Merge branches/gcc-4_8-branch rev 208968.
[official-gcc.git] / gcc-4_8-branch / gcc / tree-ssa-math-opts.c
blob508a240bf89e4f61b9aedc1d6d8808a1edc20b90
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "tree-flow.h"
94 #include "tree-pass.h"
95 #include "alloc-pool.h"
96 #include "basic-block.h"
97 #include "target.h"
98 #include "gimple-pretty-print.h"
100 /* FIXME: RTL headers have to be included here for optabs. */
101 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
102 #include "expr.h" /* Because optabs.h wants sepops. */
103 #include "optabs.h"
105 /* This structure represents one basic block that either computes a
106 division, or is a common dominator for basic block that compute a
107 division. */
108 struct occurrence {
109 /* The basic block represented by this structure. */
110 basic_block bb;
112 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
113 inserted in BB. */
114 tree recip_def;
116 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
117 was inserted in BB. */
118 gimple recip_def_stmt;
120 /* Pointer to a list of "struct occurrence"s for blocks dominated
121 by BB. */
122 struct occurrence *children;
124 /* Pointer to the next "struct occurrence"s in the list of blocks
125 sharing a common dominator. */
126 struct occurrence *next;
128 /* The number of divisions that are in BB before compute_merit. The
129 number of divisions that are in BB or post-dominate it after
130 compute_merit. */
131 int num_divisions;
133 /* True if the basic block has a division, false if it is a common
134 dominator for basic blocks that do. If it is false and trapping
135 math is active, BB is not a candidate for inserting a reciprocal. */
136 bool bb_has_division;
139 static struct
141 /* Number of 1.0/X ops inserted. */
142 int rdivs_inserted;
144 /* Number of 1.0/FUNC ops inserted. */
145 int rfuncs_inserted;
146 } reciprocal_stats;
148 static struct
150 /* Number of cexpi calls inserted. */
151 int inserted;
152 } sincos_stats;
154 static struct
156 /* Number of hand-written 16-bit bswaps found. */
157 int found_16bit;
159 /* Number of hand-written 32-bit bswaps found. */
160 int found_32bit;
162 /* Number of hand-written 64-bit bswaps found. */
163 int found_64bit;
164 } bswap_stats;
166 static struct
168 /* Number of widening multiplication ops inserted. */
169 int widen_mults_inserted;
171 /* Number of integer multiply-and-accumulate ops inserted. */
172 int maccs_inserted;
174 /* Number of fp fused multiply-add ops inserted. */
175 int fmas_inserted;
176 } widen_mul_stats;
178 /* The instance of "struct occurrence" representing the highest
179 interesting block in the dominator tree. */
180 static struct occurrence *occ_head;
182 /* Allocation pool for getting instances of "struct occurrence". */
183 static alloc_pool occ_pool;
187 /* Allocate and return a new struct occurrence for basic block BB, and
188 whose children list is headed by CHILDREN. */
189 static struct occurrence *
190 occ_new (basic_block bb, struct occurrence *children)
192 struct occurrence *occ;
194 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
195 memset (occ, 0, sizeof (struct occurrence));
197 occ->bb = bb;
198 occ->children = children;
199 return occ;
203 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
204 list of "struct occurrence"s, one per basic block, having IDOM as
205 their common dominator.
207 We try to insert NEW_OCC as deep as possible in the tree, and we also
208 insert any other block that is a common dominator for BB and one
209 block already in the tree. */
211 static void
212 insert_bb (struct occurrence *new_occ, basic_block idom,
213 struct occurrence **p_head)
215 struct occurrence *occ, **p_occ;
217 for (p_occ = p_head; (occ = *p_occ) != NULL; )
219 basic_block bb = new_occ->bb, occ_bb = occ->bb;
220 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
221 if (dom == bb)
223 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
224 from its list. */
225 *p_occ = occ->next;
226 occ->next = new_occ->children;
227 new_occ->children = occ;
229 /* Try the next block (it may as well be dominated by BB). */
232 else if (dom == occ_bb)
234 /* OCC_BB dominates BB. Tail recurse to look deeper. */
235 insert_bb (new_occ, dom, &occ->children);
236 return;
239 else if (dom != idom)
241 gcc_assert (!dom->aux);
243 /* There is a dominator between IDOM and BB, add it and make
244 two children out of NEW_OCC and OCC. First, remove OCC from
245 its list. */
246 *p_occ = occ->next;
247 new_occ->next = occ;
248 occ->next = NULL;
250 /* None of the previous blocks has DOM as a dominator: if we tail
251 recursed, we would reexamine them uselessly. Just switch BB with
252 DOM, and go on looking for blocks dominated by DOM. */
253 new_occ = occ_new (dom, new_occ);
256 else
258 /* Nothing special, go on with the next element. */
259 p_occ = &occ->next;
263 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
264 new_occ->next = *p_head;
265 *p_head = new_occ;
268 /* Register that we found a division in BB. */
270 static inline void
271 register_division_in (basic_block bb)
273 struct occurrence *occ;
275 occ = (struct occurrence *) bb->aux;
276 if (!occ)
278 occ = occ_new (bb, NULL);
279 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
282 occ->bb_has_division = true;
283 occ->num_divisions++;
287 /* Compute the number of divisions that postdominate each block in OCC and
288 its children. */
290 static void
291 compute_merit (struct occurrence *occ)
293 struct occurrence *occ_child;
294 basic_block dom = occ->bb;
296 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
298 basic_block bb;
299 if (occ_child->children)
300 compute_merit (occ_child);
302 if (flag_exceptions)
303 bb = single_noncomplex_succ (dom);
304 else
305 bb = dom;
307 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
308 occ->num_divisions += occ_child->num_divisions;
313 /* Return whether USE_STMT is a floating-point division by DEF. */
314 static inline bool
315 is_division_by (gimple use_stmt, tree def)
317 return is_gimple_assign (use_stmt)
318 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
319 && gimple_assign_rhs2 (use_stmt) == def
320 /* Do not recognize x / x as valid division, as we are getting
321 confused later by replacing all immediate uses x in such
322 a stmt. */
323 && gimple_assign_rhs1 (use_stmt) != def;
326 /* Walk the subset of the dominator tree rooted at OCC, setting the
327 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
328 the given basic block. The field may be left NULL, of course,
329 if it is not possible or profitable to do the optimization.
331 DEF_BSI is an iterator pointing at the statement defining DEF.
332 If RECIP_DEF is set, a dominator already has a computation that can
333 be used. */
335 static void
336 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
337 tree def, tree recip_def, int threshold)
339 tree type;
340 gimple new_stmt;
341 gimple_stmt_iterator gsi;
342 struct occurrence *occ_child;
344 if (!recip_def
345 && (occ->bb_has_division || !flag_trapping_math)
346 && occ->num_divisions >= threshold)
348 /* Make a variable with the replacement and substitute it. */
349 type = TREE_TYPE (def);
350 recip_def = create_tmp_reg (type, "reciptmp");
351 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
352 build_one_cst (type), def);
354 if (occ->bb_has_division)
356 /* Case 1: insert before an existing division. */
357 gsi = gsi_after_labels (occ->bb);
358 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
359 gsi_next (&gsi);
361 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
363 else if (def_gsi && occ->bb == def_gsi->bb)
365 /* Case 2: insert right after the definition. Note that this will
366 never happen if the definition statement can throw, because in
367 that case the sole successor of the statement's basic block will
368 dominate all the uses as well. */
369 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
371 else
373 /* Case 3: insert in a basic block not containing defs/uses. */
374 gsi = gsi_after_labels (occ->bb);
375 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
378 reciprocal_stats.rdivs_inserted++;
380 occ->recip_def_stmt = new_stmt;
383 occ->recip_def = recip_def;
384 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
385 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
389 /* Replace the division at USE_P with a multiplication by the reciprocal, if
390 possible. */
392 static inline void
393 replace_reciprocal (use_operand_p use_p)
395 gimple use_stmt = USE_STMT (use_p);
396 basic_block bb = gimple_bb (use_stmt);
397 struct occurrence *occ = (struct occurrence *) bb->aux;
399 if (optimize_bb_for_speed_p (bb)
400 && occ->recip_def && use_stmt != occ->recip_def_stmt)
402 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
403 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
404 SET_USE (use_p, occ->recip_def);
405 fold_stmt_inplace (&gsi);
406 update_stmt (use_stmt);
411 /* Free OCC and return one more "struct occurrence" to be freed. */
413 static struct occurrence *
414 free_bb (struct occurrence *occ)
416 struct occurrence *child, *next;
418 /* First get the two pointers hanging off OCC. */
419 next = occ->next;
420 child = occ->children;
421 occ->bb->aux = NULL;
422 pool_free (occ_pool, occ);
424 /* Now ensure that we don't recurse unless it is necessary. */
425 if (!child)
426 return next;
427 else
429 while (next)
430 next = free_bb (next);
432 return child;
437 /* Look for floating-point divisions among DEF's uses, and try to
438 replace them by multiplications with the reciprocal. Add
439 as many statements computing the reciprocal as needed.
441 DEF must be a GIMPLE register of a floating-point type. */
443 static void
444 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
446 use_operand_p use_p;
447 imm_use_iterator use_iter;
448 struct occurrence *occ;
449 int count = 0, threshold;
451 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
453 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
455 gimple use_stmt = USE_STMT (use_p);
456 if (is_division_by (use_stmt, def))
458 register_division_in (gimple_bb (use_stmt));
459 count++;
463 /* Do the expensive part only if we can hope to optimize something. */
464 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
465 if (count >= threshold)
467 gimple use_stmt;
468 for (occ = occ_head; occ; occ = occ->next)
470 compute_merit (occ);
471 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
474 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
476 if (is_division_by (use_stmt, def))
478 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
479 replace_reciprocal (use_p);
484 for (occ = occ_head; occ; )
485 occ = free_bb (occ);
487 occ_head = NULL;
490 static bool
491 gate_cse_reciprocals (void)
493 return optimize && flag_reciprocal_math;
496 /* Go through all the floating-point SSA_NAMEs, and call
497 execute_cse_reciprocals_1 on each of them. */
498 static unsigned int
499 execute_cse_reciprocals (void)
501 basic_block bb;
502 tree arg;
504 occ_pool = create_alloc_pool ("dominators for recip",
505 sizeof (struct occurrence),
506 n_basic_blocks / 3 + 1);
508 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
509 calculate_dominance_info (CDI_DOMINATORS);
510 calculate_dominance_info (CDI_POST_DOMINATORS);
512 #ifdef ENABLE_CHECKING
513 FOR_EACH_BB (bb)
514 gcc_assert (!bb->aux);
515 #endif
517 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
518 if (FLOAT_TYPE_P (TREE_TYPE (arg))
519 && is_gimple_reg (arg))
521 tree name = ssa_default_def (cfun, arg);
522 if (name)
523 execute_cse_reciprocals_1 (NULL, name);
526 FOR_EACH_BB (bb)
528 gimple_stmt_iterator gsi;
529 gimple phi;
530 tree def;
532 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
534 phi = gsi_stmt (gsi);
535 def = PHI_RESULT (phi);
536 if (! virtual_operand_p (def)
537 && FLOAT_TYPE_P (TREE_TYPE (def)))
538 execute_cse_reciprocals_1 (NULL, def);
541 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
543 gimple stmt = gsi_stmt (gsi);
545 if (gimple_has_lhs (stmt)
546 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
547 && FLOAT_TYPE_P (TREE_TYPE (def))
548 && TREE_CODE (def) == SSA_NAME)
549 execute_cse_reciprocals_1 (&gsi, def);
552 if (optimize_bb_for_size_p (bb))
553 continue;
555 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
556 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
558 gimple stmt = gsi_stmt (gsi);
559 tree fndecl;
561 if (is_gimple_assign (stmt)
562 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
564 tree arg1 = gimple_assign_rhs2 (stmt);
565 gimple stmt1;
567 if (TREE_CODE (arg1) != SSA_NAME)
568 continue;
570 stmt1 = SSA_NAME_DEF_STMT (arg1);
572 if (is_gimple_call (stmt1)
573 && gimple_call_lhs (stmt1)
574 && (fndecl = gimple_call_fndecl (stmt1))
575 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
576 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
578 enum built_in_function code;
579 bool md_code, fail;
580 imm_use_iterator ui;
581 use_operand_p use_p;
583 code = DECL_FUNCTION_CODE (fndecl);
584 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
586 fndecl = targetm.builtin_reciprocal (code, md_code, false);
587 if (!fndecl)
588 continue;
590 /* Check that all uses of the SSA name are divisions,
591 otherwise replacing the defining statement will do
592 the wrong thing. */
593 fail = false;
594 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
596 gimple stmt2 = USE_STMT (use_p);
597 if (is_gimple_debug (stmt2))
598 continue;
599 if (!is_gimple_assign (stmt2)
600 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
601 || gimple_assign_rhs1 (stmt2) == arg1
602 || gimple_assign_rhs2 (stmt2) != arg1)
604 fail = true;
605 break;
608 if (fail)
609 continue;
611 gimple_replace_lhs (stmt1, arg1);
612 gimple_call_set_fndecl (stmt1, fndecl);
613 update_stmt (stmt1);
614 reciprocal_stats.rfuncs_inserted++;
616 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
618 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
619 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
620 fold_stmt_inplace (&gsi);
621 update_stmt (stmt);
628 statistics_counter_event (cfun, "reciprocal divs inserted",
629 reciprocal_stats.rdivs_inserted);
630 statistics_counter_event (cfun, "reciprocal functions inserted",
631 reciprocal_stats.rfuncs_inserted);
633 free_dominance_info (CDI_DOMINATORS);
634 free_dominance_info (CDI_POST_DOMINATORS);
635 free_alloc_pool (occ_pool);
636 return 0;
639 struct gimple_opt_pass pass_cse_reciprocals =
642 GIMPLE_PASS,
643 "recip", /* name */
644 OPTGROUP_NONE, /* optinfo_flags */
645 gate_cse_reciprocals, /* gate */
646 execute_cse_reciprocals, /* execute */
647 NULL, /* sub */
648 NULL, /* next */
649 0, /* static_pass_number */
650 TV_NONE, /* tv_id */
651 PROP_ssa, /* properties_required */
652 0, /* properties_provided */
653 0, /* properties_destroyed */
654 0, /* todo_flags_start */
655 TODO_update_ssa | TODO_verify_ssa
656 | TODO_verify_stmts /* todo_flags_finish */
660 /* Records an occurrence at statement USE_STMT in the vector of trees
661 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
662 is not yet initialized. Returns true if the occurrence was pushed on
663 the vector. Adjusts *TOP_BB to be the basic block dominating all
664 statements in the vector. */
666 static bool
667 maybe_record_sincos (vec<gimple> *stmts,
668 basic_block *top_bb, gimple use_stmt)
670 basic_block use_bb = gimple_bb (use_stmt);
671 if (*top_bb
672 && (*top_bb == use_bb
673 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
674 stmts->safe_push (use_stmt);
675 else if (!*top_bb
676 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
678 stmts->safe_push (use_stmt);
679 *top_bb = use_bb;
681 else
682 return false;
684 return true;
687 /* Look for sin, cos and cexpi calls with the same argument NAME and
688 create a single call to cexpi CSEing the result in this case.
689 We first walk over all immediate uses of the argument collecting
690 statements that we can CSE in a vector and in a second pass replace
691 the statement rhs with a REALPART or IMAGPART expression on the
692 result of the cexpi call we insert before the use statement that
693 dominates all other candidates. */
695 static bool
696 execute_cse_sincos_1 (tree name)
698 gimple_stmt_iterator gsi;
699 imm_use_iterator use_iter;
700 tree fndecl, res, type;
701 gimple def_stmt, use_stmt, stmt;
702 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
703 vec<gimple> stmts = vNULL;
704 basic_block top_bb = NULL;
705 int i;
706 bool cfg_changed = false;
708 type = TREE_TYPE (name);
709 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
711 if (gimple_code (use_stmt) != GIMPLE_CALL
712 || !gimple_call_lhs (use_stmt)
713 || !(fndecl = gimple_call_fndecl (use_stmt))
714 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
715 continue;
717 switch (DECL_FUNCTION_CODE (fndecl))
719 CASE_FLT_FN (BUILT_IN_COS):
720 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
721 break;
723 CASE_FLT_FN (BUILT_IN_SIN):
724 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
725 break;
727 CASE_FLT_FN (BUILT_IN_CEXPI):
728 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
729 break;
731 default:;
735 if (seen_cos + seen_sin + seen_cexpi <= 1)
737 stmts.release ();
738 return false;
741 /* Simply insert cexpi at the beginning of top_bb but not earlier than
742 the name def statement. */
743 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
744 if (!fndecl)
745 return false;
746 stmt = gimple_build_call (fndecl, 1, name);
747 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
748 gimple_call_set_lhs (stmt, res);
750 def_stmt = SSA_NAME_DEF_STMT (name);
751 if (!SSA_NAME_IS_DEFAULT_DEF (name)
752 && gimple_code (def_stmt) != GIMPLE_PHI
753 && gimple_bb (def_stmt) == top_bb)
755 gsi = gsi_for_stmt (def_stmt);
756 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
758 else
760 gsi = gsi_after_labels (top_bb);
761 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
763 sincos_stats.inserted++;
765 /* And adjust the recorded old call sites. */
766 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
768 tree rhs = NULL;
769 fndecl = gimple_call_fndecl (use_stmt);
771 switch (DECL_FUNCTION_CODE (fndecl))
773 CASE_FLT_FN (BUILT_IN_COS):
774 rhs = fold_build1 (REALPART_EXPR, type, res);
775 break;
777 CASE_FLT_FN (BUILT_IN_SIN):
778 rhs = fold_build1 (IMAGPART_EXPR, type, res);
779 break;
781 CASE_FLT_FN (BUILT_IN_CEXPI):
782 rhs = res;
783 break;
785 default:;
786 gcc_unreachable ();
789 /* Replace call with a copy. */
790 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
792 gsi = gsi_for_stmt (use_stmt);
793 gsi_replace (&gsi, stmt, true);
794 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
795 cfg_changed = true;
798 stmts.release ();
800 return cfg_changed;
803 /* To evaluate powi(x,n), the floating point value x raised to the
804 constant integer exponent n, we use a hybrid algorithm that
805 combines the "window method" with look-up tables. For an
806 introduction to exponentiation algorithms and "addition chains",
807 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
808 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
809 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
810 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
812 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
813 multiplications to inline before calling the system library's pow
814 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
815 so this default never requires calling pow, powf or powl. */
817 #ifndef POWI_MAX_MULTS
818 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
819 #endif
821 /* The size of the "optimal power tree" lookup table. All
822 exponents less than this value are simply looked up in the
823 powi_table below. This threshold is also used to size the
824 cache of pseudo registers that hold intermediate results. */
825 #define POWI_TABLE_SIZE 256
827 /* The size, in bits of the window, used in the "window method"
828 exponentiation algorithm. This is equivalent to a radix of
829 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
830 #define POWI_WINDOW_SIZE 3
832 /* The following table is an efficient representation of an
833 "optimal power tree". For each value, i, the corresponding
834 value, j, in the table states than an optimal evaluation
835 sequence for calculating pow(x,i) can be found by evaluating
836 pow(x,j)*pow(x,i-j). An optimal power tree for the first
837 100 integers is given in Knuth's "Seminumerical algorithms". */
839 static const unsigned char powi_table[POWI_TABLE_SIZE] =
841 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
842 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
843 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
844 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
845 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
846 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
847 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
848 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
849 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
850 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
851 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
852 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
853 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
854 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
855 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
856 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
857 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
858 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
859 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
860 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
861 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
862 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
863 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
864 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
865 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
866 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
867 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
868 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
869 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
870 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
871 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
872 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
876 /* Return the number of multiplications required to calculate
877 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
878 subroutine of powi_cost. CACHE is an array indicating
879 which exponents have already been calculated. */
881 static int
882 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
884 /* If we've already calculated this exponent, then this evaluation
885 doesn't require any additional multiplications. */
886 if (cache[n])
887 return 0;
889 cache[n] = true;
890 return powi_lookup_cost (n - powi_table[n], cache)
891 + powi_lookup_cost (powi_table[n], cache) + 1;
894 /* Return the number of multiplications required to calculate
895 powi(x,n) for an arbitrary x, given the exponent N. This
896 function needs to be kept in sync with powi_as_mults below. */
898 static int
899 powi_cost (HOST_WIDE_INT n)
901 bool cache[POWI_TABLE_SIZE];
902 unsigned HOST_WIDE_INT digit;
903 unsigned HOST_WIDE_INT val;
904 int result;
906 if (n == 0)
907 return 0;
909 /* Ignore the reciprocal when calculating the cost. */
910 val = (n < 0) ? -n : n;
912 /* Initialize the exponent cache. */
913 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
914 cache[1] = true;
916 result = 0;
918 while (val >= POWI_TABLE_SIZE)
920 if (val & 1)
922 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
923 result += powi_lookup_cost (digit, cache)
924 + POWI_WINDOW_SIZE + 1;
925 val >>= POWI_WINDOW_SIZE;
927 else
929 val >>= 1;
930 result++;
934 return result + powi_lookup_cost (val, cache);
937 /* Recursive subroutine of powi_as_mults. This function takes the
938 array, CACHE, of already calculated exponents and an exponent N and
939 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
941 static tree
942 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
943 HOST_WIDE_INT n, tree *cache)
945 tree op0, op1, ssa_target;
946 unsigned HOST_WIDE_INT digit;
947 gimple mult_stmt;
949 if (n < POWI_TABLE_SIZE && cache[n])
950 return cache[n];
952 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
954 if (n < POWI_TABLE_SIZE)
956 cache[n] = ssa_target;
957 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
958 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
960 else if (n & 1)
962 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
963 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
964 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
966 else
968 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
969 op1 = op0;
972 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
973 gimple_set_location (mult_stmt, loc);
974 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
976 return ssa_target;
979 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
980 This function needs to be kept in sync with powi_cost above. */
982 static tree
983 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
984 tree arg0, HOST_WIDE_INT n)
986 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
987 gimple div_stmt;
988 tree target;
990 if (n == 0)
991 return build_real (type, dconst1);
993 memset (cache, 0, sizeof (cache));
994 cache[1] = arg0;
996 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
997 if (n >= 0)
998 return result;
1000 /* If the original exponent was negative, reciprocate the result. */
1001 target = make_temp_ssa_name (type, NULL, "powmult");
1002 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1003 build_real (type, dconst1),
1004 result);
1005 gimple_set_location (div_stmt, loc);
1006 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1008 return target;
1011 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1012 location info LOC. If the arguments are appropriate, create an
1013 equivalent sequence of statements prior to GSI using an optimal
1014 number of multiplications, and return an expession holding the
1015 result. */
1017 static tree
1018 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1019 tree arg0, HOST_WIDE_INT n)
1021 /* Avoid largest negative number. */
1022 if (n != -n
1023 && ((n >= -1 && n <= 2)
1024 || (optimize_function_for_speed_p (cfun)
1025 && powi_cost (n) <= POWI_MAX_MULTS)))
1026 return powi_as_mults (gsi, loc, arg0, n);
1028 return NULL_TREE;
1031 /* Build a gimple call statement that calls FN with argument ARG.
1032 Set the lhs of the call statement to a fresh SSA name. Insert the
1033 statement prior to GSI's current position, and return the fresh
1034 SSA name. */
1036 static tree
1037 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1038 tree fn, tree arg)
1040 gimple call_stmt;
1041 tree ssa_target;
1043 call_stmt = gimple_build_call (fn, 1, arg);
1044 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1045 gimple_set_lhs (call_stmt, ssa_target);
1046 gimple_set_location (call_stmt, loc);
1047 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1049 return ssa_target;
1052 /* Build a gimple binary operation with the given CODE and arguments
1053 ARG0, ARG1, assigning the result to a new SSA name for variable
1054 TARGET. Insert the statement prior to GSI's current position, and
1055 return the fresh SSA name.*/
1057 static tree
1058 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1059 const char *name, enum tree_code code,
1060 tree arg0, tree arg1)
1062 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1063 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1064 gimple_set_location (stmt, loc);
1065 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1066 return result;
1069 /* Build a gimple reference operation with the given CODE and argument
1070 ARG, assigning the result to a new SSA name of TYPE with NAME.
1071 Insert the statement prior to GSI's current position, and return
1072 the fresh SSA name. */
1074 static inline tree
1075 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1076 const char *name, enum tree_code code, tree arg0)
1078 tree result = make_temp_ssa_name (type, NULL, name);
1079 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1080 gimple_set_location (stmt, loc);
1081 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1082 return result;
1085 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1086 prior to GSI's current position, and return the fresh SSA name. */
1088 static tree
1089 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1090 tree type, tree val)
1092 tree result = make_ssa_name (type, NULL);
1093 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1094 gimple_set_location (stmt, loc);
1095 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1096 return result;
1099 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1100 with location info LOC. If possible, create an equivalent and
1101 less expensive sequence of statements prior to GSI, and return an
1102 expession holding the result. */
1104 static tree
1105 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1106 tree arg0, tree arg1)
1108 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1109 REAL_VALUE_TYPE c2, dconst3;
1110 HOST_WIDE_INT n;
1111 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1112 enum machine_mode mode;
1113 bool hw_sqrt_exists, c_is_int, c2_is_int;
1115 /* If the exponent isn't a constant, there's nothing of interest
1116 to be done. */
1117 if (TREE_CODE (arg1) != REAL_CST)
1118 return NULL_TREE;
1120 /* If the exponent is equivalent to an integer, expand to an optimal
1121 multiplication sequence when profitable. */
1122 c = TREE_REAL_CST (arg1);
1123 n = real_to_integer (&c);
1124 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1125 c_is_int = real_identical (&c, &cint);
1127 if (c_is_int
1128 && ((n >= -1 && n <= 2)
1129 || (flag_unsafe_math_optimizations
1130 && optimize_insn_for_speed_p ()
1131 && powi_cost (n) <= POWI_MAX_MULTS)))
1132 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1134 /* Attempt various optimizations using sqrt and cbrt. */
1135 type = TREE_TYPE (arg0);
1136 mode = TYPE_MODE (type);
1137 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1139 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1140 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1141 sqrt(-0) = -0. */
1142 if (sqrtfn
1143 && REAL_VALUES_EQUAL (c, dconsthalf)
1144 && !HONOR_SIGNED_ZEROS (mode))
1145 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1147 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1148 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1149 so do this optimization even if -Os. Don't do this optimization
1150 if we don't have a hardware sqrt insn. */
1151 dconst1_4 = dconst1;
1152 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1153 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1155 if (flag_unsafe_math_optimizations
1156 && sqrtfn
1157 && REAL_VALUES_EQUAL (c, dconst1_4)
1158 && hw_sqrt_exists)
1160 /* sqrt(x) */
1161 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1163 /* sqrt(sqrt(x)) */
1164 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1167 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1168 optimizing for space. Don't do this optimization if we don't have
1169 a hardware sqrt insn. */
1170 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1171 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1173 if (flag_unsafe_math_optimizations
1174 && sqrtfn
1175 && optimize_function_for_speed_p (cfun)
1176 && REAL_VALUES_EQUAL (c, dconst3_4)
1177 && hw_sqrt_exists)
1179 /* sqrt(x) */
1180 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1182 /* sqrt(sqrt(x)) */
1183 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1185 /* sqrt(x) * sqrt(sqrt(x)) */
1186 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1187 sqrt_arg0, sqrt_sqrt);
1190 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1191 optimizations since 1./3. is not exactly representable. If x
1192 is negative and finite, the correct value of pow(x,1./3.) is
1193 a NaN with the "invalid" exception raised, because the value
1194 of 1./3. actually has an even denominator. The correct value
1195 of cbrt(x) is a negative real value. */
1196 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1197 dconst1_3 = real_value_truncate (mode, dconst_third ());
1199 if (flag_unsafe_math_optimizations
1200 && cbrtfn
1201 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1202 && REAL_VALUES_EQUAL (c, dconst1_3))
1203 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1205 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1206 if we don't have a hardware sqrt insn. */
1207 dconst1_6 = dconst1_3;
1208 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1210 if (flag_unsafe_math_optimizations
1211 && sqrtfn
1212 && cbrtfn
1213 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1214 && optimize_function_for_speed_p (cfun)
1215 && hw_sqrt_exists
1216 && REAL_VALUES_EQUAL (c, dconst1_6))
1218 /* sqrt(x) */
1219 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1221 /* cbrt(sqrt(x)) */
1222 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1225 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1226 and c not an integer, into
1228 sqrt(x) * powi(x, n/2), n > 0;
1229 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1231 Do not calculate the powi factor when n/2 = 0. */
1232 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1233 n = real_to_integer (&c2);
1234 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1235 c2_is_int = real_identical (&c2, &cint);
1237 if (flag_unsafe_math_optimizations
1238 && sqrtfn
1239 && c2_is_int
1240 && !c_is_int
1241 && optimize_function_for_speed_p (cfun))
1243 tree powi_x_ndiv2 = NULL_TREE;
1245 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1246 possible or profitable, give up. Skip the degenerate case when
1247 n is 1 or -1, where the result is always 1. */
1248 if (absu_hwi (n) != 1)
1250 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1251 abs_hwi (n / 2));
1252 if (!powi_x_ndiv2)
1253 return NULL_TREE;
1256 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1257 result of the optimal multiply sequence just calculated. */
1258 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1260 if (absu_hwi (n) == 1)
1261 result = sqrt_arg0;
1262 else
1263 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1264 sqrt_arg0, powi_x_ndiv2);
1266 /* If n is negative, reciprocate the result. */
1267 if (n < 0)
1268 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1269 build_real (type, dconst1), result);
1270 return result;
1273 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1275 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1276 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1278 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1279 different from pow(x, 1./3.) due to rounding and behavior with
1280 negative x, we need to constrain this transformation to unsafe
1281 math and positive x or finite math. */
1282 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1283 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1284 real_round (&c2, mode, &c2);
1285 n = real_to_integer (&c2);
1286 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1287 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1288 real_convert (&c2, mode, &c2);
1290 if (flag_unsafe_math_optimizations
1291 && cbrtfn
1292 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1293 && real_identical (&c2, &c)
1294 && !c2_is_int
1295 && optimize_function_for_speed_p (cfun)
1296 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1298 tree powi_x_ndiv3 = NULL_TREE;
1300 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1301 possible or profitable, give up. Skip the degenerate case when
1302 abs(n) < 3, where the result is always 1. */
1303 if (absu_hwi (n) >= 3)
1305 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1306 abs_hwi (n / 3));
1307 if (!powi_x_ndiv3)
1308 return NULL_TREE;
1311 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1312 as that creates an unnecessary variable. Instead, just produce
1313 either cbrt(x) or cbrt(x) * cbrt(x). */
1314 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1316 if (absu_hwi (n) % 3 == 1)
1317 powi_cbrt_x = cbrt_x;
1318 else
1319 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1320 cbrt_x, cbrt_x);
1322 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1323 if (absu_hwi (n) < 3)
1324 result = powi_cbrt_x;
1325 else
1326 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1327 powi_x_ndiv3, powi_cbrt_x);
1329 /* If n is negative, reciprocate the result. */
1330 if (n < 0)
1331 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1332 build_real (type, dconst1), result);
1334 return result;
1337 /* No optimizations succeeded. */
1338 return NULL_TREE;
1341 /* ARG is the argument to a cabs builtin call in GSI with location info
1342 LOC. Create a sequence of statements prior to GSI that calculates
1343 sqrt(R*R + I*I), where R and I are the real and imaginary components
1344 of ARG, respectively. Return an expression holding the result. */
1346 static tree
1347 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1349 tree real_part, imag_part, addend1, addend2, sum, result;
1350 tree type = TREE_TYPE (TREE_TYPE (arg));
1351 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1352 enum machine_mode mode = TYPE_MODE (type);
1354 if (!flag_unsafe_math_optimizations
1355 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1356 || !sqrtfn
1357 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1358 return NULL_TREE;
1360 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1361 REALPART_EXPR, arg);
1362 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1363 real_part, real_part);
1364 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1365 IMAGPART_EXPR, arg);
1366 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1367 imag_part, imag_part);
1368 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1369 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1371 return result;
1374 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1375 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1376 an optimal number of multiplies, when n is a constant. */
1378 static unsigned int
1379 execute_cse_sincos (void)
1381 basic_block bb;
1382 bool cfg_changed = false;
1384 calculate_dominance_info (CDI_DOMINATORS);
1385 memset (&sincos_stats, 0, sizeof (sincos_stats));
1387 FOR_EACH_BB (bb)
1389 gimple_stmt_iterator gsi;
1390 bool cleanup_eh = false;
1392 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1394 gimple stmt = gsi_stmt (gsi);
1395 tree fndecl;
1397 /* Only the last stmt in a bb could throw, no need to call
1398 gimple_purge_dead_eh_edges if we change something in the middle
1399 of a basic block. */
1400 cleanup_eh = false;
1402 if (is_gimple_call (stmt)
1403 && gimple_call_lhs (stmt)
1404 && (fndecl = gimple_call_fndecl (stmt))
1405 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1407 tree arg, arg0, arg1, result;
1408 HOST_WIDE_INT n;
1409 location_t loc;
1411 switch (DECL_FUNCTION_CODE (fndecl))
1413 CASE_FLT_FN (BUILT_IN_COS):
1414 CASE_FLT_FN (BUILT_IN_SIN):
1415 CASE_FLT_FN (BUILT_IN_CEXPI):
1416 /* Make sure we have either sincos or cexp. */
1417 if (!TARGET_HAS_SINCOS && !TARGET_C99_FUNCTIONS)
1418 break;
1420 arg = gimple_call_arg (stmt, 0);
1421 if (TREE_CODE (arg) == SSA_NAME)
1422 cfg_changed |= execute_cse_sincos_1 (arg);
1423 break;
1425 CASE_FLT_FN (BUILT_IN_POW):
1426 arg0 = gimple_call_arg (stmt, 0);
1427 arg1 = gimple_call_arg (stmt, 1);
1429 loc = gimple_location (stmt);
1430 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1432 if (result)
1434 tree lhs = gimple_get_lhs (stmt);
1435 gimple new_stmt = gimple_build_assign (lhs, result);
1436 gimple_set_location (new_stmt, loc);
1437 unlink_stmt_vdef (stmt);
1438 gsi_replace (&gsi, new_stmt, true);
1439 cleanup_eh = true;
1440 if (gimple_vdef (stmt))
1441 release_ssa_name (gimple_vdef (stmt));
1443 break;
1445 CASE_FLT_FN (BUILT_IN_POWI):
1446 arg0 = gimple_call_arg (stmt, 0);
1447 arg1 = gimple_call_arg (stmt, 1);
1448 if (!host_integerp (arg1, 0))
1449 break;
1451 n = TREE_INT_CST_LOW (arg1);
1452 loc = gimple_location (stmt);
1453 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1455 if (result)
1457 tree lhs = gimple_get_lhs (stmt);
1458 gimple new_stmt = gimple_build_assign (lhs, result);
1459 gimple_set_location (new_stmt, loc);
1460 unlink_stmt_vdef (stmt);
1461 gsi_replace (&gsi, new_stmt, true);
1462 cleanup_eh = true;
1463 if (gimple_vdef (stmt))
1464 release_ssa_name (gimple_vdef (stmt));
1466 break;
1468 CASE_FLT_FN (BUILT_IN_CABS):
1469 arg0 = gimple_call_arg (stmt, 0);
1470 loc = gimple_location (stmt);
1471 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1473 if (result)
1475 tree lhs = gimple_get_lhs (stmt);
1476 gimple new_stmt = gimple_build_assign (lhs, result);
1477 gimple_set_location (new_stmt, loc);
1478 unlink_stmt_vdef (stmt);
1479 gsi_replace (&gsi, new_stmt, true);
1480 cleanup_eh = true;
1481 if (gimple_vdef (stmt))
1482 release_ssa_name (gimple_vdef (stmt));
1484 break;
1486 default:;
1490 if (cleanup_eh)
1491 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1494 statistics_counter_event (cfun, "sincos statements inserted",
1495 sincos_stats.inserted);
1497 free_dominance_info (CDI_DOMINATORS);
1498 return cfg_changed ? TODO_cleanup_cfg : 0;
1501 static bool
1502 gate_cse_sincos (void)
1504 /* We no longer require either sincos or cexp, since powi expansion
1505 piggybacks on this pass. */
1506 return optimize;
1509 struct gimple_opt_pass pass_cse_sincos =
1512 GIMPLE_PASS,
1513 "sincos", /* name */
1514 OPTGROUP_NONE, /* optinfo_flags */
1515 gate_cse_sincos, /* gate */
1516 execute_cse_sincos, /* execute */
1517 NULL, /* sub */
1518 NULL, /* next */
1519 0, /* static_pass_number */
1520 TV_NONE, /* tv_id */
1521 PROP_ssa, /* properties_required */
1522 0, /* properties_provided */
1523 0, /* properties_destroyed */
1524 0, /* todo_flags_start */
1525 TODO_update_ssa | TODO_verify_ssa
1526 | TODO_verify_stmts /* todo_flags_finish */
1530 /* A symbolic number is used to detect byte permutation and selection
1531 patterns. Therefore the field N contains an artificial number
1532 consisting of byte size markers:
1534 0 - byte has the value 0
1535 1..size - byte contains the content of the byte
1536 number indexed with that value minus one */
1538 struct symbolic_number {
1539 unsigned HOST_WIDEST_INT n;
1540 int size;
1543 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1544 number N. Return false if the requested operation is not permitted
1545 on a symbolic number. */
1547 static inline bool
1548 do_shift_rotate (enum tree_code code,
1549 struct symbolic_number *n,
1550 int count)
1552 if (count % 8 != 0)
1553 return false;
1555 /* Zero out the extra bits of N in order to avoid them being shifted
1556 into the significant bits. */
1557 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1558 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1560 switch (code)
1562 case LSHIFT_EXPR:
1563 n->n <<= count;
1564 break;
1565 case RSHIFT_EXPR:
1566 n->n >>= count;
1567 break;
1568 case LROTATE_EXPR:
1569 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1570 break;
1571 case RROTATE_EXPR:
1572 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1573 break;
1574 default:
1575 return false;
1577 /* Zero unused bits for size. */
1578 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1579 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1580 return true;
1583 /* Perform sanity checking for the symbolic number N and the gimple
1584 statement STMT. */
1586 static inline bool
1587 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1589 tree lhs_type;
1591 lhs_type = gimple_expr_type (stmt);
1593 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1594 return false;
1596 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1597 return false;
1599 return true;
1602 /* find_bswap_1 invokes itself recursively with N and tries to perform
1603 the operation given by the rhs of STMT on the result. If the
1604 operation could successfully be executed the function returns the
1605 tree expression of the source operand and NULL otherwise. */
1607 static tree
1608 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1610 enum tree_code code;
1611 tree rhs1, rhs2 = NULL;
1612 gimple rhs1_stmt, rhs2_stmt;
1613 tree source_expr1;
1614 enum gimple_rhs_class rhs_class;
1616 if (!limit || !is_gimple_assign (stmt))
1617 return NULL_TREE;
1619 rhs1 = gimple_assign_rhs1 (stmt);
1621 if (TREE_CODE (rhs1) != SSA_NAME)
1622 return NULL_TREE;
1624 code = gimple_assign_rhs_code (stmt);
1625 rhs_class = gimple_assign_rhs_class (stmt);
1626 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1628 if (rhs_class == GIMPLE_BINARY_RHS)
1629 rhs2 = gimple_assign_rhs2 (stmt);
1631 /* Handle unary rhs and binary rhs with integer constants as second
1632 operand. */
1634 if (rhs_class == GIMPLE_UNARY_RHS
1635 || (rhs_class == GIMPLE_BINARY_RHS
1636 && TREE_CODE (rhs2) == INTEGER_CST))
1638 if (code != BIT_AND_EXPR
1639 && code != LSHIFT_EXPR
1640 && code != RSHIFT_EXPR
1641 && code != LROTATE_EXPR
1642 && code != RROTATE_EXPR
1643 && code != NOP_EXPR
1644 && code != CONVERT_EXPR)
1645 return NULL_TREE;
1647 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1649 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1650 to initialize the symbolic number. */
1651 if (!source_expr1)
1653 /* Set up the symbolic number N by setting each byte to a
1654 value between 1 and the byte size of rhs1. The highest
1655 order byte is set to n->size and the lowest order
1656 byte to 1. */
1657 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1658 if (n->size % BITS_PER_UNIT != 0)
1659 return NULL_TREE;
1660 n->size /= BITS_PER_UNIT;
1661 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1662 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1664 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1665 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1666 (n->size * BITS_PER_UNIT)) - 1;
1668 source_expr1 = rhs1;
1671 switch (code)
1673 case BIT_AND_EXPR:
1675 int i;
1676 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1677 unsigned HOST_WIDEST_INT tmp = val;
1679 /* Only constants masking full bytes are allowed. */
1680 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1681 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1682 return NULL_TREE;
1684 n->n &= val;
1686 break;
1687 case LSHIFT_EXPR:
1688 case RSHIFT_EXPR:
1689 case LROTATE_EXPR:
1690 case RROTATE_EXPR:
1691 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1692 return NULL_TREE;
1693 break;
1694 CASE_CONVERT:
1696 int type_size;
1698 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1699 if (type_size % BITS_PER_UNIT != 0)
1700 return NULL_TREE;
1702 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1704 /* If STMT casts to a smaller type mask out the bits not
1705 belonging to the target type. */
1706 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1708 n->size = type_size / BITS_PER_UNIT;
1710 break;
1711 default:
1712 return NULL_TREE;
1714 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1717 /* Handle binary rhs. */
1719 if (rhs_class == GIMPLE_BINARY_RHS)
1721 int i;
1722 struct symbolic_number n1, n2;
1723 unsigned HOST_WIDEST_INT mask;
1724 tree source_expr2;
1726 if (code != BIT_IOR_EXPR)
1727 return NULL_TREE;
1729 if (TREE_CODE (rhs2) != SSA_NAME)
1730 return NULL_TREE;
1732 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1734 switch (code)
1736 case BIT_IOR_EXPR:
1737 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1739 if (!source_expr1)
1740 return NULL_TREE;
1742 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1744 if (source_expr1 != source_expr2
1745 || n1.size != n2.size)
1746 return NULL_TREE;
1748 n->size = n1.size;
1749 for (i = 0, mask = 0xff; i < n->size; i++, mask <<= BITS_PER_UNIT)
1751 unsigned HOST_WIDEST_INT masked1, masked2;
1753 masked1 = n1.n & mask;
1754 masked2 = n2.n & mask;
1755 if (masked1 && masked2 && masked1 != masked2)
1756 return NULL_TREE;
1758 n->n = n1.n | n2.n;
1760 if (!verify_symbolic_number_p (n, stmt))
1761 return NULL_TREE;
1763 break;
1764 default:
1765 return NULL_TREE;
1767 return source_expr1;
1769 return NULL_TREE;
1772 /* Check if STMT completes a bswap implementation consisting of ORs,
1773 SHIFTs and ANDs. Return the source tree expression on which the
1774 byte swap is performed and NULL if no bswap was found. */
1776 static tree
1777 find_bswap (gimple stmt)
1779 /* The number which the find_bswap result should match in order to
1780 have a full byte swap. The number is shifted to the left according
1781 to the size of the symbolic number before using it. */
1782 unsigned HOST_WIDEST_INT cmp =
1783 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1784 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1786 struct symbolic_number n;
1787 tree source_expr;
1788 int limit;
1790 /* The last parameter determines the depth search limit. It usually
1791 correlates directly to the number of bytes to be touched. We
1792 increase that number by three here in order to also
1793 cover signed -> unsigned converions of the src operand as can be seen
1794 in libgcc, and for initial shift/and operation of the src operand. */
1795 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1796 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1797 source_expr = find_bswap_1 (stmt, &n, limit);
1799 if (!source_expr)
1800 return NULL_TREE;
1802 /* Zero out the extra bits of N and CMP. */
1803 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1805 unsigned HOST_WIDEST_INT mask =
1806 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1808 n.n &= mask;
1809 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1812 /* A complete byte swap should make the symbolic number to start
1813 with the largest digit in the highest order byte. */
1814 if (cmp != n.n)
1815 return NULL_TREE;
1817 return source_expr;
1820 /* Find manual byte swap implementations and turn them into a bswap
1821 builtin invokation. */
1823 static unsigned int
1824 execute_optimize_bswap (void)
1826 basic_block bb;
1827 bool bswap16_p, bswap32_p, bswap64_p;
1828 bool changed = false;
1829 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1831 if (BITS_PER_UNIT != 8)
1832 return 0;
1834 if (sizeof (HOST_WIDEST_INT) < 8)
1835 return 0;
1837 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
1838 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
1839 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1840 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1841 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1842 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1843 || (bswap32_p && word_mode == SImode)));
1845 if (!bswap16_p && !bswap32_p && !bswap64_p)
1846 return 0;
1848 /* Determine the argument type of the builtins. The code later on
1849 assumes that the return and argument type are the same. */
1850 if (bswap16_p)
1852 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1853 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1856 if (bswap32_p)
1858 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1859 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1862 if (bswap64_p)
1864 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1865 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1868 memset (&bswap_stats, 0, sizeof (bswap_stats));
1870 FOR_EACH_BB (bb)
1872 gimple_stmt_iterator gsi;
1874 /* We do a reverse scan for bswap patterns to make sure we get the
1875 widest match. As bswap pattern matching doesn't handle
1876 previously inserted smaller bswap replacements as sub-
1877 patterns, the wider variant wouldn't be detected. */
1878 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1880 gimple stmt = gsi_stmt (gsi);
1881 tree bswap_src, bswap_type;
1882 tree bswap_tmp;
1883 tree fndecl = NULL_TREE;
1884 int type_size;
1885 gimple call;
1887 if (!is_gimple_assign (stmt)
1888 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1889 continue;
1891 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1893 switch (type_size)
1895 case 16:
1896 if (bswap16_p)
1898 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1899 bswap_type = bswap16_type;
1901 break;
1902 case 32:
1903 if (bswap32_p)
1905 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1906 bswap_type = bswap32_type;
1908 break;
1909 case 64:
1910 if (bswap64_p)
1912 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1913 bswap_type = bswap64_type;
1915 break;
1916 default:
1917 continue;
1920 if (!fndecl)
1921 continue;
1923 bswap_src = find_bswap (stmt);
1925 if (!bswap_src)
1926 continue;
1928 changed = true;
1929 if (type_size == 16)
1930 bswap_stats.found_16bit++;
1931 else if (type_size == 32)
1932 bswap_stats.found_32bit++;
1933 else
1934 bswap_stats.found_64bit++;
1936 bswap_tmp = bswap_src;
1938 /* Convert the src expression if necessary. */
1939 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1941 gimple convert_stmt;
1942 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
1943 convert_stmt = gimple_build_assign_with_ops
1944 (NOP_EXPR, bswap_tmp, bswap_src, NULL);
1945 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1948 call = gimple_build_call (fndecl, 1, bswap_tmp);
1950 bswap_tmp = gimple_assign_lhs (stmt);
1952 /* Convert the result if necessary. */
1953 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1955 gimple convert_stmt;
1956 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
1957 convert_stmt = gimple_build_assign_with_ops
1958 (NOP_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1959 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1962 gimple_call_set_lhs (call, bswap_tmp);
1964 if (dump_file)
1966 fprintf (dump_file, "%d bit bswap implementation found at: ",
1967 (int)type_size);
1968 print_gimple_stmt (dump_file, stmt, 0, 0);
1971 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1972 gsi_remove (&gsi, true);
1976 statistics_counter_event (cfun, "16-bit bswap implementations found",
1977 bswap_stats.found_16bit);
1978 statistics_counter_event (cfun, "32-bit bswap implementations found",
1979 bswap_stats.found_32bit);
1980 statistics_counter_event (cfun, "64-bit bswap implementations found",
1981 bswap_stats.found_64bit);
1983 return (changed ? TODO_update_ssa | TODO_verify_ssa
1984 | TODO_verify_stmts : 0);
1987 static bool
1988 gate_optimize_bswap (void)
1990 return flag_expensive_optimizations && optimize;
1993 struct gimple_opt_pass pass_optimize_bswap =
1996 GIMPLE_PASS,
1997 "bswap", /* name */
1998 OPTGROUP_NONE, /* optinfo_flags */
1999 gate_optimize_bswap, /* gate */
2000 execute_optimize_bswap, /* execute */
2001 NULL, /* sub */
2002 NULL, /* next */
2003 0, /* static_pass_number */
2004 TV_NONE, /* tv_id */
2005 PROP_ssa, /* properties_required */
2006 0, /* properties_provided */
2007 0, /* properties_destroyed */
2008 0, /* todo_flags_start */
2009 0 /* todo_flags_finish */
2013 /* Return true if stmt is a type conversion operation that can be stripped
2014 when used in a widening multiply operation. */
2015 static bool
2016 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2018 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2020 if (TREE_CODE (result_type) == INTEGER_TYPE)
2022 tree op_type;
2023 tree inner_op_type;
2025 if (!CONVERT_EXPR_CODE_P (rhs_code))
2026 return false;
2028 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2030 /* If the type of OP has the same precision as the result, then
2031 we can strip this conversion. The multiply operation will be
2032 selected to create the correct extension as a by-product. */
2033 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2034 return true;
2036 /* We can also strip a conversion if it preserves the signed-ness of
2037 the operation and doesn't narrow the range. */
2038 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2040 /* If the inner-most type is unsigned, then we can strip any
2041 intermediate widening operation. If it's signed, then the
2042 intermediate widening operation must also be signed. */
2043 if ((TYPE_UNSIGNED (inner_op_type)
2044 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2045 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2046 return true;
2048 return false;
2051 return rhs_code == FIXED_CONVERT_EXPR;
2054 /* Return true if RHS is a suitable operand for a widening multiplication,
2055 assuming a target type of TYPE.
2056 There are two cases:
2058 - RHS makes some value at least twice as wide. Store that value
2059 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2061 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2062 but leave *TYPE_OUT untouched. */
2064 static bool
2065 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2066 tree *new_rhs_out)
2068 gimple stmt;
2069 tree type1, rhs1;
2071 if (TREE_CODE (rhs) == SSA_NAME)
2073 stmt = SSA_NAME_DEF_STMT (rhs);
2074 if (is_gimple_assign (stmt))
2076 if (! widening_mult_conversion_strippable_p (type, stmt))
2077 rhs1 = rhs;
2078 else
2080 rhs1 = gimple_assign_rhs1 (stmt);
2082 if (TREE_CODE (rhs1) == INTEGER_CST)
2084 *new_rhs_out = rhs1;
2085 *type_out = NULL;
2086 return true;
2090 else
2091 rhs1 = rhs;
2093 type1 = TREE_TYPE (rhs1);
2095 if (TREE_CODE (type1) != TREE_CODE (type)
2096 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2097 return false;
2099 *new_rhs_out = rhs1;
2100 *type_out = type1;
2101 return true;
2104 if (TREE_CODE (rhs) == INTEGER_CST)
2106 *new_rhs_out = rhs;
2107 *type_out = NULL;
2108 return true;
2111 return false;
2114 /* Return true if STMT performs a widening multiplication, assuming the
2115 output type is TYPE. If so, store the unwidened types of the operands
2116 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2117 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2118 and *TYPE2_OUT would give the operands of the multiplication. */
2120 static bool
2121 is_widening_mult_p (gimple stmt,
2122 tree *type1_out, tree *rhs1_out,
2123 tree *type2_out, tree *rhs2_out)
2125 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2127 if (TREE_CODE (type) != INTEGER_TYPE
2128 && TREE_CODE (type) != FIXED_POINT_TYPE)
2129 return false;
2131 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2132 rhs1_out))
2133 return false;
2135 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2136 rhs2_out))
2137 return false;
2139 if (*type1_out == NULL)
2141 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2142 return false;
2143 *type1_out = *type2_out;
2146 if (*type2_out == NULL)
2148 if (!int_fits_type_p (*rhs2_out, *type1_out))
2149 return false;
2150 *type2_out = *type1_out;
2153 /* Ensure that the larger of the two operands comes first. */
2154 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2156 tree tmp;
2157 tmp = *type1_out;
2158 *type1_out = *type2_out;
2159 *type2_out = tmp;
2160 tmp = *rhs1_out;
2161 *rhs1_out = *rhs2_out;
2162 *rhs2_out = tmp;
2165 return true;
2168 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2169 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2170 value is true iff we converted the statement. */
2172 static bool
2173 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2175 tree lhs, rhs1, rhs2, type, type1, type2;
2176 enum insn_code handler;
2177 enum machine_mode to_mode, from_mode, actual_mode;
2178 optab op;
2179 int actual_precision;
2180 location_t loc = gimple_location (stmt);
2181 bool from_unsigned1, from_unsigned2;
2183 lhs = gimple_assign_lhs (stmt);
2184 type = TREE_TYPE (lhs);
2185 if (TREE_CODE (type) != INTEGER_TYPE)
2186 return false;
2188 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2189 return false;
2191 to_mode = TYPE_MODE (type);
2192 from_mode = TYPE_MODE (type1);
2193 from_unsigned1 = TYPE_UNSIGNED (type1);
2194 from_unsigned2 = TYPE_UNSIGNED (type2);
2196 if (from_unsigned1 && from_unsigned2)
2197 op = umul_widen_optab;
2198 else if (!from_unsigned1 && !from_unsigned2)
2199 op = smul_widen_optab;
2200 else
2201 op = usmul_widen_optab;
2203 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2204 0, &actual_mode);
2206 if (handler == CODE_FOR_nothing)
2208 if (op != smul_widen_optab)
2210 /* We can use a signed multiply with unsigned types as long as
2211 there is a wider mode to use, or it is the smaller of the two
2212 types that is unsigned. Note that type1 >= type2, always. */
2213 if ((TYPE_UNSIGNED (type1)
2214 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2215 || (TYPE_UNSIGNED (type2)
2216 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2218 from_mode = GET_MODE_WIDER_MODE (from_mode);
2219 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2220 return false;
2223 op = smul_widen_optab;
2224 handler = find_widening_optab_handler_and_mode (op, to_mode,
2225 from_mode, 0,
2226 &actual_mode);
2228 if (handler == CODE_FOR_nothing)
2229 return false;
2231 from_unsigned1 = from_unsigned2 = false;
2233 else
2234 return false;
2237 /* Ensure that the inputs to the handler are in the correct precison
2238 for the opcode. This will be the full mode size. */
2239 actual_precision = GET_MODE_PRECISION (actual_mode);
2240 if (2 * actual_precision > TYPE_PRECISION (type))
2241 return false;
2242 if (actual_precision != TYPE_PRECISION (type1)
2243 || from_unsigned1 != TYPE_UNSIGNED (type1))
2244 rhs1 = build_and_insert_cast (gsi, loc,
2245 build_nonstandard_integer_type
2246 (actual_precision, from_unsigned1), rhs1);
2247 if (actual_precision != TYPE_PRECISION (type2)
2248 || from_unsigned2 != TYPE_UNSIGNED (type2))
2249 rhs2 = build_and_insert_cast (gsi, loc,
2250 build_nonstandard_integer_type
2251 (actual_precision, from_unsigned2), rhs2);
2253 /* Handle constants. */
2254 if (TREE_CODE (rhs1) == INTEGER_CST)
2255 rhs1 = fold_convert (type1, rhs1);
2256 if (TREE_CODE (rhs2) == INTEGER_CST)
2257 rhs2 = fold_convert (type2, rhs2);
2259 gimple_assign_set_rhs1 (stmt, rhs1);
2260 gimple_assign_set_rhs2 (stmt, rhs2);
2261 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2262 update_stmt (stmt);
2263 widen_mul_stats.widen_mults_inserted++;
2264 return true;
2267 /* Process a single gimple statement STMT, which is found at the
2268 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2269 rhs (given by CODE), and try to convert it into a
2270 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2271 is true iff we converted the statement. */
2273 static bool
2274 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2275 enum tree_code code)
2277 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2278 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2279 tree type, type1, type2, optype;
2280 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2281 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2282 optab this_optab;
2283 enum tree_code wmult_code;
2284 enum insn_code handler;
2285 enum machine_mode to_mode, from_mode, actual_mode;
2286 location_t loc = gimple_location (stmt);
2287 int actual_precision;
2288 bool from_unsigned1, from_unsigned2;
2290 lhs = gimple_assign_lhs (stmt);
2291 type = TREE_TYPE (lhs);
2292 if (TREE_CODE (type) != INTEGER_TYPE
2293 && TREE_CODE (type) != FIXED_POINT_TYPE)
2294 return false;
2296 if (code == MINUS_EXPR)
2297 wmult_code = WIDEN_MULT_MINUS_EXPR;
2298 else
2299 wmult_code = WIDEN_MULT_PLUS_EXPR;
2301 rhs1 = gimple_assign_rhs1 (stmt);
2302 rhs2 = gimple_assign_rhs2 (stmt);
2304 if (TREE_CODE (rhs1) == SSA_NAME)
2306 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2307 if (is_gimple_assign (rhs1_stmt))
2308 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2311 if (TREE_CODE (rhs2) == SSA_NAME)
2313 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2314 if (is_gimple_assign (rhs2_stmt))
2315 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2318 /* Allow for one conversion statement between the multiply
2319 and addition/subtraction statement. If there are more than
2320 one conversions then we assume they would invalidate this
2321 transformation. If that's not the case then they should have
2322 been folded before now. */
2323 if (CONVERT_EXPR_CODE_P (rhs1_code))
2325 conv1_stmt = rhs1_stmt;
2326 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2327 if (TREE_CODE (rhs1) == SSA_NAME)
2329 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2330 if (is_gimple_assign (rhs1_stmt))
2331 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2333 else
2334 return false;
2336 if (CONVERT_EXPR_CODE_P (rhs2_code))
2338 conv2_stmt = rhs2_stmt;
2339 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2340 if (TREE_CODE (rhs2) == SSA_NAME)
2342 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2343 if (is_gimple_assign (rhs2_stmt))
2344 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2346 else
2347 return false;
2350 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2351 is_widening_mult_p, but we still need the rhs returns.
2353 It might also appear that it would be sufficient to use the existing
2354 operands of the widening multiply, but that would limit the choice of
2355 multiply-and-accumulate instructions. */
2356 if (code == PLUS_EXPR
2357 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2359 if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2360 &type2, &mult_rhs2))
2361 return false;
2362 add_rhs = rhs2;
2363 conv_stmt = conv1_stmt;
2365 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2367 if (!is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2368 &type2, &mult_rhs2))
2369 return false;
2370 add_rhs = rhs1;
2371 conv_stmt = conv2_stmt;
2373 else
2374 return false;
2376 to_mode = TYPE_MODE (type);
2377 from_mode = TYPE_MODE (type1);
2378 from_unsigned1 = TYPE_UNSIGNED (type1);
2379 from_unsigned2 = TYPE_UNSIGNED (type2);
2380 optype = type1;
2382 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2383 if (from_unsigned1 != from_unsigned2)
2385 if (!INTEGRAL_TYPE_P (type))
2386 return false;
2387 /* We can use a signed multiply with unsigned types as long as
2388 there is a wider mode to use, or it is the smaller of the two
2389 types that is unsigned. Note that type1 >= type2, always. */
2390 if ((from_unsigned1
2391 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2392 || (from_unsigned2
2393 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2395 from_mode = GET_MODE_WIDER_MODE (from_mode);
2396 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2397 return false;
2400 from_unsigned1 = from_unsigned2 = false;
2401 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2402 false);
2405 /* If there was a conversion between the multiply and addition
2406 then we need to make sure it fits a multiply-and-accumulate.
2407 The should be a single mode change which does not change the
2408 value. */
2409 if (conv_stmt)
2411 /* We use the original, unmodified data types for this. */
2412 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2413 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2414 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2415 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2417 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2419 /* Conversion is a truncate. */
2420 if (TYPE_PRECISION (to_type) < data_size)
2421 return false;
2423 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2425 /* Conversion is an extend. Check it's the right sort. */
2426 if (TYPE_UNSIGNED (from_type) != is_unsigned
2427 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2428 return false;
2430 /* else convert is a no-op for our purposes. */
2433 /* Verify that the machine can perform a widening multiply
2434 accumulate in this mode/signedness combination, otherwise
2435 this transformation is likely to pessimize code. */
2436 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2437 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2438 from_mode, 0, &actual_mode);
2440 if (handler == CODE_FOR_nothing)
2441 return false;
2443 /* Ensure that the inputs to the handler are in the correct precison
2444 for the opcode. This will be the full mode size. */
2445 actual_precision = GET_MODE_PRECISION (actual_mode);
2446 if (actual_precision != TYPE_PRECISION (type1)
2447 || from_unsigned1 != TYPE_UNSIGNED (type1))
2448 mult_rhs1 = build_and_insert_cast (gsi, loc,
2449 build_nonstandard_integer_type
2450 (actual_precision, from_unsigned1),
2451 mult_rhs1);
2452 if (actual_precision != TYPE_PRECISION (type2)
2453 || from_unsigned2 != TYPE_UNSIGNED (type2))
2454 mult_rhs2 = build_and_insert_cast (gsi, loc,
2455 build_nonstandard_integer_type
2456 (actual_precision, from_unsigned2),
2457 mult_rhs2);
2459 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2460 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2462 /* Handle constants. */
2463 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2464 mult_rhs1 = fold_convert (type1, mult_rhs1);
2465 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2466 mult_rhs2 = fold_convert (type2, mult_rhs2);
2468 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2469 add_rhs);
2470 update_stmt (gsi_stmt (*gsi));
2471 widen_mul_stats.maccs_inserted++;
2472 return true;
2475 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2476 with uses in additions and subtractions to form fused multiply-add
2477 operations. Returns true if successful and MUL_STMT should be removed. */
2479 static bool
2480 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2482 tree mul_result = gimple_get_lhs (mul_stmt);
2483 tree type = TREE_TYPE (mul_result);
2484 gimple use_stmt, neguse_stmt, fma_stmt;
2485 use_operand_p use_p;
2486 imm_use_iterator imm_iter;
2488 if (FLOAT_TYPE_P (type)
2489 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2490 return false;
2492 /* We don't want to do bitfield reduction ops. */
2493 if (INTEGRAL_TYPE_P (type)
2494 && (TYPE_PRECISION (type)
2495 != GET_MODE_PRECISION (TYPE_MODE (type))))
2496 return false;
2498 /* If the target doesn't support it, don't generate it. We assume that
2499 if fma isn't available then fms, fnma or fnms are not either. */
2500 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2501 return false;
2503 /* If the multiplication has zero uses, it is kept around probably because
2504 of -fnon-call-exceptions. Don't optimize it away in that case,
2505 it is DCE job. */
2506 if (has_zero_uses (mul_result))
2507 return false;
2509 /* Make sure that the multiplication statement becomes dead after
2510 the transformation, thus that all uses are transformed to FMAs.
2511 This means we assume that an FMA operation has the same cost
2512 as an addition. */
2513 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2515 enum tree_code use_code;
2516 tree result = mul_result;
2517 bool negate_p = false;
2519 use_stmt = USE_STMT (use_p);
2521 if (is_gimple_debug (use_stmt))
2522 continue;
2524 /* For now restrict this operations to single basic blocks. In theory
2525 we would want to support sinking the multiplication in
2526 m = a*b;
2527 if ()
2528 ma = m + c;
2529 else
2530 d = m;
2531 to form a fma in the then block and sink the multiplication to the
2532 else block. */
2533 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2534 return false;
2536 if (!is_gimple_assign (use_stmt))
2537 return false;
2539 use_code = gimple_assign_rhs_code (use_stmt);
2541 /* A negate on the multiplication leads to FNMA. */
2542 if (use_code == NEGATE_EXPR)
2544 ssa_op_iter iter;
2545 use_operand_p usep;
2547 result = gimple_assign_lhs (use_stmt);
2549 /* Make sure the negate statement becomes dead with this
2550 single transformation. */
2551 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2552 &use_p, &neguse_stmt))
2553 return false;
2555 /* Make sure the multiplication isn't also used on that stmt. */
2556 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2557 if (USE_FROM_PTR (usep) == mul_result)
2558 return false;
2560 /* Re-validate. */
2561 use_stmt = neguse_stmt;
2562 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2563 return false;
2564 if (!is_gimple_assign (use_stmt))
2565 return false;
2567 use_code = gimple_assign_rhs_code (use_stmt);
2568 negate_p = true;
2571 switch (use_code)
2573 case MINUS_EXPR:
2574 if (gimple_assign_rhs2 (use_stmt) == result)
2575 negate_p = !negate_p;
2576 break;
2577 case PLUS_EXPR:
2578 break;
2579 default:
2580 /* FMA can only be formed from PLUS and MINUS. */
2581 return false;
2584 /* We can't handle a * b + a * b. */
2585 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2586 return false;
2588 /* While it is possible to validate whether or not the exact form
2589 that we've recognized is available in the backend, the assumption
2590 is that the transformation is never a loss. For instance, suppose
2591 the target only has the plain FMA pattern available. Consider
2592 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2593 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2594 still have 3 operations, but in the FMA form the two NEGs are
2595 independent and could be run in parallel. */
2598 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2600 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2601 enum tree_code use_code;
2602 tree addop, mulop1 = op1, result = mul_result;
2603 bool negate_p = false;
2605 if (is_gimple_debug (use_stmt))
2606 continue;
2608 use_code = gimple_assign_rhs_code (use_stmt);
2609 if (use_code == NEGATE_EXPR)
2611 result = gimple_assign_lhs (use_stmt);
2612 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2613 gsi_remove (&gsi, true);
2614 release_defs (use_stmt);
2616 use_stmt = neguse_stmt;
2617 gsi = gsi_for_stmt (use_stmt);
2618 use_code = gimple_assign_rhs_code (use_stmt);
2619 negate_p = true;
2622 if (gimple_assign_rhs1 (use_stmt) == result)
2624 addop = gimple_assign_rhs2 (use_stmt);
2625 /* a * b - c -> a * b + (-c) */
2626 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2627 addop = force_gimple_operand_gsi (&gsi,
2628 build1 (NEGATE_EXPR,
2629 type, addop),
2630 true, NULL_TREE, true,
2631 GSI_SAME_STMT);
2633 else
2635 addop = gimple_assign_rhs1 (use_stmt);
2636 /* a - b * c -> (-b) * c + a */
2637 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2638 negate_p = !negate_p;
2641 if (negate_p)
2642 mulop1 = force_gimple_operand_gsi (&gsi,
2643 build1 (NEGATE_EXPR,
2644 type, mulop1),
2645 true, NULL_TREE, true,
2646 GSI_SAME_STMT);
2648 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
2649 gimple_assign_lhs (use_stmt),
2650 mulop1, op2,
2651 addop);
2652 gsi_replace (&gsi, fma_stmt, true);
2653 widen_mul_stats.fmas_inserted++;
2656 return true;
2659 /* Find integer multiplications where the operands are extended from
2660 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2661 where appropriate. */
2663 static unsigned int
2664 execute_optimize_widening_mul (void)
2666 basic_block bb;
2667 bool cfg_changed = false;
2669 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2671 FOR_EACH_BB (bb)
2673 gimple_stmt_iterator gsi;
2675 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2677 gimple stmt = gsi_stmt (gsi);
2678 enum tree_code code;
2680 if (is_gimple_assign (stmt))
2682 code = gimple_assign_rhs_code (stmt);
2683 switch (code)
2685 case MULT_EXPR:
2686 if (!convert_mult_to_widen (stmt, &gsi)
2687 && convert_mult_to_fma (stmt,
2688 gimple_assign_rhs1 (stmt),
2689 gimple_assign_rhs2 (stmt)))
2691 gsi_remove (&gsi, true);
2692 release_defs (stmt);
2693 continue;
2695 break;
2697 case PLUS_EXPR:
2698 case MINUS_EXPR:
2699 convert_plusminus_to_widen (&gsi, stmt, code);
2700 break;
2702 default:;
2705 else if (is_gimple_call (stmt)
2706 && gimple_call_lhs (stmt))
2708 tree fndecl = gimple_call_fndecl (stmt);
2709 if (fndecl
2710 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2712 switch (DECL_FUNCTION_CODE (fndecl))
2714 case BUILT_IN_POWF:
2715 case BUILT_IN_POW:
2716 case BUILT_IN_POWL:
2717 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2718 && REAL_VALUES_EQUAL
2719 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2720 dconst2)
2721 && convert_mult_to_fma (stmt,
2722 gimple_call_arg (stmt, 0),
2723 gimple_call_arg (stmt, 0)))
2725 unlink_stmt_vdef (stmt);
2726 if (gsi_remove (&gsi, true)
2727 && gimple_purge_dead_eh_edges (bb))
2728 cfg_changed = true;
2729 release_defs (stmt);
2730 continue;
2732 break;
2734 default:;
2738 gsi_next (&gsi);
2742 statistics_counter_event (cfun, "widening multiplications inserted",
2743 widen_mul_stats.widen_mults_inserted);
2744 statistics_counter_event (cfun, "widening maccs inserted",
2745 widen_mul_stats.maccs_inserted);
2746 statistics_counter_event (cfun, "fused multiply-adds inserted",
2747 widen_mul_stats.fmas_inserted);
2749 return cfg_changed ? TODO_cleanup_cfg : 0;
2752 static bool
2753 gate_optimize_widening_mul (void)
2755 return flag_expensive_optimizations && optimize;
2758 struct gimple_opt_pass pass_optimize_widening_mul =
2761 GIMPLE_PASS,
2762 "widening_mul", /* name */
2763 OPTGROUP_NONE, /* optinfo_flags */
2764 gate_optimize_widening_mul, /* gate */
2765 execute_optimize_widening_mul, /* execute */
2766 NULL, /* sub */
2767 NULL, /* next */
2768 0, /* static_pass_number */
2769 TV_NONE, /* tv_id */
2770 PROP_ssa, /* properties_required */
2771 0, /* properties_provided */
2772 0, /* properties_destroyed */
2773 0, /* todo_flags_start */
2774 TODO_verify_ssa
2775 | TODO_verify_stmts
2776 | TODO_update_ssa /* todo_flags_finish */