1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
100 3. It is possible that if an input dies in an insn, reload might
101 use the input reg for an output reload. Consider this example:
103 asm ("foo" : "=t" (a) : "f" (b));
105 This asm says that input B is not popped by the asm, and that
106 the asm pushes a result onto the reg-stack, i.e., the stack is one
107 deeper after the asm than it was before. But, it is possible that
108 reload will think that it can use the same reg for both the input and
109 the output, if input B dies in this insn.
111 If any input operand uses the "f" constraint, all output reg
112 constraints must use the "&" earlyclobber.
114 The asm above would be written as
116 asm ("foo" : "=&t" (a) : "f" (b));
118 4. Some operands need to be in particular places on the stack. All
119 output operands fall in this category - there is no other way to
120 know which regs the outputs appear in unless the user indicates
121 this in the constraints.
123 Output operands must specifically indicate which reg an output
124 appears in after an asm. "=f" is not allowed: the operand
125 constraints must select a class with a single reg.
127 5. Output operands may not be "inserted" between existing stack regs.
128 Since no 387 opcode uses a read/write operand, all output operands
129 are dead before the asm_operands, and are pushed by the asm_operands.
130 It makes no sense to push anywhere but the top of the reg-stack.
132 Output operands must start at the top of the reg-stack: output
133 operands may not "skip" a reg.
135 6. Some asm statements may need extra stack space for internal
136 calculations. This can be guaranteed by clobbering stack registers
137 unrelated to the inputs and outputs.
139 Here are a couple of reasonable asms to want to write. This asm
140 takes one input, which is internally popped, and produces two outputs.
142 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
144 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145 and replaces them with one output. The user must code the "st(1)"
146 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
148 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "coretypes.h"
157 #include "rtl-error.h"
159 #include "function.h"
160 #include "insn-config.h"
162 #include "hard-reg-set.h"
165 #include "basic-block.h"
168 #include "tree-pass.h"
171 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
175 /* We use this array to cache info about insns, because otherwise we
176 spend too much time in stack_regs_mentioned_p.
178 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
179 the insn uses stack registers, two indicates the insn does not use
181 static vec
<char> stack_regs_mentioned_data
;
183 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
185 int regstack_completed
= 0;
187 /* This is the basic stack record. TOP is an index into REG[] such
188 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
190 If TOP is -2, REG[] is not yet initialized. Stack initialization
191 consists of placing each live reg in array `reg' and setting `top'
194 REG_SET indicates which registers are live. */
196 typedef struct stack_def
198 int top
; /* index to top stack element */
199 HARD_REG_SET reg_set
; /* set of live registers */
200 unsigned char reg
[REG_STACK_SIZE
];/* register - stack mapping */
203 /* This is used to carry information about basic blocks. It is
204 attached to the AUX field of the standard CFG block. */
206 typedef struct block_info_def
208 struct stack_def stack_in
; /* Input stack configuration. */
209 struct stack_def stack_out
; /* Output stack configuration. */
210 HARD_REG_SET out_reg_set
; /* Stack regs live on output. */
211 int done
; /* True if block already converted. */
212 int predecessors
; /* Number of predecessors that need
216 #define BLOCK_INFO(B) ((block_info) (B)->aux)
218 /* Passed to change_stack to indicate where to emit insns. */
225 /* The block we're currently working on. */
226 static basic_block current_block
;
228 /* In the current_block, whether we're processing the first register
229 stack or call instruction, i.e. the regstack is currently the
230 same as BLOCK_INFO(current_block)->stack_in. */
231 static bool starting_stack_p
;
233 /* This is the register file for all register after conversion. */
235 FP_mode_reg
[LAST_STACK_REG
+1-FIRST_STACK_REG
][(int) MAX_MACHINE_MODE
];
237 #define FP_MODE_REG(regno,mode) \
238 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
240 /* Used to initialize uninitialized registers. */
241 static rtx not_a_num
;
243 /* Forward declarations */
245 static int stack_regs_mentioned_p (const_rtx pat
);
246 static void pop_stack (stack_ptr
, int);
247 static rtx
*get_true_reg (rtx
*);
249 static int check_asm_stack_operands (rtx
);
250 static void get_asm_operands_in_out (rtx
, int *, int *);
251 static rtx
stack_result (tree
);
252 static void replace_reg (rtx
*, int);
253 static void remove_regno_note (rtx
, enum reg_note
, unsigned int);
254 static int get_hard_regnum (stack_ptr
, rtx
);
255 static rtx
emit_pop_insn (rtx
, stack_ptr
, rtx
, enum emit_where
);
256 static void swap_to_top(rtx
, stack_ptr
, rtx
, rtx
);
257 static bool move_for_stack_reg (rtx
, stack_ptr
, rtx
);
258 static bool move_nan_for_stack_reg (rtx
, stack_ptr
, rtx
);
259 static int swap_rtx_condition_1 (rtx
);
260 static int swap_rtx_condition (rtx
);
261 static void compare_for_stack_reg (rtx
, stack_ptr
, rtx
);
262 static bool subst_stack_regs_pat (rtx
, stack_ptr
, rtx
);
263 static void subst_asm_stack_regs (rtx
, stack_ptr
);
264 static bool subst_stack_regs (rtx
, stack_ptr
);
265 static void change_stack (rtx
, stack_ptr
, stack_ptr
, enum emit_where
);
266 static void print_stack (FILE *, stack_ptr
);
267 static rtx
next_flags_user (rtx
);
269 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
272 stack_regs_mentioned_p (const_rtx pat
)
277 if (STACK_REG_P (pat
))
280 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
281 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
287 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
288 if (stack_regs_mentioned_p (XVECEXP (pat
, i
, j
)))
291 else if (fmt
[i
] == 'e' && stack_regs_mentioned_p (XEXP (pat
, i
)))
298 /* Return nonzero if INSN mentions stacked registers, else return zero. */
301 stack_regs_mentioned (const_rtx insn
)
303 unsigned int uid
, max
;
306 if (! INSN_P (insn
) || !stack_regs_mentioned_data
.exists ())
309 uid
= INSN_UID (insn
);
310 max
= stack_regs_mentioned_data
.length ();
313 /* Allocate some extra size to avoid too many reallocs, but
314 do not grow too quickly. */
315 max
= uid
+ uid
/ 20 + 1;
316 stack_regs_mentioned_data
.safe_grow_cleared (max
);
319 test
= stack_regs_mentioned_data
[uid
];
322 /* This insn has yet to be examined. Do so now. */
323 test
= stack_regs_mentioned_p (PATTERN (insn
)) ? 1 : 2;
324 stack_regs_mentioned_data
[uid
] = test
;
330 static rtx ix86_flags_rtx
;
333 next_flags_user (rtx insn
)
335 /* Search forward looking for the first use of this value.
336 Stop at block boundaries. */
338 while (insn
!= BB_END (current_block
))
340 insn
= NEXT_INSN (insn
);
342 if (INSN_P (insn
) && reg_mentioned_p (ix86_flags_rtx
, PATTERN (insn
)))
351 /* Reorganize the stack into ascending numbers, before this insn. */
354 straighten_stack (rtx insn
, stack_ptr regstack
)
356 struct stack_def temp_stack
;
359 /* If there is only a single register on the stack, then the stack is
360 already in increasing order and no reorganization is needed.
362 Similarly if the stack is empty. */
363 if (regstack
->top
<= 0)
366 COPY_HARD_REG_SET (temp_stack
.reg_set
, regstack
->reg_set
);
368 for (top
= temp_stack
.top
= regstack
->top
; top
>= 0; top
--)
369 temp_stack
.reg
[top
] = FIRST_STACK_REG
+ temp_stack
.top
- top
;
371 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
374 /* Pop a register from the stack. */
377 pop_stack (stack_ptr regstack
, int regno
)
379 int top
= regstack
->top
;
381 CLEAR_HARD_REG_BIT (regstack
->reg_set
, regno
);
383 /* If regno was not at the top of stack then adjust stack. */
384 if (regstack
->reg
[top
] != regno
)
387 for (i
= regstack
->top
; i
>= 0; i
--)
388 if (regstack
->reg
[i
] == regno
)
391 for (j
= i
; j
< top
; j
++)
392 regstack
->reg
[j
] = regstack
->reg
[j
+ 1];
398 /* Return a pointer to the REG expression within PAT. If PAT is not a
399 REG, possible enclosed by a conversion rtx, return the inner part of
400 PAT that stopped the search. */
403 get_true_reg (rtx
*pat
)
406 switch (GET_CODE (*pat
))
409 /* Eliminate FP subregister accesses in favor of the
410 actual FP register in use. */
413 if (STACK_REG_P (subreg
= SUBREG_REG (*pat
)))
415 int regno_off
= subreg_regno_offset (REGNO (subreg
),
419 *pat
= FP_MODE_REG (REGNO (subreg
) + regno_off
,
427 pat
= & XEXP (*pat
, 0);
431 if (XINT (*pat
, 1) == UNSPEC_TRUNC_NOOP
432 || XINT (*pat
, 1) == UNSPEC_LDA
)
433 pat
= & XVECEXP (*pat
, 0, 0);
437 if (!flag_unsafe_math_optimizations
)
439 pat
= & XEXP (*pat
, 0);
447 /* Set if we find any malformed asms in a block. */
448 static bool any_malformed_asm
;
450 /* There are many rules that an asm statement for stack-like regs must
451 follow. Those rules are explained at the top of this file: the rule
452 numbers below refer to that explanation. */
455 check_asm_stack_operands (rtx insn
)
459 int malformed_asm
= 0;
460 rtx body
= PATTERN (insn
);
462 char reg_used_as_output
[FIRST_PSEUDO_REGISTER
];
463 char implicitly_dies
[FIRST_PSEUDO_REGISTER
];
466 rtx
*clobber_reg
= 0;
467 int n_inputs
, n_outputs
;
469 /* Find out what the constraints require. If no constraint
470 alternative matches, this asm is malformed. */
472 constrain_operands (1);
473 alt
= which_alternative
;
475 preprocess_constraints ();
477 get_asm_operands_in_out (body
, &n_outputs
, &n_inputs
);
482 /* Avoid further trouble with this insn. */
483 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
487 /* Strip SUBREGs here to make the following code simpler. */
488 for (i
= 0; i
< recog_data
.n_operands
; i
++)
489 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
490 && REG_P (SUBREG_REG (recog_data
.operand
[i
])))
491 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
493 /* Set up CLOBBER_REG. */
497 if (GET_CODE (body
) == PARALLEL
)
499 clobber_reg
= XALLOCAVEC (rtx
, XVECLEN (body
, 0));
501 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
502 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
504 rtx clobber
= XVECEXP (body
, 0, i
);
505 rtx reg
= XEXP (clobber
, 0);
507 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
508 reg
= SUBREG_REG (reg
);
510 if (STACK_REG_P (reg
))
512 clobber_reg
[n_clobbers
] = reg
;
518 /* Enforce rule #4: Output operands must specifically indicate which
519 reg an output appears in after an asm. "=f" is not allowed: the
520 operand constraints must select a class with a single reg.
522 Also enforce rule #5: Output operands must start at the top of
523 the reg-stack: output operands may not "skip" a reg. */
525 memset (reg_used_as_output
, 0, sizeof (reg_used_as_output
));
526 for (i
= 0; i
< n_outputs
; i
++)
527 if (STACK_REG_P (recog_data
.operand
[i
]))
529 if (reg_class_size
[(int) recog_op_alt
[i
][alt
].cl
] != 1)
531 error_for_asm (insn
, "output constraint %d must specify a single register", i
);
538 for (j
= 0; j
< n_clobbers
; j
++)
539 if (REGNO (recog_data
.operand
[i
]) == REGNO (clobber_reg
[j
]))
541 error_for_asm (insn
, "output constraint %d cannot be specified together with \"%s\" clobber",
542 i
, reg_names
[REGNO (clobber_reg
[j
])]);
547 reg_used_as_output
[REGNO (recog_data
.operand
[i
])] = 1;
552 /* Search for first non-popped reg. */
553 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
554 if (! reg_used_as_output
[i
])
557 /* If there are any other popped regs, that's an error. */
558 for (; i
< LAST_STACK_REG
+ 1; i
++)
559 if (reg_used_as_output
[i
])
562 if (i
!= LAST_STACK_REG
+ 1)
564 error_for_asm (insn
, "output regs must be grouped at top of stack");
568 /* Enforce rule #2: All implicitly popped input regs must be closer
569 to the top of the reg-stack than any input that is not implicitly
572 memset (implicitly_dies
, 0, sizeof (implicitly_dies
));
573 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
574 if (STACK_REG_P (recog_data
.operand
[i
]))
576 /* An input reg is implicitly popped if it is tied to an
577 output, or if there is a CLOBBER for it. */
580 for (j
= 0; j
< n_clobbers
; j
++)
581 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
584 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
585 implicitly_dies
[REGNO (recog_data
.operand
[i
])] = 1;
588 /* Search for first non-popped reg. */
589 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
590 if (! implicitly_dies
[i
])
593 /* If there are any other popped regs, that's an error. */
594 for (; i
< LAST_STACK_REG
+ 1; i
++)
595 if (implicitly_dies
[i
])
598 if (i
!= LAST_STACK_REG
+ 1)
601 "implicitly popped regs must be grouped at top of stack");
605 /* Enforce rule #3: If any input operand uses the "f" constraint, all
606 output constraints must use the "&" earlyclobber.
608 ??? Detect this more deterministically by having constrain_asm_operands
609 record any earlyclobber. */
611 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
612 if (recog_op_alt
[i
][alt
].matches
== -1)
616 for (j
= 0; j
< n_outputs
; j
++)
617 if (operands_match_p (recog_data
.operand
[j
], recog_data
.operand
[i
]))
620 "output operand %d must use %<&%> constraint", j
);
627 /* Avoid further trouble with this insn. */
628 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
629 any_malformed_asm
= true;
636 /* Calculate the number of inputs and outputs in BODY, an
637 asm_operands. N_OPERANDS is the total number of operands, and
638 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
642 get_asm_operands_in_out (rtx body
, int *pout
, int *pin
)
644 rtx asmop
= extract_asm_operands (body
);
646 *pin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
647 *pout
= (recog_data
.n_operands
648 - ASM_OPERANDS_INPUT_LENGTH (asmop
)
649 - ASM_OPERANDS_LABEL_LENGTH (asmop
));
652 /* If current function returns its result in an fp stack register,
653 return the REG. Otherwise, return 0. */
656 stack_result (tree decl
)
660 /* If the value is supposed to be returned in memory, then clearly
661 it is not returned in a stack register. */
662 if (aggregate_value_p (DECL_RESULT (decl
), decl
))
665 result
= DECL_RTL_IF_SET (DECL_RESULT (decl
));
667 result
= targetm
.calls
.function_value (TREE_TYPE (DECL_RESULT (decl
)),
670 return result
!= 0 && STACK_REG_P (result
) ? result
: 0;
675 * This section deals with stack register substitution, and forms the second
679 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
680 the desired hard REGNO. */
683 replace_reg (rtx
*reg
, int regno
)
685 gcc_assert (IN_RANGE (regno
, FIRST_STACK_REG
, LAST_STACK_REG
));
686 gcc_assert (STACK_REG_P (*reg
));
688 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg
))
689 || GET_MODE_CLASS (GET_MODE (*reg
)) == MODE_COMPLEX_FLOAT
);
691 *reg
= FP_MODE_REG (regno
, GET_MODE (*reg
));
694 /* Remove a note of type NOTE, which must be found, for register
695 number REGNO from INSN. Remove only one such note. */
698 remove_regno_note (rtx insn
, enum reg_note note
, unsigned int regno
)
700 rtx
*note_link
, this_rtx
;
702 note_link
= ®_NOTES (insn
);
703 for (this_rtx
= *note_link
; this_rtx
; this_rtx
= XEXP (this_rtx
, 1))
704 if (REG_NOTE_KIND (this_rtx
) == note
705 && REG_P (XEXP (this_rtx
, 0)) && REGNO (XEXP (this_rtx
, 0)) == regno
)
707 *note_link
= XEXP (this_rtx
, 1);
711 note_link
= &XEXP (this_rtx
, 1);
716 /* Find the hard register number of virtual register REG in REGSTACK.
717 The hard register number is relative to the top of the stack. -1 is
718 returned if the register is not found. */
721 get_hard_regnum (stack_ptr regstack
, rtx reg
)
725 gcc_assert (STACK_REG_P (reg
));
727 for (i
= regstack
->top
; i
>= 0; i
--)
728 if (regstack
->reg
[i
] == REGNO (reg
))
731 return i
>= 0 ? (FIRST_STACK_REG
+ regstack
->top
- i
) : -1;
734 /* Emit an insn to pop virtual register REG before or after INSN.
735 REGSTACK is the stack state after INSN and is updated to reflect this
736 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
737 is represented as a SET whose destination is the register to be popped
738 and source is the top of stack. A death note for the top of stack
739 cases the movdf pattern to pop. */
742 emit_pop_insn (rtx insn
, stack_ptr regstack
, rtx reg
, enum emit_where where
)
744 rtx pop_insn
, pop_rtx
;
747 /* For complex types take care to pop both halves. These may survive in
748 CLOBBER and USE expressions. */
749 if (COMPLEX_MODE_P (GET_MODE (reg
)))
751 rtx reg1
= FP_MODE_REG (REGNO (reg
), DFmode
);
752 rtx reg2
= FP_MODE_REG (REGNO (reg
) + 1, DFmode
);
755 if (get_hard_regnum (regstack
, reg1
) >= 0)
756 pop_insn
= emit_pop_insn (insn
, regstack
, reg1
, where
);
757 if (get_hard_regnum (regstack
, reg2
) >= 0)
758 pop_insn
= emit_pop_insn (insn
, regstack
, reg2
, where
);
759 gcc_assert (pop_insn
);
763 hard_regno
= get_hard_regnum (regstack
, reg
);
765 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
767 pop_rtx
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (hard_regno
, DFmode
),
768 FP_MODE_REG (FIRST_STACK_REG
, DFmode
));
770 if (where
== EMIT_AFTER
)
771 pop_insn
= emit_insn_after (pop_rtx
, insn
);
773 pop_insn
= emit_insn_before (pop_rtx
, insn
);
775 add_reg_note (pop_insn
, REG_DEAD
, FP_MODE_REG (FIRST_STACK_REG
, DFmode
));
777 regstack
->reg
[regstack
->top
- (hard_regno
- FIRST_STACK_REG
)]
778 = regstack
->reg
[regstack
->top
];
780 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (reg
));
785 /* Emit an insn before or after INSN to swap virtual register REG with
786 the top of stack. REGSTACK is the stack state before the swap, and
787 is updated to reflect the swap. A swap insn is represented as a
788 PARALLEL of two patterns: each pattern moves one reg to the other.
790 If REG is already at the top of the stack, no insn is emitted. */
793 emit_swap_insn (rtx insn
, stack_ptr regstack
, rtx reg
)
797 int tmp
, other_reg
; /* swap regno temps */
798 rtx i1
; /* the stack-reg insn prior to INSN */
799 rtx i1set
= NULL_RTX
; /* the SET rtx within I1 */
801 hard_regno
= get_hard_regnum (regstack
, reg
);
803 if (hard_regno
== FIRST_STACK_REG
)
805 if (hard_regno
== -1)
807 /* Something failed if the register wasn't on the stack. If we had
808 malformed asms, we zapped the instruction itself, but that didn't
809 produce the same pattern of register sets as before. To prevent
810 further failure, adjust REGSTACK to include REG at TOP. */
811 gcc_assert (any_malformed_asm
);
812 regstack
->reg
[++regstack
->top
] = REGNO (reg
);
815 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
817 other_reg
= regstack
->top
- (hard_regno
- FIRST_STACK_REG
);
819 tmp
= regstack
->reg
[other_reg
];
820 regstack
->reg
[other_reg
] = regstack
->reg
[regstack
->top
];
821 regstack
->reg
[regstack
->top
] = tmp
;
823 /* Find the previous insn involving stack regs, but don't pass a
826 if (current_block
&& insn
!= BB_HEAD (current_block
))
828 rtx tmp
= PREV_INSN (insn
);
829 rtx limit
= PREV_INSN (BB_HEAD (current_block
));
834 || NOTE_INSN_BASIC_BLOCK_P (tmp
)
835 || (NONJUMP_INSN_P (tmp
)
836 && stack_regs_mentioned (tmp
)))
841 tmp
= PREV_INSN (tmp
);
846 && (i1set
= single_set (i1
)) != NULL_RTX
)
848 rtx i1src
= *get_true_reg (&SET_SRC (i1set
));
849 rtx i1dest
= *get_true_reg (&SET_DEST (i1set
));
851 /* If the previous register stack push was from the reg we are to
852 swap with, omit the swap. */
854 if (REG_P (i1dest
) && REGNO (i1dest
) == FIRST_STACK_REG
856 && REGNO (i1src
) == (unsigned) hard_regno
- 1
857 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
860 /* If the previous insn wrote to the reg we are to swap with,
863 if (REG_P (i1dest
) && REGNO (i1dest
) == (unsigned) hard_regno
864 && REG_P (i1src
) && REGNO (i1src
) == FIRST_STACK_REG
865 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
869 /* Avoid emitting the swap if this is the first register stack insn
870 of the current_block. Instead update the current_block's stack_in
871 and let compensate edges take care of this for us. */
872 if (current_block
&& starting_stack_p
)
874 BLOCK_INFO (current_block
)->stack_in
= *regstack
;
875 starting_stack_p
= false;
879 swap_rtx
= gen_swapxf (FP_MODE_REG (hard_regno
, XFmode
),
880 FP_MODE_REG (FIRST_STACK_REG
, XFmode
));
883 emit_insn_after (swap_rtx
, i1
);
884 else if (current_block
)
885 emit_insn_before (swap_rtx
, BB_HEAD (current_block
));
887 emit_insn_before (swap_rtx
, insn
);
890 /* Emit an insns before INSN to swap virtual register SRC1 with
891 the top of stack and virtual register SRC2 with second stack
892 slot. REGSTACK is the stack state before the swaps, and
893 is updated to reflect the swaps. A swap insn is represented as a
894 PARALLEL of two patterns: each pattern moves one reg to the other.
896 If SRC1 and/or SRC2 are already at the right place, no swap insn
900 swap_to_top (rtx insn
, stack_ptr regstack
, rtx src1
, rtx src2
)
902 struct stack_def temp_stack
;
903 int regno
, j
, k
, temp
;
905 temp_stack
= *regstack
;
907 /* Place operand 1 at the top of stack. */
908 regno
= get_hard_regnum (&temp_stack
, src1
);
909 gcc_assert (regno
>= 0);
910 if (regno
!= FIRST_STACK_REG
)
912 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
915 temp
= temp_stack
.reg
[k
];
916 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
917 temp_stack
.reg
[j
] = temp
;
920 /* Place operand 2 next on the stack. */
921 regno
= get_hard_regnum (&temp_stack
, src2
);
922 gcc_assert (regno
>= 0);
923 if (regno
!= FIRST_STACK_REG
+ 1)
925 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
926 j
= temp_stack
.top
- 1;
928 temp
= temp_stack
.reg
[k
];
929 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
930 temp_stack
.reg
[j
] = temp
;
933 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
936 /* Handle a move to or from a stack register in PAT, which is in INSN.
937 REGSTACK is the current stack. Return whether a control flow insn
938 was deleted in the process. */
941 move_for_stack_reg (rtx insn
, stack_ptr regstack
, rtx pat
)
943 rtx
*psrc
= get_true_reg (&SET_SRC (pat
));
944 rtx
*pdest
= get_true_reg (&SET_DEST (pat
));
947 bool control_flow_insn_deleted
= false;
949 src
= *psrc
; dest
= *pdest
;
951 if (STACK_REG_P (src
) && STACK_REG_P (dest
))
953 /* Write from one stack reg to another. If SRC dies here, then
954 just change the register mapping and delete the insn. */
956 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
961 /* If this is a no-op move, there must not be a REG_DEAD note. */
962 gcc_assert (REGNO (src
) != REGNO (dest
));
964 for (i
= regstack
->top
; i
>= 0; i
--)
965 if (regstack
->reg
[i
] == REGNO (src
))
968 /* The destination must be dead, or life analysis is borked. */
969 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
971 /* If the source is not live, this is yet another case of
972 uninitialized variables. Load up a NaN instead. */
974 return move_nan_for_stack_reg (insn
, regstack
, dest
);
976 /* It is possible that the dest is unused after this insn.
977 If so, just pop the src. */
979 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
980 emit_pop_insn (insn
, regstack
, src
, EMIT_AFTER
);
983 regstack
->reg
[i
] = REGNO (dest
);
984 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
985 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
988 control_flow_insn_deleted
|= control_flow_insn_p (insn
);
990 return control_flow_insn_deleted
;
993 /* The source reg does not die. */
995 /* If this appears to be a no-op move, delete it, or else it
996 will confuse the machine description output patterns. But if
997 it is REG_UNUSED, we must pop the reg now, as per-insn processing
998 for REG_UNUSED will not work for deleted insns. */
1000 if (REGNO (src
) == REGNO (dest
))
1002 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1003 emit_pop_insn (insn
, regstack
, dest
, EMIT_AFTER
);
1005 control_flow_insn_deleted
|= control_flow_insn_p (insn
);
1007 return control_flow_insn_deleted
;
1010 /* The destination ought to be dead. */
1011 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
1013 replace_reg (psrc
, get_hard_regnum (regstack
, src
));
1015 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1016 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1017 replace_reg (pdest
, FIRST_STACK_REG
);
1019 else if (STACK_REG_P (src
))
1021 /* Save from a stack reg to MEM, or possibly integer reg. Since
1022 only top of stack may be saved, emit an exchange first if
1025 emit_swap_insn (insn
, regstack
, src
);
1027 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1030 replace_reg (&XEXP (note
, 0), FIRST_STACK_REG
);
1032 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1034 else if ((GET_MODE (src
) == XFmode
)
1035 && regstack
->top
< REG_STACK_SIZE
- 1)
1037 /* A 387 cannot write an XFmode value to a MEM without
1038 clobbering the source reg. The output code can handle
1039 this by reading back the value from the MEM.
1040 But it is more efficient to use a temp register if one is
1041 available. Push the source value here if the register
1042 stack is not full, and then write the value to memory via
1045 rtx top_stack_reg
= FP_MODE_REG (FIRST_STACK_REG
, GET_MODE (src
));
1047 push_rtx
= gen_movxf (top_stack_reg
, top_stack_reg
);
1048 emit_insn_before (push_rtx
, insn
);
1049 add_reg_note (insn
, REG_DEAD
, top_stack_reg
);
1052 replace_reg (psrc
, FIRST_STACK_REG
);
1056 rtx pat
= PATTERN (insn
);
1058 gcc_assert (STACK_REG_P (dest
));
1060 /* Load from MEM, or possibly integer REG or constant, into the
1061 stack regs. The actual target is always the top of the
1062 stack. The stack mapping is changed to reflect that DEST is
1063 now at top of stack. */
1065 /* The destination ought to be dead. However, there is a
1066 special case with i387 UNSPEC_TAN, where destination is live
1067 (an argument to fptan) but inherent load of 1.0 is modelled
1068 as a load from a constant. */
1069 if (GET_CODE (pat
) == PARALLEL
1070 && XVECLEN (pat
, 0) == 2
1071 && GET_CODE (XVECEXP (pat
, 0, 1)) == SET
1072 && GET_CODE (SET_SRC (XVECEXP (pat
, 0, 1))) == UNSPEC
1073 && XINT (SET_SRC (XVECEXP (pat
, 0, 1)), 1) == UNSPEC_TAN
)
1074 emit_swap_insn (insn
, regstack
, dest
);
1076 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
);
1078 gcc_assert (regstack
->top
< REG_STACK_SIZE
);
1080 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1081 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1082 replace_reg (pdest
, FIRST_STACK_REG
);
1085 return control_flow_insn_deleted
;
1088 /* A helper function which replaces INSN with a pattern that loads up
1089 a NaN into DEST, then invokes move_for_stack_reg. */
1092 move_nan_for_stack_reg (rtx insn
, stack_ptr regstack
, rtx dest
)
1096 dest
= FP_MODE_REG (REGNO (dest
), SFmode
);
1097 pat
= gen_rtx_SET (VOIDmode
, dest
, not_a_num
);
1098 PATTERN (insn
) = pat
;
1099 INSN_CODE (insn
) = -1;
1101 return move_for_stack_reg (insn
, regstack
, pat
);
1104 /* Swap the condition on a branch, if there is one. Return true if we
1105 found a condition to swap. False if the condition was not used as
1109 swap_rtx_condition_1 (rtx pat
)
1114 if (COMPARISON_P (pat
))
1116 PUT_CODE (pat
, swap_condition (GET_CODE (pat
)));
1121 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
1122 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
1128 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
1129 r
|= swap_rtx_condition_1 (XVECEXP (pat
, i
, j
));
1131 else if (fmt
[i
] == 'e')
1132 r
|= swap_rtx_condition_1 (XEXP (pat
, i
));
1140 swap_rtx_condition (rtx insn
)
1142 rtx pat
= PATTERN (insn
);
1144 /* We're looking for a single set to cc0 or an HImode temporary. */
1146 if (GET_CODE (pat
) == SET
1147 && REG_P (SET_DEST (pat
))
1148 && REGNO (SET_DEST (pat
)) == FLAGS_REG
)
1150 insn
= next_flags_user (insn
);
1151 if (insn
== NULL_RTX
)
1153 pat
= PATTERN (insn
);
1156 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1157 with the cc value right now. We may be able to search for one
1160 if (GET_CODE (pat
) == SET
1161 && GET_CODE (SET_SRC (pat
)) == UNSPEC
1162 && XINT (SET_SRC (pat
), 1) == UNSPEC_FNSTSW
)
1164 rtx dest
= SET_DEST (pat
);
1166 /* Search forward looking for the first use of this value.
1167 Stop at block boundaries. */
1168 while (insn
!= BB_END (current_block
))
1170 insn
= NEXT_INSN (insn
);
1171 if (INSN_P (insn
) && reg_mentioned_p (dest
, insn
))
1177 /* We haven't found it. */
1178 if (insn
== BB_END (current_block
))
1181 /* So we've found the insn using this value. If it is anything
1182 other than sahf or the value does not die (meaning we'd have
1183 to search further), then we must give up. */
1184 pat
= PATTERN (insn
);
1185 if (GET_CODE (pat
) != SET
1186 || GET_CODE (SET_SRC (pat
)) != UNSPEC
1187 || XINT (SET_SRC (pat
), 1) != UNSPEC_SAHF
1188 || ! dead_or_set_p (insn
, dest
))
1191 /* Now we are prepared to handle this as a normal cc0 setter. */
1192 insn
= next_flags_user (insn
);
1193 if (insn
== NULL_RTX
)
1195 pat
= PATTERN (insn
);
1198 if (swap_rtx_condition_1 (pat
))
1201 INSN_CODE (insn
) = -1;
1202 if (recog_memoized (insn
) == -1)
1204 /* In case the flags don't die here, recurse to try fix
1205 following user too. */
1206 else if (! dead_or_set_p (insn
, ix86_flags_rtx
))
1208 insn
= next_flags_user (insn
);
1209 if (!insn
|| !swap_rtx_condition (insn
))
1214 swap_rtx_condition_1 (pat
);
1222 /* Handle a comparison. Special care needs to be taken to avoid
1223 causing comparisons that a 387 cannot do correctly, such as EQ.
1225 Also, a pop insn may need to be emitted. The 387 does have an
1226 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1227 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1231 compare_for_stack_reg (rtx insn
, stack_ptr regstack
, rtx pat_src
)
1234 rtx src1_note
, src2_note
;
1236 src1
= get_true_reg (&XEXP (pat_src
, 0));
1237 src2
= get_true_reg (&XEXP (pat_src
, 1));
1239 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1240 registers that die in this insn - move those to stack top first. */
1241 if ((! STACK_REG_P (*src1
)
1242 || (STACK_REG_P (*src2
)
1243 && get_hard_regnum (regstack
, *src2
) == FIRST_STACK_REG
))
1244 && swap_rtx_condition (insn
))
1247 temp
= XEXP (pat_src
, 0);
1248 XEXP (pat_src
, 0) = XEXP (pat_src
, 1);
1249 XEXP (pat_src
, 1) = temp
;
1251 src1
= get_true_reg (&XEXP (pat_src
, 0));
1252 src2
= get_true_reg (&XEXP (pat_src
, 1));
1254 INSN_CODE (insn
) = -1;
1257 /* We will fix any death note later. */
1259 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1261 if (STACK_REG_P (*src2
))
1262 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1264 src2_note
= NULL_RTX
;
1266 emit_swap_insn (insn
, regstack
, *src1
);
1268 replace_reg (src1
, FIRST_STACK_REG
);
1270 if (STACK_REG_P (*src2
))
1271 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1275 pop_stack (regstack
, REGNO (XEXP (src1_note
, 0)));
1276 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1279 /* If the second operand dies, handle that. But if the operands are
1280 the same stack register, don't bother, because only one death is
1281 needed, and it was just handled. */
1284 && ! (STACK_REG_P (*src1
) && STACK_REG_P (*src2
)
1285 && REGNO (*src1
) == REGNO (*src2
)))
1287 /* As a special case, two regs may die in this insn if src2 is
1288 next to top of stack and the top of stack also dies. Since
1289 we have already popped src1, "next to top of stack" is really
1290 at top (FIRST_STACK_REG) now. */
1292 if (get_hard_regnum (regstack
, XEXP (src2_note
, 0)) == FIRST_STACK_REG
1295 pop_stack (regstack
, REGNO (XEXP (src2_note
, 0)));
1296 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1300 /* The 386 can only represent death of the first operand in
1301 the case handled above. In all other cases, emit a separate
1302 pop and remove the death note from here. */
1304 /* link_cc0_insns (insn); */
1306 remove_regno_note (insn
, REG_DEAD
, REGNO (XEXP (src2_note
, 0)));
1308 emit_pop_insn (insn
, regstack
, XEXP (src2_note
, 0),
1314 /* Substitute new registers in LOC, which is part of a debug insn.
1315 REGSTACK is the current register layout. */
1318 subst_stack_regs_in_debug_insn (rtx
*loc
, void *data
)
1320 stack_ptr regstack
= (stack_ptr
)data
;
1323 if (!STACK_REG_P (*loc
))
1326 hard_regno
= get_hard_regnum (regstack
, *loc
);
1328 /* If we can't find an active register, reset this debug insn. */
1329 if (hard_regno
== -1)
1332 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
1334 replace_reg (loc
, hard_regno
);
1339 /* Substitute hardware stack regs in debug insn INSN, using stack
1340 layout REGSTACK. If we can't find a hardware stack reg for any of
1341 the REGs in it, reset the debug insn. */
1344 subst_all_stack_regs_in_debug_insn (rtx insn
, struct stack_def
*regstack
)
1346 int ret
= for_each_rtx (&INSN_VAR_LOCATION_LOC (insn
),
1347 subst_stack_regs_in_debug_insn
,
1351 INSN_VAR_LOCATION_LOC (insn
) = gen_rtx_UNKNOWN_VAR_LOC ();
1353 gcc_checking_assert (ret
== 0);
1356 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1357 is the current register layout. Return whether a control flow insn
1358 was deleted in the process. */
1361 subst_stack_regs_pat (rtx insn
, stack_ptr regstack
, rtx pat
)
1364 bool control_flow_insn_deleted
= false;
1366 switch (GET_CODE (pat
))
1369 /* Deaths in USE insns can happen in non optimizing compilation.
1370 Handle them by popping the dying register. */
1371 src
= get_true_reg (&XEXP (pat
, 0));
1372 if (STACK_REG_P (*src
)
1373 && find_regno_note (insn
, REG_DEAD
, REGNO (*src
)))
1375 /* USEs are ignored for liveness information so USEs of dead
1376 register might happen. */
1377 if (TEST_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src
)))
1378 emit_pop_insn (insn
, regstack
, *src
, EMIT_AFTER
);
1379 return control_flow_insn_deleted
;
1381 /* Uninitialized USE might happen for functions returning uninitialized
1382 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1383 so it is safe to ignore the use here. This is consistent with behavior
1384 of dataflow analyzer that ignores USE too. (This also imply that
1385 forcibly initializing the register to NaN here would lead to ICE later,
1386 since the REG_DEAD notes are not issued.) */
1396 dest
= get_true_reg (&XEXP (pat
, 0));
1397 if (STACK_REG_P (*dest
))
1399 note
= find_reg_note (insn
, REG_DEAD
, *dest
);
1401 if (pat
!= PATTERN (insn
))
1403 /* The fix_truncdi_1 pattern wants to be able to
1404 allocate its own scratch register. It does this by
1405 clobbering an fp reg so that it is assured of an
1406 empty reg-stack register. If the register is live,
1407 kill it now. Remove the DEAD/UNUSED note so we
1408 don't try to kill it later too.
1410 In reality the UNUSED note can be absent in some
1411 complicated cases when the register is reused for
1412 partially set variable. */
1415 emit_pop_insn (insn
, regstack
, *dest
, EMIT_BEFORE
);
1417 note
= find_reg_note (insn
, REG_UNUSED
, *dest
);
1419 remove_note (insn
, note
);
1420 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1424 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1425 indicates an uninitialized value. Because reload removed
1426 all other clobbers, this must be due to a function
1427 returning without a value. Load up a NaN. */
1432 if (COMPLEX_MODE_P (GET_MODE (t
)))
1434 rtx u
= FP_MODE_REG (REGNO (t
) + 1, SFmode
);
1435 if (get_hard_regnum (regstack
, u
) == -1)
1437 rtx pat2
= gen_rtx_CLOBBER (VOIDmode
, u
);
1438 rtx insn2
= emit_insn_before (pat2
, insn
);
1439 control_flow_insn_deleted
1440 |= move_nan_for_stack_reg (insn2
, regstack
, u
);
1443 if (get_hard_regnum (regstack
, t
) == -1)
1444 control_flow_insn_deleted
1445 |= move_nan_for_stack_reg (insn
, regstack
, t
);
1454 rtx
*src1
= (rtx
*) 0, *src2
;
1455 rtx src1_note
, src2_note
;
1458 dest
= get_true_reg (&SET_DEST (pat
));
1459 src
= get_true_reg (&SET_SRC (pat
));
1460 pat_src
= SET_SRC (pat
);
1462 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1463 if (STACK_REG_P (*src
)
1464 || (STACK_REG_P (*dest
)
1465 && (REG_P (*src
) || MEM_P (*src
)
1466 || CONST_DOUBLE_P (*src
))))
1468 control_flow_insn_deleted
|= move_for_stack_reg (insn
, regstack
, pat
);
1472 switch (GET_CODE (pat_src
))
1475 compare_for_stack_reg (insn
, regstack
, pat_src
);
1481 for (count
= hard_regno_nregs
[REGNO (*dest
)][GET_MODE (*dest
)];
1484 regstack
->reg
[++regstack
->top
] = REGNO (*dest
) + count
;
1485 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
) + count
);
1488 replace_reg (dest
, FIRST_STACK_REG
);
1492 /* This is a `tstM2' case. */
1493 gcc_assert (*dest
== cc0_rtx
);
1498 case FLOAT_TRUNCATE
:
1502 /* These insns only operate on the top of the stack. DEST might
1503 be cc0_rtx if we're processing a tstM pattern. Also, it's
1504 possible that the tstM case results in a REG_DEAD note on the
1508 src1
= get_true_reg (&XEXP (pat_src
, 0));
1510 emit_swap_insn (insn
, regstack
, *src1
);
1512 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1514 if (STACK_REG_P (*dest
))
1515 replace_reg (dest
, FIRST_STACK_REG
);
1519 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1521 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1524 replace_reg (src1
, FIRST_STACK_REG
);
1529 /* On i386, reversed forms of subM3 and divM3 exist for
1530 MODE_FLOAT, so the same code that works for addM3 and mulM3
1534 /* These insns can accept the top of stack as a destination
1535 from a stack reg or mem, or can use the top of stack as a
1536 source and some other stack register (possibly top of stack)
1537 as a destination. */
1539 src1
= get_true_reg (&XEXP (pat_src
, 0));
1540 src2
= get_true_reg (&XEXP (pat_src
, 1));
1542 /* We will fix any death note later. */
1544 if (STACK_REG_P (*src1
))
1545 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1547 src1_note
= NULL_RTX
;
1548 if (STACK_REG_P (*src2
))
1549 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1551 src2_note
= NULL_RTX
;
1553 /* If either operand is not a stack register, then the dest
1554 must be top of stack. */
1556 if (! STACK_REG_P (*src1
) || ! STACK_REG_P (*src2
))
1557 emit_swap_insn (insn
, regstack
, *dest
);
1560 /* Both operands are REG. If neither operand is already
1561 at the top of stack, choose to make the one that is the
1562 dest the new top of stack. */
1564 int src1_hard_regnum
, src2_hard_regnum
;
1566 src1_hard_regnum
= get_hard_regnum (regstack
, *src1
);
1567 src2_hard_regnum
= get_hard_regnum (regstack
, *src2
);
1569 /* If the source is not live, this is yet another case of
1570 uninitialized variables. Load up a NaN instead. */
1571 if (src1_hard_regnum
== -1)
1573 rtx pat2
= gen_rtx_CLOBBER (VOIDmode
, *src1
);
1574 rtx insn2
= emit_insn_before (pat2
, insn
);
1575 control_flow_insn_deleted
1576 |= move_nan_for_stack_reg (insn2
, regstack
, *src1
);
1578 if (src2_hard_regnum
== -1)
1580 rtx pat2
= gen_rtx_CLOBBER (VOIDmode
, *src2
);
1581 rtx insn2
= emit_insn_before (pat2
, insn
);
1582 control_flow_insn_deleted
1583 |= move_nan_for_stack_reg (insn2
, regstack
, *src2
);
1586 if (src1_hard_regnum
!= FIRST_STACK_REG
1587 && src2_hard_regnum
!= FIRST_STACK_REG
)
1588 emit_swap_insn (insn
, regstack
, *dest
);
1591 if (STACK_REG_P (*src1
))
1592 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1593 if (STACK_REG_P (*src2
))
1594 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1598 rtx src1_reg
= XEXP (src1_note
, 0);
1600 /* If the register that dies is at the top of stack, then
1601 the destination is somewhere else - merely substitute it.
1602 But if the reg that dies is not at top of stack, then
1603 move the top of stack to the dead reg, as though we had
1604 done the insn and then a store-with-pop. */
1606 if (REGNO (src1_reg
) == regstack
->reg
[regstack
->top
])
1608 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1609 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1613 int regno
= get_hard_regnum (regstack
, src1_reg
);
1615 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1616 replace_reg (dest
, regno
);
1618 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1619 = regstack
->reg
[regstack
->top
];
1622 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1623 REGNO (XEXP (src1_note
, 0)));
1624 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1629 rtx src2_reg
= XEXP (src2_note
, 0);
1630 if (REGNO (src2_reg
) == regstack
->reg
[regstack
->top
])
1632 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1633 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1637 int regno
= get_hard_regnum (regstack
, src2_reg
);
1639 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1640 replace_reg (dest
, regno
);
1642 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1643 = regstack
->reg
[regstack
->top
];
1646 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1647 REGNO (XEXP (src2_note
, 0)));
1648 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
);
1653 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1654 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1657 /* Keep operand 1 matching with destination. */
1658 if (COMMUTATIVE_ARITH_P (pat_src
)
1659 && REG_P (*src1
) && REG_P (*src2
)
1660 && REGNO (*src1
) != REGNO (*dest
))
1662 int tmp
= REGNO (*src1
);
1663 replace_reg (src1
, REGNO (*src2
));
1664 replace_reg (src2
, tmp
);
1669 switch (XINT (pat_src
, 1))
1674 case UNSPEC_FIST_FLOOR
:
1675 case UNSPEC_FIST_CEIL
:
1677 /* These insns only operate on the top of the stack. */
1679 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1680 emit_swap_insn (insn
, regstack
, *src1
);
1682 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1684 if (STACK_REG_P (*dest
))
1685 replace_reg (dest
, FIRST_STACK_REG
);
1689 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1691 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1694 replace_reg (src1
, FIRST_STACK_REG
);
1699 /* This insn only operate on the top of the stack. */
1701 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1702 emit_swap_insn (insn
, regstack
, *src1
);
1704 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1706 replace_reg (src1
, FIRST_STACK_REG
);
1710 remove_regno_note (insn
, REG_DEAD
,
1711 REGNO (XEXP (src1_note
, 0)));
1712 emit_pop_insn (insn
, regstack
, XEXP (src1_note
, 0),
1720 case UNSPEC_FRNDINT
:
1723 case UNSPEC_FRNDINT_FLOOR
:
1724 case UNSPEC_FRNDINT_CEIL
:
1725 case UNSPEC_FRNDINT_TRUNC
:
1726 case UNSPEC_FRNDINT_MASK_PM
:
1728 /* Above insns operate on the top of the stack. */
1730 case UNSPEC_SINCOS_COS
:
1731 case UNSPEC_XTRACT_FRACT
:
1733 /* Above insns operate on the top two stack slots,
1734 first part of one input, double output insn. */
1736 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1738 emit_swap_insn (insn
, regstack
, *src1
);
1740 /* Input should never die, it is replaced with output. */
1741 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1742 gcc_assert (!src1_note
);
1744 if (STACK_REG_P (*dest
))
1745 replace_reg (dest
, FIRST_STACK_REG
);
1747 replace_reg (src1
, FIRST_STACK_REG
);
1750 case UNSPEC_SINCOS_SIN
:
1751 case UNSPEC_XTRACT_EXP
:
1753 /* These insns operate on the top two stack slots,
1754 second part of one input, double output insn. */
1761 /* For UNSPEC_TAN, regstack->top is already increased
1762 by inherent load of constant 1.0. */
1764 /* Output value is generated in the second stack slot.
1765 Move current value from second slot to the top. */
1766 regstack
->reg
[regstack
->top
]
1767 = regstack
->reg
[regstack
->top
- 1];
1769 gcc_assert (STACK_REG_P (*dest
));
1771 regstack
->reg
[regstack
->top
- 1] = REGNO (*dest
);
1772 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1773 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1775 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1777 replace_reg (src1
, FIRST_STACK_REG
);
1782 case UNSPEC_FYL2XP1
:
1783 /* These insns operate on the top two stack slots. */
1785 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1786 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1788 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1789 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1791 swap_to_top (insn
, regstack
, *src1
, *src2
);
1793 replace_reg (src1
, FIRST_STACK_REG
);
1794 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1797 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1799 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1801 /* Pop both input operands from the stack. */
1802 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1803 regstack
->reg
[regstack
->top
]);
1804 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1805 regstack
->reg
[regstack
->top
- 1]);
1808 /* Push the result back onto the stack. */
1809 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1810 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1811 replace_reg (dest
, FIRST_STACK_REG
);
1814 case UNSPEC_FSCALE_FRACT
:
1815 case UNSPEC_FPREM_F
:
1816 case UNSPEC_FPREM1_F
:
1817 /* These insns operate on the top two stack slots,
1818 first part of double input, double output insn. */
1820 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1821 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1823 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1824 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1826 /* Inputs should never die, they are
1827 replaced with outputs. */
1828 gcc_assert (!src1_note
);
1829 gcc_assert (!src2_note
);
1831 swap_to_top (insn
, regstack
, *src1
, *src2
);
1833 /* Push the result back onto stack. Empty stack slot
1834 will be filled in second part of insn. */
1835 if (STACK_REG_P (*dest
))
1837 regstack
->reg
[regstack
->top
] = REGNO (*dest
);
1838 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1839 replace_reg (dest
, FIRST_STACK_REG
);
1842 replace_reg (src1
, FIRST_STACK_REG
);
1843 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1846 case UNSPEC_FSCALE_EXP
:
1847 case UNSPEC_FPREM_U
:
1848 case UNSPEC_FPREM1_U
:
1849 /* These insns operate on the top two stack slots,
1850 second part of double input, double output insn. */
1852 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1853 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1855 /* Push the result back onto stack. Fill empty slot from
1856 first part of insn and fix top of stack pointer. */
1857 if (STACK_REG_P (*dest
))
1859 regstack
->reg
[regstack
->top
- 1] = REGNO (*dest
);
1860 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1861 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1864 replace_reg (src1
, FIRST_STACK_REG
);
1865 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1868 case UNSPEC_C2_FLAG
:
1869 /* This insn operates on the top two stack slots,
1870 third part of C2 setting double input insn. */
1872 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1873 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1875 replace_reg (src1
, FIRST_STACK_REG
);
1876 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1880 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1881 The combination matches the PPRO fcomi instruction. */
1883 pat_src
= XVECEXP (pat_src
, 0, 0);
1884 gcc_assert (GET_CODE (pat_src
) == UNSPEC
);
1885 gcc_assert (XINT (pat_src
, 1) == UNSPEC_FNSTSW
);
1889 /* Combined fcomp+fnstsw generated for doing well with
1890 CSE. When optimizing this would have been broken
1893 pat_src
= XVECEXP (pat_src
, 0, 0);
1894 gcc_assert (GET_CODE (pat_src
) == COMPARE
);
1896 compare_for_stack_reg (insn
, regstack
, pat_src
);
1905 /* This insn requires the top of stack to be the destination. */
1907 src1
= get_true_reg (&XEXP (pat_src
, 1));
1908 src2
= get_true_reg (&XEXP (pat_src
, 2));
1910 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1911 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1913 /* If the comparison operator is an FP comparison operator,
1914 it is handled correctly by compare_for_stack_reg () who
1915 will move the destination to the top of stack. But if the
1916 comparison operator is not an FP comparison operator, we
1917 have to handle it here. */
1918 if (get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
1919 && REGNO (*dest
) != regstack
->reg
[regstack
->top
])
1921 /* In case one of operands is the top of stack and the operands
1922 dies, it is safe to make it the destination operand by
1923 reversing the direction of cmove and avoid fxch. */
1924 if ((REGNO (*src1
) == regstack
->reg
[regstack
->top
]
1926 || (REGNO (*src2
) == regstack
->reg
[regstack
->top
]
1929 int idx1
= (get_hard_regnum (regstack
, *src1
)
1931 int idx2
= (get_hard_regnum (regstack
, *src2
)
1934 /* Make reg-stack believe that the operands are already
1935 swapped on the stack */
1936 regstack
->reg
[regstack
->top
- idx1
] = REGNO (*src2
);
1937 regstack
->reg
[regstack
->top
- idx2
] = REGNO (*src1
);
1939 /* Reverse condition to compensate the operand swap.
1940 i386 do have comparison always reversible. */
1941 PUT_CODE (XEXP (pat_src
, 0),
1942 reversed_comparison_code (XEXP (pat_src
, 0), insn
));
1945 emit_swap_insn (insn
, regstack
, *dest
);
1953 src_note
[1] = src1_note
;
1954 src_note
[2] = src2_note
;
1956 if (STACK_REG_P (*src1
))
1957 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1958 if (STACK_REG_P (*src2
))
1959 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1961 for (i
= 1; i
<= 2; i
++)
1964 int regno
= REGNO (XEXP (src_note
[i
], 0));
1966 /* If the register that dies is not at the top of
1967 stack, then move the top of stack to the dead reg.
1968 Top of stack should never die, as it is the
1970 gcc_assert (regno
!= regstack
->reg
[regstack
->top
]);
1971 remove_regno_note (insn
, REG_DEAD
, regno
);
1972 emit_pop_insn (insn
, regstack
, XEXP (src_note
[i
], 0),
1977 /* Make dest the top of stack. Add dest to regstack if
1979 if (get_hard_regnum (regstack
, *dest
) < FIRST_STACK_REG
)
1980 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1981 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1982 replace_reg (dest
, FIRST_STACK_REG
);
1995 return control_flow_insn_deleted
;
1998 /* Substitute hard regnums for any stack regs in INSN, which has
1999 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2000 before the insn, and is updated with changes made here.
2002 There are several requirements and assumptions about the use of
2003 stack-like regs in asm statements. These rules are enforced by
2004 record_asm_stack_regs; see comments there for details. Any
2005 asm_operands left in the RTL at this point may be assume to meet the
2006 requirements, since record_asm_stack_regs removes any problem asm. */
2009 subst_asm_stack_regs (rtx insn
, stack_ptr regstack
)
2011 rtx body
= PATTERN (insn
);
2014 rtx
*note_reg
; /* Array of note contents */
2015 rtx
**note_loc
; /* Address of REG field of each note */
2016 enum reg_note
*note_kind
; /* The type of each note */
2018 rtx
*clobber_reg
= 0;
2019 rtx
**clobber_loc
= 0;
2021 struct stack_def temp_stack
;
2026 int n_inputs
, n_outputs
;
2028 if (! check_asm_stack_operands (insn
))
2031 /* Find out what the constraints required. If no constraint
2032 alternative matches, that is a compiler bug: we should have caught
2033 such an insn in check_asm_stack_operands. */
2034 extract_insn (insn
);
2035 constrain_operands (1);
2036 alt
= which_alternative
;
2038 preprocess_constraints ();
2040 get_asm_operands_in_out (body
, &n_outputs
, &n_inputs
);
2042 gcc_assert (alt
>= 0);
2044 /* Strip SUBREGs here to make the following code simpler. */
2045 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2046 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
2047 && REG_P (SUBREG_REG (recog_data
.operand
[i
])))
2049 recog_data
.operand_loc
[i
] = & SUBREG_REG (recog_data
.operand
[i
]);
2050 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
2053 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2055 for (i
= 0, note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2058 note_reg
= XALLOCAVEC (rtx
, i
);
2059 note_loc
= XALLOCAVEC (rtx
*, i
);
2060 note_kind
= XALLOCAVEC (enum reg_note
, i
);
2063 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2065 rtx reg
= XEXP (note
, 0);
2066 rtx
*loc
= & XEXP (note
, 0);
2068 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
2070 loc
= & SUBREG_REG (reg
);
2071 reg
= SUBREG_REG (reg
);
2074 if (STACK_REG_P (reg
)
2075 && (REG_NOTE_KIND (note
) == REG_DEAD
2076 || REG_NOTE_KIND (note
) == REG_UNUSED
))
2078 note_reg
[n_notes
] = reg
;
2079 note_loc
[n_notes
] = loc
;
2080 note_kind
[n_notes
] = REG_NOTE_KIND (note
);
2085 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2089 if (GET_CODE (body
) == PARALLEL
)
2091 clobber_reg
= XALLOCAVEC (rtx
, XVECLEN (body
, 0));
2092 clobber_loc
= XALLOCAVEC (rtx
*, XVECLEN (body
, 0));
2094 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2095 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
2097 rtx clobber
= XVECEXP (body
, 0, i
);
2098 rtx reg
= XEXP (clobber
, 0);
2099 rtx
*loc
= & XEXP (clobber
, 0);
2101 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
2103 loc
= & SUBREG_REG (reg
);
2104 reg
= SUBREG_REG (reg
);
2107 if (STACK_REG_P (reg
))
2109 clobber_reg
[n_clobbers
] = reg
;
2110 clobber_loc
[n_clobbers
] = loc
;
2116 temp_stack
= *regstack
;
2118 /* Put the input regs into the desired place in TEMP_STACK. */
2120 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2121 if (STACK_REG_P (recog_data
.operand
[i
])
2122 && reg_class_subset_p (recog_op_alt
[i
][alt
].cl
,
2124 && recog_op_alt
[i
][alt
].cl
!= FLOAT_REGS
)
2126 /* If an operand needs to be in a particular reg in
2127 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2128 these constraints are for single register classes, and
2129 reload guaranteed that operand[i] is already in that class,
2130 we can just use REGNO (recog_data.operand[i]) to know which
2131 actual reg this operand needs to be in. */
2133 int regno
= get_hard_regnum (&temp_stack
, recog_data
.operand
[i
]);
2135 gcc_assert (regno
>= 0);
2137 if ((unsigned int) regno
!= REGNO (recog_data
.operand
[i
]))
2139 /* recog_data.operand[i] is not in the right place. Find
2140 it and swap it with whatever is already in I's place.
2141 K is where recog_data.operand[i] is now. J is where it
2145 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
2147 - (REGNO (recog_data
.operand
[i
]) - FIRST_STACK_REG
));
2149 temp
= temp_stack
.reg
[k
];
2150 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
2151 temp_stack
.reg
[j
] = temp
;
2155 /* Emit insns before INSN to make sure the reg-stack is in the right
2158 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
2160 /* Make the needed input register substitutions. Do death notes and
2161 clobbers too, because these are for inputs, not outputs. */
2163 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2164 if (STACK_REG_P (recog_data
.operand
[i
]))
2166 int regnum
= get_hard_regnum (regstack
, recog_data
.operand
[i
]);
2168 gcc_assert (regnum
>= 0);
2170 replace_reg (recog_data
.operand_loc
[i
], regnum
);
2173 for (i
= 0; i
< n_notes
; i
++)
2174 if (note_kind
[i
] == REG_DEAD
)
2176 int regnum
= get_hard_regnum (regstack
, note_reg
[i
]);
2178 gcc_assert (regnum
>= 0);
2180 replace_reg (note_loc
[i
], regnum
);
2183 for (i
= 0; i
< n_clobbers
; i
++)
2185 /* It's OK for a CLOBBER to reference a reg that is not live.
2186 Don't try to replace it in that case. */
2187 int regnum
= get_hard_regnum (regstack
, clobber_reg
[i
]);
2191 /* Sigh - clobbers always have QImode. But replace_reg knows
2192 that these regs can't be MODE_INT and will assert. Just put
2193 the right reg there without calling replace_reg. */
2195 *clobber_loc
[i
] = FP_MODE_REG (regnum
, DFmode
);
2199 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2201 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2202 if (STACK_REG_P (recog_data
.operand
[i
]))
2204 /* An input reg is implicitly popped if it is tied to an
2205 output, or if there is a CLOBBER for it. */
2208 for (j
= 0; j
< n_clobbers
; j
++)
2209 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
2212 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
2214 /* recog_data.operand[i] might not be at the top of stack.
2215 But that's OK, because all we need to do is pop the
2216 right number of regs off of the top of the reg-stack.
2217 record_asm_stack_regs guaranteed that all implicitly
2218 popped regs were grouped at the top of the reg-stack. */
2220 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2221 regstack
->reg
[regstack
->top
]);
2226 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2227 Note that there isn't any need to substitute register numbers.
2228 ??? Explain why this is true. */
2230 for (i
= LAST_STACK_REG
; i
>= FIRST_STACK_REG
; i
--)
2232 /* See if there is an output for this hard reg. */
2235 for (j
= 0; j
< n_outputs
; j
++)
2236 if (STACK_REG_P (recog_data
.operand
[j
])
2237 && REGNO (recog_data
.operand
[j
]) == (unsigned) i
)
2239 regstack
->reg
[++regstack
->top
] = i
;
2240 SET_HARD_REG_BIT (regstack
->reg_set
, i
);
2245 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2246 input that the asm didn't implicitly pop. If the asm didn't
2247 implicitly pop an input reg, that reg will still be live.
2249 Note that we can't use find_regno_note here: the register numbers
2250 in the death notes have already been substituted. */
2252 for (i
= 0; i
< n_outputs
; i
++)
2253 if (STACK_REG_P (recog_data
.operand
[i
]))
2257 for (j
= 0; j
< n_notes
; j
++)
2258 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2259 && note_kind
[j
] == REG_UNUSED
)
2261 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2267 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2268 if (STACK_REG_P (recog_data
.operand
[i
]))
2272 for (j
= 0; j
< n_notes
; j
++)
2273 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2274 && note_kind
[j
] == REG_DEAD
2275 && TEST_HARD_REG_BIT (regstack
->reg_set
,
2276 REGNO (recog_data
.operand
[i
])))
2278 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2285 /* Substitute stack hard reg numbers for stack virtual registers in
2286 INSN. Non-stack register numbers are not changed. REGSTACK is the
2287 current stack content. Insns may be emitted as needed to arrange the
2288 stack for the 387 based on the contents of the insn. Return whether
2289 a control flow insn was deleted in the process. */
2292 subst_stack_regs (rtx insn
, stack_ptr regstack
)
2294 rtx
*note_link
, note
;
2295 bool control_flow_insn_deleted
= false;
2300 int top
= regstack
->top
;
2302 /* If there are any floating point parameters to be passed in
2303 registers for this call, make sure they are in the right
2308 straighten_stack (insn
, regstack
);
2310 /* Now mark the arguments as dead after the call. */
2312 while (regstack
->top
>= 0)
2314 CLEAR_HARD_REG_BIT (regstack
->reg_set
, FIRST_STACK_REG
+ regstack
->top
);
2320 /* Do the actual substitution if any stack regs are mentioned.
2321 Since we only record whether entire insn mentions stack regs, and
2322 subst_stack_regs_pat only works for patterns that contain stack regs,
2323 we must check each pattern in a parallel here. A call_value_pop could
2326 if (stack_regs_mentioned (insn
))
2328 int n_operands
= asm_noperands (PATTERN (insn
));
2329 if (n_operands
>= 0)
2331 /* This insn is an `asm' with operands. Decode the operands,
2332 decide how many are inputs, and do register substitution.
2333 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2335 subst_asm_stack_regs (insn
, regstack
);
2336 return control_flow_insn_deleted
;
2339 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2340 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
2342 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn
), 0, i
)))
2344 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == CLOBBER
)
2345 XVECEXP (PATTERN (insn
), 0, i
)
2346 = shallow_copy_rtx (XVECEXP (PATTERN (insn
), 0, i
));
2347 control_flow_insn_deleted
2348 |= subst_stack_regs_pat (insn
, regstack
,
2349 XVECEXP (PATTERN (insn
), 0, i
));
2353 control_flow_insn_deleted
2354 |= subst_stack_regs_pat (insn
, regstack
, PATTERN (insn
));
2357 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2358 REG_UNUSED will already have been dealt with, so just return. */
2360 if (NOTE_P (insn
) || INSN_DELETED_P (insn
))
2361 return control_flow_insn_deleted
;
2363 /* If this a noreturn call, we can't insert pop insns after it.
2364 Instead, reset the stack state to empty. */
2366 && find_reg_note (insn
, REG_NORETURN
, NULL
))
2369 CLEAR_HARD_REG_SET (regstack
->reg_set
);
2370 return control_flow_insn_deleted
;
2373 /* If there is a REG_UNUSED note on a stack register on this insn,
2374 the indicated reg must be popped. The REG_UNUSED note is removed,
2375 since the form of the newly emitted pop insn references the reg,
2376 making it no longer `unset'. */
2378 note_link
= ®_NOTES (insn
);
2379 for (note
= *note_link
; note
; note
= XEXP (note
, 1))
2380 if (REG_NOTE_KIND (note
) == REG_UNUSED
&& STACK_REG_P (XEXP (note
, 0)))
2382 *note_link
= XEXP (note
, 1);
2383 insn
= emit_pop_insn (insn
, regstack
, XEXP (note
, 0), EMIT_AFTER
);
2386 note_link
= &XEXP (note
, 1);
2388 return control_flow_insn_deleted
;
2391 /* Change the organization of the stack so that it fits a new basic
2392 block. Some registers might have to be popped, but there can never be
2393 a register live in the new block that is not now live.
2395 Insert any needed insns before or after INSN, as indicated by
2396 WHERE. OLD is the original stack layout, and NEW is the desired
2397 form. OLD is updated to reflect the code emitted, i.e., it will be
2398 the same as NEW upon return.
2400 This function will not preserve block_end[]. But that information
2401 is no longer needed once this has executed. */
2404 change_stack (rtx insn
, stack_ptr old
, stack_ptr new_stack
, enum emit_where where
)
2410 /* Stack adjustments for the first insn in a block update the
2411 current_block's stack_in instead of inserting insns directly.
2412 compensate_edges will add the necessary code later. */
2415 && where
== EMIT_BEFORE
)
2417 BLOCK_INFO (current_block
)->stack_in
= *new_stack
;
2418 starting_stack_p
= false;
2423 /* We will be inserting new insns "backwards". If we are to insert
2424 after INSN, find the next insn, and insert before it. */
2426 if (where
== EMIT_AFTER
)
2428 if (current_block
&& BB_END (current_block
) == insn
)
2430 insn
= NEXT_INSN (insn
);
2433 /* Initialize partially dead variables. */
2434 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
2435 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, i
)
2436 && !TEST_HARD_REG_BIT (old
->reg_set
, i
))
2438 old
->reg
[++old
->top
] = i
;
2439 SET_HARD_REG_BIT (old
->reg_set
, i
);
2440 emit_insn_before (gen_rtx_SET (VOIDmode
,
2441 FP_MODE_REG (i
, SFmode
), not_a_num
), insn
);
2444 /* Pop any registers that are not needed in the new block. */
2446 /* If the destination block's stack already has a specified layout
2447 and contains two or more registers, use a more intelligent algorithm
2448 to pop registers that minimizes the number number of fxchs below. */
2449 if (new_stack
->top
> 0)
2451 bool slots
[REG_STACK_SIZE
];
2452 int pops
[REG_STACK_SIZE
];
2453 int next
, dest
, topsrc
;
2455 /* First pass to determine the free slots. */
2456 for (reg
= 0; reg
<= new_stack
->top
; reg
++)
2457 slots
[reg
] = TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[reg
]);
2459 /* Second pass to allocate preferred slots. */
2461 for (reg
= old
->top
; reg
> new_stack
->top
; reg
--)
2462 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[reg
]))
2465 for (next
= 0; next
<= new_stack
->top
; next
++)
2466 if (!slots
[next
] && new_stack
->reg
[next
] == old
->reg
[reg
])
2468 /* If this is a preference for the new top of stack, record
2469 the fact by remembering it's old->reg in topsrc. */
2470 if (next
== new_stack
->top
)
2481 /* Intentionally, avoid placing the top of stack in it's correct
2482 location, if we still need to permute the stack below and we
2483 can usefully place it somewhere else. This is the case if any
2484 slot is still unallocated, in which case we should place the
2485 top of stack there. */
2487 for (reg
= 0; reg
< new_stack
->top
; reg
++)
2491 slots
[new_stack
->top
] = false;
2496 /* Third pass allocates remaining slots and emits pop insns. */
2497 next
= new_stack
->top
;
2498 for (reg
= old
->top
; reg
> new_stack
->top
; reg
--)
2503 /* Find next free slot. */
2508 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[dest
], DFmode
),
2514 /* The following loop attempts to maximize the number of times we
2515 pop the top of the stack, as this permits the use of the faster
2516 ffreep instruction on platforms that support it. */
2520 for (reg
= 0; reg
<= old
->top
; reg
++)
2521 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[reg
]))
2525 while (old
->top
>= live
)
2526 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[old
->top
]))
2528 while (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[next
]))
2530 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[next
], DFmode
),
2534 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[old
->top
], DFmode
),
2538 if (new_stack
->top
== -2)
2540 /* If the new block has never been processed, then it can inherit
2541 the old stack order. */
2543 new_stack
->top
= old
->top
;
2544 memcpy (new_stack
->reg
, old
->reg
, sizeof (new_stack
->reg
));
2548 /* This block has been entered before, and we must match the
2549 previously selected stack order. */
2551 /* By now, the only difference should be the order of the stack,
2552 not their depth or liveliness. */
2554 gcc_assert (hard_reg_set_equal_p (old
->reg_set
, new_stack
->reg_set
));
2555 gcc_assert (old
->top
== new_stack
->top
);
2557 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2558 swaps until the stack is correct.
2560 The worst case number of swaps emitted is N + 2, where N is the
2561 depth of the stack. In some cases, the reg at the top of
2562 stack may be correct, but swapped anyway in order to fix
2563 other regs. But since we never swap any other reg away from
2564 its correct slot, this algorithm will converge. */
2566 if (new_stack
->top
!= -1)
2569 /* Swap the reg at top of stack into the position it is
2570 supposed to be in, until the correct top of stack appears. */
2572 while (old
->reg
[old
->top
] != new_stack
->reg
[new_stack
->top
])
2574 for (reg
= new_stack
->top
; reg
>= 0; reg
--)
2575 if (new_stack
->reg
[reg
] == old
->reg
[old
->top
])
2578 gcc_assert (reg
!= -1);
2580 emit_swap_insn (insn
, old
,
2581 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2584 /* See if any regs remain incorrect. If so, bring an
2585 incorrect reg to the top of stack, and let the while loop
2588 for (reg
= new_stack
->top
; reg
>= 0; reg
--)
2589 if (new_stack
->reg
[reg
] != old
->reg
[reg
])
2591 emit_swap_insn (insn
, old
,
2592 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2597 /* At this point there must be no differences. */
2599 for (reg
= old
->top
; reg
>= 0; reg
--)
2600 gcc_assert (old
->reg
[reg
] == new_stack
->reg
[reg
]);
2604 BB_END (current_block
) = PREV_INSN (insn
);
2607 /* Print stack configuration. */
2610 print_stack (FILE *file
, stack_ptr s
)
2616 fprintf (file
, "uninitialized\n");
2617 else if (s
->top
== -1)
2618 fprintf (file
, "empty\n");
2623 for (i
= 0; i
<= s
->top
; ++i
)
2624 fprintf (file
, "%d ", s
->reg
[i
]);
2625 fputs ("]\n", file
);
2629 /* This function was doing life analysis. We now let the regular live
2630 code do it's job, so we only need to check some extra invariants
2631 that reg-stack expects. Primary among these being that all registers
2632 are initialized before use.
2634 The function returns true when code was emitted to CFG edges and
2635 commit_edge_insertions needs to be called. */
2638 convert_regs_entry (void)
2644 /* Load something into each stack register live at function entry.
2645 Such live registers can be caused by uninitialized variables or
2646 functions not returning values on all paths. In order to keep
2647 the push/pop code happy, and to not scrog the register stack, we
2648 must put something in these registers. Use a QNaN.
2650 Note that we are inserting converted code here. This code is
2651 never seen by the convert_regs pass. */
2653 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2655 basic_block block
= e
->dest
;
2656 block_info bi
= BLOCK_INFO (block
);
2659 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2660 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2664 bi
->stack_in
.reg
[++top
] = reg
;
2666 init
= gen_rtx_SET (VOIDmode
,
2667 FP_MODE_REG (FIRST_STACK_REG
, SFmode
),
2669 insert_insn_on_edge (init
, e
);
2673 bi
->stack_in
.top
= top
;
2679 /* Construct the desired stack for function exit. This will either
2680 be `empty', or the function return value at top-of-stack. */
2683 convert_regs_exit (void)
2685 int value_reg_low
, value_reg_high
;
2686 stack_ptr output_stack
;
2689 retvalue
= stack_result (current_function_decl
);
2690 value_reg_low
= value_reg_high
= -1;
2693 value_reg_low
= REGNO (retvalue
);
2694 value_reg_high
= END_HARD_REGNO (retvalue
) - 1;
2697 output_stack
= &BLOCK_INFO (EXIT_BLOCK_PTR
)->stack_in
;
2698 if (value_reg_low
== -1)
2699 output_stack
->top
= -1;
2704 output_stack
->top
= value_reg_high
- value_reg_low
;
2705 for (reg
= value_reg_low
; reg
<= value_reg_high
; ++reg
)
2707 output_stack
->reg
[value_reg_high
- reg
] = reg
;
2708 SET_HARD_REG_BIT (output_stack
->reg_set
, reg
);
2713 /* Copy the stack info from the end of edge E's source block to the
2714 start of E's destination block. */
2717 propagate_stack (edge e
)
2719 stack_ptr src_stack
= &BLOCK_INFO (e
->src
)->stack_out
;
2720 stack_ptr dest_stack
= &BLOCK_INFO (e
->dest
)->stack_in
;
2723 /* Preserve the order of the original stack, but check whether
2724 any pops are needed. */
2725 dest_stack
->top
= -1;
2726 for (reg
= 0; reg
<= src_stack
->top
; ++reg
)
2727 if (TEST_HARD_REG_BIT (dest_stack
->reg_set
, src_stack
->reg
[reg
]))
2728 dest_stack
->reg
[++dest_stack
->top
] = src_stack
->reg
[reg
];
2730 /* Push in any partially dead values. */
2731 for (reg
= FIRST_STACK_REG
; reg
< LAST_STACK_REG
+ 1; reg
++)
2732 if (TEST_HARD_REG_BIT (dest_stack
->reg_set
, reg
)
2733 && !TEST_HARD_REG_BIT (src_stack
->reg_set
, reg
))
2734 dest_stack
->reg
[++dest_stack
->top
] = reg
;
2738 /* Adjust the stack of edge E's source block on exit to match the stack
2739 of it's target block upon input. The stack layouts of both blocks
2740 should have been defined by now. */
2743 compensate_edge (edge e
)
2745 basic_block source
= e
->src
, target
= e
->dest
;
2746 stack_ptr target_stack
= &BLOCK_INFO (target
)->stack_in
;
2747 stack_ptr source_stack
= &BLOCK_INFO (source
)->stack_out
;
2748 struct stack_def regstack
;
2752 fprintf (dump_file
, "Edge %d->%d: ", source
->index
, target
->index
);
2754 gcc_assert (target_stack
->top
!= -2);
2756 /* Check whether stacks are identical. */
2757 if (target_stack
->top
== source_stack
->top
)
2759 for (reg
= target_stack
->top
; reg
>= 0; --reg
)
2760 if (target_stack
->reg
[reg
] != source_stack
->reg
[reg
])
2766 fprintf (dump_file
, "no changes needed\n");
2773 fprintf (dump_file
, "correcting stack to ");
2774 print_stack (dump_file
, target_stack
);
2777 /* Abnormal calls may appear to have values live in st(0), but the
2778 abnormal return path will not have actually loaded the values. */
2779 if (e
->flags
& EDGE_ABNORMAL_CALL
)
2781 /* Assert that the lifetimes are as we expect -- one value
2782 live at st(0) on the end of the source block, and no
2783 values live at the beginning of the destination block.
2784 For complex return values, we may have st(1) live as well. */
2785 gcc_assert (source_stack
->top
== 0 || source_stack
->top
== 1);
2786 gcc_assert (target_stack
->top
== -1);
2790 /* Handle non-call EH edges specially. The normal return path have
2791 values in registers. These will be popped en masse by the unwind
2793 if (e
->flags
& EDGE_EH
)
2795 gcc_assert (target_stack
->top
== -1);
2799 /* We don't support abnormal edges. Global takes care to
2800 avoid any live register across them, so we should never
2801 have to insert instructions on such edges. */
2802 gcc_assert (! (e
->flags
& EDGE_ABNORMAL
));
2804 /* Make a copy of source_stack as change_stack is destructive. */
2805 regstack
= *source_stack
;
2807 /* It is better to output directly to the end of the block
2808 instead of to the edge, because emit_swap can do minimal
2809 insn scheduling. We can do this when there is only one
2810 edge out, and it is not abnormal. */
2811 if (EDGE_COUNT (source
->succs
) == 1)
2813 current_block
= source
;
2814 change_stack (BB_END (source
), ®stack
, target_stack
,
2815 (JUMP_P (BB_END (source
)) ? EMIT_BEFORE
: EMIT_AFTER
));
2821 current_block
= NULL
;
2824 /* ??? change_stack needs some point to emit insns after. */
2825 after
= emit_note (NOTE_INSN_DELETED
);
2827 change_stack (after
, ®stack
, target_stack
, EMIT_BEFORE
);
2832 insert_insn_on_edge (seq
, e
);
2838 /* Traverse all non-entry edges in the CFG, and emit the necessary
2839 edge compensation code to change the stack from stack_out of the
2840 source block to the stack_in of the destination block. */
2843 compensate_edges (void)
2845 bool inserted
= false;
2848 starting_stack_p
= false;
2851 if (bb
!= ENTRY_BLOCK_PTR
)
2856 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2857 inserted
|= compensate_edge (e
);
2862 /* Select the better of two edges E1 and E2 to use to determine the
2863 stack layout for their shared destination basic block. This is
2864 typically the more frequently executed. The edge E1 may be NULL
2865 (in which case E2 is returned), but E2 is always non-NULL. */
2868 better_edge (edge e1
, edge e2
)
2873 if (EDGE_FREQUENCY (e1
) > EDGE_FREQUENCY (e2
))
2875 if (EDGE_FREQUENCY (e1
) < EDGE_FREQUENCY (e2
))
2878 if (e1
->count
> e2
->count
)
2880 if (e1
->count
< e2
->count
)
2883 /* Prefer critical edges to minimize inserting compensation code on
2886 if (EDGE_CRITICAL_P (e1
) != EDGE_CRITICAL_P (e2
))
2887 return EDGE_CRITICAL_P (e1
) ? e1
: e2
;
2889 /* Avoid non-deterministic behavior. */
2890 return (e1
->src
->index
< e2
->src
->index
) ? e1
: e2
;
2893 /* Convert stack register references in one block. Return true if the CFG
2894 has been modified in the process. */
2897 convert_regs_1 (basic_block block
)
2899 struct stack_def regstack
;
2900 block_info bi
= BLOCK_INFO (block
);
2903 bool control_flow_insn_deleted
= false;
2904 bool cfg_altered
= false;
2905 int debug_insns_with_starting_stack
= 0;
2907 any_malformed_asm
= false;
2909 /* Choose an initial stack layout, if one hasn't already been chosen. */
2910 if (bi
->stack_in
.top
== -2)
2912 edge e
, beste
= NULL
;
2915 /* Select the best incoming edge (typically the most frequent) to
2916 use as a template for this basic block. */
2917 FOR_EACH_EDGE (e
, ei
, block
->preds
)
2918 if (BLOCK_INFO (e
->src
)->done
)
2919 beste
= better_edge (beste
, e
);
2922 propagate_stack (beste
);
2925 /* No predecessors. Create an arbitrary input stack. */
2926 bi
->stack_in
.top
= -1;
2927 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2928 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2929 bi
->stack_in
.reg
[++bi
->stack_in
.top
] = reg
;
2935 fprintf (dump_file
, "\nBasic block %d\nInput stack: ", block
->index
);
2936 print_stack (dump_file
, &bi
->stack_in
);
2939 /* Process all insns in this block. Keep track of NEXT so that we
2940 don't process insns emitted while substituting in INSN. */
2941 current_block
= block
;
2942 next
= BB_HEAD (block
);
2943 regstack
= bi
->stack_in
;
2944 starting_stack_p
= true;
2949 next
= NEXT_INSN (insn
);
2951 /* Ensure we have not missed a block boundary. */
2953 if (insn
== BB_END (block
))
2956 /* Don't bother processing unless there is a stack reg
2957 mentioned or if it's a CALL_INSN. */
2958 if (DEBUG_INSN_P (insn
))
2960 if (starting_stack_p
)
2961 debug_insns_with_starting_stack
++;
2964 subst_all_stack_regs_in_debug_insn (insn
, ®stack
);
2966 /* Nothing must ever die at a debug insn. If something
2967 is referenced in it that becomes dead, it should have
2968 died before and the reference in the debug insn
2969 should have been removed so as to avoid changing code
2971 gcc_assert (!find_reg_note (insn
, REG_DEAD
, NULL
));
2974 else if (stack_regs_mentioned (insn
)
2979 fprintf (dump_file
, " insn %d input stack: ",
2981 print_stack (dump_file
, ®stack
);
2983 control_flow_insn_deleted
|= subst_stack_regs (insn
, ®stack
);
2984 starting_stack_p
= false;
2989 if (debug_insns_with_starting_stack
)
2991 /* Since it's the first non-debug instruction that determines
2992 the stack requirements of the current basic block, we refrain
2993 from updating debug insns before it in the loop above, and
2994 fix them up here. */
2995 for (insn
= BB_HEAD (block
); debug_insns_with_starting_stack
;
2996 insn
= NEXT_INSN (insn
))
2998 if (!DEBUG_INSN_P (insn
))
3001 debug_insns_with_starting_stack
--;
3002 subst_all_stack_regs_in_debug_insn (insn
, &bi
->stack_in
);
3008 fprintf (dump_file
, "Expected live registers [");
3009 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
3010 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
))
3011 fprintf (dump_file
, " %d", reg
);
3012 fprintf (dump_file
, " ]\nOutput stack: ");
3013 print_stack (dump_file
, ®stack
);
3016 insn
= BB_END (block
);
3018 insn
= PREV_INSN (insn
);
3020 /* If the function is declared to return a value, but it returns one
3021 in only some cases, some registers might come live here. Emit
3022 necessary moves for them. */
3024 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
3026 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
)
3027 && ! TEST_HARD_REG_BIT (regstack
.reg_set
, reg
))
3032 fprintf (dump_file
, "Emitting insn initializing reg %d\n", reg
);
3034 set
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (reg
, SFmode
), not_a_num
);
3035 insn
= emit_insn_after (set
, insn
);
3036 control_flow_insn_deleted
|= subst_stack_regs (insn
, ®stack
);
3040 /* Amongst the insns possibly deleted during the substitution process above,
3041 might have been the only trapping insn in the block. We purge the now
3042 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3043 called at the end of convert_regs. The order in which we process the
3044 blocks ensures that we never delete an already processed edge.
3046 Note that, at this point, the CFG may have been damaged by the emission
3047 of instructions after an abnormal call, which moves the basic block end
3048 (and is the reason why we call fixup_abnormal_edges later). So we must
3049 be sure that the trapping insn has been deleted before trying to purge
3050 dead edges, otherwise we risk purging valid edges.
3052 ??? We are normally supposed not to delete trapping insns, so we pretend
3053 that the insns deleted above don't actually trap. It would have been
3054 better to detect this earlier and avoid creating the EH edge in the first
3055 place, still, but we don't have enough information at that time. */
3057 if (control_flow_insn_deleted
)
3058 cfg_altered
|= purge_dead_edges (block
);
3060 /* Something failed if the stack lives don't match. If we had malformed
3061 asms, we zapped the instruction itself, but that didn't produce the
3062 same pattern of register kills as before. */
3064 gcc_assert (hard_reg_set_equal_p (regstack
.reg_set
, bi
->out_reg_set
)
3065 || any_malformed_asm
);
3066 bi
->stack_out
= regstack
;
3072 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3073 CFG has been modified in the process. */
3076 convert_regs_2 (basic_block block
)
3078 basic_block
*stack
, *sp
;
3079 bool cfg_altered
= false;
3081 /* We process the blocks in a top-down manner, in a way such that one block
3082 is only processed after all its predecessors. The number of predecessors
3083 of every block has already been computed. */
3085 stack
= XNEWVEC (basic_block
, n_basic_blocks
);
3097 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3098 some dead EH outgoing edge after the deletion of the trapping
3099 insn inside the block. Since the number of predecessors of
3100 BLOCK's successors was computed based on the initial edge set,
3101 we check the necessity to process some of these successors
3102 before such an edge deletion may happen. However, there is
3103 a pitfall: if BLOCK is the only predecessor of a successor and
3104 the edge between them happens to be deleted, the successor
3105 becomes unreachable and should not be processed. The problem
3106 is that there is no way to preventively detect this case so we
3107 stack the successor in all cases and hand over the task of
3108 fixing up the discrepancy to convert_regs_1. */
3110 FOR_EACH_EDGE (e
, ei
, block
->succs
)
3111 if (! (e
->flags
& EDGE_DFS_BACK
))
3113 BLOCK_INFO (e
->dest
)->predecessors
--;
3114 if (!BLOCK_INFO (e
->dest
)->predecessors
)
3118 cfg_altered
|= convert_regs_1 (block
);
3120 while (sp
!= stack
);
3127 /* Traverse all basic blocks in a function, converting the register
3128 references in each insn from the "flat" register file that gcc uses,
3129 to the stack-like registers the 387 uses. */
3134 bool cfg_altered
= false;
3140 /* Initialize uninitialized registers on function entry. */
3141 inserted
= convert_regs_entry ();
3143 /* Construct the desired stack for function exit. */
3144 convert_regs_exit ();
3145 BLOCK_INFO (EXIT_BLOCK_PTR
)->done
= 1;
3147 /* ??? Future: process inner loops first, and give them arbitrary
3148 initial stacks which emit_swap_insn can modify. This ought to
3149 prevent double fxch that often appears at the head of a loop. */
3151 /* Process all blocks reachable from all entry points. */
3152 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
3153 cfg_altered
|= convert_regs_2 (e
->dest
);
3155 /* ??? Process all unreachable blocks. Though there's no excuse
3156 for keeping these even when not optimizing. */
3159 block_info bi
= BLOCK_INFO (b
);
3162 cfg_altered
|= convert_regs_2 (b
);
3165 /* We must fix up abnormal edges before inserting compensation code
3166 because both mechanisms insert insns on edges. */
3167 inserted
|= fixup_abnormal_edges ();
3169 inserted
|= compensate_edges ();
3171 clear_aux_for_blocks ();
3174 commit_edge_insertions ();
3180 fputc ('\n', dump_file
);
3183 /* Convert register usage from "flat" register file usage to a "stack
3184 register file. FILE is the dump file, if used.
3186 Construct a CFG and run life analysis. Then convert each insn one
3187 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3188 code duplication created when the converter inserts pop insns on
3198 /* Clean up previous run. */
3199 stack_regs_mentioned_data
.release ();
3201 /* See if there is something to do. Flow analysis is quite
3202 expensive so we might save some compilation time. */
3203 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
3204 if (df_regs_ever_live_p (i
))
3206 if (i
> LAST_STACK_REG
)
3209 df_note_add_problem ();
3212 mark_dfs_back_edges ();
3214 /* Set up block info for each basic block. */
3215 alloc_aux_for_blocks (sizeof (struct block_info_def
));
3218 block_info bi
= BLOCK_INFO (bb
);
3223 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3224 if (!(e
->flags
& EDGE_DFS_BACK
)
3225 && e
->src
!= ENTRY_BLOCK_PTR
)
3228 /* Set current register status at last instruction `uninitialized'. */
3229 bi
->stack_in
.top
= -2;
3231 /* Copy live_at_end and live_at_start into temporaries. */
3232 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; reg
++)
3234 if (REGNO_REG_SET_P (DF_LR_OUT (bb
), reg
))
3235 SET_HARD_REG_BIT (bi
->out_reg_set
, reg
);
3236 if (REGNO_REG_SET_P (DF_LR_IN (bb
), reg
))
3237 SET_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
);
3241 /* Create the replacement registers up front. */
3242 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
3244 enum machine_mode mode
;
3245 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
3247 mode
= GET_MODE_WIDER_MODE (mode
))
3248 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
3249 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
3251 mode
= GET_MODE_WIDER_MODE (mode
))
3252 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
3255 ix86_flags_rtx
= gen_rtx_REG (CCmode
, FLAGS_REG
);
3257 /* A QNaN for initializing uninitialized variables.
3259 ??? We can't load from constant memory in PIC mode, because
3260 we're inserting these instructions before the prologue and
3261 the PIC register hasn't been set up. In that case, fall back
3262 on zero, which we can get from `fldz'. */
3264 if ((flag_pic
&& !TARGET_64BIT
)
3265 || ix86_cmodel
== CM_LARGE
|| ix86_cmodel
== CM_LARGE_PIC
)
3266 not_a_num
= CONST0_RTX (SFmode
);
3271 real_nan (&r
, "", 1, SFmode
);
3272 not_a_num
= CONST_DOUBLE_FROM_REAL_VALUE (r
, SFmode
);
3273 not_a_num
= force_const_mem (SFmode
, not_a_num
);
3276 /* Allocate a cache for stack_regs_mentioned. */
3277 max_uid
= get_max_uid ();
3278 stack_regs_mentioned_data
.create (max_uid
+ 1);
3279 memset (stack_regs_mentioned_data
.address (),
3280 0, sizeof (char) * (max_uid
+ 1));
3284 free_aux_for_blocks ();
3287 #endif /* STACK_REGS */
3290 gate_handle_stack_regs (void)
3299 struct rtl_opt_pass pass_stack_regs
=
3303 "*stack_regs", /* name */
3304 OPTGROUP_NONE
, /* optinfo_flags */
3305 gate_handle_stack_regs
, /* gate */
3309 0, /* static_pass_number */
3310 TV_REG_STACK
, /* tv_id */
3311 0, /* properties_required */
3312 0, /* properties_provided */
3313 0, /* properties_destroyed */
3314 0, /* todo_flags_start */
3315 0 /* todo_flags_finish */
3319 /* Convert register usage from flat register file usage to a stack
3322 rest_of_handle_stack_regs (void)
3326 regstack_completed
= 1;
3331 struct rtl_opt_pass pass_stack_regs_run
=
3336 OPTGROUP_NONE
, /* optinfo_flags */
3338 rest_of_handle_stack_regs
, /* execute */
3341 0, /* static_pass_number */
3342 TV_REG_STACK
, /* tv_id */
3343 0, /* properties_required */
3344 0, /* properties_provided */
3345 0, /* properties_destroyed */
3346 0, /* todo_flags_start */
3347 TODO_df_finish
| TODO_verify_rtl_sharing
|
3348 TODO_ggc_collect
/* todo_flags_finish */