1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
26 #include "rtl-error.h"
28 #include "insn-config.h"
29 #include "insn-attr.h"
30 #include "hard-reg-set.h"
33 #include "addresses.h"
37 #include "basic-block.h"
40 #include "tree-pass.h"
42 #include "insn-codes.h"
44 #ifndef STACK_PUSH_CODE
45 #ifdef STACK_GROWS_DOWNWARD
46 #define STACK_PUSH_CODE PRE_DEC
48 #define STACK_PUSH_CODE PRE_INC
52 #ifndef STACK_POP_CODE
53 #ifdef STACK_GROWS_DOWNWARD
54 #define STACK_POP_CODE POST_INC
56 #define STACK_POP_CODE POST_DEC
60 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
, bool);
61 static void validate_replace_src_1 (rtx
*, void *);
62 static rtx
split_insn (rtx_insn
*);
64 struct target_recog default_target_recog
;
66 struct target_recog
*this_target_recog
= &default_target_recog
;
69 /* Nonzero means allow operands to be volatile.
70 This should be 0 if you are generating rtl, such as if you are calling
71 the functions in optabs.c and expmed.c (most of the time).
72 This should be 1 if all valid insns need to be recognized,
73 such as in reginfo.c and final.c and reload.c.
75 init_recog and init_recog_no_volatile are responsible for setting this. */
79 struct recog_data_d recog_data
;
81 /* Contains a vector of operand_alternative structures, such that
82 operand OP of alternative A is at index A * n_operands + OP.
83 Set up by preprocess_constraints. */
84 const operand_alternative
*recog_op_alt
;
86 /* Used to provide recog_op_alt for asms. */
87 static operand_alternative asm_op_alt
[MAX_RECOG_OPERANDS
88 * MAX_RECOG_ALTERNATIVES
];
90 /* On return from `constrain_operands', indicate which alternative
93 int which_alternative
;
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed
;
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
109 init_recog_no_volatile (void)
121 /* Return true if labels in asm operands BODY are LABEL_REFs. */
124 asm_labels_ok (rtx body
)
129 asmop
= extract_asm_operands (body
);
130 if (asmop
== NULL_RTX
)
133 for (i
= 0; i
< ASM_OPERANDS_LABEL_LENGTH (asmop
); i
++)
134 if (GET_CODE (ASM_OPERANDS_LABEL (asmop
, i
)) != LABEL_REF
)
140 /* Check that X is an insn-body for an `asm' with operands
141 and that the operands mentioned in it are legitimate. */
144 check_asm_operands (rtx x
)
148 const char **constraints
;
151 if (!asm_labels_ok (x
))
154 /* Post-reload, be more strict with things. */
155 if (reload_completed
)
157 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
158 extract_insn (make_insn_raw (x
));
159 constrain_operands (1);
160 return which_alternative
>= 0;
163 noperands
= asm_noperands (x
);
169 operands
= XALLOCAVEC (rtx
, noperands
);
170 constraints
= XALLOCAVEC (const char *, noperands
);
172 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
174 for (i
= 0; i
< noperands
; i
++)
176 const char *c
= constraints
[i
];
179 if (! asm_operand_ok (operands
[i
], c
, constraints
))
186 /* Static data for the next two routines. */
188 typedef struct change_t
197 static change_t
*changes
;
198 static int changes_allocated
;
200 static int num_changes
= 0;
202 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
203 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
204 the change is simply made.
206 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
207 will be called with the address and mode as parameters. If OBJECT is
208 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
211 IN_GROUP is nonzero if this is part of a group of changes that must be
212 performed as a group. In that case, the changes will be stored. The
213 function `apply_change_group' will validate and apply the changes.
215 If IN_GROUP is zero, this is a single change. Try to recognize the insn
216 or validate the memory reference with the change applied. If the result
217 is not valid for the machine, suppress the change and return zero.
218 Otherwise, perform the change and return 1. */
221 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
225 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
228 gcc_assert (in_group
!= 0 || num_changes
== 0);
232 /* Save the information describing this change. */
233 if (num_changes
>= changes_allocated
)
235 if (changes_allocated
== 0)
236 /* This value allows for repeated substitutions inside complex
237 indexed addresses, or changes in up to 5 insns. */
238 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
240 changes_allocated
*= 2;
242 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
245 changes
[num_changes
].object
= object
;
246 changes
[num_changes
].loc
= loc
;
247 changes
[num_changes
].old
= old
;
248 changes
[num_changes
].unshare
= unshare
;
250 if (object
&& !MEM_P (object
))
252 /* Set INSN_CODE to force rerecognition of insn. Save old code in
254 changes
[num_changes
].old_code
= INSN_CODE (object
);
255 INSN_CODE (object
) = -1;
260 /* If we are making a group of changes, return 1. Otherwise, validate the
261 change group we made. */
266 return apply_change_group ();
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
273 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
275 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
278 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
282 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
284 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
288 /* Keep X canonicalized if some changes have made it non-canonical; only
289 modifies the operands of X, not (for example) its code. Simplifications
290 are not the job of this routine.
292 Return true if anything was changed. */
294 canonicalize_change_group (rtx insn
, rtx x
)
296 if (COMMUTATIVE_P (x
)
297 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
299 /* Oops, the caller has made X no longer canonical.
300 Let's redo the changes in the correct order. */
301 rtx tem
= XEXP (x
, 0);
302 validate_unshare_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
303 validate_unshare_change (insn
, &XEXP (x
, 1), tem
, 1);
311 /* This subroutine of apply_change_group verifies whether the changes to INSN
312 were valid; i.e. whether INSN can still be recognized.
314 If IN_GROUP is true clobbers which have to be added in order to
315 match the instructions will be added to the current change group.
316 Otherwise the changes will take effect immediately. */
319 insn_invalid_p (rtx_insn
*insn
, bool in_group
)
321 rtx pat
= PATTERN (insn
);
322 int num_clobbers
= 0;
323 /* If we are before reload and the pattern is a SET, see if we can add
325 int icode
= recog (pat
, insn
,
326 (GET_CODE (pat
) == SET
327 && ! reload_completed
328 && ! reload_in_progress
)
329 ? &num_clobbers
: 0);
330 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
333 /* If this is an asm and the operand aren't legal, then fail. Likewise if
334 this is not an asm and the insn wasn't recognized. */
335 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
336 || (!is_asm
&& icode
< 0))
339 /* If we have to add CLOBBERs, fail if we have to add ones that reference
340 hard registers since our callers can't know if they are live or not.
341 Otherwise, add them. */
342 if (num_clobbers
> 0)
346 if (added_clobbers_hard_reg_p (icode
))
349 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
350 XVECEXP (newpat
, 0, 0) = pat
;
351 add_clobbers (newpat
, icode
);
353 validate_change (insn
, &PATTERN (insn
), newpat
, 1);
355 PATTERN (insn
) = pat
= newpat
;
358 /* After reload, verify that all constraints are satisfied. */
359 if (reload_completed
)
363 if (! constrain_operands (1))
367 INSN_CODE (insn
) = icode
;
371 /* Return number of changes made and not validated yet. */
373 num_changes_pending (void)
378 /* Tentatively apply the changes numbered NUM and up.
379 Return 1 if all changes are valid, zero otherwise. */
382 verify_changes (int num
)
385 rtx last_validated
= NULL_RTX
;
387 /* The changes have been applied and all INSN_CODEs have been reset to force
390 The changes are valid if we aren't given an object, or if we are
391 given a MEM and it still is a valid address, or if this is in insn
392 and it is recognized. In the latter case, if reload has completed,
393 we also require that the operands meet the constraints for
396 for (i
= num
; i
< num_changes
; i
++)
398 rtx object
= changes
[i
].object
;
400 /* If there is no object to test or if it is the same as the one we
401 already tested, ignore it. */
402 if (object
== 0 || object
== last_validated
)
407 if (! memory_address_addr_space_p (GET_MODE (object
),
409 MEM_ADDR_SPACE (object
)))
412 else if (/* changes[i].old might be zero, e.g. when putting a
413 REG_FRAME_RELATED_EXPR into a previously empty list. */
415 && REG_P (changes
[i
].old
)
416 && asm_noperands (PATTERN (object
)) > 0
417 && REG_EXPR (changes
[i
].old
) != NULL_TREE
418 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes
[i
].old
))
419 && DECL_REGISTER (REG_EXPR (changes
[i
].old
)))
421 /* Don't allow changes of hard register operands to inline
422 assemblies if they have been defined as register asm ("x"). */
425 else if (DEBUG_INSN_P (object
))
427 else if (insn_invalid_p (as_a
<rtx_insn
*> (object
), true))
429 rtx pat
= PATTERN (object
);
431 /* Perhaps we couldn't recognize the insn because there were
432 extra CLOBBERs at the end. If so, try to re-recognize
433 without the last CLOBBER (later iterations will cause each of
434 them to be eliminated, in turn). But don't do this if we
435 have an ASM_OPERAND. */
436 if (GET_CODE (pat
) == PARALLEL
437 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
438 && asm_noperands (PATTERN (object
)) < 0)
442 if (XVECLEN (pat
, 0) == 2)
443 newpat
= XVECEXP (pat
, 0, 0);
449 = gen_rtx_PARALLEL (VOIDmode
,
450 rtvec_alloc (XVECLEN (pat
, 0) - 1));
451 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
452 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
455 /* Add a new change to this group to replace the pattern
456 with this new pattern. Then consider this change
457 as having succeeded. The change we added will
458 cause the entire call to fail if things remain invalid.
460 Note that this can lose if a later change than the one
461 we are processing specified &XVECEXP (PATTERN (object), 0, X)
462 but this shouldn't occur. */
464 validate_change (object
, &PATTERN (object
), newpat
, 1);
467 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
468 || GET_CODE (pat
) == VAR_LOCATION
)
469 /* If this insn is a CLOBBER or USE, it is always valid, but is
475 last_validated
= object
;
478 return (i
== num_changes
);
481 /* A group of changes has previously been issued with validate_change
482 and verified with verify_changes. Call df_insn_rescan for each of
483 the insn changed and clear num_changes. */
486 confirm_change_group (void)
489 rtx last_object
= NULL
;
491 for (i
= 0; i
< num_changes
; i
++)
493 rtx object
= changes
[i
].object
;
495 if (changes
[i
].unshare
)
496 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
498 /* Avoid unnecessary rescanning when multiple changes to same instruction
502 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
503 df_insn_rescan (as_a
<rtx_insn
*> (last_object
));
504 last_object
= object
;
508 if (last_object
&& INSN_P (last_object
))
509 df_insn_rescan (as_a
<rtx_insn
*> (last_object
));
513 /* Apply a group of changes previously issued with `validate_change'.
514 If all changes are valid, call confirm_change_group and return 1,
515 otherwise, call cancel_changes and return 0. */
518 apply_change_group (void)
520 if (verify_changes (0))
522 confirm_change_group ();
533 /* Return the number of changes so far in the current group. */
536 num_validated_changes (void)
541 /* Retract the changes numbered NUM and up. */
544 cancel_changes (int num
)
548 /* Back out all the changes. Do this in the opposite order in which
550 for (i
= num_changes
- 1; i
>= num
; i
--)
552 *changes
[i
].loc
= changes
[i
].old
;
553 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
554 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
559 /* Reduce conditional compilation elsewhere. */
562 #define CODE_FOR_extv CODE_FOR_nothing
566 #define CODE_FOR_extzv CODE_FOR_nothing
569 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
573 simplify_while_replacing (rtx
*loc
, rtx to
, rtx object
,
574 enum machine_mode op0_mode
)
577 enum rtx_code code
= GET_CODE (x
);
578 rtx new_rtx
= NULL_RTX
;
580 if (SWAPPABLE_OPERANDS_P (x
)
581 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
583 validate_unshare_change (object
, loc
,
584 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
585 : swap_condition (code
),
586 GET_MODE (x
), XEXP (x
, 1),
592 /* Canonicalize arithmetics with all constant operands. */
593 switch (GET_RTX_CLASS (code
))
596 if (CONSTANT_P (XEXP (x
, 0)))
597 new_rtx
= simplify_unary_operation (code
, GET_MODE (x
), XEXP (x
, 0),
602 if (CONSTANT_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
603 new_rtx
= simplify_binary_operation (code
, GET_MODE (x
), XEXP (x
, 0),
607 case RTX_COMM_COMPARE
:
608 if (CONSTANT_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
609 new_rtx
= simplify_relational_operation (code
, GET_MODE (x
), op0_mode
,
610 XEXP (x
, 0), XEXP (x
, 1));
617 validate_change (object
, loc
, new_rtx
, 1);
624 /* If we have a PLUS whose second operand is now a CONST_INT, use
625 simplify_gen_binary to try to simplify it.
626 ??? We may want later to remove this, once simplification is
627 separated from this function. */
628 if (CONST_INT_P (XEXP (x
, 1)) && XEXP (x
, 1) == to
)
629 validate_change (object
, loc
,
631 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
634 if (CONST_SCALAR_INT_P (XEXP (x
, 1)))
635 validate_change (object
, loc
,
637 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
638 simplify_gen_unary (NEG
,
639 GET_MODE (x
), XEXP (x
, 1),
644 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
646 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
648 /* If any of the above failed, substitute in something that
649 we know won't be recognized. */
651 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
652 validate_change (object
, loc
, new_rtx
, 1);
656 /* All subregs possible to simplify should be simplified. */
657 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
660 /* Subregs of VOIDmode operands are incorrect. */
661 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
662 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
664 validate_change (object
, loc
, new_rtx
, 1);
668 /* If we are replacing a register with memory, try to change the memory
669 to be the mode required for memory in extract operations (this isn't
670 likely to be an insertion operation; if it was, nothing bad will
671 happen, we might just fail in some cases). */
673 if (MEM_P (XEXP (x
, 0))
674 && CONST_INT_P (XEXP (x
, 1))
675 && CONST_INT_P (XEXP (x
, 2))
676 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0),
677 MEM_ADDR_SPACE (XEXP (x
, 0)))
678 && !MEM_VOLATILE_P (XEXP (x
, 0)))
680 enum machine_mode wanted_mode
= VOIDmode
;
681 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
682 int pos
= INTVAL (XEXP (x
, 2));
684 if (GET_CODE (x
) == ZERO_EXTRACT
&& HAVE_extzv
)
686 wanted_mode
= insn_data
[CODE_FOR_extzv
].operand
[1].mode
;
687 if (wanted_mode
== VOIDmode
)
688 wanted_mode
= word_mode
;
690 else if (GET_CODE (x
) == SIGN_EXTRACT
&& HAVE_extv
)
692 wanted_mode
= insn_data
[CODE_FOR_extv
].operand
[1].mode
;
693 if (wanted_mode
== VOIDmode
)
694 wanted_mode
= word_mode
;
697 /* If we have a narrower mode, we can do something. */
698 if (wanted_mode
!= VOIDmode
699 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
701 int offset
= pos
/ BITS_PER_UNIT
;
704 /* If the bytes and bits are counted differently, we
705 must adjust the offset. */
706 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
708 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
711 gcc_assert (GET_MODE_PRECISION (wanted_mode
)
712 == GET_MODE_BITSIZE (wanted_mode
));
713 pos
%= GET_MODE_BITSIZE (wanted_mode
);
715 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
717 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
718 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
729 /* Replace every occurrence of FROM in X with TO. Mark each change with
730 validate_change passing OBJECT. */
733 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
,
740 enum machine_mode op0_mode
= VOIDmode
;
741 int prev_changes
= num_changes
;
747 fmt
= GET_RTX_FORMAT (code
);
749 op0_mode
= GET_MODE (XEXP (x
, 0));
751 /* X matches FROM if it is the same rtx or they are both referring to the
752 same register in the same mode. Avoid calling rtx_equal_p unless the
753 operands look similar. */
756 || (REG_P (x
) && REG_P (from
)
757 && GET_MODE (x
) == GET_MODE (from
)
758 && REGNO (x
) == REGNO (from
))
759 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
760 && rtx_equal_p (x
, from
)))
762 validate_unshare_change (object
, loc
, to
, 1);
766 /* Call ourself recursively to perform the replacements.
767 We must not replace inside already replaced expression, otherwise we
768 get infinite recursion for replacements like (reg X)->(subreg (reg X))
769 so we must special case shared ASM_OPERANDS. */
771 if (GET_CODE (x
) == PARALLEL
)
773 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
775 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
776 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
778 /* Verify that operands are really shared. */
779 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
780 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
782 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
783 from
, to
, object
, simplify
);
786 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
791 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
794 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
795 else if (fmt
[i
] == 'E')
796 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
797 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
801 /* If we didn't substitute, there is nothing more to do. */
802 if (num_changes
== prev_changes
)
805 /* ??? The regmove is no more, so is this aberration still necessary? */
806 /* Allow substituted expression to have different mode. This is used by
807 regmove to change mode of pseudo register. */
808 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
809 op0_mode
= GET_MODE (XEXP (x
, 0));
811 /* Do changes needed to keep rtx consistent. Don't do any other
812 simplifications, as it is not our job. */
814 simplify_while_replacing (loc
, to
, object
, op0_mode
);
817 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
818 with TO. After all changes have been made, validate by seeing
819 if INSN is still valid. */
822 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx insn
, rtx
*loc
)
824 validate_replace_rtx_1 (loc
, from
, to
, insn
, true);
825 return apply_change_group ();
828 /* Try replacing every occurrence of FROM in INSN with TO. After all
829 changes have been made, validate by seeing if INSN is still valid. */
832 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
834 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
835 return apply_change_group ();
838 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
839 is a part of INSN. After all changes have been made, validate by seeing if
841 validate_replace_rtx (from, to, insn) is equivalent to
842 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
845 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx insn
)
847 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
848 return apply_change_group ();
851 /* Same as above, but do not simplify rtx afterwards. */
853 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
856 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
857 return apply_change_group ();
861 /* Try replacing every occurrence of FROM in INSN with TO. This also
862 will replace in REG_EQUAL and REG_EQUIV notes. */
865 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
868 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
869 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
870 if (REG_NOTE_KIND (note
) == REG_EQUAL
871 || REG_NOTE_KIND (note
) == REG_EQUIV
)
872 validate_replace_rtx_1 (&XEXP (note
, 0), from
, to
, insn
, true);
875 /* Function called by note_uses to replace used subexpressions. */
876 struct validate_replace_src_data
878 rtx from
; /* Old RTX */
879 rtx to
; /* New RTX */
880 rtx insn
; /* Insn in which substitution is occurring. */
884 validate_replace_src_1 (rtx
*x
, void *data
)
886 struct validate_replace_src_data
*d
887 = (struct validate_replace_src_data
*) data
;
889 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
892 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
896 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
898 struct validate_replace_src_data d
;
903 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
906 /* Try simplify INSN.
907 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
908 pattern and return true if something was simplified. */
911 validate_simplify_insn (rtx insn
)
917 pat
= PATTERN (insn
);
919 if (GET_CODE (pat
) == SET
)
921 newpat
= simplify_rtx (SET_SRC (pat
));
922 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
923 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
924 newpat
= simplify_rtx (SET_DEST (pat
));
925 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
926 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
928 else if (GET_CODE (pat
) == PARALLEL
)
929 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
931 rtx s
= XVECEXP (pat
, 0, i
);
933 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
935 newpat
= simplify_rtx (SET_SRC (s
));
936 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
937 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
938 newpat
= simplify_rtx (SET_DEST (s
));
939 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
940 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
943 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
947 /* Return 1 if the insn using CC0 set by INSN does not contain
948 any ordered tests applied to the condition codes.
949 EQ and NE tests do not count. */
952 next_insn_tests_no_inequality (rtx insn
)
954 rtx next
= next_cc0_user (insn
);
956 /* If there is no next insn, we have to take the conservative choice. */
960 return (INSN_P (next
)
961 && ! inequality_comparisons_p (PATTERN (next
)));
965 /* Return 1 if OP is a valid general operand for machine mode MODE.
966 This is either a register reference, a memory reference,
967 or a constant. In the case of a memory reference, the address
968 is checked for general validity for the target machine.
970 Register and memory references must have mode MODE in order to be valid,
971 but some constants have no machine mode and are valid for any mode.
973 If MODE is VOIDmode, OP is checked for validity for whatever mode
976 The main use of this function is as a predicate in match_operand
977 expressions in the machine description. */
980 general_operand (rtx op
, enum machine_mode mode
)
982 enum rtx_code code
= GET_CODE (op
);
984 if (mode
== VOIDmode
)
985 mode
= GET_MODE (op
);
987 /* Don't accept CONST_INT or anything similar
988 if the caller wants something floating. */
989 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
990 && GET_MODE_CLASS (mode
) != MODE_INT
991 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
996 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1000 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
1001 || mode
== VOIDmode
)
1002 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1003 && targetm
.legitimate_constant_p (mode
== VOIDmode
1007 /* Except for certain constants with VOIDmode, already checked for,
1008 OP's mode must match MODE if MODE specifies a mode. */
1010 if (GET_MODE (op
) != mode
)
1015 rtx sub
= SUBREG_REG (op
);
1017 #ifdef INSN_SCHEDULING
1018 /* On machines that have insn scheduling, we want all memory
1019 reference to be explicit, so outlaw paradoxical SUBREGs.
1020 However, we must allow them after reload so that they can
1021 get cleaned up by cleanup_subreg_operands. */
1022 if (!reload_completed
&& MEM_P (sub
)
1023 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
1026 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1027 may result in incorrect reference. We should simplify all valid
1028 subregs of MEM anyway. But allow this after reload because we
1029 might be called from cleanup_subreg_operands.
1031 ??? This is a kludge. */
1032 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
1036 #ifdef CANNOT_CHANGE_MODE_CLASS
1038 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1039 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1040 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1041 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
1042 /* LRA can generate some invalid SUBREGS just for matched
1043 operand reload presentation. LRA needs to treat them as
1045 && ! LRA_SUBREG_P (op
))
1049 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1050 create such rtl, and we must reject it. */
1051 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1052 /* LRA can use subreg to store a floating point value in an
1053 integer mode. Although the floating point and the
1054 integer modes need the same number of hard registers, the
1055 size of floating point mode can be less than the integer
1057 && ! lra_in_progress
1058 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1062 code
= GET_CODE (op
);
1066 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1067 || in_hard_reg_set_p (operand_reg_set
, GET_MODE (op
), REGNO (op
)));
1071 rtx y
= XEXP (op
, 0);
1073 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
1076 /* Use the mem's mode, since it will be reloaded thus. LRA can
1077 generate move insn with invalid addresses which is made valid
1078 and efficiently calculated by LRA through further numerous
1081 || memory_address_addr_space_p (GET_MODE (op
), y
, MEM_ADDR_SPACE (op
)))
1088 /* Return 1 if OP is a valid memory address for a memory reference
1091 The main use of this function is as a predicate in match_operand
1092 expressions in the machine description. */
1095 address_operand (rtx op
, enum machine_mode mode
)
1097 return memory_address_p (mode
, op
);
1100 /* Return 1 if OP is a register reference of mode MODE.
1101 If MODE is VOIDmode, accept a register in any mode.
1103 The main use of this function is as a predicate in match_operand
1104 expressions in the machine description. */
1107 register_operand (rtx op
, enum machine_mode mode
)
1109 if (GET_CODE (op
) == SUBREG
)
1111 rtx sub
= SUBREG_REG (op
);
1113 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1114 because it is guaranteed to be reloaded into one.
1115 Just make sure the MEM is valid in itself.
1116 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1117 but currently it does result from (SUBREG (REG)...) where the
1118 reg went on the stack.) */
1119 if (!REG_P (sub
) && (reload_completed
|| !MEM_P (sub
)))
1122 else if (!REG_P (op
))
1124 return general_operand (op
, mode
);
1127 /* Return 1 for a register in Pmode; ignore the tested mode. */
1130 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1132 return register_operand (op
, Pmode
);
1135 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1136 or a hard register. */
1139 scratch_operand (rtx op
, enum machine_mode mode
)
1141 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1144 return (GET_CODE (op
) == SCRATCH
1147 || (REGNO (op
) < FIRST_PSEUDO_REGISTER
1148 && REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
))));
1151 /* Return 1 if OP is a valid immediate operand for mode MODE.
1153 The main use of this function is as a predicate in match_operand
1154 expressions in the machine description. */
1157 immediate_operand (rtx op
, enum machine_mode mode
)
1159 /* Don't accept CONST_INT or anything similar
1160 if the caller wants something floating. */
1161 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1162 && GET_MODE_CLASS (mode
) != MODE_INT
1163 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1166 if (CONST_INT_P (op
)
1168 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1171 return (CONSTANT_P (op
)
1172 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1173 || GET_MODE (op
) == VOIDmode
)
1174 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1175 && targetm
.legitimate_constant_p (mode
== VOIDmode
1180 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1183 const_int_operand (rtx op
, enum machine_mode mode
)
1185 if (!CONST_INT_P (op
))
1188 if (mode
!= VOIDmode
1189 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1195 #if TARGET_SUPPORTS_WIDE_INT
1196 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1199 const_scalar_int_operand (rtx op
, enum machine_mode mode
)
1201 if (!CONST_SCALAR_INT_P (op
))
1204 if (CONST_INT_P (op
))
1205 return const_int_operand (op
, mode
);
1207 if (mode
!= VOIDmode
)
1209 int prec
= GET_MODE_PRECISION (mode
);
1210 int bitsize
= GET_MODE_BITSIZE (mode
);
1212 if (CONST_WIDE_INT_NUNITS (op
) * HOST_BITS_PER_WIDE_INT
> bitsize
)
1215 if (prec
== bitsize
)
1219 /* Multiword partial int. */
1221 = CONST_WIDE_INT_ELT (op
, CONST_WIDE_INT_NUNITS (op
) - 1);
1222 return (sext_hwi (x
, prec
& (HOST_BITS_PER_WIDE_INT
- 1)) == x
);
1228 /* Returns 1 if OP is an operand that is a constant integer or constant
1229 floating-point number of MODE. */
1232 const_double_operand (rtx op
, enum machine_mode mode
)
1234 return (GET_CODE (op
) == CONST_DOUBLE
)
1235 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
);
1238 /* Returns 1 if OP is an operand that is a constant integer or constant
1239 floating-point number of MODE. */
1242 const_double_operand (rtx op
, enum machine_mode mode
)
1244 /* Don't accept CONST_INT or anything similar
1245 if the caller wants something floating. */
1246 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1247 && GET_MODE_CLASS (mode
) != MODE_INT
1248 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1251 return ((CONST_DOUBLE_P (op
) || CONST_INT_P (op
))
1252 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1253 || GET_MODE (op
) == VOIDmode
));
1256 /* Return 1 if OP is a general operand that is not an immediate
1257 operand of mode MODE. */
1260 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1262 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1265 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1268 nonmemory_operand (rtx op
, enum machine_mode mode
)
1270 if (CONSTANT_P (op
))
1271 return immediate_operand (op
, mode
);
1272 return register_operand (op
, mode
);
1275 /* Return 1 if OP is a valid operand that stands for pushing a
1276 value of mode MODE onto the stack.
1278 The main use of this function is as a predicate in match_operand
1279 expressions in the machine description. */
1282 push_operand (rtx op
, enum machine_mode mode
)
1284 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1286 #ifdef PUSH_ROUNDING
1287 rounded_size
= PUSH_ROUNDING (rounded_size
);
1293 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1298 if (rounded_size
== GET_MODE_SIZE (mode
))
1300 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1305 if (GET_CODE (op
) != PRE_MODIFY
1306 || GET_CODE (XEXP (op
, 1)) != PLUS
1307 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1308 || !CONST_INT_P (XEXP (XEXP (op
, 1), 1))
1309 #ifdef STACK_GROWS_DOWNWARD
1310 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1312 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1318 return XEXP (op
, 0) == stack_pointer_rtx
;
1321 /* Return 1 if OP is a valid operand that stands for popping a
1322 value of mode MODE off the stack.
1324 The main use of this function is as a predicate in match_operand
1325 expressions in the machine description. */
1328 pop_operand (rtx op
, enum machine_mode mode
)
1333 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1338 if (GET_CODE (op
) != STACK_POP_CODE
)
1341 return XEXP (op
, 0) == stack_pointer_rtx
;
1344 /* Return 1 if ADDR is a valid memory address
1345 for mode MODE in address space AS. */
1348 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED
,
1349 rtx addr
, addr_space_t as
)
1351 #ifdef GO_IF_LEGITIMATE_ADDRESS
1352 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
1353 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1359 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
1363 /* Return 1 if OP is a valid memory reference with mode MODE,
1364 including a valid address.
1366 The main use of this function is as a predicate in match_operand
1367 expressions in the machine description. */
1370 memory_operand (rtx op
, enum machine_mode mode
)
1374 if (! reload_completed
)
1375 /* Note that no SUBREG is a memory operand before end of reload pass,
1376 because (SUBREG (MEM...)) forces reloading into a register. */
1377 return MEM_P (op
) && general_operand (op
, mode
);
1379 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1383 if (GET_CODE (inner
) == SUBREG
)
1384 inner
= SUBREG_REG (inner
);
1386 return (MEM_P (inner
) && general_operand (op
, mode
));
1389 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1390 that is, a memory reference whose address is a general_operand. */
1393 indirect_operand (rtx op
, enum machine_mode mode
)
1395 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1396 if (! reload_completed
1397 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1399 int offset
= SUBREG_BYTE (op
);
1400 rtx inner
= SUBREG_REG (op
);
1402 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1405 /* The only way that we can have a general_operand as the resulting
1406 address is if OFFSET is zero and the address already is an operand
1407 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1410 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1411 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1412 && CONST_INT_P (XEXP (XEXP (inner
, 0), 1))
1413 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1414 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1418 && memory_operand (op
, mode
)
1419 && general_operand (XEXP (op
, 0), Pmode
));
1422 /* Return 1 if this is an ordered comparison operator (not including
1423 ORDERED and UNORDERED). */
1426 ordered_comparison_operator (rtx op
, enum machine_mode mode
)
1428 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1430 switch (GET_CODE (op
))
1448 /* Return 1 if this is a comparison operator. This allows the use of
1449 MATCH_OPERATOR to recognize all the branch insns. */
1452 comparison_operator (rtx op
, enum machine_mode mode
)
1454 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1455 && COMPARISON_P (op
));
1458 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1461 extract_asm_operands (rtx body
)
1464 switch (GET_CODE (body
))
1470 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1471 tmp
= SET_SRC (body
);
1472 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1477 tmp
= XVECEXP (body
, 0, 0);
1478 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1480 if (GET_CODE (tmp
) == SET
)
1482 tmp
= SET_SRC (tmp
);
1483 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1494 /* If BODY is an insn body that uses ASM_OPERANDS,
1495 return the number of operands (both input and output) in the insn.
1496 Otherwise return -1. */
1499 asm_noperands (const_rtx body
)
1501 rtx asm_op
= extract_asm_operands (CONST_CAST_RTX (body
));
1507 if (GET_CODE (body
) == SET
)
1509 else if (GET_CODE (body
) == PARALLEL
)
1512 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1514 /* Multiple output operands, or 1 output plus some clobbers:
1516 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1517 /* Count backwards through CLOBBERs to determine number of SETs. */
1518 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1520 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1522 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1526 /* N_SETS is now number of output operands. */
1529 /* Verify that all the SETs we have
1530 came from a single original asm_operands insn
1531 (so that invalid combinations are blocked). */
1532 for (i
= 0; i
< n_sets
; i
++)
1534 rtx elt
= XVECEXP (body
, 0, i
);
1535 if (GET_CODE (elt
) != SET
)
1537 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1539 /* If these ASM_OPERANDS rtx's came from different original insns
1540 then they aren't allowed together. */
1541 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1542 != ASM_OPERANDS_INPUT_VEC (asm_op
))
1548 /* 0 outputs, but some clobbers:
1549 body is [(asm_operands ...) (clobber (reg ...))...]. */
1550 /* Make sure all the other parallel things really are clobbers. */
1551 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1552 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1557 return (ASM_OPERANDS_INPUT_LENGTH (asm_op
)
1558 + ASM_OPERANDS_LABEL_LENGTH (asm_op
) + n_sets
);
1561 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1562 copy its operands (both input and output) into the vector OPERANDS,
1563 the locations of the operands within the insn into the vector OPERAND_LOCS,
1564 and the constraints for the operands into CONSTRAINTS.
1565 Write the modes of the operands into MODES.
1566 Return the assembler-template.
1568 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1569 we don't store that info. */
1572 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1573 const char **constraints
, enum machine_mode
*modes
,
1576 int nbase
= 0, n
, i
;
1579 switch (GET_CODE (body
))
1582 /* Zero output asm: BODY is (asm_operands ...). */
1587 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1588 asmop
= SET_SRC (body
);
1590 /* The output is in the SET.
1591 Its constraint is in the ASM_OPERANDS itself. */
1593 operands
[0] = SET_DEST (body
);
1595 operand_locs
[0] = &SET_DEST (body
);
1597 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1599 modes
[0] = GET_MODE (SET_DEST (body
));
1605 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1607 asmop
= XVECEXP (body
, 0, 0);
1608 if (GET_CODE (asmop
) == SET
)
1610 asmop
= SET_SRC (asmop
);
1612 /* At least one output, plus some CLOBBERs. The outputs are in
1613 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1614 for (i
= 0; i
< nparallel
; i
++)
1616 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1617 break; /* Past last SET */
1619 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1621 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1623 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1625 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1636 n
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1637 for (i
= 0; i
< n
; i
++)
1640 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1642 operands
[nbase
+ i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1644 constraints
[nbase
+ i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1646 modes
[nbase
+ i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1650 n
= ASM_OPERANDS_LABEL_LENGTH (asmop
);
1651 for (i
= 0; i
< n
; i
++)
1654 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_LABEL (asmop
, i
);
1656 operands
[nbase
+ i
] = ASM_OPERANDS_LABEL (asmop
, i
);
1658 constraints
[nbase
+ i
] = "";
1660 modes
[nbase
+ i
] = Pmode
;
1664 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1666 return ASM_OPERANDS_TEMPLATE (asmop
);
1669 /* Parse inline assembly string STRING and determine which operands are
1670 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1671 to true if operand I is referenced.
1673 This is intended to distinguish barrier-like asms such as:
1675 asm ("" : "=m" (...));
1677 from real references such as:
1679 asm ("sw\t$0, %0" : "=m" (...)); */
1682 get_referenced_operands (const char *string
, bool *used
,
1683 unsigned int noperands
)
1685 memset (used
, 0, sizeof (bool) * noperands
);
1686 const char *p
= string
;
1692 /* A letter followed by a digit indicates an operand number. */
1693 if (ISALPHA (p
[0]) && ISDIGIT (p
[1]))
1698 unsigned long opnum
= strtoul (p
, &endptr
, 10);
1699 if (endptr
!= p
&& opnum
< noperands
)
1713 /* Check if an asm_operand matches its constraints.
1714 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1717 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1721 bool incdec_ok
= false;
1724 /* Use constrain_operands after reload. */
1725 gcc_assert (!reload_completed
);
1727 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1728 many alternatives as required to match the other operands. */
1729 if (*constraint
== '\0')
1734 enum constraint_num cn
;
1735 char c
= *constraint
;
1743 case '0': case '1': case '2': case '3': case '4':
1744 case '5': case '6': case '7': case '8': case '9':
1745 /* If caller provided constraints pointer, look up
1746 the matching constraint. Otherwise, our caller should have
1747 given us the proper matching constraint, but we can't
1748 actually fail the check if they didn't. Indicate that
1749 results are inconclusive. */
1753 unsigned long match
;
1755 match
= strtoul (constraint
, &end
, 10);
1757 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1758 constraint
= (const char *) end
;
1764 while (ISDIGIT (*constraint
));
1770 /* The rest of the compiler assumes that reloading the address
1771 of a MEM into a register will make it fit an 'o' constraint.
1772 That is, if it sees a MEM operand for an 'o' constraint,
1773 it assumes that (mem (base-reg)) will fit.
1775 That assumption fails on targets that don't have offsettable
1776 addresses at all. We therefore need to treat 'o' asm
1777 constraints as a special case and only accept operands that
1778 are already offsettable, thus proving that at least one
1779 offsettable address exists. */
1780 case 'o': /* offsettable */
1781 if (offsettable_nonstrict_memref_p (op
))
1786 if (general_operand (op
, VOIDmode
))
1793 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1794 to exist, excepting those that expand_call created. Further,
1795 on some machines which do not have generalized auto inc/dec,
1796 an inc/dec is not a memory_operand.
1798 Match any memory and hope things are resolved after reload. */
1802 cn
= lookup_constraint (constraint
);
1803 switch (get_constraint_type (cn
))
1807 && reg_class_for_constraint (cn
) != NO_REGS
1808 && GET_MODE (op
) != BLKmode
1809 && register_operand (op
, VOIDmode
))
1816 && insn_const_int_ok_for_constraint (INTVAL (op
), cn
))
1821 /* Every memory operand can be reloaded to fit. */
1822 result
= result
|| memory_operand (op
, VOIDmode
);
1826 /* Every address operand can be reloaded to fit. */
1827 result
= result
|| address_operand (op
, VOIDmode
);
1831 result
= result
|| constraint_satisfied_p (op
, cn
);
1836 len
= CONSTRAINT_LEN (c
, constraint
);
1839 while (--len
&& *constraint
);
1845 /* For operands without < or > constraints reject side-effects. */
1846 if (!incdec_ok
&& result
&& MEM_P (op
))
1847 switch (GET_CODE (XEXP (op
, 0)))
1864 /* Given an rtx *P, if it is a sum containing an integer constant term,
1865 return the location (type rtx *) of the pointer to that constant term.
1866 Otherwise, return a null pointer. */
1869 find_constant_term_loc (rtx
*p
)
1872 enum rtx_code code
= GET_CODE (*p
);
1874 /* If *P IS such a constant term, P is its location. */
1876 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1880 /* Otherwise, if not a sum, it has no constant term. */
1882 if (GET_CODE (*p
) != PLUS
)
1885 /* If one of the summands is constant, return its location. */
1887 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1888 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1891 /* Otherwise, check each summand for containing a constant term. */
1893 if (XEXP (*p
, 0) != 0)
1895 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1900 if (XEXP (*p
, 1) != 0)
1902 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1910 /* Return 1 if OP is a memory reference
1911 whose address contains no side effects
1912 and remains valid after the addition
1913 of a positive integer less than the
1914 size of the object being referenced.
1916 We assume that the original address is valid and do not check it.
1918 This uses strict_memory_address_p as a subroutine, so
1919 don't use it before reload. */
1922 offsettable_memref_p (rtx op
)
1924 return ((MEM_P (op
))
1925 && offsettable_address_addr_space_p (1, GET_MODE (op
), XEXP (op
, 0),
1926 MEM_ADDR_SPACE (op
)));
1929 /* Similar, but don't require a strictly valid mem ref:
1930 consider pseudo-regs valid as index or base regs. */
1933 offsettable_nonstrict_memref_p (rtx op
)
1935 return ((MEM_P (op
))
1936 && offsettable_address_addr_space_p (0, GET_MODE (op
), XEXP (op
, 0),
1937 MEM_ADDR_SPACE (op
)));
1940 /* Return 1 if Y is a memory address which contains no side effects
1941 and would remain valid for address space AS after the addition of
1942 a positive integer less than the size of that mode.
1944 We assume that the original address is valid and do not check it.
1945 We do check that it is valid for narrower modes.
1947 If STRICTP is nonzero, we require a strictly valid address,
1948 for the sake of use in reload.c. */
1951 offsettable_address_addr_space_p (int strictp
, enum machine_mode mode
, rtx y
,
1954 enum rtx_code ycode
= GET_CODE (y
);
1958 int (*addressp
) (enum machine_mode
, rtx
, addr_space_t
) =
1959 (strictp
? strict_memory_address_addr_space_p
1960 : memory_address_addr_space_p
);
1961 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1963 if (CONSTANT_ADDRESS_P (y
))
1966 /* Adjusting an offsettable address involves changing to a narrower mode.
1967 Make sure that's OK. */
1969 if (mode_dependent_address_p (y
, as
))
1972 enum machine_mode address_mode
= GET_MODE (y
);
1973 if (address_mode
== VOIDmode
)
1974 address_mode
= targetm
.addr_space
.address_mode (as
);
1975 #ifdef POINTERS_EXTEND_UNSIGNED
1976 enum machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
1979 /* ??? How much offset does an offsettable BLKmode reference need?
1980 Clearly that depends on the situation in which it's being used.
1981 However, the current situation in which we test 0xffffffff is
1982 less than ideal. Caveat user. */
1984 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1986 /* If the expression contains a constant term,
1987 see if it remains valid when max possible offset is added. */
1989 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1994 *y2
= plus_constant (address_mode
, *y2
, mode_sz
- 1);
1995 /* Use QImode because an odd displacement may be automatically invalid
1996 for any wider mode. But it should be valid for a single byte. */
1997 good
= (*addressp
) (QImode
, y
, as
);
1999 /* In any case, restore old contents of memory. */
2004 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
2007 /* The offset added here is chosen as the maximum offset that
2008 any instruction could need to add when operating on something
2009 of the specified mode. We assume that if Y and Y+c are
2010 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2011 go inside a LO_SUM here, so we do so as well. */
2012 if (GET_CODE (y
) == LO_SUM
2014 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
2015 z
= gen_rtx_LO_SUM (address_mode
, XEXP (y
, 0),
2016 plus_constant (address_mode
, XEXP (y
, 1),
2018 #ifdef POINTERS_EXTEND_UNSIGNED
2019 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2020 else if (POINTERS_EXTEND_UNSIGNED
> 0
2021 && GET_CODE (y
) == ZERO_EXTEND
2022 && GET_MODE (XEXP (y
, 0)) == pointer_mode
)
2023 z
= gen_rtx_ZERO_EXTEND (address_mode
,
2024 plus_constant (pointer_mode
, XEXP (y
, 0),
2028 z
= plus_constant (address_mode
, y
, mode_sz
- 1);
2030 /* Use QImode because an odd displacement may be automatically invalid
2031 for any wider mode. But it should be valid for a single byte. */
2032 return (*addressp
) (QImode
, z
, as
);
2035 /* Return 1 if ADDR is an address-expression whose effect depends
2036 on the mode of the memory reference it is used in.
2038 ADDRSPACE is the address space associated with the address.
2040 Autoincrement addressing is a typical example of mode-dependence
2041 because the amount of the increment depends on the mode. */
2044 mode_dependent_address_p (rtx addr
, addr_space_t addrspace
)
2046 /* Auto-increment addressing with anything other than post_modify
2047 or pre_modify always introduces a mode dependency. Catch such
2048 cases now instead of deferring to the target. */
2049 if (GET_CODE (addr
) == PRE_INC
2050 || GET_CODE (addr
) == POST_INC
2051 || GET_CODE (addr
) == PRE_DEC
2052 || GET_CODE (addr
) == POST_DEC
)
2055 return targetm
.mode_dependent_address_p (addr
, addrspace
);
2058 /* Return the mask of operand alternatives that are allowed for INSN.
2059 This mask depends only on INSN and on the current target; it does not
2060 depend on things like the values of operands. */
2063 get_enabled_alternatives (rtx_insn
*insn
)
2065 /* Quick exit for asms and for targets that don't use the "enabled"
2067 int code
= INSN_CODE (insn
);
2068 if (code
< 0 || !HAVE_ATTR_enabled
)
2069 return ALL_ALTERNATIVES
;
2071 /* Calling get_attr_enabled can be expensive, so cache the mask
2073 if (this_target_recog
->x_enabled_alternatives
[code
])
2074 return this_target_recog
->x_enabled_alternatives
[code
];
2076 /* Temporarily install enough information for get_attr_enabled to assume
2077 that the insn operands are already cached. As above, the attribute
2078 mustn't depend on the values of operands, so we don't provide their
2079 real values here. */
2080 rtx old_insn
= recog_data
.insn
;
2081 int old_alternative
= which_alternative
;
2083 recog_data
.insn
= insn
;
2084 alternative_mask enabled
= ALL_ALTERNATIVES
;
2085 int n_alternatives
= insn_data
[code
].n_alternatives
;
2086 for (int i
= 0; i
< n_alternatives
; i
++)
2088 which_alternative
= i
;
2089 if (!get_attr_enabled (insn
))
2090 enabled
&= ~ALTERNATIVE_BIT (i
);
2093 recog_data
.insn
= old_insn
;
2094 which_alternative
= old_alternative
;
2096 this_target_recog
->x_enabled_alternatives
[code
] = enabled
;
2100 /* Like extract_insn, but save insn extracted and don't extract again, when
2101 called again for the same insn expecting that recog_data still contain the
2102 valid information. This is used primary by gen_attr infrastructure that
2103 often does extract insn again and again. */
2105 extract_insn_cached (rtx_insn
*insn
)
2107 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2109 extract_insn (insn
);
2110 recog_data
.insn
= insn
;
2113 /* Do cached extract_insn, constrain_operands and complain about failures.
2114 Used by insn_attrtab. */
2116 extract_constrain_insn_cached (rtx_insn
*insn
)
2118 extract_insn_cached (insn
);
2119 if (which_alternative
== -1
2120 && !constrain_operands (reload_completed
))
2121 fatal_insn_not_found (insn
);
2124 /* Do cached constrain_operands and complain about failures. */
2126 constrain_operands_cached (int strict
)
2128 if (which_alternative
== -1)
2129 return constrain_operands (strict
);
2134 /* Analyze INSN and fill in recog_data. */
2137 extract_insn (rtx_insn
*insn
)
2142 rtx body
= PATTERN (insn
);
2144 recog_data
.n_operands
= 0;
2145 recog_data
.n_alternatives
= 0;
2146 recog_data
.n_dups
= 0;
2147 recog_data
.is_asm
= false;
2149 switch (GET_CODE (body
))
2160 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2165 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2166 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2167 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2173 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2176 /* This insn is an `asm' with operands. */
2178 /* expand_asm_operands makes sure there aren't too many operands. */
2179 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2181 /* Now get the operand values and constraints out of the insn. */
2182 decode_asm_operands (body
, recog_data
.operand
,
2183 recog_data
.operand_loc
,
2184 recog_data
.constraints
,
2185 recog_data
.operand_mode
, NULL
);
2186 memset (recog_data
.is_operator
, 0, sizeof recog_data
.is_operator
);
2189 const char *p
= recog_data
.constraints
[0];
2190 recog_data
.n_alternatives
= 1;
2192 recog_data
.n_alternatives
+= (*p
++ == ',');
2194 recog_data
.is_asm
= true;
2197 fatal_insn_not_found (insn
);
2201 /* Ordinary insn: recognize it, get the operands via insn_extract
2202 and get the constraints. */
2204 icode
= recog_memoized (insn
);
2206 fatal_insn_not_found (insn
);
2208 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2209 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2210 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2212 insn_extract (insn
);
2214 for (i
= 0; i
< noperands
; i
++)
2216 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2217 recog_data
.is_operator
[i
] = insn_data
[icode
].operand
[i
].is_operator
;
2218 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2219 /* VOIDmode match_operands gets mode from their real operand. */
2220 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2221 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2224 for (i
= 0; i
< noperands
; i
++)
2225 recog_data
.operand_type
[i
]
2226 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2227 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2230 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2232 recog_data
.enabled_alternatives
= get_enabled_alternatives (insn
);
2234 recog_data
.insn
= NULL
;
2235 which_alternative
= -1;
2238 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2239 N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2240 OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2241 has N_OPERANDS entries. */
2244 preprocess_constraints (int n_operands
, int n_alternatives
,
2245 const char **constraints
,
2246 operand_alternative
*op_alt_base
)
2248 for (int i
= 0; i
< n_operands
; i
++)
2251 struct operand_alternative
*op_alt
;
2252 const char *p
= constraints
[i
];
2254 op_alt
= op_alt_base
;
2256 for (j
= 0; j
< n_alternatives
; j
++, op_alt
+= n_operands
)
2258 op_alt
[i
].cl
= NO_REGS
;
2259 op_alt
[i
].constraint
= p
;
2260 op_alt
[i
].matches
= -1;
2261 op_alt
[i
].matched
= -1;
2263 if (*p
== '\0' || *p
== ',')
2265 op_alt
[i
].anything_ok
= 1;
2275 while (c
!= ',' && c
!= '\0');
2276 if (c
== ',' || c
== '\0')
2285 op_alt
[i
].reject
+= 6;
2288 op_alt
[i
].reject
+= 600;
2291 op_alt
[i
].earlyclobber
= 1;
2294 case '0': case '1': case '2': case '3': case '4':
2295 case '5': case '6': case '7': case '8': case '9':
2298 op_alt
[i
].matches
= strtoul (p
, &end
, 10);
2299 op_alt
[op_alt
[i
].matches
].matched
= i
;
2305 op_alt
[i
].anything_ok
= 1;
2310 reg_class_subunion
[(int) op_alt
[i
].cl
][(int) GENERAL_REGS
];
2314 enum constraint_num cn
= lookup_constraint (p
);
2316 switch (get_constraint_type (cn
))
2319 cl
= reg_class_for_constraint (cn
);
2321 op_alt
[i
].cl
= reg_class_subunion
[op_alt
[i
].cl
][cl
];
2328 op_alt
[i
].memory_ok
= 1;
2332 op_alt
[i
].is_address
= 1;
2334 = (reg_class_subunion
2335 [(int) op_alt
[i
].cl
]
2336 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2337 ADDRESS
, SCRATCH
)]);
2345 p
+= CONSTRAINT_LEN (c
, p
);
2351 /* Return an array of operand_alternative instructions for
2352 instruction ICODE. */
2354 const operand_alternative
*
2355 preprocess_insn_constraints (int icode
)
2357 gcc_checking_assert (IN_RANGE (icode
, 0, LAST_INSN_CODE
));
2358 if (this_target_recog
->x_op_alt
[icode
])
2359 return this_target_recog
->x_op_alt
[icode
];
2361 int n_operands
= insn_data
[icode
].n_operands
;
2362 if (n_operands
== 0)
2364 /* Always provide at least one alternative so that which_op_alt ()
2365 works correctly. If the instruction has 0 alternatives (i.e. all
2366 constraint strings are empty) then each operand in this alternative
2367 will have anything_ok set. */
2368 int n_alternatives
= MAX (insn_data
[icode
].n_alternatives
, 1);
2369 int n_entries
= n_operands
* n_alternatives
;
2371 operand_alternative
*op_alt
= XCNEWVEC (operand_alternative
, n_entries
);
2372 const char **constraints
= XALLOCAVEC (const char *, n_operands
);
2374 for (int i
= 0; i
< n_operands
; ++i
)
2375 constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2376 preprocess_constraints (n_operands
, n_alternatives
, constraints
, op_alt
);
2378 this_target_recog
->x_op_alt
[icode
] = op_alt
;
2382 /* After calling extract_insn, you can use this function to extract some
2383 information from the constraint strings into a more usable form.
2384 The collected data is stored in recog_op_alt. */
2387 preprocess_constraints (rtx insn
)
2389 int icode
= INSN_CODE (insn
);
2391 recog_op_alt
= preprocess_insn_constraints (icode
);
2394 int n_operands
= recog_data
.n_operands
;
2395 int n_alternatives
= recog_data
.n_alternatives
;
2396 int n_entries
= n_operands
* n_alternatives
;
2397 memset (asm_op_alt
, 0, n_entries
* sizeof (operand_alternative
));
2398 preprocess_constraints (n_operands
, n_alternatives
,
2399 recog_data
.constraints
, asm_op_alt
);
2400 recog_op_alt
= asm_op_alt
;
2404 /* Check the operands of an insn against the insn's operand constraints
2405 and return 1 if they are valid.
2406 The information about the insn's operands, constraints, operand modes
2407 etc. is obtained from the global variables set up by extract_insn.
2409 WHICH_ALTERNATIVE is set to a number which indicates which
2410 alternative of constraints was matched: 0 for the first alternative,
2411 1 for the next, etc.
2413 In addition, when two operands are required to match
2414 and it happens that the output operand is (reg) while the
2415 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2416 make the output operand look like the input.
2417 This is because the output operand is the one the template will print.
2419 This is used in final, just before printing the assembler code and by
2420 the routines that determine an insn's attribute.
2422 If STRICT is a positive nonzero value, it means that we have been
2423 called after reload has been completed. In that case, we must
2424 do all checks strictly. If it is zero, it means that we have been called
2425 before reload has completed. In that case, we first try to see if we can
2426 find an alternative that matches strictly. If not, we try again, this
2427 time assuming that reload will fix up the insn. This provides a "best
2428 guess" for the alternative and is used to compute attributes of insns prior
2429 to reload. A negative value of STRICT is used for this internal call. */
2437 constrain_operands (int strict
)
2439 const char *constraints
[MAX_RECOG_OPERANDS
];
2440 int matching_operands
[MAX_RECOG_OPERANDS
];
2441 int earlyclobber
[MAX_RECOG_OPERANDS
];
2444 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2445 int funny_match_index
;
2447 which_alternative
= 0;
2448 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2451 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2453 constraints
[c
] = recog_data
.constraints
[c
];
2454 matching_operands
[c
] = -1;
2459 int seen_earlyclobber_at
= -1;
2462 funny_match_index
= 0;
2464 if (!TEST_BIT (recog_data
.enabled_alternatives
, which_alternative
))
2468 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2469 constraints
[i
] = skip_alternative (constraints
[i
]);
2471 which_alternative
++;
2475 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2477 rtx op
= recog_data
.operand
[opno
];
2478 enum machine_mode mode
= GET_MODE (op
);
2479 const char *p
= constraints
[opno
];
2485 earlyclobber
[opno
] = 0;
2487 /* A unary operator may be accepted by the predicate, but it
2488 is irrelevant for matching constraints. */
2492 if (GET_CODE (op
) == SUBREG
)
2494 if (REG_P (SUBREG_REG (op
))
2495 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2496 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2497 GET_MODE (SUBREG_REG (op
)),
2500 op
= SUBREG_REG (op
);
2503 /* An empty constraint or empty alternative
2504 allows anything which matched the pattern. */
2505 if (*p
== 0 || *p
== ',')
2509 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2519 /* Ignore rest of this alternative as far as
2520 constraint checking is concerned. */
2523 while (*p
&& *p
!= ',');
2528 earlyclobber
[opno
] = 1;
2529 if (seen_earlyclobber_at
< 0)
2530 seen_earlyclobber_at
= opno
;
2533 case '0': case '1': case '2': case '3': case '4':
2534 case '5': case '6': case '7': case '8': case '9':
2536 /* This operand must be the same as a previous one.
2537 This kind of constraint is used for instructions such
2538 as add when they take only two operands.
2540 Note that the lower-numbered operand is passed first.
2542 If we are not testing strictly, assume that this
2543 constraint will be satisfied. */
2548 match
= strtoul (p
, &end
, 10);
2555 rtx op1
= recog_data
.operand
[match
];
2556 rtx op2
= recog_data
.operand
[opno
];
2558 /* A unary operator may be accepted by the predicate,
2559 but it is irrelevant for matching constraints. */
2561 op1
= XEXP (op1
, 0);
2563 op2
= XEXP (op2
, 0);
2565 val
= operands_match_p (op1
, op2
);
2568 matching_operands
[opno
] = match
;
2569 matching_operands
[match
] = opno
;
2574 /* If output is *x and input is *--x, arrange later
2575 to change the output to *--x as well, since the
2576 output op is the one that will be printed. */
2577 if (val
== 2 && strict
> 0)
2579 funny_match
[funny_match_index
].this_op
= opno
;
2580 funny_match
[funny_match_index
++].other
= match
;
2587 /* p is used for address_operands. When we are called by
2588 gen_reload, no one will have checked that the address is
2589 strictly valid, i.e., that all pseudos requiring hard regs
2590 have gotten them. */
2592 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2597 /* No need to check general_operand again;
2598 it was done in insn-recog.c. Well, except that reload
2599 doesn't check the validity of its replacements, but
2600 that should only matter when there's a bug. */
2602 /* Anything goes unless it is a REG and really has a hard reg
2603 but the hard reg is not in the class GENERAL_REGS. */
2607 || GENERAL_REGS
== ALL_REGS
2608 || (reload_in_progress
2609 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2610 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2613 else if (strict
< 0 || general_operand (op
, mode
))
2619 enum constraint_num cn
= lookup_constraint (p
);
2620 enum reg_class cl
= reg_class_for_constraint (cn
);
2626 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2627 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2629 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2633 else if (constraint_satisfied_p (op
, cn
))
2636 else if (insn_extra_memory_constraint (cn
)
2637 /* Every memory operand can be reloaded to fit. */
2638 && ((strict
< 0 && MEM_P (op
))
2639 /* Before reload, accept what reload can turn
2641 || (strict
< 0 && CONSTANT_P (op
))
2642 /* During reload, accept a pseudo */
2643 || (reload_in_progress
&& REG_P (op
)
2644 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2646 else if (insn_extra_address_constraint (cn
)
2647 /* Every address operand can be reloaded to fit. */
2650 /* Cater to architectures like IA-64 that define extra memory
2651 constraints without using define_memory_constraint. */
2652 else if (reload_in_progress
2654 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
2655 && reg_renumber
[REGNO (op
)] < 0
2656 && reg_equiv_mem (REGNO (op
)) != 0
2657 && constraint_satisfied_p
2658 (reg_equiv_mem (REGNO (op
)), cn
))
2663 while (p
+= len
, c
);
2665 constraints
[opno
] = p
;
2666 /* If this operand did not win somehow,
2667 this alternative loses. */
2671 /* This alternative won; the operands are ok.
2672 Change whichever operands this alternative says to change. */
2677 /* See if any earlyclobber operand conflicts with some other
2680 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2681 for (eopno
= seen_earlyclobber_at
;
2682 eopno
< recog_data
.n_operands
;
2684 /* Ignore earlyclobber operands now in memory,
2685 because we would often report failure when we have
2686 two memory operands, one of which was formerly a REG. */
2687 if (earlyclobber
[eopno
]
2688 && REG_P (recog_data
.operand
[eopno
]))
2689 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2690 if ((MEM_P (recog_data
.operand
[opno
])
2691 || recog_data
.operand_type
[opno
] != OP_OUT
)
2693 /* Ignore things like match_operator operands. */
2694 && *recog_data
.constraints
[opno
] != 0
2695 && ! (matching_operands
[opno
] == eopno
2696 && operands_match_p (recog_data
.operand
[opno
],
2697 recog_data
.operand
[eopno
]))
2698 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2699 recog_data
.operand
[eopno
]))
2704 while (--funny_match_index
>= 0)
2706 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2707 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2711 /* For operands without < or > constraints reject side-effects. */
2712 if (recog_data
.is_asm
)
2714 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2715 if (MEM_P (recog_data
.operand
[opno
]))
2716 switch (GET_CODE (XEXP (recog_data
.operand
[opno
], 0)))
2724 if (strchr (recog_data
.constraints
[opno
], '<') == NULL
2725 && strchr (recog_data
.constraints
[opno
], '>')
2738 which_alternative
++;
2740 while (which_alternative
< recog_data
.n_alternatives
);
2742 which_alternative
= -1;
2743 /* If we are about to reject this, but we are not to test strictly,
2744 try a very loose test. Only return failure if it fails also. */
2746 return constrain_operands (-1);
2751 /* Return true iff OPERAND (assumed to be a REG rtx)
2752 is a hard reg in class CLASS when its regno is offset by OFFSET
2753 and changed to mode MODE.
2754 If REG occupies multiple hard regs, all of them must be in CLASS. */
2757 reg_fits_class_p (const_rtx operand
, reg_class_t cl
, int offset
,
2758 enum machine_mode mode
)
2760 unsigned int regno
= REGNO (operand
);
2765 /* Regno must not be a pseudo register. Offset may be negative. */
2766 return (HARD_REGISTER_NUM_P (regno
)
2767 && HARD_REGISTER_NUM_P (regno
+ offset
)
2768 && in_hard_reg_set_p (reg_class_contents
[(int) cl
], mode
,
2772 /* Split single instruction. Helper function for split_all_insns and
2773 split_all_insns_noflow. Return last insn in the sequence if successful,
2774 or NULL if unsuccessful. */
2777 split_insn (rtx_insn
*insn
)
2779 /* Split insns here to get max fine-grain parallelism. */
2780 rtx_insn
*first
= PREV_INSN (insn
);
2781 rtx_insn
*last
= try_split (PATTERN (insn
), insn
, 1);
2782 rtx insn_set
, last_set
, note
;
2787 /* If the original instruction was a single set that was known to be
2788 equivalent to a constant, see if we can say the same about the last
2789 instruction in the split sequence. The two instructions must set
2790 the same destination. */
2791 insn_set
= single_set (insn
);
2794 last_set
= single_set (last
);
2795 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2797 note
= find_reg_equal_equiv_note (insn
);
2798 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2799 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2800 else if (CONSTANT_P (SET_SRC (insn_set
)))
2801 set_unique_reg_note (last
, REG_EQUAL
,
2802 copy_rtx (SET_SRC (insn_set
)));
2806 /* try_split returns the NOTE that INSN became. */
2807 SET_INSN_DELETED (insn
);
2809 /* ??? Coddle to md files that generate subregs in post-reload
2810 splitters instead of computing the proper hard register. */
2811 if (reload_completed
&& first
!= last
)
2813 first
= NEXT_INSN (first
);
2817 cleanup_subreg_operands (first
);
2820 first
= NEXT_INSN (first
);
2827 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2830 split_all_insns (void)
2836 blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
2837 bitmap_clear (blocks
);
2840 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2842 rtx_insn
*insn
, *next
;
2843 bool finish
= false;
2845 rtl_profile_for_bb (bb
);
2846 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2848 /* Can't use `next_real_insn' because that might go across
2849 CODE_LABELS and short-out basic blocks. */
2850 next
= NEXT_INSN (insn
);
2851 finish
= (insn
== BB_END (bb
));
2854 rtx set
= single_set (insn
);
2856 /* Don't split no-op move insns. These should silently
2857 disappear later in final. Splitting such insns would
2858 break the code that handles LIBCALL blocks. */
2859 if (set
&& set_noop_p (set
))
2861 /* Nops get in the way while scheduling, so delete them
2862 now if register allocation has already been done. It
2863 is too risky to try to do this before register
2864 allocation, and there are unlikely to be very many
2865 nops then anyways. */
2866 if (reload_completed
)
2867 delete_insn_and_edges (insn
);
2871 if (split_insn (insn
))
2873 bitmap_set_bit (blocks
, bb
->index
);
2881 default_rtl_profile ();
2883 find_many_sub_basic_blocks (blocks
);
2885 #ifdef ENABLE_CHECKING
2886 verify_flow_info ();
2889 sbitmap_free (blocks
);
2892 /* Same as split_all_insns, but do not expect CFG to be available.
2893 Used by machine dependent reorg passes. */
2896 split_all_insns_noflow (void)
2898 rtx_insn
*next
, *insn
;
2900 for (insn
= get_insns (); insn
; insn
= next
)
2902 next
= NEXT_INSN (insn
);
2905 /* Don't split no-op move insns. These should silently
2906 disappear later in final. Splitting such insns would
2907 break the code that handles LIBCALL blocks. */
2908 rtx set
= single_set (insn
);
2909 if (set
&& set_noop_p (set
))
2911 /* Nops get in the way while scheduling, so delete them
2912 now if register allocation has already been done. It
2913 is too risky to try to do this before register
2914 allocation, and there are unlikely to be very many
2917 ??? Should we use delete_insn when the CFG isn't valid? */
2918 if (reload_completed
)
2919 delete_insn_and_edges (insn
);
2928 #ifdef HAVE_peephole2
2929 struct peep2_insn_data
2935 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2936 static int peep2_current
;
2938 static bool peep2_do_rebuild_jump_labels
;
2939 static bool peep2_do_cleanup_cfg
;
2941 /* The number of instructions available to match a peep2. */
2942 int peep2_current_count
;
2944 /* A non-insn marker indicating the last insn of the block.
2945 The live_before regset for this element is correct, indicating
2946 DF_LIVE_OUT for the block. */
2947 #define PEEP2_EOB pc_rtx
2949 /* Wrap N to fit into the peep2_insn_data buffer. */
2952 peep2_buf_position (int n
)
2954 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2955 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2959 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2960 does not exist. Used by the recognizer to find the next insn to match
2961 in a multi-insn pattern. */
2964 peep2_next_insn (int n
)
2966 gcc_assert (n
<= peep2_current_count
);
2968 n
= peep2_buf_position (peep2_current
+ n
);
2970 return peep2_insn_data
[n
].insn
;
2973 /* Return true if REGNO is dead before the Nth non-note insn
2977 peep2_regno_dead_p (int ofs
, int regno
)
2979 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2981 ofs
= peep2_buf_position (peep2_current
+ ofs
);
2983 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
2985 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2988 /* Similarly for a REG. */
2991 peep2_reg_dead_p (int ofs
, rtx reg
)
2995 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2997 ofs
= peep2_buf_position (peep2_current
+ ofs
);
2999 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3001 regno
= REGNO (reg
);
3002 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
3004 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
3009 /* Regno offset to be used in the register search. */
3010 static int search_ofs
;
3012 /* Try to find a hard register of mode MODE, matching the register class in
3013 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3014 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3015 in which case the only condition is that the register must be available
3016 before CURRENT_INSN.
3017 Registers that already have bits set in REG_SET will not be considered.
3019 If an appropriate register is available, it will be returned and the
3020 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3024 peep2_find_free_register (int from
, int to
, const char *class_str
,
3025 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
3032 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
3033 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
3035 from
= peep2_buf_position (peep2_current
+ from
);
3036 to
= peep2_buf_position (peep2_current
+ to
);
3038 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3039 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3043 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3045 /* Don't use registers set or clobbered by the insn. */
3046 FOR_EACH_INSN_DEF (def
, peep2_insn_data
[from
].insn
)
3047 SET_HARD_REG_BIT (live
, DF_REF_REGNO (def
));
3049 from
= peep2_buf_position (from
+ 1);
3052 cl
= reg_class_for_constraint (lookup_constraint (class_str
));
3054 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3056 int raw_regno
, regno
, success
, j
;
3058 /* Distribute the free registers as much as possible. */
3059 raw_regno
= search_ofs
+ i
;
3060 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3061 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3062 #ifdef REG_ALLOC_ORDER
3063 regno
= reg_alloc_order
[raw_regno
];
3068 /* Can it support the mode we need? */
3069 if (! HARD_REGNO_MODE_OK (regno
, mode
))
3073 for (j
= 0; success
&& j
< hard_regno_nregs
[regno
][mode
]; j
++)
3075 /* Don't allocate fixed registers. */
3076 if (fixed_regs
[regno
+ j
])
3081 /* Don't allocate global registers. */
3082 if (global_regs
[regno
+ j
])
3087 /* Make sure the register is of the right class. */
3088 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
+ j
))
3093 /* And that we don't create an extra save/restore. */
3094 if (! call_used_regs
[regno
+ j
] && ! df_regs_ever_live_p (regno
+ j
))
3100 if (! targetm
.hard_regno_scratch_ok (regno
+ j
))
3106 /* And we don't clobber traceback for noreturn functions. */
3107 if ((regno
+ j
== FRAME_POINTER_REGNUM
3108 || regno
+ j
== HARD_FRAME_POINTER_REGNUM
)
3109 && (! reload_completed
|| frame_pointer_needed
))
3115 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3116 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3125 add_to_hard_reg_set (reg_set
, mode
, regno
);
3127 /* Start the next search with the next register. */
3128 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3130 search_ofs
= raw_regno
;
3132 return gen_rtx_REG (mode
, regno
);
3140 /* Forget all currently tracked instructions, only remember current
3144 peep2_reinit_state (regset live
)
3148 /* Indicate that all slots except the last holds invalid data. */
3149 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3150 peep2_insn_data
[i
].insn
= NULL_RTX
;
3151 peep2_current_count
= 0;
3153 /* Indicate that the last slot contains live_after data. */
3154 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3155 peep2_current
= MAX_INSNS_PER_PEEP2
;
3157 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3160 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3161 starting at INSN. Perform the replacement, removing the old insns and
3162 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3163 if the replacement is rejected. */
3166 peep2_attempt (basic_block bb
, rtx uncast_insn
, int match_len
, rtx_insn
*attempt
)
3168 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3170 rtx_insn
*last
, *before_try
, *x
;
3171 rtx eh_note
, as_note
;
3174 bool was_call
= false;
3176 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3177 match more than one insn, or to be split into more than one insn. */
3178 old_insn
= as_a
<rtx_insn
*> (peep2_insn_data
[peep2_current
].insn
);
3179 if (RTX_FRAME_RELATED_P (old_insn
))
3181 bool any_note
= false;
3187 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3188 may be in the stream for the purpose of register allocation. */
3189 if (active_insn_p (attempt
))
3192 new_insn
= next_active_insn (attempt
);
3193 if (next_active_insn (new_insn
))
3196 /* We have a 1-1 replacement. Copy over any frame-related info. */
3197 RTX_FRAME_RELATED_P (new_insn
) = 1;
3199 /* Allow the backend to fill in a note during the split. */
3200 for (note
= REG_NOTES (new_insn
); note
; note
= XEXP (note
, 1))
3201 switch (REG_NOTE_KIND (note
))
3203 case REG_FRAME_RELATED_EXPR
:
3204 case REG_CFA_DEF_CFA
:
3205 case REG_CFA_ADJUST_CFA
:
3206 case REG_CFA_OFFSET
:
3207 case REG_CFA_REGISTER
:
3208 case REG_CFA_EXPRESSION
:
3209 case REG_CFA_RESTORE
:
3210 case REG_CFA_SET_VDRAP
:
3217 /* If the backend didn't supply a note, copy one over. */
3219 for (note
= REG_NOTES (old_insn
); note
; note
= XEXP (note
, 1))
3220 switch (REG_NOTE_KIND (note
))
3222 case REG_FRAME_RELATED_EXPR
:
3223 case REG_CFA_DEF_CFA
:
3224 case REG_CFA_ADJUST_CFA
:
3225 case REG_CFA_OFFSET
:
3226 case REG_CFA_REGISTER
:
3227 case REG_CFA_EXPRESSION
:
3228 case REG_CFA_RESTORE
:
3229 case REG_CFA_SET_VDRAP
:
3230 add_reg_note (new_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3237 /* If there still isn't a note, make sure the unwind info sees the
3238 same expression as before the split. */
3241 rtx old_set
, new_set
;
3243 /* The old insn had better have been simple, or annotated. */
3244 old_set
= single_set (old_insn
);
3245 gcc_assert (old_set
!= NULL
);
3247 new_set
= single_set (new_insn
);
3248 if (!new_set
|| !rtx_equal_p (new_set
, old_set
))
3249 add_reg_note (new_insn
, REG_FRAME_RELATED_EXPR
, old_set
);
3252 /* Copy prologue/epilogue status. This is required in order to keep
3253 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3254 maybe_copy_prologue_epilogue_insn (old_insn
, new_insn
);
3257 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3258 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3259 cfg-related call notes. */
3260 for (i
= 0; i
<= match_len
; ++i
)
3265 j
= peep2_buf_position (peep2_current
+ i
);
3266 old_insn
= as_a
<rtx_insn
*> (peep2_insn_data
[j
].insn
);
3267 if (!CALL_P (old_insn
))
3272 while (new_insn
!= NULL_RTX
)
3274 if (CALL_P (new_insn
))
3276 new_insn
= NEXT_INSN (new_insn
);
3279 gcc_assert (new_insn
!= NULL_RTX
);
3281 CALL_INSN_FUNCTION_USAGE (new_insn
)
3282 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3283 SIBLING_CALL_P (new_insn
) = SIBLING_CALL_P (old_insn
);
3285 for (note
= REG_NOTES (old_insn
);
3287 note
= XEXP (note
, 1))
3288 switch (REG_NOTE_KIND (note
))
3293 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3297 /* Discard all other reg notes. */
3301 /* Croak if there is another call in the sequence. */
3302 while (++i
<= match_len
)
3304 j
= peep2_buf_position (peep2_current
+ i
);
3305 old_insn
= as_a
<rtx_insn
*> (peep2_insn_data
[j
].insn
);
3306 gcc_assert (!CALL_P (old_insn
));
3311 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3312 move those notes over to the new sequence. */
3314 for (i
= match_len
; i
>= 0; --i
)
3316 int j
= peep2_buf_position (peep2_current
+ i
);
3317 old_insn
= as_a
<rtx_insn
*> (peep2_insn_data
[j
].insn
);
3319 as_note
= find_reg_note (old_insn
, REG_ARGS_SIZE
, NULL
);
3324 i
= peep2_buf_position (peep2_current
+ match_len
);
3325 eh_note
= find_reg_note (peep2_insn_data
[i
].insn
, REG_EH_REGION
, NULL_RTX
);
3327 /* Replace the old sequence with the new. */
3328 rtx_insn
*peepinsn
= as_a
<rtx_insn
*> (peep2_insn_data
[i
].insn
);
3329 last
= emit_insn_after_setloc (attempt
,
3330 peep2_insn_data
[i
].insn
,
3331 INSN_LOCATION (peepinsn
));
3332 before_try
= PREV_INSN (insn
);
3333 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3335 /* Re-insert the EH_REGION notes. */
3336 if (eh_note
|| (was_call
&& nonlocal_goto_handler_labels
))
3341 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3342 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3346 copy_reg_eh_region_note_backward (eh_note
, last
, before_try
);
3349 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3350 if (x
!= BB_END (bb
)
3351 && (can_throw_internal (x
)
3352 || can_nonlocal_goto (x
)))
3357 nfte
= split_block (bb
, x
);
3358 flags
= (eh_edge
->flags
3359 & (EDGE_EH
| EDGE_ABNORMAL
));
3361 flags
|= EDGE_ABNORMAL_CALL
;
3362 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3365 nehe
->probability
= eh_edge
->probability
;
3367 = REG_BR_PROB_BASE
- nehe
->probability
;
3369 peep2_do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3374 /* Converting possibly trapping insn to non-trapping is
3375 possible. Zap dummy outgoing edges. */
3376 peep2_do_cleanup_cfg
|= purge_dead_edges (bb
);
3379 /* Re-insert the ARGS_SIZE notes. */
3381 fixup_args_size_notes (before_try
, last
, INTVAL (XEXP (as_note
, 0)));
3383 /* If we generated a jump instruction, it won't have
3384 JUMP_LABEL set. Recompute after we're done. */
3385 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3388 peep2_do_rebuild_jump_labels
= true;
3395 /* After performing a replacement in basic block BB, fix up the life
3396 information in our buffer. LAST is the last of the insns that we
3397 emitted as a replacement. PREV is the insn before the start of
3398 the replacement. MATCH_LEN is the number of instructions that were
3399 matched, and which now need to be replaced in the buffer. */
3402 peep2_update_life (basic_block bb
, int match_len
, rtx_insn
*last
,
3405 int i
= peep2_buf_position (peep2_current
+ match_len
+ 1);
3409 INIT_REG_SET (&live
);
3410 COPY_REG_SET (&live
, peep2_insn_data
[i
].live_before
);
3412 gcc_assert (peep2_current_count
>= match_len
+ 1);
3413 peep2_current_count
-= match_len
+ 1;
3421 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
)
3423 peep2_current_count
++;
3425 i
= MAX_INSNS_PER_PEEP2
;
3426 peep2_insn_data
[i
].insn
= x
;
3427 df_simulate_one_insn_backwards (bb
, x
, &live
);
3428 COPY_REG_SET (peep2_insn_data
[i
].live_before
, &live
);
3434 CLEAR_REG_SET (&live
);
3439 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3440 Return true if we added it, false otherwise. The caller will try to match
3441 peepholes against the buffer if we return false; otherwise it will try to
3442 add more instructions to the buffer. */
3445 peep2_fill_buffer (basic_block bb
, rtx insn
, regset live
)
3449 /* Once we have filled the maximum number of insns the buffer can hold,
3450 allow the caller to match the insns against peepholes. We wait until
3451 the buffer is full in case the target has similar peepholes of different
3452 length; we always want to match the longest if possible. */
3453 if (peep2_current_count
== MAX_INSNS_PER_PEEP2
)
3456 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3457 any other pattern, lest it change the semantics of the frame info. */
3458 if (RTX_FRAME_RELATED_P (insn
))
3460 /* Let the buffer drain first. */
3461 if (peep2_current_count
> 0)
3463 /* Now the insn will be the only thing in the buffer. */
3466 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3467 peep2_insn_data
[pos
].insn
= insn
;
3468 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3469 peep2_current_count
++;
3471 df_simulate_one_insn_forwards (bb
, as_a
<rtx_insn
*> (insn
), live
);
3475 /* Perform the peephole2 optimization pass. */
3478 peephole2_optimize (void)
3485 peep2_do_cleanup_cfg
= false;
3486 peep2_do_rebuild_jump_labels
= false;
3488 df_set_flags (DF_LR_RUN_DCE
);
3489 df_note_add_problem ();
3492 /* Initialize the regsets we're going to use. */
3493 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3494 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3496 live
= BITMAP_ALLOC (®_obstack
);
3498 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
3500 bool past_end
= false;
3503 rtl_profile_for_bb (bb
);
3505 /* Start up propagation. */
3506 bitmap_copy (live
, DF_LR_IN (bb
));
3507 df_simulate_initialize_forwards (bb
, live
);
3508 peep2_reinit_state (live
);
3510 insn
= BB_HEAD (bb
);
3517 if (!past_end
&& !NONDEBUG_INSN_P (insn
))
3520 insn
= NEXT_INSN (insn
);
3521 if (insn
== NEXT_INSN (BB_END (bb
)))
3525 if (!past_end
&& peep2_fill_buffer (bb
, insn
, live
))
3528 /* If we did not fill an empty buffer, it signals the end of the
3530 if (peep2_current_count
== 0)
3533 /* The buffer filled to the current maximum, so try to match. */
3535 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3536 peep2_insn_data
[pos
].insn
= PEEP2_EOB
;
3537 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3539 /* Match the peephole. */
3540 head
= peep2_insn_data
[peep2_current
].insn
;
3541 attempt
= safe_as_a
<rtx_insn
*> (
3542 peephole2_insns (PATTERN (head
), head
, &match_len
));
3543 if (attempt
!= NULL
)
3545 rtx_insn
*last
= peep2_attempt (bb
, head
, match_len
, attempt
);
3548 peep2_update_life (bb
, match_len
, last
, PREV_INSN (attempt
));
3553 /* No match: advance the buffer by one insn. */
3554 peep2_current
= peep2_buf_position (peep2_current
+ 1);
3555 peep2_current_count
--;
3559 default_rtl_profile ();
3560 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3561 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3563 if (peep2_do_rebuild_jump_labels
)
3564 rebuild_jump_labels (get_insns ());
3565 if (peep2_do_cleanup_cfg
)
3566 cleanup_cfg (CLEANUP_CFG_CHANGED
);
3568 #endif /* HAVE_peephole2 */
3570 /* Common predicates for use with define_bypass. */
3572 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3573 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3574 must be either a single_set or a PARALLEL with SETs inside. */
3577 store_data_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
3579 rtx out_set
, in_set
;
3580 rtx out_pat
, in_pat
;
3581 rtx out_exp
, in_exp
;
3584 in_set
= single_set (in_insn
);
3587 if (!MEM_P (SET_DEST (in_set
)))
3590 out_set
= single_set (out_insn
);
3593 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3598 out_pat
= PATTERN (out_insn
);
3600 if (GET_CODE (out_pat
) != PARALLEL
)
3603 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3605 out_exp
= XVECEXP (out_pat
, 0, i
);
3607 if (GET_CODE (out_exp
) == CLOBBER
)
3610 gcc_assert (GET_CODE (out_exp
) == SET
);
3612 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3619 in_pat
= PATTERN (in_insn
);
3620 gcc_assert (GET_CODE (in_pat
) == PARALLEL
);
3622 for (i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3624 in_exp
= XVECEXP (in_pat
, 0, i
);
3626 if (GET_CODE (in_exp
) == CLOBBER
)
3629 gcc_assert (GET_CODE (in_exp
) == SET
);
3631 if (!MEM_P (SET_DEST (in_exp
)))
3634 out_set
= single_set (out_insn
);
3637 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_exp
)))
3642 out_pat
= PATTERN (out_insn
);
3643 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3645 for (j
= 0; j
< XVECLEN (out_pat
, 0); j
++)
3647 out_exp
= XVECEXP (out_pat
, 0, j
);
3649 if (GET_CODE (out_exp
) == CLOBBER
)
3652 gcc_assert (GET_CODE (out_exp
) == SET
);
3654 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_exp
)))
3664 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3665 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3666 or multiple set; IN_INSN should be single_set for truth, but for convenience
3667 of insn categorization may be any JUMP or CALL insn. */
3670 if_test_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
3672 rtx out_set
, in_set
;
3674 in_set
= single_set (in_insn
);
3677 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3681 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3683 in_set
= SET_SRC (in_set
);
3685 out_set
= single_set (out_insn
);
3688 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3689 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3697 out_pat
= PATTERN (out_insn
);
3698 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3700 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3702 rtx exp
= XVECEXP (out_pat
, 0, i
);
3704 if (GET_CODE (exp
) == CLOBBER
)
3707 gcc_assert (GET_CODE (exp
) == SET
);
3709 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3710 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3719 rest_of_handle_peephole2 (void)
3721 #ifdef HAVE_peephole2
3722 peephole2_optimize ();
3729 const pass_data pass_data_peephole2
=
3731 RTL_PASS
, /* type */
3732 "peephole2", /* name */
3733 OPTGROUP_NONE
, /* optinfo_flags */
3734 TV_PEEPHOLE2
, /* tv_id */
3735 0, /* properties_required */
3736 0, /* properties_provided */
3737 0, /* properties_destroyed */
3738 0, /* todo_flags_start */
3739 TODO_df_finish
, /* todo_flags_finish */
3742 class pass_peephole2
: public rtl_opt_pass
3745 pass_peephole2 (gcc::context
*ctxt
)
3746 : rtl_opt_pass (pass_data_peephole2
, ctxt
)
3749 /* opt_pass methods: */
3750 /* The epiphany backend creates a second instance of this pass, so we need
3752 opt_pass
* clone () { return new pass_peephole2 (m_ctxt
); }
3753 virtual bool gate (function
*) { return (optimize
> 0 && flag_peephole2
); }
3754 virtual unsigned int execute (function
*)
3756 return rest_of_handle_peephole2 ();
3759 }; // class pass_peephole2
3764 make_pass_peephole2 (gcc::context
*ctxt
)
3766 return new pass_peephole2 (ctxt
);
3771 const pass_data pass_data_split_all_insns
=
3773 RTL_PASS
, /* type */
3774 "split1", /* name */
3775 OPTGROUP_NONE
, /* optinfo_flags */
3776 TV_NONE
, /* tv_id */
3777 0, /* properties_required */
3778 0, /* properties_provided */
3779 0, /* properties_destroyed */
3780 0, /* todo_flags_start */
3781 0, /* todo_flags_finish */
3784 class pass_split_all_insns
: public rtl_opt_pass
3787 pass_split_all_insns (gcc::context
*ctxt
)
3788 : rtl_opt_pass (pass_data_split_all_insns
, ctxt
)
3791 /* opt_pass methods: */
3792 /* The epiphany backend creates a second instance of this pass, so
3793 we need a clone method. */
3794 opt_pass
* clone () { return new pass_split_all_insns (m_ctxt
); }
3795 virtual unsigned int execute (function
*)
3801 }; // class pass_split_all_insns
3806 make_pass_split_all_insns (gcc::context
*ctxt
)
3808 return new pass_split_all_insns (ctxt
);
3812 rest_of_handle_split_after_reload (void)
3814 /* If optimizing, then go ahead and split insns now. */
3824 const pass_data pass_data_split_after_reload
=
3826 RTL_PASS
, /* type */
3827 "split2", /* name */
3828 OPTGROUP_NONE
, /* optinfo_flags */
3829 TV_NONE
, /* tv_id */
3830 0, /* properties_required */
3831 0, /* properties_provided */
3832 0, /* properties_destroyed */
3833 0, /* todo_flags_start */
3834 0, /* todo_flags_finish */
3837 class pass_split_after_reload
: public rtl_opt_pass
3840 pass_split_after_reload (gcc::context
*ctxt
)
3841 : rtl_opt_pass (pass_data_split_after_reload
, ctxt
)
3844 /* opt_pass methods: */
3845 virtual unsigned int execute (function
*)
3847 return rest_of_handle_split_after_reload ();
3850 }; // class pass_split_after_reload
3855 make_pass_split_after_reload (gcc::context
*ctxt
)
3857 return new pass_split_after_reload (ctxt
);
3862 const pass_data pass_data_split_before_regstack
=
3864 RTL_PASS
, /* type */
3865 "split3", /* name */
3866 OPTGROUP_NONE
, /* optinfo_flags */
3867 TV_NONE
, /* tv_id */
3868 0, /* properties_required */
3869 0, /* properties_provided */
3870 0, /* properties_destroyed */
3871 0, /* todo_flags_start */
3872 0, /* todo_flags_finish */
3875 class pass_split_before_regstack
: public rtl_opt_pass
3878 pass_split_before_regstack (gcc::context
*ctxt
)
3879 : rtl_opt_pass (pass_data_split_before_regstack
, ctxt
)
3882 /* opt_pass methods: */
3883 virtual bool gate (function
*);
3884 virtual unsigned int execute (function
*)
3890 }; // class pass_split_before_regstack
3893 pass_split_before_regstack::gate (function
*)
3895 #if HAVE_ATTR_length && defined (STACK_REGS)
3896 /* If flow2 creates new instructions which need splitting
3897 and scheduling after reload is not done, they might not be
3898 split until final which doesn't allow splitting
3899 if HAVE_ATTR_length. */
3900 # ifdef INSN_SCHEDULING
3901 return (optimize
&& !flag_schedule_insns_after_reload
);
3913 make_pass_split_before_regstack (gcc::context
*ctxt
)
3915 return new pass_split_before_regstack (ctxt
);
3919 rest_of_handle_split_before_sched2 (void)
3921 #ifdef INSN_SCHEDULING
3929 const pass_data pass_data_split_before_sched2
=
3931 RTL_PASS
, /* type */
3932 "split4", /* name */
3933 OPTGROUP_NONE
, /* optinfo_flags */
3934 TV_NONE
, /* tv_id */
3935 0, /* properties_required */
3936 0, /* properties_provided */
3937 0, /* properties_destroyed */
3938 0, /* todo_flags_start */
3939 0, /* todo_flags_finish */
3942 class pass_split_before_sched2
: public rtl_opt_pass
3945 pass_split_before_sched2 (gcc::context
*ctxt
)
3946 : rtl_opt_pass (pass_data_split_before_sched2
, ctxt
)
3949 /* opt_pass methods: */
3950 virtual bool gate (function
*)
3952 #ifdef INSN_SCHEDULING
3953 return optimize
> 0 && flag_schedule_insns_after_reload
;
3959 virtual unsigned int execute (function
*)
3961 return rest_of_handle_split_before_sched2 ();
3964 }; // class pass_split_before_sched2
3969 make_pass_split_before_sched2 (gcc::context
*ctxt
)
3971 return new pass_split_before_sched2 (ctxt
);
3976 const pass_data pass_data_split_for_shorten_branches
=
3978 RTL_PASS
, /* type */
3979 "split5", /* name */
3980 OPTGROUP_NONE
, /* optinfo_flags */
3981 TV_NONE
, /* tv_id */
3982 0, /* properties_required */
3983 0, /* properties_provided */
3984 0, /* properties_destroyed */
3985 0, /* todo_flags_start */
3986 0, /* todo_flags_finish */
3989 class pass_split_for_shorten_branches
: public rtl_opt_pass
3992 pass_split_for_shorten_branches (gcc::context
*ctxt
)
3993 : rtl_opt_pass (pass_data_split_for_shorten_branches
, ctxt
)
3996 /* opt_pass methods: */
3997 virtual bool gate (function
*)
3999 /* The placement of the splitting that we do for shorten_branches
4000 depends on whether regstack is used by the target or not. */
4001 #if HAVE_ATTR_length && !defined (STACK_REGS)
4008 virtual unsigned int execute (function
*)
4010 return split_all_insns_noflow ();
4013 }; // class pass_split_for_shorten_branches
4018 make_pass_split_for_shorten_branches (gcc::context
*ctxt
)
4020 return new pass_split_for_shorten_branches (ctxt
);
4023 /* (Re)initialize the target information after a change in target. */
4028 /* The information is zero-initialized, so we don't need to do anything
4029 first time round. */
4030 if (!this_target_recog
->x_initialized
)
4032 this_target_recog
->x_initialized
= true;
4035 memset (this_target_recog
->x_enabled_alternatives
, 0,
4036 sizeof (this_target_recog
->x_enabled_alternatives
));
4037 for (int i
= 0; i
< LAST_INSN_CODE
; ++i
)
4038 if (this_target_recog
->x_op_alt
[i
])
4040 free (this_target_recog
->x_op_alt
[i
]);
4041 this_target_recog
->x_op_alt
[i
] = 0;