543 return;
2545 else if (final_range_test_p (stmt))
2546 other_bb = single_succ (first_bb);
2547 else
2548 return;
2550 if (stmt_could_throw_p (stmt))
2551 return;
2553 /* As relative ordering of post-dominator sons isn't fixed,
2554 maybe_optimize_range_tests can be called first on any
2555 bb in the range we want to optimize. So, start searching
2556 backwards, if first_bb can be set to a predecessor. */
2557 while (single_pred_p (first_bb))
2559 basic_block pred_bb = single_pred (first_bb);
2560 if (!suitable_cond_bb (pred_bb, first_bb, &other_bb, true))
2561 break;
2562 if (!no_side_effect_bb (first_bb))
2563 break;
2564 first_bb = pred_bb;
2566 /* If first_bb is last_bb, other_bb hasn't been computed yet.
2567 Before starting forward search in last_bb successors, find
2568 out the other_bb. */
2569 if (first_bb == last_bb)
2571 other_bb = NULL;
2572 /* As non-GIMPLE_COND last stmt always terminates the range,
2573 if forward search didn't discover anything, just give up. */
2574 if (gimple_code (stmt) != GIMPLE_COND)
2575 return;
2576 /* Look at both successors. Either it ends with a GIMPLE_COND
2577 and satisfies suitable_cond_bb, or ends with a cast and
2578 other_bb is that cast's successor. */
2579 FOR_EACH_EDGE (e, ei, first_bb->succs)
2580 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
2581 || e->dest == first_bb)
2582 return;
2583 else if (single_pred_p (e->dest))
2585 stmt = last_stmt (e->dest);
2586 if (stmt
2587 && gimple_code (stmt) == GIMPLE_COND
2588 && EDGE_COUNT (e->dest->succs) == 2)
2590 if (suitable_cond_bb (first_bb, e->dest, &other_bb, true))
2591 break;
2592 else
2593 other_bb = NULL;
2595 else if (stmt
2596 && final_range_test_p (stmt)
2597 && find_edge (first_bb, single_succ (e->dest)))
2599 other_bb = single_succ (e->dest);
2600 if (other_bb == first_bb)
2601 other_bb = NULL;
2604 if (other_bb == NULL)
2605 return;
2607 /* Now do the forward search, moving last_bb to successor bbs
2608 that aren't other_bb. */
2609 while (EDGE_COUNT (last_bb->succs) == 2)
2611 FOR_EACH_EDGE (e, ei, last_bb->succs)
2612 if (e->dest != other_bb)
2613 break;
2614 if (e == NULL)
2615 break;
2616 if (!single_pred_p (e->dest))
2617 break;
2618 if (!suitable_cond_bb (e->dest, last_bb, &other_bb, false))
2619 break;
2620 if (!no_side_effect_bb (e->dest))
2621 break;
2622 last_bb = e->dest;
2624 if (first_bb == last_bb)
2625 return;
2626 /* Here basic blocks first_bb through last_bb's predecessor
2627 end with GIMPLE_COND, all of them have one of the edges to
2628 other_bb and another to another block in the range,
2629 all blocks except first_bb don't have side-effects and
2630 last_bb ends with either GIMPLE_COND, or cast satisfying
2631 final_range_test_p. */
2632 for (bb = last_bb; ; bb = single_pred (bb))
2634 enum tree_code code;
2635 tree lhs, rhs;
2637 e = find_edge (bb, other_bb);
2638 stmt = last_stmt (bb);
2639 gimple_set_visited (stmt, true);
2640 if (gimple_code (stmt) != GIMPLE_COND)
2642 use_operand_p use_p;
2643 gimple phi;
2644 edge e2;
2645 unsigned int d;
2647 lhs = gimple_assign_lhs (stmt);
2648 rhs = gimple_assign_rhs1 (stmt);
2649 gcc_assert (bb == last_bb);
2651 /* stmt is
2652 _123 = (int) _234;
2654 followed by:
2655 <bb M>:
2656 # _345 = PHI <_123(N), 1(...), 1(...)>
2658 or 0 instead of 1. If it is 0, the _234
2659 range test is anded together with all the
2660 other range tests, if it is 1, it is ored with
2661 them. */
2662 single_imm_use (lhs, &use_p, &phi);
2663 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
2664 e2 = find_edge (first_bb, other_bb);
2665 d = e2->dest_idx;
2666 gcc_assert (gimple_phi_arg_def (phi, e->dest_idx) == lhs);
2667 if (integer_zerop (gimple_phi_arg_def (phi, d)))
2668 code = BIT_AND_EXPR;
2669 else
2671 gcc_checking_assert (integer_onep (gimple_phi_arg_def (phi, d)));
2672 code = BIT_IOR_EXPR;
2675 /* If _234 SSA_NAME_DEF_STMT is
2676 _234 = _567 | _789;
2677 (or &, corresponding to 1/0 in the phi arguments,
2678 push into ops the individual range test arguments
2679 of the bitwise or resp. and, recursively. */
2680 if (!get_ops (rhs, code, &ops,
2681 loop_containing_stmt (stmt))
2682 && has_single_use (rhs))
2684 /* Otherwise, push the _234 range test itself. */
2685 operand_entry_t oe
2686 = (operand_entry_t) pool_alloc (operand_entry_pool);
2688 oe->op = rhs;
2689 oe->rank = code;
2690 oe->id = 0;
2691 oe->count = 1;
2692 ops.safe_push (oe);
2694 continue;
2696 /* Otherwise stmt is GIMPLE_COND. */
2697 code = gimple_cond_code (stmt);
2698 lhs = gimple_cond_lhs (stmt);
2699 rhs = gimple_cond_rhs (stmt);
2700 if (TREE_CODE (lhs) == SSA_NAME
2701 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2702 && ((code != EQ_EXPR && code != NE_EXPR)
2703 || rhs != boolean_false_node
2704 /* Either push into ops the individual bitwise
2705 or resp. and operands, depending on which
2706 edge is other_bb. */
2707 || !get_ops (lhs, (((e->flags & EDGE_TRUE_VALUE) == 0)
2708 ^ (code == EQ_EXPR))
2709 ? BIT_AND_EXPR : BIT_IOR_EXPR, &ops,
2710 loop_containing_stmt (stmt))))
2712 /* Or push the GIMPLE_COND stmt itself. */
2713 operand_entry_t oe
2714 = (operand_entry_t) pool_alloc (operand_entry_pool);
2716 oe->op = NULL;
2717 oe->rank = (e->flags & EDGE_TRUE_VALUE)
2718 ? BIT_IOR_EXPR : BIT_AND_EXPR;
2719 /* oe->op = NULL signs that there is no SSA_NAME
2720 for the range test, and oe->id instead is the
2721 basic block number, at which's end the GIMPLE_COND
2722 is. */
2723 oe->id = bb->index;
2724 oe->count = 1;
2725 ops.safe_push (oe);
2727 if (bb == first_bb)
2728 break;
2730 if (ops.length () > 1)
2731 optimize_range_tests (ERROR_MARK, &ops);
2732 ops.release ();
2735 /* Return true if OPERAND is defined by a PHI node which uses the LHS
2736 of STMT in it's operands. This is also known as a "destructive
2737 update" operation. */
2739 static bool
2740 is_phi_for_stmt (gimple stmt, tree operand)
2742 gimple def_stmt;
2743 tree lhs;
2744 use_operand_p arg_p;
2745 ssa_op_iter i;
2747 if (TREE_CODE (operand) != SSA_NAME)
2748 return false;
2750 lhs = gimple_assign_lhs (stmt);
2752 def_stmt = SSA_NAME_DEF_STMT (operand);
2753 if (gimple_code (def_stmt) != GIMPLE_PHI)
2754 return false;
2756 FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
2757 if (lhs == USE_FROM_PTR (arg_p))
2758 return true;
2759 return false;
2762 /* Remove def stmt of VAR if VAR has zero uses and recurse
2763 on rhs1 operand if so. */
2765 static void
2766 remove_visited_stmt_chain (tree var)
2768 gimple stmt;
2769 gimple_stmt_iterator gsi;
2771 while (1)
2773 if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
2774 return;
2775 stmt = SSA_NAME_DEF_STMT (var);
2776 if (is_gimple_assign (stmt) && gimple_visited_p (stmt))
2778 var = gimple_assign_rhs1 (stmt);
2779 gsi = gsi_for_stmt (stmt);
2780 gsi_remove (&gsi, true);
2781 release_defs (stmt);
2783 else
2784 return;
2788 /* This function checks three consequtive operands in
2789 passed operands vector OPS starting from OPINDEX and
2790 swaps two operands if it is profitable for binary operation
2791 consuming OPINDEX + 1 abnd OPINDEX + 2 operands.
2793 We pair ops with the same rank if possible.
2795 The alternative we try is to see if STMT is a destructive
2796 update style statement, which is like:
2797 b = phi (a, ...)
2798 a = c + b;
2799 In that case, we want to use the destructive update form to
2800 expose the possible vectorizer sum reduction opportunity.
2801 In that case, the third operand will be the phi node. This
2802 check is not performed if STMT is null.
2804 We could, of course, try to be better as noted above, and do a
2805 lot of work to try to find these opportunities in >3 operand
2806 cases, but it is unlikely to be worth it. */
2808 static void
2809 swap_ops_for_binary_stmt (vec<operand_entry_t> ops,
2810 unsigned int opindex, gimple stmt)
2812 operand_entry_t oe1, oe2, oe3;
2814 oe1 = ops[opindex];
2815 oe2 = ops[opindex + 1];
2816 oe3 = ops[opindex + 2];
2818 if ((oe1->rank == oe2->rank
2819 && oe2->rank != oe3->rank)
2820 || (stmt && is_phi_for_stmt (stmt, oe3->op)
2821 && !is_phi_for_stmt (stmt, oe1->op)
2822 && !is_phi_for_stmt (stmt, oe2->op)))
2824 struct operand_entry temp = *oe3;
2825 oe3->op = oe1->op;
2826 oe3->rank = oe1->rank;
2827 oe1->op = temp.op;
2828 oe1->rank= temp.rank;
2830 else if ((oe1->rank == oe3->rank
2831 && oe2->rank != oe3->rank)
2832 || (stmt && is_phi_for_stmt (stmt, oe2->op)
2833 && !is_phi_for_stmt (stmt, oe1->op)
2834 && !is_phi_for_stmt (stmt, oe3->op)))
2836 struct operand_entry temp = *oe2;
2837 oe2->op = oe1->op;
2838 oe2->rank = oe1->rank;
2839 oe1->op = temp.op;
2840 oe1->rank= temp.rank;
2844 /* Recursively rewrite our linearized statements so that the operators
2845 match those in OPS[OPINDEX], putting the computation in rank
2846 order. */
2848 static void
2849 rewrite_expr_tree (gimple stmt, unsigned int opindex,
2850 vec<operand_entry_t> ops, bool moved)
2852 tree rhs1 = gimple_assign_rhs1 (stmt);
2853 tree rhs2 = gimple_assign_rhs2 (stmt);
2854 operand_entry_t oe;
2856 /* If we have three operands left, then we want to make sure the ones
2857 that get the double binary op are chosen wisely. */
2858 if (opindex + 3 == ops.length ())
2859 swap_ops_for_binary_stmt (ops, opindex, stmt);
2861 /* The final recursion case for this function is that you have
2862 exactly two operations left.
2863 If we had one exactly one op in the entire list to start with, we
2864 would have never called this function, and the tail recursion
2865 rewrites them one at a time. */
2866 if (opindex + 2 == ops.length ())
2868 operand_entry_t oe1, oe2;
2870 oe1 = ops[opindex];
2871 oe2 = ops[opindex + 1];
2873 if (rhs1 != oe1->op || rhs2 != oe2->op)
2875 if (dump_file && (dump_flags & TDF_DETAILS))
2877 fprintf (dump_file, "Transforming ");
2878 print_gimple_stmt (dump_file, stmt, 0, 0);
2881 gimple_assign_set_rhs1 (stmt, oe1->op);
2882 gimple_assign_set_rhs2 (stmt, oe2->op);
2883 update_stmt (stmt);
2884 if (rhs1 != oe1->op && rhs1 != oe2->op)
2885 remove_visited_stmt_chain (rhs1);
2887 if (dump_file && (dump_flags & TDF_DETAILS))
2889 fprintf (dump_file, " into ");
2890 print_gimple_stmt (dump_file, stmt, 0, 0);
2893 return;
2896 /* If we hit here, we should have 3 or more ops left. */
2897 gcc_assert (opindex + 2 < ops.length ());
2899 /* Rewrite the next operator. */
2900 oe = ops[opindex];
2902 if (oe->op != rhs2)
2904 if (!moved)
2906 gimple_stmt_iterator gsinow, gsirhs1;
2907 gimple stmt1 = stmt, stmt2;
2908 unsigned int count;
2910 gsinow = gsi_for_stmt (stmt);
2911 count = ops.length () - opindex - 2;
2912 while (count-- != 0)
2914 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
2915 gsirhs1 = gsi_for_stmt (stmt2);
2916 gsi_move_before (&gsirhs1, &gsinow);
2917 gsi_prev (&gsinow);
2918 stmt1 = stmt2;
2920 moved = true;
2923 if (dump_file && (dump_flags & TDF_DETAILS))
2925 fprintf (dump_file, "Transforming ");
2926 print_gimple_stmt (dump_file, stmt, 0, 0);
2929 gimple_assign_set_rhs2 (stmt, oe->op);
2930 update_stmt (stmt);
2932 if (dump_file && (dump_flags & TDF_DETAILS))
2934 fprintf (dump_file, " into ");
2935 print_gimple_stmt (dump_file, stmt, 0, 0);
2938 /* Recurse on the LHS of the binary operator, which is guaranteed to
2939 be the non-leaf side. */
2940 rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
2943 /* Find out how many cycles we need to compute statements chain.
2944 OPS_NUM holds number os statements in a chain. CPU_WIDTH is a
2945 maximum number of independent statements we may execute per cycle. */
2947 static int
2948 get_required_cycles (int ops_num, int cpu_width)
2950 int res;
2951 int elog;
2952 unsigned int rest;
2954 /* While we have more than 2 * cpu_width operands
2955 we may reduce number of operands by cpu_width
2956 per cycle. */
2957 res = ops_num / (2 * cpu_width);
2959 /* Remained operands count may be reduced twice per cycle
2960 until we have only one operand. */
2961 rest = (unsigned)(ops_num - res * cpu_width);
2962 elog = exact_log2 (rest);
2963 if (elog >= 0)
2964 res += elog;
2965 else
2966 res += floor_log2 (rest) + 1;
2968 return res;
2971 /* Returns an optimal number of registers to use for computation of
2972 given statements. */
2974 static int
2975 get_reassociation_width (int ops_num, enum tree_code opc,
2976 enum machine_mode mode)
2978 int param_width = PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH);
2979 int width;
2980 int width_min;
2981 int cycles_best;
2983 if (param_width > 0)
2984 width = param_width;
2985 else
2986 width = targetm.sched.reassociation_width (opc, mode);
2988 if (width == 1)
2989 return width;
2991 /* Get the minimal time required for sequence computation. */
2992 cycles_best = get_required_cycles (ops_num, width);
2994 /* Check if we may use less width and still compute sequence for
2995 the same time. It will allow us to reduce registers usage.
2996 get_required_cycles is monotonically increasing with lower width
2997 so we can perform a binary search for the minimal width that still
2998 results in the optimal cycle count. */
2999 width_min = 1;
3000 while (width > width_min)
3002 int width_mid = (width + width_min) / 2;
3004 if (get_required_cycles (ops_num, width_mid) == cycles_best)
3005 width = width_mid;
3006 else if (width_min < width_mid)
3007 width_min = width_mid;
3008 else
3009 break;
3012 return width;
3015 /* Recursively rewrite our linearized statements so that the operators
3016 match those in OPS[OPINDEX], putting the computation in rank
3017 order and trying to allow operations to be executed in
3018 parallel. */
3020 static void
3021 rewrite_expr_tree_parallel (gimple stmt, int width,
3022 vec<operand_entry_t> ops)
3024 enum tree_code opcode = gimple_assign_rhs_code (stmt);
3025 int op_num = ops.length ();
3026 int stmt_num = op_num - 1;
3027 gimple *stmts = XALLOCAVEC (gimple, stmt_num);
3028 int op_index = op_num - 1;
3029 int stmt_index = 0;
3030 int ready_stmts_end = 0;
3031 int i = 0;
3032 tree last_rhs1 = gimple_assign_rhs1 (stmt);
3034 /* We start expression rewriting from the top statements.
3035 So, in this loop we create a full list of statements
3036 we will work with. */
3037 stmts[stmt_num - 1] = stmt;
3038 for (i = stmt_num - 2; i >= 0; i--)
3039 stmts[i] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts[i+1]));
3041 for (i = 0; i < stmt_num; i++)
3043 tree op1, op2;
3045 /* Determine whether we should use results of
3046 already handled statements or not. */
3047 if (ready_stmts_end == 0
3048 && (i - stmt_index >= width || op_index < 1))
3049 ready_stmts_end = i;
3051 /* Now we choose operands for the next statement. Non zero
3052 value in ready_stmts_end means here that we should use
3053 the result of already generated statements as new operand. */
3054 if (ready_stmts_end > 0)
3056 op1 = gimple_assign_lhs (stmts[stmt_index++]);
3057 if (ready_stmts_end > stmt_index)
3058 op2 = gimple_assign_lhs (stmts[stmt_index++]);
3059 else if (op_index >= 0)
3060 op2 = ops[op_index--]->op;
3061 else
3063 gcc_assert (stmt_index < i);
3064 op2 = gimple_assign_lhs (stmts[stmt_index++]);
3067 if (stmt_index >= ready_stmts_end)
3068 ready_stmts_end = 0;
3070 else
3072 if (op_index > 1)
3073 swap_ops_for_binary_stmt (ops, op_index - 2, NULL);
3074 op2 = ops[op_index--]->op;
3075 op1 = ops[op_index--]->op;
3078 /* If we emit the last statement then we should put
3079 operands into the last statement. It will also
3080 break the loop. */
3081 if (op_index < 0 && stmt_index == i)
3082 i = stmt_num - 1;
3084 if (dump_file && (dump_flags & TDF_DETAILS))
3086 fprintf (dump_file, "Transforming ");
3087 print_gimple_stmt (dump_file, stmts[i], 0, 0);
3090 /* We keep original statement only for the last one. All
3091 others are recreated. */
3092 if (i == stmt_num - 1)
3094 gimple_assign_set_rhs1 (stmts[i], op1);
3095 gimple_assign_set_rhs2 (stmts[i], op2);
3096 update_stmt (stmts[i]);
3098 else
3099 stmts[i] = build_and_add_sum (TREE_TYPE (last_rhs1), op1, op2, opcode);
3101 if (dump_file && (dump_flags & TDF_DETAILS))
3103 fprintf (dump_file, " into ");
3104 print_gimple_stmt (dump_file, stmts[i], 0, 0);
3108 remove_visited_stmt_chain (last_rhs1);
3111 /* Transform STMT, which is really (A +B) + (C + D) into the left
3112 linear form, ((A+B)+C)+D.
3113 Recurse on D if necessary. */
3115 static void
3116 linearize_expr (gimple stmt)
3118 gimple_stmt_iterator gsinow, gsirhs;
3119 gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3120 gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3121 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
3122 gimple newbinrhs = NULL;
3123 struct loop *loop = loop_containing_stmt (stmt);
3125 gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
3126 && is_reassociable_op (binrhs, rhscode, loop));
3128 gsinow = gsi_for_stmt (stmt);
3129 gsirhs = gsi_for_stmt (binrhs);
3130 gsi_move_before (&gsirhs, &gsinow);
3132 gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
3133 gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs));
3134 gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
3136 if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
3137 newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3139 if (dump_file && (dump_flags & TDF_DETAILS))
3141 fprintf (dump_file, "Linearized: ");
3142 print_gimple_stmt (dump_file, stmt, 0, 0);
3145 reassociate_stats.linearized++;
3146 update_stmt (binrhs);
3147 update_stmt (binlhs);
3148 update_stmt (stmt);
3150 gimple_set_visited (stmt, true);
3151 gimple_set_visited (binlhs, true);
3152 gimple_set_visited (binrhs, true);
3154 /* Tail recurse on the new rhs if it still needs reassociation. */
3155 if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
3156 /* ??? This should probably be linearize_expr (newbinrhs) but I don't
3157 want to change the algorithm while converting to tuples. */
3158 linearize_expr (stmt);
3161 /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
3162 it. Otherwise, return NULL. */
3164 static gimple
3165 get_single_immediate_use (tree lhs)
3167 use_operand_p immuse;
3168 gimple immusestmt;
3170 if (TREE_CODE (lhs) == SSA_NAME
3171 && single_imm_use (lhs, &immuse, &immusestmt)
3172 && is_gimple_assign (immusestmt))
3173 return immusestmt;
3175 return NULL;
3178 /* Recursively negate the value of TONEGATE, and return the SSA_NAME
3179 representing the negated value. Insertions of any necessary
3180 instructions go before GSI.
3181 This function is recursive in that, if you hand it "a_5" as the
3182 value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
3183 transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
3185 static tree
3186 negate_value (tree tonegate, gimple_stmt_iterator *gsi)
3188 gimple negatedefstmt= NULL;
3189 tree resultofnegate;
3191 /* If we are trying to negate a name, defined by an add, negate the
3192 add operands instead. */
3193 if (TREE_CODE (tonegate) == SSA_NAME)
3194 negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
3195 if (TREE_CODE (tonegate) == SSA_NAME
3196 && is_gimple_assign (negatedefstmt)
3197 && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
3198 && has_single_use (gimple_assign_lhs (negatedefstmt))
3199 && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
3201 gimple_stmt_iterator gsi;
3202 tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
3203 tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
3205 gsi = gsi_for_stmt (negatedefstmt);
3206 rhs1 = negate_value (rhs1, &gsi);
3207 gimple_assign_set_rhs1 (negatedefstmt, rhs1);
3209 gsi = gsi_for_stmt (negatedefstmt);
3210 rhs2 = negate_value (rhs2, &gsi);
3211 gimple_assign_set_rhs2 (negatedefstmt, rhs2);
3213 update_stmt (negatedefstmt);
3214 return gimple_assign_lhs (negatedefstmt);
3217 tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
3218 resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
3219 NULL_TREE, true, GSI_SAME_STMT);
3220 return resultofnegate;
3223 /* Return true if we should break up the subtract in STMT into an add
3224 with negate. This is true when we the subtract operands are really
3225 adds, or the subtract itself is used in an add expression. In
3226 either case, breaking up the subtract into an add with negate
3227 exposes the adds to reassociation. */
3229 static bool
3230 should_break_up_subtract (gimple stmt)
3232 tree lhs = gimple_assign_lhs (stmt);
3233 tree binlhs = gimple_assign_rhs1 (stmt);
3234 tree binrhs = gimple_assign_rhs2 (stmt);
3235 gimple immusestmt;
3236 struct loop *loop = loop_containing_stmt (stmt);
3238 if (TREE_CODE (binlhs) == SSA_NAME
3239 && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
3240 return true;
3242 if (TREE_CODE (binrhs) == SSA_NAME
3243 && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
3244 return true;
3246 if (TREE_CODE (lhs) == SSA_NAME
3247 && (immusestmt = get_single_immediate_use (lhs))
3248 && is_gimple_assign (immusestmt)
3249 && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
3250 || gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
3251 return true;
3252 return false;
3255 /* Transform STMT from A - B into A + -B. */
3257 static void
3258 break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
3260 tree rhs1 = gimple_assign_rhs1 (stmt);
3261 tree rhs2 = gimple_assign_rhs2 (stmt);
3263 if (dump_file && (dump_flags & TDF_DETAILS))
3265 fprintf (dump_file, "Breaking up subtract ");
3266 print_gimple_stmt (dump_file, stmt, 0, 0);
3269 rhs2 = negate_value (rhs2, gsip);
3270 gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
3271 update_stmt (stmt);
3274 /* Determine whether STMT is a builtin call that raises an SSA name
3275 to an integer power and has only one use. If so, and this is early
3276 reassociation and unsafe math optimizations are permitted, place
3277 the SSA name in *BASE and the exponent in *EXPONENT, and return TRUE.
3278 If any of these conditions does not hold, return FALSE. */
3280 static bool
3281 acceptable_pow_call (gimple stmt, tree *base, HOST_WIDE_INT *exponent)
3283 tree fndecl, arg1;
3284 REAL_VALUE_TYPE c, cint;
3286 if (!first_pass_instance
3287 || !flag_unsafe_math_optimizations
3288 || !is_gimple_call (stmt)
3289 || !has_single_use (gimple_call_lhs (stmt)))
3290 return false;
3292 fndecl = gimple_call_fndecl (stmt);
3294 if (!fndecl
3295 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3296 return false;
3298 switch (DECL_FUNCTION_CODE (fndecl))
3300 CASE_FLT_FN (BUILT_IN_POW):
3301 *base = gimple_call_arg (stmt, 0);
3302 arg1 = gimple_call_arg (stmt, 1);
3304 if (TREE_CODE (arg1) != REAL_CST)
3305 return false;
3307 c = TREE_REAL_CST (arg1);
3309 if (REAL_EXP (&c) > HOST_BITS_PER_WIDE_INT)
3310 return false;
3312 *exponent = real_to_integer (&c);
3313 real_from_integer (&cint, VOIDmode, *exponent,
3314 *exponent < 0 ? -1 : 0, 0);
3315 if (!real_identical (&c, &cint))
3316 return false;
3318 break;
3320 CASE_FLT_FN (BUILT_IN_POWI):
3321 *base = gimple_call_arg (stmt, 0);
3322 arg1 = gimple_call_arg (stmt, 1);
3324 if (!host_integerp (arg1, 0))
3325 return false;
3327 *exponent = TREE_INT_CST_LOW (arg1);
3328 break;
3330 default:
3331 return false;
3334 /* Expanding negative exponents is generally unproductive, so we don't
3335 complicate matters with those. Exponents of zero and one should
3336 have been handled by expression folding. */
3337 if (*exponent < 2 || TREE_CODE (*base) != SSA_NAME)
3338 return false;
3340 return true;
3343 /* Recursively linearize a binary expression that is the RHS of STMT.
3344 Place the operands of the expression tree in the vector named OPS. */
3346 static void
3347 linearize_expr_tree (vec<operand_entry_t> *ops, gimple stmt,
3348 bool is_associative, bool set_visited)
3350 tree binlhs = gimple_assign_rhs1 (stmt);
3351 tree binrhs = gimple_assign_rhs2 (stmt);
3352 gimple binlhsdef = NULL, binrhsdef = NULL;
3353 bool binlhsisreassoc = false;
3354 bool binrhsisreassoc = false;
3355 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
3356 struct loop *loop = loop_containing_stmt (stmt);
3357 tree base = NULL_TREE;
3358 HOST_WIDE_INT exponent = 0;
3360 if (set_visited)
3361 gimple_set_visited (stmt, true);
3363 if (TREE_CODE (binlhs) == SSA_NAME)
3365 binlhsdef = SSA_NAME_DEF_STMT (binlhs);
3366 binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop)
3367 && !stmt_could_throw_p (binlhsdef));
3370 if (TREE_CODE (binrhs) == SSA_NAME)
3372 binrhsdef = SSA_NAME_DEF_STMT (binrhs);
3373 binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop)
3374 && !stmt_could_throw_p (binrhsdef));
3377 /* If the LHS is not reassociable, but the RHS is, we need to swap
3378 them. If neither is reassociable, there is nothing we can do, so
3379 just put them in the ops vector. If the LHS is reassociable,
3380 linearize it. If both are reassociable, then linearize the RHS
3381 and the LHS. */
3383 if (!binlhsisreassoc)
3385 tree temp;
3387 /* If this is not a associative operation like division, give up. */
3388 if (!is_associative)
3390 add_to_ops_vec (ops, binrhs);
3391 return;
3394 if (!binrhsisreassoc)
3396 if (rhscode == MULT_EXPR
3397 && TREE_CODE (binrhs) == SSA_NAME
3398 && acceptable_pow_call (binrhsdef, &base, &exponent))
3400 add_repeat_to_ops_vec (ops, base, exponent);
3401 gimple_set_visited (binrhsdef, true);
3403 else
3404 add_to_ops_vec (ops, binrhs);
3406 if (rhscode == MULT_EXPR
3407 && TREE_CODE (binlhs) == SSA_NAME
3408 && acceptable_pow_call (binlhsdef, &base, &exponent))
3410 add_repeat_to_ops_vec (ops, base, exponent);
3411 gimple_set_visited (binlhsdef, true);
3413 else
3414 add_to_ops_vec (ops, binlhs);
3416 return;
3419 if (dump_file && (dump_flags & TDF_DETAILS))
3421 fprintf (dump_file, "swapping operands of ");
3422 print_gimple_stmt (dump_file, stmt, 0, 0);
3425 swap_tree_operands (stmt,
3426 gimple_assign_rhs1_ptr (stmt),
3427 gimple_assign_rhs2_ptr (stmt));
3428 update_stmt (stmt);
3430 if (dump_file && (dump_flags & TDF_DETAILS))
3432 fprintf (dump_file, " is now ");
3433 print_gimple_stmt (dump_file, stmt, 0, 0);
3436 /* We want to make it so the lhs is always the reassociative op,
3437 so swap. */
3438 temp = binlhs;
3439 binlhs = binrhs;
3440 binrhs = temp;
3442 else if (binrhsisreassoc)
3444 linearize_expr (stmt);
3445 binlhs = gimple_assign_rhs1 (stmt);
3446 binrhs = gimple_assign_rhs2 (stmt);
3449 gcc_assert (TREE_CODE (binrhs) != SSA_NAME
3450 || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
3451 rhscode, loop));
3452 linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
3453 is_associative, set_visited);
3455 if (rhscode == MULT_EXPR
3456 && TREE_CODE (binrhs) == SSA_NAME
3457 && acceptable_pow_call (SSA_NAME_DEF_STMT (binrhs), &base, &exponent))
3459 add_repeat_to_ops_vec (ops, base, exponent);
3460 gimple_set_visited (SSA_NAME_DEF_STMT (binrhs), true);
3462 else
3463 add_to_ops_vec (ops, binrhs);
3466 /* Repropagate the negates back into subtracts, since no other pass
3467 currently does it. */
3469 static void
3470 repropagate_negates (void)
3472 unsigned int i = 0;
3473 tree negate;
3475 FOR_EACH_VEC_ELT (plus_negates, i, negate)
3477 gimple user = get_single_immediate_use (negate);
3479 if (!user || !is_gimple_assign (user))
3480 continue;
3482 /* The negate operand can be either operand of a PLUS_EXPR
3483 (it can be the LHS if the RHS is a constant for example).
3485 Force the negate operand to the RHS of the PLUS_EXPR, then
3486 transform the PLUS_EXPR into a MINUS_EXPR. */
3487 if (gimple_assign_rhs_code (user) == PLUS_EXPR)
3489 /* If the negated operand appears on the LHS of the
3490 PLUS_EXPR, exchange the operands of the PLUS_EXPR
3491 to force the negated operand to the RHS of the PLUS_EXPR. */
3492 if (gimple_assign_rhs1 (user) == negate)
3494 swap_tree_operands (user,
3495 gimple_assign_rhs1_ptr (user),
3496 gimple_assign_rhs2_ptr (user));
3499 /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
3500 the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
3501 if (gimple_assign_rhs2 (user) == negate)
3503 tree rhs1 = gimple_assign_rhs1 (user);
3504 tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
3505 gimple_stmt_iterator gsi = gsi_for_stmt (user);
3506 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
3507 update_stmt (user);
3510 else if (gimple_assign_rhs_code (user) == MINUS_EXPR)
3512 if (gimple_assign_rhs1 (user) == negate)
3514 /* We have
3515 x = -a
3516 y = x - b
3517 which we transform into
3518 x = a + b
3519 y = -x .
3520 This pushes down the negate which we possibly can merge
3521 into some other operation, hence insert it into the
3522 plus_negates vector. */
3523 gimple feed = SSA_NAME_DEF_STMT (negate);
3524 tree a = gimple_assign_rhs1 (feed);
3525 tree rhs2 = gimple_assign_rhs2 (user);
3526 gimple_stmt_iterator gsi = gsi_for_stmt (feed), gsi2;
3527 gimple_replace_lhs (feed, negate);
3528 gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, a, rhs2);
3529 update_stmt (gsi_stmt (gsi));
3530 gsi2 = gsi_for_stmt (user);
3531 gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, negate, NULL);
3532 update_stmt (gsi_stmt (gsi2));
3533 gsi_move_before (&gsi, &gsi2);
3534 plus_negates.safe_push (gimple_assign_lhs (gsi_stmt (gsi2)));
3536 else
3538 /* Transform "x = -a; y = b - x" into "y = b + a", getting
3539 rid of one operation. */
3540 gimple feed = SSA_NAME_DEF_STMT (negate);
3541 tree a = gimple_assign_rhs1 (feed);
3542 tree rhs1 = gimple_assign_rhs1 (user);
3543 gimple_stmt_iterator gsi = gsi_for_stmt (user);
3544 gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a);
3545 update_stmt (gsi_stmt (gsi));
3551 /* Returns true if OP is of a type for which we can do reassociation.
3552 That is for integral or non-saturating fixed-point types, and for
3553 floating point type when associative-math is enabled. */
3555 static bool
3556 can_reassociate_p (tree op)
3558 tree type = TREE_TYPE (op);
3559 if ((INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
3560 || NON_SAT_FIXED_POINT_TYPE_P (type)
3561 || (flag_associative_math && FLOAT_TYPE_P (type)))
3562 return true;
3563 return false;
3566 /* Break up subtract operations in block BB.
3568 We do this top down because we don't know whether the subtract is
3569 part of a possible chain of reassociation except at the top.
3571 IE given
3572 d = f + g
3573 c = a + e
3574 b = c - d
3575 q = b - r
3576 k = t - q
3578 we want to break up k = t - q, but we won't until we've transformed q
3579 = b - r, which won't be broken up until we transform b = c - d.
3581 En passant, clear the GIMPLE visited flag on every statement. */
3583 static void
3584 break_up_subtract_bb (basic_block bb)
3586 gimple_stmt_iterator gsi;
3587 basic_block son;
3589 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3591 gimple stmt = gsi_stmt (gsi);
3592 gimple_set_visited (stmt, false);
3594 if (!is_gimple_assign (stmt)
3595 || !can_reassociate_p (gimple_assign_lhs (stmt)))
3596 continue;
3598 /* Look for simple gimple subtract operations. */
3599 if (gimple_assign_rhs_code (stmt) == MINUS_EXPR)
3601 if (!can_reassociate_p (gimple_assign_rhs1 (stmt))
3602 || !can_reassociate_p (gimple_assign_rhs2 (stmt)))
3603 continue;
3605 /* Check for a subtract used only in an addition. If this
3606 is the case, transform it into add of a negate for better
3607 reassociation. IE transform C = A-B into C = A + -B if C
3608 is only used in an addition. */
3609 if (should_break_up_subtract (stmt))
3610 break_up_subtract (stmt, &gsi);
3612 else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR
3613 && can_reassociate_p (gimple_assign_rhs1 (stmt)))
3614 plus_negates.safe_push (gimple_assign_lhs (stmt));
3616 for (son = first_dom_son (CDI_DOMINATORS, bb);
3617 son;
3618 son = next_dom_son (CDI_DOMINATORS, son))
3619 break_up_subtract_bb (son);
3622 /* Used for repeated factor analysis. */
3623 struct repeat_factor_d
3625 /* An SSA name that occurs in a multiply chain. */
3626 tree factor;
3628 /* Cached rank of the factor. */
3629 unsigned rank;
3631 /* Number of occurrences of the factor in the chain. */
3632 HOST_WIDE_INT count;
3634 /* An SSA name representing the product of this factor and
3635 all factors appearing later in the repeated factor vector. */
3636 tree repr;
3639 typedef struct repeat_factor_d repeat_factor, *repeat_factor_t;
3640 typedef const struct repeat_factor_d *const_repeat_factor_t;
3643 static vec<repeat_factor> repeat_factor_vec;
3645 /* Used for sorting the repeat factor vector. Sort primarily by
3646 ascending occurrence count, secondarily by descending rank. */
3648 static int
3649 compare_repeat_factors (const void *x1, const void *x2)
3651 const_repeat_factor_t rf1 = (const_repeat_factor_t) x1;
3652 const_repeat_factor_t rf2 = (const_repeat_factor_t) x2;
3654 if (rf1->count != rf2->count)
3655 return rf1->count - rf2->count;
3657 return rf2->rank - rf1->rank;
3660 /* Look for repeated operands in OPS in the multiply tree rooted at
3661 STMT. Replace them with an optimal sequence of multiplies and powi
3662 builtin calls, and remove the used operands from OPS. Return an
3663 SSA name representing the value of the replacement sequence. */
3665 static tree
3666 attempt_builtin_powi (gimple stmt, vec<operand_entry_t> *ops)
3668 unsigned i, j, vec_len;
3669 int ii;
3670 operand_entry_t oe;
3671 repeat_factor_t rf1, rf2;
3672 repeat_factor rfnew;
3673 tree result = NULL_TREE;
3674 tree target_ssa, iter_result;
3675 tree type = TREE_TYPE (gimple_get_lhs (stmt));
3676 tree powi_fndecl = mathfn_built_in (type, BUILT_IN_POWI);
3677 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3678 gimple mul_stmt, pow_stmt;
3680 /* Nothing to do if BUILT_IN_POWI doesn't exist for this type and
3681 target. */
3682 if (!powi_fndecl)
3683 return NULL_TREE;
3685 /* Allocate the repeated factor vector. */
3686 repeat_factor_vec.create (10);
3688 /* Scan the OPS vector for all SSA names in the product and build
3689 up a vector of occurrence counts for each factor. */
3690 FOR_EACH_VEC_ELT (*ops, i, oe)
3692 if (TREE_CODE (oe->op) == SSA_NAME)
3694 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
3696 if (rf1->factor == oe->op)
3698 rf1->count += oe->count;
3699 break;
3703 if (j >= repeat_factor_vec.length ())
3705 rfnew.factor = oe->op;
3706 rfnew.rank = oe->rank;
3707 rfnew.count = oe->count;
3708 rfnew.repr = NULL_TREE;
3709 repeat_factor_vec.safe_push (rfnew);
3714 /* Sort the repeated factor vector by (a) increasing occurrence count,
3715 and (b) decreasing rank. */
3716 repeat_factor_vec.qsort (compare_repeat_factors);
3718 /* It is generally best to combine as many base factors as possible
3719 into a product before applying __builtin_powi to the result.
3720 However, the sort order chosen for the repeated factor vector
3721 allows us to cache partial results for the product of the base
3722 factors for subsequent use. When we already have a cached partial
3723 result from a previous iteration, it is best to make use of it
3724 before looking for another __builtin_pow opportunity.
3726 As an example, consider x * x * y * y * y * z * z * z * z.
3727 We want to first compose the product x * y * z, raise it to the
3728 second power, then multiply this by y * z, and finally multiply
3729 by z. This can be done in 5 multiplies provided we cache y * z
3730 for use in both expressions:
3732 t1 = y * z
3733 t2 = t1 * x
3734 t3 = t2 * t2
3735 t4 = t1 * t3
3736 result = t4 * z
3738 If we instead ignored the cached y * z and first multiplied by
3739 the __builtin_pow opportunity z * z, we would get the inferior:
3741 t1 = y * z
3742 t2 = t1 * x
3743 t3 = t2 * t2
3744 t4 = z * z
3745 t5 = t3 * t4
3746 result = t5 * y */
3748 vec_len = repeat_factor_vec.length ();
3750 /* Repeatedly look for opportunities to create a builtin_powi call. */
3751 while (true)
3753 HOST_WIDE_INT power;
3755 /* First look for the largest cached product of factors from
3756 preceding iterations. If found, create a builtin_powi for
3757 it if the minimum occurrence count for its factors is at
3758 least 2, or just use this cached product as our next
3759 multiplicand if the minimum occurrence count is 1. */
3760 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
3762 if (rf1->repr && rf1->count > 0)
3763 break;
3766 if (j < vec_len)
3768 power = rf1->count;
3770 if (power == 1)
3772 iter_result = rf1->repr;
3774 if (dump_file && (dump_flags & TDF_DETAILS))
3776 unsigned elt;
3777 repeat_factor_t rf;
3778 fputs ("Multiplying by cached product ", dump_file);
3779 for (elt = j; elt < vec_len; elt++)
3781 rf = &repeat_factor_vec[elt];
3782 print_generic_expr (dump_file, rf->factor, 0);
3783 if (elt < vec_len - 1)
3784 fputs (" * ", dump_file);
3786 fputs ("\n", dump_file);
3789 else
3791 iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
3792 pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
3793 build_int_cst (integer_type_node,
3794 power));
3795 gimple_call_set_lhs (pow_stmt, iter_result);
3796 gimple_set_location (pow_stmt, gimple_location (stmt));
3797 gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
3799 if (dump_file && (dump_flags & TDF_DETAILS))
3801 unsigned elt;
3802 repeat_factor_t rf;
3803 fputs ("Building __builtin_pow call for cached product (",
3804 dump_file);
3805 for (elt = j; elt < vec_len; elt++)
3807 rf = &repeat_factor_vec[elt];
3808 print_generic_expr (dump_file, rf->factor, 0);
3809 if (elt < vec_len - 1)
3810 fputs (" * ", dump_file);
3812 fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n",
3813 power);
3817 else
3819 /* Otherwise, find the first factor in the repeated factor
3820 vector whose occurrence count is at least 2. If no such
3821 factor exists, there are no builtin_powi opportunities
3822 remaining. */
3823 FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
3825 if (rf1->count >= 2)
3826 break;
3829 if (j >= vec_len)
3830 break;
3832 power = rf1->count;
3834 if (dump_file && (dump_flags & TDF_DETAILS))
3836 unsigned elt;
3837 repeat_factor_t rf;
3838 fputs ("Building __builtin_pow call for (", dump_file);
3839 for (elt = j; elt < vec_len; elt++)
3841 rf = &repeat_factor_vec[elt];
3842 print_generic_expr (dump_file, rf->factor, 0);
3843 if (elt < vec_len - 1)
3844 fputs (" * ", dump_file);
3846 fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n", power);
3849 reassociate_stats.pows_created++;
3851 /* Visit each element of the vector in reverse order (so that
3852 high-occurrence elements are visited first, and within the
3853 same occurrence count, lower-ranked elements are visited
3854 first). Form a linear product of all elements in this order
3855 whose occurrencce count is at least that of element J.
3856 Record the SSA name representing the product of each element
3857 with all subsequent elements in the vector. */
3858 if (j == vec_len - 1)
3859 rf1->repr = rf1->factor;
3860 else
3862 for (ii = vec_len - 2; ii >= (int)j; ii--)
3864 tree op1, op2;
3866 rf1 = &repeat_factor_vec[ii];
3867 rf2 = &repeat_factor_vec[ii + 1];
3869 /* Init the last factor's representative to be itself. */
3870 if (!rf2->repr)
3871 rf2->repr = rf2->factor;
3873 op1 = rf1->factor;
3874 op2 = rf2->repr;
3876 target_ssa = make_temp_ssa_name (type, NULL, "reassocpow");
3877 mul_stmt = gimple_build_assign_with_ops (MULT_EXPR,
3878 target_ssa,
3879 op1, op2);
3880 gimple_set_location (mul_stmt, gimple_location (stmt));
3881 gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
3882 rf1->repr = target_ssa;
3884 /* Don't reprocess the multiply we just introduced. */
3885 gimple_set_visited (mul_stmt, true);
3889 /* Form a call to __builtin_powi for the maximum product
3890 just formed, raised to the power obtained earlier. */
3891 rf1 = &repeat_factor_vec[j];
3892 iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
3893 pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
3894 build_int_cst (integer_type_node,
3895 power));
3896 gimple_call_set_lhs (pow_stmt, iter_result);
3897 gimple_set_location (pow_stmt, gimple_location (stmt));
3898 gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
3901 /* If we previously formed at least one other builtin_powi call,
3902 form the product of this one and those others. */
3903 if (result)
3905 tree new_result = make_temp_ssa_name (type, NULL, "reassocpow");
3906 mul_stmt = gimple_build_assign_with_ops (MULT_EXPR, new_result,
3907 result, iter_result);
3908 gimple_set_location (mul_stmt, gimple_location (stmt));
3909 gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
3910 gimple_set_visited (mul_stmt, true);
3911 result = new_result;
3913 else
3914 result = iter_result;
3916 /* Decrement the occurrence count of each element in the product
3917 by the count found above, and remove this many copies of each
3918 factor from OPS. */
3919 for (i = j; i < vec_len; i++)
3921 unsigned k = power;
3922 unsigned n;
3924 rf1 = &repeat_factor_vec[i];
3925 rf1->count -= power;
3927 FOR_EACH_VEC_ELT_REVERSE (*ops, n, oe)
3929 if (oe->op == rf1->factor)
3931 if (oe->count <= k)
3933 ops->ordered_remove (n);
3934 k -= oe->count;
3936 if (k == 0)
3937 break;
3939 else
3941 oe->count -= k;
3942 break;
3949 /* At this point all elements in the repeated factor vector have a
3950 remaining occurrence count of 0 or 1, and those with a count of 1
3951 don't have cached representatives. Re-sort the ops vector and
3952 clean up. */
3953 ops->qsort (sort_by_operand_rank);
3954 repeat_factor_vec.release ();
3956 /* Return the final product computed herein. Note that there may
3957 still be some elements with single occurrence count left in OPS;
3958 those will be handled by the normal reassociation logic. */
3959 return result;
3962 /* Transform STMT at *GSI into a copy by replacing its rhs with NEW_RHS. */
3964 static void
3965 transform_stmt_to_copy (gimple_stmt_iterator *gsi, gimple stmt, tree new_rhs)
3967 tree rhs1;
3969 if (dump_file && (dump_flags & TDF_DETAILS))
3971 fprintf (dump_file, "Transforming ");
3972 print_gimple_stmt (dump_file, stmt, 0, 0);
3975 rhs1 = gimple_assign_rhs1 (stmt);
3976 gimple_assign_set_rhs_from_tree (gsi, new_rhs);
3977 update_stmt (stmt);
3978 remove_visited_stmt_chain (rhs1);
3980 if (dump_file && (dump_flags & TDF_DETAILS))
3982 fprintf (dump_file, " into ");
3983 print_gimple_stmt (dump_file, stmt, 0, 0);
3987 /* Transform STMT at *GSI into a multiply of RHS1 and RHS2. */
3989 static void
3990 transform_stmt_to_multiply (gimple_stmt_iterator *gsi, gimple stmt,
3991 tree rhs1, tree rhs2)
3993 if (dump_file && (dump_flags & TDF_DETAILS))
3995 fprintf (dump_file, "Transforming ");
3996 print_gimple_stmt (dump_file, stmt, 0, 0);
3999 gimple_assign_set_rhs_with_ops (gsi, MULT_EXPR, rhs1, rhs2);
4000 update_stmt (gsi_stmt (*gsi));
4001 remove_visited_stmt_chain (rhs1);
4003 if (dump_file && (dump_flags & TDF_DETAILS))
4005 fprintf (dump_file, " into ");
4006 print_gimple_stmt (dump_file, stmt, 0, 0);
4010 /* Reassociate expressions in basic block BB and its post-dominator as
4011 children. */
4013 static void
4014 reassociate_bb (basic_block bb)
4016 gimple_stmt_iterator gsi;
4017 basic_block son;
4018 gimple stmt = last_stmt (bb);
4020 if (stmt && !gimple_visited_p (stmt))
4021 maybe_optimize_range_tests (stmt);
4023 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
4025 stmt = gsi_stmt (gsi);
4027 if (is_gimple_assign (stmt)
4028 && !stmt_could_throw_p (stmt))
4030 tree lhs, rhs1, rhs2;
4031 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4033 /* If this is not a gimple binary expression, there is
4034 nothing for us to do with it. */
4035 if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
4036 continue;
4038 /* If this was part of an already processed statement,
4039 we don't need to touch it again. */
4040 if (gimple_visited_p (stmt))
4042 /* This statement might have become dead because of previous
4043 reassociations. */
4044 if (has_zero_uses (gimple_get_lhs (stmt)))
4046 gsi_remove (&gsi, true);
4047 release_defs (stmt);
4048 /* We might end up removing the last stmt above which
4049 places the iterator to the end of the sequence.
4050 Reset it to the last stmt in this case which might
4051 be the end of the sequence as well if we removed
4052 the last statement of the sequence. In which case
4053 we need to bail out. */
4054 if (gsi_end_p (gsi))
4056 gsi = gsi_last_bb (bb);
4057 if (gsi_end_p (gsi))
4058 break;
4061 continue;
4064 lhs = gimple_assign_lhs (stmt);
4065 rhs1 = gimple_assign_rhs1 (stmt);
4066 rhs2 = gimple_assign_rhs2 (stmt);
4068 /* For non-bit or min/max operations we can't associate
4069 all types. Verify that here. */
4070 if (rhs_code != BIT_IOR_EXPR
4071 && rhs_code != BIT_AND_EXPR
4072 && rhs_code != BIT_XOR_EXPR
4073 && rhs_code != MIN_EXPR
4074 && rhs_code != MAX_EXPR
4075 && (!can_reassociate_p (lhs)
4076 || !can_reassociate_p (rhs1)
4077 || !can_reassociate_p (rhs2)))
4078 continue;
4080 if (associative_tree_code (rhs_code))
4082 vec<operand_entry_t> ops = vNULL;
4083 tree powi_result = NULL_TREE;
4085 /* There may be no immediate uses left by the time we
4086 get here because we may have eliminated them all. */
4087 if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
4088 continue;
4090 gimple_set_visited (stmt, true);
4091 linearize_expr_tree (&ops, stmt, true, true);
4092 ops.qsort (sort_by_operand_rank);
4093 optimize_ops_list (rhs_code, &ops);
4094 if (undistribute_ops_list (rhs_code, &ops,
4095 loop_containing_stmt (stmt)))
4097 ops.qsort (sort_by_operand_rank);
4098 optimize_ops_list (rhs_code, &ops);
4101 if (rhs_code == BIT_IOR_EXPR || rhs_code == BIT_AND_EXPR)
4102 optimize_range_tests (rhs_code, &ops);
4104 if (first_pass_instance
4105 && rhs_code == MULT_EXPR
4106 && flag_unsafe_math_optimizations)
4107 powi_result = attempt_builtin_powi (stmt, &ops);
4109 /* If the operand vector is now empty, all operands were
4110 consumed by the __builtin_powi optimization. */
4111 if (ops.length () == 0)
4112 transform_stmt_to_copy (&gsi, stmt, powi_result);
4113 else if (ops.length () == 1)
4115 tree last_op = ops.last ()->op;
4117 if (powi_result)
4118 transform_stmt_to_multiply (&gsi, stmt, last_op,
4119 powi_result);
4120 else
4121 transform_stmt_to_copy (&gsi, stmt, last_op);
4123 else
4125 enum machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
4126 int ops_num = ops.length ();
4127 int width = get_reassociation_width (ops_num, rhs_code, mode);
4129 if (dump_file && (dump_flags & TDF_DETAILS))
4130 fprintf (dump_file,
4131 "Width = %d was chosen for reassociation\n", width);
4133 if (width > 1
4134 && ops.length () > 3)
4135 rewrite_expr_tree_parallel (stmt, width, ops);
4136 else
4137 rewrite_expr_tree (stmt, 0, ops, false);
4139 /* If we combined some repeated factors into a
4140 __builtin_powi call, multiply that result by the
4141 reassociated operands. */
4142 if (powi_result)
4144 gimple mul_stmt;
4145 tree type = TREE_TYPE (gimple_get_lhs (stmt));
4146 tree target_ssa = make_temp_ssa_name (type, NULL,
4147 "reassocpow");
4148 gimple_set_lhs (stmt, target_ssa);
4149 update_stmt (stmt);
4150 mul_stmt = gimple_build_assign_with_ops (MULT_EXPR, lhs,
4151 powi_result,
4152 target_ssa);
4153 gimple_set_location (mul_stmt, gimple_location (stmt));
4154 gsi_insert_after (&gsi, mul_stmt, GSI_NEW_STMT);
4158 ops.release ();
4162 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
4163 son;
4164 son = next_dom_son (CDI_POST_DOMINATORS, son))
4165 reassociate_bb (son);
4168 void dump_ops_vector (FILE *file, vec<operand_entry_t> ops);
4169 void debug_ops_vector (vec<operand_entry_t> ops);
4171 /* Dump the operand entry vector OPS to FILE. */
4173 void
4174 dump_ops_vector (FILE *file, vec<operand_entry_t> ops)
4176 operand_entry_t oe;
4177 unsigned int i;
4179 FOR_EACH_VEC_ELT (ops, i, oe)
4181 fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
4182 print_generic_expr (file, oe->op, 0);
4186 /* Dump the operand entry vector OPS to STDERR. */
4188 DEBUG_FUNCTION void
4189 debug_ops_vector (vec<operand_entry_t> ops)
4191 dump_ops_vector (stderr, ops);
4194 static void
4195 do_reassoc (void)
4197 break_up_subtract_bb (ENTRY_BLOCK_PTR);
4198 reassociate_bb (EXIT_BLOCK_PTR);
4201 /* Initialize the reassociation pass. */
4203 static void
4204 init_reassoc (void)
4206 int i;
4207 long rank = 2;
4208 int *bbs = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
4210 /* Find the loops, so that we can prevent moving calculations in
4211 them. */
4212 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4214 memset (&reassociate_stats, 0, sizeof (reassociate_stats));
4216 operand_entry_pool = create_alloc_pool ("operand entry pool",
4217 sizeof (struct operand_entry), 30);
4218 next_operand_entry_id = 0;
4220 /* Reverse RPO (Reverse Post Order) will give us something where
4221 deeper loops come later. */
4222 pre_and_rev_post_order_compute (NULL, bbs, false);
4223 bb_rank = XCNEWVEC (long, last_basic_block);
4224 operand_rank = pointer_map_create ();
4226 /* Give each default definition a distinct rank. This includes
4227 parameters and the static chain. Walk backwards over all
4228 SSA names so that we get proper rank ordering according
4229 to tree_swap_operands_p. */
4230 for (i = num_ssa_names - 1; i > 0; --i)
4232 tree name = ssa_name (i);
4233 if (name && SSA_NAME_IS_DEFAULT_DEF (name))
4234 insert_operand_rank (name, ++rank);
4237 /* Set up rank for each BB */
4238 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
4239 bb_rank[bbs[i]] = ++rank << 16;
4241 free (bbs);
4242 calculate_dominance_info (CDI_POST_DOMINATORS);
4243 plus_negates = vNULL;
4246 /* Cleanup after the reassociation pass, and print stats if
4247 requested. */
4249 static void
4250 fini_reassoc (void)
4252 statistics_counter_event (cfun, "Linearized",
4253 reassociate_stats.linearized);
4254 statistics_counter_event (cfun, "Constants eliminated",
4255 reassociate_stats.constants_eliminated);
4256 statistics_counter_event (cfun, "Ops eliminated",
4257 reassociate_stats.ops_eliminated);
4258 statistics_counter_event (cfun, "Statements rewritten",
4259 reassociate_stats.rewritten);
4260 statistics_counter_event (cfun, "Built-in pow[i] calls encountered",
4261 reassociate_stats.pows_encountered);
4262 statistics_counter_event (cfun, "Built-in powi calls created",
4263 reassociate_stats.pows_created);
4265 pointer_map_destroy (operand_rank);
4266 free_alloc_pool (operand_entry_pool);
4267 free (bb_rank);
4268 plus_negates.release ();
4269 free_dominance_info (CDI_POST_DOMINATORS);
4270 loop_optimizer_finalize ();
4273 /* Gate and execute functions for Reassociation. */
4275 static unsigned int
4276 execute_reassoc (void)
4278 init_reassoc ();
4280 do_reassoc ();
4281 repropagate_negates ();
4283 fini_reassoc ();
4284 return 0;
4287 static bool
4288 gate_tree_ssa_reassoc (void)
4290 return flag_tree_reassoc != 0;
4293 struct gimple_opt_pass pass_reassoc =
4296 GIMPLE_PASS,
4297 "reassoc", /* name */
4298 OPTGROUP_NONE, /* optinfo_flags */
4299 gate_tree_ssa_reassoc, /* gate */
4300 execute_reassoc, /* execute */
4301 NULL, /* sub */
4302 NULL, /* next */
4303 0, /* static_pass_number */
4304 TV_TREE_REASSOC, /* tv_id */
4305 PROP_cfg | PROP_ssa, /* properties_required */
4306 0, /* properties_provided */
4307 0, /* properties_destroyed */
4308 0, /* todo_flags_start */
4309 TODO_verify_ssa
4310 | TODO_update_ssa_only_virtuals
4311 | TODO_verify_flow
4312 | TODO_ggc_collect /* todo_flags_finish */