1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
52 #include "coretypes.h"
55 #include "hard-reg-set.h"
57 #include "basic-block.h"
61 #include "diagnostic-core.h"
66 /* Possible return values of iv_get_reaching_def. */
70 /* More than one reaching def, or reaching def that does not
74 /* The use is trivial invariant of the loop, i.e. is not changed
78 /* The use is reached by initial value and a value from the
79 previous iteration. */
82 /* The use has single dominating def. */
86 /* Information about a biv. */
90 unsigned regno
; /* The register of the biv. */
91 struct rtx_iv iv
; /* Value of the biv. */
94 static bool clean_slate
= true;
96 static unsigned int iv_ref_table_size
= 0;
98 /* Table of rtx_ivs indexed by the df_ref uid field. */
99 static struct rtx_iv
** iv_ref_table
;
101 /* Induction variable stored at the reference. */
102 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID(REF)]
103 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID(REF)] = (IV)
105 /* The current loop. */
107 static struct loop
*current_loop
;
109 /* Bivs of the current loop. */
113 static bool iv_analyze_op (rtx
, rtx
, struct rtx_iv
*);
115 /* Return the RTX code corresponding to the IV extend code EXTEND. */
116 static inline enum rtx_code
117 iv_extend_to_rtx_code (enum iv_extend_code extend
)
125 case IV_UNKNOWN_EXTEND
:
131 /* Dumps information about IV to FILE. */
133 extern void dump_iv_info (FILE *, struct rtx_iv
*);
135 dump_iv_info (FILE *file
, struct rtx_iv
*iv
)
139 fprintf (file
, "not simple");
143 if (iv
->step
== const0_rtx
144 && !iv
->first_special
)
145 fprintf (file
, "invariant ");
147 print_rtl (file
, iv
->base
);
148 if (iv
->step
!= const0_rtx
)
150 fprintf (file
, " + ");
151 print_rtl (file
, iv
->step
);
152 fprintf (file
, " * iteration");
154 fprintf (file
, " (in %s)", GET_MODE_NAME (iv
->mode
));
156 if (iv
->mode
!= iv
->extend_mode
)
157 fprintf (file
, " %s to %s",
158 rtx_name
[iv_extend_to_rtx_code (iv
->extend
)],
159 GET_MODE_NAME (iv
->extend_mode
));
161 if (iv
->mult
!= const1_rtx
)
163 fprintf (file
, " * ");
164 print_rtl (file
, iv
->mult
);
166 if (iv
->delta
!= const0_rtx
)
168 fprintf (file
, " + ");
169 print_rtl (file
, iv
->delta
);
171 if (iv
->first_special
)
172 fprintf (file
, " (first special)");
175 /* Generates a subreg to get the least significant part of EXPR (in mode
176 INNER_MODE) to OUTER_MODE. */
179 lowpart_subreg (enum machine_mode outer_mode
, rtx expr
,
180 enum machine_mode inner_mode
)
182 return simplify_gen_subreg (outer_mode
, expr
, inner_mode
,
183 subreg_lowpart_offset (outer_mode
, inner_mode
));
187 check_iv_ref_table_size (void)
189 if (iv_ref_table_size
< DF_DEFS_TABLE_SIZE())
191 unsigned int new_size
= DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
192 iv_ref_table
= XRESIZEVEC (struct rtx_iv
*, iv_ref_table
, new_size
);
193 memset (&iv_ref_table
[iv_ref_table_size
], 0,
194 (new_size
- iv_ref_table_size
) * sizeof (struct rtx_iv
*));
195 iv_ref_table_size
= new_size
;
200 /* Checks whether REG is a well-behaved register. */
203 simple_reg_p (rtx reg
)
207 if (GET_CODE (reg
) == SUBREG
)
209 if (!subreg_lowpart_p (reg
))
211 reg
= SUBREG_REG (reg
);
218 if (HARD_REGISTER_NUM_P (r
))
221 if (GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
227 /* Clears the information about ivs stored in df. */
232 unsigned i
, n_defs
= DF_DEFS_TABLE_SIZE ();
235 check_iv_ref_table_size ();
236 for (i
= 0; i
< n_defs
; i
++)
238 iv
= iv_ref_table
[i
];
242 iv_ref_table
[i
] = NULL
;
249 /* Returns hash value for biv B. */
252 biv_hash (const void *b
)
254 return ((const struct biv_entry
*) b
)->regno
;
257 /* Compares biv B and register R. */
260 biv_eq (const void *b
, const void *r
)
262 return ((const struct biv_entry
*) b
)->regno
== REGNO ((const_rtx
) r
);
265 /* Prepare the data for an induction variable analysis of a LOOP. */
268 iv_analysis_loop_init (struct loop
*loop
)
270 basic_block
*body
= get_loop_body_in_dom_order (loop
), bb
;
271 bitmap blocks
= BITMAP_ALLOC (NULL
);
276 /* Clear the information from the analysis of the previous loop. */
279 df_set_flags (DF_EQ_NOTES
+ DF_DEFER_INSN_RESCAN
);
280 bivs
= htab_create (10, biv_hash
, biv_eq
, free
);
286 for (i
= 0; i
< loop
->num_nodes
; i
++)
289 bitmap_set_bit (blocks
, bb
->index
);
291 /* Get rid of the ud chains before processing the rescans. Then add
293 df_remove_problem (df_chain
);
294 df_process_deferred_rescans ();
295 df_set_flags (DF_RD_PRUNE_DEAD_DEFS
);
296 df_chain_add_problem (DF_UD_CHAIN
);
297 df_note_add_problem ();
298 df_set_blocks (blocks
);
301 df_dump_region (dump_file
);
303 check_iv_ref_table_size ();
304 BITMAP_FREE (blocks
);
308 /* Finds the definition of REG that dominates loop latch and stores
309 it to DEF. Returns false if there is not a single definition
310 dominating the latch. If REG has no definition in loop, DEF
311 is set to NULL and true is returned. */
314 latch_dominating_def (rtx reg
, df_ref
*def
)
316 df_ref single_rd
= NULL
, adef
;
317 unsigned regno
= REGNO (reg
);
318 struct df_rd_bb_info
*bb_info
= DF_RD_BB_INFO (current_loop
->latch
);
320 for (adef
= DF_REG_DEF_CHAIN (regno
); adef
; adef
= DF_REF_NEXT_REG (adef
))
322 if (!bitmap_bit_p (df
->blocks_to_analyze
, DF_REF_BBNO (adef
))
323 || !bitmap_bit_p (&bb_info
->out
, DF_REF_ID (adef
)))
326 /* More than one reaching definition. */
330 if (!just_once_each_iteration_p (current_loop
, DF_REF_BB (adef
)))
340 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
342 static enum iv_grd_result
343 iv_get_reaching_def (rtx insn
, rtx reg
, df_ref
*def
)
346 basic_block def_bb
, use_bb
;
351 if (!simple_reg_p (reg
))
353 if (GET_CODE (reg
) == SUBREG
)
354 reg
= SUBREG_REG (reg
);
355 gcc_assert (REG_P (reg
));
357 use
= df_find_use (insn
, reg
);
358 gcc_assert (use
!= NULL
);
360 if (!DF_REF_CHAIN (use
))
361 return GRD_INVARIANT
;
363 /* More than one reaching def. */
364 if (DF_REF_CHAIN (use
)->next
)
367 adef
= DF_REF_CHAIN (use
)->ref
;
369 /* We do not handle setting only part of the register. */
370 if (DF_REF_FLAGS (adef
) & DF_REF_READ_WRITE
)
373 def_insn
= DF_REF_INSN (adef
);
374 def_bb
= DF_REF_BB (adef
);
375 use_bb
= BLOCK_FOR_INSN (insn
);
377 if (use_bb
== def_bb
)
378 dom_p
= (DF_INSN_LUID (def_insn
) < DF_INSN_LUID (insn
));
380 dom_p
= dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
);
385 return GRD_SINGLE_DOM
;
388 /* The definition does not dominate the use. This is still OK if
389 this may be a use of a biv, i.e. if the def_bb dominates loop
391 if (just_once_each_iteration_p (current_loop
, def_bb
))
392 return GRD_MAYBE_BIV
;
397 /* Sets IV to invariant CST in MODE. Always returns true (just for
398 consistency with other iv manipulation functions that may fail). */
401 iv_constant (struct rtx_iv
*iv
, rtx cst
, enum machine_mode mode
)
403 if (mode
== VOIDmode
)
404 mode
= GET_MODE (cst
);
408 iv
->step
= const0_rtx
;
409 iv
->first_special
= false;
410 iv
->extend
= IV_UNKNOWN_EXTEND
;
411 iv
->extend_mode
= iv
->mode
;
412 iv
->delta
= const0_rtx
;
413 iv
->mult
= const1_rtx
;
418 /* Evaluates application of subreg to MODE on IV. */
421 iv_subreg (struct rtx_iv
*iv
, enum machine_mode mode
)
423 /* If iv is invariant, just calculate the new value. */
424 if (iv
->step
== const0_rtx
425 && !iv
->first_special
)
427 rtx val
= get_iv_value (iv
, const0_rtx
);
428 val
= lowpart_subreg (mode
, val
,
429 iv
->extend
== IV_UNKNOWN_EXTEND
430 ? iv
->mode
: iv
->extend_mode
);
433 iv
->extend
= IV_UNKNOWN_EXTEND
;
434 iv
->mode
= iv
->extend_mode
= mode
;
435 iv
->delta
= const0_rtx
;
436 iv
->mult
= const1_rtx
;
440 if (iv
->extend_mode
== mode
)
443 if (GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (iv
->mode
))
446 iv
->extend
= IV_UNKNOWN_EXTEND
;
449 iv
->base
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
450 simplify_gen_binary (MULT
, iv
->extend_mode
,
451 iv
->base
, iv
->mult
));
452 iv
->step
= simplify_gen_binary (MULT
, iv
->extend_mode
, iv
->step
, iv
->mult
);
453 iv
->mult
= const1_rtx
;
454 iv
->delta
= const0_rtx
;
455 iv
->first_special
= false;
460 /* Evaluates application of EXTEND to MODE on IV. */
463 iv_extend (struct rtx_iv
*iv
, enum iv_extend_code extend
, enum machine_mode mode
)
465 /* If iv is invariant, just calculate the new value. */
466 if (iv
->step
== const0_rtx
467 && !iv
->first_special
)
469 rtx val
= get_iv_value (iv
, const0_rtx
);
470 if (iv
->extend_mode
!= iv
->mode
471 && iv
->extend
!= IV_UNKNOWN_EXTEND
472 && iv
->extend
!= extend
)
473 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
474 val
= simplify_gen_unary (iv_extend_to_rtx_code (extend
), mode
,
477 ? iv
->extend_mode
: iv
->mode
);
479 iv
->extend
= IV_UNKNOWN_EXTEND
;
480 iv
->mode
= iv
->extend_mode
= mode
;
481 iv
->delta
= const0_rtx
;
482 iv
->mult
= const1_rtx
;
486 if (mode
!= iv
->extend_mode
)
489 if (iv
->extend
!= IV_UNKNOWN_EXTEND
490 && iv
->extend
!= extend
)
498 /* Evaluates negation of IV. */
501 iv_neg (struct rtx_iv
*iv
)
503 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
505 iv
->base
= simplify_gen_unary (NEG
, iv
->extend_mode
,
506 iv
->base
, iv
->extend_mode
);
507 iv
->step
= simplify_gen_unary (NEG
, iv
->extend_mode
,
508 iv
->step
, iv
->extend_mode
);
512 iv
->delta
= simplify_gen_unary (NEG
, iv
->extend_mode
,
513 iv
->delta
, iv
->extend_mode
);
514 iv
->mult
= simplify_gen_unary (NEG
, iv
->extend_mode
,
515 iv
->mult
, iv
->extend_mode
);
521 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
524 iv_add (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
, enum rtx_code op
)
526 enum machine_mode mode
;
529 /* Extend the constant to extend_mode of the other operand if necessary. */
530 if (iv0
->extend
== IV_UNKNOWN_EXTEND
531 && iv0
->mode
== iv0
->extend_mode
532 && iv0
->step
== const0_rtx
533 && GET_MODE_SIZE (iv0
->extend_mode
) < GET_MODE_SIZE (iv1
->extend_mode
))
535 iv0
->extend_mode
= iv1
->extend_mode
;
536 iv0
->base
= simplify_gen_unary (ZERO_EXTEND
, iv0
->extend_mode
,
537 iv0
->base
, iv0
->mode
);
539 if (iv1
->extend
== IV_UNKNOWN_EXTEND
540 && iv1
->mode
== iv1
->extend_mode
541 && iv1
->step
== const0_rtx
542 && GET_MODE_SIZE (iv1
->extend_mode
) < GET_MODE_SIZE (iv0
->extend_mode
))
544 iv1
->extend_mode
= iv0
->extend_mode
;
545 iv1
->base
= simplify_gen_unary (ZERO_EXTEND
, iv1
->extend_mode
,
546 iv1
->base
, iv1
->mode
);
549 mode
= iv0
->extend_mode
;
550 if (mode
!= iv1
->extend_mode
)
553 if (iv0
->extend
== IV_UNKNOWN_EXTEND
554 && iv1
->extend
== IV_UNKNOWN_EXTEND
)
556 if (iv0
->mode
!= iv1
->mode
)
559 iv0
->base
= simplify_gen_binary (op
, mode
, iv0
->base
, iv1
->base
);
560 iv0
->step
= simplify_gen_binary (op
, mode
, iv0
->step
, iv1
->step
);
565 /* Handle addition of constant. */
566 if (iv1
->extend
== IV_UNKNOWN_EXTEND
568 && iv1
->step
== const0_rtx
)
570 iv0
->delta
= simplify_gen_binary (op
, mode
, iv0
->delta
, iv1
->base
);
574 if (iv0
->extend
== IV_UNKNOWN_EXTEND
576 && iv0
->step
== const0_rtx
)
584 iv0
->delta
= simplify_gen_binary (PLUS
, mode
, iv0
->delta
, arg
);
591 /* Evaluates multiplication of IV by constant CST. */
594 iv_mult (struct rtx_iv
*iv
, rtx mby
)
596 enum machine_mode mode
= iv
->extend_mode
;
598 if (GET_MODE (mby
) != VOIDmode
599 && GET_MODE (mby
) != mode
)
602 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
604 iv
->base
= simplify_gen_binary (MULT
, mode
, iv
->base
, mby
);
605 iv
->step
= simplify_gen_binary (MULT
, mode
, iv
->step
, mby
);
609 iv
->delta
= simplify_gen_binary (MULT
, mode
, iv
->delta
, mby
);
610 iv
->mult
= simplify_gen_binary (MULT
, mode
, iv
->mult
, mby
);
616 /* Evaluates shift of IV by constant CST. */
619 iv_shift (struct rtx_iv
*iv
, rtx mby
)
621 enum machine_mode mode
= iv
->extend_mode
;
623 if (GET_MODE (mby
) != VOIDmode
624 && GET_MODE (mby
) != mode
)
627 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
629 iv
->base
= simplify_gen_binary (ASHIFT
, mode
, iv
->base
, mby
);
630 iv
->step
= simplify_gen_binary (ASHIFT
, mode
, iv
->step
, mby
);
634 iv
->delta
= simplify_gen_binary (ASHIFT
, mode
, iv
->delta
, mby
);
635 iv
->mult
= simplify_gen_binary (ASHIFT
, mode
, iv
->mult
, mby
);
641 /* The recursive part of get_biv_step. Gets the value of the single value
642 defined by DEF wrto initial value of REG inside loop, in shape described
646 get_biv_step_1 (df_ref def
, rtx reg
,
647 rtx
*inner_step
, enum machine_mode
*inner_mode
,
648 enum iv_extend_code
*extend
, enum machine_mode outer_mode
,
651 rtx set
, rhs
, op0
= NULL_RTX
, op1
= NULL_RTX
;
652 rtx next
, nextr
, tmp
;
654 rtx insn
= DF_REF_INSN (def
);
656 enum iv_grd_result res
;
658 set
= single_set (insn
);
662 rhs
= find_reg_equal_equiv_note (insn
);
668 code
= GET_CODE (rhs
);
681 if (code
== PLUS
&& CONSTANT_P (op0
))
683 tmp
= op0
; op0
= op1
; op1
= tmp
;
686 if (!simple_reg_p (op0
)
687 || !CONSTANT_P (op1
))
690 if (GET_MODE (rhs
) != outer_mode
)
692 /* ppc64 uses expressions like
694 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
696 this is equivalent to
698 (set x':DI (plus:DI y:DI 1))
699 (set x:SI (subreg:SI (x':DI)). */
700 if (GET_CODE (op0
) != SUBREG
)
702 if (GET_MODE (SUBREG_REG (op0
)) != outer_mode
)
711 if (GET_MODE (rhs
) != outer_mode
)
715 if (!simple_reg_p (op0
))
725 if (GET_CODE (next
) == SUBREG
)
727 if (!subreg_lowpart_p (next
))
730 nextr
= SUBREG_REG (next
);
731 if (GET_MODE (nextr
) != outer_mode
)
737 res
= iv_get_reaching_def (insn
, nextr
, &next_def
);
739 if (res
== GRD_INVALID
|| res
== GRD_INVARIANT
)
742 if (res
== GRD_MAYBE_BIV
)
744 if (!rtx_equal_p (nextr
, reg
))
747 *inner_step
= const0_rtx
;
748 *extend
= IV_UNKNOWN_EXTEND
;
749 *inner_mode
= outer_mode
;
750 *outer_step
= const0_rtx
;
752 else if (!get_biv_step_1 (next_def
, reg
,
753 inner_step
, inner_mode
, extend
, outer_mode
,
757 if (GET_CODE (next
) == SUBREG
)
759 enum machine_mode amode
= GET_MODE (next
);
761 if (GET_MODE_SIZE (amode
) > GET_MODE_SIZE (*inner_mode
))
765 *inner_step
= simplify_gen_binary (PLUS
, outer_mode
,
766 *inner_step
, *outer_step
);
767 *outer_step
= const0_rtx
;
768 *extend
= IV_UNKNOWN_EXTEND
;
779 if (*inner_mode
== outer_mode
780 /* See comment in previous switch. */
781 || GET_MODE (rhs
) != outer_mode
)
782 *inner_step
= simplify_gen_binary (code
, outer_mode
,
785 *outer_step
= simplify_gen_binary (code
, outer_mode
,
791 gcc_assert (GET_MODE (op0
) == *inner_mode
792 && *extend
== IV_UNKNOWN_EXTEND
793 && *outer_step
== const0_rtx
);
795 *extend
= (code
== SIGN_EXTEND
) ? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
805 /* Gets the operation on register REG inside loop, in shape
807 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
809 If the operation cannot be described in this shape, return false.
810 LAST_DEF is the definition of REG that dominates loop latch. */
813 get_biv_step (df_ref last_def
, rtx reg
, rtx
*inner_step
,
814 enum machine_mode
*inner_mode
, enum iv_extend_code
*extend
,
815 enum machine_mode
*outer_mode
, rtx
*outer_step
)
817 *outer_mode
= GET_MODE (reg
);
819 if (!get_biv_step_1 (last_def
, reg
,
820 inner_step
, inner_mode
, extend
, *outer_mode
,
824 gcc_assert ((*inner_mode
== *outer_mode
) != (*extend
!= IV_UNKNOWN_EXTEND
));
825 gcc_assert (*inner_mode
!= *outer_mode
|| *outer_step
== const0_rtx
);
830 /* Records information that DEF is induction variable IV. */
833 record_iv (df_ref def
, struct rtx_iv
*iv
)
835 struct rtx_iv
*recorded_iv
= XNEW (struct rtx_iv
);
838 check_iv_ref_table_size ();
839 DF_REF_IV_SET (def
, recorded_iv
);
842 /* If DEF was already analyzed for bivness, store the description of the biv to
843 IV and return true. Otherwise return false. */
846 analyzed_for_bivness_p (rtx def
, struct rtx_iv
*iv
)
848 struct biv_entry
*biv
=
849 (struct biv_entry
*) htab_find_with_hash (bivs
, def
, REGNO (def
));
859 record_biv (rtx def
, struct rtx_iv
*iv
)
861 struct biv_entry
*biv
= XNEW (struct biv_entry
);
862 void **slot
= htab_find_slot_with_hash (bivs
, def
, REGNO (def
), INSERT
);
864 biv
->regno
= REGNO (def
);
870 /* Determines whether DEF is a biv and if so, stores its description
874 iv_analyze_biv (rtx def
, struct rtx_iv
*iv
)
876 rtx inner_step
, outer_step
;
877 enum machine_mode inner_mode
, outer_mode
;
878 enum iv_extend_code extend
;
883 fprintf (dump_file
, "Analyzing ");
884 print_rtl (dump_file
, def
);
885 fprintf (dump_file
, " for bivness.\n");
890 if (!CONSTANT_P (def
))
893 return iv_constant (iv
, def
, VOIDmode
);
896 if (!latch_dominating_def (def
, &last_def
))
899 fprintf (dump_file
, " not simple.\n");
904 return iv_constant (iv
, def
, VOIDmode
);
906 if (analyzed_for_bivness_p (def
, iv
))
909 fprintf (dump_file
, " already analysed.\n");
910 return iv
->base
!= NULL_RTX
;
913 if (!get_biv_step (last_def
, def
, &inner_step
, &inner_mode
, &extend
,
914 &outer_mode
, &outer_step
))
920 /* Loop transforms base to es (base + inner_step) + outer_step,
921 where es means extend of subreg between inner_mode and outer_mode.
922 The corresponding induction variable is
924 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
926 iv
->base
= simplify_gen_binary (MINUS
, outer_mode
, def
, outer_step
);
927 iv
->step
= simplify_gen_binary (PLUS
, outer_mode
, inner_step
, outer_step
);
928 iv
->mode
= inner_mode
;
929 iv
->extend_mode
= outer_mode
;
931 iv
->mult
= const1_rtx
;
932 iv
->delta
= outer_step
;
933 iv
->first_special
= inner_mode
!= outer_mode
;
938 fprintf (dump_file
, " ");
939 dump_iv_info (dump_file
, iv
);
940 fprintf (dump_file
, "\n");
943 record_biv (def
, iv
);
944 return iv
->base
!= NULL_RTX
;
947 /* Analyzes expression RHS used at INSN and stores the result to *IV.
948 The mode of the induction variable is MODE. */
951 iv_analyze_expr (rtx insn
, rtx rhs
, enum machine_mode mode
, struct rtx_iv
*iv
)
953 rtx mby
= NULL_RTX
, tmp
;
954 rtx op0
= NULL_RTX
, op1
= NULL_RTX
;
955 struct rtx_iv iv0
, iv1
;
956 enum rtx_code code
= GET_CODE (rhs
);
957 enum machine_mode omode
= mode
;
963 gcc_assert (GET_MODE (rhs
) == mode
|| GET_MODE (rhs
) == VOIDmode
);
969 if (!iv_analyze_op (insn
, rhs
, iv
))
972 if (iv
->mode
== VOIDmode
)
975 iv
->extend_mode
= mode
;
991 omode
= GET_MODE (op0
);
1001 op0
= XEXP (rhs
, 0);
1002 mby
= XEXP (rhs
, 1);
1003 if (!CONSTANT_P (mby
))
1009 if (!CONSTANT_P (mby
))
1014 op0
= XEXP (rhs
, 0);
1015 mby
= XEXP (rhs
, 1);
1016 if (!CONSTANT_P (mby
))
1025 && !iv_analyze_expr (insn
, op0
, omode
, &iv0
))
1029 && !iv_analyze_expr (insn
, op1
, omode
, &iv1
))
1035 if (!iv_extend (&iv0
, IV_SIGN_EXTEND
, mode
))
1040 if (!iv_extend (&iv0
, IV_ZERO_EXTEND
, mode
))
1051 if (!iv_add (&iv0
, &iv1
, code
))
1056 if (!iv_mult (&iv0
, mby
))
1061 if (!iv_shift (&iv0
, mby
))
1070 return iv
->base
!= NULL_RTX
;
1073 /* Analyzes iv DEF and stores the result to *IV. */
1076 iv_analyze_def (df_ref def
, struct rtx_iv
*iv
)
1078 rtx insn
= DF_REF_INSN (def
);
1079 rtx reg
= DF_REF_REG (def
);
1084 fprintf (dump_file
, "Analyzing def of ");
1085 print_rtl (dump_file
, reg
);
1086 fprintf (dump_file
, " in insn ");
1087 print_rtl_single (dump_file
, insn
);
1090 check_iv_ref_table_size ();
1091 if (DF_REF_IV (def
))
1094 fprintf (dump_file
, " already analysed.\n");
1095 *iv
= *DF_REF_IV (def
);
1096 return iv
->base
!= NULL_RTX
;
1099 iv
->mode
= VOIDmode
;
1100 iv
->base
= NULL_RTX
;
1101 iv
->step
= NULL_RTX
;
1106 set
= single_set (insn
);
1110 if (!REG_P (SET_DEST (set
)))
1113 gcc_assert (SET_DEST (set
) == reg
);
1114 rhs
= find_reg_equal_equiv_note (insn
);
1116 rhs
= XEXP (rhs
, 0);
1118 rhs
= SET_SRC (set
);
1120 iv_analyze_expr (insn
, rhs
, GET_MODE (reg
), iv
);
1121 record_iv (def
, iv
);
1125 print_rtl (dump_file
, reg
);
1126 fprintf (dump_file
, " in insn ");
1127 print_rtl_single (dump_file
, insn
);
1128 fprintf (dump_file
, " is ");
1129 dump_iv_info (dump_file
, iv
);
1130 fprintf (dump_file
, "\n");
1133 return iv
->base
!= NULL_RTX
;
1136 /* Analyzes operand OP of INSN and stores the result to *IV. */
1139 iv_analyze_op (rtx insn
, rtx op
, struct rtx_iv
*iv
)
1142 enum iv_grd_result res
;
1146 fprintf (dump_file
, "Analyzing operand ");
1147 print_rtl (dump_file
, op
);
1148 fprintf (dump_file
, " of insn ");
1149 print_rtl_single (dump_file
, insn
);
1152 if (function_invariant_p (op
))
1153 res
= GRD_INVARIANT
;
1154 else if (GET_CODE (op
) == SUBREG
)
1156 if (!subreg_lowpart_p (op
))
1159 if (!iv_analyze_op (insn
, SUBREG_REG (op
), iv
))
1162 return iv_subreg (iv
, GET_MODE (op
));
1166 res
= iv_get_reaching_def (insn
, op
, &def
);
1167 if (res
== GRD_INVALID
)
1170 fprintf (dump_file
, " not simple.\n");
1175 if (res
== GRD_INVARIANT
)
1177 iv_constant (iv
, op
, VOIDmode
);
1181 fprintf (dump_file
, " ");
1182 dump_iv_info (dump_file
, iv
);
1183 fprintf (dump_file
, "\n");
1188 if (res
== GRD_MAYBE_BIV
)
1189 return iv_analyze_biv (op
, iv
);
1191 return iv_analyze_def (def
, iv
);
1194 /* Analyzes value VAL at INSN and stores the result to *IV. */
1197 iv_analyze (rtx insn
, rtx val
, struct rtx_iv
*iv
)
1201 /* We must find the insn in that val is used, so that we get to UD chains.
1202 Since the function is sometimes called on result of get_condition,
1203 this does not necessarily have to be directly INSN; scan also the
1205 if (simple_reg_p (val
))
1207 if (GET_CODE (val
) == SUBREG
)
1208 reg
= SUBREG_REG (val
);
1212 while (!df_find_use (insn
, reg
))
1213 insn
= NEXT_INSN (insn
);
1216 return iv_analyze_op (insn
, val
, iv
);
1219 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1222 iv_analyze_result (rtx insn
, rtx def
, struct rtx_iv
*iv
)
1226 adef
= df_find_def (insn
, def
);
1230 return iv_analyze_def (adef
, iv
);
1233 /* Checks whether definition of register REG in INSN is a basic induction
1234 variable. IV analysis must have been initialized (via a call to
1235 iv_analysis_loop_init) for this function to produce a result. */
1238 biv_p (rtx insn
, rtx reg
)
1241 df_ref def
, last_def
;
1243 if (!simple_reg_p (reg
))
1246 def
= df_find_def (insn
, reg
);
1247 gcc_assert (def
!= NULL
);
1248 if (!latch_dominating_def (reg
, &last_def
))
1250 if (last_def
!= def
)
1253 if (!iv_analyze_biv (reg
, &iv
))
1256 return iv
.step
!= const0_rtx
;
1259 /* Calculates value of IV at ITERATION-th iteration. */
1262 get_iv_value (struct rtx_iv
*iv
, rtx iteration
)
1266 /* We would need to generate some if_then_else patterns, and so far
1267 it is not needed anywhere. */
1268 gcc_assert (!iv
->first_special
);
1270 if (iv
->step
!= const0_rtx
&& iteration
!= const0_rtx
)
1271 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->base
,
1272 simplify_gen_binary (MULT
, iv
->extend_mode
,
1273 iv
->step
, iteration
));
1277 if (iv
->extend_mode
== iv
->mode
)
1280 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
1282 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
1285 val
= simplify_gen_unary (iv_extend_to_rtx_code (iv
->extend
),
1286 iv
->extend_mode
, val
, iv
->mode
);
1287 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
1288 simplify_gen_binary (MULT
, iv
->extend_mode
,
1294 /* Free the data for an induction variable analysis. */
1297 iv_analysis_done (void)
1303 df_finish_pass (true);
1305 free (iv_ref_table
);
1306 iv_ref_table
= NULL
;
1307 iv_ref_table_size
= 0;
1312 /* Computes inverse to X modulo (1 << MOD). */
1314 static unsigned HOST_WIDEST_INT
1315 inverse (unsigned HOST_WIDEST_INT x
, int mod
)
1317 unsigned HOST_WIDEST_INT mask
=
1318 ((unsigned HOST_WIDEST_INT
) 1 << (mod
- 1) << 1) - 1;
1319 unsigned HOST_WIDEST_INT rslt
= 1;
1322 for (i
= 0; i
< mod
- 1; i
++)
1324 rslt
= (rslt
* x
) & mask
;
1331 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1334 altered_reg_used (rtx
*reg
, void *alt
)
1339 return REGNO_REG_SET_P ((bitmap
) alt
, REGNO (*reg
));
1342 /* Marks registers altered by EXPR in set ALT. */
1345 mark_altered (rtx expr
, const_rtx by ATTRIBUTE_UNUSED
, void *alt
)
1347 if (GET_CODE (expr
) == SUBREG
)
1348 expr
= SUBREG_REG (expr
);
1352 SET_REGNO_REG_SET ((bitmap
) alt
, REGNO (expr
));
1355 /* Checks whether RHS is simple enough to process. */
1358 simple_rhs_p (rtx rhs
)
1362 if (function_invariant_p (rhs
)
1363 || (REG_P (rhs
) && !HARD_REGISTER_P (rhs
)))
1366 switch (GET_CODE (rhs
))
1371 op0
= XEXP (rhs
, 0);
1372 op1
= XEXP (rhs
, 1);
1373 /* Allow reg OP const and reg OP reg. */
1374 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
))
1375 && !function_invariant_p (op0
))
1377 if (!(REG_P (op1
) && !HARD_REGISTER_P (op1
))
1378 && !function_invariant_p (op1
))
1387 op0
= XEXP (rhs
, 0);
1388 op1
= XEXP (rhs
, 1);
1389 /* Allow reg OP const. */
1390 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
)))
1392 if (!function_invariant_p (op1
))
1402 /* If REG has a single definition, replace it with its known value in EXPR.
1403 Callback for for_each_rtx. */
1406 replace_single_def_regs (rtx
*reg
, void *expr1
)
1411 rtx
*expr
= (rtx
*)expr1
;
1416 regno
= REGNO (*reg
);
1420 adef
= DF_REG_DEF_CHAIN (regno
);
1421 if (adef
== NULL
|| DF_REF_NEXT_REG (adef
) != NULL
1422 || DF_REF_IS_ARTIFICIAL (adef
))
1425 set
= single_set (DF_REF_INSN (adef
));
1426 if (set
== NULL
|| !REG_P (SET_DEST (set
))
1427 || REGNO (SET_DEST (set
)) != regno
)
1430 note
= find_reg_equal_equiv_note (DF_REF_INSN (adef
));
1432 if (note
&& function_invariant_p (XEXP (note
, 0)))
1434 src
= XEXP (note
, 0);
1437 src
= SET_SRC (set
);
1441 regno
= REGNO (src
);
1446 if (!function_invariant_p (src
))
1449 *expr
= simplify_replace_rtx (*expr
, *reg
, src
);
1453 /* A subroutine of simplify_using_initial_values, this function examines INSN
1454 to see if it contains a suitable set that we can use to make a replacement.
1455 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1456 the set; return false otherwise. */
1459 suitable_set_for_replacement (rtx insn
, rtx
*dest
, rtx
*src
)
1461 rtx set
= single_set (insn
);
1462 rtx lhs
= NULL_RTX
, rhs
;
1467 lhs
= SET_DEST (set
);
1471 rhs
= find_reg_equal_equiv_note (insn
);
1473 rhs
= XEXP (rhs
, 0);
1475 rhs
= SET_SRC (set
);
1477 if (!simple_rhs_p (rhs
))
1485 /* Using the data returned by suitable_set_for_replacement, replace DEST
1486 with SRC in *EXPR and return the new expression. Also call
1487 replace_single_def_regs if the replacement changed something. */
1489 replace_in_expr (rtx
*expr
, rtx dest
, rtx src
)
1492 *expr
= simplify_replace_rtx (*expr
, dest
, src
);
1495 while (for_each_rtx (expr
, replace_single_def_regs
, expr
) != 0)
1499 /* Checks whether A implies B. */
1502 implies_p (rtx a
, rtx b
)
1504 rtx op0
, op1
, opb0
, opb1
, r
;
1505 enum machine_mode mode
;
1507 if (rtx_equal_p (a
, b
))
1510 if (GET_CODE (a
) == EQ
)
1516 || (GET_CODE (op0
) == SUBREG
1517 && REG_P (SUBREG_REG (op0
))))
1519 r
= simplify_replace_rtx (b
, op0
, op1
);
1520 if (r
== const_true_rtx
)
1525 || (GET_CODE (op1
) == SUBREG
1526 && REG_P (SUBREG_REG (op1
))))
1528 r
= simplify_replace_rtx (b
, op1
, op0
);
1529 if (r
== const_true_rtx
)
1534 if (b
== const_true_rtx
)
1537 if ((GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMM_COMPARE
1538 && GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMPARE
)
1539 || (GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMM_COMPARE
1540 && GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMPARE
))
1548 mode
= GET_MODE (op0
);
1549 if (mode
!= GET_MODE (opb0
))
1551 else if (mode
== VOIDmode
)
1553 mode
= GET_MODE (op1
);
1554 if (mode
!= GET_MODE (opb1
))
1558 /* A < B implies A + 1 <= B. */
1559 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == LT
)
1560 && (GET_CODE (b
) == GE
|| GET_CODE (b
) == LE
))
1563 if (GET_CODE (a
) == GT
)
1570 if (GET_CODE (b
) == GE
)
1577 if (SCALAR_INT_MODE_P (mode
)
1578 && rtx_equal_p (op1
, opb1
)
1579 && simplify_gen_binary (MINUS
, mode
, opb0
, op0
) == const1_rtx
)
1584 /* A < B or A > B imply A != B. TODO: Likewise
1585 A + n < B implies A != B + n if neither wraps. */
1586 if (GET_CODE (b
) == NE
1587 && (GET_CODE (a
) == GT
|| GET_CODE (a
) == GTU
1588 || GET_CODE (a
) == LT
|| GET_CODE (a
) == LTU
))
1590 if (rtx_equal_p (op0
, opb0
)
1591 && rtx_equal_p (op1
, opb1
))
1595 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1596 if (GET_CODE (a
) == NE
1597 && op1
== const0_rtx
)
1599 if ((GET_CODE (b
) == GTU
1600 && opb1
== const0_rtx
)
1601 || (GET_CODE (b
) == GEU
1602 && opb1
== const1_rtx
))
1603 return rtx_equal_p (op0
, opb0
);
1606 /* A != N is equivalent to A - (N + 1) <u -1. */
1607 if (GET_CODE (a
) == NE
1608 && CONST_INT_P (op1
)
1609 && GET_CODE (b
) == LTU
1610 && opb1
== constm1_rtx
1611 && GET_CODE (opb0
) == PLUS
1612 && CONST_INT_P (XEXP (opb0
, 1))
1613 /* Avoid overflows. */
1614 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1615 != ((unsigned HOST_WIDE_INT
)1
1616 << (HOST_BITS_PER_WIDE_INT
- 1)) - 1)
1617 && INTVAL (XEXP (opb0
, 1)) + 1 == -INTVAL (op1
))
1618 return rtx_equal_p (op0
, XEXP (opb0
, 0));
1620 /* Likewise, A != N implies A - N > 0. */
1621 if (GET_CODE (a
) == NE
1622 && CONST_INT_P (op1
))
1624 if (GET_CODE (b
) == GTU
1625 && GET_CODE (opb0
) == PLUS
1626 && opb1
== const0_rtx
1627 && CONST_INT_P (XEXP (opb0
, 1))
1628 /* Avoid overflows. */
1629 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1630 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1631 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1632 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1633 if (GET_CODE (b
) == GEU
1634 && GET_CODE (opb0
) == PLUS
1635 && opb1
== const1_rtx
1636 && CONST_INT_P (XEXP (opb0
, 1))
1637 /* Avoid overflows. */
1638 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1639 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1640 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1641 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1644 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1645 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == GE
)
1646 && CONST_INT_P (op1
)
1647 && ((GET_CODE (a
) == GT
&& op1
== constm1_rtx
)
1648 || INTVAL (op1
) >= 0)
1649 && GET_CODE (b
) == LTU
1650 && CONST_INT_P (opb1
)
1651 && rtx_equal_p (op0
, opb0
))
1652 return INTVAL (opb1
) < 0;
1657 /* Canonicalizes COND so that
1659 (1) Ensure that operands are ordered according to
1660 swap_commutative_operands_p.
1661 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1662 for GE, GEU, and LEU. */
1665 canon_condition (rtx cond
)
1670 enum machine_mode mode
;
1672 code
= GET_CODE (cond
);
1673 op0
= XEXP (cond
, 0);
1674 op1
= XEXP (cond
, 1);
1676 if (swap_commutative_operands_p (op0
, op1
))
1678 code
= swap_condition (code
);
1684 mode
= GET_MODE (op0
);
1685 if (mode
== VOIDmode
)
1686 mode
= GET_MODE (op1
);
1687 gcc_assert (mode
!= VOIDmode
);
1689 if (CONST_INT_P (op1
)
1690 && GET_MODE_CLASS (mode
) != MODE_CC
1691 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
1693 HOST_WIDE_INT const_val
= INTVAL (op1
);
1694 unsigned HOST_WIDE_INT uconst_val
= const_val
;
1695 unsigned HOST_WIDE_INT max_val
1696 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
);
1701 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
1702 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
1705 /* When cross-compiling, const_val might be sign-extended from
1706 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1708 if ((HOST_WIDE_INT
) (const_val
& max_val
)
1709 != (((HOST_WIDE_INT
) 1
1710 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
1711 code
= GT
, op1
= gen_int_mode (const_val
- 1, mode
);
1715 if (uconst_val
< max_val
)
1716 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, mode
);
1720 if (uconst_val
!= 0)
1721 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, mode
);
1729 if (op0
!= XEXP (cond
, 0)
1730 || op1
!= XEXP (cond
, 1)
1731 || code
!= GET_CODE (cond
)
1732 || GET_MODE (cond
) != SImode
)
1733 cond
= gen_rtx_fmt_ee (code
, SImode
, op0
, op1
);
1738 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1739 set of altered regs. */
1742 simplify_using_condition (rtx cond
, rtx
*expr
, regset altered
)
1744 rtx rev
, reve
, exp
= *expr
;
1746 /* If some register gets altered later, we do not really speak about its
1747 value at the time of comparison. */
1749 && for_each_rtx (&cond
, altered_reg_used
, altered
))
1752 if (GET_CODE (cond
) == EQ
1753 && REG_P (XEXP (cond
, 0)) && CONSTANT_P (XEXP (cond
, 1)))
1755 *expr
= simplify_replace_rtx (*expr
, XEXP (cond
, 0), XEXP (cond
, 1));
1759 if (!COMPARISON_P (exp
))
1762 rev
= reversed_condition (cond
);
1763 reve
= reversed_condition (exp
);
1765 cond
= canon_condition (cond
);
1766 exp
= canon_condition (exp
);
1768 rev
= canon_condition (rev
);
1770 reve
= canon_condition (reve
);
1772 if (rtx_equal_p (exp
, cond
))
1774 *expr
= const_true_rtx
;
1778 if (rev
&& rtx_equal_p (exp
, rev
))
1784 if (implies_p (cond
, exp
))
1786 *expr
= const_true_rtx
;
1790 if (reve
&& implies_p (cond
, reve
))
1796 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1798 if (rev
&& implies_p (exp
, rev
))
1804 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1805 if (rev
&& reve
&& implies_p (reve
, rev
))
1807 *expr
= const_true_rtx
;
1811 /* We would like to have some other tests here. TODO. */
1816 /* Use relationship between A and *B to eventually eliminate *B.
1817 OP is the operation we consider. */
1820 eliminate_implied_condition (enum rtx_code op
, rtx a
, rtx
*b
)
1825 /* If A implies *B, we may replace *B by true. */
1826 if (implies_p (a
, *b
))
1827 *b
= const_true_rtx
;
1831 /* If *B implies A, we may replace *B by false. */
1832 if (implies_p (*b
, a
))
1841 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1842 operation we consider. */
1845 eliminate_implied_conditions (enum rtx_code op
, rtx
*head
, rtx tail
)
1849 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1850 eliminate_implied_condition (op
, *head
, &XEXP (elt
, 0));
1851 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1852 eliminate_implied_condition (op
, XEXP (elt
, 0), head
);
1855 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1856 is a list, its elements are assumed to be combined using OP. */
1859 simplify_using_initial_values (struct loop
*loop
, enum rtx_code op
, rtx
*expr
)
1861 bool expression_valid
;
1862 rtx head
, tail
, insn
, cond_list
, last_valid_expr
;
1864 regset altered
, this_altered
;
1870 if (CONSTANT_P (*expr
))
1873 if (GET_CODE (*expr
) == EXPR_LIST
)
1875 head
= XEXP (*expr
, 0);
1876 tail
= XEXP (*expr
, 1);
1878 eliminate_implied_conditions (op
, &head
, tail
);
1883 neutral
= const_true_rtx
;
1888 neutral
= const0_rtx
;
1889 aggr
= const_true_rtx
;
1896 simplify_using_initial_values (loop
, UNKNOWN
, &head
);
1899 XEXP (*expr
, 0) = aggr
;
1900 XEXP (*expr
, 1) = NULL_RTX
;
1903 else if (head
== neutral
)
1906 simplify_using_initial_values (loop
, op
, expr
);
1909 simplify_using_initial_values (loop
, op
, &tail
);
1911 if (tail
&& XEXP (tail
, 0) == aggr
)
1917 XEXP (*expr
, 0) = head
;
1918 XEXP (*expr
, 1) = tail
;
1922 gcc_assert (op
== UNKNOWN
);
1925 if (for_each_rtx (expr
, replace_single_def_regs
, expr
) == 0)
1927 if (CONSTANT_P (*expr
))
1930 e
= loop_preheader_edge (loop
);
1931 if (e
->src
== ENTRY_BLOCK_PTR
)
1934 altered
= ALLOC_REG_SET (®_obstack
);
1935 this_altered
= ALLOC_REG_SET (®_obstack
);
1937 expression_valid
= true;
1938 last_valid_expr
= *expr
;
1939 cond_list
= NULL_RTX
;
1942 insn
= BB_END (e
->src
);
1943 if (any_condjump_p (insn
))
1945 rtx cond
= get_condition (BB_END (e
->src
), NULL
, false, true);
1947 if (cond
&& (e
->flags
& EDGE_FALLTHRU
))
1948 cond
= reversed_condition (cond
);
1952 simplify_using_condition (cond
, expr
, altered
);
1956 if (CONSTANT_P (*expr
))
1958 for (note
= cond_list
; note
; note
= XEXP (note
, 1))
1960 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
1961 if (CONSTANT_P (*expr
))
1965 cond_list
= alloc_EXPR_LIST (0, cond
, cond_list
);
1969 FOR_BB_INSNS_REVERSE (e
->src
, insn
)
1977 CLEAR_REG_SET (this_altered
);
1978 note_stores (PATTERN (insn
), mark_altered
, this_altered
);
1981 /* Kill all call clobbered registers. */
1983 hard_reg_set_iterator hrsi
;
1984 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
,
1986 SET_REGNO_REG_SET (this_altered
, i
);
1989 if (suitable_set_for_replacement (insn
, &dest
, &src
))
1991 rtx
*pnote
, *pnote_next
;
1993 replace_in_expr (expr
, dest
, src
);
1994 if (CONSTANT_P (*expr
))
1997 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2000 rtx old_cond
= XEXP (note
, 0);
2002 pnote_next
= &XEXP (note
, 1);
2003 replace_in_expr (&XEXP (note
, 0), dest
, src
);
2005 /* We can no longer use a condition that has been simplified
2006 to a constant, and simplify_using_condition will abort if
2008 if (CONSTANT_P (XEXP (note
, 0)))
2010 *pnote
= *pnote_next
;
2012 free_EXPR_LIST_node (note
);
2014 /* Retry simplifications with this condition if either the
2015 expression or the condition changed. */
2016 else if (old_cond
!= XEXP (note
, 0) || old
!= *expr
)
2017 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
2022 rtx
*pnote
, *pnote_next
;
2024 /* If we did not use this insn to make a replacement, any overlap
2025 between stores in this insn and our expression will cause the
2026 expression to become invalid. */
2027 if (for_each_rtx (expr
, altered_reg_used
, this_altered
))
2030 /* Likewise for the conditions. */
2031 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2034 rtx old_cond
= XEXP (note
, 0);
2036 pnote_next
= &XEXP (note
, 1);
2037 if (for_each_rtx (&old_cond
, altered_reg_used
, this_altered
))
2039 *pnote
= *pnote_next
;
2041 free_EXPR_LIST_node (note
);
2046 if (CONSTANT_P (*expr
))
2049 IOR_REG_SET (altered
, this_altered
);
2051 /* If the expression now contains regs that have been altered, we
2052 can't return it to the caller. However, it is still valid for
2053 further simplification, so keep searching to see if we can
2054 eventually turn it into a constant. */
2055 if (for_each_rtx (expr
, altered_reg_used
, altered
))
2056 expression_valid
= false;
2057 if (expression_valid
)
2058 last_valid_expr
= *expr
;
2061 if (!single_pred_p (e
->src
)
2062 || single_pred (e
->src
) == ENTRY_BLOCK_PTR
)
2064 e
= single_pred_edge (e
->src
);
2068 free_EXPR_LIST_list (&cond_list
);
2069 if (!CONSTANT_P (*expr
))
2070 *expr
= last_valid_expr
;
2071 FREE_REG_SET (altered
);
2072 FREE_REG_SET (this_altered
);
2075 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2076 that IV occurs as left operands of comparison COND and its signedness
2077 is SIGNED_P to DESC. */
2080 shorten_into_mode (struct rtx_iv
*iv
, enum machine_mode mode
,
2081 enum rtx_code cond
, bool signed_p
, struct niter_desc
*desc
)
2083 rtx mmin
, mmax
, cond_over
, cond_under
;
2085 get_mode_bounds (mode
, signed_p
, iv
->extend_mode
, &mmin
, &mmax
);
2086 cond_under
= simplify_gen_relational (LT
, SImode
, iv
->extend_mode
,
2088 cond_over
= simplify_gen_relational (GT
, SImode
, iv
->extend_mode
,
2097 if (cond_under
!= const0_rtx
)
2099 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2100 if (cond_over
!= const0_rtx
)
2101 desc
->noloop_assumptions
=
2102 alloc_EXPR_LIST (0, cond_over
, desc
->noloop_assumptions
);
2109 if (cond_over
!= const0_rtx
)
2111 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2112 if (cond_under
!= const0_rtx
)
2113 desc
->noloop_assumptions
=
2114 alloc_EXPR_LIST (0, cond_under
, desc
->noloop_assumptions
);
2118 if (cond_over
!= const0_rtx
)
2120 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2121 if (cond_under
!= const0_rtx
)
2123 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2131 iv
->extend
= signed_p
? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
2134 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2135 subregs of the same mode if possible (sometimes it is necessary to add
2136 some assumptions to DESC). */
2139 canonicalize_iv_subregs (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
,
2140 enum rtx_code cond
, struct niter_desc
*desc
)
2142 enum machine_mode comp_mode
;
2145 /* If the ivs behave specially in the first iteration, or are
2146 added/multiplied after extending, we ignore them. */
2147 if (iv0
->first_special
|| iv0
->mult
!= const1_rtx
|| iv0
->delta
!= const0_rtx
)
2149 if (iv1
->first_special
|| iv1
->mult
!= const1_rtx
|| iv1
->delta
!= const0_rtx
)
2152 /* If there is some extend, it must match signedness of the comparison. */
2157 if (iv0
->extend
== IV_ZERO_EXTEND
2158 || iv1
->extend
== IV_ZERO_EXTEND
)
2165 if (iv0
->extend
== IV_SIGN_EXTEND
2166 || iv1
->extend
== IV_SIGN_EXTEND
)
2172 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
2173 && iv1
->extend
!= IV_UNKNOWN_EXTEND
2174 && iv0
->extend
!= iv1
->extend
)
2178 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
)
2179 signed_p
= iv0
->extend
== IV_SIGN_EXTEND
;
2180 if (iv1
->extend
!= IV_UNKNOWN_EXTEND
)
2181 signed_p
= iv1
->extend
== IV_SIGN_EXTEND
;
2188 /* Values of both variables should be computed in the same mode. These
2189 might indeed be different, if we have comparison like
2191 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2193 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2194 in different modes. This does not seem impossible to handle, but
2195 it hardly ever occurs in practice.
2197 The only exception is the case when one of operands is invariant.
2198 For example pentium 3 generates comparisons like
2199 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2200 definitely do not want this prevent the optimization. */
2201 comp_mode
= iv0
->extend_mode
;
2202 if (GET_MODE_BITSIZE (comp_mode
) < GET_MODE_BITSIZE (iv1
->extend_mode
))
2203 comp_mode
= iv1
->extend_mode
;
2205 if (iv0
->extend_mode
!= comp_mode
)
2207 if (iv0
->mode
!= iv0
->extend_mode
2208 || iv0
->step
!= const0_rtx
)
2211 iv0
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2212 comp_mode
, iv0
->base
, iv0
->mode
);
2213 iv0
->extend_mode
= comp_mode
;
2216 if (iv1
->extend_mode
!= comp_mode
)
2218 if (iv1
->mode
!= iv1
->extend_mode
2219 || iv1
->step
!= const0_rtx
)
2222 iv1
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2223 comp_mode
, iv1
->base
, iv1
->mode
);
2224 iv1
->extend_mode
= comp_mode
;
2227 /* Check that both ivs belong to a range of a single mode. If one of the
2228 operands is an invariant, we may need to shorten it into the common
2230 if (iv0
->mode
== iv0
->extend_mode
2231 && iv0
->step
== const0_rtx
2232 && iv0
->mode
!= iv1
->mode
)
2233 shorten_into_mode (iv0
, iv1
->mode
, cond
, signed_p
, desc
);
2235 if (iv1
->mode
== iv1
->extend_mode
2236 && iv1
->step
== const0_rtx
2237 && iv0
->mode
!= iv1
->mode
)
2238 shorten_into_mode (iv1
, iv0
->mode
, swap_condition (cond
), signed_p
, desc
);
2240 if (iv0
->mode
!= iv1
->mode
)
2243 desc
->mode
= iv0
->mode
;
2244 desc
->signed_p
= signed_p
;
2249 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2250 result. This function is called from iv_number_of_iterations with
2251 a number of fields in DESC already filled in. OLD_NITER is the original
2252 expression for the number of iterations, before we tried to simplify it. */
2254 static unsigned HOST_WIDEST_INT
2255 determine_max_iter (struct loop
*loop
, struct niter_desc
*desc
, rtx old_niter
)
2257 rtx niter
= desc
->niter_expr
;
2258 rtx mmin
, mmax
, cmp
;
2259 unsigned HOST_WIDEST_INT nmax
, inc
;
2260 unsigned HOST_WIDEST_INT andmax
= 0;
2262 /* We used to look for constant operand 0 of AND,
2263 but canonicalization should always make this impossible. */
2264 gcc_checking_assert (GET_CODE (niter
) != AND
2265 || !CONST_INT_P (XEXP (niter
, 0)));
2267 if (GET_CODE (niter
) == AND
2268 && CONST_INT_P (XEXP (niter
, 1)))
2270 andmax
= UINTVAL (XEXP (niter
, 1));
2271 niter
= XEXP (niter
, 0);
2274 get_mode_bounds (desc
->mode
, desc
->signed_p
, desc
->mode
, &mmin
, &mmax
);
2275 nmax
= INTVAL (mmax
) - INTVAL (mmin
);
2277 if (GET_CODE (niter
) == UDIV
)
2279 if (!CONST_INT_P (XEXP (niter
, 1)))
2281 inc
= INTVAL (XEXP (niter
, 1));
2282 niter
= XEXP (niter
, 0);
2287 /* We could use a binary search here, but for now improving the upper
2288 bound by just one eliminates one important corner case. */
2289 cmp
= simplify_gen_relational (desc
->signed_p
? LT
: LTU
, VOIDmode
,
2290 desc
->mode
, old_niter
, mmax
);
2291 simplify_using_initial_values (loop
, UNKNOWN
, &cmp
);
2292 if (cmp
== const_true_rtx
)
2297 fprintf (dump_file
, ";; improved upper bound by one.\n");
2301 nmax
= MIN (nmax
, andmax
);
2303 fprintf (dump_file
, ";; Determined upper bound "HOST_WIDEST_INT_PRINT_DEC
".\n",
2308 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2309 the result into DESC. Very similar to determine_number_of_iterations
2310 (basically its rtl version), complicated by things like subregs. */
2313 iv_number_of_iterations (struct loop
*loop
, rtx insn
, rtx condition
,
2314 struct niter_desc
*desc
)
2316 rtx op0
, op1
, delta
, step
, bound
, may_xform
, tmp
, tmp0
, tmp1
;
2317 struct rtx_iv iv0
, iv1
, tmp_iv
;
2318 rtx assumption
, may_not_xform
;
2320 enum machine_mode mode
, comp_mode
;
2321 rtx mmin
, mmax
, mode_mmin
, mode_mmax
;
2322 unsigned HOST_WIDEST_INT s
, size
, d
, inv
, max
;
2323 HOST_WIDEST_INT up
, down
, inc
, step_val
;
2324 int was_sharp
= false;
2328 /* The meaning of these assumptions is this:
2330 then the rest of information does not have to be valid
2331 if noloop_assumptions then the loop does not roll
2332 if infinite then this exit is never used */
2334 desc
->assumptions
= NULL_RTX
;
2335 desc
->noloop_assumptions
= NULL_RTX
;
2336 desc
->infinite
= NULL_RTX
;
2337 desc
->simple_p
= true;
2339 desc
->const_iter
= false;
2340 desc
->niter_expr
= NULL_RTX
;
2342 cond
= GET_CODE (condition
);
2343 gcc_assert (COMPARISON_P (condition
));
2345 mode
= GET_MODE (XEXP (condition
, 0));
2346 if (mode
== VOIDmode
)
2347 mode
= GET_MODE (XEXP (condition
, 1));
2348 /* The constant comparisons should be folded. */
2349 gcc_assert (mode
!= VOIDmode
);
2351 /* We only handle integers or pointers. */
2352 if (GET_MODE_CLASS (mode
) != MODE_INT
2353 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
2356 op0
= XEXP (condition
, 0);
2357 if (!iv_analyze (insn
, op0
, &iv0
))
2359 if (iv0
.extend_mode
== VOIDmode
)
2360 iv0
.mode
= iv0
.extend_mode
= mode
;
2362 op1
= XEXP (condition
, 1);
2363 if (!iv_analyze (insn
, op1
, &iv1
))
2365 if (iv1
.extend_mode
== VOIDmode
)
2366 iv1
.mode
= iv1
.extend_mode
= mode
;
2368 if (GET_MODE_BITSIZE (iv0
.extend_mode
) > HOST_BITS_PER_WIDE_INT
2369 || GET_MODE_BITSIZE (iv1
.extend_mode
) > HOST_BITS_PER_WIDE_INT
)
2372 /* Check condition and normalize it. */
2380 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
2381 cond
= swap_condition (cond
);
2393 /* Handle extends. This is relatively nontrivial, so we only try in some
2394 easy cases, when we can canonicalize the ivs (possibly by adding some
2395 assumptions) to shape subreg (base + i * step). This function also fills
2396 in desc->mode and desc->signed_p. */
2398 if (!canonicalize_iv_subregs (&iv0
, &iv1
, cond
, desc
))
2401 comp_mode
= iv0
.extend_mode
;
2403 size
= GET_MODE_BITSIZE (mode
);
2404 get_mode_bounds (mode
, (cond
== LE
|| cond
== LT
), comp_mode
, &mmin
, &mmax
);
2405 mode_mmin
= lowpart_subreg (mode
, mmin
, comp_mode
);
2406 mode_mmax
= lowpart_subreg (mode
, mmax
, comp_mode
);
2408 if (!CONST_INT_P (iv0
.step
) || !CONST_INT_P (iv1
.step
))
2411 /* We can take care of the case of two induction variables chasing each other
2412 if the test is NE. I have never seen a loop using it, but still it is
2414 if (iv0
.step
!= const0_rtx
&& iv1
.step
!= const0_rtx
)
2419 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2420 iv1
.step
= const0_rtx
;
2423 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2424 iv1
.step
= lowpart_subreg (mode
, iv1
.step
, comp_mode
);
2426 /* This is either infinite loop or the one that ends immediately, depending
2427 on initial values. Unswitching should remove this kind of conditions. */
2428 if (iv0
.step
== const0_rtx
&& iv1
.step
== const0_rtx
)
2433 if (iv0
.step
== const0_rtx
)
2434 step_val
= -INTVAL (iv1
.step
);
2436 step_val
= INTVAL (iv0
.step
);
2438 /* Ignore loops of while (i-- < 10) type. */
2442 step_is_pow2
= !(step_val
& (step_val
- 1));
2446 /* We do not care about whether the step is power of two in this
2448 step_is_pow2
= false;
2452 /* Some more condition normalization. We must record some assumptions
2453 due to overflows. */
2458 /* We want to take care only of non-sharp relationals; this is easy,
2459 as in cases the overflow would make the transformation unsafe
2460 the loop does not roll. Seemingly it would make more sense to want
2461 to take care of sharp relationals instead, as NE is more similar to
2462 them, but the problem is that here the transformation would be more
2463 difficult due to possibly infinite loops. */
2464 if (iv0
.step
== const0_rtx
)
2466 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2467 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2469 if (assumption
== const_true_rtx
)
2470 goto zero_iter_simplify
;
2471 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2472 iv0
.base
, const1_rtx
);
2476 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2477 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2479 if (assumption
== const_true_rtx
)
2480 goto zero_iter_simplify
;
2481 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2482 iv1
.base
, constm1_rtx
);
2485 if (assumption
!= const0_rtx
)
2486 desc
->noloop_assumptions
=
2487 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2488 cond
= (cond
== LT
) ? LE
: LEU
;
2490 /* It will be useful to be able to tell the difference once more in
2491 LE -> NE reduction. */
2497 /* Take care of trivially infinite loops. */
2500 if (iv0
.step
== const0_rtx
)
2502 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2503 if (rtx_equal_p (tmp
, mode_mmin
))
2506 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2507 /* Fill in the remaining fields somehow. */
2508 goto zero_iter_simplify
;
2513 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2514 if (rtx_equal_p (tmp
, mode_mmax
))
2517 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2518 /* Fill in the remaining fields somehow. */
2519 goto zero_iter_simplify
;
2524 /* If we can we want to take care of NE conditions instead of size
2525 comparisons, as they are much more friendly (most importantly
2526 this takes care of special handling of loops with step 1). We can
2527 do it if we first check that upper bound is greater or equal to
2528 lower bound, their difference is constant c modulo step and that
2529 there is not an overflow. */
2532 if (iv0
.step
== const0_rtx
)
2533 step
= simplify_gen_unary (NEG
, comp_mode
, iv1
.step
, comp_mode
);
2536 step
= lowpart_subreg (mode
, step
, comp_mode
);
2537 delta
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2538 delta
= lowpart_subreg (mode
, delta
, comp_mode
);
2539 delta
= simplify_gen_binary (UMOD
, mode
, delta
, step
);
2540 may_xform
= const0_rtx
;
2541 may_not_xform
= const_true_rtx
;
2543 if (CONST_INT_P (delta
))
2545 if (was_sharp
&& INTVAL (delta
) == INTVAL (step
) - 1)
2547 /* A special case. We have transformed condition of type
2548 for (i = 0; i < 4; i += 4)
2550 for (i = 0; i <= 3; i += 4)
2551 obviously if the test for overflow during that transformation
2552 passed, we cannot overflow here. Most importantly any
2553 loop with sharp end condition and step 1 falls into this
2554 category, so handling this case specially is definitely
2555 worth the troubles. */
2556 may_xform
= const_true_rtx
;
2558 else if (iv0
.step
== const0_rtx
)
2560 bound
= simplify_gen_binary (PLUS
, comp_mode
, mmin
, step
);
2561 bound
= simplify_gen_binary (MINUS
, comp_mode
, bound
, delta
);
2562 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2563 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2564 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2566 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2572 bound
= simplify_gen_binary (MINUS
, comp_mode
, mmax
, step
);
2573 bound
= simplify_gen_binary (PLUS
, comp_mode
, bound
, delta
);
2574 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2575 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2576 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2578 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2584 if (may_xform
!= const0_rtx
)
2586 /* We perform the transformation always provided that it is not
2587 completely senseless. This is OK, as we would need this assumption
2588 to determine the number of iterations anyway. */
2589 if (may_xform
!= const_true_rtx
)
2591 /* If the step is a power of two and the final value we have
2592 computed overflows, the cycle is infinite. Otherwise it
2593 is nontrivial to compute the number of iterations. */
2595 desc
->infinite
= alloc_EXPR_LIST (0, may_not_xform
,
2598 desc
->assumptions
= alloc_EXPR_LIST (0, may_xform
,
2602 /* We are going to lose some information about upper bound on
2603 number of iterations in this step, so record the information
2605 inc
= INTVAL (iv0
.step
) - INTVAL (iv1
.step
);
2606 if (CONST_INT_P (iv1
.base
))
2607 up
= INTVAL (iv1
.base
);
2609 up
= INTVAL (mode_mmax
) - inc
;
2610 down
= INTVAL (CONST_INT_P (iv0
.base
)
2613 max
= (up
- down
) / inc
+ 1;
2615 && !desc
->assumptions
)
2616 record_niter_bound (loop
, double_int::from_uhwi (max
),
2619 if (iv0
.step
== const0_rtx
)
2621 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, delta
);
2622 iv0
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.base
, step
);
2626 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, delta
);
2627 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, step
);
2630 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2631 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2632 assumption
= simplify_gen_relational (reverse_condition (cond
),
2633 SImode
, mode
, tmp0
, tmp1
);
2634 if (assumption
== const_true_rtx
)
2635 goto zero_iter_simplify
;
2636 else if (assumption
!= const0_rtx
)
2637 desc
->noloop_assumptions
=
2638 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2643 /* Count the number of iterations. */
2646 /* Everything we do here is just arithmetics modulo size of mode. This
2647 makes us able to do more involved computations of number of iterations
2648 than in other cases. First transform the condition into shape
2649 s * i <> c, with s positive. */
2650 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2651 iv0
.base
= const0_rtx
;
2652 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2653 iv1
.step
= const0_rtx
;
2654 if (INTVAL (iv0
.step
) < 0)
2656 iv0
.step
= simplify_gen_unary (NEG
, comp_mode
, iv0
.step
, mode
);
2657 iv1
.base
= simplify_gen_unary (NEG
, comp_mode
, iv1
.base
, mode
);
2659 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2661 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2662 is infinite. Otherwise, the number of iterations is
2663 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2664 s
= INTVAL (iv0
.step
); d
= 1;
2671 bound
= GEN_INT (((unsigned HOST_WIDEST_INT
) 1 << (size
- 1 ) << 1) - 1);
2673 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2674 tmp
= simplify_gen_binary (UMOD
, mode
, tmp1
, GEN_INT (d
));
2675 assumption
= simplify_gen_relational (NE
, SImode
, mode
, tmp
, const0_rtx
);
2676 desc
->infinite
= alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2678 tmp
= simplify_gen_binary (UDIV
, mode
, tmp1
, GEN_INT (d
));
2679 inv
= inverse (s
, size
);
2680 tmp
= simplify_gen_binary (MULT
, mode
, tmp
, gen_int_mode (inv
, mode
));
2681 desc
->niter_expr
= simplify_gen_binary (AND
, mode
, tmp
, bound
);
2685 if (iv1
.step
== const0_rtx
)
2686 /* Condition in shape a + s * i <= b
2687 We must know that b + s does not overflow and a <= b + s and then we
2688 can compute number of iterations as (b + s - a) / s. (It might
2689 seem that we in fact could be more clever about testing the b + s
2690 overflow condition using some information about b - a mod s,
2691 but it was already taken into account during LE -> NE transform). */
2694 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2695 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2697 bound
= simplify_gen_binary (MINUS
, mode
, mode_mmax
,
2698 lowpart_subreg (mode
, step
,
2704 /* If s is power of 2, we know that the loop is infinite if
2705 a % s <= b % s and b + s overflows. */
2706 assumption
= simplify_gen_relational (reverse_condition (cond
),
2710 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2711 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2712 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2713 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2715 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2719 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2722 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2725 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, iv0
.step
);
2726 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2727 assumption
= simplify_gen_relational (reverse_condition (cond
),
2728 SImode
, mode
, tmp0
, tmp
);
2730 delta
= simplify_gen_binary (PLUS
, mode
, tmp1
, step
);
2731 delta
= simplify_gen_binary (MINUS
, mode
, delta
, tmp0
);
2735 /* Condition in shape a <= b - s * i
2736 We must know that a - s does not overflow and a - s <= b and then
2737 we can again compute number of iterations as (b - (a - s)) / s. */
2738 step
= simplify_gen_unary (NEG
, mode
, iv1
.step
, mode
);
2739 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2740 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2742 bound
= simplify_gen_binary (PLUS
, mode
, mode_mmin
,
2743 lowpart_subreg (mode
, step
, comp_mode
));
2748 /* If s is power of 2, we know that the loop is infinite if
2749 a % s <= b % s and a - s overflows. */
2750 assumption
= simplify_gen_relational (reverse_condition (cond
),
2754 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2755 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2756 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2757 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2759 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2763 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2766 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2769 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, iv1
.step
);
2770 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2771 assumption
= simplify_gen_relational (reverse_condition (cond
),
2774 delta
= simplify_gen_binary (MINUS
, mode
, tmp0
, step
);
2775 delta
= simplify_gen_binary (MINUS
, mode
, tmp1
, delta
);
2777 if (assumption
== const_true_rtx
)
2778 goto zero_iter_simplify
;
2779 else if (assumption
!= const0_rtx
)
2780 desc
->noloop_assumptions
=
2781 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2782 delta
= simplify_gen_binary (UDIV
, mode
, delta
, step
);
2783 desc
->niter_expr
= delta
;
2786 old_niter
= desc
->niter_expr
;
2788 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2789 if (desc
->assumptions
2790 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2792 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2793 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2794 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2796 /* Rerun the simplification. Consider code (created by copying loop headers)
2808 The first pass determines that i = 0, the second pass uses it to eliminate
2809 noloop assumption. */
2811 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2812 if (desc
->assumptions
2813 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2815 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2816 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2817 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2819 if (desc
->noloop_assumptions
2820 && XEXP (desc
->noloop_assumptions
, 0) == const_true_rtx
)
2823 if (CONST_INT_P (desc
->niter_expr
))
2825 unsigned HOST_WIDEST_INT val
= INTVAL (desc
->niter_expr
);
2827 desc
->const_iter
= true;
2828 desc
->niter
= val
& GET_MODE_MASK (desc
->mode
);
2830 && !desc
->assumptions
)
2831 record_niter_bound (loop
, double_int::from_uhwi (desc
->niter
),
2836 max
= determine_max_iter (loop
, desc
, old_niter
);
2838 goto zero_iter_simplify
;
2840 && !desc
->assumptions
)
2841 record_niter_bound (loop
, double_int::from_uhwi (max
),
2844 /* simplify_using_initial_values does a copy propagation on the registers
2845 in the expression for the number of iterations. This prolongs life
2846 ranges of registers and increases register pressure, and usually
2847 brings no gain (and if it happens to do, the cse pass will take care
2848 of it anyway). So prevent this behavior, unless it enabled us to
2849 derive that the number of iterations is a constant. */
2850 desc
->niter_expr
= old_niter
;
2856 /* Simplify the assumptions. */
2857 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2858 if (desc
->assumptions
2859 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2861 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2865 desc
->const_iter
= true;
2867 record_niter_bound (loop
, double_int_zero
,
2869 desc
->noloop_assumptions
= NULL_RTX
;
2870 desc
->niter_expr
= const0_rtx
;
2874 desc
->simple_p
= false;
2878 /* Checks whether E is a simple exit from LOOP and stores its description
2882 check_simple_exit (struct loop
*loop
, edge e
, struct niter_desc
*desc
)
2884 basic_block exit_bb
;
2889 desc
->simple_p
= false;
2891 /* It must belong directly to the loop. */
2892 if (exit_bb
->loop_father
!= loop
)
2895 /* It must be tested (at least) once during any iteration. */
2896 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit_bb
))
2899 /* It must end in a simple conditional jump. */
2900 if (!any_condjump_p (BB_END (exit_bb
)))
2903 ein
= EDGE_SUCC (exit_bb
, 0);
2905 ein
= EDGE_SUCC (exit_bb
, 1);
2908 desc
->in_edge
= ein
;
2910 /* Test whether the condition is suitable. */
2911 if (!(condition
= get_condition (BB_END (ein
->src
), &at
, false, false)))
2914 if (ein
->flags
& EDGE_FALLTHRU
)
2916 condition
= reversed_condition (condition
);
2921 /* Check that we are able to determine number of iterations and fill
2922 in information about it. */
2923 iv_number_of_iterations (loop
, at
, condition
, desc
);
2926 /* Finds a simple exit of LOOP and stores its description into DESC. */
2929 find_simple_exit (struct loop
*loop
, struct niter_desc
*desc
)
2934 struct niter_desc act
;
2938 desc
->simple_p
= false;
2939 body
= get_loop_body (loop
);
2941 for (i
= 0; i
< loop
->num_nodes
; i
++)
2943 FOR_EACH_EDGE (e
, ei
, body
[i
]->succs
)
2945 if (flow_bb_inside_loop_p (loop
, e
->dest
))
2948 check_simple_exit (loop
, e
, &act
);
2956 /* Prefer constant iterations; the less the better. */
2958 || (desc
->const_iter
&& act
.niter
>= desc
->niter
))
2961 /* Also if the actual exit may be infinite, while the old one
2962 not, prefer the old one. */
2963 if (act
.infinite
&& !desc
->infinite
)
2975 fprintf (dump_file
, "Loop %d is simple:\n", loop
->num
);
2976 fprintf (dump_file
, " simple exit %d -> %d\n",
2977 desc
->out_edge
->src
->index
,
2978 desc
->out_edge
->dest
->index
);
2979 if (desc
->assumptions
)
2981 fprintf (dump_file
, " assumptions: ");
2982 print_rtl (dump_file
, desc
->assumptions
);
2983 fprintf (dump_file
, "\n");
2985 if (desc
->noloop_assumptions
)
2987 fprintf (dump_file
, " does not roll if: ");
2988 print_rtl (dump_file
, desc
->noloop_assumptions
);
2989 fprintf (dump_file
, "\n");
2993 fprintf (dump_file
, " infinite if: ");
2994 print_rtl (dump_file
, desc
->infinite
);
2995 fprintf (dump_file
, "\n");
2998 fprintf (dump_file
, " number of iterations: ");
2999 print_rtl (dump_file
, desc
->niter_expr
);
3000 fprintf (dump_file
, "\n");
3002 fprintf (dump_file
, " upper bound: %li\n",
3003 (long)max_loop_iterations_int (loop
));
3004 fprintf (dump_file
, " realistic bound: %li\n",
3005 (long)estimated_loop_iterations_int (loop
));
3008 fprintf (dump_file
, "Loop %d is not simple.\n", loop
->num
);
3014 /* Creates a simple loop description of LOOP if it was not computed
3018 get_simple_loop_desc (struct loop
*loop
)
3020 struct niter_desc
*desc
= simple_loop_desc (loop
);
3025 /* At least desc->infinite is not always initialized by
3026 find_simple_loop_exit. */
3027 desc
= XCNEW (struct niter_desc
);
3028 iv_analysis_loop_init (loop
);
3029 find_simple_exit (loop
, desc
);
3032 if (desc
->simple_p
&& (desc
->assumptions
|| desc
->infinite
))
3034 const char *wording
;
3036 /* Assume that no overflow happens and that the loop is finite.
3037 We already warned at the tree level if we ran optimizations there. */
3038 if (!flag_tree_loop_optimize
&& warn_unsafe_loop_optimizations
)
3043 flag_unsafe_loop_optimizations
3044 ? N_("assuming that the loop is not infinite")
3045 : N_("cannot optimize possibly infinite loops");
3046 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3049 if (desc
->assumptions
)
3052 flag_unsafe_loop_optimizations
3053 ? N_("assuming that the loop counter does not overflow")
3054 : N_("cannot optimize loop, the loop counter may overflow");
3055 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3060 if (flag_unsafe_loop_optimizations
)
3062 desc
->assumptions
= NULL_RTX
;
3063 desc
->infinite
= NULL_RTX
;
3070 /* Releases simple loop description for LOOP. */
3073 free_simple_loop_desc (struct loop
*loop
)
3075 struct niter_desc
*desc
= simple_loop_desc (loop
);