1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 #include "tree.h"/* FIXME: For hashing DEBUG_EXPR & friends. */
29 #include "hard-reg-set.h"
31 #include "insn-config.h"
35 #include "diagnostic-core.h"
42 #include "alloc-pool.h"
46 /* A list of cselib_val structures. */
48 struct elt_list
*next
;
52 static bool cselib_record_memory
;
53 static bool cselib_preserve_constants
;
54 static bool cselib_any_perm_equivs
;
55 static int entry_and_rtx_equal_p (const void *, const void *);
56 static hashval_t
get_value_hash (const void *);
57 static struct elt_list
*new_elt_list (struct elt_list
*, cselib_val
*);
58 static void new_elt_loc_list (cselib_val
*, rtx
);
59 static void unchain_one_value (cselib_val
*);
60 static void unchain_one_elt_list (struct elt_list
**);
61 static void unchain_one_elt_loc_list (struct elt_loc_list
**);
62 static int discard_useless_locs (void **, void *);
63 static int discard_useless_values (void **, void *);
64 static void remove_useless_values (void);
65 static int rtx_equal_for_cselib_1 (rtx
, rtx
, enum machine_mode
);
66 static unsigned int cselib_hash_rtx (rtx
, int, enum machine_mode
);
67 static cselib_val
*new_cselib_val (unsigned int, enum machine_mode
, rtx
);
68 static void add_mem_for_addr (cselib_val
*, cselib_val
*, rtx
);
69 static cselib_val
*cselib_lookup_mem (rtx
, int);
70 static void cselib_invalidate_regno (unsigned int, enum machine_mode
);
71 static void cselib_invalidate_mem (rtx
);
72 static void cselib_record_set (rtx
, cselib_val
*, cselib_val
*);
73 static void cselib_record_sets (rtx
);
75 struct expand_value_data
78 cselib_expand_callback callback
;
83 static rtx
cselib_expand_value_rtx_1 (rtx
, struct expand_value_data
*, int);
85 /* There are three ways in which cselib can look up an rtx:
86 - for a REG, the reg_values table (which is indexed by regno) is used
87 - for a MEM, we recursively look up its address and then follow the
88 addr_list of that value
89 - for everything else, we compute a hash value and go through the hash
90 table. Since different rtx's can still have the same hash value,
91 this involves walking the table entries for a given value and comparing
92 the locations of the entries with the rtx we are looking up. */
94 /* A table that enables us to look up elts by their value. */
95 static htab_t cselib_hash_table
;
97 /* This is a global so we don't have to pass this through every function.
98 It is used in new_elt_loc_list to set SETTING_INSN. */
99 static rtx cselib_current_insn
;
101 /* The unique id that the next create value will take. */
102 static unsigned int next_uid
;
104 /* The number of registers we had when the varrays were last resized. */
105 static unsigned int cselib_nregs
;
107 /* Count values without known locations, or with only locations that
108 wouldn't have been known except for debug insns. Whenever this
109 grows too big, we remove these useless values from the table.
111 Counting values with only debug values is a bit tricky. We don't
112 want to increment n_useless_values when we create a value for a
113 debug insn, for this would get n_useless_values out of sync, but we
114 want increment it if all locs in the list that were ever referenced
115 in nondebug insns are removed from the list.
117 In the general case, once we do that, we'd have to stop accepting
118 nondebug expressions in the loc list, to avoid having two values
119 equivalent that, without debug insns, would have been made into
120 separate values. However, because debug insns never introduce
121 equivalences themselves (no assignments), the only means for
122 growing loc lists is through nondebug assignments. If the locs
123 also happen to be referenced in debug insns, it will work just fine.
125 A consequence of this is that there's at most one debug-only loc in
126 each loc list. If we keep it in the first entry, testing whether
127 we have a debug-only loc list takes O(1).
129 Furthermore, since any additional entry in a loc list containing a
130 debug loc would have to come from an assignment (nondebug) that
131 references both the initial debug loc and the newly-equivalent loc,
132 the initial debug loc would be promoted to a nondebug loc, and the
133 loc list would not contain debug locs any more.
135 So the only case we have to be careful with in order to keep
136 n_useless_values in sync between debug and nondebug compilations is
137 to avoid incrementing n_useless_values when removing the single loc
138 from a value that turns out to not appear outside debug values. We
139 increment n_useless_debug_values instead, and leave such values
140 alone until, for other reasons, we garbage-collect useless
142 static int n_useless_values
;
143 static int n_useless_debug_values
;
145 /* Count values whose locs have been taken exclusively from debug
146 insns for the entire life of the value. */
147 static int n_debug_values
;
149 /* Number of useless values before we remove them from the hash table. */
150 #define MAX_USELESS_VALUES 32
152 /* This table maps from register number to values. It does not
153 contain pointers to cselib_val structures, but rather elt_lists.
154 The purpose is to be able to refer to the same register in
155 different modes. The first element of the list defines the mode in
156 which the register was set; if the mode is unknown or the value is
157 no longer valid in that mode, ELT will be NULL for the first
159 static struct elt_list
**reg_values
;
160 static unsigned int reg_values_size
;
161 #define REG_VALUES(i) reg_values[i]
163 /* The largest number of hard regs used by any entry added to the
164 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
165 static unsigned int max_value_regs
;
167 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
168 in cselib_clear_table() for fast emptying. */
169 static unsigned int *used_regs
;
170 static unsigned int n_used_regs
;
172 /* We pass this to cselib_invalidate_mem to invalidate all of
173 memory for a non-const call instruction. */
174 static GTY(()) rtx callmem
;
176 /* Set by discard_useless_locs if it deleted the last location of any
178 static int values_became_useless
;
180 /* Used as stop element of the containing_mem list so we can check
181 presence in the list by checking the next pointer. */
182 static cselib_val dummy_val
;
184 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
185 that is constant through the whole function and should never be
187 static cselib_val
*cfa_base_preserved_val
;
188 static unsigned int cfa_base_preserved_regno
= INVALID_REGNUM
;
190 /* Used to list all values that contain memory reference.
191 May or may not contain the useless values - the list is compacted
192 each time memory is invalidated. */
193 static cselib_val
*first_containing_mem
= &dummy_val
;
194 static alloc_pool elt_loc_list_pool
, elt_list_pool
, cselib_val_pool
, value_pool
;
196 /* If nonnull, cselib will call this function before freeing useless
197 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
198 void (*cselib_discard_hook
) (cselib_val
*);
200 /* If nonnull, cselib will call this function before recording sets or
201 even clobbering outputs of INSN. All the recorded sets will be
202 represented in the array sets[n_sets]. new_val_min can be used to
203 tell whether values present in sets are introduced by this
205 void (*cselib_record_sets_hook
) (rtx insn
, struct cselib_set
*sets
,
208 #define PRESERVED_VALUE_P(RTX) \
209 (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
211 #define SP_BASED_VALUE_P(RTX) \
212 (RTL_FLAG_CHECK1("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
216 /* Allocate a struct elt_list and fill in its two elements with the
219 static inline struct elt_list
*
220 new_elt_list (struct elt_list
*next
, cselib_val
*elt
)
223 el
= (struct elt_list
*) pool_alloc (elt_list_pool
);
229 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
233 new_elt_loc_list (cselib_val
*val
, rtx loc
)
235 struct elt_loc_list
*el
, *next
= val
->locs
;
237 gcc_checking_assert (!next
|| !next
->setting_insn
238 || !DEBUG_INSN_P (next
->setting_insn
)
239 || cselib_current_insn
== next
->setting_insn
);
241 /* If we're creating the first loc in a debug insn context, we've
242 just created a debug value. Count it. */
243 if (!next
&& cselib_current_insn
&& DEBUG_INSN_P (cselib_current_insn
))
246 val
= canonical_cselib_val (val
);
249 if (GET_CODE (loc
) == VALUE
)
251 loc
= canonical_cselib_val (CSELIB_VAL_PTR (loc
))->val_rtx
;
253 gcc_checking_assert (PRESERVED_VALUE_P (loc
)
254 == PRESERVED_VALUE_P (val
->val_rtx
));
256 if (val
->val_rtx
== loc
)
258 else if (val
->uid
> CSELIB_VAL_PTR (loc
)->uid
)
260 /* Reverse the insertion. */
261 new_elt_loc_list (CSELIB_VAL_PTR (loc
), val
->val_rtx
);
265 gcc_checking_assert (val
->uid
< CSELIB_VAL_PTR (loc
)->uid
);
267 if (CSELIB_VAL_PTR (loc
)->locs
)
269 /* Bring all locs from LOC to VAL. */
270 for (el
= CSELIB_VAL_PTR (loc
)->locs
; el
->next
; el
= el
->next
)
272 /* Adjust values that have LOC as canonical so that VAL
273 becomes their canonical. */
274 if (el
->loc
&& GET_CODE (el
->loc
) == VALUE
)
276 gcc_checking_assert (CSELIB_VAL_PTR (el
->loc
)->locs
->loc
278 CSELIB_VAL_PTR (el
->loc
)->locs
->loc
= val
->val_rtx
;
281 el
->next
= val
->locs
;
282 next
= val
->locs
= CSELIB_VAL_PTR (loc
)->locs
;
285 if (CSELIB_VAL_PTR (loc
)->addr_list
)
287 /* Bring in addr_list into canonical node. */
288 struct elt_list
*last
= CSELIB_VAL_PTR (loc
)->addr_list
;
291 last
->next
= val
->addr_list
;
292 val
->addr_list
= CSELIB_VAL_PTR (loc
)->addr_list
;
293 CSELIB_VAL_PTR (loc
)->addr_list
= NULL
;
296 if (CSELIB_VAL_PTR (loc
)->next_containing_mem
!= NULL
297 && val
->next_containing_mem
== NULL
)
299 /* Add VAL to the containing_mem list after LOC. LOC will
300 be removed when we notice it doesn't contain any
302 val
->next_containing_mem
= CSELIB_VAL_PTR (loc
)->next_containing_mem
;
303 CSELIB_VAL_PTR (loc
)->next_containing_mem
= val
;
306 /* Chain LOC back to VAL. */
307 el
= (struct elt_loc_list
*) pool_alloc (elt_loc_list_pool
);
308 el
->loc
= val
->val_rtx
;
309 el
->setting_insn
= cselib_current_insn
;
311 CSELIB_VAL_PTR (loc
)->locs
= el
;
314 el
= (struct elt_loc_list
*) pool_alloc (elt_loc_list_pool
);
316 el
->setting_insn
= cselib_current_insn
;
321 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
322 originating from a debug insn, maintaining the debug values
326 promote_debug_loc (struct elt_loc_list
*l
)
328 if (l
&& l
->setting_insn
&& DEBUG_INSN_P (l
->setting_insn
)
329 && (!cselib_current_insn
|| !DEBUG_INSN_P (cselib_current_insn
)))
332 l
->setting_insn
= cselib_current_insn
;
333 if (cselib_preserve_constants
&& l
->next
)
335 gcc_assert (l
->next
->setting_insn
336 && DEBUG_INSN_P (l
->next
->setting_insn
)
338 l
->next
->setting_insn
= cselib_current_insn
;
341 gcc_assert (!l
->next
);
345 /* The elt_list at *PL is no longer needed. Unchain it and free its
349 unchain_one_elt_list (struct elt_list
**pl
)
351 struct elt_list
*l
= *pl
;
354 pool_free (elt_list_pool
, l
);
357 /* Likewise for elt_loc_lists. */
360 unchain_one_elt_loc_list (struct elt_loc_list
**pl
)
362 struct elt_loc_list
*l
= *pl
;
365 pool_free (elt_loc_list_pool
, l
);
368 /* Likewise for cselib_vals. This also frees the addr_list associated with
372 unchain_one_value (cselib_val
*v
)
375 unchain_one_elt_list (&v
->addr_list
);
377 pool_free (cselib_val_pool
, v
);
380 /* Remove all entries from the hash table. Also used during
384 cselib_clear_table (void)
386 cselib_reset_table (1);
389 /* Return TRUE if V is a constant, a function invariant or a VALUE
390 equivalence; FALSE otherwise. */
393 invariant_or_equiv_p (cselib_val
*v
)
395 struct elt_loc_list
*l
;
397 if (v
== cfa_base_preserved_val
)
400 /* Keep VALUE equivalences around. */
401 for (l
= v
->locs
; l
; l
= l
->next
)
402 if (GET_CODE (l
->loc
) == VALUE
)
406 && v
->locs
->next
== NULL
)
408 if (CONSTANT_P (v
->locs
->loc
)
409 && (GET_CODE (v
->locs
->loc
) != CONST
410 || !references_value_p (v
->locs
->loc
, 0)))
412 /* Although a debug expr may be bound to different expressions,
413 we can preserve it as if it was constant, to get unification
414 and proper merging within var-tracking. */
415 if (GET_CODE (v
->locs
->loc
) == DEBUG_EXPR
416 || GET_CODE (v
->locs
->loc
) == DEBUG_IMPLICIT_PTR
417 || GET_CODE (v
->locs
->loc
) == ENTRY_VALUE
418 || GET_CODE (v
->locs
->loc
) == DEBUG_PARAMETER_REF
)
421 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
422 if (GET_CODE (v
->locs
->loc
) == PLUS
423 && CONST_INT_P (XEXP (v
->locs
->loc
, 1))
424 && GET_CODE (XEXP (v
->locs
->loc
, 0)) == VALUE
425 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v
->locs
->loc
, 0))))
432 /* Remove from hash table all VALUEs except constants, function
433 invariants and VALUE equivalences. */
436 preserve_constants_and_equivs (void **x
, void *info ATTRIBUTE_UNUSED
)
438 cselib_val
*v
= (cselib_val
*)*x
;
440 if (!invariant_or_equiv_p (v
))
441 htab_clear_slot (cselib_hash_table
, x
);
445 /* Remove all entries from the hash table, arranging for the next
446 value to be numbered NUM. */
449 cselib_reset_table (unsigned int num
)
455 if (cfa_base_preserved_val
)
457 unsigned int regno
= cfa_base_preserved_regno
;
458 unsigned int new_used_regs
= 0;
459 for (i
= 0; i
< n_used_regs
; i
++)
460 if (used_regs
[i
] == regno
)
466 REG_VALUES (used_regs
[i
]) = 0;
467 gcc_assert (new_used_regs
== 1);
468 n_used_regs
= new_used_regs
;
469 used_regs
[0] = regno
;
471 = hard_regno_nregs
[regno
][GET_MODE (cfa_base_preserved_val
->locs
->loc
)];
475 for (i
= 0; i
< n_used_regs
; i
++)
476 REG_VALUES (used_regs
[i
]) = 0;
480 if (cselib_preserve_constants
)
481 htab_traverse (cselib_hash_table
, preserve_constants_and_equivs
, NULL
);
484 htab_empty (cselib_hash_table
);
485 gcc_checking_assert (!cselib_any_perm_equivs
);
488 n_useless_values
= 0;
489 n_useless_debug_values
= 0;
494 first_containing_mem
= &dummy_val
;
497 /* Return the number of the next value that will be generated. */
500 cselib_get_next_uid (void)
505 /* See the documentation of cselib_find_slot below. */
506 static enum machine_mode find_slot_memmode
;
508 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
509 INSERTing if requested. When X is part of the address of a MEM,
510 MEMMODE should specify the mode of the MEM. While searching the
511 table, MEMMODE is held in FIND_SLOT_MEMMODE, so that autoinc RTXs
512 in X can be resolved. */
515 cselib_find_slot (rtx x
, hashval_t hash
, enum insert_option insert
,
516 enum machine_mode memmode
)
519 find_slot_memmode
= memmode
;
520 slot
= htab_find_slot_with_hash (cselib_hash_table
, x
, hash
, insert
);
521 find_slot_memmode
= VOIDmode
;
525 /* The equality test for our hash table. The first argument ENTRY is a table
526 element (i.e. a cselib_val), while the second arg X is an rtx. We know
527 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
528 CONST of an appropriate mode. */
531 entry_and_rtx_equal_p (const void *entry
, const void *x_arg
)
533 struct elt_loc_list
*l
;
534 const cselib_val
*const v
= (const cselib_val
*) entry
;
535 rtx x
= CONST_CAST_RTX ((const_rtx
)x_arg
);
536 enum machine_mode mode
= GET_MODE (x
);
538 gcc_assert (!CONST_SCALAR_INT_P (x
) && GET_CODE (x
) != CONST_FIXED
);
540 if (mode
!= GET_MODE (v
->val_rtx
))
543 /* Unwrap X if necessary. */
544 if (GET_CODE (x
) == CONST
545 && (CONST_SCALAR_INT_P (XEXP (x
, 0))
546 || GET_CODE (XEXP (x
, 0)) == CONST_FIXED
))
549 /* We don't guarantee that distinct rtx's have different hash values,
550 so we need to do a comparison. */
551 for (l
= v
->locs
; l
; l
= l
->next
)
552 if (rtx_equal_for_cselib_1 (l
->loc
, x
, find_slot_memmode
))
554 promote_debug_loc (l
);
561 /* The hash function for our hash table. The value is always computed with
562 cselib_hash_rtx when adding an element; this function just extracts the
563 hash value from a cselib_val structure. */
566 get_value_hash (const void *entry
)
568 const cselib_val
*const v
= (const cselib_val
*) entry
;
572 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
573 only return true for values which point to a cselib_val whose value
574 element has been set to zero, which implies the cselib_val will be
578 references_value_p (const_rtx x
, int only_useless
)
580 const enum rtx_code code
= GET_CODE (x
);
581 const char *fmt
= GET_RTX_FORMAT (code
);
584 if (GET_CODE (x
) == VALUE
585 && (! only_useless
||
586 (CSELIB_VAL_PTR (x
)->locs
== 0 && !PRESERVED_VALUE_P (x
))))
589 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
591 if (fmt
[i
] == 'e' && references_value_p (XEXP (x
, i
), only_useless
))
593 else if (fmt
[i
] == 'E')
594 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
595 if (references_value_p (XVECEXP (x
, i
, j
), only_useless
))
602 /* For all locations found in X, delete locations that reference useless
603 values (i.e. values without any location). Called through
607 discard_useless_locs (void **x
, void *info ATTRIBUTE_UNUSED
)
609 cselib_val
*v
= (cselib_val
*)*x
;
610 struct elt_loc_list
**p
= &v
->locs
;
611 bool had_locs
= v
->locs
!= NULL
;
612 rtx setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
616 if (references_value_p ((*p
)->loc
, 1))
617 unchain_one_elt_loc_list (p
);
622 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
624 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
625 n_useless_debug_values
++;
628 values_became_useless
= 1;
633 /* If X is a value with no locations, remove it from the hashtable. */
636 discard_useless_values (void **x
, void *info ATTRIBUTE_UNUSED
)
638 cselib_val
*v
= (cselib_val
*)*x
;
640 if (v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
642 if (cselib_discard_hook
)
643 cselib_discard_hook (v
);
645 CSELIB_VAL_PTR (v
->val_rtx
) = NULL
;
646 htab_clear_slot (cselib_hash_table
, x
);
647 unchain_one_value (v
);
654 /* Clean out useless values (i.e. those which no longer have locations
655 associated with them) from the hash table. */
658 remove_useless_values (void)
662 /* First pass: eliminate locations that reference the value. That in
663 turn can make more values useless. */
666 values_became_useless
= 0;
667 htab_traverse (cselib_hash_table
, discard_useless_locs
, 0);
669 while (values_became_useless
);
671 /* Second pass: actually remove the values. */
673 p
= &first_containing_mem
;
674 for (v
= *p
; v
!= &dummy_val
; v
= v
->next_containing_mem
)
675 if (v
->locs
&& v
== canonical_cselib_val (v
))
678 p
= &(*p
)->next_containing_mem
;
682 n_useless_values
+= n_useless_debug_values
;
683 n_debug_values
-= n_useless_debug_values
;
684 n_useless_debug_values
= 0;
686 htab_traverse (cselib_hash_table
, discard_useless_values
, 0);
688 gcc_assert (!n_useless_values
);
691 /* Arrange for a value to not be removed from the hash table even if
692 it becomes useless. */
695 cselib_preserve_value (cselib_val
*v
)
697 PRESERVED_VALUE_P (v
->val_rtx
) = 1;
700 /* Test whether a value is preserved. */
703 cselib_preserved_value_p (cselib_val
*v
)
705 return PRESERVED_VALUE_P (v
->val_rtx
);
708 /* Arrange for a REG value to be assumed constant through the whole function,
709 never invalidated and preserved across cselib_reset_table calls. */
712 cselib_preserve_cfa_base_value (cselib_val
*v
, unsigned int regno
)
714 if (cselib_preserve_constants
716 && REG_P (v
->locs
->loc
))
718 cfa_base_preserved_val
= v
;
719 cfa_base_preserved_regno
= regno
;
723 /* Clean all non-constant expressions in the hash table, but retain
727 cselib_preserve_only_values (void)
731 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
732 cselib_invalidate_regno (i
, reg_raw_mode
[i
]);
734 cselib_invalidate_mem (callmem
);
736 remove_useless_values ();
738 gcc_assert (first_containing_mem
== &dummy_val
);
741 /* Arrange for a value to be marked as based on stack pointer
742 for find_base_term purposes. */
745 cselib_set_value_sp_based (cselib_val
*v
)
747 SP_BASED_VALUE_P (v
->val_rtx
) = 1;
750 /* Test whether a value is based on stack pointer for
751 find_base_term purposes. */
754 cselib_sp_based_value_p (cselib_val
*v
)
756 return SP_BASED_VALUE_P (v
->val_rtx
);
759 /* Return the mode in which a register was last set. If X is not a
760 register, return its mode. If the mode in which the register was
761 set is not known, or the value was already clobbered, return
765 cselib_reg_set_mode (const_rtx x
)
770 if (REG_VALUES (REGNO (x
)) == NULL
771 || REG_VALUES (REGNO (x
))->elt
== NULL
)
774 return GET_MODE (REG_VALUES (REGNO (x
))->elt
->val_rtx
);
777 /* Return nonzero if we can prove that X and Y contain the same value, taking
778 our gathered information into account. */
781 rtx_equal_for_cselib_p (rtx x
, rtx y
)
783 return rtx_equal_for_cselib_1 (x
, y
, VOIDmode
);
786 /* If x is a PLUS or an autoinc operation, expand the operation,
787 storing the offset, if any, in *OFF. */
790 autoinc_split (rtx x
, rtx
*off
, enum machine_mode memmode
)
792 switch (GET_CODE (x
))
799 if (memmode
== VOIDmode
)
802 *off
= GEN_INT (-GET_MODE_SIZE (memmode
));
807 if (memmode
== VOIDmode
)
810 *off
= GEN_INT (GET_MODE_SIZE (memmode
));
826 /* Return nonzero if we can prove that X and Y contain the same value,
827 taking our gathered information into account. MEMMODE holds the
828 mode of the enclosing MEM, if any, as required to deal with autoinc
829 addressing modes. If X and Y are not (known to be) part of
830 addresses, MEMMODE should be VOIDmode. */
833 rtx_equal_for_cselib_1 (rtx x
, rtx y
, enum machine_mode memmode
)
839 if (REG_P (x
) || MEM_P (x
))
841 cselib_val
*e
= cselib_lookup (x
, GET_MODE (x
), 0, memmode
);
847 if (REG_P (y
) || MEM_P (y
))
849 cselib_val
*e
= cselib_lookup (y
, GET_MODE (y
), 0, memmode
);
858 if (GET_CODE (x
) == VALUE
)
860 cselib_val
*e
= canonical_cselib_val (CSELIB_VAL_PTR (x
));
861 struct elt_loc_list
*l
;
863 if (GET_CODE (y
) == VALUE
)
864 return e
== canonical_cselib_val (CSELIB_VAL_PTR (y
));
866 for (l
= e
->locs
; l
; l
= l
->next
)
870 /* Avoid infinite recursion. We know we have the canonical
871 value, so we can just skip any values in the equivalence
873 if (REG_P (t
) || MEM_P (t
) || GET_CODE (t
) == VALUE
)
875 else if (rtx_equal_for_cselib_1 (t
, y
, memmode
))
881 else if (GET_CODE (y
) == VALUE
)
883 cselib_val
*e
= canonical_cselib_val (CSELIB_VAL_PTR (y
));
884 struct elt_loc_list
*l
;
886 for (l
= e
->locs
; l
; l
= l
->next
)
890 if (REG_P (t
) || MEM_P (t
) || GET_CODE (t
) == VALUE
)
892 else if (rtx_equal_for_cselib_1 (x
, t
, memmode
))
899 if (GET_MODE (x
) != GET_MODE (y
))
902 if (GET_CODE (x
) != GET_CODE (y
))
904 rtx xorig
= x
, yorig
= y
;
905 rtx xoff
= NULL
, yoff
= NULL
;
907 x
= autoinc_split (x
, &xoff
, memmode
);
908 y
= autoinc_split (y
, &yoff
, memmode
);
913 if (xoff
&& !rtx_equal_for_cselib_1 (xoff
, yoff
, memmode
))
916 /* Don't recurse if nothing changed. */
917 if (x
!= xorig
|| y
!= yorig
)
918 return rtx_equal_for_cselib_1 (x
, y
, memmode
);
923 /* These won't be handled correctly by the code below. */
924 switch (GET_CODE (x
))
931 case DEBUG_IMPLICIT_PTR
:
932 return DEBUG_IMPLICIT_PTR_DECL (x
)
933 == DEBUG_IMPLICIT_PTR_DECL (y
);
935 case DEBUG_PARAMETER_REF
:
936 return DEBUG_PARAMETER_REF_DECL (x
)
937 == DEBUG_PARAMETER_REF_DECL (y
);
940 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
941 use rtx_equal_for_cselib_1 to compare the operands. */
942 return rtx_equal_p (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
945 return XEXP (x
, 0) == XEXP (y
, 0);
948 /* We have to compare any autoinc operations in the addresses
949 using this MEM's mode. */
950 return rtx_equal_for_cselib_1 (XEXP (x
, 0), XEXP (y
, 0), GET_MODE (x
));
957 fmt
= GET_RTX_FORMAT (code
);
959 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
966 if (XWINT (x
, i
) != XWINT (y
, i
))
972 if (XINT (x
, i
) != XINT (y
, i
))
978 /* Two vectors must have the same length. */
979 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
982 /* And the corresponding elements must match. */
983 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
984 if (! rtx_equal_for_cselib_1 (XVECEXP (x
, i
, j
),
985 XVECEXP (y
, i
, j
), memmode
))
991 && targetm
.commutative_p (x
, UNKNOWN
)
992 && rtx_equal_for_cselib_1 (XEXP (x
, 1), XEXP (y
, 0), memmode
)
993 && rtx_equal_for_cselib_1 (XEXP (x
, 0), XEXP (y
, 1), memmode
))
995 if (! rtx_equal_for_cselib_1 (XEXP (x
, i
), XEXP (y
, i
), memmode
))
1001 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1006 /* These are just backpointers, so they don't matter. */
1013 /* It is believed that rtx's at this level will never
1014 contain anything but integers and other rtx's,
1015 except for within LABEL_REFs and SYMBOL_REFs. */
1023 /* We need to pass down the mode of constants through the hash table
1024 functions. For that purpose, wrap them in a CONST of the appropriate
1027 wrap_constant (enum machine_mode mode
, rtx x
)
1029 if ((!CONST_SCALAR_INT_P (x
)) && GET_CODE (x
) != CONST_FIXED
)
1031 gcc_assert (mode
!= VOIDmode
);
1032 return gen_rtx_CONST (mode
, x
);
1035 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
1036 For registers and memory locations, we look up their cselib_val structure
1037 and return its VALUE element.
1038 Possible reasons for return 0 are: the object is volatile, or we couldn't
1039 find a register or memory location in the table and CREATE is zero. If
1040 CREATE is nonzero, table elts are created for regs and mem.
1041 N.B. this hash function returns the same hash value for RTXes that
1042 differ only in the order of operands, thus it is suitable for comparisons
1043 that take commutativity into account.
1044 If we wanted to also support associative rules, we'd have to use a different
1045 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1046 MEMMODE indicates the mode of an enclosing MEM, and it's only
1047 used to compute autoinc values.
1048 We used to have a MODE argument for hashing for CONST_INTs, but that
1049 didn't make sense, since it caused spurious hash differences between
1050 (set (reg:SI 1) (const_int))
1051 (plus:SI (reg:SI 2) (reg:SI 1))
1053 (plus:SI (reg:SI 2) (const_int))
1054 If the mode is important in any context, it must be checked specifically
1055 in a comparison anyway, since relying on hash differences is unsafe. */
1058 cselib_hash_rtx (rtx x
, int create
, enum machine_mode memmode
)
1064 unsigned int hash
= 0;
1066 code
= GET_CODE (x
);
1067 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1072 e
= CSELIB_VAL_PTR (x
);
1077 e
= cselib_lookup (x
, GET_MODE (x
), create
, memmode
);
1084 hash
+= ((unsigned) DEBUG_EXPR
<< 7)
1085 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
));
1086 return hash
? hash
: (unsigned int) DEBUG_EXPR
;
1088 case DEBUG_IMPLICIT_PTR
:
1089 hash
+= ((unsigned) DEBUG_IMPLICIT_PTR
<< 7)
1090 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x
));
1091 return hash
? hash
: (unsigned int) DEBUG_IMPLICIT_PTR
;
1093 case DEBUG_PARAMETER_REF
:
1094 hash
+= ((unsigned) DEBUG_PARAMETER_REF
<< 7)
1095 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x
));
1096 return hash
? hash
: (unsigned int) DEBUG_PARAMETER_REF
;
1099 /* ENTRY_VALUEs are function invariant, thus try to avoid
1100 recursing on argument if ENTRY_VALUE is one of the
1101 forms emitted by expand_debug_expr, otherwise
1102 ENTRY_VALUE hash would depend on the current value
1103 in some register or memory. */
1104 if (REG_P (ENTRY_VALUE_EXP (x
)))
1105 hash
+= (unsigned int) REG
1106 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x
))
1107 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x
));
1108 else if (MEM_P (ENTRY_VALUE_EXP (x
))
1109 && REG_P (XEXP (ENTRY_VALUE_EXP (x
), 0)))
1110 hash
+= (unsigned int) MEM
1111 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x
), 0))
1112 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x
), 0));
1114 hash
+= cselib_hash_rtx (ENTRY_VALUE_EXP (x
), create
, memmode
);
1115 return hash
? hash
: (unsigned int) ENTRY_VALUE
;
1118 hash
+= ((unsigned) CONST_INT
<< 7) + INTVAL (x
);
1119 return hash
? hash
: (unsigned int) CONST_INT
;
1122 /* This is like the general case, except that it only counts
1123 the integers representing the constant. */
1124 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1125 if (GET_MODE (x
) != VOIDmode
)
1126 hash
+= real_hash (CONST_DOUBLE_REAL_VALUE (x
));
1128 hash
+= ((unsigned) CONST_DOUBLE_LOW (x
)
1129 + (unsigned) CONST_DOUBLE_HIGH (x
));
1130 return hash
? hash
: (unsigned int) CONST_DOUBLE
;
1133 hash
+= (unsigned int) code
+ (unsigned int) GET_MODE (x
);
1134 hash
+= fixed_hash (CONST_FIXED_VALUE (x
));
1135 return hash
? hash
: (unsigned int) CONST_FIXED
;
1142 units
= CONST_VECTOR_NUNITS (x
);
1144 for (i
= 0; i
< units
; ++i
)
1146 elt
= CONST_VECTOR_ELT (x
, i
);
1147 hash
+= cselib_hash_rtx (elt
, 0, memmode
);
1153 /* Assume there is only one rtx object for any given label. */
1155 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1156 differences and differences between each stage's debugging dumps. */
1157 hash
+= (((unsigned int) LABEL_REF
<< 7)
1158 + CODE_LABEL_NUMBER (XEXP (x
, 0)));
1159 return hash
? hash
: (unsigned int) LABEL_REF
;
1163 /* Don't hash on the symbol's address to avoid bootstrap differences.
1164 Different hash values may cause expressions to be recorded in
1165 different orders and thus different registers to be used in the
1166 final assembler. This also avoids differences in the dump files
1167 between various stages. */
1169 const unsigned char *p
= (const unsigned char *) XSTR (x
, 0);
1172 h
+= (h
<< 7) + *p
++; /* ??? revisit */
1174 hash
+= ((unsigned int) SYMBOL_REF
<< 7) + h
;
1175 return hash
? hash
: (unsigned int) SYMBOL_REF
;
1180 /* We can't compute these without knowing the MEM mode. */
1181 gcc_assert (memmode
!= VOIDmode
);
1182 i
= GET_MODE_SIZE (memmode
);
1183 if (code
== PRE_DEC
)
1185 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1186 like (mem:MEMMODE (plus (reg) (const_int I))). */
1187 hash
+= (unsigned) PLUS
- (unsigned)code
1188 + cselib_hash_rtx (XEXP (x
, 0), create
, memmode
)
1189 + cselib_hash_rtx (GEN_INT (i
), create
, memmode
);
1190 return hash
? hash
: 1 + (unsigned) PLUS
;
1193 gcc_assert (memmode
!= VOIDmode
);
1194 return cselib_hash_rtx (XEXP (x
, 1), create
, memmode
);
1199 gcc_assert (memmode
!= VOIDmode
);
1200 return cselib_hash_rtx (XEXP (x
, 0), create
, memmode
);
1205 case UNSPEC_VOLATILE
:
1209 if (MEM_VOLATILE_P (x
))
1218 i
= GET_RTX_LENGTH (code
) - 1;
1219 fmt
= GET_RTX_FORMAT (code
);
1226 rtx tem
= XEXP (x
, i
);
1227 unsigned int tem_hash
= cselib_hash_rtx (tem
, create
, memmode
);
1236 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1238 unsigned int tem_hash
1239 = cselib_hash_rtx (XVECEXP (x
, i
, j
), create
, memmode
);
1250 const unsigned char *p
= (const unsigned char *) XSTR (x
, i
);
1259 hash
+= XINT (x
, i
);
1272 return hash
? hash
: 1 + (unsigned int) GET_CODE (x
);
1275 /* Create a new value structure for VALUE and initialize it. The mode of the
1278 static inline cselib_val
*
1279 new_cselib_val (unsigned int hash
, enum machine_mode mode
, rtx x
)
1281 cselib_val
*e
= (cselib_val
*) pool_alloc (cselib_val_pool
);
1284 gcc_assert (next_uid
);
1287 e
->uid
= next_uid
++;
1288 /* We use an alloc pool to allocate this RTL construct because it
1289 accounts for about 8% of the overall memory usage. We know
1290 precisely when we can have VALUE RTXen (when cselib is active)
1291 so we don't need to put them in garbage collected memory.
1292 ??? Why should a VALUE be an RTX in the first place? */
1293 e
->val_rtx
= (rtx
) pool_alloc (value_pool
);
1294 memset (e
->val_rtx
, 0, RTX_HDR_SIZE
);
1295 PUT_CODE (e
->val_rtx
, VALUE
);
1296 PUT_MODE (e
->val_rtx
, mode
);
1297 CSELIB_VAL_PTR (e
->val_rtx
) = e
;
1300 e
->next_containing_mem
= 0;
1302 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1304 fprintf (dump_file
, "cselib value %u:%u ", e
->uid
, hash
);
1305 if (flag_dump_noaddr
|| flag_dump_unnumbered
)
1306 fputs ("# ", dump_file
);
1308 fprintf (dump_file
, "%p ", (void*)e
);
1309 print_rtl_single (dump_file
, x
);
1310 fputc ('\n', dump_file
);
1316 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1317 contains the data at this address. X is a MEM that represents the
1318 value. Update the two value structures to represent this situation. */
1321 add_mem_for_addr (cselib_val
*addr_elt
, cselib_val
*mem_elt
, rtx x
)
1323 struct elt_loc_list
*l
;
1325 addr_elt
= canonical_cselib_val (addr_elt
);
1326 mem_elt
= canonical_cselib_val (mem_elt
);
1328 /* Avoid duplicates. */
1329 for (l
= mem_elt
->locs
; l
; l
= l
->next
)
1331 && CSELIB_VAL_PTR (XEXP (l
->loc
, 0)) == addr_elt
)
1333 promote_debug_loc (l
);
1337 addr_elt
->addr_list
= new_elt_list (addr_elt
->addr_list
, mem_elt
);
1338 new_elt_loc_list (mem_elt
,
1339 replace_equiv_address_nv (x
, addr_elt
->val_rtx
));
1340 if (mem_elt
->next_containing_mem
== NULL
)
1342 mem_elt
->next_containing_mem
= first_containing_mem
;
1343 first_containing_mem
= mem_elt
;
1347 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1348 If CREATE, make a new one if we haven't seen it before. */
1351 cselib_lookup_mem (rtx x
, int create
)
1353 enum machine_mode mode
= GET_MODE (x
);
1354 enum machine_mode addr_mode
;
1357 cselib_val
*mem_elt
;
1360 if (MEM_VOLATILE_P (x
) || mode
== BLKmode
1361 || !cselib_record_memory
1362 || (FLOAT_MODE_P (mode
) && flag_float_store
))
1365 addr_mode
= GET_MODE (XEXP (x
, 0));
1366 if (addr_mode
== VOIDmode
)
1369 /* Look up the value for the address. */
1370 addr
= cselib_lookup (XEXP (x
, 0), addr_mode
, create
, mode
);
1374 addr
= canonical_cselib_val (addr
);
1375 /* Find a value that describes a value of our mode at that address. */
1376 for (l
= addr
->addr_list
; l
; l
= l
->next
)
1377 if (GET_MODE (l
->elt
->val_rtx
) == mode
)
1379 promote_debug_loc (l
->elt
->locs
);
1386 mem_elt
= new_cselib_val (next_uid
, mode
, x
);
1387 add_mem_for_addr (addr
, mem_elt
, x
);
1388 slot
= cselib_find_slot (wrap_constant (mode
, x
), mem_elt
->hash
,
1394 /* Search through the possible substitutions in P. We prefer a non reg
1395 substitution because this allows us to expand the tree further. If
1396 we find, just a reg, take the lowest regno. There may be several
1397 non-reg results, we just take the first one because they will all
1398 expand to the same place. */
1401 expand_loc (struct elt_loc_list
*p
, struct expand_value_data
*evd
,
1404 rtx reg_result
= NULL
;
1405 unsigned int regno
= UINT_MAX
;
1406 struct elt_loc_list
*p_in
= p
;
1408 for (; p
; p
= p
->next
)
1410 /* Return these right away to avoid returning stack pointer based
1411 expressions for frame pointer and vice versa, which is something
1412 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1413 for more details. */
1415 && (REGNO (p
->loc
) == STACK_POINTER_REGNUM
1416 || REGNO (p
->loc
) == FRAME_POINTER_REGNUM
1417 || REGNO (p
->loc
) == HARD_FRAME_POINTER_REGNUM
1418 || REGNO (p
->loc
) == cfa_base_preserved_regno
))
1420 /* Avoid infinite recursion trying to expand a reg into a
1422 if ((REG_P (p
->loc
))
1423 && (REGNO (p
->loc
) < regno
)
1424 && !bitmap_bit_p (evd
->regs_active
, REGNO (p
->loc
)))
1426 reg_result
= p
->loc
;
1427 regno
= REGNO (p
->loc
);
1429 /* Avoid infinite recursion and do not try to expand the
1431 else if (GET_CODE (p
->loc
) == VALUE
1432 && CSELIB_VAL_PTR (p
->loc
)->locs
== p_in
)
1434 else if (!REG_P (p
->loc
))
1437 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1439 print_inline_rtx (dump_file
, p
->loc
, 0);
1440 fprintf (dump_file
, "\n");
1442 if (GET_CODE (p
->loc
) == LO_SUM
1443 && GET_CODE (XEXP (p
->loc
, 1)) == SYMBOL_REF
1445 && (note
= find_reg_note (p
->setting_insn
, REG_EQUAL
, NULL_RTX
))
1446 && XEXP (note
, 0) == XEXP (p
->loc
, 1))
1447 return XEXP (p
->loc
, 1);
1448 result
= cselib_expand_value_rtx_1 (p
->loc
, evd
, max_depth
- 1);
1455 if (regno
!= UINT_MAX
)
1458 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1459 fprintf (dump_file
, "r%d\n", regno
);
1461 result
= cselib_expand_value_rtx_1 (reg_result
, evd
, max_depth
- 1);
1466 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1470 print_inline_rtx (dump_file
, reg_result
, 0);
1471 fprintf (dump_file
, "\n");
1474 fprintf (dump_file
, "NULL\n");
1480 /* Forward substitute and expand an expression out to its roots.
1481 This is the opposite of common subexpression. Because local value
1482 numbering is such a weak optimization, the expanded expression is
1483 pretty much unique (not from a pointer equals point of view but
1484 from a tree shape point of view.
1486 This function returns NULL if the expansion fails. The expansion
1487 will fail if there is no value number for one of the operands or if
1488 one of the operands has been overwritten between the current insn
1489 and the beginning of the basic block. For instance x has no
1495 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1496 It is clear on return. */
1499 cselib_expand_value_rtx (rtx orig
, bitmap regs_active
, int max_depth
)
1501 struct expand_value_data evd
;
1503 evd
.regs_active
= regs_active
;
1504 evd
.callback
= NULL
;
1505 evd
.callback_arg
= NULL
;
1508 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
);
1511 /* Same as cselib_expand_value_rtx, but using a callback to try to
1512 resolve some expressions. The CB function should return ORIG if it
1513 can't or does not want to deal with a certain RTX. Any other
1514 return value, including NULL, will be used as the expansion for
1515 VALUE, without any further changes. */
1518 cselib_expand_value_rtx_cb (rtx orig
, bitmap regs_active
, int max_depth
,
1519 cselib_expand_callback cb
, void *data
)
1521 struct expand_value_data evd
;
1523 evd
.regs_active
= regs_active
;
1525 evd
.callback_arg
= data
;
1528 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
);
1531 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1532 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1533 would return NULL or non-NULL, without allocating new rtx. */
1536 cselib_dummy_expand_value_rtx_cb (rtx orig
, bitmap regs_active
, int max_depth
,
1537 cselib_expand_callback cb
, void *data
)
1539 struct expand_value_data evd
;
1541 evd
.regs_active
= regs_active
;
1543 evd
.callback_arg
= data
;
1546 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
) != NULL
;
1549 /* Internal implementation of cselib_expand_value_rtx and
1550 cselib_expand_value_rtx_cb. */
1553 cselib_expand_value_rtx_1 (rtx orig
, struct expand_value_data
*evd
,
1559 const char *format_ptr
;
1560 enum machine_mode mode
;
1562 code
= GET_CODE (orig
);
1564 /* For the context of dse, if we end up expand into a huge tree, we
1565 will not have a useful address, so we might as well just give up
1574 struct elt_list
*l
= REG_VALUES (REGNO (orig
));
1576 if (l
&& l
->elt
== NULL
)
1578 for (; l
; l
= l
->next
)
1579 if (GET_MODE (l
->elt
->val_rtx
) == GET_MODE (orig
))
1582 unsigned regno
= REGNO (orig
);
1584 /* The only thing that we are not willing to do (this
1585 is requirement of dse and if others potential uses
1586 need this function we should add a parm to control
1587 it) is that we will not substitute the
1588 STACK_POINTER_REGNUM, FRAME_POINTER or the
1591 These expansions confuses the code that notices that
1592 stores into the frame go dead at the end of the
1593 function and that the frame is not effected by calls
1594 to subroutines. If you allow the
1595 STACK_POINTER_REGNUM substitution, then dse will
1596 think that parameter pushing also goes dead which is
1597 wrong. If you allow the FRAME_POINTER or the
1598 HARD_FRAME_POINTER then you lose the opportunity to
1599 make the frame assumptions. */
1600 if (regno
== STACK_POINTER_REGNUM
1601 || regno
== FRAME_POINTER_REGNUM
1602 || regno
== HARD_FRAME_POINTER_REGNUM
1603 || regno
== cfa_base_preserved_regno
)
1606 bitmap_set_bit (evd
->regs_active
, regno
);
1608 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1609 fprintf (dump_file
, "expanding: r%d into: ", regno
);
1611 result
= expand_loc (l
->elt
->locs
, evd
, max_depth
);
1612 bitmap_clear_bit (evd
->regs_active
, regno
);
1627 /* SCRATCH must be shared because they represent distinct values. */
1630 if (REG_P (XEXP (orig
, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig
, 0))))
1635 if (shared_const_p (orig
))
1645 subreg
= evd
->callback (orig
, evd
->regs_active
, max_depth
,
1651 subreg
= cselib_expand_value_rtx_1 (SUBREG_REG (orig
), evd
,
1655 scopy
= simplify_gen_subreg (GET_MODE (orig
), subreg
,
1656 GET_MODE (SUBREG_REG (orig
)),
1657 SUBREG_BYTE (orig
));
1659 || (GET_CODE (scopy
) == SUBREG
1660 && !REG_P (SUBREG_REG (scopy
))
1661 && !MEM_P (SUBREG_REG (scopy
))))
1671 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1673 fputs ("\nexpanding ", dump_file
);
1674 print_rtl_single (dump_file
, orig
);
1675 fputs (" into...", dump_file
);
1680 result
= evd
->callback (orig
, evd
->regs_active
, max_depth
,
1687 result
= expand_loc (CSELIB_VAL_PTR (orig
)->locs
, evd
, max_depth
);
1693 return evd
->callback (orig
, evd
->regs_active
, max_depth
,
1701 /* Copy the various flags, fields, and other information. We assume
1702 that all fields need copying, and then clear the fields that should
1703 not be copied. That is the sensible default behavior, and forces
1704 us to explicitly document why we are *not* copying a flag. */
1708 copy
= shallow_copy_rtx (orig
);
1710 format_ptr
= GET_RTX_FORMAT (code
);
1712 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
1713 switch (*format_ptr
++)
1716 if (XEXP (orig
, i
) != NULL
)
1718 rtx result
= cselib_expand_value_rtx_1 (XEXP (orig
, i
), evd
,
1723 XEXP (copy
, i
) = result
;
1729 if (XVEC (orig
, i
) != NULL
)
1732 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
1733 for (j
= 0; j
< XVECLEN (orig
, i
); j
++)
1735 rtx result
= cselib_expand_value_rtx_1 (XVECEXP (orig
, i
, j
),
1736 evd
, max_depth
- 1);
1740 XVECEXP (copy
, i
, j
) = result
;
1754 /* These are left unchanged. */
1764 mode
= GET_MODE (copy
);
1765 /* If an operand has been simplified into CONST_INT, which doesn't
1766 have a mode and the mode isn't derivable from whole rtx's mode,
1767 try simplify_*_operation first with mode from original's operand
1768 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1770 switch (GET_RTX_CLASS (code
))
1773 if (CONST_INT_P (XEXP (copy
, 0))
1774 && GET_MODE (XEXP (orig
, 0)) != VOIDmode
)
1776 scopy
= simplify_unary_operation (code
, mode
, XEXP (copy
, 0),
1777 GET_MODE (XEXP (orig
, 0)));
1782 case RTX_COMM_ARITH
:
1784 /* These expressions can derive operand modes from the whole rtx's mode. */
1787 case RTX_BITFIELD_OPS
:
1788 if (CONST_INT_P (XEXP (copy
, 0))
1789 && GET_MODE (XEXP (orig
, 0)) != VOIDmode
)
1791 scopy
= simplify_ternary_operation (code
, mode
,
1792 GET_MODE (XEXP (orig
, 0)),
1793 XEXP (copy
, 0), XEXP (copy
, 1),
1800 case RTX_COMM_COMPARE
:
1801 if (CONST_INT_P (XEXP (copy
, 0))
1802 && GET_MODE (XEXP (copy
, 1)) == VOIDmode
1803 && (GET_MODE (XEXP (orig
, 0)) != VOIDmode
1804 || GET_MODE (XEXP (orig
, 1)) != VOIDmode
))
1806 scopy
= simplify_relational_operation (code
, mode
,
1807 (GET_MODE (XEXP (orig
, 0))
1809 ? GET_MODE (XEXP (orig
, 0))
1810 : GET_MODE (XEXP (orig
, 1)),
1820 scopy
= simplify_rtx (copy
);
1826 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1827 with VALUE expressions. This way, it becomes independent of changes
1828 to registers and memory.
1829 X isn't actually modified; if modifications are needed, new rtl is
1830 allocated. However, the return value can share rtl with X.
1831 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1834 cselib_subst_to_values (rtx x
, enum machine_mode memmode
)
1836 enum rtx_code code
= GET_CODE (x
);
1837 const char *fmt
= GET_RTX_FORMAT (code
);
1846 l
= REG_VALUES (REGNO (x
));
1847 if (l
&& l
->elt
== NULL
)
1849 for (; l
; l
= l
->next
)
1850 if (GET_MODE (l
->elt
->val_rtx
) == GET_MODE (x
))
1851 return l
->elt
->val_rtx
;
1856 e
= cselib_lookup_mem (x
, 0);
1857 /* This used to happen for autoincrements, but we deal with them
1858 properly now. Remove the if stmt for the next release. */
1861 /* Assign a value that doesn't match any other. */
1862 e
= new_cselib_val (next_uid
, GET_MODE (x
), x
);
1867 e
= cselib_lookup (x
, GET_MODE (x
), 0, memmode
);
1877 gcc_assert (memmode
!= VOIDmode
);
1878 i
= GET_MODE_SIZE (memmode
);
1879 if (code
== PRE_DEC
)
1881 return cselib_subst_to_values (plus_constant (GET_MODE (x
),
1886 gcc_assert (memmode
!= VOIDmode
);
1887 return cselib_subst_to_values (XEXP (x
, 1), memmode
);
1892 gcc_assert (memmode
!= VOIDmode
);
1893 return cselib_subst_to_values (XEXP (x
, 0), memmode
);
1899 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1903 rtx t
= cselib_subst_to_values (XEXP (x
, i
), memmode
);
1905 if (t
!= XEXP (x
, i
))
1908 copy
= shallow_copy_rtx (x
);
1912 else if (fmt
[i
] == 'E')
1916 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1918 rtx t
= cselib_subst_to_values (XVECEXP (x
, i
, j
), memmode
);
1920 if (t
!= XVECEXP (x
, i
, j
))
1922 if (XVEC (x
, i
) == XVEC (copy
, i
))
1925 copy
= shallow_copy_rtx (x
);
1926 XVEC (copy
, i
) = shallow_copy_rtvec (XVEC (x
, i
));
1928 XVECEXP (copy
, i
, j
) = t
;
1937 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1940 cselib_subst_to_values_from_insn (rtx x
, enum machine_mode memmode
, rtx insn
)
1943 gcc_assert (!cselib_current_insn
);
1944 cselib_current_insn
= insn
;
1945 ret
= cselib_subst_to_values (x
, memmode
);
1946 cselib_current_insn
= NULL
;
1950 /* Look up the rtl expression X in our tables and return the value it
1951 has. If CREATE is zero, we return NULL if we don't know the value.
1952 Otherwise, we create a new one if possible, using mode MODE if X
1953 doesn't have a mode (i.e. because it's a constant). When X is part
1954 of an address, MEMMODE should be the mode of the enclosing MEM if
1955 we're tracking autoinc expressions. */
1958 cselib_lookup_1 (rtx x
, enum machine_mode mode
,
1959 int create
, enum machine_mode memmode
)
1963 unsigned int hashval
;
1965 if (GET_MODE (x
) != VOIDmode
)
1966 mode
= GET_MODE (x
);
1968 if (GET_CODE (x
) == VALUE
)
1969 return CSELIB_VAL_PTR (x
);
1974 unsigned int i
= REGNO (x
);
1977 if (l
&& l
->elt
== NULL
)
1979 for (; l
; l
= l
->next
)
1980 if (mode
== GET_MODE (l
->elt
->val_rtx
))
1982 promote_debug_loc (l
->elt
->locs
);
1989 if (i
< FIRST_PSEUDO_REGISTER
)
1991 unsigned int n
= hard_regno_nregs
[i
][mode
];
1993 if (n
> max_value_regs
)
1997 e
= new_cselib_val (next_uid
, GET_MODE (x
), x
);
1998 new_elt_loc_list (e
, x
);
1999 if (REG_VALUES (i
) == 0)
2001 /* Maintain the invariant that the first entry of
2002 REG_VALUES, if present, must be the value used to set the
2003 register, or NULL. */
2004 used_regs
[n_used_regs
++] = i
;
2005 REG_VALUES (i
) = new_elt_list (REG_VALUES (i
), NULL
);
2007 else if (cselib_preserve_constants
2008 && GET_MODE_CLASS (mode
) == MODE_INT
)
2010 /* During var-tracking, try harder to find equivalences
2011 for SUBREGs. If a setter sets say a DImode register
2012 and user uses that register only in SImode, add a lowpart
2014 struct elt_list
*lwider
= NULL
;
2016 if (l
&& l
->elt
== NULL
)
2018 for (; l
; l
= l
->next
)
2019 if (GET_MODE_CLASS (GET_MODE (l
->elt
->val_rtx
)) == MODE_INT
2020 && GET_MODE_SIZE (GET_MODE (l
->elt
->val_rtx
))
2021 > GET_MODE_SIZE (mode
)
2023 || GET_MODE_SIZE (GET_MODE (l
->elt
->val_rtx
))
2024 < GET_MODE_SIZE (GET_MODE (lwider
->elt
->val_rtx
))))
2026 struct elt_loc_list
*el
;
2027 if (i
< FIRST_PSEUDO_REGISTER
2028 && hard_regno_nregs
[i
][GET_MODE (l
->elt
->val_rtx
)] != 1)
2030 for (el
= l
->elt
->locs
; el
; el
= el
->next
)
2031 if (!REG_P (el
->loc
))
2038 rtx sub
= lowpart_subreg (mode
, lwider
->elt
->val_rtx
,
2039 GET_MODE (lwider
->elt
->val_rtx
));
2041 new_elt_loc_list (e
, sub
);
2044 REG_VALUES (i
)->next
= new_elt_list (REG_VALUES (i
)->next
, e
);
2045 slot
= cselib_find_slot (x
, e
->hash
, INSERT
, memmode
);
2051 return cselib_lookup_mem (x
, create
);
2053 hashval
= cselib_hash_rtx (x
, create
, memmode
);
2054 /* Can't even create if hashing is not possible. */
2058 slot
= cselib_find_slot (wrap_constant (mode
, x
), hashval
,
2059 create
? INSERT
: NO_INSERT
, memmode
);
2063 e
= (cselib_val
*) *slot
;
2067 e
= new_cselib_val (hashval
, mode
, x
);
2069 /* We have to fill the slot before calling cselib_subst_to_values:
2070 the hash table is inconsistent until we do so, and
2071 cselib_subst_to_values will need to do lookups. */
2073 new_elt_loc_list (e
, cselib_subst_to_values (x
, memmode
));
2077 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
2080 cselib_lookup_from_insn (rtx x
, enum machine_mode mode
,
2081 int create
, enum machine_mode memmode
, rtx insn
)
2085 gcc_assert (!cselib_current_insn
);
2086 cselib_current_insn
= insn
;
2088 ret
= cselib_lookup (x
, mode
, create
, memmode
);
2090 cselib_current_insn
= NULL
;
2095 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2096 maintains invariants related with debug insns. */
2099 cselib_lookup (rtx x
, enum machine_mode mode
,
2100 int create
, enum machine_mode memmode
)
2102 cselib_val
*ret
= cselib_lookup_1 (x
, mode
, create
, memmode
);
2104 /* ??? Should we return NULL if we're not to create an entry, the
2105 found loc is a debug loc and cselib_current_insn is not DEBUG?
2106 If so, we should also avoid converting val to non-DEBUG; probably
2107 easiest setting cselib_current_insn to NULL before the call
2110 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
2112 fputs ("cselib lookup ", dump_file
);
2113 print_inline_rtx (dump_file
, x
, 2);
2114 fprintf (dump_file
, " => %u:%u\n",
2116 ret
? ret
->hash
: 0);
2122 /* Invalidate any entries in reg_values that overlap REGNO. This is called
2123 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2124 is used to determine how many hard registers are being changed. If MODE
2125 is VOIDmode, then only REGNO is being changed; this is used when
2126 invalidating call clobbered registers across a call. */
2129 cselib_invalidate_regno (unsigned int regno
, enum machine_mode mode
)
2131 unsigned int endregno
;
2134 /* If we see pseudos after reload, something is _wrong_. */
2135 gcc_assert (!reload_completed
|| regno
< FIRST_PSEUDO_REGISTER
2136 || reg_renumber
[regno
] < 0);
2138 /* Determine the range of registers that must be invalidated. For
2139 pseudos, only REGNO is affected. For hard regs, we must take MODE
2140 into account, and we must also invalidate lower register numbers
2141 if they contain values that overlap REGNO. */
2142 if (regno
< FIRST_PSEUDO_REGISTER
)
2144 gcc_assert (mode
!= VOIDmode
);
2146 if (regno
< max_value_regs
)
2149 i
= regno
- max_value_regs
;
2151 endregno
= end_hard_regno (mode
, regno
);
2156 endregno
= regno
+ 1;
2159 for (; i
< endregno
; i
++)
2161 struct elt_list
**l
= ®_VALUES (i
);
2163 /* Go through all known values for this reg; if it overlaps the range
2164 we're invalidating, remove the value. */
2167 cselib_val
*v
= (*l
)->elt
;
2170 struct elt_loc_list
**p
;
2171 unsigned int this_last
= i
;
2173 if (i
< FIRST_PSEUDO_REGISTER
&& v
!= NULL
)
2174 this_last
= end_hard_regno (GET_MODE (v
->val_rtx
), i
) - 1;
2176 if (this_last
< regno
|| v
== NULL
2177 || (v
== cfa_base_preserved_val
2178 && i
== cfa_base_preserved_regno
))
2184 /* We have an overlap. */
2185 if (*l
== REG_VALUES (i
))
2187 /* Maintain the invariant that the first entry of
2188 REG_VALUES, if present, must be the value used to set
2189 the register, or NULL. This is also nice because
2190 then we won't push the same regno onto user_regs
2196 unchain_one_elt_list (l
);
2198 v
= canonical_cselib_val (v
);
2200 had_locs
= v
->locs
!= NULL
;
2201 setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
2203 /* Now, we clear the mapping from value to reg. It must exist, so
2204 this code will crash intentionally if it doesn't. */
2205 for (p
= &v
->locs
; ; p
= &(*p
)->next
)
2209 if (REG_P (x
) && REGNO (x
) == i
)
2211 unchain_one_elt_loc_list (p
);
2216 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
2218 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
2219 n_useless_debug_values
++;
2227 /* Invalidate any locations in the table which are changed because of a
2228 store to MEM_RTX. If this is called because of a non-const call
2229 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2232 cselib_invalidate_mem (rtx mem_rtx
)
2234 cselib_val
**vp
, *v
, *next
;
2238 mem_addr
= canon_rtx (get_addr (XEXP (mem_rtx
, 0)));
2239 mem_rtx
= canon_rtx (mem_rtx
);
2241 vp
= &first_containing_mem
;
2242 for (v
= *vp
; v
!= &dummy_val
; v
= next
)
2244 bool has_mem
= false;
2245 struct elt_loc_list
**p
= &v
->locs
;
2246 bool had_locs
= v
->locs
!= NULL
;
2247 rtx setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
2253 struct elt_list
**mem_chain
;
2255 /* MEMs may occur in locations only at the top level; below
2256 that every MEM or REG is substituted by its VALUE. */
2262 if (num_mems
< PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS
)
2263 && ! canon_anti_dependence (x
, false, mem_rtx
,
2264 GET_MODE (mem_rtx
), mem_addr
))
2272 /* This one overlaps. */
2273 /* We must have a mapping from this MEM's address to the
2274 value (E). Remove that, too. */
2275 addr
= cselib_lookup (XEXP (x
, 0), VOIDmode
, 0, GET_MODE (x
));
2276 addr
= canonical_cselib_val (addr
);
2277 gcc_checking_assert (v
== canonical_cselib_val (v
));
2278 mem_chain
= &addr
->addr_list
;
2281 cselib_val
*canon
= canonical_cselib_val ((*mem_chain
)->elt
);
2285 unchain_one_elt_list (mem_chain
);
2289 /* Record canonicalized elt. */
2290 (*mem_chain
)->elt
= canon
;
2292 mem_chain
= &(*mem_chain
)->next
;
2295 unchain_one_elt_loc_list (p
);
2298 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
2300 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
2301 n_useless_debug_values
++;
2306 next
= v
->next_containing_mem
;
2310 vp
= &(*vp
)->next_containing_mem
;
2313 v
->next_containing_mem
= NULL
;
2318 /* Invalidate DEST, which is being assigned to or clobbered. */
2321 cselib_invalidate_rtx (rtx dest
)
2323 while (GET_CODE (dest
) == SUBREG
2324 || GET_CODE (dest
) == ZERO_EXTRACT
2325 || GET_CODE (dest
) == STRICT_LOW_PART
)
2326 dest
= XEXP (dest
, 0);
2329 cselib_invalidate_regno (REGNO (dest
), GET_MODE (dest
));
2330 else if (MEM_P (dest
))
2331 cselib_invalidate_mem (dest
);
2334 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2337 cselib_invalidate_rtx_note_stores (rtx dest
, const_rtx ignore ATTRIBUTE_UNUSED
,
2338 void *data ATTRIBUTE_UNUSED
)
2340 cselib_invalidate_rtx (dest
);
2343 /* Record the result of a SET instruction. DEST is being set; the source
2344 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2345 describes its address. */
2348 cselib_record_set (rtx dest
, cselib_val
*src_elt
, cselib_val
*dest_addr_elt
)
2350 int dreg
= REG_P (dest
) ? (int) REGNO (dest
) : -1;
2352 if (src_elt
== 0 || side_effects_p (dest
))
2357 if (dreg
< FIRST_PSEUDO_REGISTER
)
2359 unsigned int n
= hard_regno_nregs
[dreg
][GET_MODE (dest
)];
2361 if (n
> max_value_regs
)
2365 if (REG_VALUES (dreg
) == 0)
2367 used_regs
[n_used_regs
++] = dreg
;
2368 REG_VALUES (dreg
) = new_elt_list (REG_VALUES (dreg
), src_elt
);
2372 /* The register should have been invalidated. */
2373 gcc_assert (REG_VALUES (dreg
)->elt
== 0);
2374 REG_VALUES (dreg
)->elt
= src_elt
;
2377 if (src_elt
->locs
== 0 && !PRESERVED_VALUE_P (src_elt
->val_rtx
))
2379 new_elt_loc_list (src_elt
, dest
);
2381 else if (MEM_P (dest
) && dest_addr_elt
!= 0
2382 && cselib_record_memory
)
2384 if (src_elt
->locs
== 0 && !PRESERVED_VALUE_P (src_elt
->val_rtx
))
2386 add_mem_for_addr (dest_addr_elt
, src_elt
, dest
);
2390 /* Make ELT and X's VALUE equivalent to each other at INSN. */
2393 cselib_add_permanent_equiv (cselib_val
*elt
, rtx x
, rtx insn
)
2396 rtx save_cselib_current_insn
= cselib_current_insn
;
2398 gcc_checking_assert (elt
);
2399 gcc_checking_assert (PRESERVED_VALUE_P (elt
->val_rtx
));
2400 gcc_checking_assert (!side_effects_p (x
));
2402 cselib_current_insn
= insn
;
2404 nelt
= cselib_lookup (x
, GET_MODE (elt
->val_rtx
), 1, VOIDmode
);
2408 cselib_any_perm_equivs
= true;
2410 if (!PRESERVED_VALUE_P (nelt
->val_rtx
))
2411 cselib_preserve_value (nelt
);
2413 new_elt_loc_list (nelt
, elt
->val_rtx
);
2416 cselib_current_insn
= save_cselib_current_insn
;
2419 /* Return TRUE if any permanent equivalences have been recorded since
2420 the table was last initialized. */
2422 cselib_have_permanent_equivalences (void)
2424 return cselib_any_perm_equivs
;
2427 /* There is no good way to determine how many elements there can be
2428 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2429 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2431 struct cselib_record_autoinc_data
2433 struct cselib_set
*sets
;
2437 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2438 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2441 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED
, rtx op ATTRIBUTE_UNUSED
,
2442 rtx dest
, rtx src
, rtx srcoff
, void *arg
)
2444 struct cselib_record_autoinc_data
*data
;
2445 data
= (struct cselib_record_autoinc_data
*)arg
;
2447 data
->sets
[data
->n_sets
].dest
= dest
;
2450 data
->sets
[data
->n_sets
].src
= gen_rtx_PLUS (GET_MODE (src
), src
, srcoff
);
2452 data
->sets
[data
->n_sets
].src
= src
;
2459 /* Record the effects of any sets and autoincs in INSN. */
2461 cselib_record_sets (rtx insn
)
2465 struct cselib_set sets
[MAX_SETS
];
2466 rtx body
= PATTERN (insn
);
2468 int n_sets_before_autoinc
;
2469 struct cselib_record_autoinc_data data
;
2471 body
= PATTERN (insn
);
2472 if (GET_CODE (body
) == COND_EXEC
)
2474 cond
= COND_EXEC_TEST (body
);
2475 body
= COND_EXEC_CODE (body
);
2478 /* Find all sets. */
2479 if (GET_CODE (body
) == SET
)
2481 sets
[0].src
= SET_SRC (body
);
2482 sets
[0].dest
= SET_DEST (body
);
2485 else if (GET_CODE (body
) == PARALLEL
)
2487 /* Look through the PARALLEL and record the values being
2488 set, if possible. Also handle any CLOBBERs. */
2489 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
2491 rtx x
= XVECEXP (body
, 0, i
);
2493 if (GET_CODE (x
) == SET
)
2495 sets
[n_sets
].src
= SET_SRC (x
);
2496 sets
[n_sets
].dest
= SET_DEST (x
);
2503 && MEM_P (sets
[0].src
)
2504 && !cselib_record_memory
2505 && MEM_READONLY_P (sets
[0].src
))
2507 rtx note
= find_reg_equal_equiv_note (insn
);
2509 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2510 sets
[0].src
= XEXP (note
, 0);
2514 data
.n_sets
= n_sets_before_autoinc
= n_sets
;
2515 for_each_inc_dec (&insn
, cselib_record_autoinc_cb
, &data
);
2516 n_sets
= data
.n_sets
;
2518 /* Look up the values that are read. Do this before invalidating the
2519 locations that are written. */
2520 for (i
= 0; i
< n_sets
; i
++)
2522 rtx dest
= sets
[i
].dest
;
2524 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2525 the low part after invalidating any knowledge about larger modes. */
2526 if (GET_CODE (sets
[i
].dest
) == STRICT_LOW_PART
)
2527 sets
[i
].dest
= dest
= XEXP (dest
, 0);
2529 /* We don't know how to record anything but REG or MEM. */
2531 || (MEM_P (dest
) && cselib_record_memory
))
2533 rtx src
= sets
[i
].src
;
2535 src
= gen_rtx_IF_THEN_ELSE (GET_MODE (dest
), cond
, src
, dest
);
2536 sets
[i
].src_elt
= cselib_lookup (src
, GET_MODE (dest
), 1, VOIDmode
);
2539 enum machine_mode address_mode
= get_address_mode (dest
);
2541 sets
[i
].dest_addr_elt
= cselib_lookup (XEXP (dest
, 0),
2546 sets
[i
].dest_addr_elt
= 0;
2550 if (cselib_record_sets_hook
)
2551 cselib_record_sets_hook (insn
, sets
, n_sets
);
2553 /* Invalidate all locations written by this insn. Note that the elts we
2554 looked up in the previous loop aren't affected, just some of their
2555 locations may go away. */
2556 note_stores (body
, cselib_invalidate_rtx_note_stores
, NULL
);
2558 for (i
= n_sets_before_autoinc
; i
< n_sets
; i
++)
2559 cselib_invalidate_rtx (sets
[i
].dest
);
2561 /* If this is an asm, look for duplicate sets. This can happen when the
2562 user uses the same value as an output multiple times. This is valid
2563 if the outputs are not actually used thereafter. Treat this case as
2564 if the value isn't actually set. We do this by smashing the destination
2565 to pc_rtx, so that we won't record the value later. */
2566 if (n_sets
>= 2 && asm_noperands (body
) >= 0)
2568 for (i
= 0; i
< n_sets
; i
++)
2570 rtx dest
= sets
[i
].dest
;
2571 if (REG_P (dest
) || MEM_P (dest
))
2574 for (j
= i
+ 1; j
< n_sets
; j
++)
2575 if (rtx_equal_p (dest
, sets
[j
].dest
))
2577 sets
[i
].dest
= pc_rtx
;
2578 sets
[j
].dest
= pc_rtx
;
2584 /* Now enter the equivalences in our tables. */
2585 for (i
= 0; i
< n_sets
; i
++)
2587 rtx dest
= sets
[i
].dest
;
2589 || (MEM_P (dest
) && cselib_record_memory
))
2590 cselib_record_set (dest
, sets
[i
].src_elt
, sets
[i
].dest_addr_elt
);
2594 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2597 fp_setter_insn (rtx insn
)
2599 rtx expr
, pat
= NULL_RTX
;
2601 if (!RTX_FRAME_RELATED_P (insn
))
2604 expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
2606 pat
= XEXP (expr
, 0);
2607 if (!modified_in_p (hard_frame_pointer_rtx
, pat
? pat
: insn
))
2610 /* Don't return true for frame pointer restores in the epilogue. */
2611 if (find_reg_note (insn
, REG_CFA_RESTORE
, hard_frame_pointer_rtx
))
2616 /* Record the effects of INSN. */
2619 cselib_process_insn (rtx insn
)
2624 cselib_current_insn
= insn
;
2626 /* Forget everything at a CODE_LABEL, a volatile insn, or a setjmp. */
2629 && find_reg_note (insn
, REG_SETJMP
, NULL
))
2630 || (NONJUMP_INSN_P (insn
)
2631 && volatile_insn_p (PATTERN (insn
))))
2632 && !cselib_preserve_constants
)
2634 cselib_reset_table (next_uid
);
2635 cselib_current_insn
= NULL_RTX
;
2639 if (! INSN_P (insn
))
2641 cselib_current_insn
= NULL_RTX
;
2645 /* If this is a call instruction, forget anything stored in a
2646 call clobbered register, or, if this is not a const call, in
2650 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2651 if (call_used_regs
[i
]
2652 || (REG_VALUES (i
) && REG_VALUES (i
)->elt
2653 && HARD_REGNO_CALL_PART_CLOBBERED (i
,
2654 GET_MODE (REG_VALUES (i
)->elt
->val_rtx
))))
2655 cselib_invalidate_regno (i
, reg_raw_mode
[i
]);
2657 /* Since it is not clear how cselib is going to be used, be
2658 conservative here and treat looping pure or const functions
2659 as if they were regular functions. */
2660 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
)
2661 || !(RTL_CONST_OR_PURE_CALL_P (insn
)))
2662 cselib_invalidate_mem (callmem
);
2665 cselib_record_sets (insn
);
2667 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2668 after we have processed the insn. */
2671 for (x
= CALL_INSN_FUNCTION_USAGE (insn
); x
; x
= XEXP (x
, 1))
2672 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
2673 cselib_invalidate_rtx (XEXP (XEXP (x
, 0), 0));
2674 /* Flush evertything on setjmp. */
2675 if (cselib_preserve_constants
2676 && find_reg_note (insn
, REG_SETJMP
, NULL
))
2678 cselib_preserve_only_values ();
2679 cselib_reset_table (next_uid
);
2683 /* On setter of the hard frame pointer if frame_pointer_needed,
2684 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2685 VALUEs are distinct. */
2686 if (reload_completed
2687 && frame_pointer_needed
2688 && fp_setter_insn (insn
))
2689 cselib_invalidate_rtx (stack_pointer_rtx
);
2691 cselib_current_insn
= NULL_RTX
;
2693 if (n_useless_values
> MAX_USELESS_VALUES
2694 /* remove_useless_values is linear in the hash table size. Avoid
2695 quadratic behavior for very large hashtables with very few
2696 useless elements. */
2697 && ((unsigned int)n_useless_values
2698 > (cselib_hash_table
->n_elements
2699 - cselib_hash_table
->n_deleted
2700 - n_debug_values
) / 4))
2701 remove_useless_values ();
2704 /* Initialize cselib for one pass. The caller must also call
2705 init_alias_analysis. */
2708 cselib_init (int record_what
)
2710 elt_list_pool
= create_alloc_pool ("elt_list",
2711 sizeof (struct elt_list
), 10);
2712 elt_loc_list_pool
= create_alloc_pool ("elt_loc_list",
2713 sizeof (struct elt_loc_list
), 10);
2714 cselib_val_pool
= create_alloc_pool ("cselib_val_list",
2715 sizeof (cselib_val
), 10);
2716 value_pool
= create_alloc_pool ("value", RTX_CODE_SIZE (VALUE
), 100);
2717 cselib_record_memory
= record_what
& CSELIB_RECORD_MEMORY
;
2718 cselib_preserve_constants
= record_what
& CSELIB_PRESERVE_CONSTANTS
;
2719 cselib_any_perm_equivs
= false;
2721 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2722 see canon_true_dependence. This is only created once. */
2724 callmem
= gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
));
2726 cselib_nregs
= max_reg_num ();
2728 /* We preserve reg_values to allow expensive clearing of the whole thing.
2729 Reallocate it however if it happens to be too large. */
2730 if (!reg_values
|| reg_values_size
< cselib_nregs
2731 || (reg_values_size
> 10 && reg_values_size
> cselib_nregs
* 4))
2734 /* Some space for newly emit instructions so we don't end up
2735 reallocating in between passes. */
2736 reg_values_size
= cselib_nregs
+ (63 + cselib_nregs
) / 16;
2737 reg_values
= XCNEWVEC (struct elt_list
*, reg_values_size
);
2739 used_regs
= XNEWVEC (unsigned int, cselib_nregs
);
2741 cselib_hash_table
= htab_create (31, get_value_hash
,
2742 entry_and_rtx_equal_p
, NULL
);
2746 /* Called when the current user is done with cselib. */
2749 cselib_finish (void)
2751 cselib_discard_hook
= NULL
;
2752 cselib_preserve_constants
= false;
2753 cselib_any_perm_equivs
= false;
2754 cfa_base_preserved_val
= NULL
;
2755 cfa_base_preserved_regno
= INVALID_REGNUM
;
2756 free_alloc_pool (elt_list_pool
);
2757 free_alloc_pool (elt_loc_list_pool
);
2758 free_alloc_pool (cselib_val_pool
);
2759 free_alloc_pool (value_pool
);
2760 cselib_clear_table ();
2761 htab_delete (cselib_hash_table
);
2764 cselib_hash_table
= 0;
2765 n_useless_values
= 0;
2766 n_useless_debug_values
= 0;
2771 /* Dump the cselib_val *X to FILE *info. */
2774 dump_cselib_val (void **x
, void *info
)
2776 cselib_val
*v
= (cselib_val
*)*x
;
2777 FILE *out
= (FILE *)info
;
2778 bool need_lf
= true;
2780 print_inline_rtx (out
, v
->val_rtx
, 0);
2784 struct elt_loc_list
*l
= v
->locs
;
2790 fputs (" locs:", out
);
2793 if (l
->setting_insn
)
2794 fprintf (out
, "\n from insn %i ",
2795 INSN_UID (l
->setting_insn
));
2797 fprintf (out
, "\n ");
2798 print_inline_rtx (out
, l
->loc
, 4);
2800 while ((l
= l
->next
));
2805 fputs (" no locs", out
);
2811 struct elt_list
*e
= v
->addr_list
;
2817 fputs (" addr list:", out
);
2821 print_inline_rtx (out
, e
->elt
->val_rtx
, 2);
2823 while ((e
= e
->next
));
2828 fputs (" no addrs", out
);
2832 if (v
->next_containing_mem
== &dummy_val
)
2833 fputs (" last mem\n", out
);
2834 else if (v
->next_containing_mem
)
2836 fputs (" next mem ", out
);
2837 print_inline_rtx (out
, v
->next_containing_mem
->val_rtx
, 2);
2846 /* Dump to OUT everything in the CSELIB table. */
2849 dump_cselib_table (FILE *out
)
2851 fprintf (out
, "cselib hash table:\n");
2852 htab_traverse (cselib_hash_table
, dump_cselib_val
, out
);
2853 if (first_containing_mem
!= &dummy_val
)
2855 fputs ("first mem ", out
);
2856 print_inline_rtx (out
, first_containing_mem
->val_rtx
, 2);
2859 fprintf (out
, "next uid %i\n", next_uid
);
2862 #include "gt-cselib.h"