* combine.c (try_combine): Avoid barrier after noop jumps
[official-gcc.git] / gcc / combine.c
blobe9fdffcbaecd2fff9f5bbf41a8564d926c9d5629
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT)(val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx *reg_last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx *reg_last_set;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
193 static rtx added_links_insn;
195 /* Basic block number of the block in which we are performing combines. */
196 static int this_basic_block;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
421 struct undo *buf;
422 rtx oldval = *into;
424 if (oldval == newval)
425 return;
427 if (undobuf.frees)
428 buf = undobuf.frees, undobuf.frees = buf->next;
429 else
430 buf = (struct undo *) xmalloc (sizeof (struct undo));
432 buf->is_int = 0;
433 buf->where.r = into;
434 buf->old_contents.r = oldval;
435 *into = newval;
437 buf->next = undobuf.undos, undobuf.undos = buf;
440 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
442 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
443 for the value of a HOST_WIDE_INT value (including CONST_INT) is
444 not safe. */
446 static void
447 do_SUBST_INT (into, newval)
448 unsigned int *into, newval;
450 struct undo *buf;
451 unsigned int oldval = *into;
453 if (oldval == newval)
454 return;
456 if (undobuf.frees)
457 buf = undobuf.frees, undobuf.frees = buf->next;
458 else
459 buf = (struct undo *) xmalloc (sizeof (struct undo));
461 buf->is_int = 1;
462 buf->where.i = into;
463 buf->old_contents.i = oldval;
464 *into = newval;
466 buf->next = undobuf.undos, undobuf.undos = buf;
469 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
471 /* Main entry point for combiner. F is the first insn of the function.
472 NREGS is the first unused pseudo-reg number.
474 Return non-zero if the combiner has turned an indirect jump
475 instruction into a direct jump. */
477 combine_instructions (f, nregs)
478 rtx f;
479 unsigned int nregs;
481 register rtx insn, next;
482 #ifdef HAVE_cc0
483 register rtx prev;
484 #endif
485 register int i;
486 register rtx links, nextlinks;
488 int new_direct_jump_p = 0;
490 combine_attempts = 0;
491 combine_merges = 0;
492 combine_extras = 0;
493 combine_successes = 0;
495 combine_max_regno = nregs;
497 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
498 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
499 reg_sign_bit_copies
500 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
502 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
503 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
504 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
505 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
506 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
507 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
508 reg_last_set_mode
509 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
510 reg_last_set_nonzero_bits
511 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
512 reg_last_set_sign_bit_copies
513 = (char *) xmalloc (nregs * sizeof (char));
515 init_reg_last_arrays ();
517 init_recog_no_volatile ();
519 /* Compute maximum uid value so uid_cuid can be allocated. */
521 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
522 if (INSN_UID (insn) > i)
523 i = INSN_UID (insn);
525 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
526 max_uid_cuid = i;
528 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
530 /* Don't use reg_nonzero_bits when computing it. This can cause problems
531 when, for example, we have j <<= 1 in a loop. */
533 nonzero_sign_valid = 0;
535 /* Compute the mapping from uids to cuids.
536 Cuids are numbers assigned to insns, like uids,
537 except that cuids increase monotonically through the code.
539 Scan all SETs and see if we can deduce anything about what
540 bits are known to be zero for some registers and how many copies
541 of the sign bit are known to exist for those registers.
543 Also set any known values so that we can use it while searching
544 for what bits are known to be set. */
546 label_tick = 1;
548 /* We need to initialize it here, because record_dead_and_set_regs may call
549 get_last_value. */
550 subst_prev_insn = NULL_RTX;
552 setup_incoming_promotions ();
554 refresh_blocks = sbitmap_alloc (n_basic_blocks);
555 sbitmap_zero (refresh_blocks);
556 need_refresh = 0;
558 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
560 uid_cuid[INSN_UID (insn)] = ++i;
561 subst_low_cuid = i;
562 subst_insn = insn;
564 if (INSN_P (insn))
566 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
567 NULL);
568 record_dead_and_set_regs (insn);
570 #ifdef AUTO_INC_DEC
571 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
572 if (REG_NOTE_KIND (links) == REG_INC)
573 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
574 NULL);
575 #endif
578 if (GET_CODE (insn) == CODE_LABEL)
579 label_tick++;
582 nonzero_sign_valid = 1;
584 /* Now scan all the insns in forward order. */
586 this_basic_block = -1;
587 label_tick = 1;
588 last_call_cuid = 0;
589 mem_last_set = 0;
590 init_reg_last_arrays ();
591 setup_incoming_promotions ();
593 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
595 next = 0;
597 /* If INSN starts a new basic block, update our basic block number. */
598 if (this_basic_block + 1 < n_basic_blocks
599 && BLOCK_HEAD (this_basic_block + 1) == insn)
600 this_basic_block++;
602 if (GET_CODE (insn) == CODE_LABEL)
603 label_tick++;
605 else if (INSN_P (insn))
607 /* See if we know about function return values before this
608 insn based upon SUBREG flags. */
609 check_promoted_subreg (insn, PATTERN (insn));
611 /* Try this insn with each insn it links back to. */
613 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
614 if ((next = try_combine (insn, XEXP (links, 0),
615 NULL_RTX, &new_direct_jump_p)) != 0)
616 goto retry;
618 /* Try each sequence of three linked insns ending with this one. */
620 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
622 rtx link = XEXP (links, 0);
624 /* If the linked insn has been replaced by a note, then there
625 is no point in persuing this chain any further. */
626 if (GET_CODE (link) == NOTE)
627 break;
629 for (nextlinks = LOG_LINKS (link);
630 nextlinks;
631 nextlinks = XEXP (nextlinks, 1))
632 if ((next = try_combine (insn, XEXP (links, 0),
633 XEXP (nextlinks, 0),
634 &new_direct_jump_p)) != 0)
635 goto retry;
638 #ifdef HAVE_cc0
639 /* Try to combine a jump insn that uses CC0
640 with a preceding insn that sets CC0, and maybe with its
641 logical predecessor as well.
642 This is how we make decrement-and-branch insns.
643 We need this special code because data flow connections
644 via CC0 do not get entered in LOG_LINKS. */
646 if (GET_CODE (insn) == JUMP_INSN
647 && (prev = prev_nonnote_insn (insn)) != 0
648 && GET_CODE (prev) == INSN
649 && sets_cc0_p (PATTERN (prev)))
651 if ((next = try_combine (insn, prev,
652 NULL_RTX, &new_direct_jump_p)) != 0)
653 goto retry;
655 for (nextlinks = LOG_LINKS (prev); nextlinks;
656 nextlinks = XEXP (nextlinks, 1))
657 if ((next = try_combine (insn, prev,
658 XEXP (nextlinks, 0),
659 &new_direct_jump_p)) != 0)
660 goto retry;
663 /* Do the same for an insn that explicitly references CC0. */
664 if (GET_CODE (insn) == INSN
665 && (prev = prev_nonnote_insn (insn)) != 0
666 && GET_CODE (prev) == INSN
667 && sets_cc0_p (PATTERN (prev))
668 && GET_CODE (PATTERN (insn)) == SET
669 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
671 if ((next = try_combine (insn, prev,
672 NULL_RTX, &new_direct_jump_p)) != 0)
673 goto retry;
675 for (nextlinks = LOG_LINKS (prev); nextlinks;
676 nextlinks = XEXP (nextlinks, 1))
677 if ((next = try_combine (insn, prev,
678 XEXP (nextlinks, 0),
679 &new_direct_jump_p)) != 0)
680 goto retry;
683 /* Finally, see if any of the insns that this insn links to
684 explicitly references CC0. If so, try this insn, that insn,
685 and its predecessor if it sets CC0. */
686 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
687 if (GET_CODE (XEXP (links, 0)) == INSN
688 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
689 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
690 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
691 && GET_CODE (prev) == INSN
692 && sets_cc0_p (PATTERN (prev))
693 && (next = try_combine (insn, XEXP (links, 0),
694 prev, &new_direct_jump_p)) != 0)
695 goto retry;
696 #endif
698 /* Try combining an insn with two different insns whose results it
699 uses. */
700 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
701 for (nextlinks = XEXP (links, 1); nextlinks;
702 nextlinks = XEXP (nextlinks, 1))
703 if ((next = try_combine (insn, XEXP (links, 0),
704 XEXP (nextlinks, 0),
705 &new_direct_jump_p)) != 0)
706 goto retry;
708 if (GET_CODE (insn) != NOTE)
709 record_dead_and_set_regs (insn);
711 retry:
716 delete_noop_moves (f);
718 if (need_refresh)
720 compute_bb_for_insn (get_max_uid ());
721 update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
722 PROP_DEATH_NOTES);
725 /* Clean up. */
726 sbitmap_free (refresh_blocks);
727 free (reg_nonzero_bits);
728 free (reg_sign_bit_copies);
729 free (reg_last_death);
730 free (reg_last_set);
731 free (reg_last_set_value);
732 free (reg_last_set_table_tick);
733 free (reg_last_set_label);
734 free (reg_last_set_invalid);
735 free (reg_last_set_mode);
736 free (reg_last_set_nonzero_bits);
737 free (reg_last_set_sign_bit_copies);
738 free (uid_cuid);
741 struct undo *undo, *next;
742 for (undo = undobuf.frees; undo; undo = next)
744 next = undo->next;
745 free (undo);
747 undobuf.frees = 0;
750 total_attempts += combine_attempts;
751 total_merges += combine_merges;
752 total_extras += combine_extras;
753 total_successes += combine_successes;
755 nonzero_sign_valid = 0;
757 /* Make recognizer allow volatile MEMs again. */
758 init_recog ();
760 return new_direct_jump_p;
763 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
765 static void
766 init_reg_last_arrays ()
768 unsigned int nregs = combine_max_regno;
770 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
771 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
772 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
773 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
774 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
775 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
776 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
777 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
778 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
781 /* Set up any promoted values for incoming argument registers. */
783 static void
784 setup_incoming_promotions ()
786 #ifdef PROMOTE_FUNCTION_ARGS
787 unsigned int regno;
788 rtx reg;
789 enum machine_mode mode;
790 int unsignedp;
791 rtx first = get_insns ();
793 #ifndef OUTGOING_REGNO
794 #define OUTGOING_REGNO(N) N
795 #endif
796 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
797 /* Check whether this register can hold an incoming pointer
798 argument. FUNCTION_ARG_REGNO_P tests outgoing register
799 numbers, so translate if necessary due to register windows. */
800 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
801 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
803 record_value_for_reg
804 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
805 : SIGN_EXTEND),
806 GET_MODE (reg),
807 gen_rtx_CLOBBER (mode, const0_rtx)));
809 #endif
812 /* Called via note_stores. If X is a pseudo that is narrower than
813 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
815 If we are setting only a portion of X and we can't figure out what
816 portion, assume all bits will be used since we don't know what will
817 be happening.
819 Similarly, set how many bits of X are known to be copies of the sign bit
820 at all locations in the function. This is the smallest number implied
821 by any set of X. */
823 static void
824 set_nonzero_bits_and_sign_copies (x, set, data)
825 rtx x;
826 rtx set;
827 void *data ATTRIBUTE_UNUSED;
829 unsigned int num;
831 if (GET_CODE (x) == REG
832 && REGNO (x) >= FIRST_PSEUDO_REGISTER
833 /* If this register is undefined at the start of the file, we can't
834 say what its contents were. */
835 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
836 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
838 if (set == 0 || GET_CODE (set) == CLOBBER)
840 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
841 reg_sign_bit_copies[REGNO (x)] = 1;
842 return;
845 /* If this is a complex assignment, see if we can convert it into a
846 simple assignment. */
847 set = expand_field_assignment (set);
849 /* If this is a simple assignment, or we have a paradoxical SUBREG,
850 set what we know about X. */
852 if (SET_DEST (set) == x
853 || (GET_CODE (SET_DEST (set)) == SUBREG
854 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
855 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
856 && SUBREG_REG (SET_DEST (set)) == x))
858 rtx src = SET_SRC (set);
860 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
861 /* If X is narrower than a word and SRC is a non-negative
862 constant that would appear negative in the mode of X,
863 sign-extend it for use in reg_nonzero_bits because some
864 machines (maybe most) will actually do the sign-extension
865 and this is the conservative approach.
867 ??? For 2.5, try to tighten up the MD files in this regard
868 instead of this kludge. */
870 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
871 && GET_CODE (src) == CONST_INT
872 && INTVAL (src) > 0
873 && 0 != (INTVAL (src)
874 & ((HOST_WIDE_INT) 1
875 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
876 src = GEN_INT (INTVAL (src)
877 | ((HOST_WIDE_INT) (-1)
878 << GET_MODE_BITSIZE (GET_MODE (x))));
879 #endif
881 reg_nonzero_bits[REGNO (x)]
882 |= nonzero_bits (src, nonzero_bits_mode);
883 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
884 if (reg_sign_bit_copies[REGNO (x)] == 0
885 || reg_sign_bit_copies[REGNO (x)] > num)
886 reg_sign_bit_copies[REGNO (x)] = num;
888 else
890 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
891 reg_sign_bit_copies[REGNO (x)] = 1;
896 /* See if INSN can be combined into I3. PRED and SUCC are optionally
897 insns that were previously combined into I3 or that will be combined
898 into the merger of INSN and I3.
900 Return 0 if the combination is not allowed for any reason.
902 If the combination is allowed, *PDEST will be set to the single
903 destination of INSN and *PSRC to the single source, and this function
904 will return 1. */
906 static int
907 can_combine_p (insn, i3, pred, succ, pdest, psrc)
908 rtx insn;
909 rtx i3;
910 rtx pred ATTRIBUTE_UNUSED;
911 rtx succ;
912 rtx *pdest, *psrc;
914 int i;
915 rtx set = 0, src, dest;
916 rtx p;
917 #ifdef AUTO_INC_DEC
918 rtx link;
919 #endif
920 int all_adjacent = (succ ? (next_active_insn (insn) == succ
921 && next_active_insn (succ) == i3)
922 : next_active_insn (insn) == i3);
924 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
925 or a PARALLEL consisting of such a SET and CLOBBERs.
927 If INSN has CLOBBER parallel parts, ignore them for our processing.
928 By definition, these happen during the execution of the insn. When it
929 is merged with another insn, all bets are off. If they are, in fact,
930 needed and aren't also supplied in I3, they may be added by
931 recog_for_combine. Otherwise, it won't match.
933 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
934 note.
936 Get the source and destination of INSN. If more than one, can't
937 combine. */
939 if (GET_CODE (PATTERN (insn)) == SET)
940 set = PATTERN (insn);
941 else if (GET_CODE (PATTERN (insn)) == PARALLEL
942 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
944 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
946 rtx elt = XVECEXP (PATTERN (insn), 0, i);
948 switch (GET_CODE (elt))
950 /* This is important to combine floating point insns
951 for the SH4 port. */
952 case USE:
953 /* Combining an isolated USE doesn't make sense.
954 We depend here on combinable_i3_pat to reject them. */
955 /* The code below this loop only verifies that the inputs of
956 the SET in INSN do not change. We call reg_set_between_p
957 to verify that the REG in the USE does not change betweeen
958 I3 and INSN.
959 If the USE in INSN was for a pseudo register, the matching
960 insn pattern will likely match any register; combining this
961 with any other USE would only be safe if we knew that the
962 used registers have identical values, or if there was
963 something to tell them apart, e.g. different modes. For
964 now, we forgo such compilcated tests and simply disallow
965 combining of USES of pseudo registers with any other USE. */
966 if (GET_CODE (XEXP (elt, 0)) == REG
967 && GET_CODE (PATTERN (i3)) == PARALLEL)
969 rtx i3pat = PATTERN (i3);
970 int i = XVECLEN (i3pat, 0) - 1;
971 unsigned int regno = REGNO (XEXP (elt, 0));
975 rtx i3elt = XVECEXP (i3pat, 0, i);
977 if (GET_CODE (i3elt) == USE
978 && GET_CODE (XEXP (i3elt, 0)) == REG
979 && (REGNO (XEXP (i3elt, 0)) == regno
980 ? reg_set_between_p (XEXP (elt, 0),
981 PREV_INSN (insn), i3)
982 : regno >= FIRST_PSEUDO_REGISTER))
983 return 0;
985 while (--i >= 0);
987 break;
989 /* We can ignore CLOBBERs. */
990 case CLOBBER:
991 break;
993 case SET:
994 /* Ignore SETs whose result isn't used but not those that
995 have side-effects. */
996 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
997 && ! side_effects_p (elt))
998 break;
1000 /* If we have already found a SET, this is a second one and
1001 so we cannot combine with this insn. */
1002 if (set)
1003 return 0;
1005 set = elt;
1006 break;
1008 default:
1009 /* Anything else means we can't combine. */
1010 return 0;
1014 if (set == 0
1015 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1016 so don't do anything with it. */
1017 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1018 return 0;
1020 else
1021 return 0;
1023 if (set == 0)
1024 return 0;
1026 set = expand_field_assignment (set);
1027 src = SET_SRC (set), dest = SET_DEST (set);
1029 /* Don't eliminate a store in the stack pointer. */
1030 if (dest == stack_pointer_rtx
1031 /* If we couldn't eliminate a field assignment, we can't combine. */
1032 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1033 /* Don't combine with an insn that sets a register to itself if it has
1034 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1035 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1036 /* Can't merge an ASM_OPERANDS. */
1037 || GET_CODE (src) == ASM_OPERANDS
1038 /* Can't merge a function call. */
1039 || GET_CODE (src) == CALL
1040 /* Don't eliminate a function call argument. */
1041 || (GET_CODE (i3) == CALL_INSN
1042 && (find_reg_fusage (i3, USE, dest)
1043 || (GET_CODE (dest) == REG
1044 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1045 && global_regs[REGNO (dest)])))
1046 /* Don't substitute into an incremented register. */
1047 || FIND_REG_INC_NOTE (i3, dest)
1048 || (succ && FIND_REG_INC_NOTE (succ, dest))
1049 #if 0
1050 /* Don't combine the end of a libcall into anything. */
1051 /* ??? This gives worse code, and appears to be unnecessary, since no
1052 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1053 use REG_RETVAL notes for noconflict blocks, but other code here
1054 makes sure that those insns don't disappear. */
1055 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1056 #endif
1057 /* Make sure that DEST is not used after SUCC but before I3. */
1058 || (succ && ! all_adjacent
1059 && reg_used_between_p (dest, succ, i3))
1060 /* Make sure that the value that is to be substituted for the register
1061 does not use any registers whose values alter in between. However,
1062 If the insns are adjacent, a use can't cross a set even though we
1063 think it might (this can happen for a sequence of insns each setting
1064 the same destination; reg_last_set of that register might point to
1065 a NOTE). If INSN has a REG_EQUIV note, the register is always
1066 equivalent to the memory so the substitution is valid even if there
1067 are intervening stores. Also, don't move a volatile asm or
1068 UNSPEC_VOLATILE across any other insns. */
1069 || (! all_adjacent
1070 && (((GET_CODE (src) != MEM
1071 || ! find_reg_note (insn, REG_EQUIV, src))
1072 && use_crosses_set_p (src, INSN_CUID (insn)))
1073 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1074 || GET_CODE (src) == UNSPEC_VOLATILE))
1075 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1076 better register allocation by not doing the combine. */
1077 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1078 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1079 /* Don't combine across a CALL_INSN, because that would possibly
1080 change whether the life span of some REGs crosses calls or not,
1081 and it is a pain to update that information.
1082 Exception: if source is a constant, moving it later can't hurt.
1083 Accept that special case, because it helps -fforce-addr a lot. */
1084 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1085 return 0;
1087 /* DEST must either be a REG or CC0. */
1088 if (GET_CODE (dest) == REG)
1090 /* If register alignment is being enforced for multi-word items in all
1091 cases except for parameters, it is possible to have a register copy
1092 insn referencing a hard register that is not allowed to contain the
1093 mode being copied and which would not be valid as an operand of most
1094 insns. Eliminate this problem by not combining with such an insn.
1096 Also, on some machines we don't want to extend the life of a hard
1097 register. */
1099 if (GET_CODE (src) == REG
1100 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1101 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1102 /* Don't extend the life of a hard register unless it is
1103 user variable (if we have few registers) or it can't
1104 fit into the desired register (meaning something special
1105 is going on).
1106 Also avoid substituting a return register into I3, because
1107 reload can't handle a conflict with constraints of other
1108 inputs. */
1109 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1110 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1111 return 0;
1113 else if (GET_CODE (dest) != CC0)
1114 return 0;
1116 /* Don't substitute for a register intended as a clobberable operand.
1117 Similarly, don't substitute an expression containing a register that
1118 will be clobbered in I3. */
1119 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1120 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1121 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1122 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1123 src)
1124 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1125 return 0;
1127 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1128 or not), reject, unless nothing volatile comes between it and I3 */
1130 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1132 /* Make sure succ doesn't contain a volatile reference. */
1133 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1134 return 0;
1136 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1137 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1138 return 0;
1141 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1142 to be an explicit register variable, and was chosen for a reason. */
1144 if (GET_CODE (src) == ASM_OPERANDS
1145 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1146 return 0;
1148 /* If there are any volatile insns between INSN and I3, reject, because
1149 they might affect machine state. */
1151 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1152 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1153 return 0;
1155 /* If INSN or I2 contains an autoincrement or autodecrement,
1156 make sure that register is not used between there and I3,
1157 and not already used in I3 either.
1158 Also insist that I3 not be a jump; if it were one
1159 and the incremented register were spilled, we would lose. */
1161 #ifdef AUTO_INC_DEC
1162 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1163 if (REG_NOTE_KIND (link) == REG_INC
1164 && (GET_CODE (i3) == JUMP_INSN
1165 || reg_used_between_p (XEXP (link, 0), insn, i3)
1166 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1167 return 0;
1168 #endif
1170 #ifdef HAVE_cc0
1171 /* Don't combine an insn that follows a CC0-setting insn.
1172 An insn that uses CC0 must not be separated from the one that sets it.
1173 We do, however, allow I2 to follow a CC0-setting insn if that insn
1174 is passed as I1; in that case it will be deleted also.
1175 We also allow combining in this case if all the insns are adjacent
1176 because that would leave the two CC0 insns adjacent as well.
1177 It would be more logical to test whether CC0 occurs inside I1 or I2,
1178 but that would be much slower, and this ought to be equivalent. */
1180 p = prev_nonnote_insn (insn);
1181 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1182 && ! all_adjacent)
1183 return 0;
1184 #endif
1186 /* If we get here, we have passed all the tests and the combination is
1187 to be allowed. */
1189 *pdest = dest;
1190 *psrc = src;
1192 return 1;
1195 /* Check if PAT is an insn - or a part of it - used to set up an
1196 argument for a function in a hard register. */
1198 static int
1199 sets_function_arg_p (pat)
1200 rtx pat;
1202 int i;
1203 rtx inner_dest;
1205 switch (GET_CODE (pat))
1207 case INSN:
1208 return sets_function_arg_p (PATTERN (pat));
1210 case PARALLEL:
1211 for (i = XVECLEN (pat, 0); --i >= 0;)
1212 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1213 return 1;
1215 break;
1217 case SET:
1218 inner_dest = SET_DEST (pat);
1219 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1220 || GET_CODE (inner_dest) == SUBREG
1221 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1222 inner_dest = XEXP (inner_dest, 0);
1224 return (GET_CODE (inner_dest) == REG
1225 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1226 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1228 default:
1229 break;
1232 return 0;
1235 /* LOC is the location within I3 that contains its pattern or the component
1236 of a PARALLEL of the pattern. We validate that it is valid for combining.
1238 One problem is if I3 modifies its output, as opposed to replacing it
1239 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1240 so would produce an insn that is not equivalent to the original insns.
1242 Consider:
1244 (set (reg:DI 101) (reg:DI 100))
1245 (set (subreg:SI (reg:DI 101) 0) <foo>)
1247 This is NOT equivalent to:
1249 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1250 (set (reg:DI 101) (reg:DI 100))])
1252 Not only does this modify 100 (in which case it might still be valid
1253 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1255 We can also run into a problem if I2 sets a register that I1
1256 uses and I1 gets directly substituted into I3 (not via I2). In that
1257 case, we would be getting the wrong value of I2DEST into I3, so we
1258 must reject the combination. This case occurs when I2 and I1 both
1259 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1260 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1261 of a SET must prevent combination from occurring.
1263 Before doing the above check, we first try to expand a field assignment
1264 into a set of logical operations.
1266 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1267 we place a register that is both set and used within I3. If more than one
1268 such register is detected, we fail.
1270 Return 1 if the combination is valid, zero otherwise. */
1272 static int
1273 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1274 rtx i3;
1275 rtx *loc;
1276 rtx i2dest;
1277 rtx i1dest;
1278 int i1_not_in_src;
1279 rtx *pi3dest_killed;
1281 rtx x = *loc;
1283 if (GET_CODE (x) == SET)
1285 rtx set = expand_field_assignment (x);
1286 rtx dest = SET_DEST (set);
1287 rtx src = SET_SRC (set);
1288 rtx inner_dest = dest;
1290 #if 0
1291 rtx inner_src = src;
1292 #endif
1294 SUBST (*loc, set);
1296 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1297 || GET_CODE (inner_dest) == SUBREG
1298 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1299 inner_dest = XEXP (inner_dest, 0);
1301 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1302 was added. */
1303 #if 0
1304 while (GET_CODE (inner_src) == STRICT_LOW_PART
1305 || GET_CODE (inner_src) == SUBREG
1306 || GET_CODE (inner_src) == ZERO_EXTRACT)
1307 inner_src = XEXP (inner_src, 0);
1309 /* If it is better that two different modes keep two different pseudos,
1310 avoid combining them. This avoids producing the following pattern
1311 on a 386:
1312 (set (subreg:SI (reg/v:QI 21) 0)
1313 (lshiftrt:SI (reg/v:SI 20)
1314 (const_int 24)))
1315 If that were made, reload could not handle the pair of
1316 reg 20/21, since it would try to get any GENERAL_REGS
1317 but some of them don't handle QImode. */
1319 if (rtx_equal_p (inner_src, i2dest)
1320 && GET_CODE (inner_dest) == REG
1321 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1322 return 0;
1323 #endif
1325 /* Check for the case where I3 modifies its output, as
1326 discussed above. */
1327 if ((inner_dest != dest
1328 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1329 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1331 /* This is the same test done in can_combine_p except we can't test
1332 all_adjacent; we don't have to, since this instruction will stay
1333 in place, thus we are not considering increasing the lifetime of
1334 INNER_DEST.
1336 Also, if this insn sets a function argument, combining it with
1337 something that might need a spill could clobber a previous
1338 function argument; the all_adjacent test in can_combine_p also
1339 checks this; here, we do a more specific test for this case. */
1341 || (GET_CODE (inner_dest) == REG
1342 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1343 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1344 GET_MODE (inner_dest))))
1345 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1346 return 0;
1348 /* If DEST is used in I3, it is being killed in this insn,
1349 so record that for later.
1350 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1351 STACK_POINTER_REGNUM, since these are always considered to be
1352 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1353 if (pi3dest_killed && GET_CODE (dest) == REG
1354 && reg_referenced_p (dest, PATTERN (i3))
1355 && REGNO (dest) != FRAME_POINTER_REGNUM
1356 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1357 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1358 #endif
1359 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1360 && (REGNO (dest) != ARG_POINTER_REGNUM
1361 || ! fixed_regs [REGNO (dest)])
1362 #endif
1363 && REGNO (dest) != STACK_POINTER_REGNUM)
1365 if (*pi3dest_killed)
1366 return 0;
1368 *pi3dest_killed = dest;
1372 else if (GET_CODE (x) == PARALLEL)
1374 int i;
1376 for (i = 0; i < XVECLEN (x, 0); i++)
1377 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1378 i1_not_in_src, pi3dest_killed))
1379 return 0;
1382 return 1;
1385 /* Return 1 if X is an arithmetic expression that contains a multiplication
1386 and division. We don't count multiplications by powers of two here. */
1388 static int
1389 contains_muldiv (x)
1390 rtx x;
1392 switch (GET_CODE (x))
1394 case MOD: case DIV: case UMOD: case UDIV:
1395 return 1;
1397 case MULT:
1398 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1399 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1400 default:
1401 switch (GET_RTX_CLASS (GET_CODE (x)))
1403 case 'c': case '<': case '2':
1404 return contains_muldiv (XEXP (x, 0))
1405 || contains_muldiv (XEXP (x, 1));
1407 case '1':
1408 return contains_muldiv (XEXP (x, 0));
1410 default:
1411 return 0;
1416 /* Determine whether INSN can be used in a combination. Return nonzero if
1417 not. This is used in try_combine to detect early some cases where we
1418 can't perform combinations. */
1420 static int
1421 cant_combine_insn_p (insn)
1422 rtx insn;
1424 rtx set;
1425 rtx src, dest;
1427 /* If this isn't really an insn, we can't do anything.
1428 This can occur when flow deletes an insn that it has merged into an
1429 auto-increment address. */
1430 if (! INSN_P (insn))
1431 return 1;
1433 /* Never combine loads and stores involving hard regs. The register
1434 allocator can usually handle such reg-reg moves by tying. If we allow
1435 the combiner to make substitutions of hard regs, we risk aborting in
1436 reload on machines that have SMALL_REGISTER_CLASSES.
1437 As an exception, we allow combinations involving fixed regs; these are
1438 not available to the register allocator so there's no risk involved. */
1440 set = single_set (insn);
1441 if (! set)
1442 return 0;
1443 src = SET_SRC (set);
1444 dest = SET_DEST (set);
1445 if (GET_CODE (src) == SUBREG)
1446 src = SUBREG_REG (src);
1447 if (GET_CODE (dest) == SUBREG)
1448 dest = SUBREG_REG (dest);
1449 if (REG_P (src) && REG_P (dest)
1450 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1451 && ! fixed_regs[REGNO (src)])
1452 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1453 && ! fixed_regs[REGNO (dest)])))
1454 return 1;
1456 return 0;
1459 /* Try to combine the insns I1 and I2 into I3.
1460 Here I1 and I2 appear earlier than I3.
1461 I1 can be zero; then we combine just I2 into I3.
1463 If we are combining three insns and the resulting insn is not recognized,
1464 try splitting it into two insns. If that happens, I2 and I3 are retained
1465 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1466 are pseudo-deleted.
1468 Return 0 if the combination does not work. Then nothing is changed.
1469 If we did the combination, return the insn at which combine should
1470 resume scanning.
1472 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1473 new direct jump instruction. */
1475 static rtx
1476 try_combine (i3, i2, i1, new_direct_jump_p)
1477 register rtx i3, i2, i1;
1478 register int *new_direct_jump_p;
1480 /* New patterns for I3 and I2, respectively. */
1481 rtx newpat, newi2pat = 0;
1482 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1483 int added_sets_1, added_sets_2;
1484 /* Total number of SETs to put into I3. */
1485 int total_sets;
1486 /* Nonzero is I2's body now appears in I3. */
1487 int i2_is_used;
1488 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1489 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1490 /* Contains I3 if the destination of I3 is used in its source, which means
1491 that the old life of I3 is being killed. If that usage is placed into
1492 I2 and not in I3, a REG_DEAD note must be made. */
1493 rtx i3dest_killed = 0;
1494 /* SET_DEST and SET_SRC of I2 and I1. */
1495 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1496 /* PATTERN (I2), or a copy of it in certain cases. */
1497 rtx i2pat;
1498 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1499 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1500 int i1_feeds_i3 = 0;
1501 /* Notes that must be added to REG_NOTES in I3 and I2. */
1502 rtx new_i3_notes, new_i2_notes;
1503 /* Notes that we substituted I3 into I2 instead of the normal case. */
1504 int i3_subst_into_i2 = 0;
1505 /* Notes that I1, I2 or I3 is a MULT operation. */
1506 int have_mult = 0;
1508 int maxreg;
1509 rtx temp;
1510 register rtx link;
1511 int i;
1513 /* Exit early if one of the insns involved can't be used for
1514 combinations. */
1515 if (cant_combine_insn_p (i3)
1516 || cant_combine_insn_p (i2)
1517 || (i1 && cant_combine_insn_p (i1))
1518 /* We also can't do anything if I3 has a
1519 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1520 libcall. */
1521 #if 0
1522 /* ??? This gives worse code, and appears to be unnecessary, since no
1523 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1524 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1525 #endif
1527 return 0;
1529 combine_attempts++;
1530 undobuf.other_insn = 0;
1532 /* Reset the hard register usage information. */
1533 CLEAR_HARD_REG_SET (newpat_used_regs);
1535 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1536 code below, set I1 to be the earlier of the two insns. */
1537 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1538 temp = i1, i1 = i2, i2 = temp;
1540 added_links_insn = 0;
1542 /* First check for one important special-case that the code below will
1543 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1544 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1545 we may be able to replace that destination with the destination of I3.
1546 This occurs in the common code where we compute both a quotient and
1547 remainder into a structure, in which case we want to do the computation
1548 directly into the structure to avoid register-register copies.
1550 Note that this case handles both multiple sets in I2 and also
1551 cases where I2 has a number of CLOBBER or PARALLELs.
1553 We make very conservative checks below and only try to handle the
1554 most common cases of this. For example, we only handle the case
1555 where I2 and I3 are adjacent to avoid making difficult register
1556 usage tests. */
1558 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1559 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1560 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1561 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1562 && GET_CODE (PATTERN (i2)) == PARALLEL
1563 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1564 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1565 below would need to check what is inside (and reg_overlap_mentioned_p
1566 doesn't support those codes anyway). Don't allow those destinations;
1567 the resulting insn isn't likely to be recognized anyway. */
1568 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1569 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1570 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1571 SET_DEST (PATTERN (i3)))
1572 && next_real_insn (i2) == i3)
1574 rtx p2 = PATTERN (i2);
1576 /* Make sure that the destination of I3,
1577 which we are going to substitute into one output of I2,
1578 is not used within another output of I2. We must avoid making this:
1579 (parallel [(set (mem (reg 69)) ...)
1580 (set (reg 69) ...)])
1581 which is not well-defined as to order of actions.
1582 (Besides, reload can't handle output reloads for this.)
1584 The problem can also happen if the dest of I3 is a memory ref,
1585 if another dest in I2 is an indirect memory ref. */
1586 for (i = 0; i < XVECLEN (p2, 0); i++)
1587 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1588 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1589 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1590 SET_DEST (XVECEXP (p2, 0, i))))
1591 break;
1593 if (i == XVECLEN (p2, 0))
1594 for (i = 0; i < XVECLEN (p2, 0); i++)
1595 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1596 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1597 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1599 combine_merges++;
1601 subst_insn = i3;
1602 subst_low_cuid = INSN_CUID (i2);
1604 added_sets_2 = added_sets_1 = 0;
1605 i2dest = SET_SRC (PATTERN (i3));
1607 /* Replace the dest in I2 with our dest and make the resulting
1608 insn the new pattern for I3. Then skip to where we
1609 validate the pattern. Everything was set up above. */
1610 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1611 SET_DEST (PATTERN (i3)));
1613 newpat = p2;
1614 i3_subst_into_i2 = 1;
1615 goto validate_replacement;
1619 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1620 one of those words to another constant, merge them by making a new
1621 constant. */
1622 if (i1 == 0
1623 && (temp = single_set (i2)) != 0
1624 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1625 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1626 && GET_CODE (SET_DEST (temp)) == REG
1627 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1628 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1629 && GET_CODE (PATTERN (i3)) == SET
1630 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1631 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1632 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1633 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1634 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1636 HOST_WIDE_INT lo, hi;
1638 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1639 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1640 else
1642 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1643 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1646 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1648 /* We don't handle the case of the target word being wider
1649 than a host wide int. */
1650 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1651 abort ();
1653 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1654 lo |= INTVAL (SET_SRC (PATTERN (i3)));
1656 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1657 hi = INTVAL (SET_SRC (PATTERN (i3)));
1658 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1660 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1661 >> (HOST_BITS_PER_WIDE_INT - 1));
1663 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1664 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1665 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1666 (INTVAL (SET_SRC (PATTERN (i3)))));
1667 if (hi == sign)
1668 hi = lo < 0 ? -1 : 0;
1670 else
1671 /* We don't handle the case of the higher word not fitting
1672 entirely in either hi or lo. */
1673 abort ();
1675 combine_merges++;
1676 subst_insn = i3;
1677 subst_low_cuid = INSN_CUID (i2);
1678 added_sets_2 = added_sets_1 = 0;
1679 i2dest = SET_DEST (temp);
1681 SUBST (SET_SRC (temp),
1682 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1684 newpat = PATTERN (i2);
1685 goto validate_replacement;
1688 #ifndef HAVE_cc0
1689 /* If we have no I1 and I2 looks like:
1690 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1691 (set Y OP)])
1692 make up a dummy I1 that is
1693 (set Y OP)
1694 and change I2 to be
1695 (set (reg:CC X) (compare:CC Y (const_int 0)))
1697 (We can ignore any trailing CLOBBERs.)
1699 This undoes a previous combination and allows us to match a branch-and-
1700 decrement insn. */
1702 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1703 && XVECLEN (PATTERN (i2), 0) >= 2
1704 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1705 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1706 == MODE_CC)
1707 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1708 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1709 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1710 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1711 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1712 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1714 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1715 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1716 break;
1718 if (i == 1)
1720 /* We make I1 with the same INSN_UID as I2. This gives it
1721 the same INSN_CUID for value tracking. Our fake I1 will
1722 never appear in the insn stream so giving it the same INSN_UID
1723 as I2 will not cause a problem. */
1725 subst_prev_insn = i1
1726 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1727 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1728 NULL_RTX);
1730 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1731 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1732 SET_DEST (PATTERN (i1)));
1735 #endif
1737 /* Verify that I2 and I1 are valid for combining. */
1738 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1739 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1741 undo_all ();
1742 return 0;
1745 /* Record whether I2DEST is used in I2SRC and similarly for the other
1746 cases. Knowing this will help in register status updating below. */
1747 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1748 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1749 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1751 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1752 in I2SRC. */
1753 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1755 /* Ensure that I3's pattern can be the destination of combines. */
1756 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1757 i1 && i2dest_in_i1src && i1_feeds_i3,
1758 &i3dest_killed))
1760 undo_all ();
1761 return 0;
1764 /* See if any of the insns is a MULT operation. Unless one is, we will
1765 reject a combination that is, since it must be slower. Be conservative
1766 here. */
1767 if (GET_CODE (i2src) == MULT
1768 || (i1 != 0 && GET_CODE (i1src) == MULT)
1769 || (GET_CODE (PATTERN (i3)) == SET
1770 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1771 have_mult = 1;
1773 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1774 We used to do this EXCEPT in one case: I3 has a post-inc in an
1775 output operand. However, that exception can give rise to insns like
1776 mov r3,(r3)+
1777 which is a famous insn on the PDP-11 where the value of r3 used as the
1778 source was model-dependent. Avoid this sort of thing. */
1780 #if 0
1781 if (!(GET_CODE (PATTERN (i3)) == SET
1782 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1783 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1784 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1785 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1786 /* It's not the exception. */
1787 #endif
1788 #ifdef AUTO_INC_DEC
1789 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1790 if (REG_NOTE_KIND (link) == REG_INC
1791 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1792 || (i1 != 0
1793 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1795 undo_all ();
1796 return 0;
1798 #endif
1800 /* See if the SETs in I1 or I2 need to be kept around in the merged
1801 instruction: whenever the value set there is still needed past I3.
1802 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1804 For the SET in I1, we have two cases: If I1 and I2 independently
1805 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1806 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1807 in I1 needs to be kept around unless I1DEST dies or is set in either
1808 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1809 I1DEST. If so, we know I1 feeds into I2. */
1811 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1813 added_sets_1
1814 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1815 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1817 /* If the set in I2 needs to be kept around, we must make a copy of
1818 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1819 PATTERN (I2), we are only substituting for the original I1DEST, not into
1820 an already-substituted copy. This also prevents making self-referential
1821 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1822 I2DEST. */
1824 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1825 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1826 : PATTERN (i2));
1828 if (added_sets_2)
1829 i2pat = copy_rtx (i2pat);
1831 combine_merges++;
1833 /* Substitute in the latest insn for the regs set by the earlier ones. */
1835 maxreg = max_reg_num ();
1837 subst_insn = i3;
1839 /* It is possible that the source of I2 or I1 may be performing an
1840 unneeded operation, such as a ZERO_EXTEND of something that is known
1841 to have the high part zero. Handle that case by letting subst look at
1842 the innermost one of them.
1844 Another way to do this would be to have a function that tries to
1845 simplify a single insn instead of merging two or more insns. We don't
1846 do this because of the potential of infinite loops and because
1847 of the potential extra memory required. However, doing it the way
1848 we are is a bit of a kludge and doesn't catch all cases.
1850 But only do this if -fexpensive-optimizations since it slows things down
1851 and doesn't usually win. */
1853 if (flag_expensive_optimizations)
1855 /* Pass pc_rtx so no substitutions are done, just simplifications.
1856 The cases that we are interested in here do not involve the few
1857 cases were is_replaced is checked. */
1858 if (i1)
1860 subst_low_cuid = INSN_CUID (i1);
1861 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1863 else
1865 subst_low_cuid = INSN_CUID (i2);
1866 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1870 #ifndef HAVE_cc0
1871 /* Many machines that don't use CC0 have insns that can both perform an
1872 arithmetic operation and set the condition code. These operations will
1873 be represented as a PARALLEL with the first element of the vector
1874 being a COMPARE of an arithmetic operation with the constant zero.
1875 The second element of the vector will set some pseudo to the result
1876 of the same arithmetic operation. If we simplify the COMPARE, we won't
1877 match such a pattern and so will generate an extra insn. Here we test
1878 for this case, where both the comparison and the operation result are
1879 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1880 I2SRC. Later we will make the PARALLEL that contains I2. */
1882 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1883 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1884 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1885 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1887 #ifdef EXTRA_CC_MODES
1888 rtx *cc_use;
1889 enum machine_mode compare_mode;
1890 #endif
1892 newpat = PATTERN (i3);
1893 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1895 i2_is_used = 1;
1897 #ifdef EXTRA_CC_MODES
1898 /* See if a COMPARE with the operand we substituted in should be done
1899 with the mode that is currently being used. If not, do the same
1900 processing we do in `subst' for a SET; namely, if the destination
1901 is used only once, try to replace it with a register of the proper
1902 mode and also replace the COMPARE. */
1903 if (undobuf.other_insn == 0
1904 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1905 &undobuf.other_insn))
1906 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1907 i2src, const0_rtx))
1908 != GET_MODE (SET_DEST (newpat))))
1910 unsigned int regno = REGNO (SET_DEST (newpat));
1911 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1913 if (regno < FIRST_PSEUDO_REGISTER
1914 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1915 && ! REG_USERVAR_P (SET_DEST (newpat))))
1917 if (regno >= FIRST_PSEUDO_REGISTER)
1918 SUBST (regno_reg_rtx[regno], new_dest);
1920 SUBST (SET_DEST (newpat), new_dest);
1921 SUBST (XEXP (*cc_use, 0), new_dest);
1922 SUBST (SET_SRC (newpat),
1923 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1925 else
1926 undobuf.other_insn = 0;
1928 #endif
1930 else
1931 #endif
1933 n_occurrences = 0; /* `subst' counts here */
1935 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1936 need to make a unique copy of I2SRC each time we substitute it
1937 to avoid self-referential rtl. */
1939 subst_low_cuid = INSN_CUID (i2);
1940 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1941 ! i1_feeds_i3 && i1dest_in_i1src);
1943 /* Record whether i2's body now appears within i3's body. */
1944 i2_is_used = n_occurrences;
1947 /* If we already got a failure, don't try to do more. Otherwise,
1948 try to substitute in I1 if we have it. */
1950 if (i1 && GET_CODE (newpat) != CLOBBER)
1952 /* Before we can do this substitution, we must redo the test done
1953 above (see detailed comments there) that ensures that I1DEST
1954 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1956 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1957 0, (rtx*)0))
1959 undo_all ();
1960 return 0;
1963 n_occurrences = 0;
1964 subst_low_cuid = INSN_CUID (i1);
1965 newpat = subst (newpat, i1dest, i1src, 0, 0);
1968 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1969 to count all the ways that I2SRC and I1SRC can be used. */
1970 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1971 && i2_is_used + added_sets_2 > 1)
1972 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1973 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1974 > 1))
1975 /* Fail if we tried to make a new register (we used to abort, but there's
1976 really no reason to). */
1977 || max_reg_num () != maxreg
1978 /* Fail if we couldn't do something and have a CLOBBER. */
1979 || GET_CODE (newpat) == CLOBBER
1980 /* Fail if this new pattern is a MULT and we didn't have one before
1981 at the outer level. */
1982 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1983 && ! have_mult))
1985 undo_all ();
1986 return 0;
1989 /* If the actions of the earlier insns must be kept
1990 in addition to substituting them into the latest one,
1991 we must make a new PARALLEL for the latest insn
1992 to hold additional the SETs. */
1994 if (added_sets_1 || added_sets_2)
1996 combine_extras++;
1998 if (GET_CODE (newpat) == PARALLEL)
2000 rtvec old = XVEC (newpat, 0);
2001 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2002 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2003 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2004 sizeof (old->elem[0]) * old->num_elem);
2006 else
2008 rtx old = newpat;
2009 total_sets = 1 + added_sets_1 + added_sets_2;
2010 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2011 XVECEXP (newpat, 0, 0) = old;
2014 if (added_sets_1)
2015 XVECEXP (newpat, 0, --total_sets)
2016 = (GET_CODE (PATTERN (i1)) == PARALLEL
2017 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2019 if (added_sets_2)
2021 /* If there is no I1, use I2's body as is. We used to also not do
2022 the subst call below if I2 was substituted into I3,
2023 but that could lose a simplification. */
2024 if (i1 == 0)
2025 XVECEXP (newpat, 0, --total_sets) = i2pat;
2026 else
2027 /* See comment where i2pat is assigned. */
2028 XVECEXP (newpat, 0, --total_sets)
2029 = subst (i2pat, i1dest, i1src, 0, 0);
2033 /* We come here when we are replacing a destination in I2 with the
2034 destination of I3. */
2035 validate_replacement:
2037 /* Note which hard regs this insn has as inputs. */
2038 mark_used_regs_combine (newpat);
2040 /* Is the result of combination a valid instruction? */
2041 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2043 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2044 the second SET's destination is a register that is unused. In that case,
2045 we just need the first SET. This can occur when simplifying a divmod
2046 insn. We *must* test for this case here because the code below that
2047 splits two independent SETs doesn't handle this case correctly when it
2048 updates the register status. Also check the case where the first
2049 SET's destination is unused. That would not cause incorrect code, but
2050 does cause an unneeded insn to remain. */
2052 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2053 && XVECLEN (newpat, 0) == 2
2054 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2055 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2056 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2057 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2058 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2059 && asm_noperands (newpat) < 0)
2061 newpat = XVECEXP (newpat, 0, 0);
2062 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2065 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2066 && XVECLEN (newpat, 0) == 2
2067 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2068 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2069 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2070 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2071 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2072 && asm_noperands (newpat) < 0)
2074 newpat = XVECEXP (newpat, 0, 1);
2075 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2078 /* If we were combining three insns and the result is a simple SET
2079 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2080 insns. There are two ways to do this. It can be split using a
2081 machine-specific method (like when you have an addition of a large
2082 constant) or by combine in the function find_split_point. */
2084 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2085 && asm_noperands (newpat) < 0)
2087 rtx m_split, *split;
2088 rtx ni2dest = i2dest;
2090 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2091 use I2DEST as a scratch register will help. In the latter case,
2092 convert I2DEST to the mode of the source of NEWPAT if we can. */
2094 m_split = split_insns (newpat, i3);
2096 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2097 inputs of NEWPAT. */
2099 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2100 possible to try that as a scratch reg. This would require adding
2101 more code to make it work though. */
2103 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2105 /* If I2DEST is a hard register or the only use of a pseudo,
2106 we can change its mode. */
2107 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2108 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2109 && GET_CODE (i2dest) == REG
2110 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2111 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2112 && ! REG_USERVAR_P (i2dest))))
2113 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2114 REGNO (i2dest));
2116 m_split = split_insns (gen_rtx_PARALLEL
2117 (VOIDmode,
2118 gen_rtvec (2, newpat,
2119 gen_rtx_CLOBBER (VOIDmode,
2120 ni2dest))),
2121 i3);
2122 /* If the split with the mode-changed register didn't work, try
2123 the original register. */
2124 if (! m_split && ni2dest != i2dest)
2126 ni2dest = i2dest;
2127 m_split = split_insns (gen_rtx_PARALLEL
2128 (VOIDmode,
2129 gen_rtvec (2, newpat,
2130 gen_rtx_CLOBBER (VOIDmode,
2131 i2dest))),
2132 i3);
2136 if (m_split && GET_CODE (m_split) != SEQUENCE)
2138 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2139 if (insn_code_number >= 0)
2140 newpat = m_split;
2142 else if (m_split && GET_CODE (m_split) == SEQUENCE
2143 && XVECLEN (m_split, 0) == 2
2144 && (next_real_insn (i2) == i3
2145 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2146 INSN_CUID (i2))))
2148 rtx i2set, i3set;
2149 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2150 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2152 i3set = single_set (XVECEXP (m_split, 0, 1));
2153 i2set = single_set (XVECEXP (m_split, 0, 0));
2155 /* In case we changed the mode of I2DEST, replace it in the
2156 pseudo-register table here. We can't do it above in case this
2157 code doesn't get executed and we do a split the other way. */
2159 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2160 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2162 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2164 /* If I2 or I3 has multiple SETs, we won't know how to track
2165 register status, so don't use these insns. If I2's destination
2166 is used between I2 and I3, we also can't use these insns. */
2168 if (i2_code_number >= 0 && i2set && i3set
2169 && (next_real_insn (i2) == i3
2170 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2171 insn_code_number = recog_for_combine (&newi3pat, i3,
2172 &new_i3_notes);
2173 if (insn_code_number >= 0)
2174 newpat = newi3pat;
2176 /* It is possible that both insns now set the destination of I3.
2177 If so, we must show an extra use of it. */
2179 if (insn_code_number >= 0)
2181 rtx new_i3_dest = SET_DEST (i3set);
2182 rtx new_i2_dest = SET_DEST (i2set);
2184 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2185 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2186 || GET_CODE (new_i3_dest) == SUBREG)
2187 new_i3_dest = XEXP (new_i3_dest, 0);
2189 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2190 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2191 || GET_CODE (new_i2_dest) == SUBREG)
2192 new_i2_dest = XEXP (new_i2_dest, 0);
2194 if (GET_CODE (new_i3_dest) == REG
2195 && GET_CODE (new_i2_dest) == REG
2196 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2197 REG_N_SETS (REGNO (new_i2_dest))++;
2201 /* If we can split it and use I2DEST, go ahead and see if that
2202 helps things be recognized. Verify that none of the registers
2203 are set between I2 and I3. */
2204 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2205 #ifdef HAVE_cc0
2206 && GET_CODE (i2dest) == REG
2207 #endif
2208 /* We need I2DEST in the proper mode. If it is a hard register
2209 or the only use of a pseudo, we can change its mode. */
2210 && (GET_MODE (*split) == GET_MODE (i2dest)
2211 || GET_MODE (*split) == VOIDmode
2212 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2213 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2214 && ! REG_USERVAR_P (i2dest)))
2215 && (next_real_insn (i2) == i3
2216 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2217 /* We can't overwrite I2DEST if its value is still used by
2218 NEWPAT. */
2219 && ! reg_referenced_p (i2dest, newpat))
2221 rtx newdest = i2dest;
2222 enum rtx_code split_code = GET_CODE (*split);
2223 enum machine_mode split_mode = GET_MODE (*split);
2225 /* Get NEWDEST as a register in the proper mode. We have already
2226 validated that we can do this. */
2227 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2229 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2231 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2232 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2235 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2236 an ASHIFT. This can occur if it was inside a PLUS and hence
2237 appeared to be a memory address. This is a kludge. */
2238 if (split_code == MULT
2239 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2240 && INTVAL (XEXP (*split, 1)) > 0
2241 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2243 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2244 XEXP (*split, 0), GEN_INT (i)));
2245 /* Update split_code because we may not have a multiply
2246 anymore. */
2247 split_code = GET_CODE (*split);
2250 #ifdef INSN_SCHEDULING
2251 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2252 be written as a ZERO_EXTEND. */
2253 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2254 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2255 SUBREG_REG (*split)));
2256 #endif
2258 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2259 SUBST (*split, newdest);
2260 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2262 /* If the split point was a MULT and we didn't have one before,
2263 don't use one now. */
2264 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2265 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2269 /* Check for a case where we loaded from memory in a narrow mode and
2270 then sign extended it, but we need both registers. In that case,
2271 we have a PARALLEL with both loads from the same memory location.
2272 We can split this into a load from memory followed by a register-register
2273 copy. This saves at least one insn, more if register allocation can
2274 eliminate the copy.
2276 We cannot do this if the destination of the second assignment is
2277 a register that we have already assumed is zero-extended. Similarly
2278 for a SUBREG of such a register. */
2280 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2281 && GET_CODE (newpat) == PARALLEL
2282 && XVECLEN (newpat, 0) == 2
2283 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2284 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2285 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2286 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2287 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2288 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2289 INSN_CUID (i2))
2290 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2291 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2292 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2293 (GET_CODE (temp) == REG
2294 && reg_nonzero_bits[REGNO (temp)] != 0
2295 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2296 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2297 && (reg_nonzero_bits[REGNO (temp)]
2298 != GET_MODE_MASK (word_mode))))
2299 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2300 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2301 (GET_CODE (temp) == REG
2302 && reg_nonzero_bits[REGNO (temp)] != 0
2303 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2304 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2305 && (reg_nonzero_bits[REGNO (temp)]
2306 != GET_MODE_MASK (word_mode)))))
2307 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2308 SET_SRC (XVECEXP (newpat, 0, 1)))
2309 && ! find_reg_note (i3, REG_UNUSED,
2310 SET_DEST (XVECEXP (newpat, 0, 0))))
2312 rtx ni2dest;
2314 newi2pat = XVECEXP (newpat, 0, 0);
2315 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2316 newpat = XVECEXP (newpat, 0, 1);
2317 SUBST (SET_SRC (newpat),
2318 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2319 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2321 if (i2_code_number >= 0)
2322 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2324 if (insn_code_number >= 0)
2326 rtx insn;
2327 rtx link;
2329 /* If we will be able to accept this, we have made a change to the
2330 destination of I3. This can invalidate a LOG_LINKS pointing
2331 to I3. No other part of combine.c makes such a transformation.
2333 The new I3 will have a destination that was previously the
2334 destination of I1 or I2 and which was used in i2 or I3. Call
2335 distribute_links to make a LOG_LINK from the next use of
2336 that destination. */
2338 PATTERN (i3) = newpat;
2339 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2341 /* I3 now uses what used to be its destination and which is
2342 now I2's destination. That means we need a LOG_LINK from
2343 I3 to I2. But we used to have one, so we still will.
2345 However, some later insn might be using I2's dest and have
2346 a LOG_LINK pointing at I3. We must remove this link.
2347 The simplest way to remove the link is to point it at I1,
2348 which we know will be a NOTE. */
2350 for (insn = NEXT_INSN (i3);
2351 insn && (this_basic_block == n_basic_blocks - 1
2352 || insn != BLOCK_HEAD (this_basic_block + 1));
2353 insn = NEXT_INSN (insn))
2355 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2357 for (link = LOG_LINKS (insn); link;
2358 link = XEXP (link, 1))
2359 if (XEXP (link, 0) == i3)
2360 XEXP (link, 0) = i1;
2362 break;
2368 /* Similarly, check for a case where we have a PARALLEL of two independent
2369 SETs but we started with three insns. In this case, we can do the sets
2370 as two separate insns. This case occurs when some SET allows two
2371 other insns to combine, but the destination of that SET is still live. */
2373 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2374 && GET_CODE (newpat) == PARALLEL
2375 && XVECLEN (newpat, 0) == 2
2376 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2377 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2378 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2379 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2380 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2381 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2382 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2383 INSN_CUID (i2))
2384 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2385 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2386 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2387 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2388 XVECEXP (newpat, 0, 0))
2389 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2390 XVECEXP (newpat, 0, 1))
2391 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2392 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2394 /* Normally, it doesn't matter which of the two is done first,
2395 but it does if one references cc0. In that case, it has to
2396 be first. */
2397 #ifdef HAVE_cc0
2398 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2400 newi2pat = XVECEXP (newpat, 0, 0);
2401 newpat = XVECEXP (newpat, 0, 1);
2403 else
2404 #endif
2406 newi2pat = XVECEXP (newpat, 0, 1);
2407 newpat = XVECEXP (newpat, 0, 0);
2410 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2412 if (i2_code_number >= 0)
2413 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2416 /* If it still isn't recognized, fail and change things back the way they
2417 were. */
2418 if ((insn_code_number < 0
2419 /* Is the result a reasonable ASM_OPERANDS? */
2420 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2422 undo_all ();
2423 return 0;
2426 /* If we had to change another insn, make sure it is valid also. */
2427 if (undobuf.other_insn)
2429 rtx other_pat = PATTERN (undobuf.other_insn);
2430 rtx new_other_notes;
2431 rtx note, next;
2433 CLEAR_HARD_REG_SET (newpat_used_regs);
2435 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2436 &new_other_notes);
2438 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2440 undo_all ();
2441 return 0;
2444 PATTERN (undobuf.other_insn) = other_pat;
2446 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2447 are still valid. Then add any non-duplicate notes added by
2448 recog_for_combine. */
2449 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2451 next = XEXP (note, 1);
2453 if (REG_NOTE_KIND (note) == REG_UNUSED
2454 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2456 if (GET_CODE (XEXP (note, 0)) == REG)
2457 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2459 remove_note (undobuf.other_insn, note);
2463 for (note = new_other_notes; note; note = XEXP (note, 1))
2464 if (GET_CODE (XEXP (note, 0)) == REG)
2465 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2467 distribute_notes (new_other_notes, undobuf.other_insn,
2468 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2470 #ifdef HAVE_cc0
2471 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2472 they are adjacent to each other or not. */
2474 rtx p = prev_nonnote_insn (i3);
2475 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2476 && sets_cc0_p (newi2pat))
2478 undo_all ();
2479 return 0;
2482 #endif
2484 /* We now know that we can do this combination. Merge the insns and
2485 update the status of registers and LOG_LINKS. */
2488 rtx i3notes, i2notes, i1notes = 0;
2489 rtx i3links, i2links, i1links = 0;
2490 rtx midnotes = 0;
2491 unsigned int regno;
2492 /* Compute which registers we expect to eliminate. newi2pat may be setting
2493 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2494 same as i3dest, in which case newi2pat may be setting i1dest. */
2495 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2496 || i2dest_in_i2src || i2dest_in_i1src
2497 ? 0 : i2dest);
2498 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2499 || (newi2pat && reg_set_p (i1dest, newi2pat))
2500 ? 0 : i1dest);
2502 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2503 clear them. */
2504 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2505 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2506 if (i1)
2507 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2509 /* Ensure that we do not have something that should not be shared but
2510 occurs multiple times in the new insns. Check this by first
2511 resetting all the `used' flags and then copying anything is shared. */
2513 reset_used_flags (i3notes);
2514 reset_used_flags (i2notes);
2515 reset_used_flags (i1notes);
2516 reset_used_flags (newpat);
2517 reset_used_flags (newi2pat);
2518 if (undobuf.other_insn)
2519 reset_used_flags (PATTERN (undobuf.other_insn));
2521 i3notes = copy_rtx_if_shared (i3notes);
2522 i2notes = copy_rtx_if_shared (i2notes);
2523 i1notes = copy_rtx_if_shared (i1notes);
2524 newpat = copy_rtx_if_shared (newpat);
2525 newi2pat = copy_rtx_if_shared (newi2pat);
2526 if (undobuf.other_insn)
2527 reset_used_flags (PATTERN (undobuf.other_insn));
2529 INSN_CODE (i3) = insn_code_number;
2530 PATTERN (i3) = newpat;
2531 if (undobuf.other_insn)
2532 INSN_CODE (undobuf.other_insn) = other_code_number;
2534 /* We had one special case above where I2 had more than one set and
2535 we replaced a destination of one of those sets with the destination
2536 of I3. In that case, we have to update LOG_LINKS of insns later
2537 in this basic block. Note that this (expensive) case is rare.
2539 Also, in this case, we must pretend that all REG_NOTEs for I2
2540 actually came from I3, so that REG_UNUSED notes from I2 will be
2541 properly handled. */
2543 if (i3_subst_into_i2)
2545 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2546 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2547 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2548 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2549 && ! find_reg_note (i2, REG_UNUSED,
2550 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2551 for (temp = NEXT_INSN (i2);
2552 temp && (this_basic_block == n_basic_blocks - 1
2553 || BLOCK_HEAD (this_basic_block) != temp);
2554 temp = NEXT_INSN (temp))
2555 if (temp != i3 && INSN_P (temp))
2556 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2557 if (XEXP (link, 0) == i2)
2558 XEXP (link, 0) = i3;
2560 if (i3notes)
2562 rtx link = i3notes;
2563 while (XEXP (link, 1))
2564 link = XEXP (link, 1);
2565 XEXP (link, 1) = i2notes;
2567 else
2568 i3notes = i2notes;
2569 i2notes = 0;
2572 LOG_LINKS (i3) = 0;
2573 REG_NOTES (i3) = 0;
2574 LOG_LINKS (i2) = 0;
2575 REG_NOTES (i2) = 0;
2577 if (newi2pat)
2579 INSN_CODE (i2) = i2_code_number;
2580 PATTERN (i2) = newi2pat;
2582 else
2584 PUT_CODE (i2, NOTE);
2585 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2586 NOTE_SOURCE_FILE (i2) = 0;
2589 if (i1)
2591 LOG_LINKS (i1) = 0;
2592 REG_NOTES (i1) = 0;
2593 PUT_CODE (i1, NOTE);
2594 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2595 NOTE_SOURCE_FILE (i1) = 0;
2598 /* Get death notes for everything that is now used in either I3 or
2599 I2 and used to die in a previous insn. If we built two new
2600 patterns, move from I1 to I2 then I2 to I3 so that we get the
2601 proper movement on registers that I2 modifies. */
2603 if (newi2pat)
2605 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2606 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2608 else
2609 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2610 i3, &midnotes);
2612 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2613 if (i3notes)
2614 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2615 elim_i2, elim_i1);
2616 if (i2notes)
2617 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2618 elim_i2, elim_i1);
2619 if (i1notes)
2620 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2621 elim_i2, elim_i1);
2622 if (midnotes)
2623 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2624 elim_i2, elim_i1);
2626 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2627 know these are REG_UNUSED and want them to go to the desired insn,
2628 so we always pass it as i3. We have not counted the notes in
2629 reg_n_deaths yet, so we need to do so now. */
2631 if (newi2pat && new_i2_notes)
2633 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2634 if (GET_CODE (XEXP (temp, 0)) == REG)
2635 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2637 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2640 if (new_i3_notes)
2642 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2643 if (GET_CODE (XEXP (temp, 0)) == REG)
2644 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2646 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2649 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2650 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2651 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2652 in that case, it might delete I2. Similarly for I2 and I1.
2653 Show an additional death due to the REG_DEAD note we make here. If
2654 we discard it in distribute_notes, we will decrement it again. */
2656 if (i3dest_killed)
2658 if (GET_CODE (i3dest_killed) == REG)
2659 REG_N_DEATHS (REGNO (i3dest_killed))++;
2661 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2662 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2663 NULL_RTX),
2664 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2665 else
2666 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2667 NULL_RTX),
2668 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2669 elim_i2, elim_i1);
2672 if (i2dest_in_i2src)
2674 if (GET_CODE (i2dest) == REG)
2675 REG_N_DEATHS (REGNO (i2dest))++;
2677 if (newi2pat && reg_set_p (i2dest, newi2pat))
2678 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2679 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2680 else
2681 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2682 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2683 NULL_RTX, NULL_RTX);
2686 if (i1dest_in_i1src)
2688 if (GET_CODE (i1dest) == REG)
2689 REG_N_DEATHS (REGNO (i1dest))++;
2691 if (newi2pat && reg_set_p (i1dest, newi2pat))
2692 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2693 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2694 else
2695 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2696 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2697 NULL_RTX, NULL_RTX);
2700 distribute_links (i3links);
2701 distribute_links (i2links);
2702 distribute_links (i1links);
2704 if (GET_CODE (i2dest) == REG)
2706 rtx link;
2707 rtx i2_insn = 0, i2_val = 0, set;
2709 /* The insn that used to set this register doesn't exist, and
2710 this life of the register may not exist either. See if one of
2711 I3's links points to an insn that sets I2DEST. If it does,
2712 that is now the last known value for I2DEST. If we don't update
2713 this and I2 set the register to a value that depended on its old
2714 contents, we will get confused. If this insn is used, thing
2715 will be set correctly in combine_instructions. */
2717 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2718 if ((set = single_set (XEXP (link, 0))) != 0
2719 && rtx_equal_p (i2dest, SET_DEST (set)))
2720 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2722 record_value_for_reg (i2dest, i2_insn, i2_val);
2724 /* If the reg formerly set in I2 died only once and that was in I3,
2725 zero its use count so it won't make `reload' do any work. */
2726 if (! added_sets_2
2727 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2728 && ! i2dest_in_i2src)
2730 regno = REGNO (i2dest);
2731 REG_N_SETS (regno)--;
2735 if (i1 && GET_CODE (i1dest) == REG)
2737 rtx link;
2738 rtx i1_insn = 0, i1_val = 0, set;
2740 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2741 if ((set = single_set (XEXP (link, 0))) != 0
2742 && rtx_equal_p (i1dest, SET_DEST (set)))
2743 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2745 record_value_for_reg (i1dest, i1_insn, i1_val);
2747 regno = REGNO (i1dest);
2748 if (! added_sets_1 && ! i1dest_in_i1src)
2749 REG_N_SETS (regno)--;
2752 /* Update reg_nonzero_bits et al for any changes that may have been made
2753 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2754 important. Because newi2pat can affect nonzero_bits of newpat */
2755 if (newi2pat)
2756 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2757 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2759 /* Set new_direct_jump_p if a new return or simple jump instruction
2760 has been created.
2762 If I3 is now an unconditional jump, ensure that it has a
2763 BARRIER following it since it may have initially been a
2764 conditional jump. It may also be the last nonnote insn. */
2766 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2768 *new_direct_jump_p = 1;
2770 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2771 || GET_CODE (temp) != BARRIER)
2772 emit_barrier_after (i3);
2774 /* An NOOP jump does not need barrier, but it does need cleaning up
2775 of CFG. */
2776 if (GET_CODE (newpat) == SET
2777 && SET_SRC (newpat) == pc_rtx
2778 && SET_DEST (newpat) == pc_rtx)
2779 *new_direct_jump_p = 1;
2782 combine_successes++;
2783 undo_commit ();
2785 /* Clear this here, so that subsequent get_last_value calls are not
2786 affected. */
2787 subst_prev_insn = NULL_RTX;
2789 if (added_links_insn
2790 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2791 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2792 return added_links_insn;
2793 else
2794 return newi2pat ? i2 : i3;
2797 /* Undo all the modifications recorded in undobuf. */
2799 static void
2800 undo_all ()
2802 struct undo *undo, *next;
2804 for (undo = undobuf.undos; undo; undo = next)
2806 next = undo->next;
2807 if (undo->is_int)
2808 *undo->where.i = undo->old_contents.i;
2809 else
2810 *undo->where.r = undo->old_contents.r;
2812 undo->next = undobuf.frees;
2813 undobuf.frees = undo;
2816 undobuf.undos = 0;
2818 /* Clear this here, so that subsequent get_last_value calls are not
2819 affected. */
2820 subst_prev_insn = NULL_RTX;
2823 /* We've committed to accepting the changes we made. Move all
2824 of the undos to the free list. */
2826 static void
2827 undo_commit ()
2829 struct undo *undo, *next;
2831 for (undo = undobuf.undos; undo; undo = next)
2833 next = undo->next;
2834 undo->next = undobuf.frees;
2835 undobuf.frees = undo;
2837 undobuf.undos = 0;
2841 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2842 where we have an arithmetic expression and return that point. LOC will
2843 be inside INSN.
2845 try_combine will call this function to see if an insn can be split into
2846 two insns. */
2848 static rtx *
2849 find_split_point (loc, insn)
2850 rtx *loc;
2851 rtx insn;
2853 rtx x = *loc;
2854 enum rtx_code code = GET_CODE (x);
2855 rtx *split;
2856 unsigned HOST_WIDE_INT len = 0;
2857 HOST_WIDE_INT pos = 0;
2858 int unsignedp = 0;
2859 rtx inner = NULL_RTX;
2861 /* First special-case some codes. */
2862 switch (code)
2864 case SUBREG:
2865 #ifdef INSN_SCHEDULING
2866 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2867 point. */
2868 if (GET_CODE (SUBREG_REG (x)) == MEM)
2869 return loc;
2870 #endif
2871 return find_split_point (&SUBREG_REG (x), insn);
2873 case MEM:
2874 #ifdef HAVE_lo_sum
2875 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2876 using LO_SUM and HIGH. */
2877 if (GET_CODE (XEXP (x, 0)) == CONST
2878 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2880 SUBST (XEXP (x, 0),
2881 gen_rtx_LO_SUM (Pmode,
2882 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2883 XEXP (x, 0)));
2884 return &XEXP (XEXP (x, 0), 0);
2886 #endif
2888 /* If we have a PLUS whose second operand is a constant and the
2889 address is not valid, perhaps will can split it up using
2890 the machine-specific way to split large constants. We use
2891 the first pseudo-reg (one of the virtual regs) as a placeholder;
2892 it will not remain in the result. */
2893 if (GET_CODE (XEXP (x, 0)) == PLUS
2894 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2895 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2897 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2898 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2899 subst_insn);
2901 /* This should have produced two insns, each of which sets our
2902 placeholder. If the source of the second is a valid address,
2903 we can make put both sources together and make a split point
2904 in the middle. */
2906 if (seq && XVECLEN (seq, 0) == 2
2907 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2908 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2909 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2910 && ! reg_mentioned_p (reg,
2911 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2912 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2913 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2914 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2915 && memory_address_p (GET_MODE (x),
2916 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2918 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2919 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2921 /* Replace the placeholder in SRC2 with SRC1. If we can
2922 find where in SRC2 it was placed, that can become our
2923 split point and we can replace this address with SRC2.
2924 Just try two obvious places. */
2926 src2 = replace_rtx (src2, reg, src1);
2927 split = 0;
2928 if (XEXP (src2, 0) == src1)
2929 split = &XEXP (src2, 0);
2930 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2931 && XEXP (XEXP (src2, 0), 0) == src1)
2932 split = &XEXP (XEXP (src2, 0), 0);
2934 if (split)
2936 SUBST (XEXP (x, 0), src2);
2937 return split;
2941 /* If that didn't work, perhaps the first operand is complex and
2942 needs to be computed separately, so make a split point there.
2943 This will occur on machines that just support REG + CONST
2944 and have a constant moved through some previous computation. */
2946 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2947 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2948 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2949 == 'o')))
2950 return &XEXP (XEXP (x, 0), 0);
2952 break;
2954 case SET:
2955 #ifdef HAVE_cc0
2956 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2957 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2958 we need to put the operand into a register. So split at that
2959 point. */
2961 if (SET_DEST (x) == cc0_rtx
2962 && GET_CODE (SET_SRC (x)) != COMPARE
2963 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2964 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2965 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2966 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2967 return &SET_SRC (x);
2968 #endif
2970 /* See if we can split SET_SRC as it stands. */
2971 split = find_split_point (&SET_SRC (x), insn);
2972 if (split && split != &SET_SRC (x))
2973 return split;
2975 /* See if we can split SET_DEST as it stands. */
2976 split = find_split_point (&SET_DEST (x), insn);
2977 if (split && split != &SET_DEST (x))
2978 return split;
2980 /* See if this is a bitfield assignment with everything constant. If
2981 so, this is an IOR of an AND, so split it into that. */
2982 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2983 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2984 <= HOST_BITS_PER_WIDE_INT)
2985 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2986 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2987 && GET_CODE (SET_SRC (x)) == CONST_INT
2988 && ((INTVAL (XEXP (SET_DEST (x), 1))
2989 + INTVAL (XEXP (SET_DEST (x), 2)))
2990 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2991 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2993 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2994 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
2995 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
2996 rtx dest = XEXP (SET_DEST (x), 0);
2997 enum machine_mode mode = GET_MODE (dest);
2998 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3000 if (BITS_BIG_ENDIAN)
3001 pos = GET_MODE_BITSIZE (mode) - len - pos;
3003 if (src == mask)
3004 SUBST (SET_SRC (x),
3005 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3006 else
3007 SUBST (SET_SRC (x),
3008 gen_binary (IOR, mode,
3009 gen_binary (AND, mode, dest,
3010 GEN_INT (~(mask << pos)
3011 & GET_MODE_MASK (mode))),
3012 GEN_INT (src << pos)));
3014 SUBST (SET_DEST (x), dest);
3016 split = find_split_point (&SET_SRC (x), insn);
3017 if (split && split != &SET_SRC (x))
3018 return split;
3021 /* Otherwise, see if this is an operation that we can split into two.
3022 If so, try to split that. */
3023 code = GET_CODE (SET_SRC (x));
3025 switch (code)
3027 case AND:
3028 /* If we are AND'ing with a large constant that is only a single
3029 bit and the result is only being used in a context where we
3030 need to know if it is zero or non-zero, replace it with a bit
3031 extraction. This will avoid the large constant, which might
3032 have taken more than one insn to make. If the constant were
3033 not a valid argument to the AND but took only one insn to make,
3034 this is no worse, but if it took more than one insn, it will
3035 be better. */
3037 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3038 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3039 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3040 && GET_CODE (SET_DEST (x)) == REG
3041 && (split = find_single_use (SET_DEST (x), insn, (rtx*)0)) != 0
3042 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3043 && XEXP (*split, 0) == SET_DEST (x)
3044 && XEXP (*split, 1) == const0_rtx)
3046 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3047 XEXP (SET_SRC (x), 0),
3048 pos, NULL_RTX, 1, 1, 0, 0);
3049 if (extraction != 0)
3051 SUBST (SET_SRC (x), extraction);
3052 return find_split_point (loc, insn);
3055 break;
3057 case NE:
3058 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3059 is known to be on, this can be converted into a NEG of a shift. */
3060 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3061 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3062 && 1 <= (pos = exact_log2
3063 (nonzero_bits (XEXP (SET_SRC (x), 0),
3064 GET_MODE (XEXP (SET_SRC (x), 0))))))
3066 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3068 SUBST (SET_SRC (x),
3069 gen_rtx_NEG (mode,
3070 gen_rtx_LSHIFTRT (mode,
3071 XEXP (SET_SRC (x), 0),
3072 GEN_INT (pos))));
3074 split = find_split_point (&SET_SRC (x), insn);
3075 if (split && split != &SET_SRC (x))
3076 return split;
3078 break;
3080 case SIGN_EXTEND:
3081 inner = XEXP (SET_SRC (x), 0);
3083 /* We can't optimize if either mode is a partial integer
3084 mode as we don't know how many bits are significant
3085 in those modes. */
3086 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3087 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3088 break;
3090 pos = 0;
3091 len = GET_MODE_BITSIZE (GET_MODE (inner));
3092 unsignedp = 0;
3093 break;
3095 case SIGN_EXTRACT:
3096 case ZERO_EXTRACT:
3097 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3098 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3100 inner = XEXP (SET_SRC (x), 0);
3101 len = INTVAL (XEXP (SET_SRC (x), 1));
3102 pos = INTVAL (XEXP (SET_SRC (x), 2));
3104 if (BITS_BIG_ENDIAN)
3105 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3106 unsignedp = (code == ZERO_EXTRACT);
3108 break;
3110 default:
3111 break;
3114 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3116 enum machine_mode mode = GET_MODE (SET_SRC (x));
3118 /* For unsigned, we have a choice of a shift followed by an
3119 AND or two shifts. Use two shifts for field sizes where the
3120 constant might be too large. We assume here that we can
3121 always at least get 8-bit constants in an AND insn, which is
3122 true for every current RISC. */
3124 if (unsignedp && len <= 8)
3126 SUBST (SET_SRC (x),
3127 gen_rtx_AND (mode,
3128 gen_rtx_LSHIFTRT
3129 (mode, gen_lowpart_for_combine (mode, inner),
3130 GEN_INT (pos)),
3131 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3133 split = find_split_point (&SET_SRC (x), insn);
3134 if (split && split != &SET_SRC (x))
3135 return split;
3137 else
3139 SUBST (SET_SRC (x),
3140 gen_rtx_fmt_ee
3141 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3142 gen_rtx_ASHIFT (mode,
3143 gen_lowpart_for_combine (mode, inner),
3144 GEN_INT (GET_MODE_BITSIZE (mode)
3145 - len - pos)),
3146 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3148 split = find_split_point (&SET_SRC (x), insn);
3149 if (split && split != &SET_SRC (x))
3150 return split;
3154 /* See if this is a simple operation with a constant as the second
3155 operand. It might be that this constant is out of range and hence
3156 could be used as a split point. */
3157 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3158 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3159 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3160 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3161 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3162 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3163 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3164 == 'o'))))
3165 return &XEXP (SET_SRC (x), 1);
3167 /* Finally, see if this is a simple operation with its first operand
3168 not in a register. The operation might require this operand in a
3169 register, so return it as a split point. We can always do this
3170 because if the first operand were another operation, we would have
3171 already found it as a split point. */
3172 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3173 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3174 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3175 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3176 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3177 return &XEXP (SET_SRC (x), 0);
3179 return 0;
3181 case AND:
3182 case IOR:
3183 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3184 it is better to write this as (not (ior A B)) so we can split it.
3185 Similarly for IOR. */
3186 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3188 SUBST (*loc,
3189 gen_rtx_NOT (GET_MODE (x),
3190 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3191 GET_MODE (x),
3192 XEXP (XEXP (x, 0), 0),
3193 XEXP (XEXP (x, 1), 0))));
3194 return find_split_point (loc, insn);
3197 /* Many RISC machines have a large set of logical insns. If the
3198 second operand is a NOT, put it first so we will try to split the
3199 other operand first. */
3200 if (GET_CODE (XEXP (x, 1)) == NOT)
3202 rtx tem = XEXP (x, 0);
3203 SUBST (XEXP (x, 0), XEXP (x, 1));
3204 SUBST (XEXP (x, 1), tem);
3206 break;
3208 default:
3209 break;
3212 /* Otherwise, select our actions depending on our rtx class. */
3213 switch (GET_RTX_CLASS (code))
3215 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3216 case '3':
3217 split = find_split_point (&XEXP (x, 2), insn);
3218 if (split)
3219 return split;
3220 /* ... fall through ... */
3221 case '2':
3222 case 'c':
3223 case '<':
3224 split = find_split_point (&XEXP (x, 1), insn);
3225 if (split)
3226 return split;
3227 /* ... fall through ... */
3228 case '1':
3229 /* Some machines have (and (shift ...) ...) insns. If X is not
3230 an AND, but XEXP (X, 0) is, use it as our split point. */
3231 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3232 return &XEXP (x, 0);
3234 split = find_split_point (&XEXP (x, 0), insn);
3235 if (split)
3236 return split;
3237 return loc;
3240 /* Otherwise, we don't have a split point. */
3241 return 0;
3244 /* Throughout X, replace FROM with TO, and return the result.
3245 The result is TO if X is FROM;
3246 otherwise the result is X, but its contents may have been modified.
3247 If they were modified, a record was made in undobuf so that
3248 undo_all will (among other things) return X to its original state.
3250 If the number of changes necessary is too much to record to undo,
3251 the excess changes are not made, so the result is invalid.
3252 The changes already made can still be undone.
3253 undobuf.num_undo is incremented for such changes, so by testing that
3254 the caller can tell whether the result is valid.
3256 `n_occurrences' is incremented each time FROM is replaced.
3258 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3260 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3261 by copying if `n_occurrences' is non-zero. */
3263 static rtx
3264 subst (x, from, to, in_dest, unique_copy)
3265 register rtx x, from, to;
3266 int in_dest;
3267 int unique_copy;
3269 register enum rtx_code code = GET_CODE (x);
3270 enum machine_mode op0_mode = VOIDmode;
3271 register const char *fmt;
3272 register int len, i;
3273 rtx new;
3275 /* Two expressions are equal if they are identical copies of a shared
3276 RTX or if they are both registers with the same register number
3277 and mode. */
3279 #define COMBINE_RTX_EQUAL_P(X,Y) \
3280 ((X) == (Y) \
3281 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3282 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3284 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3286 n_occurrences++;
3287 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3290 /* If X and FROM are the same register but different modes, they will
3291 not have been seen as equal above. However, flow.c will make a
3292 LOG_LINKS entry for that case. If we do nothing, we will try to
3293 rerecognize our original insn and, when it succeeds, we will
3294 delete the feeding insn, which is incorrect.
3296 So force this insn not to match in this (rare) case. */
3297 if (! in_dest && code == REG && GET_CODE (from) == REG
3298 && REGNO (x) == REGNO (from))
3299 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3301 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3302 of which may contain things that can be combined. */
3303 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3304 return x;
3306 /* It is possible to have a subexpression appear twice in the insn.
3307 Suppose that FROM is a register that appears within TO.
3308 Then, after that subexpression has been scanned once by `subst',
3309 the second time it is scanned, TO may be found. If we were
3310 to scan TO here, we would find FROM within it and create a
3311 self-referent rtl structure which is completely wrong. */
3312 if (COMBINE_RTX_EQUAL_P (x, to))
3313 return to;
3315 /* Parallel asm_operands need special attention because all of the
3316 inputs are shared across the arms. Furthermore, unsharing the
3317 rtl results in recognition failures. Failure to handle this case
3318 specially can result in circular rtl.
3320 Solve this by doing a normal pass across the first entry of the
3321 parallel, and only processing the SET_DESTs of the subsequent
3322 entries. Ug. */
3324 if (code == PARALLEL
3325 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3326 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3328 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3330 /* If this substitution failed, this whole thing fails. */
3331 if (GET_CODE (new) == CLOBBER
3332 && XEXP (new, 0) == const0_rtx)
3333 return new;
3335 SUBST (XVECEXP (x, 0, 0), new);
3337 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3339 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3341 if (GET_CODE (dest) != REG
3342 && GET_CODE (dest) != CC0
3343 && GET_CODE (dest) != PC)
3345 new = subst (dest, from, to, 0, unique_copy);
3347 /* If this substitution failed, this whole thing fails. */
3348 if (GET_CODE (new) == CLOBBER
3349 && XEXP (new, 0) == const0_rtx)
3350 return new;
3352 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3356 else
3358 len = GET_RTX_LENGTH (code);
3359 fmt = GET_RTX_FORMAT (code);
3361 /* We don't need to process a SET_DEST that is a register, CC0,
3362 or PC, so set up to skip this common case. All other cases
3363 where we want to suppress replacing something inside a
3364 SET_SRC are handled via the IN_DEST operand. */
3365 if (code == SET
3366 && (GET_CODE (SET_DEST (x)) == REG
3367 || GET_CODE (SET_DEST (x)) == CC0
3368 || GET_CODE (SET_DEST (x)) == PC))
3369 fmt = "ie";
3371 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3372 constant. */
3373 if (fmt[0] == 'e')
3374 op0_mode = GET_MODE (XEXP (x, 0));
3376 for (i = 0; i < len; i++)
3378 if (fmt[i] == 'E')
3380 register int j;
3381 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3383 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3385 new = (unique_copy && n_occurrences
3386 ? copy_rtx (to) : to);
3387 n_occurrences++;
3389 else
3391 new = subst (XVECEXP (x, i, j), from, to, 0,
3392 unique_copy);
3394 /* If this substitution failed, this whole thing
3395 fails. */
3396 if (GET_CODE (new) == CLOBBER
3397 && XEXP (new, 0) == const0_rtx)
3398 return new;
3401 SUBST (XVECEXP (x, i, j), new);
3404 else if (fmt[i] == 'e')
3406 /* If this is a register being set, ignore it. */
3407 new = XEXP (x, i);
3408 if (in_dest
3409 && (code == SUBREG || code == STRICT_LOW_PART
3410 || code == ZERO_EXTRACT)
3411 && i == 0
3412 && GET_CODE (new) == REG)
3415 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3417 /* In general, don't install a subreg involving two
3418 modes not tieable. It can worsen register
3419 allocation, and can even make invalid reload
3420 insns, since the reg inside may need to be copied
3421 from in the outside mode, and that may be invalid
3422 if it is an fp reg copied in integer mode.
3424 We allow two exceptions to this: It is valid if
3425 it is inside another SUBREG and the mode of that
3426 SUBREG and the mode of the inside of TO is
3427 tieable and it is valid if X is a SET that copies
3428 FROM to CC0. */
3430 if (GET_CODE (to) == SUBREG
3431 && ! MODES_TIEABLE_P (GET_MODE (to),
3432 GET_MODE (SUBREG_REG (to)))
3433 && ! (code == SUBREG
3434 && MODES_TIEABLE_P (GET_MODE (x),
3435 GET_MODE (SUBREG_REG (to))))
3436 #ifdef HAVE_cc0
3437 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3438 #endif
3440 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3442 #ifdef CLASS_CANNOT_CHANGE_MODE
3443 if (code == SUBREG
3444 && GET_CODE (to) == REG
3445 && REGNO (to) < FIRST_PSEUDO_REGISTER
3446 && (TEST_HARD_REG_BIT
3447 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3448 REGNO (to)))
3449 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3450 GET_MODE (x)))
3451 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3452 #endif
3454 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3455 n_occurrences++;
3457 else
3458 /* If we are in a SET_DEST, suppress most cases unless we
3459 have gone inside a MEM, in which case we want to
3460 simplify the address. We assume here that things that
3461 are actually part of the destination have their inner
3462 parts in the first expression. This is true for SUBREG,
3463 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3464 things aside from REG and MEM that should appear in a
3465 SET_DEST. */
3466 new = subst (XEXP (x, i), from, to,
3467 (((in_dest
3468 && (code == SUBREG || code == STRICT_LOW_PART
3469 || code == ZERO_EXTRACT))
3470 || code == SET)
3471 && i == 0), unique_copy);
3473 /* If we found that we will have to reject this combination,
3474 indicate that by returning the CLOBBER ourselves, rather than
3475 an expression containing it. This will speed things up as
3476 well as prevent accidents where two CLOBBERs are considered
3477 to be equal, thus producing an incorrect simplification. */
3479 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3480 return new;
3482 SUBST (XEXP (x, i), new);
3487 /* Try to simplify X. If the simplification changed the code, it is likely
3488 that further simplification will help, so loop, but limit the number
3489 of repetitions that will be performed. */
3491 for (i = 0; i < 4; i++)
3493 /* If X is sufficiently simple, don't bother trying to do anything
3494 with it. */
3495 if (code != CONST_INT && code != REG && code != CLOBBER)
3496 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3498 if (GET_CODE (x) == code)
3499 break;
3501 code = GET_CODE (x);
3503 /* We no longer know the original mode of operand 0 since we
3504 have changed the form of X) */
3505 op0_mode = VOIDmode;
3508 return x;
3511 /* Simplify X, a piece of RTL. We just operate on the expression at the
3512 outer level; call `subst' to simplify recursively. Return the new
3513 expression.
3515 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3516 will be the iteration even if an expression with a code different from
3517 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3519 static rtx
3520 combine_simplify_rtx (x, op0_mode, last, in_dest)
3521 rtx x;
3522 enum machine_mode op0_mode;
3523 int last;
3524 int in_dest;
3526 enum rtx_code code = GET_CODE (x);
3527 enum machine_mode mode = GET_MODE (x);
3528 rtx temp;
3529 rtx reversed;
3530 int i;
3532 /* If this is a commutative operation, put a constant last and a complex
3533 expression first. We don't need to do this for comparisons here. */
3534 if (GET_RTX_CLASS (code) == 'c'
3535 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3537 temp = XEXP (x, 0);
3538 SUBST (XEXP (x, 0), XEXP (x, 1));
3539 SUBST (XEXP (x, 1), temp);
3542 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3543 sign extension of a PLUS with a constant, reverse the order of the sign
3544 extension and the addition. Note that this not the same as the original
3545 code, but overflow is undefined for signed values. Also note that the
3546 PLUS will have been partially moved "inside" the sign-extension, so that
3547 the first operand of X will really look like:
3548 (ashiftrt (plus (ashift A C4) C5) C4).
3549 We convert this to
3550 (plus (ashiftrt (ashift A C4) C2) C4)
3551 and replace the first operand of X with that expression. Later parts
3552 of this function may simplify the expression further.
3554 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3555 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3556 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3558 We do this to simplify address expressions. */
3560 if ((code == PLUS || code == MINUS || code == MULT)
3561 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3562 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3563 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3564 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3565 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3566 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3567 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3568 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3569 XEXP (XEXP (XEXP (x, 0), 0), 1),
3570 XEXP (XEXP (x, 0), 1))) != 0)
3572 rtx new
3573 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3574 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3575 INTVAL (XEXP (XEXP (x, 0), 1)));
3577 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3578 INTVAL (XEXP (XEXP (x, 0), 1)));
3580 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3583 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3584 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3585 things. Check for cases where both arms are testing the same
3586 condition.
3588 Don't do anything if all operands are very simple. */
3590 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3591 || GET_RTX_CLASS (code) == '<')
3592 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3593 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3594 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3595 == 'o')))
3596 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3597 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3598 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3599 == 'o')))))
3600 || (GET_RTX_CLASS (code) == '1'
3601 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3602 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3603 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3604 == 'o'))))))
3606 rtx cond, true_rtx, false_rtx;
3608 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3609 if (cond != 0
3610 /* If everything is a comparison, what we have is highly unlikely
3611 to be simpler, so don't use it. */
3612 && ! (GET_RTX_CLASS (code) == '<'
3613 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3614 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3616 rtx cop1 = const0_rtx;
3617 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3619 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3620 return x;
3622 /* Simplify the alternative arms; this may collapse the true and
3623 false arms to store-flag values. */
3624 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3625 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3627 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3628 is unlikely to be simpler. */
3629 if (general_operand (true_rtx, VOIDmode)
3630 && general_operand (false_rtx, VOIDmode))
3632 /* Restarting if we generate a store-flag expression will cause
3633 us to loop. Just drop through in this case. */
3635 /* If the result values are STORE_FLAG_VALUE and zero, we can
3636 just make the comparison operation. */
3637 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3638 x = gen_binary (cond_code, mode, cond, cop1);
3639 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx)
3640 x = gen_binary (reverse_condition (cond_code),
3641 mode, cond, cop1);
3643 /* Likewise, we can make the negate of a comparison operation
3644 if the result values are - STORE_FLAG_VALUE and zero. */
3645 else if (GET_CODE (true_rtx) == CONST_INT
3646 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3647 && false_rtx == const0_rtx)
3648 x = simplify_gen_unary (NEG, mode,
3649 gen_binary (cond_code, mode, cond,
3650 cop1),
3651 mode);
3652 else if (GET_CODE (false_rtx) == CONST_INT
3653 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3654 && true_rtx == const0_rtx)
3655 x = simplify_gen_unary (NEG, mode,
3656 gen_binary (reverse_condition
3657 (cond_code),
3658 mode, cond, cop1),
3659 mode);
3660 else
3661 return gen_rtx_IF_THEN_ELSE (mode,
3662 gen_binary (cond_code, VOIDmode,
3663 cond, cop1),
3664 true_rtx, false_rtx);
3666 code = GET_CODE (x);
3667 op0_mode = VOIDmode;
3672 /* Try to fold this expression in case we have constants that weren't
3673 present before. */
3674 temp = 0;
3675 switch (GET_RTX_CLASS (code))
3677 case '1':
3678 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3679 break;
3680 case '<':
3682 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3683 if (cmp_mode == VOIDmode)
3685 cmp_mode = GET_MODE (XEXP (x, 1));
3686 if (cmp_mode == VOIDmode)
3687 cmp_mode = op0_mode;
3689 temp = simplify_relational_operation (code, cmp_mode,
3690 XEXP (x, 0), XEXP (x, 1));
3692 #ifdef FLOAT_STORE_FLAG_VALUE
3693 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3695 if (temp == const0_rtx)
3696 temp = CONST0_RTX (mode);
3697 else
3698 temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3700 #endif
3701 break;
3702 case 'c':
3703 case '2':
3704 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3705 break;
3706 case 'b':
3707 case '3':
3708 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3709 XEXP (x, 1), XEXP (x, 2));
3710 break;
3713 if (temp)
3715 x = temp;
3716 code = GET_CODE (temp);
3717 op0_mode = VOIDmode;
3718 mode = GET_MODE (temp);
3721 /* First see if we can apply the inverse distributive law. */
3722 if (code == PLUS || code == MINUS
3723 || code == AND || code == IOR || code == XOR)
3725 x = apply_distributive_law (x);
3726 code = GET_CODE (x);
3727 op0_mode = VOIDmode;
3730 /* If CODE is an associative operation not otherwise handled, see if we
3731 can associate some operands. This can win if they are constants or
3732 if they are logically related (i.e. (a & b) & a). */
3733 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3734 || code == AND || code == IOR || code == XOR
3735 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3736 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3737 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3739 if (GET_CODE (XEXP (x, 0)) == code)
3741 rtx other = XEXP (XEXP (x, 0), 0);
3742 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3743 rtx inner_op1 = XEXP (x, 1);
3744 rtx inner;
3746 /* Make sure we pass the constant operand if any as the second
3747 one if this is a commutative operation. */
3748 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3750 rtx tem = inner_op0;
3751 inner_op0 = inner_op1;
3752 inner_op1 = tem;
3754 inner = simplify_binary_operation (code == MINUS ? PLUS
3755 : code == DIV ? MULT
3756 : code,
3757 mode, inner_op0, inner_op1);
3759 /* For commutative operations, try the other pair if that one
3760 didn't simplify. */
3761 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3763 other = XEXP (XEXP (x, 0), 1);
3764 inner = simplify_binary_operation (code, mode,
3765 XEXP (XEXP (x, 0), 0),
3766 XEXP (x, 1));
3769 if (inner)
3770 return gen_binary (code, mode, other, inner);
3774 /* A little bit of algebraic simplification here. */
3775 switch (code)
3777 case MEM:
3778 /* Ensure that our address has any ASHIFTs converted to MULT in case
3779 address-recognizing predicates are called later. */
3780 temp = make_compound_operation (XEXP (x, 0), MEM);
3781 SUBST (XEXP (x, 0), temp);
3782 break;
3784 case SUBREG:
3785 if (op0_mode == VOIDmode)
3786 op0_mode = GET_MODE (SUBREG_REG (x));
3788 /* simplify_subreg can't use gen_lowpart_for_combine. */
3789 if (CONSTANT_P (SUBREG_REG (x))
3790 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3791 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3794 rtx temp;
3795 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3796 SUBREG_BYTE (x));
3797 if (temp)
3798 return temp;
3801 /* Note that we cannot do any narrowing for non-constants since
3802 we might have been counting on using the fact that some bits were
3803 zero. We now do this in the SET. */
3805 break;
3807 case NOT:
3808 /* (not (plus X -1)) can become (neg X). */
3809 if (GET_CODE (XEXP (x, 0)) == PLUS
3810 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3811 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3813 /* Similarly, (not (neg X)) is (plus X -1). */
3814 if (GET_CODE (XEXP (x, 0)) == NEG)
3815 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3817 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3818 if (GET_CODE (XEXP (x, 0)) == XOR
3819 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3820 && (temp = simplify_unary_operation (NOT, mode,
3821 XEXP (XEXP (x, 0), 1),
3822 mode)) != 0)
3823 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3825 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3826 other than 1, but that is not valid. We could do a similar
3827 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3828 but this doesn't seem common enough to bother with. */
3829 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3830 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3831 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3832 const1_rtx, mode),
3833 XEXP (XEXP (x, 0), 1));
3835 if (GET_CODE (XEXP (x, 0)) == SUBREG
3836 && subreg_lowpart_p (XEXP (x, 0))
3837 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3838 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3839 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3840 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3842 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3844 x = gen_rtx_ROTATE (inner_mode,
3845 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3846 inner_mode),
3847 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3848 return gen_lowpart_for_combine (mode, x);
3851 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3852 reversing the comparison code if valid. */
3853 if (STORE_FLAG_VALUE == -1
3854 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3855 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3856 XEXP (XEXP (x, 0), 1))))
3857 return reversed;
3859 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3860 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3861 perform the above simplification. */
3863 if (STORE_FLAG_VALUE == -1
3864 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3865 && XEXP (x, 1) == const1_rtx
3866 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3867 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3868 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3870 /* Apply De Morgan's laws to reduce number of patterns for machines
3871 with negating logical insns (and-not, nand, etc.). If result has
3872 only one NOT, put it first, since that is how the patterns are
3873 coded. */
3875 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3877 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3878 enum machine_mode op_mode;
3880 op_mode = GET_MODE (in1);
3881 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3883 op_mode = GET_MODE (in2);
3884 if (op_mode == VOIDmode)
3885 op_mode = mode;
3886 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3888 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3890 rtx tem = in2;
3891 in2 = in1; in1 = tem;
3894 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3895 mode, in1, in2);
3897 break;
3899 case NEG:
3900 /* (neg (plus X 1)) can become (not X). */
3901 if (GET_CODE (XEXP (x, 0)) == PLUS
3902 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3903 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3905 /* Similarly, (neg (not X)) is (plus X 1). */
3906 if (GET_CODE (XEXP (x, 0)) == NOT)
3907 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3909 /* (neg (minus X Y)) can become (minus Y X). */
3910 if (GET_CODE (XEXP (x, 0)) == MINUS
3911 && (! FLOAT_MODE_P (mode)
3912 /* x-y != -(y-x) with IEEE floating point. */
3913 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3914 || flag_unsafe_math_optimizations))
3915 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3916 XEXP (XEXP (x, 0), 0));
3918 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3919 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3920 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3921 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3923 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3924 if we can then eliminate the NEG (e.g.,
3925 if the operand is a constant). */
3927 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3929 temp = simplify_unary_operation (NEG, mode,
3930 XEXP (XEXP (x, 0), 0), mode);
3931 if (temp)
3932 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
3935 temp = expand_compound_operation (XEXP (x, 0));
3937 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3938 replaced by (lshiftrt X C). This will convert
3939 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3941 if (GET_CODE (temp) == ASHIFTRT
3942 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3943 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3944 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3945 INTVAL (XEXP (temp, 1)));
3947 /* If X has only a single bit that might be nonzero, say, bit I, convert
3948 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3949 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3950 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3951 or a SUBREG of one since we'd be making the expression more
3952 complex if it was just a register. */
3954 if (GET_CODE (temp) != REG
3955 && ! (GET_CODE (temp) == SUBREG
3956 && GET_CODE (SUBREG_REG (temp)) == REG)
3957 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3959 rtx temp1 = simplify_shift_const
3960 (NULL_RTX, ASHIFTRT, mode,
3961 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3962 GET_MODE_BITSIZE (mode) - 1 - i),
3963 GET_MODE_BITSIZE (mode) - 1 - i);
3965 /* If all we did was surround TEMP with the two shifts, we
3966 haven't improved anything, so don't use it. Otherwise,
3967 we are better off with TEMP1. */
3968 if (GET_CODE (temp1) != ASHIFTRT
3969 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3970 || XEXP (XEXP (temp1, 0), 0) != temp)
3971 return temp1;
3973 break;
3975 case TRUNCATE:
3976 /* We can't handle truncation to a partial integer mode here
3977 because we don't know the real bitsize of the partial
3978 integer mode. */
3979 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3980 break;
3982 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3983 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3984 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3985 SUBST (XEXP (x, 0),
3986 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3987 GET_MODE_MASK (mode), NULL_RTX, 0));
3989 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3990 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3991 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3992 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3993 return XEXP (XEXP (x, 0), 0);
3995 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3996 (OP:SI foo:SI) if OP is NEG or ABS. */
3997 if ((GET_CODE (XEXP (x, 0)) == ABS
3998 || GET_CODE (XEXP (x, 0)) == NEG)
3999 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4000 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4001 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4002 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4003 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4005 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4006 (truncate:SI x). */
4007 if (GET_CODE (XEXP (x, 0)) == SUBREG
4008 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4009 && subreg_lowpart_p (XEXP (x, 0)))
4010 return SUBREG_REG (XEXP (x, 0));
4012 /* If we know that the value is already truncated, we can
4013 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4014 is nonzero for the corresponding modes. But don't do this
4015 for an (LSHIFTRT (MULT ...)) since this will cause problems
4016 with the umulXi3_highpart patterns. */
4017 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4018 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4019 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4020 >= GET_MODE_BITSIZE (mode) + 1
4021 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4022 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4023 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4025 /* A truncate of a comparison can be replaced with a subreg if
4026 STORE_FLAG_VALUE permits. This is like the previous test,
4027 but it works even if the comparison is done in a mode larger
4028 than HOST_BITS_PER_WIDE_INT. */
4029 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4030 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4031 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4032 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4034 /* Similarly, a truncate of a register whose value is a
4035 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4036 permits. */
4037 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4038 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4039 && (temp = get_last_value (XEXP (x, 0)))
4040 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4041 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4043 break;
4045 case FLOAT_TRUNCATE:
4046 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4047 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4048 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4049 return XEXP (XEXP (x, 0), 0);
4051 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4052 (OP:SF foo:SF) if OP is NEG or ABS. */
4053 if ((GET_CODE (XEXP (x, 0)) == ABS
4054 || GET_CODE (XEXP (x, 0)) == NEG)
4055 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4056 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4057 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4058 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4060 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4061 is (float_truncate:SF x). */
4062 if (GET_CODE (XEXP (x, 0)) == SUBREG
4063 && subreg_lowpart_p (XEXP (x, 0))
4064 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4065 return SUBREG_REG (XEXP (x, 0));
4066 break;
4068 #ifdef HAVE_cc0
4069 case COMPARE:
4070 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4071 using cc0, in which case we want to leave it as a COMPARE
4072 so we can distinguish it from a register-register-copy. */
4073 if (XEXP (x, 1) == const0_rtx)
4074 return XEXP (x, 0);
4076 /* In IEEE floating point, x-0 is not the same as x. */
4077 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4078 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4079 || flag_unsafe_math_optimizations)
4080 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4081 return XEXP (x, 0);
4082 break;
4083 #endif
4085 case CONST:
4086 /* (const (const X)) can become (const X). Do it this way rather than
4087 returning the inner CONST since CONST can be shared with a
4088 REG_EQUAL note. */
4089 if (GET_CODE (XEXP (x, 0)) == CONST)
4090 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4091 break;
4093 #ifdef HAVE_lo_sum
4094 case LO_SUM:
4095 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4096 can add in an offset. find_split_point will split this address up
4097 again if it doesn't match. */
4098 if (GET_CODE (XEXP (x, 0)) == HIGH
4099 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4100 return XEXP (x, 1);
4101 break;
4102 #endif
4104 case PLUS:
4105 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4106 outermost. That's because that's the way indexed addresses are
4107 supposed to appear. This code used to check many more cases, but
4108 they are now checked elsewhere. */
4109 if (GET_CODE (XEXP (x, 0)) == PLUS
4110 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4111 return gen_binary (PLUS, mode,
4112 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4113 XEXP (x, 1)),
4114 XEXP (XEXP (x, 0), 1));
4116 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4117 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4118 bit-field and can be replaced by either a sign_extend or a
4119 sign_extract. The `and' may be a zero_extend and the two
4120 <c>, -<c> constants may be reversed. */
4121 if (GET_CODE (XEXP (x, 0)) == XOR
4122 && GET_CODE (XEXP (x, 1)) == CONST_INT
4123 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4124 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4125 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4126 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4127 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4128 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4129 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4130 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4131 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4132 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4133 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4134 == (unsigned int) i + 1))))
4135 return simplify_shift_const
4136 (NULL_RTX, ASHIFTRT, mode,
4137 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4138 XEXP (XEXP (XEXP (x, 0), 0), 0),
4139 GET_MODE_BITSIZE (mode) - (i + 1)),
4140 GET_MODE_BITSIZE (mode) - (i + 1));
4142 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4143 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4144 is 1. This produces better code than the alternative immediately
4145 below. */
4146 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4147 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4148 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4149 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4150 XEXP (XEXP (x, 0), 0),
4151 XEXP (XEXP (x, 0), 1))))
4152 return
4153 simplify_gen_unary (NEG, mode, reversed, mode);
4155 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4156 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4157 the bitsize of the mode - 1. This allows simplification of
4158 "a = (b & 8) == 0;" */
4159 if (XEXP (x, 1) == constm1_rtx
4160 && GET_CODE (XEXP (x, 0)) != REG
4161 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4162 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4163 && nonzero_bits (XEXP (x, 0), mode) == 1)
4164 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4165 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4166 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4167 GET_MODE_BITSIZE (mode) - 1),
4168 GET_MODE_BITSIZE (mode) - 1);
4170 /* If we are adding two things that have no bits in common, convert
4171 the addition into an IOR. This will often be further simplified,
4172 for example in cases like ((a & 1) + (a & 2)), which can
4173 become a & 3. */
4175 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4176 && (nonzero_bits (XEXP (x, 0), mode)
4177 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4179 /* Try to simplify the expression further. */
4180 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4181 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4183 /* If we could, great. If not, do not go ahead with the IOR
4184 replacement, since PLUS appears in many special purpose
4185 address arithmetic instructions. */
4186 if (GET_CODE (temp) != CLOBBER && temp != tor)
4187 return temp;
4189 break;
4191 case MINUS:
4192 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4193 by reversing the comparison code if valid. */
4194 if (STORE_FLAG_VALUE == 1
4195 && XEXP (x, 0) == const1_rtx
4196 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4197 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4198 XEXP (XEXP (x, 1), 0),
4199 XEXP (XEXP (x, 1), 1))))
4200 return reversed;
4202 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4203 (and <foo> (const_int pow2-1)) */
4204 if (GET_CODE (XEXP (x, 1)) == AND
4205 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4206 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4207 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4208 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4209 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4211 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4212 integers. */
4213 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4214 return gen_binary (MINUS, mode,
4215 gen_binary (MINUS, mode, XEXP (x, 0),
4216 XEXP (XEXP (x, 1), 0)),
4217 XEXP (XEXP (x, 1), 1));
4218 break;
4220 case MULT:
4221 /* If we have (mult (plus A B) C), apply the distributive law and then
4222 the inverse distributive law to see if things simplify. This
4223 occurs mostly in addresses, often when unrolling loops. */
4225 if (GET_CODE (XEXP (x, 0)) == PLUS)
4227 x = apply_distributive_law
4228 (gen_binary (PLUS, mode,
4229 gen_binary (MULT, mode,
4230 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4231 gen_binary (MULT, mode,
4232 XEXP (XEXP (x, 0), 1),
4233 copy_rtx (XEXP (x, 1)))));
4235 if (GET_CODE (x) != MULT)
4236 return x;
4238 /* Try simplify a*(b/c) as (a*b)/c. */
4239 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4240 && GET_CODE (XEXP (x, 0)) == DIV)
4242 rtx tem = simplify_binary_operation (MULT, mode,
4243 XEXP (XEXP (x, 0), 0),
4244 XEXP (x, 1));
4245 if (tem)
4246 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4248 break;
4250 case UDIV:
4251 /* If this is a divide by a power of two, treat it as a shift if
4252 its first operand is a shift. */
4253 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4254 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4255 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4256 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4257 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4258 || GET_CODE (XEXP (x, 0)) == ROTATE
4259 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4260 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4261 break;
4263 case EQ: case NE:
4264 case GT: case GTU: case GE: case GEU:
4265 case LT: case LTU: case LE: case LEU:
4266 case UNEQ: case LTGT:
4267 case UNGT: case UNGE:
4268 case UNLT: case UNLE:
4269 case UNORDERED: case ORDERED:
4270 /* If the first operand is a condition code, we can't do anything
4271 with it. */
4272 if (GET_CODE (XEXP (x, 0)) == COMPARE
4273 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4274 #ifdef HAVE_cc0
4275 && XEXP (x, 0) != cc0_rtx
4276 #endif
4279 rtx op0 = XEXP (x, 0);
4280 rtx op1 = XEXP (x, 1);
4281 enum rtx_code new_code;
4283 if (GET_CODE (op0) == COMPARE)
4284 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4286 /* Simplify our comparison, if possible. */
4287 new_code = simplify_comparison (code, &op0, &op1);
4289 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4290 if only the low-order bit is possibly nonzero in X (such as when
4291 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4292 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4293 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4294 (plus X 1).
4296 Remove any ZERO_EXTRACT we made when thinking this was a
4297 comparison. It may now be simpler to use, e.g., an AND. If a
4298 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4299 the call to make_compound_operation in the SET case. */
4301 if (STORE_FLAG_VALUE == 1
4302 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4303 && op1 == const0_rtx
4304 && mode == GET_MODE (op0)
4305 && nonzero_bits (op0, mode) == 1)
4306 return gen_lowpart_for_combine (mode,
4307 expand_compound_operation (op0));
4309 else if (STORE_FLAG_VALUE == 1
4310 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4311 && op1 == const0_rtx
4312 && mode == GET_MODE (op0)
4313 && (num_sign_bit_copies (op0, mode)
4314 == GET_MODE_BITSIZE (mode)))
4316 op0 = expand_compound_operation (op0);
4317 return simplify_gen_unary (NEG, mode,
4318 gen_lowpart_for_combine (mode, op0),
4319 mode);
4322 else if (STORE_FLAG_VALUE == 1
4323 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4324 && op1 == const0_rtx
4325 && mode == GET_MODE (op0)
4326 && nonzero_bits (op0, mode) == 1)
4328 op0 = expand_compound_operation (op0);
4329 return gen_binary (XOR, mode,
4330 gen_lowpart_for_combine (mode, op0),
4331 const1_rtx);
4334 else if (STORE_FLAG_VALUE == 1
4335 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4336 && op1 == const0_rtx
4337 && mode == GET_MODE (op0)
4338 && (num_sign_bit_copies (op0, mode)
4339 == GET_MODE_BITSIZE (mode)))
4341 op0 = expand_compound_operation (op0);
4342 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4345 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4346 those above. */
4347 if (STORE_FLAG_VALUE == -1
4348 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4349 && op1 == const0_rtx
4350 && (num_sign_bit_copies (op0, mode)
4351 == GET_MODE_BITSIZE (mode)))
4352 return gen_lowpart_for_combine (mode,
4353 expand_compound_operation (op0));
4355 else if (STORE_FLAG_VALUE == -1
4356 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4357 && op1 == const0_rtx
4358 && mode == GET_MODE (op0)
4359 && nonzero_bits (op0, mode) == 1)
4361 op0 = expand_compound_operation (op0);
4362 return simplify_gen_unary (NEG, mode,
4363 gen_lowpart_for_combine (mode, op0),
4364 mode);
4367 else if (STORE_FLAG_VALUE == -1
4368 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4369 && op1 == const0_rtx
4370 && mode == GET_MODE (op0)
4371 && (num_sign_bit_copies (op0, mode)
4372 == GET_MODE_BITSIZE (mode)))
4374 op0 = expand_compound_operation (op0);
4375 return simplify_gen_unary (NOT, mode,
4376 gen_lowpart_for_combine (mode, op0),
4377 mode);
4380 /* If X is 0/1, (eq X 0) is X-1. */
4381 else if (STORE_FLAG_VALUE == -1
4382 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4383 && op1 == const0_rtx
4384 && mode == GET_MODE (op0)
4385 && nonzero_bits (op0, mode) == 1)
4387 op0 = expand_compound_operation (op0);
4388 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4391 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4392 one bit that might be nonzero, we can convert (ne x 0) to
4393 (ashift x c) where C puts the bit in the sign bit. Remove any
4394 AND with STORE_FLAG_VALUE when we are done, since we are only
4395 going to test the sign bit. */
4396 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4397 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4398 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4399 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4400 && op1 == const0_rtx
4401 && mode == GET_MODE (op0)
4402 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4404 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4405 expand_compound_operation (op0),
4406 GET_MODE_BITSIZE (mode) - 1 - i);
4407 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4408 return XEXP (x, 0);
4409 else
4410 return x;
4413 /* If the code changed, return a whole new comparison. */
4414 if (new_code != code)
4415 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4417 /* Otherwise, keep this operation, but maybe change its operands.
4418 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4419 SUBST (XEXP (x, 0), op0);
4420 SUBST (XEXP (x, 1), op1);
4422 break;
4424 case IF_THEN_ELSE:
4425 return simplify_if_then_else (x);
4427 case ZERO_EXTRACT:
4428 case SIGN_EXTRACT:
4429 case ZERO_EXTEND:
4430 case SIGN_EXTEND:
4431 /* If we are processing SET_DEST, we are done. */
4432 if (in_dest)
4433 return x;
4435 return expand_compound_operation (x);
4437 case SET:
4438 return simplify_set (x);
4440 case AND:
4441 case IOR:
4442 case XOR:
4443 return simplify_logical (x, last);
4445 case ABS:
4446 /* (abs (neg <foo>)) -> (abs <foo>) */
4447 if (GET_CODE (XEXP (x, 0)) == NEG)
4448 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4450 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4451 do nothing. */
4452 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4453 break;
4455 /* If operand is something known to be positive, ignore the ABS. */
4456 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4457 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4458 <= HOST_BITS_PER_WIDE_INT)
4459 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4460 & ((HOST_WIDE_INT) 1
4461 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4462 == 0)))
4463 return XEXP (x, 0);
4465 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4466 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4467 return gen_rtx_NEG (mode, XEXP (x, 0));
4469 break;
4471 case FFS:
4472 /* (ffs (*_extend <X>)) = (ffs <X>) */
4473 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4474 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4475 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4476 break;
4478 case FLOAT:
4479 /* (float (sign_extend <X>)) = (float <X>). */
4480 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4481 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4482 break;
4484 case ASHIFT:
4485 case LSHIFTRT:
4486 case ASHIFTRT:
4487 case ROTATE:
4488 case ROTATERT:
4489 /* If this is a shift by a constant amount, simplify it. */
4490 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4491 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4492 INTVAL (XEXP (x, 1)));
4494 #ifdef SHIFT_COUNT_TRUNCATED
4495 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4496 SUBST (XEXP (x, 1),
4497 force_to_mode (XEXP (x, 1), GET_MODE (x),
4498 ((HOST_WIDE_INT) 1
4499 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4500 - 1,
4501 NULL_RTX, 0));
4502 #endif
4504 break;
4506 case VEC_SELECT:
4508 rtx op0 = XEXP (x, 0);
4509 rtx op1 = XEXP (x, 1);
4510 int len;
4512 if (GET_CODE (op1) != PARALLEL)
4513 abort ();
4514 len = XVECLEN (op1, 0);
4515 if (len == 1
4516 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4517 && GET_CODE (op0) == VEC_CONCAT)
4519 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4521 /* Try to find the element in the VEC_CONCAT. */
4522 for (;;)
4524 if (GET_MODE (op0) == GET_MODE (x))
4525 return op0;
4526 if (GET_CODE (op0) == VEC_CONCAT)
4528 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4529 if (op0_size < offset)
4530 op0 = XEXP (op0, 0);
4531 else
4533 offset -= op0_size;
4534 op0 = XEXP (op0, 1);
4537 else
4538 break;
4543 break;
4545 default:
4546 break;
4549 return x;
4552 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4554 static rtx
4555 simplify_if_then_else (x)
4556 rtx x;
4558 enum machine_mode mode = GET_MODE (x);
4559 rtx cond = XEXP (x, 0);
4560 rtx true_rtx = XEXP (x, 1);
4561 rtx false_rtx = XEXP (x, 2);
4562 enum rtx_code true_code = GET_CODE (cond);
4563 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4564 rtx temp;
4565 int i;
4566 enum rtx_code false_code;
4567 rtx reversed;
4569 /* Simplify storing of the truth value. */
4570 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4571 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4573 /* Also when the truth value has to be reversed. */
4574 if (comparison_p
4575 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4576 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4577 XEXP (cond, 1))))
4578 return reversed;
4580 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4581 in it is being compared against certain values. Get the true and false
4582 comparisons and see if that says anything about the value of each arm. */
4584 if (comparison_p
4585 && ((false_code = combine_reversed_comparison_code (cond))
4586 != UNKNOWN)
4587 && GET_CODE (XEXP (cond, 0)) == REG)
4589 HOST_WIDE_INT nzb;
4590 rtx from = XEXP (cond, 0);
4591 rtx true_val = XEXP (cond, 1);
4592 rtx false_val = true_val;
4593 int swapped = 0;
4595 /* If FALSE_CODE is EQ, swap the codes and arms. */
4597 if (false_code == EQ)
4599 swapped = 1, true_code = EQ, false_code = NE;
4600 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4603 /* If we are comparing against zero and the expression being tested has
4604 only a single bit that might be nonzero, that is its value when it is
4605 not equal to zero. Similarly if it is known to be -1 or 0. */
4607 if (true_code == EQ && true_val == const0_rtx
4608 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4609 false_code = EQ, false_val = GEN_INT (nzb);
4610 else if (true_code == EQ && true_val == const0_rtx
4611 && (num_sign_bit_copies (from, GET_MODE (from))
4612 == GET_MODE_BITSIZE (GET_MODE (from))))
4613 false_code = EQ, false_val = constm1_rtx;
4615 /* Now simplify an arm if we know the value of the register in the
4616 branch and it is used in the arm. Be careful due to the potential
4617 of locally-shared RTL. */
4619 if (reg_mentioned_p (from, true_rtx))
4620 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4621 from, true_val),
4622 pc_rtx, pc_rtx, 0, 0);
4623 if (reg_mentioned_p (from, false_rtx))
4624 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4625 from, false_val),
4626 pc_rtx, pc_rtx, 0, 0);
4628 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4629 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4631 true_rtx = XEXP (x, 1);
4632 false_rtx = XEXP (x, 2);
4633 true_code = GET_CODE (cond);
4636 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4637 reversed, do so to avoid needing two sets of patterns for
4638 subtract-and-branch insns. Similarly if we have a constant in the true
4639 arm, the false arm is the same as the first operand of the comparison, or
4640 the false arm is more complicated than the true arm. */
4642 if (comparison_p
4643 && combine_reversed_comparison_code (cond) != UNKNOWN
4644 && (true_rtx == pc_rtx
4645 || (CONSTANT_P (true_rtx)
4646 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4647 || true_rtx == const0_rtx
4648 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4649 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4650 || (GET_CODE (true_rtx) == SUBREG
4651 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4652 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4653 || reg_mentioned_p (true_rtx, false_rtx)
4654 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4656 true_code = reversed_comparison_code (cond, NULL);
4657 SUBST (XEXP (x, 0),
4658 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4659 XEXP (cond, 1)));
4661 SUBST (XEXP (x, 1), false_rtx);
4662 SUBST (XEXP (x, 2), true_rtx);
4664 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4665 cond = XEXP (x, 0);
4667 /* It is possible that the conditional has been simplified out. */
4668 true_code = GET_CODE (cond);
4669 comparison_p = GET_RTX_CLASS (true_code) == '<';
4672 /* If the two arms are identical, we don't need the comparison. */
4674 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4675 return true_rtx;
4677 /* Convert a == b ? b : a to "a". */
4678 if (true_code == EQ && ! side_effects_p (cond)
4679 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4680 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4681 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4682 return false_rtx;
4683 else if (true_code == NE && ! side_effects_p (cond)
4684 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4685 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4686 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4687 return true_rtx;
4689 /* Look for cases where we have (abs x) or (neg (abs X)). */
4691 if (GET_MODE_CLASS (mode) == MODE_INT
4692 && GET_CODE (false_rtx) == NEG
4693 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4694 && comparison_p
4695 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4696 && ! side_effects_p (true_rtx))
4697 switch (true_code)
4699 case GT:
4700 case GE:
4701 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4702 case LT:
4703 case LE:
4704 return
4705 simplify_gen_unary (NEG, mode,
4706 simplify_gen_unary (ABS, mode, true_rtx, mode),
4707 mode);
4708 default:
4709 break;
4712 /* Look for MIN or MAX. */
4714 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4715 && comparison_p
4716 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4717 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4718 && ! side_effects_p (cond))
4719 switch (true_code)
4721 case GE:
4722 case GT:
4723 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4724 case LE:
4725 case LT:
4726 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4727 case GEU:
4728 case GTU:
4729 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4730 case LEU:
4731 case LTU:
4732 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4733 default:
4734 break;
4737 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4738 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4739 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4740 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4741 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4742 neither 1 or -1, but it isn't worth checking for. */
4744 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4745 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4747 rtx t = make_compound_operation (true_rtx, SET);
4748 rtx f = make_compound_operation (false_rtx, SET);
4749 rtx cond_op0 = XEXP (cond, 0);
4750 rtx cond_op1 = XEXP (cond, 1);
4751 enum rtx_code op = NIL, extend_op = NIL;
4752 enum machine_mode m = mode;
4753 rtx z = 0, c1 = NULL_RTX;
4755 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4756 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4757 || GET_CODE (t) == ASHIFT
4758 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4759 && rtx_equal_p (XEXP (t, 0), f))
4760 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4762 /* If an identity-zero op is commutative, check whether there
4763 would be a match if we swapped the operands. */
4764 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4765 || GET_CODE (t) == XOR)
4766 && rtx_equal_p (XEXP (t, 1), f))
4767 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4768 else if (GET_CODE (t) == SIGN_EXTEND
4769 && (GET_CODE (XEXP (t, 0)) == PLUS
4770 || GET_CODE (XEXP (t, 0)) == MINUS
4771 || GET_CODE (XEXP (t, 0)) == IOR
4772 || GET_CODE (XEXP (t, 0)) == XOR
4773 || GET_CODE (XEXP (t, 0)) == ASHIFT
4774 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4775 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4776 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4777 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4778 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4779 && (num_sign_bit_copies (f, GET_MODE (f))
4780 > (GET_MODE_BITSIZE (mode)
4781 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4783 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4784 extend_op = SIGN_EXTEND;
4785 m = GET_MODE (XEXP (t, 0));
4787 else if (GET_CODE (t) == SIGN_EXTEND
4788 && (GET_CODE (XEXP (t, 0)) == PLUS
4789 || GET_CODE (XEXP (t, 0)) == IOR
4790 || GET_CODE (XEXP (t, 0)) == XOR)
4791 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4792 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4793 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4794 && (num_sign_bit_copies (f, GET_MODE (f))
4795 > (GET_MODE_BITSIZE (mode)
4796 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4798 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4799 extend_op = SIGN_EXTEND;
4800 m = GET_MODE (XEXP (t, 0));
4802 else if (GET_CODE (t) == ZERO_EXTEND
4803 && (GET_CODE (XEXP (t, 0)) == PLUS
4804 || GET_CODE (XEXP (t, 0)) == MINUS
4805 || GET_CODE (XEXP (t, 0)) == IOR
4806 || GET_CODE (XEXP (t, 0)) == XOR
4807 || GET_CODE (XEXP (t, 0)) == ASHIFT
4808 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4809 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4810 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4811 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4812 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4813 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4814 && ((nonzero_bits (f, GET_MODE (f))
4815 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4816 == 0))
4818 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4819 extend_op = ZERO_EXTEND;
4820 m = GET_MODE (XEXP (t, 0));
4822 else if (GET_CODE (t) == ZERO_EXTEND
4823 && (GET_CODE (XEXP (t, 0)) == PLUS
4824 || GET_CODE (XEXP (t, 0)) == IOR
4825 || GET_CODE (XEXP (t, 0)) == XOR)
4826 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4827 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4828 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4829 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4830 && ((nonzero_bits (f, GET_MODE (f))
4831 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4832 == 0))
4834 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4835 extend_op = ZERO_EXTEND;
4836 m = GET_MODE (XEXP (t, 0));
4839 if (z)
4841 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4842 pc_rtx, pc_rtx, 0, 0);
4843 temp = gen_binary (MULT, m, temp,
4844 gen_binary (MULT, m, c1, const_true_rtx));
4845 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4846 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4848 if (extend_op != NIL)
4849 temp = simplify_gen_unary (extend_op, mode, temp, m);
4851 return temp;
4855 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4856 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4857 negation of a single bit, we can convert this operation to a shift. We
4858 can actually do this more generally, but it doesn't seem worth it. */
4860 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4861 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4862 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4863 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4864 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4865 == GET_MODE_BITSIZE (mode))
4866 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4867 return
4868 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4869 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4871 return x;
4874 /* Simplify X, a SET expression. Return the new expression. */
4876 static rtx
4877 simplify_set (x)
4878 rtx x;
4880 rtx src = SET_SRC (x);
4881 rtx dest = SET_DEST (x);
4882 enum machine_mode mode
4883 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4884 rtx other_insn;
4885 rtx *cc_use;
4887 /* (set (pc) (return)) gets written as (return). */
4888 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4889 return src;
4891 /* Now that we know for sure which bits of SRC we are using, see if we can
4892 simplify the expression for the object knowing that we only need the
4893 low-order bits. */
4895 if (GET_MODE_CLASS (mode) == MODE_INT)
4897 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4898 SUBST (SET_SRC (x), src);
4901 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4902 the comparison result and try to simplify it unless we already have used
4903 undobuf.other_insn. */
4904 if ((GET_CODE (src) == COMPARE
4905 #ifdef HAVE_cc0
4906 || dest == cc0_rtx
4907 #endif
4909 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4910 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4911 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4912 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4914 enum rtx_code old_code = GET_CODE (*cc_use);
4915 enum rtx_code new_code;
4916 rtx op0, op1;
4917 int other_changed = 0;
4918 enum machine_mode compare_mode = GET_MODE (dest);
4920 if (GET_CODE (src) == COMPARE)
4921 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4922 else
4923 op0 = src, op1 = const0_rtx;
4925 /* Simplify our comparison, if possible. */
4926 new_code = simplify_comparison (old_code, &op0, &op1);
4928 #ifdef EXTRA_CC_MODES
4929 /* If this machine has CC modes other than CCmode, check to see if we
4930 need to use a different CC mode here. */
4931 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4932 #endif /* EXTRA_CC_MODES */
4934 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4935 /* If the mode changed, we have to change SET_DEST, the mode in the
4936 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4937 a hard register, just build new versions with the proper mode. If it
4938 is a pseudo, we lose unless it is only time we set the pseudo, in
4939 which case we can safely change its mode. */
4940 if (compare_mode != GET_MODE (dest))
4942 unsigned int regno = REGNO (dest);
4943 rtx new_dest = gen_rtx_REG (compare_mode, regno);
4945 if (regno < FIRST_PSEUDO_REGISTER
4946 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4948 if (regno >= FIRST_PSEUDO_REGISTER)
4949 SUBST (regno_reg_rtx[regno], new_dest);
4951 SUBST (SET_DEST (x), new_dest);
4952 SUBST (XEXP (*cc_use, 0), new_dest);
4953 other_changed = 1;
4955 dest = new_dest;
4958 #endif
4960 /* If the code changed, we have to build a new comparison in
4961 undobuf.other_insn. */
4962 if (new_code != old_code)
4964 unsigned HOST_WIDE_INT mask;
4966 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
4967 dest, const0_rtx));
4969 /* If the only change we made was to change an EQ into an NE or
4970 vice versa, OP0 has only one bit that might be nonzero, and OP1
4971 is zero, check if changing the user of the condition code will
4972 produce a valid insn. If it won't, we can keep the original code
4973 in that insn by surrounding our operation with an XOR. */
4975 if (((old_code == NE && new_code == EQ)
4976 || (old_code == EQ && new_code == NE))
4977 && ! other_changed && op1 == const0_rtx
4978 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4979 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4981 rtx pat = PATTERN (other_insn), note = 0;
4983 if ((recog_for_combine (&pat, other_insn, &note) < 0
4984 && ! check_asm_operands (pat)))
4986 PUT_CODE (*cc_use, old_code);
4987 other_insn = 0;
4989 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4993 other_changed = 1;
4996 if (other_changed)
4997 undobuf.other_insn = other_insn;
4999 #ifdef HAVE_cc0
5000 /* If we are now comparing against zero, change our source if
5001 needed. If we do not use cc0, we always have a COMPARE. */
5002 if (op1 == const0_rtx && dest == cc0_rtx)
5004 SUBST (SET_SRC (x), op0);
5005 src = op0;
5007 else
5008 #endif
5010 /* Otherwise, if we didn't previously have a COMPARE in the
5011 correct mode, we need one. */
5012 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5014 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5015 src = SET_SRC (x);
5017 else
5019 /* Otherwise, update the COMPARE if needed. */
5020 SUBST (XEXP (src, 0), op0);
5021 SUBST (XEXP (src, 1), op1);
5024 else
5026 /* Get SET_SRC in a form where we have placed back any
5027 compound expressions. Then do the checks below. */
5028 src = make_compound_operation (src, SET);
5029 SUBST (SET_SRC (x), src);
5032 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5033 and X being a REG or (subreg (reg)), we may be able to convert this to
5034 (set (subreg:m2 x) (op)).
5036 We can always do this if M1 is narrower than M2 because that means that
5037 we only care about the low bits of the result.
5039 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5040 perform a narrower operation than requested since the high-order bits will
5041 be undefined. On machine where it is defined, this transformation is safe
5042 as long as M1 and M2 have the same number of words. */
5044 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5045 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5046 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5047 / UNITS_PER_WORD)
5048 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5049 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5050 #ifndef WORD_REGISTER_OPERATIONS
5051 && (GET_MODE_SIZE (GET_MODE (src))
5052 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5053 #endif
5054 #ifdef CLASS_CANNOT_CHANGE_MODE
5055 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5056 && (TEST_HARD_REG_BIT
5057 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5058 REGNO (dest)))
5059 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5060 GET_MODE (SUBREG_REG (src))))
5061 #endif
5062 && (GET_CODE (dest) == REG
5063 || (GET_CODE (dest) == SUBREG
5064 && GET_CODE (SUBREG_REG (dest)) == REG)))
5066 SUBST (SET_DEST (x),
5067 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5068 dest));
5069 SUBST (SET_SRC (x), SUBREG_REG (src));
5071 src = SET_SRC (x), dest = SET_DEST (x);
5074 #ifdef LOAD_EXTEND_OP
5075 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5076 would require a paradoxical subreg. Replace the subreg with a
5077 zero_extend to avoid the reload that would otherwise be required. */
5079 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5080 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5081 && SUBREG_BYTE (src) == 0
5082 && (GET_MODE_SIZE (GET_MODE (src))
5083 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5084 && GET_CODE (SUBREG_REG (src)) == MEM)
5086 SUBST (SET_SRC (x),
5087 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5088 GET_MODE (src), SUBREG_REG (src)));
5090 src = SET_SRC (x);
5092 #endif
5094 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5095 are comparing an item known to be 0 or -1 against 0, use a logical
5096 operation instead. Check for one of the arms being an IOR of the other
5097 arm with some value. We compute three terms to be IOR'ed together. In
5098 practice, at most two will be nonzero. Then we do the IOR's. */
5100 if (GET_CODE (dest) != PC
5101 && GET_CODE (src) == IF_THEN_ELSE
5102 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5103 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5104 && XEXP (XEXP (src, 0), 1) == const0_rtx
5105 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5106 #ifdef HAVE_conditional_move
5107 && ! can_conditionally_move_p (GET_MODE (src))
5108 #endif
5109 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5110 GET_MODE (XEXP (XEXP (src, 0), 0)))
5111 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5112 && ! side_effects_p (src))
5114 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5115 ? XEXP (src, 1) : XEXP (src, 2));
5116 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5117 ? XEXP (src, 2) : XEXP (src, 1));
5118 rtx term1 = const0_rtx, term2, term3;
5120 if (GET_CODE (true_rtx) == IOR
5121 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5122 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5123 else if (GET_CODE (true_rtx) == IOR
5124 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5125 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5126 else if (GET_CODE (false_rtx) == IOR
5127 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5128 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5129 else if (GET_CODE (false_rtx) == IOR
5130 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5131 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5133 term2 = gen_binary (AND, GET_MODE (src),
5134 XEXP (XEXP (src, 0), 0), true_rtx);
5135 term3 = gen_binary (AND, GET_MODE (src),
5136 simplify_gen_unary (NOT, GET_MODE (src),
5137 XEXP (XEXP (src, 0), 0),
5138 GET_MODE (src)),
5139 false_rtx);
5141 SUBST (SET_SRC (x),
5142 gen_binary (IOR, GET_MODE (src),
5143 gen_binary (IOR, GET_MODE (src), term1, term2),
5144 term3));
5146 src = SET_SRC (x);
5149 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5150 whole thing fail. */
5151 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5152 return src;
5153 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5154 return dest;
5155 else
5156 /* Convert this into a field assignment operation, if possible. */
5157 return make_field_assignment (x);
5160 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5161 result. LAST is nonzero if this is the last retry. */
5163 static rtx
5164 simplify_logical (x, last)
5165 rtx x;
5166 int last;
5168 enum machine_mode mode = GET_MODE (x);
5169 rtx op0 = XEXP (x, 0);
5170 rtx op1 = XEXP (x, 1);
5171 rtx reversed;
5173 switch (GET_CODE (x))
5175 case AND:
5176 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5177 insn (and may simplify more). */
5178 if (GET_CODE (op0) == XOR
5179 && rtx_equal_p (XEXP (op0, 0), op1)
5180 && ! side_effects_p (op1))
5181 x = gen_binary (AND, mode,
5182 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5183 op1);
5185 if (GET_CODE (op0) == XOR
5186 && rtx_equal_p (XEXP (op0, 1), op1)
5187 && ! side_effects_p (op1))
5188 x = gen_binary (AND, mode,
5189 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5190 op1);
5192 /* Similarly for (~(A ^ B)) & A. */
5193 if (GET_CODE (op0) == NOT
5194 && GET_CODE (XEXP (op0, 0)) == XOR
5195 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5196 && ! side_effects_p (op1))
5197 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5199 if (GET_CODE (op0) == NOT
5200 && GET_CODE (XEXP (op0, 0)) == XOR
5201 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5202 && ! side_effects_p (op1))
5203 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5205 /* We can call simplify_and_const_int only if we don't lose
5206 any (sign) bits when converting INTVAL (op1) to
5207 "unsigned HOST_WIDE_INT". */
5208 if (GET_CODE (op1) == CONST_INT
5209 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5210 || INTVAL (op1) > 0))
5212 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5214 /* If we have (ior (and (X C1) C2)) and the next restart would be
5215 the last, simplify this by making C1 as small as possible
5216 and then exit. */
5217 if (last
5218 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5219 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5220 && GET_CODE (op1) == CONST_INT)
5221 return gen_binary (IOR, mode,
5222 gen_binary (AND, mode, XEXP (op0, 0),
5223 GEN_INT (INTVAL (XEXP (op0, 1))
5224 & ~INTVAL (op1))), op1);
5226 if (GET_CODE (x) != AND)
5227 return x;
5229 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5230 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5231 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5234 /* Convert (A | B) & A to A. */
5235 if (GET_CODE (op0) == IOR
5236 && (rtx_equal_p (XEXP (op0, 0), op1)
5237 || rtx_equal_p (XEXP (op0, 1), op1))
5238 && ! side_effects_p (XEXP (op0, 0))
5239 && ! side_effects_p (XEXP (op0, 1)))
5240 return op1;
5242 /* In the following group of tests (and those in case IOR below),
5243 we start with some combination of logical operations and apply
5244 the distributive law followed by the inverse distributive law.
5245 Most of the time, this results in no change. However, if some of
5246 the operands are the same or inverses of each other, simplifications
5247 will result.
5249 For example, (and (ior A B) (not B)) can occur as the result of
5250 expanding a bit field assignment. When we apply the distributive
5251 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5252 which then simplifies to (and (A (not B))).
5254 If we have (and (ior A B) C), apply the distributive law and then
5255 the inverse distributive law to see if things simplify. */
5257 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5259 x = apply_distributive_law
5260 (gen_binary (GET_CODE (op0), mode,
5261 gen_binary (AND, mode, XEXP (op0, 0), op1),
5262 gen_binary (AND, mode, XEXP (op0, 1),
5263 copy_rtx (op1))));
5264 if (GET_CODE (x) != AND)
5265 return x;
5268 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5269 return apply_distributive_law
5270 (gen_binary (GET_CODE (op1), mode,
5271 gen_binary (AND, mode, XEXP (op1, 0), op0),
5272 gen_binary (AND, mode, XEXP (op1, 1),
5273 copy_rtx (op0))));
5275 /* Similarly, taking advantage of the fact that
5276 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5278 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5279 return apply_distributive_law
5280 (gen_binary (XOR, mode,
5281 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5282 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5283 XEXP (op1, 1))));
5285 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5286 return apply_distributive_law
5287 (gen_binary (XOR, mode,
5288 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5289 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5290 break;
5292 case IOR:
5293 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5294 if (GET_CODE (op1) == CONST_INT
5295 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5296 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5297 return op1;
5299 /* Convert (A & B) | A to A. */
5300 if (GET_CODE (op0) == AND
5301 && (rtx_equal_p (XEXP (op0, 0), op1)
5302 || rtx_equal_p (XEXP (op0, 1), op1))
5303 && ! side_effects_p (XEXP (op0, 0))
5304 && ! side_effects_p (XEXP (op0, 1)))
5305 return op1;
5307 /* If we have (ior (and A B) C), apply the distributive law and then
5308 the inverse distributive law to see if things simplify. */
5310 if (GET_CODE (op0) == AND)
5312 x = apply_distributive_law
5313 (gen_binary (AND, mode,
5314 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5315 gen_binary (IOR, mode, XEXP (op0, 1),
5316 copy_rtx (op1))));
5318 if (GET_CODE (x) != IOR)
5319 return x;
5322 if (GET_CODE (op1) == AND)
5324 x = apply_distributive_law
5325 (gen_binary (AND, mode,
5326 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5327 gen_binary (IOR, mode, XEXP (op1, 1),
5328 copy_rtx (op0))));
5330 if (GET_CODE (x) != IOR)
5331 return x;
5334 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5335 mode size to (rotate A CX). */
5337 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5338 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5339 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5340 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5341 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5342 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5343 == GET_MODE_BITSIZE (mode)))
5344 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5345 (GET_CODE (op0) == ASHIFT
5346 ? XEXP (op0, 1) : XEXP (op1, 1)));
5348 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5349 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5350 does not affect any of the bits in OP1, it can really be done
5351 as a PLUS and we can associate. We do this by seeing if OP1
5352 can be safely shifted left C bits. */
5353 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5354 && GET_CODE (XEXP (op0, 0)) == PLUS
5355 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5356 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5357 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5359 int count = INTVAL (XEXP (op0, 1));
5360 HOST_WIDE_INT mask = INTVAL (op1) << count;
5362 if (mask >> count == INTVAL (op1)
5363 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5365 SUBST (XEXP (XEXP (op0, 0), 1),
5366 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5367 return op0;
5370 break;
5372 case XOR:
5373 /* If we are XORing two things that have no bits in common,
5374 convert them into an IOR. This helps to detect rotation encoded
5375 using those methods and possibly other simplifications. */
5377 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5378 && (nonzero_bits (op0, mode)
5379 & nonzero_bits (op1, mode)) == 0)
5380 return (gen_binary (IOR, mode, op0, op1));
5382 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5383 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5384 (NOT y). */
5386 int num_negated = 0;
5388 if (GET_CODE (op0) == NOT)
5389 num_negated++, op0 = XEXP (op0, 0);
5390 if (GET_CODE (op1) == NOT)
5391 num_negated++, op1 = XEXP (op1, 0);
5393 if (num_negated == 2)
5395 SUBST (XEXP (x, 0), op0);
5396 SUBST (XEXP (x, 1), op1);
5398 else if (num_negated == 1)
5399 return
5400 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5401 mode);
5404 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5405 correspond to a machine insn or result in further simplifications
5406 if B is a constant. */
5408 if (GET_CODE (op0) == AND
5409 && rtx_equal_p (XEXP (op0, 1), op1)
5410 && ! side_effects_p (op1))
5411 return gen_binary (AND, mode,
5412 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5413 op1);
5415 else if (GET_CODE (op0) == AND
5416 && rtx_equal_p (XEXP (op0, 0), op1)
5417 && ! side_effects_p (op1))
5418 return gen_binary (AND, mode,
5419 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5420 op1);
5422 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5423 comparison if STORE_FLAG_VALUE is 1. */
5424 if (STORE_FLAG_VALUE == 1
5425 && op1 == const1_rtx
5426 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5427 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5428 XEXP (op0, 1))))
5429 return reversed;
5431 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5432 is (lt foo (const_int 0)), so we can perform the above
5433 simplification if STORE_FLAG_VALUE is 1. */
5435 if (STORE_FLAG_VALUE == 1
5436 && op1 == const1_rtx
5437 && GET_CODE (op0) == LSHIFTRT
5438 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5439 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5440 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5442 /* (xor (comparison foo bar) (const_int sign-bit))
5443 when STORE_FLAG_VALUE is the sign bit. */
5444 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5445 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5446 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5447 && op1 == const_true_rtx
5448 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5449 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5450 XEXP (op0, 1))))
5451 return reversed;
5453 break;
5455 default:
5456 abort ();
5459 return x;
5462 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5463 operations" because they can be replaced with two more basic operations.
5464 ZERO_EXTEND is also considered "compound" because it can be replaced with
5465 an AND operation, which is simpler, though only one operation.
5467 The function expand_compound_operation is called with an rtx expression
5468 and will convert it to the appropriate shifts and AND operations,
5469 simplifying at each stage.
5471 The function make_compound_operation is called to convert an expression
5472 consisting of shifts and ANDs into the equivalent compound expression.
5473 It is the inverse of this function, loosely speaking. */
5475 static rtx
5476 expand_compound_operation (x)
5477 rtx x;
5479 unsigned HOST_WIDE_INT pos = 0, len;
5480 int unsignedp = 0;
5481 unsigned int modewidth;
5482 rtx tem;
5484 switch (GET_CODE (x))
5486 case ZERO_EXTEND:
5487 unsignedp = 1;
5488 case SIGN_EXTEND:
5489 /* We can't necessarily use a const_int for a multiword mode;
5490 it depends on implicitly extending the value.
5491 Since we don't know the right way to extend it,
5492 we can't tell whether the implicit way is right.
5494 Even for a mode that is no wider than a const_int,
5495 we can't win, because we need to sign extend one of its bits through
5496 the rest of it, and we don't know which bit. */
5497 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5498 return x;
5500 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5501 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5502 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5503 reloaded. If not for that, MEM's would very rarely be safe.
5505 Reject MODEs bigger than a word, because we might not be able
5506 to reference a two-register group starting with an arbitrary register
5507 (and currently gen_lowpart might crash for a SUBREG). */
5509 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5510 return x;
5512 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5513 /* If the inner object has VOIDmode (the only way this can happen
5514 is if it is a ASM_OPERANDS), we can't do anything since we don't
5515 know how much masking to do. */
5516 if (len == 0)
5517 return x;
5519 break;
5521 case ZERO_EXTRACT:
5522 unsignedp = 1;
5523 case SIGN_EXTRACT:
5524 /* If the operand is a CLOBBER, just return it. */
5525 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5526 return XEXP (x, 0);
5528 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5529 || GET_CODE (XEXP (x, 2)) != CONST_INT
5530 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5531 return x;
5533 len = INTVAL (XEXP (x, 1));
5534 pos = INTVAL (XEXP (x, 2));
5536 /* If this goes outside the object being extracted, replace the object
5537 with a (use (mem ...)) construct that only combine understands
5538 and is used only for this purpose. */
5539 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5540 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5542 if (BITS_BIG_ENDIAN)
5543 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5545 break;
5547 default:
5548 return x;
5550 /* Convert sign extension to zero extension, if we know that the high
5551 bit is not set, as this is easier to optimize. It will be converted
5552 back to cheaper alternative in make_extraction. */
5553 if (GET_CODE (x) == SIGN_EXTEND
5554 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5555 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5556 & ~(((unsigned HOST_WIDE_INT)
5557 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5558 >> 1))
5559 == 0)))
5561 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5562 return expand_compound_operation (temp);
5565 /* We can optimize some special cases of ZERO_EXTEND. */
5566 if (GET_CODE (x) == ZERO_EXTEND)
5568 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5569 know that the last value didn't have any inappropriate bits
5570 set. */
5571 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5572 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5573 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5574 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5575 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5576 return XEXP (XEXP (x, 0), 0);
5578 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5579 if (GET_CODE (XEXP (x, 0)) == SUBREG
5580 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5581 && subreg_lowpart_p (XEXP (x, 0))
5582 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5583 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5584 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5585 return SUBREG_REG (XEXP (x, 0));
5587 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5588 is a comparison and STORE_FLAG_VALUE permits. This is like
5589 the first case, but it works even when GET_MODE (x) is larger
5590 than HOST_WIDE_INT. */
5591 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5592 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5593 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5594 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5595 <= HOST_BITS_PER_WIDE_INT)
5596 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5597 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5598 return XEXP (XEXP (x, 0), 0);
5600 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5601 if (GET_CODE (XEXP (x, 0)) == SUBREG
5602 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5603 && subreg_lowpart_p (XEXP (x, 0))
5604 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5605 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5606 <= HOST_BITS_PER_WIDE_INT)
5607 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5608 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5609 return SUBREG_REG (XEXP (x, 0));
5613 /* If we reach here, we want to return a pair of shifts. The inner
5614 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5615 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5616 logical depending on the value of UNSIGNEDP.
5618 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5619 converted into an AND of a shift.
5621 We must check for the case where the left shift would have a negative
5622 count. This can happen in a case like (x >> 31) & 255 on machines
5623 that can't shift by a constant. On those machines, we would first
5624 combine the shift with the AND to produce a variable-position
5625 extraction. Then the constant of 31 would be substituted in to produce
5626 a such a position. */
5628 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5629 if (modewidth + len >= pos)
5630 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5631 GET_MODE (x),
5632 simplify_shift_const (NULL_RTX, ASHIFT,
5633 GET_MODE (x),
5634 XEXP (x, 0),
5635 modewidth - pos - len),
5636 modewidth - len);
5638 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5639 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5640 simplify_shift_const (NULL_RTX, LSHIFTRT,
5641 GET_MODE (x),
5642 XEXP (x, 0), pos),
5643 ((HOST_WIDE_INT) 1 << len) - 1);
5644 else
5645 /* Any other cases we can't handle. */
5646 return x;
5648 /* If we couldn't do this for some reason, return the original
5649 expression. */
5650 if (GET_CODE (tem) == CLOBBER)
5651 return x;
5653 return tem;
5656 /* X is a SET which contains an assignment of one object into
5657 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5658 or certain SUBREGS). If possible, convert it into a series of
5659 logical operations.
5661 We half-heartedly support variable positions, but do not at all
5662 support variable lengths. */
5664 static rtx
5665 expand_field_assignment (x)
5666 rtx x;
5668 rtx inner;
5669 rtx pos; /* Always counts from low bit. */
5670 int len;
5671 rtx mask;
5672 enum machine_mode compute_mode;
5674 /* Loop until we find something we can't simplify. */
5675 while (1)
5677 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5678 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5680 int byte_offset = SUBREG_BYTE (XEXP (SET_DEST (x), 0));
5682 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5683 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5684 pos = GEN_INT (BITS_PER_WORD * (byte_offset / UNITS_PER_WORD));
5686 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5687 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5689 inner = XEXP (SET_DEST (x), 0);
5690 len = INTVAL (XEXP (SET_DEST (x), 1));
5691 pos = XEXP (SET_DEST (x), 2);
5693 /* If the position is constant and spans the width of INNER,
5694 surround INNER with a USE to indicate this. */
5695 if (GET_CODE (pos) == CONST_INT
5696 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5697 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5699 if (BITS_BIG_ENDIAN)
5701 if (GET_CODE (pos) == CONST_INT)
5702 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5703 - INTVAL (pos));
5704 else if (GET_CODE (pos) == MINUS
5705 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5706 && (INTVAL (XEXP (pos, 1))
5707 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5708 /* If position is ADJUST - X, new position is X. */
5709 pos = XEXP (pos, 0);
5710 else
5711 pos = gen_binary (MINUS, GET_MODE (pos),
5712 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5713 - len),
5714 pos);
5718 /* A SUBREG between two modes that occupy the same numbers of words
5719 can be done by moving the SUBREG to the source. */
5720 else if (GET_CODE (SET_DEST (x)) == SUBREG
5721 /* We need SUBREGs to compute nonzero_bits properly. */
5722 && nonzero_sign_valid
5723 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5724 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5725 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5726 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5728 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5729 gen_lowpart_for_combine
5730 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5731 SET_SRC (x)));
5732 continue;
5734 else
5735 break;
5737 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5738 inner = SUBREG_REG (inner);
5740 compute_mode = GET_MODE (inner);
5742 /* Don't attempt bitwise arithmetic on non-integral modes. */
5743 if (! INTEGRAL_MODE_P (compute_mode))
5745 enum machine_mode imode;
5747 /* Something is probably seriously wrong if this matches. */
5748 if (! FLOAT_MODE_P (compute_mode))
5749 break;
5751 /* Try to find an integral mode to pun with. */
5752 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5753 if (imode == BLKmode)
5754 break;
5756 compute_mode = imode;
5757 inner = gen_lowpart_for_combine (imode, inner);
5760 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5761 if (len < HOST_BITS_PER_WIDE_INT)
5762 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5763 else
5764 break;
5766 /* Now compute the equivalent expression. Make a copy of INNER
5767 for the SET_DEST in case it is a MEM into which we will substitute;
5768 we don't want shared RTL in that case. */
5769 x = gen_rtx_SET
5770 (VOIDmode, copy_rtx (inner),
5771 gen_binary (IOR, compute_mode,
5772 gen_binary (AND, compute_mode,
5773 simplify_gen_unary (NOT, compute_mode,
5774 gen_binary (ASHIFT,
5775 compute_mode,
5776 mask, pos),
5777 compute_mode),
5778 inner),
5779 gen_binary (ASHIFT, compute_mode,
5780 gen_binary (AND, compute_mode,
5781 gen_lowpart_for_combine
5782 (compute_mode, SET_SRC (x)),
5783 mask),
5784 pos)));
5787 return x;
5790 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5791 it is an RTX that represents a variable starting position; otherwise,
5792 POS is the (constant) starting bit position (counted from the LSB).
5794 INNER may be a USE. This will occur when we started with a bitfield
5795 that went outside the boundary of the object in memory, which is
5796 allowed on most machines. To isolate this case, we produce a USE
5797 whose mode is wide enough and surround the MEM with it. The only
5798 code that understands the USE is this routine. If it is not removed,
5799 it will cause the resulting insn not to match.
5801 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5802 signed reference.
5804 IN_DEST is non-zero if this is a reference in the destination of a
5805 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5806 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5807 be used.
5809 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5810 ZERO_EXTRACT should be built even for bits starting at bit 0.
5812 MODE is the desired mode of the result (if IN_DEST == 0).
5814 The result is an RTX for the extraction or NULL_RTX if the target
5815 can't handle it. */
5817 static rtx
5818 make_extraction (mode, inner, pos, pos_rtx, len,
5819 unsignedp, in_dest, in_compare)
5820 enum machine_mode mode;
5821 rtx inner;
5822 HOST_WIDE_INT pos;
5823 rtx pos_rtx;
5824 unsigned HOST_WIDE_INT len;
5825 int unsignedp;
5826 int in_dest, in_compare;
5828 /* This mode describes the size of the storage area
5829 to fetch the overall value from. Within that, we
5830 ignore the POS lowest bits, etc. */
5831 enum machine_mode is_mode = GET_MODE (inner);
5832 enum machine_mode inner_mode;
5833 enum machine_mode wanted_inner_mode = byte_mode;
5834 enum machine_mode wanted_inner_reg_mode = word_mode;
5835 enum machine_mode pos_mode = word_mode;
5836 enum machine_mode extraction_mode = word_mode;
5837 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5838 int spans_byte = 0;
5839 rtx new = 0;
5840 rtx orig_pos_rtx = pos_rtx;
5841 HOST_WIDE_INT orig_pos;
5843 /* Get some information about INNER and get the innermost object. */
5844 if (GET_CODE (inner) == USE)
5845 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5846 /* We don't need to adjust the position because we set up the USE
5847 to pretend that it was a full-word object. */
5848 spans_byte = 1, inner = XEXP (inner, 0);
5849 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5851 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5852 consider just the QI as the memory to extract from.
5853 The subreg adds or removes high bits; its mode is
5854 irrelevant to the meaning of this extraction,
5855 since POS and LEN count from the lsb. */
5856 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5857 is_mode = GET_MODE (SUBREG_REG (inner));
5858 inner = SUBREG_REG (inner);
5861 inner_mode = GET_MODE (inner);
5863 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5864 pos = INTVAL (pos_rtx), pos_rtx = 0;
5866 /* See if this can be done without an extraction. We never can if the
5867 width of the field is not the same as that of some integer mode. For
5868 registers, we can only avoid the extraction if the position is at the
5869 low-order bit and this is either not in the destination or we have the
5870 appropriate STRICT_LOW_PART operation available.
5872 For MEM, we can avoid an extract if the field starts on an appropriate
5873 boundary and we can change the mode of the memory reference. However,
5874 we cannot directly access the MEM if we have a USE and the underlying
5875 MEM is not TMODE. This combination means that MEM was being used in a
5876 context where bits outside its mode were being referenced; that is only
5877 valid in bit-field insns. */
5879 if (tmode != BLKmode
5880 && ! (spans_byte && inner_mode != tmode)
5881 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5882 && GET_CODE (inner) != MEM
5883 && (! in_dest
5884 || (GET_CODE (inner) == REG
5885 && (movstrict_optab->handlers[(int) tmode].insn_code
5886 != CODE_FOR_nothing))))
5887 || (GET_CODE (inner) == MEM && pos_rtx == 0
5888 && (pos
5889 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5890 : BITS_PER_UNIT)) == 0
5891 /* We can't do this if we are widening INNER_MODE (it
5892 may not be aligned, for one thing). */
5893 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5894 && (inner_mode == tmode
5895 || (! mode_dependent_address_p (XEXP (inner, 0))
5896 && ! MEM_VOLATILE_P (inner))))))
5898 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5899 field. If the original and current mode are the same, we need not
5900 adjust the offset. Otherwise, we do if bytes big endian.
5902 If INNER is not a MEM, get a piece consisting of just the field
5903 of interest (in this case POS % BITS_PER_WORD must be 0). */
5905 if (GET_CODE (inner) == MEM)
5907 HOST_WIDE_INT offset;
5909 /* POS counts from lsb, but make OFFSET count in memory order. */
5910 if (BYTES_BIG_ENDIAN)
5911 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5912 else
5913 offset = pos / BITS_PER_UNIT;
5915 new = adjust_address_nv (inner, tmode, offset);
5917 else if (GET_CODE (inner) == REG)
5919 /* We can't call gen_lowpart_for_combine here since we always want
5920 a SUBREG and it would sometimes return a new hard register. */
5921 if (tmode != inner_mode)
5923 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
5925 if (WORDS_BIG_ENDIAN
5926 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
5927 final_word = ((GET_MODE_SIZE (inner_mode)
5928 - GET_MODE_SIZE (tmode))
5929 / UNITS_PER_WORD) - final_word;
5931 final_word *= UNITS_PER_WORD;
5932 if (BYTES_BIG_ENDIAN &&
5933 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
5934 final_word += (GET_MODE_SIZE (inner_mode)
5935 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
5937 new = gen_rtx_SUBREG (tmode, inner, final_word);
5939 else
5940 new = inner;
5942 else
5943 new = force_to_mode (inner, tmode,
5944 len >= HOST_BITS_PER_WIDE_INT
5945 ? ~(unsigned HOST_WIDE_INT) 0
5946 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
5947 NULL_RTX, 0);
5949 /* If this extraction is going into the destination of a SET,
5950 make a STRICT_LOW_PART unless we made a MEM. */
5952 if (in_dest)
5953 return (GET_CODE (new) == MEM ? new
5954 : (GET_CODE (new) != SUBREG
5955 ? gen_rtx_CLOBBER (tmode, const0_rtx)
5956 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
5958 if (mode == tmode)
5959 return new;
5961 /* If we know that no extraneous bits are set, and that the high
5962 bit is not set, convert the extraction to the cheaper of
5963 sign and zero extension, that are equivalent in these cases. */
5964 if (flag_expensive_optimizations
5965 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
5966 && ((nonzero_bits (new, tmode)
5967 & ~(((unsigned HOST_WIDE_INT)
5968 GET_MODE_MASK (tmode))
5969 >> 1))
5970 == 0)))
5972 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
5973 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
5975 /* Prefer ZERO_EXTENSION, since it gives more information to
5976 backends. */
5977 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
5978 return temp;
5979 return temp1;
5982 /* Otherwise, sign- or zero-extend unless we already are in the
5983 proper mode. */
5985 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5986 mode, new));
5989 /* Unless this is a COMPARE or we have a funny memory reference,
5990 don't do anything with zero-extending field extracts starting at
5991 the low-order bit since they are simple AND operations. */
5992 if (pos_rtx == 0 && pos == 0 && ! in_dest
5993 && ! in_compare && ! spans_byte && unsignedp)
5994 return 0;
5996 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
5997 we would be spanning bytes or if the position is not a constant and the
5998 length is not 1. In all other cases, we would only be going outside
5999 our object in cases when an original shift would have been
6000 undefined. */
6001 if (! spans_byte && GET_CODE (inner) == MEM
6002 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6003 || (pos_rtx != 0 && len != 1)))
6004 return 0;
6006 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6007 and the mode for the result. */
6008 #ifdef HAVE_insv
6009 if (in_dest)
6011 wanted_inner_reg_mode
6012 = insn_data[(int) CODE_FOR_insv].operand[0].mode;
6013 if (wanted_inner_reg_mode == VOIDmode)
6014 wanted_inner_reg_mode = word_mode;
6016 pos_mode = insn_data[(int) CODE_FOR_insv].operand[2].mode;
6017 if (pos_mode == VOIDmode)
6018 pos_mode = word_mode;
6020 extraction_mode = insn_data[(int) CODE_FOR_insv].operand[3].mode;
6021 if (extraction_mode == VOIDmode)
6022 extraction_mode = word_mode;
6024 #endif
6026 #ifdef HAVE_extzv
6027 if (! in_dest && unsignedp)
6029 wanted_inner_reg_mode
6030 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
6031 if (wanted_inner_reg_mode == VOIDmode)
6032 wanted_inner_reg_mode = word_mode;
6034 pos_mode = insn_data[(int) CODE_FOR_extzv].operand[3].mode;
6035 if (pos_mode == VOIDmode)
6036 pos_mode = word_mode;
6038 extraction_mode = insn_data[(int) CODE_FOR_extzv].operand[0].mode;
6039 if (extraction_mode == VOIDmode)
6040 extraction_mode = word_mode;
6042 #endif
6044 #ifdef HAVE_extv
6045 if (! in_dest && ! unsignedp)
6047 wanted_inner_reg_mode
6048 = insn_data[(int) CODE_FOR_extv].operand[1].mode;
6049 if (wanted_inner_reg_mode == VOIDmode)
6050 wanted_inner_reg_mode = word_mode;
6052 pos_mode = insn_data[(int) CODE_FOR_extv].operand[3].mode;
6053 if (pos_mode == VOIDmode)
6054 pos_mode = word_mode;
6056 extraction_mode = insn_data[(int) CODE_FOR_extv].operand[0].mode;
6057 if (extraction_mode == VOIDmode)
6058 extraction_mode = word_mode;
6060 #endif
6062 /* Never narrow an object, since that might not be safe. */
6064 if (mode != VOIDmode
6065 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6066 extraction_mode = mode;
6068 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6069 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6070 pos_mode = GET_MODE (pos_rtx);
6072 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6073 if we have to change the mode of memory and cannot, the desired mode is
6074 EXTRACTION_MODE. */
6075 if (GET_CODE (inner) != MEM)
6076 wanted_inner_mode = wanted_inner_reg_mode;
6077 else if (inner_mode != wanted_inner_mode
6078 && (mode_dependent_address_p (XEXP (inner, 0))
6079 || MEM_VOLATILE_P (inner)))
6080 wanted_inner_mode = extraction_mode;
6082 orig_pos = pos;
6084 if (BITS_BIG_ENDIAN)
6086 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6087 BITS_BIG_ENDIAN style. If position is constant, compute new
6088 position. Otherwise, build subtraction.
6089 Note that POS is relative to the mode of the original argument.
6090 If it's a MEM we need to recompute POS relative to that.
6091 However, if we're extracting from (or inserting into) a register,
6092 we want to recompute POS relative to wanted_inner_mode. */
6093 int width = (GET_CODE (inner) == MEM
6094 ? GET_MODE_BITSIZE (is_mode)
6095 : GET_MODE_BITSIZE (wanted_inner_mode));
6097 if (pos_rtx == 0)
6098 pos = width - len - pos;
6099 else
6100 pos_rtx
6101 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6102 /* POS may be less than 0 now, but we check for that below.
6103 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6106 /* If INNER has a wider mode, make it smaller. If this is a constant
6107 extract, try to adjust the byte to point to the byte containing
6108 the value. */
6109 if (wanted_inner_mode != VOIDmode
6110 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6111 && ((GET_CODE (inner) == MEM
6112 && (inner_mode == wanted_inner_mode
6113 || (! mode_dependent_address_p (XEXP (inner, 0))
6114 && ! MEM_VOLATILE_P (inner))))))
6116 int offset = 0;
6118 /* The computations below will be correct if the machine is big
6119 endian in both bits and bytes or little endian in bits and bytes.
6120 If it is mixed, we must adjust. */
6122 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6123 adjust OFFSET to compensate. */
6124 if (BYTES_BIG_ENDIAN
6125 && ! spans_byte
6126 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6127 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6129 /* If this is a constant position, we can move to the desired byte. */
6130 if (pos_rtx == 0)
6132 offset += pos / BITS_PER_UNIT;
6133 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6136 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6137 && ! spans_byte
6138 && is_mode != wanted_inner_mode)
6139 offset = (GET_MODE_SIZE (is_mode)
6140 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6142 if (offset != 0 || inner_mode != wanted_inner_mode)
6143 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6146 /* If INNER is not memory, we can always get it into the proper mode. If we
6147 are changing its mode, POS must be a constant and smaller than the size
6148 of the new mode. */
6149 else if (GET_CODE (inner) != MEM)
6151 if (GET_MODE (inner) != wanted_inner_mode
6152 && (pos_rtx != 0
6153 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6154 return 0;
6156 inner = force_to_mode (inner, wanted_inner_mode,
6157 pos_rtx
6158 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6159 ? ~(unsigned HOST_WIDE_INT) 0
6160 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6161 << orig_pos),
6162 NULL_RTX, 0);
6165 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6166 have to zero extend. Otherwise, we can just use a SUBREG. */
6167 if (pos_rtx != 0
6168 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6170 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6172 /* If we know that no extraneous bits are set, and that the high
6173 bit is not set, convert extraction to cheaper one - eighter
6174 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6175 cases. */
6176 if (flag_expensive_optimizations
6177 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6178 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6179 & ~(((unsigned HOST_WIDE_INT)
6180 GET_MODE_MASK (GET_MODE (pos_rtx)))
6181 >> 1))
6182 == 0)))
6184 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6186 /* Prefer ZERO_EXTENSION, since it gives more information to
6187 backends. */
6188 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6189 temp = temp1;
6191 pos_rtx = temp;
6193 else if (pos_rtx != 0
6194 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6195 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6197 /* Make POS_RTX unless we already have it and it is correct. If we don't
6198 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6199 be a CONST_INT. */
6200 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6201 pos_rtx = orig_pos_rtx;
6203 else if (pos_rtx == 0)
6204 pos_rtx = GEN_INT (pos);
6206 /* Make the required operation. See if we can use existing rtx. */
6207 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6208 extraction_mode, inner, GEN_INT (len), pos_rtx);
6209 if (! in_dest)
6210 new = gen_lowpart_for_combine (mode, new);
6212 return new;
6215 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6216 with any other operations in X. Return X without that shift if so. */
6218 static rtx
6219 extract_left_shift (x, count)
6220 rtx x;
6221 int count;
6223 enum rtx_code code = GET_CODE (x);
6224 enum machine_mode mode = GET_MODE (x);
6225 rtx tem;
6227 switch (code)
6229 case ASHIFT:
6230 /* This is the shift itself. If it is wide enough, we will return
6231 either the value being shifted if the shift count is equal to
6232 COUNT or a shift for the difference. */
6233 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6234 && INTVAL (XEXP (x, 1)) >= count)
6235 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6236 INTVAL (XEXP (x, 1)) - count);
6237 break;
6239 case NEG: case NOT:
6240 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6241 return simplify_gen_unary (code, mode, tem, mode);
6243 break;
6245 case PLUS: case IOR: case XOR: case AND:
6246 /* If we can safely shift this constant and we find the inner shift,
6247 make a new operation. */
6248 if (GET_CODE (XEXP (x,1)) == CONST_INT
6249 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6250 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6251 return gen_binary (code, mode, tem,
6252 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6254 break;
6256 default:
6257 break;
6260 return 0;
6263 /* Look at the expression rooted at X. Look for expressions
6264 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6265 Form these expressions.
6267 Return the new rtx, usually just X.
6269 Also, for machines like the Vax that don't have logical shift insns,
6270 try to convert logical to arithmetic shift operations in cases where
6271 they are equivalent. This undoes the canonicalizations to logical
6272 shifts done elsewhere.
6274 We try, as much as possible, to re-use rtl expressions to save memory.
6276 IN_CODE says what kind of expression we are processing. Normally, it is
6277 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6278 being kludges), it is MEM. When processing the arguments of a comparison
6279 or a COMPARE against zero, it is COMPARE. */
6281 static rtx
6282 make_compound_operation (x, in_code)
6283 rtx x;
6284 enum rtx_code in_code;
6286 enum rtx_code code = GET_CODE (x);
6287 enum machine_mode mode = GET_MODE (x);
6288 int mode_width = GET_MODE_BITSIZE (mode);
6289 rtx rhs, lhs;
6290 enum rtx_code next_code;
6291 int i;
6292 rtx new = 0;
6293 rtx tem;
6294 const char *fmt;
6296 /* Select the code to be used in recursive calls. Once we are inside an
6297 address, we stay there. If we have a comparison, set to COMPARE,
6298 but once inside, go back to our default of SET. */
6300 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6301 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6302 && XEXP (x, 1) == const0_rtx) ? COMPARE
6303 : in_code == COMPARE ? SET : in_code);
6305 /* Process depending on the code of this operation. If NEW is set
6306 non-zero, it will be returned. */
6308 switch (code)
6310 case ASHIFT:
6311 /* Convert shifts by constants into multiplications if inside
6312 an address. */
6313 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6314 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6315 && INTVAL (XEXP (x, 1)) >= 0)
6317 new = make_compound_operation (XEXP (x, 0), next_code);
6318 new = gen_rtx_MULT (mode, new,
6319 GEN_INT ((HOST_WIDE_INT) 1
6320 << INTVAL (XEXP (x, 1))));
6322 break;
6324 case AND:
6325 /* If the second operand is not a constant, we can't do anything
6326 with it. */
6327 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6328 break;
6330 /* If the constant is a power of two minus one and the first operand
6331 is a logical right shift, make an extraction. */
6332 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6333 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6335 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6336 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6337 0, in_code == COMPARE);
6340 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6341 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6342 && subreg_lowpart_p (XEXP (x, 0))
6343 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6344 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6346 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6347 next_code);
6348 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6349 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6350 0, in_code == COMPARE);
6352 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6353 else if ((GET_CODE (XEXP (x, 0)) == XOR
6354 || GET_CODE (XEXP (x, 0)) == IOR)
6355 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6356 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6357 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6359 /* Apply the distributive law, and then try to make extractions. */
6360 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6361 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6362 XEXP (x, 1)),
6363 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6364 XEXP (x, 1)));
6365 new = make_compound_operation (new, in_code);
6368 /* If we are have (and (rotate X C) M) and C is larger than the number
6369 of bits in M, this is an extraction. */
6371 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6372 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6373 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6374 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6376 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6377 new = make_extraction (mode, new,
6378 (GET_MODE_BITSIZE (mode)
6379 - INTVAL (XEXP (XEXP (x, 0), 1))),
6380 NULL_RTX, i, 1, 0, in_code == COMPARE);
6383 /* On machines without logical shifts, if the operand of the AND is
6384 a logical shift and our mask turns off all the propagated sign
6385 bits, we can replace the logical shift with an arithmetic shift. */
6386 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6387 && (lshr_optab->handlers[(int) mode].insn_code
6388 == CODE_FOR_nothing)
6389 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
6390 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6391 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6392 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6393 && mode_width <= HOST_BITS_PER_WIDE_INT)
6395 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6397 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6398 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6399 SUBST (XEXP (x, 0),
6400 gen_rtx_ASHIFTRT (mode,
6401 make_compound_operation
6402 (XEXP (XEXP (x, 0), 0), next_code),
6403 XEXP (XEXP (x, 0), 1)));
6406 /* If the constant is one less than a power of two, this might be
6407 representable by an extraction even if no shift is present.
6408 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6409 we are in a COMPARE. */
6410 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6411 new = make_extraction (mode,
6412 make_compound_operation (XEXP (x, 0),
6413 next_code),
6414 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6416 /* If we are in a comparison and this is an AND with a power of two,
6417 convert this into the appropriate bit extract. */
6418 else if (in_code == COMPARE
6419 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6420 new = make_extraction (mode,
6421 make_compound_operation (XEXP (x, 0),
6422 next_code),
6423 i, NULL_RTX, 1, 1, 0, 1);
6425 break;
6427 case LSHIFTRT:
6428 /* If the sign bit is known to be zero, replace this with an
6429 arithmetic shift. */
6430 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
6431 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6432 && mode_width <= HOST_BITS_PER_WIDE_INT
6433 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6435 new = gen_rtx_ASHIFTRT (mode,
6436 make_compound_operation (XEXP (x, 0),
6437 next_code),
6438 XEXP (x, 1));
6439 break;
6442 /* ... fall through ... */
6444 case ASHIFTRT:
6445 lhs = XEXP (x, 0);
6446 rhs = XEXP (x, 1);
6448 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6449 this is a SIGN_EXTRACT. */
6450 if (GET_CODE (rhs) == CONST_INT
6451 && GET_CODE (lhs) == ASHIFT
6452 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6453 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6455 new = make_compound_operation (XEXP (lhs, 0), next_code);
6456 new = make_extraction (mode, new,
6457 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6458 NULL_RTX, mode_width - INTVAL (rhs),
6459 code == LSHIFTRT, 0, in_code == COMPARE);
6460 break;
6463 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6464 If so, try to merge the shifts into a SIGN_EXTEND. We could
6465 also do this for some cases of SIGN_EXTRACT, but it doesn't
6466 seem worth the effort; the case checked for occurs on Alpha. */
6468 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6469 && ! (GET_CODE (lhs) == SUBREG
6470 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6471 && GET_CODE (rhs) == CONST_INT
6472 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6473 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6474 new = make_extraction (mode, make_compound_operation (new, next_code),
6475 0, NULL_RTX, mode_width - INTVAL (rhs),
6476 code == LSHIFTRT, 0, in_code == COMPARE);
6478 break;
6480 case SUBREG:
6481 /* Call ourselves recursively on the inner expression. If we are
6482 narrowing the object and it has a different RTL code from
6483 what it originally did, do this SUBREG as a force_to_mode. */
6485 tem = make_compound_operation (SUBREG_REG (x), in_code);
6486 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6487 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6488 && subreg_lowpart_p (x))
6490 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6491 NULL_RTX, 0);
6493 /* If we have something other than a SUBREG, we might have
6494 done an expansion, so rerun outselves. */
6495 if (GET_CODE (newer) != SUBREG)
6496 newer = make_compound_operation (newer, in_code);
6498 return newer;
6501 /* If this is a paradoxical subreg, and the new code is a sign or
6502 zero extension, omit the subreg and widen the extension. If it
6503 is a regular subreg, we can still get rid of the subreg by not
6504 widening so much, or in fact removing the extension entirely. */
6505 if ((GET_CODE (tem) == SIGN_EXTEND
6506 || GET_CODE (tem) == ZERO_EXTEND)
6507 && subreg_lowpart_p (x))
6509 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6510 || (GET_MODE_SIZE (mode) >
6511 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6512 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6513 else
6514 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6515 return tem;
6517 break;
6519 default:
6520 break;
6523 if (new)
6525 x = gen_lowpart_for_combine (mode, new);
6526 code = GET_CODE (x);
6529 /* Now recursively process each operand of this operation. */
6530 fmt = GET_RTX_FORMAT (code);
6531 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6532 if (fmt[i] == 'e')
6534 new = make_compound_operation (XEXP (x, i), next_code);
6535 SUBST (XEXP (x, i), new);
6538 return x;
6541 /* Given M see if it is a value that would select a field of bits
6542 within an item, but not the entire word. Return -1 if not.
6543 Otherwise, return the starting position of the field, where 0 is the
6544 low-order bit.
6546 *PLEN is set to the length of the field. */
6548 static int
6549 get_pos_from_mask (m, plen)
6550 unsigned HOST_WIDE_INT m;
6551 unsigned HOST_WIDE_INT *plen;
6553 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6554 int pos = exact_log2 (m & -m);
6555 int len;
6557 if (pos < 0)
6558 return -1;
6560 /* Now shift off the low-order zero bits and see if we have a power of
6561 two minus 1. */
6562 len = exact_log2 ((m >> pos) + 1);
6564 if (len <= 0)
6565 return -1;
6567 *plen = len;
6568 return pos;
6571 /* See if X can be simplified knowing that we will only refer to it in
6572 MODE and will only refer to those bits that are nonzero in MASK.
6573 If other bits are being computed or if masking operations are done
6574 that select a superset of the bits in MASK, they can sometimes be
6575 ignored.
6577 Return a possibly simplified expression, but always convert X to
6578 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6580 Also, if REG is non-zero and X is a register equal in value to REG,
6581 replace X with REG.
6583 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6584 are all off in X. This is used when X will be complemented, by either
6585 NOT, NEG, or XOR. */
6587 static rtx
6588 force_to_mode (x, mode, mask, reg, just_select)
6589 rtx x;
6590 enum machine_mode mode;
6591 unsigned HOST_WIDE_INT mask;
6592 rtx reg;
6593 int just_select;
6595 enum rtx_code code = GET_CODE (x);
6596 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6597 enum machine_mode op_mode;
6598 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6599 rtx op0, op1, temp;
6601 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6602 code below will do the wrong thing since the mode of such an
6603 expression is VOIDmode.
6605 Also do nothing if X is a CLOBBER; this can happen if X was
6606 the return value from a call to gen_lowpart_for_combine. */
6607 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6608 return x;
6610 /* We want to perform the operation is its present mode unless we know
6611 that the operation is valid in MODE, in which case we do the operation
6612 in MODE. */
6613 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6614 && code_to_optab[(int) code] != 0
6615 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
6616 != CODE_FOR_nothing))
6617 ? mode : GET_MODE (x));
6619 /* It is not valid to do a right-shift in a narrower mode
6620 than the one it came in with. */
6621 if ((code == LSHIFTRT || code == ASHIFTRT)
6622 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6623 op_mode = GET_MODE (x);
6625 /* Truncate MASK to fit OP_MODE. */
6626 if (op_mode)
6627 mask &= GET_MODE_MASK (op_mode);
6629 /* When we have an arithmetic operation, or a shift whose count we
6630 do not know, we need to assume that all bit the up to the highest-order
6631 bit in MASK will be needed. This is how we form such a mask. */
6632 if (op_mode)
6633 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6634 ? GET_MODE_MASK (op_mode)
6635 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6636 - 1));
6637 else
6638 fuller_mask = ~(HOST_WIDE_INT) 0;
6640 /* Determine what bits of X are guaranteed to be (non)zero. */
6641 nonzero = nonzero_bits (x, mode);
6643 /* If none of the bits in X are needed, return a zero. */
6644 if (! just_select && (nonzero & mask) == 0)
6645 return const0_rtx;
6647 /* If X is a CONST_INT, return a new one. Do this here since the
6648 test below will fail. */
6649 if (GET_CODE (x) == CONST_INT)
6651 HOST_WIDE_INT cval = INTVAL (x) & mask;
6652 int width = GET_MODE_BITSIZE (mode);
6654 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6655 number, sign extend it. */
6656 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6657 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6658 cval |= (HOST_WIDE_INT) -1 << width;
6660 return GEN_INT (cval);
6663 /* If X is narrower than MODE and we want all the bits in X's mode, just
6664 get X in the proper mode. */
6665 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6666 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6667 return gen_lowpart_for_combine (mode, x);
6669 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6670 MASK are already known to be zero in X, we need not do anything. */
6671 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6672 return x;
6674 switch (code)
6676 case CLOBBER:
6677 /* If X is a (clobber (const_int)), return it since we know we are
6678 generating something that won't match. */
6679 return x;
6681 case USE:
6682 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6683 spanned the boundary of the MEM. If we are now masking so it is
6684 within that boundary, we don't need the USE any more. */
6685 if (! BITS_BIG_ENDIAN
6686 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6687 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6688 break;
6690 case SIGN_EXTEND:
6691 case ZERO_EXTEND:
6692 case ZERO_EXTRACT:
6693 case SIGN_EXTRACT:
6694 x = expand_compound_operation (x);
6695 if (GET_CODE (x) != code)
6696 return force_to_mode (x, mode, mask, reg, next_select);
6697 break;
6699 case REG:
6700 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6701 || rtx_equal_p (reg, get_last_value (x))))
6702 x = reg;
6703 break;
6705 case SUBREG:
6706 if (subreg_lowpart_p (x)
6707 /* We can ignore the effect of this SUBREG if it narrows the mode or
6708 if the constant masks to zero all the bits the mode doesn't
6709 have. */
6710 && ((GET_MODE_SIZE (GET_MODE (x))
6711 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6712 || (0 == (mask
6713 & GET_MODE_MASK (GET_MODE (x))
6714 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6715 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6716 break;
6718 case AND:
6719 /* If this is an AND with a constant, convert it into an AND
6720 whose constant is the AND of that constant with MASK. If it
6721 remains an AND of MASK, delete it since it is redundant. */
6723 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6725 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6726 mask & INTVAL (XEXP (x, 1)));
6728 /* If X is still an AND, see if it is an AND with a mask that
6729 is just some low-order bits. If so, and it is MASK, we don't
6730 need it. */
6732 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6733 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == mask)
6734 x = XEXP (x, 0);
6736 /* If it remains an AND, try making another AND with the bits
6737 in the mode mask that aren't in MASK turned on. If the
6738 constant in the AND is wide enough, this might make a
6739 cheaper constant. */
6741 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6742 && GET_MODE_MASK (GET_MODE (x)) != mask
6743 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6745 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6746 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6747 int width = GET_MODE_BITSIZE (GET_MODE (x));
6748 rtx y;
6750 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6751 number, sign extend it. */
6752 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6753 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6754 cval |= (HOST_WIDE_INT) -1 << width;
6756 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6757 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6758 x = y;
6761 break;
6764 goto binop;
6766 case PLUS:
6767 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6768 low-order bits (as in an alignment operation) and FOO is already
6769 aligned to that boundary, mask C1 to that boundary as well.
6770 This may eliminate that PLUS and, later, the AND. */
6773 unsigned int width = GET_MODE_BITSIZE (mode);
6774 unsigned HOST_WIDE_INT smask = mask;
6776 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6777 number, sign extend it. */
6779 if (width < HOST_BITS_PER_WIDE_INT
6780 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6781 smask |= (HOST_WIDE_INT) -1 << width;
6783 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6784 && exact_log2 (- smask) >= 0)
6786 #ifdef STACK_BIAS
6787 if (STACK_BIAS
6788 && (XEXP (x, 0) == stack_pointer_rtx
6789 || XEXP (x, 0) == frame_pointer_rtx))
6791 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6792 unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6794 sp_mask &= ~(sp_alignment - 1);
6795 if ((sp_mask & ~smask) == 0
6796 && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~smask) != 0)
6797 return force_to_mode (plus_constant (XEXP (x, 0),
6798 ((INTVAL (XEXP (x, 1)) -
6799 STACK_BIAS) & smask)
6800 + STACK_BIAS),
6801 mode, smask, reg, next_select);
6803 #endif
6804 if ((nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6805 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6806 return force_to_mode (plus_constant (XEXP (x, 0),
6807 (INTVAL (XEXP (x, 1))
6808 & smask)),
6809 mode, smask, reg, next_select);
6813 /* ... fall through ... */
6815 case MULT:
6816 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6817 most significant bit in MASK since carries from those bits will
6818 affect the bits we are interested in. */
6819 mask = fuller_mask;
6820 goto binop;
6822 case MINUS:
6823 /* If X is (minus C Y) where C's least set bit is larger than any bit
6824 in the mask, then we may replace with (neg Y). */
6825 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6826 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6827 & -INTVAL (XEXP (x, 0))))
6828 > mask))
6830 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6831 GET_MODE (x));
6832 return force_to_mode (x, mode, mask, reg, next_select);
6835 /* Similarly, if C contains every bit in the mask, then we may
6836 replace with (not Y). */
6837 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6838 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6839 == INTVAL (XEXP (x, 0))))
6841 x = simplify_gen_unary (NOT, GET_MODE (x),
6842 XEXP (x, 1), GET_MODE (x));
6843 return force_to_mode (x, mode, mask, reg, next_select);
6846 mask = fuller_mask;
6847 goto binop;
6849 case IOR:
6850 case XOR:
6851 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6852 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6853 operation which may be a bitfield extraction. Ensure that the
6854 constant we form is not wider than the mode of X. */
6856 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6857 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6858 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6859 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6860 && GET_CODE (XEXP (x, 1)) == CONST_INT
6861 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6862 + floor_log2 (INTVAL (XEXP (x, 1))))
6863 < GET_MODE_BITSIZE (GET_MODE (x)))
6864 && (INTVAL (XEXP (x, 1))
6865 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6867 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6868 << INTVAL (XEXP (XEXP (x, 0), 1)));
6869 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6870 XEXP (XEXP (x, 0), 0), temp);
6871 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6872 XEXP (XEXP (x, 0), 1));
6873 return force_to_mode (x, mode, mask, reg, next_select);
6876 binop:
6877 /* For most binary operations, just propagate into the operation and
6878 change the mode if we have an operation of that mode. */
6880 op0 = gen_lowpart_for_combine (op_mode,
6881 force_to_mode (XEXP (x, 0), mode, mask,
6882 reg, next_select));
6883 op1 = gen_lowpart_for_combine (op_mode,
6884 force_to_mode (XEXP (x, 1), mode, mask,
6885 reg, next_select));
6887 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6888 MASK since OP1 might have been sign-extended but we never want
6889 to turn on extra bits, since combine might have previously relied
6890 on them being off. */
6891 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6892 && (INTVAL (op1) & mask) != 0)
6893 op1 = GEN_INT (INTVAL (op1) & mask);
6895 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6896 x = gen_binary (code, op_mode, op0, op1);
6897 break;
6899 case ASHIFT:
6900 /* For left shifts, do the same, but just for the first operand.
6901 However, we cannot do anything with shifts where we cannot
6902 guarantee that the counts are smaller than the size of the mode
6903 because such a count will have a different meaning in a
6904 wider mode. */
6906 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6907 && INTVAL (XEXP (x, 1)) >= 0
6908 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6909 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6910 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6911 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6912 break;
6914 /* If the shift count is a constant and we can do arithmetic in
6915 the mode of the shift, refine which bits we need. Otherwise, use the
6916 conservative form of the mask. */
6917 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6918 && INTVAL (XEXP (x, 1)) >= 0
6919 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6920 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6921 mask >>= INTVAL (XEXP (x, 1));
6922 else
6923 mask = fuller_mask;
6925 op0 = gen_lowpart_for_combine (op_mode,
6926 force_to_mode (XEXP (x, 0), op_mode,
6927 mask, reg, next_select));
6929 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6930 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6931 break;
6933 case LSHIFTRT:
6934 /* Here we can only do something if the shift count is a constant,
6935 this shift constant is valid for the host, and we can do arithmetic
6936 in OP_MODE. */
6938 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6939 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6940 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6942 rtx inner = XEXP (x, 0);
6943 unsigned HOST_WIDE_INT inner_mask;
6945 /* Select the mask of the bits we need for the shift operand. */
6946 inner_mask = mask << INTVAL (XEXP (x, 1));
6948 /* We can only change the mode of the shift if we can do arithmetic
6949 in the mode of the shift and INNER_MASK is no wider than the
6950 width of OP_MODE. */
6951 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6952 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6953 op_mode = GET_MODE (x);
6955 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6957 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6958 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6961 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6962 shift and AND produces only copies of the sign bit (C2 is one less
6963 than a power of two), we can do this with just a shift. */
6965 if (GET_CODE (x) == LSHIFTRT
6966 && GET_CODE (XEXP (x, 1)) == CONST_INT
6967 /* The shift puts one of the sign bit copies in the least significant
6968 bit. */
6969 && ((INTVAL (XEXP (x, 1))
6970 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6971 >= GET_MODE_BITSIZE (GET_MODE (x)))
6972 && exact_log2 (mask + 1) >= 0
6973 /* Number of bits left after the shift must be more than the mask
6974 needs. */
6975 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
6976 <= GET_MODE_BITSIZE (GET_MODE (x)))
6977 /* Must be more sign bit copies than the mask needs. */
6978 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6979 >= exact_log2 (mask + 1)))
6980 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6981 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6982 - exact_log2 (mask + 1)));
6984 goto shiftrt;
6986 case ASHIFTRT:
6987 /* If we are just looking for the sign bit, we don't need this shift at
6988 all, even if it has a variable count. */
6989 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6990 && (mask == ((unsigned HOST_WIDE_INT) 1
6991 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6992 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6994 /* If this is a shift by a constant, get a mask that contains those bits
6995 that are not copies of the sign bit. We then have two cases: If
6996 MASK only includes those bits, this can be a logical shift, which may
6997 allow simplifications. If MASK is a single-bit field not within
6998 those bits, we are requesting a copy of the sign bit and hence can
6999 shift the sign bit to the appropriate location. */
7001 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7002 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7004 int i = -1;
7006 /* If the considered data is wider then HOST_WIDE_INT, we can't
7007 represent a mask for all its bits in a single scalar.
7008 But we only care about the lower bits, so calculate these. */
7010 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7012 nonzero = ~(HOST_WIDE_INT) 0;
7014 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7015 is the number of bits a full-width mask would have set.
7016 We need only shift if these are fewer than nonzero can
7017 hold. If not, we must keep all bits set in nonzero. */
7019 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7020 < HOST_BITS_PER_WIDE_INT)
7021 nonzero >>= INTVAL (XEXP (x, 1))
7022 + HOST_BITS_PER_WIDE_INT
7023 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7025 else
7027 nonzero = GET_MODE_MASK (GET_MODE (x));
7028 nonzero >>= INTVAL (XEXP (x, 1));
7031 if ((mask & ~nonzero) == 0
7032 || (i = exact_log2 (mask)) >= 0)
7034 x = simplify_shift_const
7035 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7036 i < 0 ? INTVAL (XEXP (x, 1))
7037 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7039 if (GET_CODE (x) != ASHIFTRT)
7040 return force_to_mode (x, mode, mask, reg, next_select);
7044 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7045 even if the shift count isn't a constant. */
7046 if (mask == 1)
7047 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7049 shiftrt:
7051 /* If this is a zero- or sign-extension operation that just affects bits
7052 we don't care about, remove it. Be sure the call above returned
7053 something that is still a shift. */
7055 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7056 && GET_CODE (XEXP (x, 1)) == CONST_INT
7057 && INTVAL (XEXP (x, 1)) >= 0
7058 && (INTVAL (XEXP (x, 1))
7059 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7060 && GET_CODE (XEXP (x, 0)) == ASHIFT
7061 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7062 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7063 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7064 reg, next_select);
7066 break;
7068 case ROTATE:
7069 case ROTATERT:
7070 /* If the shift count is constant and we can do computations
7071 in the mode of X, compute where the bits we care about are.
7072 Otherwise, we can't do anything. Don't change the mode of
7073 the shift or propagate MODE into the shift, though. */
7074 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7075 && INTVAL (XEXP (x, 1)) >= 0)
7077 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7078 GET_MODE (x), GEN_INT (mask),
7079 XEXP (x, 1));
7080 if (temp && GET_CODE(temp) == CONST_INT)
7081 SUBST (XEXP (x, 0),
7082 force_to_mode (XEXP (x, 0), GET_MODE (x),
7083 INTVAL (temp), reg, next_select));
7085 break;
7087 case NEG:
7088 /* If we just want the low-order bit, the NEG isn't needed since it
7089 won't change the low-order bit. */
7090 if (mask == 1)
7091 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7093 /* We need any bits less significant than the most significant bit in
7094 MASK since carries from those bits will affect the bits we are
7095 interested in. */
7096 mask = fuller_mask;
7097 goto unop;
7099 case NOT:
7100 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7101 same as the XOR case above. Ensure that the constant we form is not
7102 wider than the mode of X. */
7104 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7105 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7106 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7107 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7108 < GET_MODE_BITSIZE (GET_MODE (x)))
7109 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7111 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7112 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7113 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7115 return force_to_mode (x, mode, mask, reg, next_select);
7118 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7119 use the full mask inside the NOT. */
7120 mask = fuller_mask;
7122 unop:
7123 op0 = gen_lowpart_for_combine (op_mode,
7124 force_to_mode (XEXP (x, 0), mode, mask,
7125 reg, next_select));
7126 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7127 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7128 break;
7130 case NE:
7131 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7132 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7133 which is equal to STORE_FLAG_VALUE. */
7134 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7135 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7136 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7137 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7139 break;
7141 case IF_THEN_ELSE:
7142 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7143 written in a narrower mode. We play it safe and do not do so. */
7145 SUBST (XEXP (x, 1),
7146 gen_lowpart_for_combine (GET_MODE (x),
7147 force_to_mode (XEXP (x, 1), mode,
7148 mask, reg, next_select)));
7149 SUBST (XEXP (x, 2),
7150 gen_lowpart_for_combine (GET_MODE (x),
7151 force_to_mode (XEXP (x, 2), mode,
7152 mask, reg,next_select)));
7153 break;
7155 default:
7156 break;
7159 /* Ensure we return a value of the proper mode. */
7160 return gen_lowpart_for_combine (mode, x);
7163 /* Return nonzero if X is an expression that has one of two values depending on
7164 whether some other value is zero or nonzero. In that case, we return the
7165 value that is being tested, *PTRUE is set to the value if the rtx being
7166 returned has a nonzero value, and *PFALSE is set to the other alternative.
7168 If we return zero, we set *PTRUE and *PFALSE to X. */
7170 static rtx
7171 if_then_else_cond (x, ptrue, pfalse)
7172 rtx x;
7173 rtx *ptrue, *pfalse;
7175 enum machine_mode mode = GET_MODE (x);
7176 enum rtx_code code = GET_CODE (x);
7177 rtx cond0, cond1, true0, true1, false0, false1;
7178 unsigned HOST_WIDE_INT nz;
7180 /* If we are comparing a value against zero, we are done. */
7181 if ((code == NE || code == EQ)
7182 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7184 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7185 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7186 return XEXP (x, 0);
7189 /* If this is a unary operation whose operand has one of two values, apply
7190 our opcode to compute those values. */
7191 else if (GET_RTX_CLASS (code) == '1'
7192 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7194 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7195 *pfalse = simplify_gen_unary (code, mode, false0,
7196 GET_MODE (XEXP (x, 0)));
7197 return cond0;
7200 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7201 make can't possibly match and would suppress other optimizations. */
7202 else if (code == COMPARE)
7205 /* If this is a binary operation, see if either side has only one of two
7206 values. If either one does or if both do and they are conditional on
7207 the same value, compute the new true and false values. */
7208 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7209 || GET_RTX_CLASS (code) == '<')
7211 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7212 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7214 if ((cond0 != 0 || cond1 != 0)
7215 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7217 /* If if_then_else_cond returned zero, then true/false are the
7218 same rtl. We must copy one of them to prevent invalid rtl
7219 sharing. */
7220 if (cond0 == 0)
7221 true0 = copy_rtx (true0);
7222 else if (cond1 == 0)
7223 true1 = copy_rtx (true1);
7225 *ptrue = gen_binary (code, mode, true0, true1);
7226 *pfalse = gen_binary (code, mode, false0, false1);
7227 return cond0 ? cond0 : cond1;
7230 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7231 operands is zero when the other is non-zero, and vice-versa,
7232 and STORE_FLAG_VALUE is 1 or -1. */
7234 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7235 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7236 || code == UMAX)
7237 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7239 rtx op0 = XEXP (XEXP (x, 0), 1);
7240 rtx op1 = XEXP (XEXP (x, 1), 1);
7242 cond0 = XEXP (XEXP (x, 0), 0);
7243 cond1 = XEXP (XEXP (x, 1), 0);
7245 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7246 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7247 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7248 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7249 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7250 || ((swap_condition (GET_CODE (cond0))
7251 == combine_reversed_comparison_code (cond1))
7252 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7253 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7254 && ! side_effects_p (x))
7256 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7257 *pfalse = gen_binary (MULT, mode,
7258 (code == MINUS
7259 ? simplify_gen_unary (NEG, mode, op1,
7260 mode)
7261 : op1),
7262 const_true_rtx);
7263 return cond0;
7267 /* Similarly for MULT, AND and UMIN, execpt that for these the result
7268 is always zero. */
7269 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7270 && (code == MULT || code == AND || code == UMIN)
7271 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7273 cond0 = XEXP (XEXP (x, 0), 0);
7274 cond1 = XEXP (XEXP (x, 1), 0);
7276 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7277 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7278 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7279 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7280 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7281 || ((swap_condition (GET_CODE (cond0))
7282 == combine_reversed_comparison_code (cond1))
7283 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7284 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7285 && ! side_effects_p (x))
7287 *ptrue = *pfalse = const0_rtx;
7288 return cond0;
7293 else if (code == IF_THEN_ELSE)
7295 /* If we have IF_THEN_ELSE already, extract the condition and
7296 canonicalize it if it is NE or EQ. */
7297 cond0 = XEXP (x, 0);
7298 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7299 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7300 return XEXP (cond0, 0);
7301 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7303 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7304 return XEXP (cond0, 0);
7306 else
7307 return cond0;
7310 /* If X is a SUBREG, we can narrow both the true and false values
7311 if the inner expression, if there is a condition. */
7312 else if (code == SUBREG
7313 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7314 &true0, &false0)))
7316 *ptrue = simplify_gen_subreg (mode, true0,
7317 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7318 *pfalse = simplify_gen_subreg (mode, false0,
7319 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7321 return cond0;
7324 /* If X is a constant, this isn't special and will cause confusions
7325 if we treat it as such. Likewise if it is equivalent to a constant. */
7326 else if (CONSTANT_P (x)
7327 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7330 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7331 will be least confusing to the rest of the compiler. */
7332 else if (mode == BImode)
7334 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7335 return x;
7338 /* If X is known to be either 0 or -1, those are the true and
7339 false values when testing X. */
7340 else if (x == constm1_rtx || x == const0_rtx
7341 || (mode != VOIDmode
7342 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7344 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7345 return x;
7348 /* Likewise for 0 or a single bit. */
7349 else if (mode != VOIDmode
7350 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7351 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7353 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
7354 return x;
7357 /* Otherwise fail; show no condition with true and false values the same. */
7358 *ptrue = *pfalse = x;
7359 return 0;
7362 /* Return the value of expression X given the fact that condition COND
7363 is known to be true when applied to REG as its first operand and VAL
7364 as its second. X is known to not be shared and so can be modified in
7365 place.
7367 We only handle the simplest cases, and specifically those cases that
7368 arise with IF_THEN_ELSE expressions. */
7370 static rtx
7371 known_cond (x, cond, reg, val)
7372 rtx x;
7373 enum rtx_code cond;
7374 rtx reg, val;
7376 enum rtx_code code = GET_CODE (x);
7377 rtx temp;
7378 const char *fmt;
7379 int i, j;
7381 if (side_effects_p (x))
7382 return x;
7384 if (cond == EQ && rtx_equal_p (x, reg) && !FLOAT_MODE_P (cond))
7385 return val;
7386 if (cond == UNEQ && rtx_equal_p (x, reg))
7387 return val;
7389 /* If X is (abs REG) and we know something about REG's relationship
7390 with zero, we may be able to simplify this. */
7392 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7393 switch (cond)
7395 case GE: case GT: case EQ:
7396 return XEXP (x, 0);
7397 case LT: case LE:
7398 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7399 XEXP (x, 0),
7400 GET_MODE (XEXP (x, 0)));
7401 default:
7402 break;
7405 /* The only other cases we handle are MIN, MAX, and comparisons if the
7406 operands are the same as REG and VAL. */
7408 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7410 if (rtx_equal_p (XEXP (x, 0), val))
7411 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7413 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7415 if (GET_RTX_CLASS (code) == '<')
7417 if (comparison_dominates_p (cond, code))
7418 return const_true_rtx;
7420 code = combine_reversed_comparison_code (x);
7421 if (code != UNKNOWN
7422 && comparison_dominates_p (cond, code))
7423 return const0_rtx;
7424 else
7425 return x;
7427 else if (code == SMAX || code == SMIN
7428 || code == UMIN || code == UMAX)
7430 int unsignedp = (code == UMIN || code == UMAX);
7432 /* Do not reverse the condition when it is NE or EQ.
7433 This is because we cannot conclude anything about
7434 the value of 'SMAX (x, y)' when x is not equal to y,
7435 but we can when x equals y. */
7436 if ((code == SMAX || code == UMAX)
7437 && ! (cond == EQ || cond == NE))
7438 cond = reverse_condition (cond);
7440 switch (cond)
7442 case GE: case GT:
7443 return unsignedp ? x : XEXP (x, 1);
7444 case LE: case LT:
7445 return unsignedp ? x : XEXP (x, 0);
7446 case GEU: case GTU:
7447 return unsignedp ? XEXP (x, 1) : x;
7448 case LEU: case LTU:
7449 return unsignedp ? XEXP (x, 0) : x;
7450 default:
7451 break;
7457 fmt = GET_RTX_FORMAT (code);
7458 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7460 if (fmt[i] == 'e')
7461 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7462 else if (fmt[i] == 'E')
7463 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7464 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7465 cond, reg, val));
7468 return x;
7471 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7472 assignment as a field assignment. */
7474 static int
7475 rtx_equal_for_field_assignment_p (x, y)
7476 rtx x;
7477 rtx y;
7479 if (x == y || rtx_equal_p (x, y))
7480 return 1;
7482 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7483 return 0;
7485 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7486 Note that all SUBREGs of MEM are paradoxical; otherwise they
7487 would have been rewritten. */
7488 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7489 && GET_CODE (SUBREG_REG (y)) == MEM
7490 && rtx_equal_p (SUBREG_REG (y),
7491 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7492 return 1;
7494 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7495 && GET_CODE (SUBREG_REG (x)) == MEM
7496 && rtx_equal_p (SUBREG_REG (x),
7497 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7498 return 1;
7500 /* We used to see if get_last_value of X and Y were the same but that's
7501 not correct. In one direction, we'll cause the assignment to have
7502 the wrong destination and in the case, we'll import a register into this
7503 insn that might have already have been dead. So fail if none of the
7504 above cases are true. */
7505 return 0;
7508 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7509 Return that assignment if so.
7511 We only handle the most common cases. */
7513 static rtx
7514 make_field_assignment (x)
7515 rtx x;
7517 rtx dest = SET_DEST (x);
7518 rtx src = SET_SRC (x);
7519 rtx assign;
7520 rtx rhs, lhs;
7521 HOST_WIDE_INT c1;
7522 HOST_WIDE_INT pos;
7523 unsigned HOST_WIDE_INT len;
7524 rtx other;
7525 enum machine_mode mode;
7527 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7528 a clear of a one-bit field. We will have changed it to
7529 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7530 for a SUBREG. */
7532 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7533 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7534 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7535 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7537 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7538 1, 1, 1, 0);
7539 if (assign != 0)
7540 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7541 return x;
7544 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7545 && subreg_lowpart_p (XEXP (src, 0))
7546 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7547 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7548 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7549 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7550 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7552 assign = make_extraction (VOIDmode, dest, 0,
7553 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7554 1, 1, 1, 0);
7555 if (assign != 0)
7556 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7557 return x;
7560 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7561 one-bit field. */
7562 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7563 && XEXP (XEXP (src, 0), 0) == const1_rtx
7564 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7566 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7567 1, 1, 1, 0);
7568 if (assign != 0)
7569 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7570 return x;
7573 /* The other case we handle is assignments into a constant-position
7574 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7575 a mask that has all one bits except for a group of zero bits and
7576 OTHER is known to have zeros where C1 has ones, this is such an
7577 assignment. Compute the position and length from C1. Shift OTHER
7578 to the appropriate position, force it to the required mode, and
7579 make the extraction. Check for the AND in both operands. */
7581 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7582 return x;
7584 rhs = expand_compound_operation (XEXP (src, 0));
7585 lhs = expand_compound_operation (XEXP (src, 1));
7587 if (GET_CODE (rhs) == AND
7588 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7589 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7590 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7591 else if (GET_CODE (lhs) == AND
7592 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7593 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7594 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7595 else
7596 return x;
7598 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7599 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7600 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7601 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7602 return x;
7604 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7605 if (assign == 0)
7606 return x;
7608 /* The mode to use for the source is the mode of the assignment, or of
7609 what is inside a possible STRICT_LOW_PART. */
7610 mode = (GET_CODE (assign) == STRICT_LOW_PART
7611 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7613 /* Shift OTHER right POS places and make it the source, restricting it
7614 to the proper length and mode. */
7616 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7617 GET_MODE (src), other, pos),
7618 mode,
7619 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7620 ? ~(unsigned HOST_WIDE_INT) 0
7621 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7622 dest, 0);
7624 return gen_rtx_SET (VOIDmode, assign, src);
7627 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7628 if so. */
7630 static rtx
7631 apply_distributive_law (x)
7632 rtx x;
7634 enum rtx_code code = GET_CODE (x);
7635 rtx lhs, rhs, other;
7636 rtx tem;
7637 enum rtx_code inner_code;
7639 /* Distributivity is not true for floating point.
7640 It can change the value. So don't do it.
7641 -- rms and moshier@world.std.com. */
7642 if (FLOAT_MODE_P (GET_MODE (x)))
7643 return x;
7645 /* The outer operation can only be one of the following: */
7646 if (code != IOR && code != AND && code != XOR
7647 && code != PLUS && code != MINUS)
7648 return x;
7650 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7652 /* If either operand is a primitive we can't do anything, so get out
7653 fast. */
7654 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7655 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7656 return x;
7658 lhs = expand_compound_operation (lhs);
7659 rhs = expand_compound_operation (rhs);
7660 inner_code = GET_CODE (lhs);
7661 if (inner_code != GET_CODE (rhs))
7662 return x;
7664 /* See if the inner and outer operations distribute. */
7665 switch (inner_code)
7667 case LSHIFTRT:
7668 case ASHIFTRT:
7669 case AND:
7670 case IOR:
7671 /* These all distribute except over PLUS. */
7672 if (code == PLUS || code == MINUS)
7673 return x;
7674 break;
7676 case MULT:
7677 if (code != PLUS && code != MINUS)
7678 return x;
7679 break;
7681 case ASHIFT:
7682 /* This is also a multiply, so it distributes over everything. */
7683 break;
7685 case SUBREG:
7686 /* Non-paradoxical SUBREGs distributes over all operations, provided
7687 the inner modes and byte offsets are the same, this is an extraction
7688 of a low-order part, we don't convert an fp operation to int or
7689 vice versa, and we would not be converting a single-word
7690 operation into a multi-word operation. The latter test is not
7691 required, but it prevents generating unneeded multi-word operations.
7692 Some of the previous tests are redundant given the latter test, but
7693 are retained because they are required for correctness.
7695 We produce the result slightly differently in this case. */
7697 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7698 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7699 || ! subreg_lowpart_p (lhs)
7700 || (GET_MODE_CLASS (GET_MODE (lhs))
7701 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7702 || (GET_MODE_SIZE (GET_MODE (lhs))
7703 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7704 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7705 return x;
7707 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7708 SUBREG_REG (lhs), SUBREG_REG (rhs));
7709 return gen_lowpart_for_combine (GET_MODE (x), tem);
7711 default:
7712 return x;
7715 /* Set LHS and RHS to the inner operands (A and B in the example
7716 above) and set OTHER to the common operand (C in the example).
7717 These is only one way to do this unless the inner operation is
7718 commutative. */
7719 if (GET_RTX_CLASS (inner_code) == 'c'
7720 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7721 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7722 else if (GET_RTX_CLASS (inner_code) == 'c'
7723 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7724 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7725 else if (GET_RTX_CLASS (inner_code) == 'c'
7726 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7727 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7728 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7729 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7730 else
7731 return x;
7733 /* Form the new inner operation, seeing if it simplifies first. */
7734 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7736 /* There is one exception to the general way of distributing:
7737 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7738 if (code == XOR && inner_code == IOR)
7740 inner_code = AND;
7741 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7744 /* We may be able to continuing distributing the result, so call
7745 ourselves recursively on the inner operation before forming the
7746 outer operation, which we return. */
7747 return gen_binary (inner_code, GET_MODE (x),
7748 apply_distributive_law (tem), other);
7751 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7752 in MODE.
7754 Return an equivalent form, if different from X. Otherwise, return X. If
7755 X is zero, we are to always construct the equivalent form. */
7757 static rtx
7758 simplify_and_const_int (x, mode, varop, constop)
7759 rtx x;
7760 enum machine_mode mode;
7761 rtx varop;
7762 unsigned HOST_WIDE_INT constop;
7764 unsigned HOST_WIDE_INT nonzero;
7765 int i;
7767 /* Simplify VAROP knowing that we will be only looking at some of the
7768 bits in it. */
7769 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7771 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7772 CONST_INT, we are done. */
7773 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7774 return varop;
7776 /* See what bits may be nonzero in VAROP. Unlike the general case of
7777 a call to nonzero_bits, here we don't care about bits outside
7778 MODE. */
7780 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7781 nonzero = trunc_int_for_mode (nonzero, mode);
7783 /* Turn off all bits in the constant that are known to already be zero.
7784 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7785 which is tested below. */
7787 constop &= nonzero;
7789 /* If we don't have any bits left, return zero. */
7790 if (constop == 0)
7791 return const0_rtx;
7793 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7794 a power of two, we can replace this with a ASHIFT. */
7795 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7796 && (i = exact_log2 (constop)) >= 0)
7797 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7799 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7800 or XOR, then try to apply the distributive law. This may eliminate
7801 operations if either branch can be simplified because of the AND.
7802 It may also make some cases more complex, but those cases probably
7803 won't match a pattern either with or without this. */
7805 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7806 return
7807 gen_lowpart_for_combine
7808 (mode,
7809 apply_distributive_law
7810 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7811 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7812 XEXP (varop, 0), constop),
7813 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7814 XEXP (varop, 1), constop))));
7816 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7817 if we already had one (just check for the simplest cases). */
7818 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7819 && GET_MODE (XEXP (x, 0)) == mode
7820 && SUBREG_REG (XEXP (x, 0)) == varop)
7821 varop = XEXP (x, 0);
7822 else
7823 varop = gen_lowpart_for_combine (mode, varop);
7825 /* If we can't make the SUBREG, try to return what we were given. */
7826 if (GET_CODE (varop) == CLOBBER)
7827 return x ? x : varop;
7829 /* If we are only masking insignificant bits, return VAROP. */
7830 if (constop == nonzero)
7831 x = varop;
7833 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7834 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7835 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7837 else
7839 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7840 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7841 SUBST (XEXP (x, 1), GEN_INT (constop));
7843 SUBST (XEXP (x, 0), varop);
7846 return x;
7849 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7850 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7851 is less useful. We can't allow both, because that results in exponential
7852 run time recursion. There is a nullstone testcase that triggered
7853 this. This macro avoids accidental uses of num_sign_bit_copies. */
7854 #define num_sign_bit_copies()
7856 /* Given an expression, X, compute which bits in X can be non-zero.
7857 We don't care about bits outside of those defined in MODE.
7859 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7860 a shift, AND, or zero_extract, we can do better. */
7862 static unsigned HOST_WIDE_INT
7863 nonzero_bits (x, mode)
7864 rtx x;
7865 enum machine_mode mode;
7867 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7868 unsigned HOST_WIDE_INT inner_nz;
7869 enum rtx_code code;
7870 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7871 rtx tem;
7873 /* For floating-point values, assume all bits are needed. */
7874 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7875 return nonzero;
7877 /* If X is wider than MODE, use its mode instead. */
7878 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7880 mode = GET_MODE (x);
7881 nonzero = GET_MODE_MASK (mode);
7882 mode_width = GET_MODE_BITSIZE (mode);
7885 if (mode_width > HOST_BITS_PER_WIDE_INT)
7886 /* Our only callers in this case look for single bit values. So
7887 just return the mode mask. Those tests will then be false. */
7888 return nonzero;
7890 #ifndef WORD_REGISTER_OPERATIONS
7891 /* If MODE is wider than X, but both are a single word for both the host
7892 and target machines, we can compute this from which bits of the
7893 object might be nonzero in its own mode, taking into account the fact
7894 that on many CISC machines, accessing an object in a wider mode
7895 causes the high-order bits to become undefined. So they are
7896 not known to be zero. */
7898 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7899 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7900 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7901 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7903 nonzero &= nonzero_bits (x, GET_MODE (x));
7904 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
7905 return nonzero;
7907 #endif
7909 code = GET_CODE (x);
7910 switch (code)
7912 case REG:
7913 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
7914 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7915 all the bits above ptr_mode are known to be zero. */
7916 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7917 && REG_POINTER (x))
7918 nonzero &= GET_MODE_MASK (ptr_mode);
7919 #endif
7921 #ifdef STACK_BOUNDARY
7922 /* If this is the stack pointer, we may know something about its
7923 alignment. If PUSH_ROUNDING is defined, it is possible for the
7924 stack to be momentarily aligned only to that amount, so we pick
7925 the least alignment. */
7927 /* We can't check for arg_pointer_rtx here, because it is not
7928 guaranteed to have as much alignment as the stack pointer.
7929 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7930 alignment but the argument pointer has only 64 bit alignment. */
7932 if ((x == frame_pointer_rtx
7933 || x == stack_pointer_rtx
7934 || x == hard_frame_pointer_rtx
7935 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7936 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7937 #ifdef STACK_BIAS
7938 && !STACK_BIAS
7939 #endif
7942 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7944 #ifdef PUSH_ROUNDING
7945 if (REGNO (x) == STACK_POINTER_REGNUM && PUSH_ARGS)
7946 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7947 #endif
7949 /* We must return here, otherwise we may get a worse result from
7950 one of the choices below. There is nothing useful below as
7951 far as the stack pointer is concerned. */
7952 return nonzero &= ~(sp_alignment - 1);
7954 #endif
7956 /* If X is a register whose nonzero bits value is current, use it.
7957 Otherwise, if X is a register whose value we can find, use that
7958 value. Otherwise, use the previously-computed global nonzero bits
7959 for this register. */
7961 if (reg_last_set_value[REGNO (x)] != 0
7962 && reg_last_set_mode[REGNO (x)] == mode
7963 && (reg_last_set_label[REGNO (x)] == label_tick
7964 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
7965 && REG_N_SETS (REGNO (x)) == 1
7966 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
7967 REGNO (x))))
7968 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7969 return reg_last_set_nonzero_bits[REGNO (x)];
7971 tem = get_last_value (x);
7973 if (tem)
7975 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7976 /* If X is narrower than MODE and TEM is a non-negative
7977 constant that would appear negative in the mode of X,
7978 sign-extend it for use in reg_nonzero_bits because some
7979 machines (maybe most) will actually do the sign-extension
7980 and this is the conservative approach.
7982 ??? For 2.5, try to tighten up the MD files in this regard
7983 instead of this kludge. */
7985 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7986 && GET_CODE (tem) == CONST_INT
7987 && INTVAL (tem) > 0
7988 && 0 != (INTVAL (tem)
7989 & ((HOST_WIDE_INT) 1
7990 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7991 tem = GEN_INT (INTVAL (tem)
7992 | ((HOST_WIDE_INT) (-1)
7993 << GET_MODE_BITSIZE (GET_MODE (x))));
7994 #endif
7995 return nonzero_bits (tem, mode);
7997 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7998 return reg_nonzero_bits[REGNO (x)] & nonzero;
7999 else
8000 return nonzero;
8002 case CONST_INT:
8003 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8004 /* If X is negative in MODE, sign-extend the value. */
8005 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8006 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8007 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8008 #endif
8010 return INTVAL (x);
8012 case MEM:
8013 #ifdef LOAD_EXTEND_OP
8014 /* In many, if not most, RISC machines, reading a byte from memory
8015 zeros the rest of the register. Noticing that fact saves a lot
8016 of extra zero-extends. */
8017 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8018 nonzero &= GET_MODE_MASK (GET_MODE (x));
8019 #endif
8020 break;
8022 case EQ: case NE:
8023 case UNEQ: case LTGT:
8024 case GT: case GTU: case UNGT:
8025 case LT: case LTU: case UNLT:
8026 case GE: case GEU: case UNGE:
8027 case LE: case LEU: case UNLE:
8028 case UNORDERED: case ORDERED:
8030 /* If this produces an integer result, we know which bits are set.
8031 Code here used to clear bits outside the mode of X, but that is
8032 now done above. */
8034 if (GET_MODE_CLASS (mode) == MODE_INT
8035 && mode_width <= HOST_BITS_PER_WIDE_INT)
8036 nonzero = STORE_FLAG_VALUE;
8037 break;
8039 case NEG:
8040 #if 0
8041 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8042 and num_sign_bit_copies. */
8043 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8044 == GET_MODE_BITSIZE (GET_MODE (x)))
8045 nonzero = 1;
8046 #endif
8048 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8049 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8050 break;
8052 case ABS:
8053 #if 0
8054 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8055 and num_sign_bit_copies. */
8056 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8057 == GET_MODE_BITSIZE (GET_MODE (x)))
8058 nonzero = 1;
8059 #endif
8060 break;
8062 case TRUNCATE:
8063 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8064 break;
8066 case ZERO_EXTEND:
8067 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8068 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8069 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8070 break;
8072 case SIGN_EXTEND:
8073 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8074 Otherwise, show all the bits in the outer mode but not the inner
8075 may be non-zero. */
8076 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8077 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8079 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8080 if (inner_nz
8081 & (((HOST_WIDE_INT) 1
8082 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8083 inner_nz |= (GET_MODE_MASK (mode)
8084 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8087 nonzero &= inner_nz;
8088 break;
8090 case AND:
8091 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8092 & nonzero_bits (XEXP (x, 1), mode));
8093 break;
8095 case XOR: case IOR:
8096 case UMIN: case UMAX: case SMIN: case SMAX:
8097 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8098 | nonzero_bits (XEXP (x, 1), mode));
8099 break;
8101 case PLUS: case MINUS:
8102 case MULT:
8103 case DIV: case UDIV:
8104 case MOD: case UMOD:
8105 /* We can apply the rules of arithmetic to compute the number of
8106 high- and low-order zero bits of these operations. We start by
8107 computing the width (position of the highest-order non-zero bit)
8108 and the number of low-order zero bits for each value. */
8110 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8111 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8112 int width0 = floor_log2 (nz0) + 1;
8113 int width1 = floor_log2 (nz1) + 1;
8114 int low0 = floor_log2 (nz0 & -nz0);
8115 int low1 = floor_log2 (nz1 & -nz1);
8116 HOST_WIDE_INT op0_maybe_minusp
8117 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8118 HOST_WIDE_INT op1_maybe_minusp
8119 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8120 unsigned int result_width = mode_width;
8121 int result_low = 0;
8123 switch (code)
8125 case PLUS:
8126 #ifdef STACK_BIAS
8127 if (STACK_BIAS
8128 && (XEXP (x, 0) == stack_pointer_rtx
8129 || XEXP (x, 0) == frame_pointer_rtx)
8130 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8132 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
8134 nz0 = (GET_MODE_MASK (mode) & ~(sp_alignment - 1));
8135 nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
8136 width0 = floor_log2 (nz0) + 1;
8137 width1 = floor_log2 (nz1) + 1;
8138 low0 = floor_log2 (nz0 & -nz0);
8139 low1 = floor_log2 (nz1 & -nz1);
8141 #endif
8142 result_width = MAX (width0, width1) + 1;
8143 result_low = MIN (low0, low1);
8144 break;
8145 case MINUS:
8146 result_low = MIN (low0, low1);
8147 break;
8148 case MULT:
8149 result_width = width0 + width1;
8150 result_low = low0 + low1;
8151 break;
8152 case DIV:
8153 if (width1 == 0)
8154 break;
8155 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8156 result_width = width0;
8157 break;
8158 case UDIV:
8159 if (width1 == 0)
8160 break;
8161 result_width = width0;
8162 break;
8163 case MOD:
8164 if (width1 == 0)
8165 break;
8166 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8167 result_width = MIN (width0, width1);
8168 result_low = MIN (low0, low1);
8169 break;
8170 case UMOD:
8171 if (width1 == 0)
8172 break;
8173 result_width = MIN (width0, width1);
8174 result_low = MIN (low0, low1);
8175 break;
8176 default:
8177 abort ();
8180 if (result_width < mode_width)
8181 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8183 if (result_low > 0)
8184 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8186 #ifdef POINTERS_EXTEND_UNSIGNED
8187 /* If pointers extend unsigned and this is an addition or subtraction
8188 to a pointer in Pmode, all the bits above ptr_mode are known to be
8189 zero. */
8190 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8191 && (code == PLUS || code == MINUS)
8192 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8193 nonzero &= GET_MODE_MASK (ptr_mode);
8194 #endif
8196 break;
8198 case ZERO_EXTRACT:
8199 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8200 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8201 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8202 break;
8204 case SUBREG:
8205 /* If this is a SUBREG formed for a promoted variable that has
8206 been zero-extended, we know that at least the high-order bits
8207 are zero, though others might be too. */
8209 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8210 nonzero = (GET_MODE_MASK (GET_MODE (x))
8211 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8213 /* If the inner mode is a single word for both the host and target
8214 machines, we can compute this from which bits of the inner
8215 object might be nonzero. */
8216 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8217 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8218 <= HOST_BITS_PER_WIDE_INT))
8220 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8222 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8223 /* If this is a typical RISC machine, we only have to worry
8224 about the way loads are extended. */
8225 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8226 ? (((nonzero
8227 & (((unsigned HOST_WIDE_INT) 1
8228 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8229 != 0))
8230 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8231 #endif
8233 /* On many CISC machines, accessing an object in a wider mode
8234 causes the high-order bits to become undefined. So they are
8235 not known to be zero. */
8236 if (GET_MODE_SIZE (GET_MODE (x))
8237 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8238 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8239 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8242 break;
8244 case ASHIFTRT:
8245 case LSHIFTRT:
8246 case ASHIFT:
8247 case ROTATE:
8248 /* The nonzero bits are in two classes: any bits within MODE
8249 that aren't in GET_MODE (x) are always significant. The rest of the
8250 nonzero bits are those that are significant in the operand of
8251 the shift when shifted the appropriate number of bits. This
8252 shows that high-order bits are cleared by the right shift and
8253 low-order bits by left shifts. */
8254 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8255 && INTVAL (XEXP (x, 1)) >= 0
8256 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8258 enum machine_mode inner_mode = GET_MODE (x);
8259 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8260 int count = INTVAL (XEXP (x, 1));
8261 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8262 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8263 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8264 unsigned HOST_WIDE_INT outer = 0;
8266 if (mode_width > width)
8267 outer = (op_nonzero & nonzero & ~mode_mask);
8269 if (code == LSHIFTRT)
8270 inner >>= count;
8271 else if (code == ASHIFTRT)
8273 inner >>= count;
8275 /* If the sign bit may have been nonzero before the shift, we
8276 need to mark all the places it could have been copied to
8277 by the shift as possibly nonzero. */
8278 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8279 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8281 else if (code == ASHIFT)
8282 inner <<= count;
8283 else
8284 inner = ((inner << (count % width)
8285 | (inner >> (width - (count % width)))) & mode_mask);
8287 nonzero &= (outer | inner);
8289 break;
8291 case FFS:
8292 /* This is at most the number of bits in the mode. */
8293 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8294 break;
8296 case IF_THEN_ELSE:
8297 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8298 | nonzero_bits (XEXP (x, 2), mode));
8299 break;
8301 default:
8302 break;
8305 return nonzero;
8308 /* See the macro definition above. */
8309 #undef num_sign_bit_copies
8311 /* Return the number of bits at the high-order end of X that are known to
8312 be equal to the sign bit. X will be used in mode MODE; if MODE is
8313 VOIDmode, X will be used in its own mode. The returned value will always
8314 be between 1 and the number of bits in MODE. */
8316 static unsigned int
8317 num_sign_bit_copies (x, mode)
8318 rtx x;
8319 enum machine_mode mode;
8321 enum rtx_code code = GET_CODE (x);
8322 unsigned int bitwidth;
8323 int num0, num1, result;
8324 unsigned HOST_WIDE_INT nonzero;
8325 rtx tem;
8327 /* If we weren't given a mode, use the mode of X. If the mode is still
8328 VOIDmode, we don't know anything. Likewise if one of the modes is
8329 floating-point. */
8331 if (mode == VOIDmode)
8332 mode = GET_MODE (x);
8334 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8335 return 1;
8337 bitwidth = GET_MODE_BITSIZE (mode);
8339 /* For a smaller object, just ignore the high bits. */
8340 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8342 num0 = num_sign_bit_copies (x, GET_MODE (x));
8343 return MAX (1,
8344 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8347 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8349 #ifndef WORD_REGISTER_OPERATIONS
8350 /* If this machine does not do all register operations on the entire
8351 register and MODE is wider than the mode of X, we can say nothing
8352 at all about the high-order bits. */
8353 return 1;
8354 #else
8355 /* Likewise on machines that do, if the mode of the object is smaller
8356 than a word and loads of that size don't sign extend, we can say
8357 nothing about the high order bits. */
8358 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8359 #ifdef LOAD_EXTEND_OP
8360 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8361 #endif
8363 return 1;
8364 #endif
8367 switch (code)
8369 case REG:
8371 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8372 /* If pointers extend signed and this is a pointer in Pmode, say that
8373 all the bits above ptr_mode are known to be sign bit copies. */
8374 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8375 && REG_POINTER (x))
8376 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8377 #endif
8379 if (reg_last_set_value[REGNO (x)] != 0
8380 && reg_last_set_mode[REGNO (x)] == mode
8381 && (reg_last_set_label[REGNO (x)] == label_tick
8382 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8383 && REG_N_SETS (REGNO (x)) == 1
8384 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8385 REGNO (x))))
8386 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8387 return reg_last_set_sign_bit_copies[REGNO (x)];
8389 tem = get_last_value (x);
8390 if (tem != 0)
8391 return num_sign_bit_copies (tem, mode);
8393 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
8394 return reg_sign_bit_copies[REGNO (x)];
8395 break;
8397 case MEM:
8398 #ifdef LOAD_EXTEND_OP
8399 /* Some RISC machines sign-extend all loads of smaller than a word. */
8400 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8401 return MAX (1, ((int) bitwidth
8402 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8403 #endif
8404 break;
8406 case CONST_INT:
8407 /* If the constant is negative, take its 1's complement and remask.
8408 Then see how many zero bits we have. */
8409 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8410 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8411 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8412 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8414 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8416 case SUBREG:
8417 /* If this is a SUBREG for a promoted object that is sign-extended
8418 and we are looking at it in a wider mode, we know that at least the
8419 high-order bits are known to be sign bit copies. */
8421 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8423 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8424 return MAX ((int) bitwidth
8425 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8426 num0);
8429 /* For a smaller object, just ignore the high bits. */
8430 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8432 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8433 return MAX (1, (num0
8434 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8435 - bitwidth)));
8438 #ifdef WORD_REGISTER_OPERATIONS
8439 #ifdef LOAD_EXTEND_OP
8440 /* For paradoxical SUBREGs on machines where all register operations
8441 affect the entire register, just look inside. Note that we are
8442 passing MODE to the recursive call, so the number of sign bit copies
8443 will remain relative to that mode, not the inner mode. */
8445 /* This works only if loads sign extend. Otherwise, if we get a
8446 reload for the inner part, it may be loaded from the stack, and
8447 then we lose all sign bit copies that existed before the store
8448 to the stack. */
8450 if ((GET_MODE_SIZE (GET_MODE (x))
8451 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8452 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8453 return num_sign_bit_copies (SUBREG_REG (x), mode);
8454 #endif
8455 #endif
8456 break;
8458 case SIGN_EXTRACT:
8459 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8460 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8461 break;
8463 case SIGN_EXTEND:
8464 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8465 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8467 case TRUNCATE:
8468 /* For a smaller object, just ignore the high bits. */
8469 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8470 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8471 - bitwidth)));
8473 case NOT:
8474 return num_sign_bit_copies (XEXP (x, 0), mode);
8476 case ROTATE: case ROTATERT:
8477 /* If we are rotating left by a number of bits less than the number
8478 of sign bit copies, we can just subtract that amount from the
8479 number. */
8480 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8481 && INTVAL (XEXP (x, 1)) >= 0
8482 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8484 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8485 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8486 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8488 break;
8490 case NEG:
8491 /* In general, this subtracts one sign bit copy. But if the value
8492 is known to be positive, the number of sign bit copies is the
8493 same as that of the input. Finally, if the input has just one bit
8494 that might be nonzero, all the bits are copies of the sign bit. */
8495 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8496 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8497 return num0 > 1 ? num0 - 1 : 1;
8499 nonzero = nonzero_bits (XEXP (x, 0), mode);
8500 if (nonzero == 1)
8501 return bitwidth;
8503 if (num0 > 1
8504 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8505 num0--;
8507 return num0;
8509 case IOR: case AND: case XOR:
8510 case SMIN: case SMAX: case UMIN: case UMAX:
8511 /* Logical operations will preserve the number of sign-bit copies.
8512 MIN and MAX operations always return one of the operands. */
8513 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8514 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8515 return MIN (num0, num1);
8517 case PLUS: case MINUS:
8518 /* For addition and subtraction, we can have a 1-bit carry. However,
8519 if we are subtracting 1 from a positive number, there will not
8520 be such a carry. Furthermore, if the positive number is known to
8521 be 0 or 1, we know the result is either -1 or 0. */
8523 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8524 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8526 nonzero = nonzero_bits (XEXP (x, 0), mode);
8527 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8528 return (nonzero == 1 || nonzero == 0 ? bitwidth
8529 : bitwidth - floor_log2 (nonzero) - 1);
8532 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8533 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8534 result = MAX (1, MIN (num0, num1) - 1);
8536 #ifdef POINTERS_EXTEND_UNSIGNED
8537 /* If pointers extend signed and this is an addition or subtraction
8538 to a pointer in Pmode, all the bits above ptr_mode are known to be
8539 sign bit copies. */
8540 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8541 && (code == PLUS || code == MINUS)
8542 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8543 result = MAX ((GET_MODE_BITSIZE (Pmode)
8544 - GET_MODE_BITSIZE (ptr_mode) + 1),
8545 result);
8546 #endif
8547 return result;
8549 case MULT:
8550 /* The number of bits of the product is the sum of the number of
8551 bits of both terms. However, unless one of the terms if known
8552 to be positive, we must allow for an additional bit since negating
8553 a negative number can remove one sign bit copy. */
8555 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8556 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8558 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8559 if (result > 0
8560 && (bitwidth > HOST_BITS_PER_WIDE_INT
8561 || (((nonzero_bits (XEXP (x, 0), mode)
8562 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8563 && ((nonzero_bits (XEXP (x, 1), mode)
8564 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8565 result--;
8567 return MAX (1, result);
8569 case UDIV:
8570 /* The result must be <= the first operand. If the first operand
8571 has the high bit set, we know nothing about the number of sign
8572 bit copies. */
8573 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8574 return 1;
8575 else if ((nonzero_bits (XEXP (x, 0), mode)
8576 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8577 return 1;
8578 else
8579 return num_sign_bit_copies (XEXP (x, 0), mode);
8581 case UMOD:
8582 /* The result must be <= the scond operand. */
8583 return num_sign_bit_copies (XEXP (x, 1), mode);
8585 case DIV:
8586 /* Similar to unsigned division, except that we have to worry about
8587 the case where the divisor is negative, in which case we have
8588 to add 1. */
8589 result = num_sign_bit_copies (XEXP (x, 0), mode);
8590 if (result > 1
8591 && (bitwidth > HOST_BITS_PER_WIDE_INT
8592 || (nonzero_bits (XEXP (x, 1), mode)
8593 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8594 result--;
8596 return result;
8598 case MOD:
8599 result = num_sign_bit_copies (XEXP (x, 1), mode);
8600 if (result > 1
8601 && (bitwidth > HOST_BITS_PER_WIDE_INT
8602 || (nonzero_bits (XEXP (x, 1), mode)
8603 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8604 result--;
8606 return result;
8608 case ASHIFTRT:
8609 /* Shifts by a constant add to the number of bits equal to the
8610 sign bit. */
8611 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8612 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8613 && INTVAL (XEXP (x, 1)) > 0)
8614 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8616 return num0;
8618 case ASHIFT:
8619 /* Left shifts destroy copies. */
8620 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8621 || INTVAL (XEXP (x, 1)) < 0
8622 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8623 return 1;
8625 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8626 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8628 case IF_THEN_ELSE:
8629 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8630 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8631 return MIN (num0, num1);
8633 case EQ: case NE: case GE: case GT: case LE: case LT:
8634 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8635 case GEU: case GTU: case LEU: case LTU:
8636 case UNORDERED: case ORDERED:
8637 /* If the constant is negative, take its 1's complement and remask.
8638 Then see how many zero bits we have. */
8639 nonzero = STORE_FLAG_VALUE;
8640 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8641 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8642 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8644 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8645 break;
8647 default:
8648 break;
8651 /* If we haven't been able to figure it out by one of the above rules,
8652 see if some of the high-order bits are known to be zero. If so,
8653 count those bits and return one less than that amount. If we can't
8654 safely compute the mask for this mode, always return BITWIDTH. */
8656 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8657 return 1;
8659 nonzero = nonzero_bits (x, mode);
8660 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8661 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8664 /* Return the number of "extended" bits there are in X, when interpreted
8665 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8666 unsigned quantities, this is the number of high-order zero bits.
8667 For signed quantities, this is the number of copies of the sign bit
8668 minus 1. In both case, this function returns the number of "spare"
8669 bits. For example, if two quantities for which this function returns
8670 at least 1 are added, the addition is known not to overflow.
8672 This function will always return 0 unless called during combine, which
8673 implies that it must be called from a define_split. */
8675 unsigned int
8676 extended_count (x, mode, unsignedp)
8677 rtx x;
8678 enum machine_mode mode;
8679 int unsignedp;
8681 if (nonzero_sign_valid == 0)
8682 return 0;
8684 return (unsignedp
8685 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8686 ? (GET_MODE_BITSIZE (mode) - 1
8687 - floor_log2 (nonzero_bits (x, mode)))
8688 : 0)
8689 : num_sign_bit_copies (x, mode) - 1);
8692 /* This function is called from `simplify_shift_const' to merge two
8693 outer operations. Specifically, we have already found that we need
8694 to perform operation *POP0 with constant *PCONST0 at the outermost
8695 position. We would now like to also perform OP1 with constant CONST1
8696 (with *POP0 being done last).
8698 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8699 the resulting operation. *PCOMP_P is set to 1 if we would need to
8700 complement the innermost operand, otherwise it is unchanged.
8702 MODE is the mode in which the operation will be done. No bits outside
8703 the width of this mode matter. It is assumed that the width of this mode
8704 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8706 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8707 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8708 result is simply *PCONST0.
8710 If the resulting operation cannot be expressed as one operation, we
8711 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8713 static int
8714 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8715 enum rtx_code *pop0;
8716 HOST_WIDE_INT *pconst0;
8717 enum rtx_code op1;
8718 HOST_WIDE_INT const1;
8719 enum machine_mode mode;
8720 int *pcomp_p;
8722 enum rtx_code op0 = *pop0;
8723 HOST_WIDE_INT const0 = *pconst0;
8725 const0 &= GET_MODE_MASK (mode);
8726 const1 &= GET_MODE_MASK (mode);
8728 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8729 if (op0 == AND)
8730 const1 &= const0;
8732 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8733 if OP0 is SET. */
8735 if (op1 == NIL || op0 == SET)
8736 return 1;
8738 else if (op0 == NIL)
8739 op0 = op1, const0 = const1;
8741 else if (op0 == op1)
8743 switch (op0)
8745 case AND:
8746 const0 &= const1;
8747 break;
8748 case IOR:
8749 const0 |= const1;
8750 break;
8751 case XOR:
8752 const0 ^= const1;
8753 break;
8754 case PLUS:
8755 const0 += const1;
8756 break;
8757 case NEG:
8758 op0 = NIL;
8759 break;
8760 default:
8761 break;
8765 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8766 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8767 return 0;
8769 /* If the two constants aren't the same, we can't do anything. The
8770 remaining six cases can all be done. */
8771 else if (const0 != const1)
8772 return 0;
8774 else
8775 switch (op0)
8777 case IOR:
8778 if (op1 == AND)
8779 /* (a & b) | b == b */
8780 op0 = SET;
8781 else /* op1 == XOR */
8782 /* (a ^ b) | b == a | b */
8784 break;
8786 case XOR:
8787 if (op1 == AND)
8788 /* (a & b) ^ b == (~a) & b */
8789 op0 = AND, *pcomp_p = 1;
8790 else /* op1 == IOR */
8791 /* (a | b) ^ b == a & ~b */
8792 op0 = AND, *pconst0 = ~const0;
8793 break;
8795 case AND:
8796 if (op1 == IOR)
8797 /* (a | b) & b == b */
8798 op0 = SET;
8799 else /* op1 == XOR */
8800 /* (a ^ b) & b) == (~a) & b */
8801 *pcomp_p = 1;
8802 break;
8803 default:
8804 break;
8807 /* Check for NO-OP cases. */
8808 const0 &= GET_MODE_MASK (mode);
8809 if (const0 == 0
8810 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8811 op0 = NIL;
8812 else if (const0 == 0 && op0 == AND)
8813 op0 = SET;
8814 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8815 && op0 == AND)
8816 op0 = NIL;
8818 /* ??? Slightly redundant with the above mask, but not entirely.
8819 Moving this above means we'd have to sign-extend the mode mask
8820 for the final test. */
8821 const0 = trunc_int_for_mode (const0, mode);
8823 *pop0 = op0;
8824 *pconst0 = const0;
8826 return 1;
8829 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8830 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8831 that we started with.
8833 The shift is normally computed in the widest mode we find in VAROP, as
8834 long as it isn't a different number of words than RESULT_MODE. Exceptions
8835 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8837 static rtx
8838 simplify_shift_const (x, code, result_mode, varop, input_count)
8839 rtx x;
8840 enum rtx_code code;
8841 enum machine_mode result_mode;
8842 rtx varop;
8843 int input_count;
8845 enum rtx_code orig_code = code;
8846 int orig_count = input_count;
8847 unsigned int count;
8848 int signed_count;
8849 enum machine_mode mode = result_mode;
8850 enum machine_mode shift_mode, tmode;
8851 unsigned int mode_words
8852 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8853 /* We form (outer_op (code varop count) (outer_const)). */
8854 enum rtx_code outer_op = NIL;
8855 HOST_WIDE_INT outer_const = 0;
8856 rtx const_rtx;
8857 int complement_p = 0;
8858 rtx new;
8860 /* If we were given an invalid count, don't do anything except exactly
8861 what was requested. */
8863 if (input_count < 0 || input_count > (int) GET_MODE_BITSIZE (mode))
8865 if (x)
8866 return x;
8868 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (input_count));
8871 count = input_count;
8873 /* Make sure and truncate the "natural" shift on the way in. We don't
8874 want to do this inside the loop as it makes it more difficult to
8875 combine shifts. */
8876 #ifdef SHIFT_COUNT_TRUNCATED
8877 if (SHIFT_COUNT_TRUNCATED)
8878 count %= GET_MODE_BITSIZE (mode);
8879 #endif
8881 /* Unless one of the branches of the `if' in this loop does a `continue',
8882 we will `break' the loop after the `if'. */
8884 while (count != 0)
8886 /* If we have an operand of (clobber (const_int 0)), just return that
8887 value. */
8888 if (GET_CODE (varop) == CLOBBER)
8889 return varop;
8891 /* If we discovered we had to complement VAROP, leave. Making a NOT
8892 here would cause an infinite loop. */
8893 if (complement_p)
8894 break;
8896 /* Convert ROTATERT to ROTATE. */
8897 if (code == ROTATERT)
8898 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8900 /* We need to determine what mode we will do the shift in. If the
8901 shift is a right shift or a ROTATE, we must always do it in the mode
8902 it was originally done in. Otherwise, we can do it in MODE, the
8903 widest mode encountered. */
8904 shift_mode
8905 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8906 ? result_mode : mode);
8908 /* Handle cases where the count is greater than the size of the mode
8909 minus 1. For ASHIFT, use the size minus one as the count (this can
8910 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8911 take the count modulo the size. For other shifts, the result is
8912 zero.
8914 Since these shifts are being produced by the compiler by combining
8915 multiple operations, each of which are defined, we know what the
8916 result is supposed to be. */
8918 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8920 if (code == ASHIFTRT)
8921 count = GET_MODE_BITSIZE (shift_mode) - 1;
8922 else if (code == ROTATE || code == ROTATERT)
8923 count %= GET_MODE_BITSIZE (shift_mode);
8924 else
8926 /* We can't simply return zero because there may be an
8927 outer op. */
8928 varop = const0_rtx;
8929 count = 0;
8930 break;
8934 /* An arithmetic right shift of a quantity known to be -1 or 0
8935 is a no-op. */
8936 if (code == ASHIFTRT
8937 && (num_sign_bit_copies (varop, shift_mode)
8938 == GET_MODE_BITSIZE (shift_mode)))
8940 count = 0;
8941 break;
8944 /* If we are doing an arithmetic right shift and discarding all but
8945 the sign bit copies, this is equivalent to doing a shift by the
8946 bitsize minus one. Convert it into that shift because it will often
8947 allow other simplifications. */
8949 if (code == ASHIFTRT
8950 && (count + num_sign_bit_copies (varop, shift_mode)
8951 >= GET_MODE_BITSIZE (shift_mode)))
8952 count = GET_MODE_BITSIZE (shift_mode) - 1;
8954 /* We simplify the tests below and elsewhere by converting
8955 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8956 `make_compound_operation' will convert it to a ASHIFTRT for
8957 those machines (such as Vax) that don't have a LSHIFTRT. */
8958 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8959 && code == ASHIFTRT
8960 && ((nonzero_bits (varop, shift_mode)
8961 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8962 == 0))
8963 code = LSHIFTRT;
8965 switch (GET_CODE (varop))
8967 case SIGN_EXTEND:
8968 case ZERO_EXTEND:
8969 case SIGN_EXTRACT:
8970 case ZERO_EXTRACT:
8971 new = expand_compound_operation (varop);
8972 if (new != varop)
8974 varop = new;
8975 continue;
8977 break;
8979 case MEM:
8980 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8981 minus the width of a smaller mode, we can do this with a
8982 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8983 if ((code == ASHIFTRT || code == LSHIFTRT)
8984 && ! mode_dependent_address_p (XEXP (varop, 0))
8985 && ! MEM_VOLATILE_P (varop)
8986 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8987 MODE_INT, 1)) != BLKmode)
8989 new = adjust_address_nv (varop, tmode,
8990 BYTES_BIG_ENDIAN ? 0
8991 : count / BITS_PER_UNIT);
8993 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8994 : ZERO_EXTEND, mode, new);
8995 count = 0;
8996 continue;
8998 break;
9000 case USE:
9001 /* Similar to the case above, except that we can only do this if
9002 the resulting mode is the same as that of the underlying
9003 MEM and adjust the address depending on the *bits* endianness
9004 because of the way that bit-field extract insns are defined. */
9005 if ((code == ASHIFTRT || code == LSHIFTRT)
9006 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9007 MODE_INT, 1)) != BLKmode
9008 && tmode == GET_MODE (XEXP (varop, 0)))
9010 if (BITS_BIG_ENDIAN)
9011 new = XEXP (varop, 0);
9012 else
9014 new = copy_rtx (XEXP (varop, 0));
9015 SUBST (XEXP (new, 0),
9016 plus_constant (XEXP (new, 0),
9017 count / BITS_PER_UNIT));
9020 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9021 : ZERO_EXTEND, mode, new);
9022 count = 0;
9023 continue;
9025 break;
9027 case SUBREG:
9028 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9029 the same number of words as what we've seen so far. Then store
9030 the widest mode in MODE. */
9031 if (subreg_lowpart_p (varop)
9032 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9033 > GET_MODE_SIZE (GET_MODE (varop)))
9034 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9035 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9036 == mode_words))
9038 varop = SUBREG_REG (varop);
9039 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9040 mode = GET_MODE (varop);
9041 continue;
9043 break;
9045 case MULT:
9046 /* Some machines use MULT instead of ASHIFT because MULT
9047 is cheaper. But it is still better on those machines to
9048 merge two shifts into one. */
9049 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9050 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9052 varop
9053 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9054 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9055 continue;
9057 break;
9059 case UDIV:
9060 /* Similar, for when divides are cheaper. */
9061 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9062 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9064 varop
9065 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9066 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9067 continue;
9069 break;
9071 case ASHIFTRT:
9072 /* If we are extracting just the sign bit of an arithmetic
9073 right shift, that shift is not needed. However, the sign
9074 bit of a wider mode may be different from what would be
9075 interpreted as the sign bit in a narrower mode, so, if
9076 the result is narrower, don't discard the shift. */
9077 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9078 && (GET_MODE_BITSIZE (result_mode)
9079 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9081 varop = XEXP (varop, 0);
9082 continue;
9085 /* ... fall through ... */
9087 case LSHIFTRT:
9088 case ASHIFT:
9089 case ROTATE:
9090 /* Here we have two nested shifts. The result is usually the
9091 AND of a new shift with a mask. We compute the result below. */
9092 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9093 && INTVAL (XEXP (varop, 1)) >= 0
9094 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9095 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9096 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9098 enum rtx_code first_code = GET_CODE (varop);
9099 unsigned int first_count = INTVAL (XEXP (varop, 1));
9100 unsigned HOST_WIDE_INT mask;
9101 rtx mask_rtx;
9103 /* We have one common special case. We can't do any merging if
9104 the inner code is an ASHIFTRT of a smaller mode. However, if
9105 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9106 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9107 we can convert it to
9108 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9109 This simplifies certain SIGN_EXTEND operations. */
9110 if (code == ASHIFT && first_code == ASHIFTRT
9111 && (GET_MODE_BITSIZE (result_mode)
9112 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9114 /* C3 has the low-order C1 bits zero. */
9116 mask = (GET_MODE_MASK (mode)
9117 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9119 varop = simplify_and_const_int (NULL_RTX, result_mode,
9120 XEXP (varop, 0), mask);
9121 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9122 varop, count);
9123 count = first_count;
9124 code = ASHIFTRT;
9125 continue;
9128 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9129 than C1 high-order bits equal to the sign bit, we can convert
9130 this to either an ASHIFT or a ASHIFTRT depending on the
9131 two counts.
9133 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9135 if (code == ASHIFTRT && first_code == ASHIFT
9136 && GET_MODE (varop) == shift_mode
9137 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9138 > first_count))
9140 varop = XEXP (varop, 0);
9142 signed_count = count - first_count;
9143 if (signed_count < 0)
9144 count = -signed_count, code = ASHIFT;
9145 else
9146 count = signed_count;
9148 continue;
9151 /* There are some cases we can't do. If CODE is ASHIFTRT,
9152 we can only do this if FIRST_CODE is also ASHIFTRT.
9154 We can't do the case when CODE is ROTATE and FIRST_CODE is
9155 ASHIFTRT.
9157 If the mode of this shift is not the mode of the outer shift,
9158 we can't do this if either shift is a right shift or ROTATE.
9160 Finally, we can't do any of these if the mode is too wide
9161 unless the codes are the same.
9163 Handle the case where the shift codes are the same
9164 first. */
9166 if (code == first_code)
9168 if (GET_MODE (varop) != result_mode
9169 && (code == ASHIFTRT || code == LSHIFTRT
9170 || code == ROTATE))
9171 break;
9173 count += first_count;
9174 varop = XEXP (varop, 0);
9175 continue;
9178 if (code == ASHIFTRT
9179 || (code == ROTATE && first_code == ASHIFTRT)
9180 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9181 || (GET_MODE (varop) != result_mode
9182 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9183 || first_code == ROTATE
9184 || code == ROTATE)))
9185 break;
9187 /* To compute the mask to apply after the shift, shift the
9188 nonzero bits of the inner shift the same way the
9189 outer shift will. */
9191 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9193 mask_rtx
9194 = simplify_binary_operation (code, result_mode, mask_rtx,
9195 GEN_INT (count));
9197 /* Give up if we can't compute an outer operation to use. */
9198 if (mask_rtx == 0
9199 || GET_CODE (mask_rtx) != CONST_INT
9200 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9201 INTVAL (mask_rtx),
9202 result_mode, &complement_p))
9203 break;
9205 /* If the shifts are in the same direction, we add the
9206 counts. Otherwise, we subtract them. */
9207 signed_count = count;
9208 if ((code == ASHIFTRT || code == LSHIFTRT)
9209 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9210 signed_count += first_count;
9211 else
9212 signed_count -= first_count;
9214 /* If COUNT is positive, the new shift is usually CODE,
9215 except for the two exceptions below, in which case it is
9216 FIRST_CODE. If the count is negative, FIRST_CODE should
9217 always be used */
9218 if (signed_count > 0
9219 && ((first_code == ROTATE && code == ASHIFT)
9220 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9221 code = first_code, count = signed_count;
9222 else if (signed_count < 0)
9223 code = first_code, count = -signed_count;
9224 else
9225 count = signed_count;
9227 varop = XEXP (varop, 0);
9228 continue;
9231 /* If we have (A << B << C) for any shift, we can convert this to
9232 (A << C << B). This wins if A is a constant. Only try this if
9233 B is not a constant. */
9235 else if (GET_CODE (varop) == code
9236 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9237 && 0 != (new
9238 = simplify_binary_operation (code, mode,
9239 XEXP (varop, 0),
9240 GEN_INT (count))))
9242 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9243 count = 0;
9244 continue;
9246 break;
9248 case NOT:
9249 /* Make this fit the case below. */
9250 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9251 GEN_INT (GET_MODE_MASK (mode)));
9252 continue;
9254 case IOR:
9255 case AND:
9256 case XOR:
9257 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9258 with C the size of VAROP - 1 and the shift is logical if
9259 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9260 we have an (le X 0) operation. If we have an arithmetic shift
9261 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9262 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9264 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9265 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9266 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9267 && (code == LSHIFTRT || code == ASHIFTRT)
9268 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9269 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9271 count = 0;
9272 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9273 const0_rtx);
9275 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9276 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9278 continue;
9281 /* If we have (shift (logical)), move the logical to the outside
9282 to allow it to possibly combine with another logical and the
9283 shift to combine with another shift. This also canonicalizes to
9284 what a ZERO_EXTRACT looks like. Also, some machines have
9285 (and (shift)) insns. */
9287 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9288 && (new = simplify_binary_operation (code, result_mode,
9289 XEXP (varop, 1),
9290 GEN_INT (count))) != 0
9291 && GET_CODE (new) == CONST_INT
9292 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9293 INTVAL (new), result_mode, &complement_p))
9295 varop = XEXP (varop, 0);
9296 continue;
9299 /* If we can't do that, try to simplify the shift in each arm of the
9300 logical expression, make a new logical expression, and apply
9301 the inverse distributive law. */
9303 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9304 XEXP (varop, 0), count);
9305 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9306 XEXP (varop, 1), count);
9308 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9309 varop = apply_distributive_law (varop);
9311 count = 0;
9313 break;
9315 case EQ:
9316 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9317 says that the sign bit can be tested, FOO has mode MODE, C is
9318 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9319 that may be nonzero. */
9320 if (code == LSHIFTRT
9321 && XEXP (varop, 1) == const0_rtx
9322 && GET_MODE (XEXP (varop, 0)) == result_mode
9323 && count == GET_MODE_BITSIZE (result_mode) - 1
9324 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9325 && ((STORE_FLAG_VALUE
9326 & ((HOST_WIDE_INT) 1
9327 < (GET_MODE_BITSIZE (result_mode) - 1))))
9328 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9329 && merge_outer_ops (&outer_op, &outer_const, XOR,
9330 (HOST_WIDE_INT) 1, result_mode,
9331 &complement_p))
9333 varop = XEXP (varop, 0);
9334 count = 0;
9335 continue;
9337 break;
9339 case NEG:
9340 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9341 than the number of bits in the mode is equivalent to A. */
9342 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9343 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9345 varop = XEXP (varop, 0);
9346 count = 0;
9347 continue;
9350 /* NEG commutes with ASHIFT since it is multiplication. Move the
9351 NEG outside to allow shifts to combine. */
9352 if (code == ASHIFT
9353 && merge_outer_ops (&outer_op, &outer_const, NEG,
9354 (HOST_WIDE_INT) 0, result_mode,
9355 &complement_p))
9357 varop = XEXP (varop, 0);
9358 continue;
9360 break;
9362 case PLUS:
9363 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9364 is one less than the number of bits in the mode is
9365 equivalent to (xor A 1). */
9366 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9367 && XEXP (varop, 1) == constm1_rtx
9368 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9369 && merge_outer_ops (&outer_op, &outer_const, XOR,
9370 (HOST_WIDE_INT) 1, result_mode,
9371 &complement_p))
9373 count = 0;
9374 varop = XEXP (varop, 0);
9375 continue;
9378 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9379 that might be nonzero in BAR are those being shifted out and those
9380 bits are known zero in FOO, we can replace the PLUS with FOO.
9381 Similarly in the other operand order. This code occurs when
9382 we are computing the size of a variable-size array. */
9384 if ((code == ASHIFTRT || code == LSHIFTRT)
9385 && count < HOST_BITS_PER_WIDE_INT
9386 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9387 && (nonzero_bits (XEXP (varop, 1), result_mode)
9388 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9390 varop = XEXP (varop, 0);
9391 continue;
9393 else if ((code == ASHIFTRT || code == LSHIFTRT)
9394 && count < HOST_BITS_PER_WIDE_INT
9395 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9396 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9397 >> count)
9398 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9399 & nonzero_bits (XEXP (varop, 1),
9400 result_mode)))
9402 varop = XEXP (varop, 1);
9403 continue;
9406 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9407 if (code == ASHIFT
9408 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9409 && (new = simplify_binary_operation (ASHIFT, result_mode,
9410 XEXP (varop, 1),
9411 GEN_INT (count))) != 0
9412 && GET_CODE (new) == CONST_INT
9413 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9414 INTVAL (new), result_mode, &complement_p))
9416 varop = XEXP (varop, 0);
9417 continue;
9419 break;
9421 case MINUS:
9422 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9423 with C the size of VAROP - 1 and the shift is logical if
9424 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9425 we have a (gt X 0) operation. If the shift is arithmetic with
9426 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9427 we have a (neg (gt X 0)) operation. */
9429 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9430 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9431 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9432 && (code == LSHIFTRT || code == ASHIFTRT)
9433 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9434 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9435 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9437 count = 0;
9438 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9439 const0_rtx);
9441 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9442 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9444 continue;
9446 break;
9448 case TRUNCATE:
9449 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9450 if the truncate does not affect the value. */
9451 if (code == LSHIFTRT
9452 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9453 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9454 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9455 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9456 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9458 rtx varop_inner = XEXP (varop, 0);
9460 varop_inner
9461 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9462 XEXP (varop_inner, 0),
9463 GEN_INT
9464 (count + INTVAL (XEXP (varop_inner, 1))));
9465 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9466 count = 0;
9467 continue;
9469 break;
9471 default:
9472 break;
9475 break;
9478 /* We need to determine what mode to do the shift in. If the shift is
9479 a right shift or ROTATE, we must always do it in the mode it was
9480 originally done in. Otherwise, we can do it in MODE, the widest mode
9481 encountered. The code we care about is that of the shift that will
9482 actually be done, not the shift that was originally requested. */
9483 shift_mode
9484 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9485 ? result_mode : mode);
9487 /* We have now finished analyzing the shift. The result should be
9488 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9489 OUTER_OP is non-NIL, it is an operation that needs to be applied
9490 to the result of the shift. OUTER_CONST is the relevant constant,
9491 but we must turn off all bits turned off in the shift.
9493 If we were passed a value for X, see if we can use any pieces of
9494 it. If not, make new rtx. */
9496 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9497 && GET_CODE (XEXP (x, 1)) == CONST_INT
9498 && INTVAL (XEXP (x, 1)) == count)
9499 const_rtx = XEXP (x, 1);
9500 else
9501 const_rtx = GEN_INT (count);
9503 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9504 && GET_MODE (XEXP (x, 0)) == shift_mode
9505 && SUBREG_REG (XEXP (x, 0)) == varop)
9506 varop = XEXP (x, 0);
9507 else if (GET_MODE (varop) != shift_mode)
9508 varop = gen_lowpart_for_combine (shift_mode, varop);
9510 /* If we can't make the SUBREG, try to return what we were given. */
9511 if (GET_CODE (varop) == CLOBBER)
9512 return x ? x : varop;
9514 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9515 if (new != 0)
9516 x = new;
9517 else
9519 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
9520 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9522 SUBST (XEXP (x, 0), varop);
9523 SUBST (XEXP (x, 1), const_rtx);
9526 /* If we have an outer operation and we just made a shift, it is
9527 possible that we could have simplified the shift were it not
9528 for the outer operation. So try to do the simplification
9529 recursively. */
9531 if (outer_op != NIL && GET_CODE (x) == code
9532 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9533 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9534 INTVAL (XEXP (x, 1)));
9536 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9537 turn off all the bits that the shift would have turned off. */
9538 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9539 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9540 GET_MODE_MASK (result_mode) >> orig_count);
9542 /* Do the remainder of the processing in RESULT_MODE. */
9543 x = gen_lowpart_for_combine (result_mode, x);
9545 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9546 operation. */
9547 if (complement_p)
9548 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9550 if (outer_op != NIL)
9552 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9553 outer_const = trunc_int_for_mode (outer_const, result_mode);
9555 if (outer_op == AND)
9556 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9557 else if (outer_op == SET)
9558 /* This means that we have determined that the result is
9559 equivalent to a constant. This should be rare. */
9560 x = GEN_INT (outer_const);
9561 else if (GET_RTX_CLASS (outer_op) == '1')
9562 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9563 else
9564 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9567 return x;
9570 /* Like recog, but we receive the address of a pointer to a new pattern.
9571 We try to match the rtx that the pointer points to.
9572 If that fails, we may try to modify or replace the pattern,
9573 storing the replacement into the same pointer object.
9575 Modifications include deletion or addition of CLOBBERs.
9577 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9578 the CLOBBERs are placed.
9580 The value is the final insn code from the pattern ultimately matched,
9581 or -1. */
9583 static int
9584 recog_for_combine (pnewpat, insn, pnotes)
9585 rtx *pnewpat;
9586 rtx insn;
9587 rtx *pnotes;
9589 register rtx pat = *pnewpat;
9590 int insn_code_number;
9591 int num_clobbers_to_add = 0;
9592 int i;
9593 rtx notes = 0;
9594 rtx old_notes;
9596 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9597 we use to indicate that something didn't match. If we find such a
9598 thing, force rejection. */
9599 if (GET_CODE (pat) == PARALLEL)
9600 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9601 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9602 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9603 return -1;
9605 /* Remove the old notes prior to trying to recognize the new pattern. */
9606 old_notes = REG_NOTES (insn);
9607 REG_NOTES (insn) = 0;
9609 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9611 /* If it isn't, there is the possibility that we previously had an insn
9612 that clobbered some register as a side effect, but the combined
9613 insn doesn't need to do that. So try once more without the clobbers
9614 unless this represents an ASM insn. */
9616 if (insn_code_number < 0 && ! check_asm_operands (pat)
9617 && GET_CODE (pat) == PARALLEL)
9619 int pos;
9621 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9622 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9624 if (i != pos)
9625 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9626 pos++;
9629 SUBST_INT (XVECLEN (pat, 0), pos);
9631 if (pos == 1)
9632 pat = XVECEXP (pat, 0, 0);
9634 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9637 /* Recognize all noop sets, these will be killed by followup pass. */
9638 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9639 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9641 REG_NOTES (insn) = old_notes;
9643 /* If we had any clobbers to add, make a new pattern than contains
9644 them. Then check to make sure that all of them are dead. */
9645 if (num_clobbers_to_add)
9647 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9648 rtvec_alloc (GET_CODE (pat) == PARALLEL
9649 ? (XVECLEN (pat, 0)
9650 + num_clobbers_to_add)
9651 : num_clobbers_to_add + 1));
9653 if (GET_CODE (pat) == PARALLEL)
9654 for (i = 0; i < XVECLEN (pat, 0); i++)
9655 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9656 else
9657 XVECEXP (newpat, 0, 0) = pat;
9659 add_clobbers (newpat, insn_code_number);
9661 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9662 i < XVECLEN (newpat, 0); i++)
9664 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9665 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9666 return -1;
9667 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9668 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9670 pat = newpat;
9673 *pnewpat = pat;
9674 *pnotes = notes;
9676 return insn_code_number;
9679 /* Like gen_lowpart but for use by combine. In combine it is not possible
9680 to create any new pseudoregs. However, it is safe to create
9681 invalid memory addresses, because combine will try to recognize
9682 them and all they will do is make the combine attempt fail.
9684 If for some reason this cannot do its job, an rtx
9685 (clobber (const_int 0)) is returned.
9686 An insn containing that will not be recognized. */
9688 #undef gen_lowpart
9690 static rtx
9691 gen_lowpart_for_combine (mode, x)
9692 enum machine_mode mode;
9693 register rtx x;
9695 rtx result;
9697 if (GET_MODE (x) == mode)
9698 return x;
9700 /* We can only support MODE being wider than a word if X is a
9701 constant integer or has a mode the same size. */
9703 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9704 && ! ((GET_MODE (x) == VOIDmode
9705 && (GET_CODE (x) == CONST_INT
9706 || GET_CODE (x) == CONST_DOUBLE))
9707 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9708 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9710 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9711 won't know what to do. So we will strip off the SUBREG here and
9712 process normally. */
9713 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9715 x = SUBREG_REG (x);
9716 if (GET_MODE (x) == mode)
9717 return x;
9720 result = gen_lowpart_common (mode, x);
9721 #ifdef CLASS_CANNOT_CHANGE_MODE
9722 if (result != 0
9723 && GET_CODE (result) == SUBREG
9724 && GET_CODE (SUBREG_REG (result)) == REG
9725 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9726 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9727 GET_MODE (SUBREG_REG (result))))
9728 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9729 #endif
9731 if (result)
9732 return result;
9734 if (GET_CODE (x) == MEM)
9736 register int offset = 0;
9738 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9739 address. */
9740 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9741 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9743 /* If we want to refer to something bigger than the original memref,
9744 generate a perverse subreg instead. That will force a reload
9745 of the original memref X. */
9746 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9747 return gen_rtx_SUBREG (mode, x, 0);
9749 if (WORDS_BIG_ENDIAN)
9750 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9751 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9753 if (BYTES_BIG_ENDIAN)
9755 /* Adjust the address so that the address-after-the-data is
9756 unchanged. */
9757 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9758 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9761 return adjust_address_nv (x, mode, offset);
9764 /* If X is a comparison operator, rewrite it in a new mode. This
9765 probably won't match, but may allow further simplifications. */
9766 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9767 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9769 /* If we couldn't simplify X any other way, just enclose it in a
9770 SUBREG. Normally, this SUBREG won't match, but some patterns may
9771 include an explicit SUBREG or we may simplify it further in combine. */
9772 else
9774 int offset = 0;
9775 rtx res;
9777 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9778 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9779 if (res)
9780 return res;
9781 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9785 /* These routines make binary and unary operations by first seeing if they
9786 fold; if not, a new expression is allocated. */
9788 static rtx
9789 gen_binary (code, mode, op0, op1)
9790 enum rtx_code code;
9791 enum machine_mode mode;
9792 rtx op0, op1;
9794 rtx result;
9795 rtx tem;
9797 if (GET_RTX_CLASS (code) == 'c'
9798 && swap_commutative_operands_p (op0, op1))
9799 tem = op0, op0 = op1, op1 = tem;
9801 if (GET_RTX_CLASS (code) == '<')
9803 enum machine_mode op_mode = GET_MODE (op0);
9805 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9806 just (REL_OP X Y). */
9807 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9809 op1 = XEXP (op0, 1);
9810 op0 = XEXP (op0, 0);
9811 op_mode = GET_MODE (op0);
9814 if (op_mode == VOIDmode)
9815 op_mode = GET_MODE (op1);
9816 result = simplify_relational_operation (code, op_mode, op0, op1);
9818 else
9819 result = simplify_binary_operation (code, mode, op0, op1);
9821 if (result)
9822 return result;
9824 /* Put complex operands first and constants second. */
9825 if (GET_RTX_CLASS (code) == 'c'
9826 && swap_commutative_operands_p (op0, op1))
9827 return gen_rtx_fmt_ee (code, mode, op1, op0);
9829 /* If we are turning off bits already known off in OP0, we need not do
9830 an AND. */
9831 else if (code == AND && GET_CODE (op1) == CONST_INT
9832 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9833 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9834 return op0;
9836 return gen_rtx_fmt_ee (code, mode, op0, op1);
9839 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9840 comparison code that will be tested.
9842 The result is a possibly different comparison code to use. *POP0 and
9843 *POP1 may be updated.
9845 It is possible that we might detect that a comparison is either always
9846 true or always false. However, we do not perform general constant
9847 folding in combine, so this knowledge isn't useful. Such tautologies
9848 should have been detected earlier. Hence we ignore all such cases. */
9850 static enum rtx_code
9851 simplify_comparison (code, pop0, pop1)
9852 enum rtx_code code;
9853 rtx *pop0;
9854 rtx *pop1;
9856 rtx op0 = *pop0;
9857 rtx op1 = *pop1;
9858 rtx tem, tem1;
9859 int i;
9860 enum machine_mode mode, tmode;
9862 /* Try a few ways of applying the same transformation to both operands. */
9863 while (1)
9865 #ifndef WORD_REGISTER_OPERATIONS
9866 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9867 so check specially. */
9868 if (code != GTU && code != GEU && code != LTU && code != LEU
9869 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9870 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9871 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9872 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9873 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9874 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9875 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9876 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9877 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9878 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9879 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9880 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9881 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9882 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9883 && (INTVAL (XEXP (op0, 1))
9884 == (GET_MODE_BITSIZE (GET_MODE (op0))
9885 - (GET_MODE_BITSIZE
9886 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9888 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9889 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9891 #endif
9893 /* If both operands are the same constant shift, see if we can ignore the
9894 shift. We can if the shift is a rotate or if the bits shifted out of
9895 this shift are known to be zero for both inputs and if the type of
9896 comparison is compatible with the shift. */
9897 if (GET_CODE (op0) == GET_CODE (op1)
9898 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9899 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9900 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9901 && (code != GT && code != LT && code != GE && code != LE))
9902 || (GET_CODE (op0) == ASHIFTRT
9903 && (code != GTU && code != LTU
9904 && code != GEU && code != LEU)))
9905 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9906 && INTVAL (XEXP (op0, 1)) >= 0
9907 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9908 && XEXP (op0, 1) == XEXP (op1, 1))
9910 enum machine_mode mode = GET_MODE (op0);
9911 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9912 int shift_count = INTVAL (XEXP (op0, 1));
9914 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9915 mask &= (mask >> shift_count) << shift_count;
9916 else if (GET_CODE (op0) == ASHIFT)
9917 mask = (mask & (mask << shift_count)) >> shift_count;
9919 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9920 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9921 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9922 else
9923 break;
9926 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9927 SUBREGs are of the same mode, and, in both cases, the AND would
9928 be redundant if the comparison was done in the narrower mode,
9929 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9930 and the operand's possibly nonzero bits are 0xffffff01; in that case
9931 if we only care about QImode, we don't need the AND). This case
9932 occurs if the output mode of an scc insn is not SImode and
9933 STORE_FLAG_VALUE == 1 (e.g., the 386).
9935 Similarly, check for a case where the AND's are ZERO_EXTEND
9936 operations from some narrower mode even though a SUBREG is not
9937 present. */
9939 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9940 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9941 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9943 rtx inner_op0 = XEXP (op0, 0);
9944 rtx inner_op1 = XEXP (op1, 0);
9945 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9946 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9947 int changed = 0;
9949 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9950 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9951 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9952 && (GET_MODE (SUBREG_REG (inner_op0))
9953 == GET_MODE (SUBREG_REG (inner_op1)))
9954 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9955 <= HOST_BITS_PER_WIDE_INT)
9956 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9957 GET_MODE (SUBREG_REG (inner_op0)))))
9958 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9959 GET_MODE (SUBREG_REG (inner_op1))))))
9961 op0 = SUBREG_REG (inner_op0);
9962 op1 = SUBREG_REG (inner_op1);
9964 /* The resulting comparison is always unsigned since we masked
9965 off the original sign bit. */
9966 code = unsigned_condition (code);
9968 changed = 1;
9971 else if (c0 == c1)
9972 for (tmode = GET_CLASS_NARROWEST_MODE
9973 (GET_MODE_CLASS (GET_MODE (op0)));
9974 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9975 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9977 op0 = gen_lowpart_for_combine (tmode, inner_op0);
9978 op1 = gen_lowpart_for_combine (tmode, inner_op1);
9979 code = unsigned_condition (code);
9980 changed = 1;
9981 break;
9984 if (! changed)
9985 break;
9988 /* If both operands are NOT, we can strip off the outer operation
9989 and adjust the comparison code for swapped operands; similarly for
9990 NEG, except that this must be an equality comparison. */
9991 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9992 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9993 && (code == EQ || code == NE)))
9994 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9996 else
9997 break;
10000 /* If the first operand is a constant, swap the operands and adjust the
10001 comparison code appropriately, but don't do this if the second operand
10002 is already a constant integer. */
10003 if (swap_commutative_operands_p (op0, op1))
10005 tem = op0, op0 = op1, op1 = tem;
10006 code = swap_condition (code);
10009 /* We now enter a loop during which we will try to simplify the comparison.
10010 For the most part, we only are concerned with comparisons with zero,
10011 but some things may really be comparisons with zero but not start
10012 out looking that way. */
10014 while (GET_CODE (op1) == CONST_INT)
10016 enum machine_mode mode = GET_MODE (op0);
10017 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10018 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10019 int equality_comparison_p;
10020 int sign_bit_comparison_p;
10021 int unsigned_comparison_p;
10022 HOST_WIDE_INT const_op;
10024 /* We only want to handle integral modes. This catches VOIDmode,
10025 CCmode, and the floating-point modes. An exception is that we
10026 can handle VOIDmode if OP0 is a COMPARE or a comparison
10027 operation. */
10029 if (GET_MODE_CLASS (mode) != MODE_INT
10030 && ! (mode == VOIDmode
10031 && (GET_CODE (op0) == COMPARE
10032 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10033 break;
10035 /* Get the constant we are comparing against and turn off all bits
10036 not on in our mode. */
10037 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10038 op1 = GEN_INT (const_op);
10040 /* If we are comparing against a constant power of two and the value
10041 being compared can only have that single bit nonzero (e.g., it was
10042 `and'ed with that bit), we can replace this with a comparison
10043 with zero. */
10044 if (const_op
10045 && (code == EQ || code == NE || code == GE || code == GEU
10046 || code == LT || code == LTU)
10047 && mode_width <= HOST_BITS_PER_WIDE_INT
10048 && exact_log2 (const_op) >= 0
10049 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10051 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10052 op1 = const0_rtx, const_op = 0;
10055 /* Similarly, if we are comparing a value known to be either -1 or
10056 0 with -1, change it to the opposite comparison against zero. */
10058 if (const_op == -1
10059 && (code == EQ || code == NE || code == GT || code == LE
10060 || code == GEU || code == LTU)
10061 && num_sign_bit_copies (op0, mode) == mode_width)
10063 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10064 op1 = const0_rtx, const_op = 0;
10067 /* Do some canonicalizations based on the comparison code. We prefer
10068 comparisons against zero and then prefer equality comparisons.
10069 If we can reduce the size of a constant, we will do that too. */
10071 switch (code)
10073 case LT:
10074 /* < C is equivalent to <= (C - 1) */
10075 if (const_op > 0)
10077 const_op -= 1;
10078 op1 = GEN_INT (const_op);
10079 code = LE;
10080 /* ... fall through to LE case below. */
10082 else
10083 break;
10085 case LE:
10086 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10087 if (const_op < 0)
10089 const_op += 1;
10090 op1 = GEN_INT (const_op);
10091 code = LT;
10094 /* If we are doing a <= 0 comparison on a value known to have
10095 a zero sign bit, we can replace this with == 0. */
10096 else if (const_op == 0
10097 && mode_width <= HOST_BITS_PER_WIDE_INT
10098 && (nonzero_bits (op0, mode)
10099 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10100 code = EQ;
10101 break;
10103 case GE:
10104 /* >= C is equivalent to > (C - 1). */
10105 if (const_op > 0)
10107 const_op -= 1;
10108 op1 = GEN_INT (const_op);
10109 code = GT;
10110 /* ... fall through to GT below. */
10112 else
10113 break;
10115 case GT:
10116 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10117 if (const_op < 0)
10119 const_op += 1;
10120 op1 = GEN_INT (const_op);
10121 code = GE;
10124 /* If we are doing a > 0 comparison on a value known to have
10125 a zero sign bit, we can replace this with != 0. */
10126 else if (const_op == 0
10127 && mode_width <= HOST_BITS_PER_WIDE_INT
10128 && (nonzero_bits (op0, mode)
10129 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10130 code = NE;
10131 break;
10133 case LTU:
10134 /* < C is equivalent to <= (C - 1). */
10135 if (const_op > 0)
10137 const_op -= 1;
10138 op1 = GEN_INT (const_op);
10139 code = LEU;
10140 /* ... fall through ... */
10143 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10144 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10145 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10147 const_op = 0, op1 = const0_rtx;
10148 code = GE;
10149 break;
10151 else
10152 break;
10154 case LEU:
10155 /* unsigned <= 0 is equivalent to == 0 */
10156 if (const_op == 0)
10157 code = EQ;
10159 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10160 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10161 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10163 const_op = 0, op1 = const0_rtx;
10164 code = GE;
10166 break;
10168 case GEU:
10169 /* >= C is equivalent to < (C - 1). */
10170 if (const_op > 1)
10172 const_op -= 1;
10173 op1 = GEN_INT (const_op);
10174 code = GTU;
10175 /* ... fall through ... */
10178 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10179 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10180 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10182 const_op = 0, op1 = const0_rtx;
10183 code = LT;
10184 break;
10186 else
10187 break;
10189 case GTU:
10190 /* unsigned > 0 is equivalent to != 0 */
10191 if (const_op == 0)
10192 code = NE;
10194 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10195 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10196 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10198 const_op = 0, op1 = const0_rtx;
10199 code = LT;
10201 break;
10203 default:
10204 break;
10207 /* Compute some predicates to simplify code below. */
10209 equality_comparison_p = (code == EQ || code == NE);
10210 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10211 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10212 || code == GEU);
10214 /* If this is a sign bit comparison and we can do arithmetic in
10215 MODE, say that we will only be needing the sign bit of OP0. */
10216 if (sign_bit_comparison_p
10217 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10218 op0 = force_to_mode (op0, mode,
10219 ((HOST_WIDE_INT) 1
10220 << (GET_MODE_BITSIZE (mode) - 1)),
10221 NULL_RTX, 0);
10223 /* Now try cases based on the opcode of OP0. If none of the cases
10224 does a "continue", we exit this loop immediately after the
10225 switch. */
10227 switch (GET_CODE (op0))
10229 case ZERO_EXTRACT:
10230 /* If we are extracting a single bit from a variable position in
10231 a constant that has only a single bit set and are comparing it
10232 with zero, we can convert this into an equality comparison
10233 between the position and the location of the single bit. */
10235 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10236 && XEXP (op0, 1) == const1_rtx
10237 && equality_comparison_p && const_op == 0
10238 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10240 if (BITS_BIG_ENDIAN)
10242 #ifdef HAVE_extzv
10243 mode = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
10244 if (mode == VOIDmode)
10245 mode = word_mode;
10246 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10247 #else
10248 i = BITS_PER_WORD - 1 - i;
10249 #endif
10252 op0 = XEXP (op0, 2);
10253 op1 = GEN_INT (i);
10254 const_op = i;
10256 /* Result is nonzero iff shift count is equal to I. */
10257 code = reverse_condition (code);
10258 continue;
10261 /* ... fall through ... */
10263 case SIGN_EXTRACT:
10264 tem = expand_compound_operation (op0);
10265 if (tem != op0)
10267 op0 = tem;
10268 continue;
10270 break;
10272 case NOT:
10273 /* If testing for equality, we can take the NOT of the constant. */
10274 if (equality_comparison_p
10275 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10277 op0 = XEXP (op0, 0);
10278 op1 = tem;
10279 continue;
10282 /* If just looking at the sign bit, reverse the sense of the
10283 comparison. */
10284 if (sign_bit_comparison_p)
10286 op0 = XEXP (op0, 0);
10287 code = (code == GE ? LT : GE);
10288 continue;
10290 break;
10292 case NEG:
10293 /* If testing for equality, we can take the NEG of the constant. */
10294 if (equality_comparison_p
10295 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10297 op0 = XEXP (op0, 0);
10298 op1 = tem;
10299 continue;
10302 /* The remaining cases only apply to comparisons with zero. */
10303 if (const_op != 0)
10304 break;
10306 /* When X is ABS or is known positive,
10307 (neg X) is < 0 if and only if X != 0. */
10309 if (sign_bit_comparison_p
10310 && (GET_CODE (XEXP (op0, 0)) == ABS
10311 || (mode_width <= HOST_BITS_PER_WIDE_INT
10312 && (nonzero_bits (XEXP (op0, 0), mode)
10313 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10315 op0 = XEXP (op0, 0);
10316 code = (code == LT ? NE : EQ);
10317 continue;
10320 /* If we have NEG of something whose two high-order bits are the
10321 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10322 if (num_sign_bit_copies (op0, mode) >= 2)
10324 op0 = XEXP (op0, 0);
10325 code = swap_condition (code);
10326 continue;
10328 break;
10330 case ROTATE:
10331 /* If we are testing equality and our count is a constant, we
10332 can perform the inverse operation on our RHS. */
10333 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10334 && (tem = simplify_binary_operation (ROTATERT, mode,
10335 op1, XEXP (op0, 1))) != 0)
10337 op0 = XEXP (op0, 0);
10338 op1 = tem;
10339 continue;
10342 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10343 a particular bit. Convert it to an AND of a constant of that
10344 bit. This will be converted into a ZERO_EXTRACT. */
10345 if (const_op == 0 && sign_bit_comparison_p
10346 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10347 && mode_width <= HOST_BITS_PER_WIDE_INT)
10349 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10350 ((HOST_WIDE_INT) 1
10351 << (mode_width - 1
10352 - INTVAL (XEXP (op0, 1)))));
10353 code = (code == LT ? NE : EQ);
10354 continue;
10357 /* Fall through. */
10359 case ABS:
10360 /* ABS is ignorable inside an equality comparison with zero. */
10361 if (const_op == 0 && equality_comparison_p)
10363 op0 = XEXP (op0, 0);
10364 continue;
10366 break;
10368 case SIGN_EXTEND:
10369 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10370 to (compare FOO CONST) if CONST fits in FOO's mode and we
10371 are either testing inequality or have an unsigned comparison
10372 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10373 if (! unsigned_comparison_p
10374 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10375 <= HOST_BITS_PER_WIDE_INT)
10376 && ((unsigned HOST_WIDE_INT) const_op
10377 < (((unsigned HOST_WIDE_INT) 1
10378 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10380 op0 = XEXP (op0, 0);
10381 continue;
10383 break;
10385 case SUBREG:
10386 /* Check for the case where we are comparing A - C1 with C2,
10387 both constants are smaller than 1/2 the maximum positive
10388 value in MODE, and the comparison is equality or unsigned.
10389 In that case, if A is either zero-extended to MODE or has
10390 sufficient sign bits so that the high-order bit in MODE
10391 is a copy of the sign in the inner mode, we can prove that it is
10392 safe to do the operation in the wider mode. This simplifies
10393 many range checks. */
10395 if (mode_width <= HOST_BITS_PER_WIDE_INT
10396 && subreg_lowpart_p (op0)
10397 && GET_CODE (SUBREG_REG (op0)) == PLUS
10398 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10399 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10400 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10401 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10402 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10403 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10404 GET_MODE (SUBREG_REG (op0)))
10405 & ~GET_MODE_MASK (mode))
10406 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10407 GET_MODE (SUBREG_REG (op0)))
10408 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10409 - GET_MODE_BITSIZE (mode)))))
10411 op0 = SUBREG_REG (op0);
10412 continue;
10415 /* If the inner mode is narrower and we are extracting the low part,
10416 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10417 if (subreg_lowpart_p (op0)
10418 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10419 /* Fall through */ ;
10420 else
10421 break;
10423 /* ... fall through ... */
10425 case ZERO_EXTEND:
10426 if ((unsigned_comparison_p || equality_comparison_p)
10427 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10428 <= HOST_BITS_PER_WIDE_INT)
10429 && ((unsigned HOST_WIDE_INT) const_op
10430 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10432 op0 = XEXP (op0, 0);
10433 continue;
10435 break;
10437 case PLUS:
10438 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10439 this for equality comparisons due to pathological cases involving
10440 overflows. */
10441 if (equality_comparison_p
10442 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10443 op1, XEXP (op0, 1))))
10445 op0 = XEXP (op0, 0);
10446 op1 = tem;
10447 continue;
10450 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10451 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10452 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10454 op0 = XEXP (XEXP (op0, 0), 0);
10455 code = (code == LT ? EQ : NE);
10456 continue;
10458 break;
10460 case MINUS:
10461 /* We used to optimize signed comparisons against zero, but that
10462 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10463 arrive here as equality comparisons, or (GEU, LTU) are
10464 optimized away. No need to special-case them. */
10466 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10467 (eq B (minus A C)), whichever simplifies. We can only do
10468 this for equality comparisons due to pathological cases involving
10469 overflows. */
10470 if (equality_comparison_p
10471 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10472 XEXP (op0, 1), op1)))
10474 op0 = XEXP (op0, 0);
10475 op1 = tem;
10476 continue;
10479 if (equality_comparison_p
10480 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10481 XEXP (op0, 0), op1)))
10483 op0 = XEXP (op0, 1);
10484 op1 = tem;
10485 continue;
10488 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10489 of bits in X minus 1, is one iff X > 0. */
10490 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10491 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10492 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10493 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10495 op0 = XEXP (op0, 1);
10496 code = (code == GE ? LE : GT);
10497 continue;
10499 break;
10501 case XOR:
10502 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10503 if C is zero or B is a constant. */
10504 if (equality_comparison_p
10505 && 0 != (tem = simplify_binary_operation (XOR, mode,
10506 XEXP (op0, 1), op1)))
10508 op0 = XEXP (op0, 0);
10509 op1 = tem;
10510 continue;
10512 break;
10514 case EQ: case NE:
10515 case UNEQ: case LTGT:
10516 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10517 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10518 case UNORDERED: case ORDERED:
10519 /* We can't do anything if OP0 is a condition code value, rather
10520 than an actual data value. */
10521 if (const_op != 0
10522 #ifdef HAVE_cc0
10523 || XEXP (op0, 0) == cc0_rtx
10524 #endif
10525 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10526 break;
10528 /* Get the two operands being compared. */
10529 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10530 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10531 else
10532 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10534 /* Check for the cases where we simply want the result of the
10535 earlier test or the opposite of that result. */
10536 if (code == NE || code == EQ
10537 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10538 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10539 && (STORE_FLAG_VALUE
10540 & (((HOST_WIDE_INT) 1
10541 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10542 && (code == LT || code == GE)))
10544 enum rtx_code new_code;
10545 if (code == LT || code == NE)
10546 new_code = GET_CODE (op0);
10547 else
10548 new_code = combine_reversed_comparison_code (op0);
10550 if (new_code != UNKNOWN)
10552 code = new_code;
10553 op0 = tem;
10554 op1 = tem1;
10555 continue;
10558 break;
10560 case IOR:
10561 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10562 iff X <= 0. */
10563 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10564 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10565 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10567 op0 = XEXP (op0, 1);
10568 code = (code == GE ? GT : LE);
10569 continue;
10571 break;
10573 case AND:
10574 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10575 will be converted to a ZERO_EXTRACT later. */
10576 if (const_op == 0 && equality_comparison_p
10577 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10578 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10580 op0 = simplify_and_const_int
10581 (op0, mode, gen_rtx_LSHIFTRT (mode,
10582 XEXP (op0, 1),
10583 XEXP (XEXP (op0, 0), 1)),
10584 (HOST_WIDE_INT) 1);
10585 continue;
10588 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10589 zero and X is a comparison and C1 and C2 describe only bits set
10590 in STORE_FLAG_VALUE, we can compare with X. */
10591 if (const_op == 0 && equality_comparison_p
10592 && mode_width <= HOST_BITS_PER_WIDE_INT
10593 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10594 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10595 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10596 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10597 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10599 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10600 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10601 if ((~STORE_FLAG_VALUE & mask) == 0
10602 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10603 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10604 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10606 op0 = XEXP (XEXP (op0, 0), 0);
10607 continue;
10611 /* If we are doing an equality comparison of an AND of a bit equal
10612 to the sign bit, replace this with a LT or GE comparison of
10613 the underlying value. */
10614 if (equality_comparison_p
10615 && const_op == 0
10616 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10617 && mode_width <= HOST_BITS_PER_WIDE_INT
10618 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10619 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10621 op0 = XEXP (op0, 0);
10622 code = (code == EQ ? GE : LT);
10623 continue;
10626 /* If this AND operation is really a ZERO_EXTEND from a narrower
10627 mode, the constant fits within that mode, and this is either an
10628 equality or unsigned comparison, try to do this comparison in
10629 the narrower mode. */
10630 if ((equality_comparison_p || unsigned_comparison_p)
10631 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10632 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10633 & GET_MODE_MASK (mode))
10634 + 1)) >= 0
10635 && const_op >> i == 0
10636 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10638 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10639 continue;
10642 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10643 in both M1 and M2 and the SUBREG is either paradoxical or
10644 represents the low part, permute the SUBREG and the AND and
10645 try again. */
10646 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10647 && (0
10648 #ifdef WORD_REGISTER_OPERATIONS
10649 || ((mode_width
10650 > (GET_MODE_BITSIZE
10651 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10652 && mode_width <= BITS_PER_WORD)
10653 #endif
10654 || ((mode_width
10655 <= (GET_MODE_BITSIZE
10656 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10657 && subreg_lowpart_p (XEXP (op0, 0))))
10658 #ifndef WORD_REGISTER_OPERATIONS
10659 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10660 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10661 As originally written the upper bits have a defined value
10662 due to the AND operation. However, if we commute the AND
10663 inside the SUBREG then they no longer have defined values
10664 and the meaning of the code has been changed. */
10665 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10666 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10667 #endif
10668 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10669 && mode_width <= HOST_BITS_PER_WIDE_INT
10670 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10671 <= HOST_BITS_PER_WIDE_INT)
10672 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10673 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10674 & INTVAL (XEXP (op0, 1)))
10675 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10676 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10677 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10681 = gen_lowpart_for_combine
10682 (mode,
10683 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10684 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10685 continue;
10688 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10689 (eq (and (lshiftrt X) 1) 0). */
10690 if (const_op == 0 && equality_comparison_p
10691 && XEXP (op0, 1) == const1_rtx
10692 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10693 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10695 op0 = simplify_and_const_int
10696 (op0, mode,
10697 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10698 XEXP (XEXP (op0, 0), 1)),
10699 (HOST_WIDE_INT) 1);
10700 code = (code == NE ? EQ : NE);
10701 continue;
10703 break;
10705 case ASHIFT:
10706 /* If we have (compare (ashift FOO N) (const_int C)) and
10707 the high order N bits of FOO (N+1 if an inequality comparison)
10708 are known to be zero, we can do this by comparing FOO with C
10709 shifted right N bits so long as the low-order N bits of C are
10710 zero. */
10711 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10712 && INTVAL (XEXP (op0, 1)) >= 0
10713 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10714 < HOST_BITS_PER_WIDE_INT)
10715 && ((const_op
10716 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10717 && mode_width <= HOST_BITS_PER_WIDE_INT
10718 && (nonzero_bits (XEXP (op0, 0), mode)
10719 & ~(mask >> (INTVAL (XEXP (op0, 1))
10720 + ! equality_comparison_p))) == 0)
10722 /* We must perform a logical shift, not an arithmetic one,
10723 as we want the top N bits of C to be zero. */
10724 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10726 temp >>= INTVAL (XEXP (op0, 1));
10727 op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10728 op0 = XEXP (op0, 0);
10729 continue;
10732 /* If we are doing a sign bit comparison, it means we are testing
10733 a particular bit. Convert it to the appropriate AND. */
10734 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10735 && mode_width <= HOST_BITS_PER_WIDE_INT)
10737 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10738 ((HOST_WIDE_INT) 1
10739 << (mode_width - 1
10740 - INTVAL (XEXP (op0, 1)))));
10741 code = (code == LT ? NE : EQ);
10742 continue;
10745 /* If this an equality comparison with zero and we are shifting
10746 the low bit to the sign bit, we can convert this to an AND of the
10747 low-order bit. */
10748 if (const_op == 0 && equality_comparison_p
10749 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10750 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10752 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10753 (HOST_WIDE_INT) 1);
10754 continue;
10756 break;
10758 case ASHIFTRT:
10759 /* If this is an equality comparison with zero, we can do this
10760 as a logical shift, which might be much simpler. */
10761 if (equality_comparison_p && const_op == 0
10762 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10764 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10765 XEXP (op0, 0),
10766 INTVAL (XEXP (op0, 1)));
10767 continue;
10770 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10771 do the comparison in a narrower mode. */
10772 if (! unsigned_comparison_p
10773 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10774 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10775 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10776 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10777 MODE_INT, 1)) != BLKmode
10778 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10779 || ((unsigned HOST_WIDE_INT) -const_op
10780 <= GET_MODE_MASK (tmode))))
10782 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10783 continue;
10786 /* Likewise if OP0 is a PLUS of a sign extension with a
10787 constant, which is usually represented with the PLUS
10788 between the shifts. */
10789 if (! unsigned_comparison_p
10790 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10791 && GET_CODE (XEXP (op0, 0)) == PLUS
10792 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10793 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10794 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10795 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10796 MODE_INT, 1)) != BLKmode
10797 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10798 || ((unsigned HOST_WIDE_INT) -const_op
10799 <= GET_MODE_MASK (tmode))))
10801 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10802 rtx add_const = XEXP (XEXP (op0, 0), 1);
10803 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10804 XEXP (op0, 1));
10806 op0 = gen_binary (PLUS, tmode,
10807 gen_lowpart_for_combine (tmode, inner),
10808 new_const);
10809 continue;
10812 /* ... fall through ... */
10813 case LSHIFTRT:
10814 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10815 the low order N bits of FOO are known to be zero, we can do this
10816 by comparing FOO with C shifted left N bits so long as no
10817 overflow occurs. */
10818 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10819 && INTVAL (XEXP (op0, 1)) >= 0
10820 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10821 && mode_width <= HOST_BITS_PER_WIDE_INT
10822 && (nonzero_bits (XEXP (op0, 0), mode)
10823 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10824 && (const_op == 0
10825 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10826 < mode_width)))
10828 const_op <<= INTVAL (XEXP (op0, 1));
10829 op1 = GEN_INT (const_op);
10830 op0 = XEXP (op0, 0);
10831 continue;
10834 /* If we are using this shift to extract just the sign bit, we
10835 can replace this with an LT or GE comparison. */
10836 if (const_op == 0
10837 && (equality_comparison_p || sign_bit_comparison_p)
10838 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10839 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10841 op0 = XEXP (op0, 0);
10842 code = (code == NE || code == GT ? LT : GE);
10843 continue;
10845 break;
10847 default:
10848 break;
10851 break;
10854 /* Now make any compound operations involved in this comparison. Then,
10855 check for an outmost SUBREG on OP0 that is not doing anything or is
10856 paradoxical. The latter case can only occur when it is known that the
10857 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10858 We can never remove a SUBREG for a non-equality comparison because the
10859 sign bit is in a different place in the underlying object. */
10861 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10862 op1 = make_compound_operation (op1, SET);
10864 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10865 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10866 && (code == NE || code == EQ)
10867 && ((GET_MODE_SIZE (GET_MODE (op0))
10868 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10870 op0 = SUBREG_REG (op0);
10871 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10874 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10875 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10876 && (code == NE || code == EQ)
10877 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10878 <= HOST_BITS_PER_WIDE_INT)
10879 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10880 & ~GET_MODE_MASK (GET_MODE (op0))) == 0
10881 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10882 op1),
10883 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10884 & ~GET_MODE_MASK (GET_MODE (op0))) == 0))
10885 op0 = SUBREG_REG (op0), op1 = tem;
10887 /* We now do the opposite procedure: Some machines don't have compare
10888 insns in all modes. If OP0's mode is an integer mode smaller than a
10889 word and we can't do a compare in that mode, see if there is a larger
10890 mode for which we can do the compare. There are a number of cases in
10891 which we can use the wider mode. */
10893 mode = GET_MODE (op0);
10894 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10895 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10896 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
10897 for (tmode = GET_MODE_WIDER_MODE (mode);
10898 (tmode != VOIDmode
10899 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10900 tmode = GET_MODE_WIDER_MODE (tmode))
10901 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
10903 /* If the only nonzero bits in OP0 and OP1 are those in the
10904 narrower mode and this is an equality or unsigned comparison,
10905 we can use the wider mode. Similarly for sign-extended
10906 values, in which case it is true for all comparisons. */
10907 if (((code == EQ || code == NE
10908 || code == GEU || code == GTU || code == LEU || code == LTU)
10909 && (nonzero_bits (op0, tmode) & ~GET_MODE_MASK (mode)) == 0
10910 && (nonzero_bits (op1, tmode) & ~GET_MODE_MASK (mode)) == 0)
10911 || ((num_sign_bit_copies (op0, tmode)
10912 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10913 && (num_sign_bit_copies (op1, tmode)
10914 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10916 /* If OP0 is an AND and we don't have an AND in MODE either,
10917 make a new AND in the proper mode. */
10918 if (GET_CODE (op0) == AND
10919 && (add_optab->handlers[(int) mode].insn_code
10920 == CODE_FOR_nothing))
10921 op0 = gen_binary (AND, tmode,
10922 gen_lowpart_for_combine (tmode,
10923 XEXP (op0, 0)),
10924 gen_lowpart_for_combine (tmode,
10925 XEXP (op0, 1)));
10927 op0 = gen_lowpart_for_combine (tmode, op0);
10928 op1 = gen_lowpart_for_combine (tmode, op1);
10929 break;
10932 /* If this is a test for negative, we can make an explicit
10933 test of the sign bit. */
10935 if (op1 == const0_rtx && (code == LT || code == GE)
10936 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10938 op0 = gen_binary (AND, tmode,
10939 gen_lowpart_for_combine (tmode, op0),
10940 GEN_INT ((HOST_WIDE_INT) 1
10941 << (GET_MODE_BITSIZE (mode) - 1)));
10942 code = (code == LT) ? NE : EQ;
10943 break;
10947 #ifdef CANONICALIZE_COMPARISON
10948 /* If this machine only supports a subset of valid comparisons, see if we
10949 can convert an unsupported one into a supported one. */
10950 CANONICALIZE_COMPARISON (code, op0, op1);
10951 #endif
10953 *pop0 = op0;
10954 *pop1 = op1;
10956 return code;
10959 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10960 searching backward. */
10961 static enum rtx_code
10962 combine_reversed_comparison_code (exp)
10963 rtx exp;
10965 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10966 rtx x;
10968 if (code1 != UNKNOWN
10969 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10970 return code1;
10971 /* Otherwise try and find where the condition codes were last set and
10972 use that. */
10973 x = get_last_value (XEXP (exp, 0));
10974 if (!x || GET_CODE (x) != COMPARE)
10975 return UNKNOWN;
10976 return reversed_comparison_code_parts (GET_CODE (exp),
10977 XEXP (x, 0), XEXP (x, 1), NULL);
10979 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10980 Return NULL_RTX in case we fail to do the reversal. */
10981 static rtx
10982 reversed_comparison (exp, mode, op0, op1)
10983 rtx exp, op0, op1;
10984 enum machine_mode mode;
10986 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10987 if (reversed_code == UNKNOWN)
10988 return NULL_RTX;
10989 else
10990 return gen_binary (reversed_code, mode, op0, op1);
10993 /* Utility function for following routine. Called when X is part of a value
10994 being stored into reg_last_set_value. Sets reg_last_set_table_tick
10995 for each register mentioned. Similar to mention_regs in cse.c */
10997 static void
10998 update_table_tick (x)
10999 rtx x;
11001 register enum rtx_code code = GET_CODE (x);
11002 register const char *fmt = GET_RTX_FORMAT (code);
11003 register int i;
11005 if (code == REG)
11007 unsigned int regno = REGNO (x);
11008 unsigned int endregno
11009 = regno + (regno < FIRST_PSEUDO_REGISTER
11010 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11011 unsigned int r;
11013 for (r = regno; r < endregno; r++)
11014 reg_last_set_table_tick[r] = label_tick;
11016 return;
11019 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11020 /* Note that we can't have an "E" in values stored; see
11021 get_last_value_validate. */
11022 if (fmt[i] == 'e')
11023 update_table_tick (XEXP (x, i));
11026 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11027 are saying that the register is clobbered and we no longer know its
11028 value. If INSN is zero, don't update reg_last_set; this is only permitted
11029 with VALUE also zero and is used to invalidate the register. */
11031 static void
11032 record_value_for_reg (reg, insn, value)
11033 rtx reg;
11034 rtx insn;
11035 rtx value;
11037 unsigned int regno = REGNO (reg);
11038 unsigned int endregno
11039 = regno + (regno < FIRST_PSEUDO_REGISTER
11040 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11041 unsigned int i;
11043 /* If VALUE contains REG and we have a previous value for REG, substitute
11044 the previous value. */
11045 if (value && insn && reg_overlap_mentioned_p (reg, value))
11047 rtx tem;
11049 /* Set things up so get_last_value is allowed to see anything set up to
11050 our insn. */
11051 subst_low_cuid = INSN_CUID (insn);
11052 tem = get_last_value (reg);
11054 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11055 it isn't going to be useful and will take a lot of time to process,
11056 so just use the CLOBBER. */
11058 if (tem)
11060 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11061 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11062 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11063 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11064 tem = XEXP (tem, 0);
11066 value = replace_rtx (copy_rtx (value), reg, tem);
11070 /* For each register modified, show we don't know its value, that
11071 we don't know about its bitwise content, that its value has been
11072 updated, and that we don't know the location of the death of the
11073 register. */
11074 for (i = regno; i < endregno; i++)
11076 if (insn)
11077 reg_last_set[i] = insn;
11079 reg_last_set_value[i] = 0;
11080 reg_last_set_mode[i] = 0;
11081 reg_last_set_nonzero_bits[i] = 0;
11082 reg_last_set_sign_bit_copies[i] = 0;
11083 reg_last_death[i] = 0;
11086 /* Mark registers that are being referenced in this value. */
11087 if (value)
11088 update_table_tick (value);
11090 /* Now update the status of each register being set.
11091 If someone is using this register in this block, set this register
11092 to invalid since we will get confused between the two lives in this
11093 basic block. This makes using this register always invalid. In cse, we
11094 scan the table to invalidate all entries using this register, but this
11095 is too much work for us. */
11097 for (i = regno; i < endregno; i++)
11099 reg_last_set_label[i] = label_tick;
11100 if (value && reg_last_set_table_tick[i] == label_tick)
11101 reg_last_set_invalid[i] = 1;
11102 else
11103 reg_last_set_invalid[i] = 0;
11106 /* The value being assigned might refer to X (like in "x++;"). In that
11107 case, we must replace it with (clobber (const_int 0)) to prevent
11108 infinite loops. */
11109 if (value && ! get_last_value_validate (&value, insn,
11110 reg_last_set_label[regno], 0))
11112 value = copy_rtx (value);
11113 if (! get_last_value_validate (&value, insn,
11114 reg_last_set_label[regno], 1))
11115 value = 0;
11118 /* For the main register being modified, update the value, the mode, the
11119 nonzero bits, and the number of sign bit copies. */
11121 reg_last_set_value[regno] = value;
11123 if (value)
11125 subst_low_cuid = INSN_CUID (insn);
11126 reg_last_set_mode[regno] = GET_MODE (reg);
11127 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
11128 reg_last_set_sign_bit_copies[regno]
11129 = num_sign_bit_copies (value, GET_MODE (reg));
11133 /* Called via note_stores from record_dead_and_set_regs to handle one
11134 SET or CLOBBER in an insn. DATA is the instruction in which the
11135 set is occurring. */
11137 static void
11138 record_dead_and_set_regs_1 (dest, setter, data)
11139 rtx dest, setter;
11140 void *data;
11142 rtx record_dead_insn = (rtx) data;
11144 if (GET_CODE (dest) == SUBREG)
11145 dest = SUBREG_REG (dest);
11147 if (GET_CODE (dest) == REG)
11149 /* If we are setting the whole register, we know its value. Otherwise
11150 show that we don't know the value. We can handle SUBREG in
11151 some cases. */
11152 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11153 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11154 else if (GET_CODE (setter) == SET
11155 && GET_CODE (SET_DEST (setter)) == SUBREG
11156 && SUBREG_REG (SET_DEST (setter)) == dest
11157 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11158 && subreg_lowpart_p (SET_DEST (setter)))
11159 record_value_for_reg (dest, record_dead_insn,
11160 gen_lowpart_for_combine (GET_MODE (dest),
11161 SET_SRC (setter)));
11162 else
11163 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11165 else if (GET_CODE (dest) == MEM
11166 /* Ignore pushes, they clobber nothing. */
11167 && ! push_operand (dest, GET_MODE (dest)))
11168 mem_last_set = INSN_CUID (record_dead_insn);
11171 /* Update the records of when each REG was most recently set or killed
11172 for the things done by INSN. This is the last thing done in processing
11173 INSN in the combiner loop.
11175 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11176 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11177 and also the similar information mem_last_set (which insn most recently
11178 modified memory) and last_call_cuid (which insn was the most recent
11179 subroutine call). */
11181 static void
11182 record_dead_and_set_regs (insn)
11183 rtx insn;
11185 register rtx link;
11186 unsigned int i;
11188 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11190 if (REG_NOTE_KIND (link) == REG_DEAD
11191 && GET_CODE (XEXP (link, 0)) == REG)
11193 unsigned int regno = REGNO (XEXP (link, 0));
11194 unsigned int endregno
11195 = regno + (regno < FIRST_PSEUDO_REGISTER
11196 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11197 : 1);
11199 for (i = regno; i < endregno; i++)
11200 reg_last_death[i] = insn;
11202 else if (REG_NOTE_KIND (link) == REG_INC)
11203 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11206 if (GET_CODE (insn) == CALL_INSN)
11208 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11209 if (call_used_regs[i])
11211 reg_last_set_value[i] = 0;
11212 reg_last_set_mode[i] = 0;
11213 reg_last_set_nonzero_bits[i] = 0;
11214 reg_last_set_sign_bit_copies[i] = 0;
11215 reg_last_death[i] = 0;
11218 last_call_cuid = mem_last_set = INSN_CUID (insn);
11221 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11224 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11225 register present in the SUBREG, so for each such SUBREG go back and
11226 adjust nonzero and sign bit information of the registers that are
11227 known to have some zero/sign bits set.
11229 This is needed because when combine blows the SUBREGs away, the
11230 information on zero/sign bits is lost and further combines can be
11231 missed because of that. */
11233 static void
11234 record_promoted_value (insn, subreg)
11235 rtx insn;
11236 rtx subreg;
11238 rtx links, set;
11239 unsigned int regno = REGNO (SUBREG_REG (subreg));
11240 enum machine_mode mode = GET_MODE (subreg);
11242 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11243 return;
11245 for (links = LOG_LINKS (insn); links;)
11247 insn = XEXP (links, 0);
11248 set = single_set (insn);
11250 if (! set || GET_CODE (SET_DEST (set)) != REG
11251 || REGNO (SET_DEST (set)) != regno
11252 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11254 links = XEXP (links, 1);
11255 continue;
11258 if (reg_last_set[regno] == insn)
11260 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11261 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11264 if (GET_CODE (SET_SRC (set)) == REG)
11266 regno = REGNO (SET_SRC (set));
11267 links = LOG_LINKS (insn);
11269 else
11270 break;
11274 /* Scan X for promoted SUBREGs. For each one found,
11275 note what it implies to the registers used in it. */
11277 static void
11278 check_promoted_subreg (insn, x)
11279 rtx insn;
11280 rtx x;
11282 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11283 && GET_CODE (SUBREG_REG (x)) == REG)
11284 record_promoted_value (insn, x);
11285 else
11287 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11288 int i, j;
11290 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11291 switch (format[i])
11293 case 'e':
11294 check_promoted_subreg (insn, XEXP (x, i));
11295 break;
11296 case 'V':
11297 case 'E':
11298 if (XVEC (x, i) != 0)
11299 for (j = 0; j < XVECLEN (x, i); j++)
11300 check_promoted_subreg (insn, XVECEXP (x, i, j));
11301 break;
11306 /* Utility routine for the following function. Verify that all the registers
11307 mentioned in *LOC are valid when *LOC was part of a value set when
11308 label_tick == TICK. Return 0 if some are not.
11310 If REPLACE is non-zero, replace the invalid reference with
11311 (clobber (const_int 0)) and return 1. This replacement is useful because
11312 we often can get useful information about the form of a value (e.g., if
11313 it was produced by a shift that always produces -1 or 0) even though
11314 we don't know exactly what registers it was produced from. */
11316 static int
11317 get_last_value_validate (loc, insn, tick, replace)
11318 rtx *loc;
11319 rtx insn;
11320 int tick;
11321 int replace;
11323 rtx x = *loc;
11324 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11325 int len = GET_RTX_LENGTH (GET_CODE (x));
11326 int i;
11328 if (GET_CODE (x) == REG)
11330 unsigned int regno = REGNO (x);
11331 unsigned int endregno
11332 = regno + (regno < FIRST_PSEUDO_REGISTER
11333 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11334 unsigned int j;
11336 for (j = regno; j < endregno; j++)
11337 if (reg_last_set_invalid[j]
11338 /* If this is a pseudo-register that was only set once and not
11339 live at the beginning of the function, it is always valid. */
11340 || (! (regno >= FIRST_PSEUDO_REGISTER
11341 && REG_N_SETS (regno) == 1
11342 && (! REGNO_REG_SET_P
11343 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11344 && reg_last_set_label[j] > tick))
11346 if (replace)
11347 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11348 return replace;
11351 return 1;
11353 /* If this is a memory reference, make sure that there were
11354 no stores after it that might have clobbered the value. We don't
11355 have alias info, so we assume any store invalidates it. */
11356 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11357 && INSN_CUID (insn) <= mem_last_set)
11359 if (replace)
11360 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11361 return replace;
11364 for (i = 0; i < len; i++)
11365 if ((fmt[i] == 'e'
11366 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11367 /* Don't bother with these. They shouldn't occur anyway. */
11368 || fmt[i] == 'E')
11369 return 0;
11371 /* If we haven't found a reason for it to be invalid, it is valid. */
11372 return 1;
11375 /* Get the last value assigned to X, if known. Some registers
11376 in the value may be replaced with (clobber (const_int 0)) if their value
11377 is known longer known reliably. */
11379 static rtx
11380 get_last_value (x)
11381 rtx x;
11383 unsigned int regno;
11384 rtx value;
11386 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11387 then convert it to the desired mode. If this is a paradoxical SUBREG,
11388 we cannot predict what values the "extra" bits might have. */
11389 if (GET_CODE (x) == SUBREG
11390 && subreg_lowpart_p (x)
11391 && (GET_MODE_SIZE (GET_MODE (x))
11392 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11393 && (value = get_last_value (SUBREG_REG (x))) != 0)
11394 return gen_lowpart_for_combine (GET_MODE (x), value);
11396 if (GET_CODE (x) != REG)
11397 return 0;
11399 regno = REGNO (x);
11400 value = reg_last_set_value[regno];
11402 /* If we don't have a value, or if it isn't for this basic block and
11403 it's either a hard register, set more than once, or it's a live
11404 at the beginning of the function, return 0.
11406 Because if it's not live at the beginnning of the function then the reg
11407 is always set before being used (is never used without being set).
11408 And, if it's set only once, and it's always set before use, then all
11409 uses must have the same last value, even if it's not from this basic
11410 block. */
11412 if (value == 0
11413 || (reg_last_set_label[regno] != label_tick
11414 && (regno < FIRST_PSEUDO_REGISTER
11415 || REG_N_SETS (regno) != 1
11416 || (REGNO_REG_SET_P
11417 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11418 return 0;
11420 /* If the value was set in a later insn than the ones we are processing,
11421 we can't use it even if the register was only set once. */
11422 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11423 return 0;
11425 /* If the value has all its registers valid, return it. */
11426 if (get_last_value_validate (&value, reg_last_set[regno],
11427 reg_last_set_label[regno], 0))
11428 return value;
11430 /* Otherwise, make a copy and replace any invalid register with
11431 (clobber (const_int 0)). If that fails for some reason, return 0. */
11433 value = copy_rtx (value);
11434 if (get_last_value_validate (&value, reg_last_set[regno],
11435 reg_last_set_label[regno], 1))
11436 return value;
11438 return 0;
11441 /* Return nonzero if expression X refers to a REG or to memory
11442 that is set in an instruction more recent than FROM_CUID. */
11444 static int
11445 use_crosses_set_p (x, from_cuid)
11446 register rtx x;
11447 int from_cuid;
11449 register const char *fmt;
11450 register int i;
11451 register enum rtx_code code = GET_CODE (x);
11453 if (code == REG)
11455 unsigned int regno = REGNO (x);
11456 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11457 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11459 #ifdef PUSH_ROUNDING
11460 /* Don't allow uses of the stack pointer to be moved,
11461 because we don't know whether the move crosses a push insn. */
11462 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11463 return 1;
11464 #endif
11465 for (; regno < endreg; regno++)
11466 if (reg_last_set[regno]
11467 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11468 return 1;
11469 return 0;
11472 if (code == MEM && mem_last_set > from_cuid)
11473 return 1;
11475 fmt = GET_RTX_FORMAT (code);
11477 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11479 if (fmt[i] == 'E')
11481 register int j;
11482 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11483 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11484 return 1;
11486 else if (fmt[i] == 'e'
11487 && use_crosses_set_p (XEXP (x, i), from_cuid))
11488 return 1;
11490 return 0;
11493 /* Define three variables used for communication between the following
11494 routines. */
11496 static unsigned int reg_dead_regno, reg_dead_endregno;
11497 static int reg_dead_flag;
11499 /* Function called via note_stores from reg_dead_at_p.
11501 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11502 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11504 static void
11505 reg_dead_at_p_1 (dest, x, data)
11506 rtx dest;
11507 rtx x;
11508 void *data ATTRIBUTE_UNUSED;
11510 unsigned int regno, endregno;
11512 if (GET_CODE (dest) != REG)
11513 return;
11515 regno = REGNO (dest);
11516 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11517 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11519 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11520 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11523 /* Return non-zero if REG is known to be dead at INSN.
11525 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11526 referencing REG, it is dead. If we hit a SET referencing REG, it is
11527 live. Otherwise, see if it is live or dead at the start of the basic
11528 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11529 must be assumed to be always live. */
11531 static int
11532 reg_dead_at_p (reg, insn)
11533 rtx reg;
11534 rtx insn;
11536 int block;
11537 unsigned int i;
11539 /* Set variables for reg_dead_at_p_1. */
11540 reg_dead_regno = REGNO (reg);
11541 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11542 ? HARD_REGNO_NREGS (reg_dead_regno,
11543 GET_MODE (reg))
11544 : 1);
11546 reg_dead_flag = 0;
11548 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11549 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11551 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11552 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11553 return 0;
11556 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11557 beginning of function. */
11558 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11559 insn = prev_nonnote_insn (insn))
11561 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11562 if (reg_dead_flag)
11563 return reg_dead_flag == 1 ? 1 : 0;
11565 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11566 return 1;
11569 /* Get the basic block number that we were in. */
11570 if (insn == 0)
11571 block = 0;
11572 else
11574 for (block = 0; block < n_basic_blocks; block++)
11575 if (insn == BLOCK_HEAD (block))
11576 break;
11578 if (block == n_basic_blocks)
11579 return 0;
11582 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11583 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11584 return 0;
11586 return 1;
11589 /* Note hard registers in X that are used. This code is similar to
11590 that in flow.c, but much simpler since we don't care about pseudos. */
11592 static void
11593 mark_used_regs_combine (x)
11594 rtx x;
11596 RTX_CODE code = GET_CODE (x);
11597 unsigned int regno;
11598 int i;
11600 switch (code)
11602 case LABEL_REF:
11603 case SYMBOL_REF:
11604 case CONST_INT:
11605 case CONST:
11606 case CONST_DOUBLE:
11607 case PC:
11608 case ADDR_VEC:
11609 case ADDR_DIFF_VEC:
11610 case ASM_INPUT:
11611 #ifdef HAVE_cc0
11612 /* CC0 must die in the insn after it is set, so we don't need to take
11613 special note of it here. */
11614 case CC0:
11615 #endif
11616 return;
11618 case CLOBBER:
11619 /* If we are clobbering a MEM, mark any hard registers inside the
11620 address as used. */
11621 if (GET_CODE (XEXP (x, 0)) == MEM)
11622 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11623 return;
11625 case REG:
11626 regno = REGNO (x);
11627 /* A hard reg in a wide mode may really be multiple registers.
11628 If so, mark all of them just like the first. */
11629 if (regno < FIRST_PSEUDO_REGISTER)
11631 unsigned int endregno, r;
11633 /* None of this applies to the stack, frame or arg pointers */
11634 if (regno == STACK_POINTER_REGNUM
11635 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11636 || regno == HARD_FRAME_POINTER_REGNUM
11637 #endif
11638 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11639 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11640 #endif
11641 || regno == FRAME_POINTER_REGNUM)
11642 return;
11644 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11645 for (r = regno; r < endregno; r++)
11646 SET_HARD_REG_BIT (newpat_used_regs, r);
11648 return;
11650 case SET:
11652 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11653 the address. */
11654 register rtx testreg = SET_DEST (x);
11656 while (GET_CODE (testreg) == SUBREG
11657 || GET_CODE (testreg) == ZERO_EXTRACT
11658 || GET_CODE (testreg) == SIGN_EXTRACT
11659 || GET_CODE (testreg) == STRICT_LOW_PART)
11660 testreg = XEXP (testreg, 0);
11662 if (GET_CODE (testreg) == MEM)
11663 mark_used_regs_combine (XEXP (testreg, 0));
11665 mark_used_regs_combine (SET_SRC (x));
11667 return;
11669 default:
11670 break;
11673 /* Recursively scan the operands of this expression. */
11676 register const char *fmt = GET_RTX_FORMAT (code);
11678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11680 if (fmt[i] == 'e')
11681 mark_used_regs_combine (XEXP (x, i));
11682 else if (fmt[i] == 'E')
11684 register int j;
11686 for (j = 0; j < XVECLEN (x, i); j++)
11687 mark_used_regs_combine (XVECEXP (x, i, j));
11693 /* Remove register number REGNO from the dead registers list of INSN.
11695 Return the note used to record the death, if there was one. */
11698 remove_death (regno, insn)
11699 unsigned int regno;
11700 rtx insn;
11702 register rtx note = find_regno_note (insn, REG_DEAD, regno);
11704 if (note)
11706 REG_N_DEATHS (regno)--;
11707 remove_note (insn, note);
11710 return note;
11713 /* For each register (hardware or pseudo) used within expression X, if its
11714 death is in an instruction with cuid between FROM_CUID (inclusive) and
11715 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11716 list headed by PNOTES.
11718 That said, don't move registers killed by maybe_kill_insn.
11720 This is done when X is being merged by combination into TO_INSN. These
11721 notes will then be distributed as needed. */
11723 static void
11724 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11725 rtx x;
11726 rtx maybe_kill_insn;
11727 int from_cuid;
11728 rtx to_insn;
11729 rtx *pnotes;
11731 register const char *fmt;
11732 register int len, i;
11733 register enum rtx_code code = GET_CODE (x);
11735 if (code == REG)
11737 unsigned int regno = REGNO (x);
11738 register rtx where_dead = reg_last_death[regno];
11739 register rtx before_dead, after_dead;
11741 /* Don't move the register if it gets killed in between from and to */
11742 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11743 && ! reg_referenced_p (x, maybe_kill_insn))
11744 return;
11746 /* WHERE_DEAD could be a USE insn made by combine, so first we
11747 make sure that we have insns with valid INSN_CUID values. */
11748 before_dead = where_dead;
11749 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11750 before_dead = PREV_INSN (before_dead);
11752 after_dead = where_dead;
11753 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11754 after_dead = NEXT_INSN (after_dead);
11756 if (before_dead && after_dead
11757 && INSN_CUID (before_dead) >= from_cuid
11758 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11759 || (where_dead != after_dead
11760 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11762 rtx note = remove_death (regno, where_dead);
11764 /* It is possible for the call above to return 0. This can occur
11765 when reg_last_death points to I2 or I1 that we combined with.
11766 In that case make a new note.
11768 We must also check for the case where X is a hard register
11769 and NOTE is a death note for a range of hard registers
11770 including X. In that case, we must put REG_DEAD notes for
11771 the remaining registers in place of NOTE. */
11773 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11774 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11775 > GET_MODE_SIZE (GET_MODE (x))))
11777 unsigned int deadregno = REGNO (XEXP (note, 0));
11778 unsigned int deadend
11779 = (deadregno + HARD_REGNO_NREGS (deadregno,
11780 GET_MODE (XEXP (note, 0))));
11781 unsigned int ourend
11782 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11783 unsigned int i;
11785 for (i = deadregno; i < deadend; i++)
11786 if (i < regno || i >= ourend)
11787 REG_NOTES (where_dead)
11788 = gen_rtx_EXPR_LIST (REG_DEAD,
11789 gen_rtx_REG (reg_raw_mode[i], i),
11790 REG_NOTES (where_dead));
11793 /* If we didn't find any note, or if we found a REG_DEAD note that
11794 covers only part of the given reg, and we have a multi-reg hard
11795 register, then to be safe we must check for REG_DEAD notes
11796 for each register other than the first. They could have
11797 their own REG_DEAD notes lying around. */
11798 else if ((note == 0
11799 || (note != 0
11800 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11801 < GET_MODE_SIZE (GET_MODE (x)))))
11802 && regno < FIRST_PSEUDO_REGISTER
11803 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11805 unsigned int ourend
11806 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11807 unsigned int i, offset;
11808 rtx oldnotes = 0;
11810 if (note)
11811 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11812 else
11813 offset = 1;
11815 for (i = regno + offset; i < ourend; i++)
11816 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11817 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11820 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11822 XEXP (note, 1) = *pnotes;
11823 *pnotes = note;
11825 else
11826 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11828 REG_N_DEATHS (regno)++;
11831 return;
11834 else if (GET_CODE (x) == SET)
11836 rtx dest = SET_DEST (x);
11838 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11840 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11841 that accesses one word of a multi-word item, some
11842 piece of everything register in the expression is used by
11843 this insn, so remove any old death. */
11844 /* ??? So why do we test for equality of the sizes? */
11846 if (GET_CODE (dest) == ZERO_EXTRACT
11847 || GET_CODE (dest) == STRICT_LOW_PART
11848 || (GET_CODE (dest) == SUBREG
11849 && (((GET_MODE_SIZE (GET_MODE (dest))
11850 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11851 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11852 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11854 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11855 return;
11858 /* If this is some other SUBREG, we know it replaces the entire
11859 value, so use that as the destination. */
11860 if (GET_CODE (dest) == SUBREG)
11861 dest = SUBREG_REG (dest);
11863 /* If this is a MEM, adjust deaths of anything used in the address.
11864 For a REG (the only other possibility), the entire value is
11865 being replaced so the old value is not used in this insn. */
11867 if (GET_CODE (dest) == MEM)
11868 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11869 to_insn, pnotes);
11870 return;
11873 else if (GET_CODE (x) == CLOBBER)
11874 return;
11876 len = GET_RTX_LENGTH (code);
11877 fmt = GET_RTX_FORMAT (code);
11879 for (i = 0; i < len; i++)
11881 if (fmt[i] == 'E')
11883 register int j;
11884 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11885 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11886 to_insn, pnotes);
11888 else if (fmt[i] == 'e')
11889 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11893 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11894 pattern of an insn. X must be a REG. */
11896 static int
11897 reg_bitfield_target_p (x, body)
11898 rtx x;
11899 rtx body;
11901 int i;
11903 if (GET_CODE (body) == SET)
11905 rtx dest = SET_DEST (body);
11906 rtx target;
11907 unsigned int regno, tregno, endregno, endtregno;
11909 if (GET_CODE (dest) == ZERO_EXTRACT)
11910 target = XEXP (dest, 0);
11911 else if (GET_CODE (dest) == STRICT_LOW_PART)
11912 target = SUBREG_REG (XEXP (dest, 0));
11913 else
11914 return 0;
11916 if (GET_CODE (target) == SUBREG)
11917 target = SUBREG_REG (target);
11919 if (GET_CODE (target) != REG)
11920 return 0;
11922 tregno = REGNO (target), regno = REGNO (x);
11923 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11924 return target == x;
11926 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11927 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11929 return endregno > tregno && regno < endtregno;
11932 else if (GET_CODE (body) == PARALLEL)
11933 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11934 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11935 return 1;
11937 return 0;
11940 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11941 as appropriate. I3 and I2 are the insns resulting from the combination
11942 insns including FROM (I2 may be zero).
11944 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11945 not need REG_DEAD notes because they are being substituted for. This
11946 saves searching in the most common cases.
11948 Each note in the list is either ignored or placed on some insns, depending
11949 on the type of note. */
11951 static void
11952 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
11953 rtx notes;
11954 rtx from_insn;
11955 rtx i3, i2;
11956 rtx elim_i2, elim_i1;
11958 rtx note, next_note;
11959 rtx tem;
11961 for (note = notes; note; note = next_note)
11963 rtx place = 0, place2 = 0;
11965 /* If this NOTE references a pseudo register, ensure it references
11966 the latest copy of that register. */
11967 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
11968 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11969 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11971 next_note = XEXP (note, 1);
11972 switch (REG_NOTE_KIND (note))
11974 case REG_BR_PROB:
11975 case REG_BR_PRED:
11976 case REG_EXEC_COUNT:
11977 /* Doesn't matter much where we put this, as long as it's somewhere.
11978 It is preferable to keep these notes on branches, which is most
11979 likely to be i3. */
11980 place = i3;
11981 break;
11983 case REG_NON_LOCAL_GOTO:
11984 if (GET_CODE (i3) == JUMP_INSN)
11985 place = i3;
11986 else if (i2 && GET_CODE (i2) == JUMP_INSN)
11987 place = i2;
11988 else
11989 abort();
11990 break;
11992 case REG_EH_REGION:
11993 /* These notes must remain with the call or trapping instruction. */
11994 if (GET_CODE (i3) == CALL_INSN)
11995 place = i3;
11996 else if (i2 && GET_CODE (i2) == CALL_INSN)
11997 place = i2;
11998 else if (flag_non_call_exceptions)
12000 if (may_trap_p (i3))
12001 place = i3;
12002 else if (i2 && may_trap_p (i2))
12003 place = i2;
12004 /* ??? Otherwise assume we've combined things such that we
12005 can now prove that the instructions can't trap. Drop the
12006 note in this case. */
12008 else
12009 abort ();
12010 break;
12012 case REG_EH_RETHROW:
12013 case REG_NORETURN:
12014 /* These notes must remain with the call. It should not be
12015 possible for both I2 and I3 to be a call. */
12016 if (GET_CODE (i3) == CALL_INSN)
12017 place = i3;
12018 else if (i2 && GET_CODE (i2) == CALL_INSN)
12019 place = i2;
12020 else
12021 abort ();
12022 break;
12024 case REG_UNUSED:
12025 /* Any clobbers for i3 may still exist, and so we must process
12026 REG_UNUSED notes from that insn.
12028 Any clobbers from i2 or i1 can only exist if they were added by
12029 recog_for_combine. In that case, recog_for_combine created the
12030 necessary REG_UNUSED notes. Trying to keep any original
12031 REG_UNUSED notes from these insns can cause incorrect output
12032 if it is for the same register as the original i3 dest.
12033 In that case, we will notice that the register is set in i3,
12034 and then add a REG_UNUSED note for the destination of i3, which
12035 is wrong. However, it is possible to have REG_UNUSED notes from
12036 i2 or i1 for register which were both used and clobbered, so
12037 we keep notes from i2 or i1 if they will turn into REG_DEAD
12038 notes. */
12040 /* If this register is set or clobbered in I3, put the note there
12041 unless there is one already. */
12042 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12044 if (from_insn != i3)
12045 break;
12047 if (! (GET_CODE (XEXP (note, 0)) == REG
12048 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12049 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12050 place = i3;
12052 /* Otherwise, if this register is used by I3, then this register
12053 now dies here, so we must put a REG_DEAD note here unless there
12054 is one already. */
12055 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12056 && ! (GET_CODE (XEXP (note, 0)) == REG
12057 ? find_regno_note (i3, REG_DEAD,
12058 REGNO (XEXP (note, 0)))
12059 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12061 PUT_REG_NOTE_KIND (note, REG_DEAD);
12062 place = i3;
12064 break;
12066 case REG_EQUAL:
12067 case REG_EQUIV:
12068 case REG_NOALIAS:
12069 /* These notes say something about results of an insn. We can
12070 only support them if they used to be on I3 in which case they
12071 remain on I3. Otherwise they are ignored.
12073 If the note refers to an expression that is not a constant, we
12074 must also ignore the note since we cannot tell whether the
12075 equivalence is still true. It might be possible to do
12076 slightly better than this (we only have a problem if I2DEST
12077 or I1DEST is present in the expression), but it doesn't
12078 seem worth the trouble. */
12080 if (from_insn == i3
12081 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12082 place = i3;
12083 break;
12085 case REG_INC:
12086 case REG_NO_CONFLICT:
12087 /* These notes say something about how a register is used. They must
12088 be present on any use of the register in I2 or I3. */
12089 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12090 place = i3;
12092 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12094 if (place)
12095 place2 = i2;
12096 else
12097 place = i2;
12099 break;
12101 case REG_LABEL:
12102 /* This can show up in several ways -- either directly in the
12103 pattern, or hidden off in the constant pool with (or without?)
12104 a REG_EQUAL note. */
12105 /* ??? Ignore the without-reg_equal-note problem for now. */
12106 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12107 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12108 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12109 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12110 place = i3;
12112 if (i2
12113 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12114 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12115 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12116 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12118 if (place)
12119 place2 = i2;
12120 else
12121 place = i2;
12123 break;
12125 case REG_NONNEG:
12126 case REG_WAS_0:
12127 /* These notes say something about the value of a register prior
12128 to the execution of an insn. It is too much trouble to see
12129 if the note is still correct in all situations. It is better
12130 to simply delete it. */
12131 break;
12133 case REG_RETVAL:
12134 /* If the insn previously containing this note still exists,
12135 put it back where it was. Otherwise move it to the previous
12136 insn. Adjust the corresponding REG_LIBCALL note. */
12137 if (GET_CODE (from_insn) != NOTE)
12138 place = from_insn;
12139 else
12141 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12142 place = prev_real_insn (from_insn);
12143 if (tem && place)
12144 XEXP (tem, 0) = place;
12145 /* If we're deleting the last remaining instruction of a
12146 libcall sequence, don't add the notes. */
12147 else if (XEXP (note, 0) == from_insn)
12148 tem = place = 0;
12150 break;
12152 case REG_LIBCALL:
12153 /* This is handled similarly to REG_RETVAL. */
12154 if (GET_CODE (from_insn) != NOTE)
12155 place = from_insn;
12156 else
12158 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12159 place = next_real_insn (from_insn);
12160 if (tem && place)
12161 XEXP (tem, 0) = place;
12162 /* If we're deleting the last remaining instruction of a
12163 libcall sequence, don't add the notes. */
12164 else if (XEXP (note, 0) == from_insn)
12165 tem = place = 0;
12167 break;
12169 case REG_DEAD:
12170 /* If the register is used as an input in I3, it dies there.
12171 Similarly for I2, if it is non-zero and adjacent to I3.
12173 If the register is not used as an input in either I3 or I2
12174 and it is not one of the registers we were supposed to eliminate,
12175 there are two possibilities. We might have a non-adjacent I2
12176 or we might have somehow eliminated an additional register
12177 from a computation. For example, we might have had A & B where
12178 we discover that B will always be zero. In this case we will
12179 eliminate the reference to A.
12181 In both cases, we must search to see if we can find a previous
12182 use of A and put the death note there. */
12184 if (from_insn
12185 && GET_CODE (from_insn) == CALL_INSN
12186 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12187 place = from_insn;
12188 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12189 place = i3;
12190 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12191 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12192 place = i2;
12194 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12195 || rtx_equal_p (XEXP (note, 0), elim_i1))
12196 break;
12198 if (place == 0)
12200 basic_block bb = BASIC_BLOCK (this_basic_block);
12202 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12204 if (! INSN_P (tem))
12206 if (tem == bb->head)
12207 break;
12208 continue;
12211 /* If the register is being set at TEM, see if that is all
12212 TEM is doing. If so, delete TEM. Otherwise, make this
12213 into a REG_UNUSED note instead. */
12214 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12216 rtx set = single_set (tem);
12217 rtx inner_dest = 0;
12218 #ifdef HAVE_cc0
12219 rtx cc0_setter = NULL_RTX;
12220 #endif
12222 if (set != 0)
12223 for (inner_dest = SET_DEST (set);
12224 (GET_CODE (inner_dest) == STRICT_LOW_PART
12225 || GET_CODE (inner_dest) == SUBREG
12226 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12227 inner_dest = XEXP (inner_dest, 0))
12230 /* Verify that it was the set, and not a clobber that
12231 modified the register.
12233 CC0 targets must be careful to maintain setter/user
12234 pairs. If we cannot delete the setter due to side
12235 effects, mark the user with an UNUSED note instead
12236 of deleting it. */
12238 if (set != 0 && ! side_effects_p (SET_SRC (set))
12239 && rtx_equal_p (XEXP (note, 0), inner_dest)
12240 #ifdef HAVE_cc0
12241 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12242 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12243 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12244 #endif
12247 /* Move the notes and links of TEM elsewhere.
12248 This might delete other dead insns recursively.
12249 First set the pattern to something that won't use
12250 any register. */
12252 PATTERN (tem) = pc_rtx;
12254 distribute_notes (REG_NOTES (tem), tem, tem,
12255 NULL_RTX, NULL_RTX, NULL_RTX);
12256 distribute_links (LOG_LINKS (tem));
12258 PUT_CODE (tem, NOTE);
12259 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12260 NOTE_SOURCE_FILE (tem) = 0;
12262 #ifdef HAVE_cc0
12263 /* Delete the setter too. */
12264 if (cc0_setter)
12266 PATTERN (cc0_setter) = pc_rtx;
12268 distribute_notes (REG_NOTES (cc0_setter),
12269 cc0_setter, cc0_setter,
12270 NULL_RTX, NULL_RTX, NULL_RTX);
12271 distribute_links (LOG_LINKS (cc0_setter));
12273 PUT_CODE (cc0_setter, NOTE);
12274 NOTE_LINE_NUMBER (cc0_setter)
12275 = NOTE_INSN_DELETED;
12276 NOTE_SOURCE_FILE (cc0_setter) = 0;
12278 #endif
12280 /* If the register is both set and used here, put the
12281 REG_DEAD note here, but place a REG_UNUSED note
12282 here too unless there already is one. */
12283 else if (reg_referenced_p (XEXP (note, 0),
12284 PATTERN (tem)))
12286 place = tem;
12288 if (! find_regno_note (tem, REG_UNUSED,
12289 REGNO (XEXP (note, 0))))
12290 REG_NOTES (tem)
12291 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12292 REG_NOTES (tem));
12294 else
12296 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12298 /* If there isn't already a REG_UNUSED note, put one
12299 here. */
12300 if (! find_regno_note (tem, REG_UNUSED,
12301 REGNO (XEXP (note, 0))))
12302 place = tem;
12303 break;
12306 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12307 || (GET_CODE (tem) == CALL_INSN
12308 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12310 place = tem;
12312 /* If we are doing a 3->2 combination, and we have a
12313 register which formerly died in i3 and was not used
12314 by i2, which now no longer dies in i3 and is used in
12315 i2 but does not die in i2, and place is between i2
12316 and i3, then we may need to move a link from place to
12317 i2. */
12318 if (i2 && INSN_UID (place) <= max_uid_cuid
12319 && INSN_CUID (place) > INSN_CUID (i2)
12320 && from_insn
12321 && INSN_CUID (from_insn) > INSN_CUID (i2)
12322 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12324 rtx links = LOG_LINKS (place);
12325 LOG_LINKS (place) = 0;
12326 distribute_links (links);
12328 break;
12331 if (tem == bb->head)
12332 break;
12335 /* We haven't found an insn for the death note and it
12336 is still a REG_DEAD note, but we have hit the beginning
12337 of the block. If the existing life info says the reg
12338 was dead, there's nothing left to do. Otherwise, we'll
12339 need to do a global life update after combine. */
12340 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12341 && REGNO_REG_SET_P (bb->global_live_at_start,
12342 REGNO (XEXP (note, 0))))
12344 SET_BIT (refresh_blocks, this_basic_block);
12345 need_refresh = 1;
12349 /* If the register is set or already dead at PLACE, we needn't do
12350 anything with this note if it is still a REG_DEAD note.
12351 We can here if it is set at all, not if is it totally replace,
12352 which is what `dead_or_set_p' checks, so also check for it being
12353 set partially. */
12355 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12357 unsigned int regno = REGNO (XEXP (note, 0));
12359 /* Similarly, if the instruction on which we want to place
12360 the note is a noop, we'll need do a global live update
12361 after we remove them in delete_noop_moves. */
12362 if (noop_move_p (place))
12364 SET_BIT (refresh_blocks, this_basic_block);
12365 need_refresh = 1;
12368 if (dead_or_set_p (place, XEXP (note, 0))
12369 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12371 /* Unless the register previously died in PLACE, clear
12372 reg_last_death. [I no longer understand why this is
12373 being done.] */
12374 if (reg_last_death[regno] != place)
12375 reg_last_death[regno] = 0;
12376 place = 0;
12378 else
12379 reg_last_death[regno] = place;
12381 /* If this is a death note for a hard reg that is occupying
12382 multiple registers, ensure that we are still using all
12383 parts of the object. If we find a piece of the object
12384 that is unused, we must arrange for an appropriate REG_DEAD
12385 note to be added for it. However, we can't just emit a USE
12386 and tag the note to it, since the register might actually
12387 be dead; so we recourse, and the recursive call then finds
12388 the previous insn that used this register. */
12390 if (place && regno < FIRST_PSEUDO_REGISTER
12391 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12393 unsigned int endregno
12394 = regno + HARD_REGNO_NREGS (regno,
12395 GET_MODE (XEXP (note, 0)));
12396 int all_used = 1;
12397 unsigned int i;
12399 for (i = regno; i < endregno; i++)
12400 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12401 && ! find_regno_fusage (place, USE, i))
12402 || dead_or_set_regno_p (place, i))
12403 all_used = 0;
12405 if (! all_used)
12407 /* Put only REG_DEAD notes for pieces that are
12408 not already dead or set. */
12410 for (i = regno; i < endregno;
12411 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12413 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12414 basic_block bb = BASIC_BLOCK (this_basic_block);
12416 if (! dead_or_set_p (place, piece)
12417 && ! reg_bitfield_target_p (piece,
12418 PATTERN (place)))
12420 rtx new_note
12421 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12423 distribute_notes (new_note, place, place,
12424 NULL_RTX, NULL_RTX, NULL_RTX);
12426 else if (! refers_to_regno_p (i, i + 1,
12427 PATTERN (place), 0)
12428 && ! find_regno_fusage (place, USE, i))
12429 for (tem = PREV_INSN (place); ;
12430 tem = PREV_INSN (tem))
12432 if (! INSN_P (tem))
12434 if (tem == bb->head)
12436 SET_BIT (refresh_blocks,
12437 this_basic_block);
12438 need_refresh = 1;
12439 break;
12441 continue;
12443 if (dead_or_set_p (tem, piece)
12444 || reg_bitfield_target_p (piece,
12445 PATTERN (tem)))
12447 REG_NOTES (tem)
12448 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12449 REG_NOTES (tem));
12450 break;
12456 place = 0;
12460 break;
12462 default:
12463 /* Any other notes should not be present at this point in the
12464 compilation. */
12465 abort ();
12468 if (place)
12470 XEXP (note, 1) = REG_NOTES (place);
12471 REG_NOTES (place) = note;
12473 else if ((REG_NOTE_KIND (note) == REG_DEAD
12474 || REG_NOTE_KIND (note) == REG_UNUSED)
12475 && GET_CODE (XEXP (note, 0)) == REG)
12476 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12478 if (place2)
12480 if ((REG_NOTE_KIND (note) == REG_DEAD
12481 || REG_NOTE_KIND (note) == REG_UNUSED)
12482 && GET_CODE (XEXP (note, 0)) == REG)
12483 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12485 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12486 REG_NOTE_KIND (note),
12487 XEXP (note, 0),
12488 REG_NOTES (place2));
12493 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12494 I3, I2, and I1 to new locations. This is also called in one case to
12495 add a link pointing at I3 when I3's destination is changed. */
12497 static void
12498 distribute_links (links)
12499 rtx links;
12501 rtx link, next_link;
12503 for (link = links; link; link = next_link)
12505 rtx place = 0;
12506 rtx insn;
12507 rtx set, reg;
12509 next_link = XEXP (link, 1);
12511 /* If the insn that this link points to is a NOTE or isn't a single
12512 set, ignore it. In the latter case, it isn't clear what we
12513 can do other than ignore the link, since we can't tell which
12514 register it was for. Such links wouldn't be used by combine
12515 anyway.
12517 It is not possible for the destination of the target of the link to
12518 have been changed by combine. The only potential of this is if we
12519 replace I3, I2, and I1 by I3 and I2. But in that case the
12520 destination of I2 also remains unchanged. */
12522 if (GET_CODE (XEXP (link, 0)) == NOTE
12523 || (set = single_set (XEXP (link, 0))) == 0)
12524 continue;
12526 reg = SET_DEST (set);
12527 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12528 || GET_CODE (reg) == SIGN_EXTRACT
12529 || GET_CODE (reg) == STRICT_LOW_PART)
12530 reg = XEXP (reg, 0);
12532 /* A LOG_LINK is defined as being placed on the first insn that uses
12533 a register and points to the insn that sets the register. Start
12534 searching at the next insn after the target of the link and stop
12535 when we reach a set of the register or the end of the basic block.
12537 Note that this correctly handles the link that used to point from
12538 I3 to I2. Also note that not much searching is typically done here
12539 since most links don't point very far away. */
12541 for (insn = NEXT_INSN (XEXP (link, 0));
12542 (insn && (this_basic_block == n_basic_blocks - 1
12543 || BLOCK_HEAD (this_basic_block + 1) != insn));
12544 insn = NEXT_INSN (insn))
12545 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12547 if (reg_referenced_p (reg, PATTERN (insn)))
12548 place = insn;
12549 break;
12551 else if (GET_CODE (insn) == CALL_INSN
12552 && find_reg_fusage (insn, USE, reg))
12554 place = insn;
12555 break;
12558 /* If we found a place to put the link, place it there unless there
12559 is already a link to the same insn as LINK at that point. */
12561 if (place)
12563 rtx link2;
12565 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12566 if (XEXP (link2, 0) == XEXP (link, 0))
12567 break;
12569 if (link2 == 0)
12571 XEXP (link, 1) = LOG_LINKS (place);
12572 LOG_LINKS (place) = link;
12574 /* Set added_links_insn to the earliest insn we added a
12575 link to. */
12576 if (added_links_insn == 0
12577 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12578 added_links_insn = place;
12584 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12586 static int
12587 insn_cuid (insn)
12588 rtx insn;
12590 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12591 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12592 insn = NEXT_INSN (insn);
12594 if (INSN_UID (insn) > max_uid_cuid)
12595 abort ();
12597 return INSN_CUID (insn);
12600 void
12601 dump_combine_stats (file)
12602 FILE *file;
12604 fnotice
12605 (file,
12606 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12607 combine_attempts, combine_merges, combine_extras, combine_successes);
12610 void
12611 dump_combine_total_stats (file)
12612 FILE *file;
12614 fnotice
12615 (file,
12616 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12617 total_attempts, total_merges, total_extras, total_successes);