Add BMI2 support.
[official-gcc.git] / gcc / cfgloopanal.c
blob652fc4d8b622354171082982f8697e97f2d40204
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "expr.h"
31 #include "output.h"
32 #include "graphds.h"
33 #include "params.h"
35 struct target_cfgloop default_target_cfgloop;
36 #if SWITCHABLE_TARGET
37 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop;
38 #endif
40 /* Checks whether BB is executed exactly once in each LOOP iteration. */
42 bool
43 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
45 /* It must be executed at least once each iteration. */
46 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
47 return false;
49 /* And just once. */
50 if (bb->loop_father != loop)
51 return false;
53 /* But this was not enough. We might have some irreducible loop here. */
54 if (bb->flags & BB_IRREDUCIBLE_LOOP)
55 return false;
57 return true;
60 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
61 throw away all latch edges and mark blocks inside any remaining cycle.
62 Everything is a bit complicated due to fact we do not want to do this
63 for parts of cycles that only "pass" through some loop -- i.e. for
64 each cycle, we want to mark blocks that belong directly to innermost
65 loop containing the whole cycle.
67 LOOPS is the loop tree. */
69 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
70 #define BB_REPR(BB) ((BB)->index + 1)
72 bool
73 mark_irreducible_loops (void)
75 basic_block act;
76 struct graph_edge *ge;
77 edge e;
78 edge_iterator ei;
79 int src, dest;
80 unsigned depth;
81 struct graph *g;
82 int num = number_of_loops ();
83 struct loop *cloop;
84 bool irred_loop_found = false;
85 int i;
87 gcc_assert (current_loops != NULL);
89 /* Reset the flags. */
90 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
92 act->flags &= ~BB_IRREDUCIBLE_LOOP;
93 FOR_EACH_EDGE (e, ei, act->succs)
94 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
97 /* Create the edge lists. */
98 g = new_graph (last_basic_block + num);
100 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
101 FOR_EACH_EDGE (e, ei, act->succs)
103 /* Ignore edges to exit. */
104 if (e->dest == EXIT_BLOCK_PTR)
105 continue;
107 src = BB_REPR (act);
108 dest = BB_REPR (e->dest);
110 /* Ignore latch edges. */
111 if (e->dest->loop_father->header == e->dest
112 && e->dest->loop_father->latch == act)
113 continue;
115 /* Edges inside a single loop should be left where they are. Edges
116 to subloop headers should lead to representative of the subloop,
117 but from the same place.
119 Edges exiting loops should lead from representative
120 of the son of nearest common ancestor of the loops in that
121 act lays. */
123 if (e->dest->loop_father->header == e->dest)
124 dest = LOOP_REPR (e->dest->loop_father);
126 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
128 depth = 1 + loop_depth (find_common_loop (act->loop_father,
129 e->dest->loop_father));
130 if (depth == loop_depth (act->loop_father))
131 cloop = act->loop_father;
132 else
133 cloop = VEC_index (loop_p, act->loop_father->superloops, depth);
135 src = LOOP_REPR (cloop);
138 add_edge (g, src, dest)->data = e;
141 /* Find the strongly connected components. */
142 graphds_scc (g, NULL);
144 /* Mark the irreducible loops. */
145 for (i = 0; i < g->n_vertices; i++)
146 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
148 edge real = (edge) ge->data;
149 /* edge E in graph G is irreducible if it connects two vertices in the
150 same scc. */
152 /* All edges should lead from a component with higher number to the
153 one with lower one. */
154 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
156 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
157 continue;
159 real->flags |= EDGE_IRREDUCIBLE_LOOP;
160 irred_loop_found = true;
161 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
162 real->src->flags |= BB_IRREDUCIBLE_LOOP;
165 free_graph (g);
167 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
168 return irred_loop_found;
171 /* Counts number of insns inside LOOP. */
173 num_loop_insns (const struct loop *loop)
175 basic_block *bbs, bb;
176 unsigned i, ninsns = 0;
177 rtx insn;
179 bbs = get_loop_body (loop);
180 for (i = 0; i < loop->num_nodes; i++)
182 bb = bbs[i];
183 FOR_BB_INSNS (bb, insn)
184 if (NONDEBUG_INSN_P (insn))
185 ninsns++;
187 free (bbs);
189 if (!ninsns)
190 ninsns = 1; /* To avoid division by zero. */
192 return ninsns;
195 /* Counts number of insns executed on average per iteration LOOP. */
197 average_num_loop_insns (const struct loop *loop)
199 basic_block *bbs, bb;
200 unsigned i, binsns, ninsns, ratio;
201 rtx insn;
203 ninsns = 0;
204 bbs = get_loop_body (loop);
205 for (i = 0; i < loop->num_nodes; i++)
207 bb = bbs[i];
209 binsns = 0;
210 FOR_BB_INSNS (bb, insn)
211 if (NONDEBUG_INSN_P (insn))
212 binsns++;
214 ratio = loop->header->frequency == 0
215 ? BB_FREQ_MAX
216 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
217 ninsns += binsns * ratio;
219 free (bbs);
221 ninsns /= BB_FREQ_MAX;
222 if (!ninsns)
223 ninsns = 1; /* To avoid division by zero. */
225 return ninsns;
228 /* Returns expected number of iterations of LOOP, according to
229 measured or guessed profile. No bounding is done on the
230 value. */
232 gcov_type
233 expected_loop_iterations_unbounded (const struct loop *loop)
235 edge e;
236 edge_iterator ei;
238 if (loop->latch->count || loop->header->count)
240 gcov_type count_in, count_latch, expected;
242 count_in = 0;
243 count_latch = 0;
245 FOR_EACH_EDGE (e, ei, loop->header->preds)
246 if (e->src == loop->latch)
247 count_latch = e->count;
248 else
249 count_in += e->count;
251 if (count_in == 0)
252 expected = count_latch * 2;
253 else
254 expected = (count_latch + count_in - 1) / count_in;
256 return expected;
258 else
260 int freq_in, freq_latch;
262 freq_in = 0;
263 freq_latch = 0;
265 FOR_EACH_EDGE (e, ei, loop->header->preds)
266 if (e->src == loop->latch)
267 freq_latch = EDGE_FREQUENCY (e);
268 else
269 freq_in += EDGE_FREQUENCY (e);
271 if (freq_in == 0)
272 return freq_latch * 2;
274 return (freq_latch + freq_in - 1) / freq_in;
278 /* Returns expected number of LOOP iterations. The returned value is bounded
279 by REG_BR_PROB_BASE. */
281 unsigned
282 expected_loop_iterations (const struct loop *loop)
284 gcov_type expected = expected_loop_iterations_unbounded (loop);
285 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
288 /* Returns the maximum level of nesting of subloops of LOOP. */
290 unsigned
291 get_loop_level (const struct loop *loop)
293 const struct loop *ploop;
294 unsigned mx = 0, l;
296 for (ploop = loop->inner; ploop; ploop = ploop->next)
298 l = get_loop_level (ploop);
299 if (l >= mx)
300 mx = l + 1;
302 return mx;
305 /* Returns estimate on cost of computing SEQ. */
307 static unsigned
308 seq_cost (const_rtx seq, bool speed)
310 unsigned cost = 0;
311 rtx set;
313 for (; seq; seq = NEXT_INSN (seq))
315 set = single_set (seq);
316 if (set)
317 cost += set_rtx_cost (set, speed);
318 else
319 cost++;
322 return cost;
325 /* Initialize the constants for computing set costs. */
327 void
328 init_set_costs (void)
330 int speed;
331 rtx seq;
332 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
333 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
334 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
335 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
336 unsigned i;
338 target_avail_regs = 0;
339 target_clobbered_regs = 0;
340 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
341 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
342 && !fixed_regs[i])
344 target_avail_regs++;
345 if (call_used_regs[i])
346 target_clobbered_regs++;
349 target_res_regs = 3;
351 for (speed = 0; speed < 2; speed++)
353 crtl->maybe_hot_insn_p = speed;
354 /* Set up the costs for using extra registers:
356 1) If not many free registers remain, we should prefer having an
357 additional move to decreasing the number of available registers.
358 (TARGET_REG_COST).
359 2) If no registers are available, we need to spill, which may require
360 storing the old value to memory and loading it back
361 (TARGET_SPILL_COST). */
363 start_sequence ();
364 emit_move_insn (reg1, reg2);
365 seq = get_insns ();
366 end_sequence ();
367 target_reg_cost [speed] = seq_cost (seq, speed);
369 start_sequence ();
370 emit_move_insn (mem, reg1);
371 emit_move_insn (reg2, mem);
372 seq = get_insns ();
373 end_sequence ();
374 target_spill_cost [speed] = seq_cost (seq, speed);
376 default_rtl_profile ();
379 /* Estimates cost of increased register pressure caused by making N_NEW new
380 registers live around the loop. N_OLD is the number of registers live
381 around the loop. If CALL_P is true, also take into account that
382 call-used registers may be clobbered in the loop body, reducing the
383 number of available registers before we spill. */
385 unsigned
386 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed,
387 bool call_p)
389 unsigned cost;
390 unsigned regs_needed = n_new + n_old;
391 unsigned available_regs = target_avail_regs;
393 /* If there is a call in the loop body, the call-clobbered registers
394 are not available for loop invariants. */
395 if (call_p)
396 available_regs = available_regs - target_clobbered_regs;
398 /* If we have enough registers, we should use them and not restrict
399 the transformations unnecessarily. */
400 if (regs_needed + target_res_regs <= available_regs)
401 return 0;
403 if (regs_needed <= available_regs)
404 /* If we are close to running out of registers, try to preserve
405 them. */
406 cost = target_reg_cost [speed] * n_new;
407 else
408 /* If we run out of registers, it is very expensive to add another
409 one. */
410 cost = target_spill_cost [speed] * n_new;
412 if (optimize && (flag_ira_region == IRA_REGION_ALL
413 || flag_ira_region == IRA_REGION_MIXED)
414 && number_of_loops () <= (unsigned) IRA_MAX_LOOPS_NUM)
415 /* IRA regional allocation deals with high register pressure
416 better. So decrease the cost (to do more accurate the cost
417 calculation for IRA, we need to know how many registers lives
418 through the loop transparently). */
419 cost /= 2;
421 return cost;
424 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
426 void
427 mark_loop_exit_edges (void)
429 basic_block bb;
430 edge e;
432 if (number_of_loops () <= 1)
433 return;
435 FOR_EACH_BB (bb)
437 edge_iterator ei;
439 FOR_EACH_EDGE (e, ei, bb->succs)
441 if (loop_outer (bb->loop_father)
442 && loop_exit_edge_p (bb->loop_father, e))
443 e->flags |= EDGE_LOOP_EXIT;
444 else
445 e->flags &= ~EDGE_LOOP_EXIT;