1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
42 #include "basic-block.h"
47 #include "stringpool.h"
50 #include "hard-reg-set.h"
52 #include "insn-config.h"
56 #include "langhooks.h"
63 struct target_rtl default_target_rtl
;
65 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70 /* Commonly used modes. */
72 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
73 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
74 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
77 /* Datastructures maintained for currently processed function in RTL form. */
79 struct rtl_data x_rtl
;
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
91 static GTY(()) int label_num
= 1;
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
98 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
102 REAL_VALUE_TYPE dconst0
;
103 REAL_VALUE_TYPE dconst1
;
104 REAL_VALUE_TYPE dconst2
;
105 REAL_VALUE_TYPE dconstm1
;
106 REAL_VALUE_TYPE dconsthalf
;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
110 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
117 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
119 /* Standard pieces of rtx, to be substituted directly into things. */
122 rtx simple_return_rtx
;
125 /* A hash table storing CONST_INTs whose absolute value is greater
126 than MAX_SAVED_CONST_INT. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
129 htab_t const_int_htab
;
131 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
132 htab_t const_wide_int_htab
;
134 /* A hash table storing register attribute structures. */
135 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
136 htab_t reg_attrs_htab
;
138 /* A hash table storing all CONST_DOUBLEs. */
139 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
140 htab_t const_double_htab
;
142 /* A hash table storing all CONST_FIXEDs. */
143 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
144 htab_t const_fixed_htab
;
146 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
147 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
148 #define first_label_num (crtl->emit.x_first_label_num)
150 static void set_used_decls (tree
);
151 static void mark_label_nuses (rtx
);
152 static hashval_t
const_int_htab_hash (const void *);
153 static int const_int_htab_eq (const void *, const void *);
154 #if TARGET_SUPPORTS_WIDE_INT
155 static hashval_t
const_wide_int_htab_hash (const void *);
156 static int const_wide_int_htab_eq (const void *, const void *);
157 static rtx
lookup_const_wide_int (rtx
);
159 static hashval_t
const_double_htab_hash (const void *);
160 static int const_double_htab_eq (const void *, const void *);
161 static rtx
lookup_const_double (rtx
);
162 static hashval_t
const_fixed_htab_hash (const void *);
163 static int const_fixed_htab_eq (const void *, const void *);
164 static rtx
lookup_const_fixed (rtx
);
165 static hashval_t
reg_attrs_htab_hash (const void *);
166 static int reg_attrs_htab_eq (const void *, const void *);
167 static reg_attrs
*get_reg_attrs (tree
, int);
168 static rtx
gen_const_vector (enum machine_mode
, int);
169 static void copy_rtx_if_shared_1 (rtx
*orig
);
171 /* Probability of the conditional branch currently proceeded by try_split.
172 Set to -1 otherwise. */
173 int split_branch_probability
= -1;
175 /* Returns a hash code for X (which is a really a CONST_INT). */
178 const_int_htab_hash (const void *x
)
180 return (hashval_t
) INTVAL ((const_rtx
) x
);
183 /* Returns nonzero if the value represented by X (which is really a
184 CONST_INT) is the same as that given by Y (which is really a
188 const_int_htab_eq (const void *x
, const void *y
)
190 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
193 #if TARGET_SUPPORTS_WIDE_INT
194 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
197 const_wide_int_htab_hash (const void *x
)
200 HOST_WIDE_INT hash
= 0;
201 const_rtx xr
= (const_rtx
) x
;
203 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
204 hash
+= CONST_WIDE_INT_ELT (xr
, i
);
206 return (hashval_t
) hash
;
209 /* Returns nonzero if the value represented by X (which is really a
210 CONST_WIDE_INT) is the same as that given by Y (which is really a
214 const_wide_int_htab_eq (const void *x
, const void *y
)
217 const_rtx xr
= (const_rtx
) x
;
218 const_rtx yr
= (const_rtx
) y
;
219 if (CONST_WIDE_INT_NUNITS (xr
) != CONST_WIDE_INT_NUNITS (yr
))
222 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
223 if (CONST_WIDE_INT_ELT (xr
, i
) != CONST_WIDE_INT_ELT (yr
, i
))
230 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
232 const_double_htab_hash (const void *x
)
234 const_rtx
const value
= (const_rtx
) x
;
237 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (value
) == VOIDmode
)
238 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
241 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
242 /* MODE is used in the comparison, so it should be in the hash. */
243 h
^= GET_MODE (value
);
248 /* Returns nonzero if the value represented by X (really a ...)
249 is the same as that represented by Y (really a ...) */
251 const_double_htab_eq (const void *x
, const void *y
)
253 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
255 if (GET_MODE (a
) != GET_MODE (b
))
257 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (a
) == VOIDmode
)
258 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
259 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
261 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
262 CONST_DOUBLE_REAL_VALUE (b
));
265 /* Returns a hash code for X (which is really a CONST_FIXED). */
268 const_fixed_htab_hash (const void *x
)
270 const_rtx
const value
= (const_rtx
) x
;
273 h
= fixed_hash (CONST_FIXED_VALUE (value
));
274 /* MODE is used in the comparison, so it should be in the hash. */
275 h
^= GET_MODE (value
);
279 /* Returns nonzero if the value represented by X (really a ...)
280 is the same as that represented by Y (really a ...). */
283 const_fixed_htab_eq (const void *x
, const void *y
)
285 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
287 if (GET_MODE (a
) != GET_MODE (b
))
289 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
292 /* Return true if the given memory attributes are equal. */
295 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
301 return (p
->alias
== q
->alias
302 && p
->offset_known_p
== q
->offset_known_p
303 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
304 && p
->size_known_p
== q
->size_known_p
305 && (!p
->size_known_p
|| p
->size
== q
->size
)
306 && p
->align
== q
->align
307 && p
->addrspace
== q
->addrspace
308 && (p
->expr
== q
->expr
309 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
310 && operand_equal_p (p
->expr
, q
->expr
, 0))));
313 /* Set MEM's memory attributes so that they are the same as ATTRS. */
316 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
318 /* If everything is the default, we can just clear the attributes. */
319 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
326 || !mem_attrs_eq_p (attrs
, MEM_ATTRS (mem
)))
328 MEM_ATTRS (mem
) = ggc_alloc
<mem_attrs
> ();
329 memcpy (MEM_ATTRS (mem
), attrs
, sizeof (mem_attrs
));
333 /* Returns a hash code for X (which is a really a reg_attrs *). */
336 reg_attrs_htab_hash (const void *x
)
338 const reg_attrs
*const p
= (const reg_attrs
*) x
;
340 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
343 /* Returns nonzero if the value represented by X (which is really a
344 reg_attrs *) is the same as that given by Y (which is also really a
348 reg_attrs_htab_eq (const void *x
, const void *y
)
350 const reg_attrs
*const p
= (const reg_attrs
*) x
;
351 const reg_attrs
*const q
= (const reg_attrs
*) y
;
353 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
355 /* Allocate a new reg_attrs structure and insert it into the hash table if
356 one identical to it is not already in the table. We are doing this for
360 get_reg_attrs (tree decl
, int offset
)
365 /* If everything is the default, we can just return zero. */
366 if (decl
== 0 && offset
== 0)
370 attrs
.offset
= offset
;
372 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
375 *slot
= ggc_alloc
<reg_attrs
> ();
376 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
379 return (reg_attrs
*) *slot
;
384 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
385 and to block register equivalences to be seen across this insn. */
390 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
391 MEM_VOLATILE_P (x
) = true;
397 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
398 don't attempt to share with the various global pieces of rtl (such as
399 frame_pointer_rtx). */
402 gen_raw_REG (enum machine_mode mode
, int regno
)
404 rtx x
= gen_rtx_raw_REG (mode
, regno
);
405 ORIGINAL_REGNO (x
) = regno
;
409 /* There are some RTL codes that require special attention; the generation
410 functions do the raw handling. If you add to this list, modify
411 special_rtx in gengenrtl.c as well. */
414 gen_rtx_EXPR_LIST (enum machine_mode mode
, rtx expr
, rtx expr_list
)
416 return as_a
<rtx_expr_list
*> (gen_rtx_fmt_ee (EXPR_LIST
, mode
, expr
,
421 gen_rtx_INSN_LIST (enum machine_mode mode
, rtx insn
, rtx insn_list
)
423 return as_a
<rtx_insn_list
*> (gen_rtx_fmt_ue (INSN_LIST
, mode
, insn
,
428 gen_rtx_INSN (enum machine_mode mode
, rtx_insn
*prev_insn
, rtx_insn
*next_insn
,
429 basic_block bb
, rtx pattern
, int location
, int code
,
432 return as_a
<rtx_insn
*> (gen_rtx_fmt_uuBeiie (INSN
, mode
,
433 prev_insn
, next_insn
,
434 bb
, pattern
, location
, code
,
439 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
443 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
444 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
446 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
447 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
448 return const_true_rtx
;
451 /* Look up the CONST_INT in the hash table. */
452 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
453 (hashval_t
) arg
, INSERT
);
455 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
461 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
463 return GEN_INT (trunc_int_for_mode (c
, mode
));
466 /* CONST_DOUBLEs might be created from pairs of integers, or from
467 REAL_VALUE_TYPEs. Also, their length is known only at run time,
468 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
470 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
471 hash table. If so, return its counterpart; otherwise add it
472 to the hash table and return it. */
474 lookup_const_double (rtx real
)
476 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
483 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
484 VALUE in mode MODE. */
486 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
488 rtx real
= rtx_alloc (CONST_DOUBLE
);
489 PUT_MODE (real
, mode
);
493 return lookup_const_double (real
);
496 /* Determine whether FIXED, a CONST_FIXED, already exists in the
497 hash table. If so, return its counterpart; otherwise add it
498 to the hash table and return it. */
501 lookup_const_fixed (rtx fixed
)
503 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
510 /* Return a CONST_FIXED rtx for a fixed-point value specified by
511 VALUE in mode MODE. */
514 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
516 rtx fixed
= rtx_alloc (CONST_FIXED
);
517 PUT_MODE (fixed
, mode
);
521 return lookup_const_fixed (fixed
);
524 #if TARGET_SUPPORTS_WIDE_INT == 0
525 /* Constructs double_int from rtx CST. */
528 rtx_to_double_int (const_rtx cst
)
532 if (CONST_INT_P (cst
))
533 r
= double_int::from_shwi (INTVAL (cst
));
534 else if (CONST_DOUBLE_AS_INT_P (cst
))
536 r
.low
= CONST_DOUBLE_LOW (cst
);
537 r
.high
= CONST_DOUBLE_HIGH (cst
);
546 #if TARGET_SUPPORTS_WIDE_INT
547 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
548 If so, return its counterpart; otherwise add it to the hash table and
552 lookup_const_wide_int (rtx wint
)
554 void **slot
= htab_find_slot (const_wide_int_htab
, wint
, INSERT
);
562 /* Return an rtx constant for V, given that the constant has mode MODE.
563 The returned rtx will be a CONST_INT if V fits, otherwise it will be
564 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
565 (if TARGET_SUPPORTS_WIDE_INT). */
568 immed_wide_int_const (const wide_int_ref
&v
, enum machine_mode mode
)
570 unsigned int len
= v
.get_len ();
571 unsigned int prec
= GET_MODE_PRECISION (mode
);
573 /* Allow truncation but not extension since we do not know if the
574 number is signed or unsigned. */
575 gcc_assert (prec
<= v
.get_precision ());
577 if (len
< 2 || prec
<= HOST_BITS_PER_WIDE_INT
)
578 return gen_int_mode (v
.elt (0), mode
);
580 #if TARGET_SUPPORTS_WIDE_INT
584 unsigned int blocks_needed
585 = (prec
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
;
587 if (len
> blocks_needed
)
590 value
= const_wide_int_alloc (len
);
592 /* It is so tempting to just put the mode in here. Must control
594 PUT_MODE (value
, VOIDmode
);
595 CWI_PUT_NUM_ELEM (value
, len
);
597 for (i
= 0; i
< len
; i
++)
598 CONST_WIDE_INT_ELT (value
, i
) = v
.elt (i
);
600 return lookup_const_wide_int (value
);
603 return immed_double_const (v
.elt (0), v
.elt (1), mode
);
607 #if TARGET_SUPPORTS_WIDE_INT == 0
608 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
609 of ints: I0 is the low-order word and I1 is the high-order word.
610 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
611 implied upper bits are copies of the high bit of i1. The value
612 itself is neither signed nor unsigned. Do not use this routine for
613 non-integer modes; convert to REAL_VALUE_TYPE and use
614 CONST_DOUBLE_FROM_REAL_VALUE. */
617 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
622 /* There are the following cases (note that there are no modes with
623 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
625 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
627 2) If the value of the integer fits into HOST_WIDE_INT anyway
628 (i.e., i1 consists only from copies of the sign bit, and sign
629 of i0 and i1 are the same), then we return a CONST_INT for i0.
630 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
631 if (mode
!= VOIDmode
)
633 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
634 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
635 /* We can get a 0 for an error mark. */
636 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
637 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
639 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
640 return gen_int_mode (i0
, mode
);
643 /* If this integer fits in one word, return a CONST_INT. */
644 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
647 /* We use VOIDmode for integers. */
648 value
= rtx_alloc (CONST_DOUBLE
);
649 PUT_MODE (value
, VOIDmode
);
651 CONST_DOUBLE_LOW (value
) = i0
;
652 CONST_DOUBLE_HIGH (value
) = i1
;
654 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
655 XWINT (value
, i
) = 0;
657 return lookup_const_double (value
);
662 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
664 /* In case the MD file explicitly references the frame pointer, have
665 all such references point to the same frame pointer. This is
666 used during frame pointer elimination to distinguish the explicit
667 references to these registers from pseudos that happened to be
670 If we have eliminated the frame pointer or arg pointer, we will
671 be using it as a normal register, for example as a spill
672 register. In such cases, we might be accessing it in a mode that
673 is not Pmode and therefore cannot use the pre-allocated rtx.
675 Also don't do this when we are making new REGs in reload, since
676 we don't want to get confused with the real pointers. */
678 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
680 if (regno
== FRAME_POINTER_REGNUM
681 && (!reload_completed
|| frame_pointer_needed
))
682 return frame_pointer_rtx
;
683 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
684 if (regno
== HARD_FRAME_POINTER_REGNUM
685 && (!reload_completed
|| frame_pointer_needed
))
686 return hard_frame_pointer_rtx
;
688 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
689 if (regno
== ARG_POINTER_REGNUM
)
690 return arg_pointer_rtx
;
692 #ifdef RETURN_ADDRESS_POINTER_REGNUM
693 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
694 return return_address_pointer_rtx
;
696 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
697 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
698 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
699 return pic_offset_table_rtx
;
700 if (regno
== STACK_POINTER_REGNUM
)
701 return stack_pointer_rtx
;
705 /* If the per-function register table has been set up, try to re-use
706 an existing entry in that table to avoid useless generation of RTL.
708 This code is disabled for now until we can fix the various backends
709 which depend on having non-shared hard registers in some cases. Long
710 term we want to re-enable this code as it can significantly cut down
711 on the amount of useless RTL that gets generated.
713 We'll also need to fix some code that runs after reload that wants to
714 set ORIGINAL_REGNO. */
719 && regno
< FIRST_PSEUDO_REGISTER
720 && reg_raw_mode
[regno
] == mode
)
721 return regno_reg_rtx
[regno
];
724 return gen_raw_REG (mode
, regno
);
728 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
730 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
732 /* This field is not cleared by the mere allocation of the rtx, so
739 /* Generate a memory referring to non-trapping constant memory. */
742 gen_const_mem (enum machine_mode mode
, rtx addr
)
744 rtx mem
= gen_rtx_MEM (mode
, addr
);
745 MEM_READONLY_P (mem
) = 1;
746 MEM_NOTRAP_P (mem
) = 1;
750 /* Generate a MEM referring to fixed portions of the frame, e.g., register
754 gen_frame_mem (enum machine_mode mode
, rtx addr
)
756 rtx mem
= gen_rtx_MEM (mode
, addr
);
757 MEM_NOTRAP_P (mem
) = 1;
758 set_mem_alias_set (mem
, get_frame_alias_set ());
762 /* Generate a MEM referring to a temporary use of the stack, not part
763 of the fixed stack frame. For example, something which is pushed
764 by a target splitter. */
766 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
768 rtx mem
= gen_rtx_MEM (mode
, addr
);
769 MEM_NOTRAP_P (mem
) = 1;
770 if (!cfun
->calls_alloca
)
771 set_mem_alias_set (mem
, get_frame_alias_set ());
775 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
776 this construct would be valid, and false otherwise. */
779 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
780 const_rtx reg
, unsigned int offset
)
782 unsigned int isize
= GET_MODE_SIZE (imode
);
783 unsigned int osize
= GET_MODE_SIZE (omode
);
785 /* All subregs must be aligned. */
786 if (offset
% osize
!= 0)
789 /* The subreg offset cannot be outside the inner object. */
793 /* ??? This should not be here. Temporarily continue to allow word_mode
794 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
795 Generally, backends are doing something sketchy but it'll take time to
797 if (omode
== word_mode
)
799 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
800 is the culprit here, and not the backends. */
801 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
803 /* Allow component subregs of complex and vector. Though given the below
804 extraction rules, it's not always clear what that means. */
805 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
806 && GET_MODE_INNER (imode
) == omode
)
808 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
809 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
810 represent this. It's questionable if this ought to be represented at
811 all -- why can't this all be hidden in post-reload splitters that make
812 arbitrarily mode changes to the registers themselves. */
813 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
815 /* Subregs involving floating point modes are not allowed to
816 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
817 (subreg:SI (reg:DF) 0) isn't. */
818 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
820 if (! (isize
== osize
821 /* LRA can use subreg to store a floating point value in
822 an integer mode. Although the floating point and the
823 integer modes need the same number of hard registers,
824 the size of floating point mode can be less than the
825 integer mode. LRA also uses subregs for a register
826 should be used in different mode in on insn. */
831 /* Paradoxical subregs must have offset zero. */
835 /* This is a normal subreg. Verify that the offset is representable. */
837 /* For hard registers, we already have most of these rules collected in
838 subreg_offset_representable_p. */
839 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
841 unsigned int regno
= REGNO (reg
);
843 #ifdef CANNOT_CHANGE_MODE_CLASS
844 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
845 && GET_MODE_INNER (imode
) == omode
)
847 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
851 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
854 /* For pseudo registers, we want most of the same checks. Namely:
855 If the register no larger than a word, the subreg must be lowpart.
856 If the register is larger than a word, the subreg must be the lowpart
857 of a subword. A subreg does *not* perform arbitrary bit extraction.
858 Given that we've already checked mode/offset alignment, we only have
859 to check subword subregs here. */
860 if (osize
< UNITS_PER_WORD
861 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
863 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
864 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
865 if (offset
% UNITS_PER_WORD
!= low_off
)
872 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
874 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
875 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
878 /* Generate a SUBREG representing the least-significant part of REG if MODE
879 is smaller than mode of REG, otherwise paradoxical SUBREG. */
882 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
884 enum machine_mode inmode
;
886 inmode
= GET_MODE (reg
);
887 if (inmode
== VOIDmode
)
889 return gen_rtx_SUBREG (mode
, reg
,
890 subreg_lowpart_offset (mode
, inmode
));
894 gen_rtx_VAR_LOCATION (enum machine_mode mode
, tree decl
, rtx loc
,
895 enum var_init_status status
)
897 rtx x
= gen_rtx_fmt_te (VAR_LOCATION
, mode
, decl
, loc
);
898 PAT_VAR_LOCATION_STATUS (x
) = status
;
903 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
906 gen_rtvec (int n
, ...)
914 /* Don't allocate an empty rtvec... */
921 rt_val
= rtvec_alloc (n
);
923 for (i
= 0; i
< n
; i
++)
924 rt_val
->elem
[i
] = va_arg (p
, rtx
);
931 gen_rtvec_v (int n
, rtx
*argp
)
936 /* Don't allocate an empty rtvec... */
940 rt_val
= rtvec_alloc (n
);
942 for (i
= 0; i
< n
; i
++)
943 rt_val
->elem
[i
] = *argp
++;
949 gen_rtvec_v (int n
, rtx_insn
**argp
)
954 /* Don't allocate an empty rtvec... */
958 rt_val
= rtvec_alloc (n
);
960 for (i
= 0; i
< n
; i
++)
961 rt_val
->elem
[i
] = *argp
++;
967 /* Return the number of bytes between the start of an OUTER_MODE
968 in-memory value and the start of an INNER_MODE in-memory value,
969 given that the former is a lowpart of the latter. It may be a
970 paradoxical lowpart, in which case the offset will be negative
971 on big-endian targets. */
974 byte_lowpart_offset (enum machine_mode outer_mode
,
975 enum machine_mode inner_mode
)
977 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
978 return subreg_lowpart_offset (outer_mode
, inner_mode
);
980 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
983 /* Generate a REG rtx for a new pseudo register of mode MODE.
984 This pseudo is assigned the next sequential register number. */
987 gen_reg_rtx (enum machine_mode mode
)
990 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
992 gcc_assert (can_create_pseudo_p ());
994 /* If a virtual register with bigger mode alignment is generated,
995 increase stack alignment estimation because it might be spilled
997 if (SUPPORTS_STACK_ALIGNMENT
998 && crtl
->stack_alignment_estimated
< align
999 && !crtl
->stack_realign_processed
)
1001 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
1002 if (crtl
->stack_alignment_estimated
< min_align
)
1003 crtl
->stack_alignment_estimated
= min_align
;
1006 if (generating_concat_p
1007 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
1008 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
1010 /* For complex modes, don't make a single pseudo.
1011 Instead, make a CONCAT of two pseudos.
1012 This allows noncontiguous allocation of the real and imaginary parts,
1013 which makes much better code. Besides, allocating DCmode
1014 pseudos overstrains reload on some machines like the 386. */
1015 rtx realpart
, imagpart
;
1016 enum machine_mode partmode
= GET_MODE_INNER (mode
);
1018 realpart
= gen_reg_rtx (partmode
);
1019 imagpart
= gen_reg_rtx (partmode
);
1020 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
1023 /* Do not call gen_reg_rtx with uninitialized crtl. */
1024 gcc_assert (crtl
->emit
.regno_pointer_align_length
);
1026 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1027 enough to have an element for this pseudo reg number. */
1029 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
1031 int old_size
= crtl
->emit
.regno_pointer_align_length
;
1035 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
1036 memset (tmp
+ old_size
, 0, old_size
);
1037 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
1039 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
1040 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
1041 regno_reg_rtx
= new1
;
1043 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
1046 val
= gen_raw_REG (mode
, reg_rtx_no
);
1047 regno_reg_rtx
[reg_rtx_no
++] = val
;
1051 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1054 reg_is_parm_p (rtx reg
)
1058 gcc_assert (REG_P (reg
));
1059 decl
= REG_EXPR (reg
);
1060 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
1063 /* Update NEW with the same attributes as REG, but with OFFSET added
1064 to the REG_OFFSET. */
1067 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
1069 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
1070 REG_OFFSET (reg
) + offset
);
1073 /* Generate a register with same attributes as REG, but with OFFSET
1074 added to the REG_OFFSET. */
1077 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
1080 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
1082 update_reg_offset (new_rtx
, reg
, offset
);
1086 /* Generate a new pseudo-register with the same attributes as REG, but
1087 with OFFSET added to the REG_OFFSET. */
1090 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
1092 rtx new_rtx
= gen_reg_rtx (mode
);
1094 update_reg_offset (new_rtx
, reg
, offset
);
1098 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1099 new register is a (possibly paradoxical) lowpart of the old one. */
1102 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
1104 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
1105 PUT_MODE (reg
, mode
);
1108 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1109 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1112 set_reg_attrs_from_value (rtx reg
, rtx x
)
1115 bool can_be_reg_pointer
= true;
1117 /* Don't call mark_reg_pointer for incompatible pointer sign
1119 while (GET_CODE (x
) == SIGN_EXTEND
1120 || GET_CODE (x
) == ZERO_EXTEND
1121 || GET_CODE (x
) == TRUNCATE
1122 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
1124 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1125 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
1126 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
1127 can_be_reg_pointer
= false;
1132 /* Hard registers can be reused for multiple purposes within the same
1133 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1134 on them is wrong. */
1135 if (HARD_REGISTER_P (reg
))
1138 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1141 if (MEM_OFFSET_KNOWN_P (x
))
1142 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1143 MEM_OFFSET (x
) + offset
);
1144 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1145 mark_reg_pointer (reg
, 0);
1150 update_reg_offset (reg
, x
, offset
);
1151 if (can_be_reg_pointer
&& REG_POINTER (x
))
1152 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1156 /* Generate a REG rtx for a new pseudo register, copying the mode
1157 and attributes from X. */
1160 gen_reg_rtx_and_attrs (rtx x
)
1162 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1163 set_reg_attrs_from_value (reg
, x
);
1167 /* Set the register attributes for registers contained in PARM_RTX.
1168 Use needed values from memory attributes of MEM. */
1171 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1173 if (REG_P (parm_rtx
))
1174 set_reg_attrs_from_value (parm_rtx
, mem
);
1175 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1177 /* Check for a NULL entry in the first slot, used to indicate that the
1178 parameter goes both on the stack and in registers. */
1179 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1180 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1182 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1183 if (REG_P (XEXP (x
, 0)))
1184 REG_ATTRS (XEXP (x
, 0))
1185 = get_reg_attrs (MEM_EXPR (mem
),
1186 INTVAL (XEXP (x
, 1)));
1191 /* Set the REG_ATTRS for registers in value X, given that X represents
1195 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1197 if (GET_CODE (x
) == SUBREG
)
1199 gcc_assert (subreg_lowpart_p (x
));
1204 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1206 if (GET_CODE (x
) == CONCAT
)
1208 if (REG_P (XEXP (x
, 0)))
1209 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1210 if (REG_P (XEXP (x
, 1)))
1211 REG_ATTRS (XEXP (x
, 1))
1212 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1214 if (GET_CODE (x
) == PARALLEL
)
1218 /* Check for a NULL entry, used to indicate that the parameter goes
1219 both on the stack and in registers. */
1220 if (XEXP (XVECEXP (x
, 0, 0), 0))
1225 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1227 rtx y
= XVECEXP (x
, 0, i
);
1228 if (REG_P (XEXP (y
, 0)))
1229 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1234 /* Assign the RTX X to declaration T. */
1237 set_decl_rtl (tree t
, rtx x
)
1239 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1241 set_reg_attrs_for_decl_rtl (t
, x
);
1244 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1245 if the ABI requires the parameter to be passed by reference. */
1248 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1250 DECL_INCOMING_RTL (t
) = x
;
1251 if (x
&& !by_reference_p
)
1252 set_reg_attrs_for_decl_rtl (t
, x
);
1255 /* Identify REG (which may be a CONCAT) as a user register. */
1258 mark_user_reg (rtx reg
)
1260 if (GET_CODE (reg
) == CONCAT
)
1262 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1263 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1267 gcc_assert (REG_P (reg
));
1268 REG_USERVAR_P (reg
) = 1;
1272 /* Identify REG as a probable pointer register and show its alignment
1273 as ALIGN, if nonzero. */
1276 mark_reg_pointer (rtx reg
, int align
)
1278 if (! REG_POINTER (reg
))
1280 REG_POINTER (reg
) = 1;
1283 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1285 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1286 /* We can no-longer be sure just how aligned this pointer is. */
1287 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1290 /* Return 1 plus largest pseudo reg number used in the current function. */
1298 /* Return 1 + the largest label number used so far in the current function. */
1301 max_label_num (void)
1306 /* Return first label number used in this function (if any were used). */
1309 get_first_label_num (void)
1311 return first_label_num
;
1314 /* If the rtx for label was created during the expansion of a nested
1315 function, then first_label_num won't include this label number.
1316 Fix this now so that array indices work later. */
1319 maybe_set_first_label_num (rtx x
)
1321 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1322 first_label_num
= CODE_LABEL_NUMBER (x
);
1325 /* Return a value representing some low-order bits of X, where the number
1326 of low-order bits is given by MODE. Note that no conversion is done
1327 between floating-point and fixed-point values, rather, the bit
1328 representation is returned.
1330 This function handles the cases in common between gen_lowpart, below,
1331 and two variants in cse.c and combine.c. These are the cases that can
1332 be safely handled at all points in the compilation.
1334 If this is not a case we can handle, return 0. */
1337 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1339 int msize
= GET_MODE_SIZE (mode
);
1342 enum machine_mode innermode
;
1344 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1345 so we have to make one up. Yuk. */
1346 innermode
= GET_MODE (x
);
1348 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1349 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1350 else if (innermode
== VOIDmode
)
1351 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1353 xsize
= GET_MODE_SIZE (innermode
);
1355 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1357 if (innermode
== mode
)
1360 /* MODE must occupy no more words than the mode of X. */
1361 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1362 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1365 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1366 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1369 offset
= subreg_lowpart_offset (mode
, innermode
);
1371 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1372 && (GET_MODE_CLASS (mode
) == MODE_INT
1373 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1375 /* If we are getting the low-order part of something that has been
1376 sign- or zero-extended, we can either just use the object being
1377 extended or make a narrower extension. If we want an even smaller
1378 piece than the size of the object being extended, call ourselves
1381 This case is used mostly by combine and cse. */
1383 if (GET_MODE (XEXP (x
, 0)) == mode
)
1385 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1386 return gen_lowpart_common (mode
, XEXP (x
, 0));
1387 else if (msize
< xsize
)
1388 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1390 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1391 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1392 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1393 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1395 /* Otherwise, we can't do this. */
1400 gen_highpart (enum machine_mode mode
, rtx x
)
1402 unsigned int msize
= GET_MODE_SIZE (mode
);
1405 /* This case loses if X is a subreg. To catch bugs early,
1406 complain if an invalid MODE is used even in other cases. */
1407 gcc_assert (msize
<= UNITS_PER_WORD
1408 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1410 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1411 subreg_highpart_offset (mode
, GET_MODE (x
)));
1412 gcc_assert (result
);
1414 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1415 the target if we have a MEM. gen_highpart must return a valid operand,
1416 emitting code if necessary to do so. */
1419 result
= validize_mem (result
);
1420 gcc_assert (result
);
1426 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1427 be VOIDmode constant. */
1429 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1431 if (GET_MODE (exp
) != VOIDmode
)
1433 gcc_assert (GET_MODE (exp
) == innermode
);
1434 return gen_highpart (outermode
, exp
);
1436 return simplify_gen_subreg (outermode
, exp
, innermode
,
1437 subreg_highpart_offset (outermode
, innermode
));
1440 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1443 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1445 unsigned int offset
= 0;
1446 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1450 if (WORDS_BIG_ENDIAN
)
1451 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1452 if (BYTES_BIG_ENDIAN
)
1453 offset
+= difference
% UNITS_PER_WORD
;
1459 /* Return offset in bytes to get OUTERMODE high part
1460 of the value in mode INNERMODE stored in memory in target format. */
1462 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1464 unsigned int offset
= 0;
1465 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1467 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1471 if (! WORDS_BIG_ENDIAN
)
1472 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1473 if (! BYTES_BIG_ENDIAN
)
1474 offset
+= difference
% UNITS_PER_WORD
;
1480 /* Return 1 iff X, assumed to be a SUBREG,
1481 refers to the least significant part of its containing reg.
1482 If X is not a SUBREG, always return 1 (it is its own low part!). */
1485 subreg_lowpart_p (const_rtx x
)
1487 if (GET_CODE (x
) != SUBREG
)
1489 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1492 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1493 == SUBREG_BYTE (x
));
1496 /* Return true if X is a paradoxical subreg, false otherwise. */
1498 paradoxical_subreg_p (const_rtx x
)
1500 if (GET_CODE (x
) != SUBREG
)
1502 return (GET_MODE_PRECISION (GET_MODE (x
))
1503 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1506 /* Return subword OFFSET of operand OP.
1507 The word number, OFFSET, is interpreted as the word number starting
1508 at the low-order address. OFFSET 0 is the low-order word if not
1509 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1511 If we cannot extract the required word, we return zero. Otherwise,
1512 an rtx corresponding to the requested word will be returned.
1514 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1515 reload has completed, a valid address will always be returned. After
1516 reload, if a valid address cannot be returned, we return zero.
1518 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1519 it is the responsibility of the caller.
1521 MODE is the mode of OP in case it is a CONST_INT.
1523 ??? This is still rather broken for some cases. The problem for the
1524 moment is that all callers of this thing provide no 'goal mode' to
1525 tell us to work with. This exists because all callers were written
1526 in a word based SUBREG world.
1527 Now use of this function can be deprecated by simplify_subreg in most
1532 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1534 if (mode
== VOIDmode
)
1535 mode
= GET_MODE (op
);
1537 gcc_assert (mode
!= VOIDmode
);
1539 /* If OP is narrower than a word, fail. */
1541 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1544 /* If we want a word outside OP, return zero. */
1546 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1549 /* Form a new MEM at the requested address. */
1552 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1554 if (! validate_address
)
1557 else if (reload_completed
)
1559 if (! strict_memory_address_addr_space_p (word_mode
,
1561 MEM_ADDR_SPACE (op
)))
1565 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1568 /* Rest can be handled by simplify_subreg. */
1569 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1572 /* Similar to `operand_subword', but never return 0. If we can't
1573 extract the required subword, put OP into a register and try again.
1574 The second attempt must succeed. We always validate the address in
1577 MODE is the mode of OP, in case it is CONST_INT. */
1580 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1582 rtx result
= operand_subword (op
, offset
, 1, mode
);
1587 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1589 /* If this is a register which can not be accessed by words, copy it
1590 to a pseudo register. */
1592 op
= copy_to_reg (op
);
1594 op
= force_reg (mode
, op
);
1597 result
= operand_subword (op
, offset
, 1, mode
);
1598 gcc_assert (result
);
1603 /* Returns 1 if both MEM_EXPR can be considered equal
1607 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1612 if (! expr1
|| ! expr2
)
1615 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1618 return operand_equal_p (expr1
, expr2
, 0);
1621 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1622 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1626 get_mem_align_offset (rtx mem
, unsigned int align
)
1629 unsigned HOST_WIDE_INT offset
;
1631 /* This function can't use
1632 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1633 || (MAX (MEM_ALIGN (mem),
1634 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1638 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1640 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1641 for <variable>. get_inner_reference doesn't handle it and
1642 even if it did, the alignment in that case needs to be determined
1643 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1644 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1645 isn't sufficiently aligned, the object it is in might be. */
1646 gcc_assert (MEM_P (mem
));
1647 expr
= MEM_EXPR (mem
);
1648 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1651 offset
= MEM_OFFSET (mem
);
1654 if (DECL_ALIGN (expr
) < align
)
1657 else if (INDIRECT_REF_P (expr
))
1659 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1662 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1666 tree inner
= TREE_OPERAND (expr
, 0);
1667 tree field
= TREE_OPERAND (expr
, 1);
1668 tree byte_offset
= component_ref_field_offset (expr
);
1669 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1672 || !tree_fits_uhwi_p (byte_offset
)
1673 || !tree_fits_uhwi_p (bit_offset
))
1676 offset
+= tree_to_uhwi (byte_offset
);
1677 offset
+= tree_to_uhwi (bit_offset
) / BITS_PER_UNIT
;
1679 if (inner
== NULL_TREE
)
1681 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1682 < (unsigned int) align
)
1686 else if (DECL_P (inner
))
1688 if (DECL_ALIGN (inner
) < align
)
1692 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1700 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1703 /* Given REF (a MEM) and T, either the type of X or the expression
1704 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1705 if we are making a new object of this type. BITPOS is nonzero if
1706 there is an offset outstanding on T that will be applied later. */
1709 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1710 HOST_WIDE_INT bitpos
)
1712 HOST_WIDE_INT apply_bitpos
= 0;
1714 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1717 /* It can happen that type_for_mode was given a mode for which there
1718 is no language-level type. In which case it returns NULL, which
1723 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1724 if (type
== error_mark_node
)
1727 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1728 wrong answer, as it assumes that DECL_RTL already has the right alias
1729 info. Callers should not set DECL_RTL until after the call to
1730 set_mem_attributes. */
1731 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1733 memset (&attrs
, 0, sizeof (attrs
));
1735 /* Get the alias set from the expression or type (perhaps using a
1736 front-end routine) and use it. */
1737 attrs
.alias
= get_alias_set (t
);
1739 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1740 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1742 /* Default values from pre-existing memory attributes if present. */
1743 refattrs
= MEM_ATTRS (ref
);
1746 /* ??? Can this ever happen? Calling this routine on a MEM that
1747 already carries memory attributes should probably be invalid. */
1748 attrs
.expr
= refattrs
->expr
;
1749 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1750 attrs
.offset
= refattrs
->offset
;
1751 attrs
.size_known_p
= refattrs
->size_known_p
;
1752 attrs
.size
= refattrs
->size
;
1753 attrs
.align
= refattrs
->align
;
1756 /* Otherwise, default values from the mode of the MEM reference. */
1759 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1760 gcc_assert (!defattrs
->expr
);
1761 gcc_assert (!defattrs
->offset_known_p
);
1763 /* Respect mode size. */
1764 attrs
.size_known_p
= defattrs
->size_known_p
;
1765 attrs
.size
= defattrs
->size
;
1766 /* ??? Is this really necessary? We probably should always get
1767 the size from the type below. */
1769 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1770 if T is an object, always compute the object alignment below. */
1772 attrs
.align
= defattrs
->align
;
1774 attrs
.align
= BITS_PER_UNIT
;
1775 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1776 e.g. if the type carries an alignment attribute. Should we be
1777 able to simply always use TYPE_ALIGN? */
1780 /* We can set the alignment from the type if we are making an object,
1781 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1782 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1783 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1785 /* If the size is known, we can set that. */
1786 tree new_size
= TYPE_SIZE_UNIT (type
);
1788 /* The address-space is that of the type. */
1789 as
= TYPE_ADDR_SPACE (type
);
1791 /* If T is not a type, we may be able to deduce some more information about
1797 if (TREE_THIS_VOLATILE (t
))
1798 MEM_VOLATILE_P (ref
) = 1;
1800 /* Now remove any conversions: they don't change what the underlying
1801 object is. Likewise for SAVE_EXPR. */
1802 while (CONVERT_EXPR_P (t
)
1803 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1804 || TREE_CODE (t
) == SAVE_EXPR
)
1805 t
= TREE_OPERAND (t
, 0);
1807 /* Note whether this expression can trap. */
1808 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1810 base
= get_base_address (t
);
1814 && TREE_READONLY (base
)
1815 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1816 && !TREE_THIS_VOLATILE (base
))
1817 MEM_READONLY_P (ref
) = 1;
1819 /* Mark static const strings readonly as well. */
1820 if (TREE_CODE (base
) == STRING_CST
1821 && TREE_READONLY (base
)
1822 && TREE_STATIC (base
))
1823 MEM_READONLY_P (ref
) = 1;
1825 /* Address-space information is on the base object. */
1826 if (TREE_CODE (base
) == MEM_REF
1827 || TREE_CODE (base
) == TARGET_MEM_REF
)
1828 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1831 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1834 /* If this expression uses it's parent's alias set, mark it such
1835 that we won't change it. */
1836 if (component_uses_parent_alias_set_from (t
) != NULL_TREE
)
1837 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1839 /* If this is a decl, set the attributes of the MEM from it. */
1843 attrs
.offset_known_p
= true;
1845 apply_bitpos
= bitpos
;
1846 new_size
= DECL_SIZE_UNIT (t
);
1849 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1850 else if (CONSTANT_CLASS_P (t
))
1853 /* If this is a field reference, record it. */
1854 else if (TREE_CODE (t
) == COMPONENT_REF
)
1857 attrs
.offset_known_p
= true;
1859 apply_bitpos
= bitpos
;
1860 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1861 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1864 /* If this is an array reference, look for an outer field reference. */
1865 else if (TREE_CODE (t
) == ARRAY_REF
)
1867 tree off_tree
= size_zero_node
;
1868 /* We can't modify t, because we use it at the end of the
1874 tree index
= TREE_OPERAND (t2
, 1);
1875 tree low_bound
= array_ref_low_bound (t2
);
1876 tree unit_size
= array_ref_element_size (t2
);
1878 /* We assume all arrays have sizes that are a multiple of a byte.
1879 First subtract the lower bound, if any, in the type of the
1880 index, then convert to sizetype and multiply by the size of
1881 the array element. */
1882 if (! integer_zerop (low_bound
))
1883 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1886 off_tree
= size_binop (PLUS_EXPR
,
1887 size_binop (MULT_EXPR
,
1888 fold_convert (sizetype
,
1892 t2
= TREE_OPERAND (t2
, 0);
1894 while (TREE_CODE (t2
) == ARRAY_REF
);
1897 || TREE_CODE (t2
) == COMPONENT_REF
)
1900 attrs
.offset_known_p
= false;
1901 if (tree_fits_uhwi_p (off_tree
))
1903 attrs
.offset_known_p
= true;
1904 attrs
.offset
= tree_to_uhwi (off_tree
);
1905 apply_bitpos
= bitpos
;
1908 /* Else do not record a MEM_EXPR. */
1911 /* If this is an indirect reference, record it. */
1912 else if (TREE_CODE (t
) == MEM_REF
1913 || TREE_CODE (t
) == TARGET_MEM_REF
)
1916 attrs
.offset_known_p
= true;
1918 apply_bitpos
= bitpos
;
1921 /* Compute the alignment. */
1922 unsigned int obj_align
;
1923 unsigned HOST_WIDE_INT obj_bitpos
;
1924 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
1925 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
1926 if (obj_bitpos
!= 0)
1927 obj_align
= (obj_bitpos
& -obj_bitpos
);
1928 attrs
.align
= MAX (attrs
.align
, obj_align
);
1931 if (tree_fits_uhwi_p (new_size
))
1933 attrs
.size_known_p
= true;
1934 attrs
.size
= tree_to_uhwi (new_size
);
1937 /* If we modified OFFSET based on T, then subtract the outstanding
1938 bit position offset. Similarly, increase the size of the accessed
1939 object to contain the negative offset. */
1942 gcc_assert (attrs
.offset_known_p
);
1943 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1944 if (attrs
.size_known_p
)
1945 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1948 /* Now set the attributes we computed above. */
1949 attrs
.addrspace
= as
;
1950 set_mem_attrs (ref
, &attrs
);
1954 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1956 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1959 /* Set the alias set of MEM to SET. */
1962 set_mem_alias_set (rtx mem
, alias_set_type set
)
1964 struct mem_attrs attrs
;
1966 /* If the new and old alias sets don't conflict, something is wrong. */
1967 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1968 attrs
= *get_mem_attrs (mem
);
1970 set_mem_attrs (mem
, &attrs
);
1973 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1976 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1978 struct mem_attrs attrs
;
1980 attrs
= *get_mem_attrs (mem
);
1981 attrs
.addrspace
= addrspace
;
1982 set_mem_attrs (mem
, &attrs
);
1985 /* Set the alignment of MEM to ALIGN bits. */
1988 set_mem_align (rtx mem
, unsigned int align
)
1990 struct mem_attrs attrs
;
1992 attrs
= *get_mem_attrs (mem
);
1993 attrs
.align
= align
;
1994 set_mem_attrs (mem
, &attrs
);
1997 /* Set the expr for MEM to EXPR. */
2000 set_mem_expr (rtx mem
, tree expr
)
2002 struct mem_attrs attrs
;
2004 attrs
= *get_mem_attrs (mem
);
2006 set_mem_attrs (mem
, &attrs
);
2009 /* Set the offset of MEM to OFFSET. */
2012 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
2014 struct mem_attrs attrs
;
2016 attrs
= *get_mem_attrs (mem
);
2017 attrs
.offset_known_p
= true;
2018 attrs
.offset
= offset
;
2019 set_mem_attrs (mem
, &attrs
);
2022 /* Clear the offset of MEM. */
2025 clear_mem_offset (rtx mem
)
2027 struct mem_attrs attrs
;
2029 attrs
= *get_mem_attrs (mem
);
2030 attrs
.offset_known_p
= false;
2031 set_mem_attrs (mem
, &attrs
);
2034 /* Set the size of MEM to SIZE. */
2037 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
2039 struct mem_attrs attrs
;
2041 attrs
= *get_mem_attrs (mem
);
2042 attrs
.size_known_p
= true;
2044 set_mem_attrs (mem
, &attrs
);
2047 /* Clear the size of MEM. */
2050 clear_mem_size (rtx mem
)
2052 struct mem_attrs attrs
;
2054 attrs
= *get_mem_attrs (mem
);
2055 attrs
.size_known_p
= false;
2056 set_mem_attrs (mem
, &attrs
);
2059 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2060 and its address changed to ADDR. (VOIDmode means don't change the mode.
2061 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2062 returned memory location is required to be valid. INPLACE is true if any
2063 changes can be made directly to MEMREF or false if MEMREF must be treated
2066 The memory attributes are not changed. */
2069 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
,
2075 gcc_assert (MEM_P (memref
));
2076 as
= MEM_ADDR_SPACE (memref
);
2077 if (mode
== VOIDmode
)
2078 mode
= GET_MODE (memref
);
2080 addr
= XEXP (memref
, 0);
2081 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
2082 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2085 /* Don't validate address for LRA. LRA can make the address valid
2086 by itself in most efficient way. */
2087 if (validate
&& !lra_in_progress
)
2089 if (reload_in_progress
|| reload_completed
)
2090 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2092 addr
= memory_address_addr_space (mode
, addr
, as
);
2095 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2100 XEXP (memref
, 0) = addr
;
2104 new_rtx
= gen_rtx_MEM (mode
, addr
);
2105 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2109 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2110 way we are changing MEMREF, so we only preserve the alias set. */
2113 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
2115 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1, false);
2116 enum machine_mode mmode
= GET_MODE (new_rtx
);
2117 struct mem_attrs attrs
, *defattrs
;
2119 attrs
= *get_mem_attrs (memref
);
2120 defattrs
= mode_mem_attrs
[(int) mmode
];
2121 attrs
.expr
= NULL_TREE
;
2122 attrs
.offset_known_p
= false;
2123 attrs
.size_known_p
= defattrs
->size_known_p
;
2124 attrs
.size
= defattrs
->size
;
2125 attrs
.align
= defattrs
->align
;
2127 /* If there are no changes, just return the original memory reference. */
2128 if (new_rtx
== memref
)
2130 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2133 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2134 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2137 set_mem_attrs (new_rtx
, &attrs
);
2141 /* Return a memory reference like MEMREF, but with its mode changed
2142 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2143 nonzero, the memory address is forced to be valid.
2144 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2145 and the caller is responsible for adjusting MEMREF base register.
2146 If ADJUST_OBJECT is zero, the underlying object associated with the
2147 memory reference is left unchanged and the caller is responsible for
2148 dealing with it. Otherwise, if the new memory reference is outside
2149 the underlying object, even partially, then the object is dropped.
2150 SIZE, if nonzero, is the size of an access in cases where MODE
2151 has no inherent size. */
2154 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2155 int validate
, int adjust_address
, int adjust_object
,
2158 rtx addr
= XEXP (memref
, 0);
2160 enum machine_mode address_mode
;
2162 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2163 unsigned HOST_WIDE_INT max_align
;
2164 #ifdef POINTERS_EXTEND_UNSIGNED
2165 enum machine_mode pointer_mode
2166 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2169 /* VOIDmode means no mode change for change_address_1. */
2170 if (mode
== VOIDmode
)
2171 mode
= GET_MODE (memref
);
2173 /* Take the size of non-BLKmode accesses from the mode. */
2174 defattrs
= mode_mem_attrs
[(int) mode
];
2175 if (defattrs
->size_known_p
)
2176 size
= defattrs
->size
;
2178 /* If there are no changes, just return the original memory reference. */
2179 if (mode
== GET_MODE (memref
) && !offset
2180 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2181 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2185 /* ??? Prefer to create garbage instead of creating shared rtl.
2186 This may happen even if offset is nonzero -- consider
2187 (plus (plus reg reg) const_int) -- so do this always. */
2188 addr
= copy_rtx (addr
);
2190 /* Convert a possibly large offset to a signed value within the
2191 range of the target address space. */
2192 address_mode
= get_address_mode (memref
);
2193 pbits
= GET_MODE_BITSIZE (address_mode
);
2194 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2196 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2197 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2203 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2204 object, we can merge it into the LO_SUM. */
2205 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2207 && (unsigned HOST_WIDE_INT
) offset
2208 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2209 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2210 plus_constant (address_mode
,
2211 XEXP (addr
, 1), offset
));
2212 #ifdef POINTERS_EXTEND_UNSIGNED
2213 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2214 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2215 the fact that pointers are not allowed to overflow. */
2216 else if (POINTERS_EXTEND_UNSIGNED
> 0
2217 && GET_CODE (addr
) == ZERO_EXTEND
2218 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2219 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2220 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2221 plus_constant (pointer_mode
,
2222 XEXP (addr
, 0), offset
));
2225 addr
= plus_constant (address_mode
, addr
, offset
);
2228 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
, false);
2230 /* If the address is a REG, change_address_1 rightfully returns memref,
2231 but this would destroy memref's MEM_ATTRS. */
2232 if (new_rtx
== memref
&& offset
!= 0)
2233 new_rtx
= copy_rtx (new_rtx
);
2235 /* Conservatively drop the object if we don't know where we start from. */
2236 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2238 attrs
.expr
= NULL_TREE
;
2242 /* Compute the new values of the memory attributes due to this adjustment.
2243 We add the offsets and update the alignment. */
2244 if (attrs
.offset_known_p
)
2246 attrs
.offset
+= offset
;
2248 /* Drop the object if the new left end is not within its bounds. */
2249 if (adjust_object
&& attrs
.offset
< 0)
2251 attrs
.expr
= NULL_TREE
;
2256 /* Compute the new alignment by taking the MIN of the alignment and the
2257 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2261 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2262 attrs
.align
= MIN (attrs
.align
, max_align
);
2267 /* Drop the object if the new right end is not within its bounds. */
2268 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2270 attrs
.expr
= NULL_TREE
;
2273 attrs
.size_known_p
= true;
2276 else if (attrs
.size_known_p
)
2278 gcc_assert (!adjust_object
);
2279 attrs
.size
-= offset
;
2280 /* ??? The store_by_pieces machinery generates negative sizes,
2281 so don't assert for that here. */
2284 set_mem_attrs (new_rtx
, &attrs
);
2289 /* Return a memory reference like MEMREF, but with its mode changed
2290 to MODE and its address changed to ADDR, which is assumed to be
2291 MEMREF offset by OFFSET bytes. If VALIDATE is
2292 nonzero, the memory address is forced to be valid. */
2295 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2296 HOST_WIDE_INT offset
, int validate
)
2298 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
, false);
2299 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2302 /* Return a memory reference like MEMREF, but whose address is changed by
2303 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2304 known to be in OFFSET (possibly 1). */
2307 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2309 rtx new_rtx
, addr
= XEXP (memref
, 0);
2310 enum machine_mode address_mode
;
2311 struct mem_attrs attrs
, *defattrs
;
2313 attrs
= *get_mem_attrs (memref
);
2314 address_mode
= get_address_mode (memref
);
2315 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2317 /* At this point we don't know _why_ the address is invalid. It
2318 could have secondary memory references, multiplies or anything.
2320 However, if we did go and rearrange things, we can wind up not
2321 being able to recognize the magic around pic_offset_table_rtx.
2322 This stuff is fragile, and is yet another example of why it is
2323 bad to expose PIC machinery too early. */
2324 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2326 && GET_CODE (addr
) == PLUS
2327 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2329 addr
= force_reg (GET_MODE (addr
), addr
);
2330 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2333 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2334 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1, false);
2336 /* If there are no changes, just return the original memory reference. */
2337 if (new_rtx
== memref
)
2340 /* Update the alignment to reflect the offset. Reset the offset, which
2342 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2343 attrs
.offset_known_p
= false;
2344 attrs
.size_known_p
= defattrs
->size_known_p
;
2345 attrs
.size
= defattrs
->size
;
2346 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2347 set_mem_attrs (new_rtx
, &attrs
);
2351 /* Return a memory reference like MEMREF, but with its address changed to
2352 ADDR. The caller is asserting that the actual piece of memory pointed
2353 to is the same, just the form of the address is being changed, such as
2354 by putting something into a register. INPLACE is true if any changes
2355 can be made directly to MEMREF or false if MEMREF must be treated as
2359 replace_equiv_address (rtx memref
, rtx addr
, bool inplace
)
2361 /* change_address_1 copies the memory attribute structure without change
2362 and that's exactly what we want here. */
2363 update_temp_slot_address (XEXP (memref
, 0), addr
);
2364 return change_address_1 (memref
, VOIDmode
, addr
, 1, inplace
);
2367 /* Likewise, but the reference is not required to be valid. */
2370 replace_equiv_address_nv (rtx memref
, rtx addr
, bool inplace
)
2372 return change_address_1 (memref
, VOIDmode
, addr
, 0, inplace
);
2375 /* Return a memory reference like MEMREF, but with its mode widened to
2376 MODE and offset by OFFSET. This would be used by targets that e.g.
2377 cannot issue QImode memory operations and have to use SImode memory
2378 operations plus masking logic. */
2381 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2383 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2384 struct mem_attrs attrs
;
2385 unsigned int size
= GET_MODE_SIZE (mode
);
2387 /* If there are no changes, just return the original memory reference. */
2388 if (new_rtx
== memref
)
2391 attrs
= *get_mem_attrs (new_rtx
);
2393 /* If we don't know what offset we were at within the expression, then
2394 we can't know if we've overstepped the bounds. */
2395 if (! attrs
.offset_known_p
)
2396 attrs
.expr
= NULL_TREE
;
2400 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2402 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2403 tree offset
= component_ref_field_offset (attrs
.expr
);
2405 if (! DECL_SIZE_UNIT (field
))
2407 attrs
.expr
= NULL_TREE
;
2411 /* Is the field at least as large as the access? If so, ok,
2412 otherwise strip back to the containing structure. */
2413 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2414 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2415 && attrs
.offset
>= 0)
2418 if (! tree_fits_uhwi_p (offset
))
2420 attrs
.expr
= NULL_TREE
;
2424 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2425 attrs
.offset
+= tree_to_uhwi (offset
);
2426 attrs
.offset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2429 /* Similarly for the decl. */
2430 else if (DECL_P (attrs
.expr
)
2431 && DECL_SIZE_UNIT (attrs
.expr
)
2432 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2433 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2434 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2438 /* The widened memory access overflows the expression, which means
2439 that it could alias another expression. Zap it. */
2440 attrs
.expr
= NULL_TREE
;
2446 attrs
.offset_known_p
= false;
2448 /* The widened memory may alias other stuff, so zap the alias set. */
2449 /* ??? Maybe use get_alias_set on any remaining expression. */
2451 attrs
.size_known_p
= true;
2453 set_mem_attrs (new_rtx
, &attrs
);
2457 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2458 static GTY(()) tree spill_slot_decl
;
2461 get_spill_slot_decl (bool force_build_p
)
2463 tree d
= spill_slot_decl
;
2465 struct mem_attrs attrs
;
2467 if (d
|| !force_build_p
)
2470 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2471 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2472 DECL_ARTIFICIAL (d
) = 1;
2473 DECL_IGNORED_P (d
) = 1;
2475 spill_slot_decl
= d
;
2477 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2478 MEM_NOTRAP_P (rd
) = 1;
2479 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2480 attrs
.alias
= new_alias_set ();
2482 set_mem_attrs (rd
, &attrs
);
2483 SET_DECL_RTL (d
, rd
);
2488 /* Given MEM, a result from assign_stack_local, fill in the memory
2489 attributes as appropriate for a register allocator spill slot.
2490 These slots are not aliasable by other memory. We arrange for
2491 them all to use a single MEM_EXPR, so that the aliasing code can
2492 work properly in the case of shared spill slots. */
2495 set_mem_attrs_for_spill (rtx mem
)
2497 struct mem_attrs attrs
;
2500 attrs
= *get_mem_attrs (mem
);
2501 attrs
.expr
= get_spill_slot_decl (true);
2502 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2503 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2505 /* We expect the incoming memory to be of the form:
2506 (mem:MODE (plus (reg sfp) (const_int offset)))
2507 with perhaps the plus missing for offset = 0. */
2508 addr
= XEXP (mem
, 0);
2509 attrs
.offset_known_p
= true;
2511 if (GET_CODE (addr
) == PLUS
2512 && CONST_INT_P (XEXP (addr
, 1)))
2513 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2515 set_mem_attrs (mem
, &attrs
);
2516 MEM_NOTRAP_P (mem
) = 1;
2519 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2522 gen_label_rtx (void)
2524 return as_a
<rtx_code_label
*> (
2525 gen_rtx_CODE_LABEL (VOIDmode
, NULL_RTX
, NULL_RTX
,
2526 NULL
, label_num
++, NULL
));
2529 /* For procedure integration. */
2531 /* Install new pointers to the first and last insns in the chain.
2532 Also, set cur_insn_uid to one higher than the last in use.
2533 Used for an inline-procedure after copying the insn chain. */
2536 set_new_first_and_last_insn (rtx_insn
*first
, rtx_insn
*last
)
2540 set_first_insn (first
);
2541 set_last_insn (last
);
2544 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2546 int debug_count
= 0;
2548 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2549 cur_debug_insn_uid
= 0;
2551 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2552 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2553 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2556 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2557 if (DEBUG_INSN_P (insn
))
2562 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2564 cur_debug_insn_uid
++;
2567 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2568 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2573 /* Go through all the RTL insn bodies and copy any invalid shared
2574 structure. This routine should only be called once. */
2577 unshare_all_rtl_1 (rtx_insn
*insn
)
2579 /* Unshare just about everything else. */
2580 unshare_all_rtl_in_chain (insn
);
2582 /* Make sure the addresses of stack slots found outside the insn chain
2583 (such as, in DECL_RTL of a variable) are not shared
2584 with the insn chain.
2586 This special care is necessary when the stack slot MEM does not
2587 actually appear in the insn chain. If it does appear, its address
2588 is unshared from all else at that point. */
2589 stack_slot_list
= safe_as_a
<rtx_expr_list
*> (
2590 copy_rtx_if_shared (stack_slot_list
));
2593 /* Go through all the RTL insn bodies and copy any invalid shared
2594 structure, again. This is a fairly expensive thing to do so it
2595 should be done sparingly. */
2598 unshare_all_rtl_again (rtx_insn
*insn
)
2603 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2606 reset_used_flags (PATTERN (p
));
2607 reset_used_flags (REG_NOTES (p
));
2609 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2612 /* Make sure that virtual stack slots are not shared. */
2613 set_used_decls (DECL_INITIAL (cfun
->decl
));
2615 /* Make sure that virtual parameters are not shared. */
2616 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2617 set_used_flags (DECL_RTL (decl
));
2619 reset_used_flags (stack_slot_list
);
2621 unshare_all_rtl_1 (insn
);
2625 unshare_all_rtl (void)
2627 unshare_all_rtl_1 (get_insns ());
2632 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2633 Recursively does the same for subexpressions. */
2636 verify_rtx_sharing (rtx orig
, rtx insn
)
2641 const char *format_ptr
;
2646 code
= GET_CODE (x
);
2648 /* These types may be freely shared. */
2664 /* SCRATCH must be shared because they represent distinct values. */
2667 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2668 clobbers or clobbers of hard registers that originated as pseudos.
2669 This is needed to allow safe register renaming. */
2670 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2671 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2676 if (shared_const_p (orig
))
2681 /* A MEM is allowed to be shared if its address is constant. */
2682 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2683 || reload_completed
|| reload_in_progress
)
2692 /* This rtx may not be shared. If it has already been seen,
2693 replace it with a copy of itself. */
2694 #ifdef ENABLE_CHECKING
2695 if (RTX_FLAG (x
, used
))
2697 error ("invalid rtl sharing found in the insn");
2699 error ("shared rtx");
2701 internal_error ("internal consistency failure");
2704 gcc_assert (!RTX_FLAG (x
, used
));
2706 RTX_FLAG (x
, used
) = 1;
2708 /* Now scan the subexpressions recursively. */
2710 format_ptr
= GET_RTX_FORMAT (code
);
2712 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2714 switch (*format_ptr
++)
2717 verify_rtx_sharing (XEXP (x
, i
), insn
);
2721 if (XVEC (x
, i
) != NULL
)
2724 int len
= XVECLEN (x
, i
);
2726 for (j
= 0; j
< len
; j
++)
2728 /* We allow sharing of ASM_OPERANDS inside single
2730 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2731 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2733 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2735 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2744 /* Reset used-flags for INSN. */
2747 reset_insn_used_flags (rtx insn
)
2749 gcc_assert (INSN_P (insn
));
2750 reset_used_flags (PATTERN (insn
));
2751 reset_used_flags (REG_NOTES (insn
));
2753 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2756 /* Go through all the RTL insn bodies and clear all the USED bits. */
2759 reset_all_used_flags (void)
2763 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2766 rtx pat
= PATTERN (p
);
2767 if (GET_CODE (pat
) != SEQUENCE
)
2768 reset_insn_used_flags (p
);
2771 gcc_assert (REG_NOTES (p
) == NULL
);
2772 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2774 rtx insn
= XVECEXP (pat
, 0, i
);
2776 reset_insn_used_flags (insn
);
2782 /* Verify sharing in INSN. */
2785 verify_insn_sharing (rtx insn
)
2787 gcc_assert (INSN_P (insn
));
2788 reset_used_flags (PATTERN (insn
));
2789 reset_used_flags (REG_NOTES (insn
));
2791 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2794 /* Go through all the RTL insn bodies and check that there is no unexpected
2795 sharing in between the subexpressions. */
2798 verify_rtl_sharing (void)
2802 timevar_push (TV_VERIFY_RTL_SHARING
);
2804 reset_all_used_flags ();
2806 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2809 rtx pat
= PATTERN (p
);
2810 if (GET_CODE (pat
) != SEQUENCE
)
2811 verify_insn_sharing (p
);
2813 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2815 rtx insn
= XVECEXP (pat
, 0, i
);
2817 verify_insn_sharing (insn
);
2821 reset_all_used_flags ();
2823 timevar_pop (TV_VERIFY_RTL_SHARING
);
2826 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2827 Assumes the mark bits are cleared at entry. */
2830 unshare_all_rtl_in_chain (rtx_insn
*insn
)
2832 for (; insn
; insn
= NEXT_INSN (insn
))
2835 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2836 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2838 CALL_INSN_FUNCTION_USAGE (insn
)
2839 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2843 /* Go through all virtual stack slots of a function and mark them as
2844 shared. We never replace the DECL_RTLs themselves with a copy,
2845 but expressions mentioned into a DECL_RTL cannot be shared with
2846 expressions in the instruction stream.
2848 Note that reload may convert pseudo registers into memories in-place.
2849 Pseudo registers are always shared, but MEMs never are. Thus if we
2850 reset the used flags on MEMs in the instruction stream, we must set
2851 them again on MEMs that appear in DECL_RTLs. */
2854 set_used_decls (tree blk
)
2859 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2860 if (DECL_RTL_SET_P (t
))
2861 set_used_flags (DECL_RTL (t
));
2863 /* Now process sub-blocks. */
2864 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2868 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2869 Recursively does the same for subexpressions. Uses
2870 copy_rtx_if_shared_1 to reduce stack space. */
2873 copy_rtx_if_shared (rtx orig
)
2875 copy_rtx_if_shared_1 (&orig
);
2879 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2880 use. Recursively does the same for subexpressions. */
2883 copy_rtx_if_shared_1 (rtx
*orig1
)
2889 const char *format_ptr
;
2893 /* Repeat is used to turn tail-recursion into iteration. */
2900 code
= GET_CODE (x
);
2902 /* These types may be freely shared. */
2918 /* SCRATCH must be shared because they represent distinct values. */
2921 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2922 clobbers or clobbers of hard registers that originated as pseudos.
2923 This is needed to allow safe register renaming. */
2924 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2925 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2930 if (shared_const_p (x
))
2940 /* The chain of insns is not being copied. */
2947 /* This rtx may not be shared. If it has already been seen,
2948 replace it with a copy of itself. */
2950 if (RTX_FLAG (x
, used
))
2952 x
= shallow_copy_rtx (x
);
2955 RTX_FLAG (x
, used
) = 1;
2957 /* Now scan the subexpressions recursively.
2958 We can store any replaced subexpressions directly into X
2959 since we know X is not shared! Any vectors in X
2960 must be copied if X was copied. */
2962 format_ptr
= GET_RTX_FORMAT (code
);
2963 length
= GET_RTX_LENGTH (code
);
2966 for (i
= 0; i
< length
; i
++)
2968 switch (*format_ptr
++)
2972 copy_rtx_if_shared_1 (last_ptr
);
2973 last_ptr
= &XEXP (x
, i
);
2977 if (XVEC (x
, i
) != NULL
)
2980 int len
= XVECLEN (x
, i
);
2982 /* Copy the vector iff I copied the rtx and the length
2984 if (copied
&& len
> 0)
2985 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2987 /* Call recursively on all inside the vector. */
2988 for (j
= 0; j
< len
; j
++)
2991 copy_rtx_if_shared_1 (last_ptr
);
2992 last_ptr
= &XVECEXP (x
, i
, j
);
3007 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3010 mark_used_flags (rtx x
, int flag
)
3014 const char *format_ptr
;
3017 /* Repeat is used to turn tail-recursion into iteration. */
3022 code
= GET_CODE (x
);
3024 /* These types may be freely shared so we needn't do any resetting
3048 /* The chain of insns is not being copied. */
3055 RTX_FLAG (x
, used
) = flag
;
3057 format_ptr
= GET_RTX_FORMAT (code
);
3058 length
= GET_RTX_LENGTH (code
);
3060 for (i
= 0; i
< length
; i
++)
3062 switch (*format_ptr
++)
3070 mark_used_flags (XEXP (x
, i
), flag
);
3074 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3075 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
3081 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3082 to look for shared sub-parts. */
3085 reset_used_flags (rtx x
)
3087 mark_used_flags (x
, 0);
3090 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3091 to look for shared sub-parts. */
3094 set_used_flags (rtx x
)
3096 mark_used_flags (x
, 1);
3099 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3100 Return X or the rtx for the pseudo reg the value of X was copied into.
3101 OTHER must be valid as a SET_DEST. */
3104 make_safe_from (rtx x
, rtx other
)
3107 switch (GET_CODE (other
))
3110 other
= SUBREG_REG (other
);
3112 case STRICT_LOW_PART
:
3115 other
= XEXP (other
, 0);
3124 && GET_CODE (x
) != SUBREG
)
3126 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
3127 || reg_mentioned_p (other
, x
))))
3129 rtx temp
= gen_reg_rtx (GET_MODE (x
));
3130 emit_move_insn (temp
, x
);
3136 /* Emission of insns (adding them to the doubly-linked list). */
3138 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3141 get_last_insn_anywhere (void)
3143 struct sequence_stack
*stack
;
3144 if (get_last_insn ())
3145 return get_last_insn ();
3146 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
3147 if (stack
->last
!= 0)
3152 /* Return the first nonnote insn emitted in current sequence or current
3153 function. This routine looks inside SEQUENCEs. */
3156 get_first_nonnote_insn (void)
3158 rtx_insn
*insn
= get_insns ();
3163 for (insn
= next_insn (insn
);
3164 insn
&& NOTE_P (insn
);
3165 insn
= next_insn (insn
))
3169 if (NONJUMP_INSN_P (insn
)
3170 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3171 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3178 /* Return the last nonnote insn emitted in current sequence or current
3179 function. This routine looks inside SEQUENCEs. */
3182 get_last_nonnote_insn (void)
3184 rtx_insn
*insn
= get_last_insn ();
3189 for (insn
= previous_insn (insn
);
3190 insn
&& NOTE_P (insn
);
3191 insn
= previous_insn (insn
))
3195 if (NONJUMP_INSN_P (insn
))
3196 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3197 insn
= seq
->insn (seq
->len () - 1);
3204 /* Return the number of actual (non-debug) insns emitted in this
3208 get_max_insn_count (void)
3210 int n
= cur_insn_uid
;
3212 /* The table size must be stable across -g, to avoid codegen
3213 differences due to debug insns, and not be affected by
3214 -fmin-insn-uid, to avoid excessive table size and to simplify
3215 debugging of -fcompare-debug failures. */
3216 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3217 n
-= cur_debug_insn_uid
;
3219 n
-= MIN_NONDEBUG_INSN_UID
;
3225 /* Return the next insn. If it is a SEQUENCE, return the first insn
3229 next_insn (rtx_insn
*insn
)
3233 insn
= NEXT_INSN (insn
);
3234 if (insn
&& NONJUMP_INSN_P (insn
)
3235 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3236 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3242 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3246 previous_insn (rtx_insn
*insn
)
3250 insn
= PREV_INSN (insn
);
3251 if (insn
&& NONJUMP_INSN_P (insn
))
3252 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3253 insn
= seq
->insn (seq
->len () - 1);
3259 /* Return the next insn after INSN that is not a NOTE. This routine does not
3260 look inside SEQUENCEs. */
3263 next_nonnote_insn (rtx uncast_insn
)
3265 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3268 insn
= NEXT_INSN (insn
);
3269 if (insn
== 0 || !NOTE_P (insn
))
3276 /* Return the next insn after INSN that is not a NOTE, but stop the
3277 search before we enter another basic block. This routine does not
3278 look inside SEQUENCEs. */
3281 next_nonnote_insn_bb (rtx_insn
*insn
)
3285 insn
= NEXT_INSN (insn
);
3286 if (insn
== 0 || !NOTE_P (insn
))
3288 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3295 /* Return the previous insn before INSN that is not a NOTE. This routine does
3296 not look inside SEQUENCEs. */
3299 prev_nonnote_insn (rtx uncast_insn
)
3301 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3305 insn
= PREV_INSN (insn
);
3306 if (insn
== 0 || !NOTE_P (insn
))
3313 /* Return the previous insn before INSN that is not a NOTE, but stop
3314 the search before we enter another basic block. This routine does
3315 not look inside SEQUENCEs. */
3318 prev_nonnote_insn_bb (rtx uncast_insn
)
3320 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3324 insn
= PREV_INSN (insn
);
3325 if (insn
== 0 || !NOTE_P (insn
))
3327 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3334 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3335 routine does not look inside SEQUENCEs. */
3338 next_nondebug_insn (rtx uncast_insn
)
3340 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3344 insn
= NEXT_INSN (insn
);
3345 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3352 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3353 This routine does not look inside SEQUENCEs. */
3356 prev_nondebug_insn (rtx uncast_insn
)
3358 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3362 insn
= PREV_INSN (insn
);
3363 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3370 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3371 This routine does not look inside SEQUENCEs. */
3374 next_nonnote_nondebug_insn (rtx uncast_insn
)
3376 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3380 insn
= NEXT_INSN (insn
);
3381 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3388 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3389 This routine does not look inside SEQUENCEs. */
3392 prev_nonnote_nondebug_insn (rtx uncast_insn
)
3394 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3398 insn
= PREV_INSN (insn
);
3399 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3406 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3407 or 0, if there is none. This routine does not look inside
3411 next_real_insn (rtx uncast_insn
)
3413 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3417 insn
= NEXT_INSN (insn
);
3418 if (insn
== 0 || INSN_P (insn
))
3425 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3426 or 0, if there is none. This routine does not look inside
3430 prev_real_insn (rtx uncast_insn
)
3432 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3436 insn
= PREV_INSN (insn
);
3437 if (insn
== 0 || INSN_P (insn
))
3444 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3445 This routine does not look inside SEQUENCEs. */
3448 last_call_insn (void)
3452 for (insn
= get_last_insn ();
3453 insn
&& !CALL_P (insn
);
3454 insn
= PREV_INSN (insn
))
3457 return safe_as_a
<rtx_call_insn
*> (insn
);
3460 /* Find the next insn after INSN that really does something. This routine
3461 does not look inside SEQUENCEs. After reload this also skips over
3462 standalone USE and CLOBBER insn. */
3465 active_insn_p (const_rtx insn
)
3467 return (CALL_P (insn
) || JUMP_P (insn
)
3468 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3469 || (NONJUMP_INSN_P (insn
)
3470 && (! reload_completed
3471 || (GET_CODE (PATTERN (insn
)) != USE
3472 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3476 next_active_insn (rtx uncast_insn
)
3478 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3482 insn
= NEXT_INSN (insn
);
3483 if (insn
== 0 || active_insn_p (insn
))
3490 /* Find the last insn before INSN that really does something. This routine
3491 does not look inside SEQUENCEs. After reload this also skips over
3492 standalone USE and CLOBBER insn. */
3495 prev_active_insn (rtx uncast_insn
)
3497 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3501 insn
= PREV_INSN (insn
);
3502 if (insn
== 0 || active_insn_p (insn
))
3510 /* Return the next insn that uses CC0 after INSN, which is assumed to
3511 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3512 applied to the result of this function should yield INSN).
3514 Normally, this is simply the next insn. However, if a REG_CC_USER note
3515 is present, it contains the insn that uses CC0.
3517 Return 0 if we can't find the insn. */
3520 next_cc0_user (rtx uncast_insn
)
3522 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3524 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3527 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3529 insn
= next_nonnote_insn (insn
);
3530 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3531 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3533 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3539 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3540 note, it is the previous insn. */
3543 prev_cc0_setter (rtx uncast_insn
)
3545 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3547 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3550 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3552 insn
= prev_nonnote_insn (insn
);
3553 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3560 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3563 find_auto_inc (const_rtx x
, const_rtx reg
)
3565 subrtx_iterator::array_type array
;
3566 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
3568 const_rtx x
= *iter
;
3569 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
3570 && rtx_equal_p (reg
, XEXP (x
, 0)))
3577 /* Increment the label uses for all labels present in rtx. */
3580 mark_label_nuses (rtx x
)
3586 code
= GET_CODE (x
);
3587 if (code
== LABEL_REF
&& LABEL_P (LABEL_REF_LABEL (x
)))
3588 LABEL_NUSES (LABEL_REF_LABEL (x
))++;
3590 fmt
= GET_RTX_FORMAT (code
);
3591 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3594 mark_label_nuses (XEXP (x
, i
));
3595 else if (fmt
[i
] == 'E')
3596 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3597 mark_label_nuses (XVECEXP (x
, i
, j
));
3602 /* Try splitting insns that can be split for better scheduling.
3603 PAT is the pattern which might split.
3604 TRIAL is the insn providing PAT.
3605 LAST is nonzero if we should return the last insn of the sequence produced.
3607 If this routine succeeds in splitting, it returns the first or last
3608 replacement insn depending on the value of LAST. Otherwise, it
3609 returns TRIAL. If the insn to be returned can be split, it will be. */
3612 try_split (rtx pat
, rtx uncast_trial
, int last
)
3614 rtx_insn
*trial
= as_a
<rtx_insn
*> (uncast_trial
);
3615 rtx_insn
*before
= PREV_INSN (trial
);
3616 rtx_insn
*after
= NEXT_INSN (trial
);
3618 rtx_insn
*seq
, *tem
;
3620 rtx_insn
*insn_last
, *insn
;
3622 rtx call_insn
= NULL_RTX
;
3624 /* We're not good at redistributing frame information. */
3625 if (RTX_FRAME_RELATED_P (trial
))
3628 if (any_condjump_p (trial
)
3629 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3630 split_branch_probability
= XINT (note
, 0);
3631 probability
= split_branch_probability
;
3633 seq
= safe_as_a
<rtx_insn
*> (split_insns (pat
, trial
));
3635 split_branch_probability
= -1;
3640 /* Avoid infinite loop if any insn of the result matches
3641 the original pattern. */
3645 if (INSN_P (insn_last
)
3646 && rtx_equal_p (PATTERN (insn_last
), pat
))
3648 if (!NEXT_INSN (insn_last
))
3650 insn_last
= NEXT_INSN (insn_last
);
3653 /* We will be adding the new sequence to the function. The splitters
3654 may have introduced invalid RTL sharing, so unshare the sequence now. */
3655 unshare_all_rtl_in_chain (seq
);
3657 /* Mark labels and copy flags. */
3658 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3663 CROSSING_JUMP_P (insn
) = CROSSING_JUMP_P (trial
);
3664 mark_jump_label (PATTERN (insn
), insn
, 0);
3666 if (probability
!= -1
3667 && any_condjump_p (insn
)
3668 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3670 /* We can preserve the REG_BR_PROB notes only if exactly
3671 one jump is created, otherwise the machine description
3672 is responsible for this step using
3673 split_branch_probability variable. */
3674 gcc_assert (njumps
== 1);
3675 add_int_reg_note (insn
, REG_BR_PROB
, probability
);
3680 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3681 in SEQ and copy any additional information across. */
3684 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3690 gcc_assert (call_insn
== NULL_RTX
);
3693 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3694 target may have explicitly specified. */
3695 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3698 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3700 /* If the old call was a sibling call, the new one must
3702 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3704 /* If the new call is the last instruction in the sequence,
3705 it will effectively replace the old call in-situ. Otherwise
3706 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3707 so that it comes immediately after the new call. */
3708 if (NEXT_INSN (insn
))
3709 for (next
= NEXT_INSN (trial
);
3710 next
&& NOTE_P (next
);
3711 next
= NEXT_INSN (next
))
3712 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3715 add_insn_after (next
, insn
, NULL
);
3721 /* Copy notes, particularly those related to the CFG. */
3722 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3724 switch (REG_NOTE_KIND (note
))
3727 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3733 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3736 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3740 case REG_NON_LOCAL_GOTO
:
3741 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3744 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3750 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3752 rtx reg
= XEXP (note
, 0);
3753 if (!FIND_REG_INC_NOTE (insn
, reg
)
3754 && find_auto_inc (PATTERN (insn
), reg
))
3755 add_reg_note (insn
, REG_INC
, reg
);
3761 fixup_args_size_notes (NULL
, insn_last
, INTVAL (XEXP (note
, 0)));
3765 gcc_assert (call_insn
!= NULL_RTX
);
3766 add_reg_note (call_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3774 /* If there are LABELS inside the split insns increment the
3775 usage count so we don't delete the label. */
3779 while (insn
!= NULL_RTX
)
3781 /* JUMP_P insns have already been "marked" above. */
3782 if (NONJUMP_INSN_P (insn
))
3783 mark_label_nuses (PATTERN (insn
));
3785 insn
= PREV_INSN (insn
);
3789 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3791 delete_insn (trial
);
3793 /* Recursively call try_split for each new insn created; by the
3794 time control returns here that insn will be fully split, so
3795 set LAST and continue from the insn after the one returned.
3796 We can't use next_active_insn here since AFTER may be a note.
3797 Ignore deleted insns, which can be occur if not optimizing. */
3798 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3799 if (! tem
->deleted () && INSN_P (tem
))
3800 tem
= try_split (PATTERN (tem
), tem
, 1);
3802 /* Return either the first or the last insn, depending on which was
3805 ? (after
? PREV_INSN (after
) : get_last_insn ())
3806 : NEXT_INSN (before
);
3809 /* Make and return an INSN rtx, initializing all its slots.
3810 Store PATTERN in the pattern slots. */
3813 make_insn_raw (rtx pattern
)
3817 insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
3819 INSN_UID (insn
) = cur_insn_uid
++;
3820 PATTERN (insn
) = pattern
;
3821 INSN_CODE (insn
) = -1;
3822 REG_NOTES (insn
) = NULL
;
3823 INSN_LOCATION (insn
) = curr_insn_location ();
3824 BLOCK_FOR_INSN (insn
) = NULL
;
3826 #ifdef ENABLE_RTL_CHECKING
3829 && (returnjump_p (insn
)
3830 || (GET_CODE (insn
) == SET
3831 && SET_DEST (insn
) == pc_rtx
)))
3833 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3841 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3844 make_debug_insn_raw (rtx pattern
)
3846 rtx_debug_insn
*insn
;
3848 insn
= as_a
<rtx_debug_insn
*> (rtx_alloc (DEBUG_INSN
));
3849 INSN_UID (insn
) = cur_debug_insn_uid
++;
3850 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3851 INSN_UID (insn
) = cur_insn_uid
++;
3853 PATTERN (insn
) = pattern
;
3854 INSN_CODE (insn
) = -1;
3855 REG_NOTES (insn
) = NULL
;
3856 INSN_LOCATION (insn
) = curr_insn_location ();
3857 BLOCK_FOR_INSN (insn
) = NULL
;
3862 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3865 make_jump_insn_raw (rtx pattern
)
3867 rtx_jump_insn
*insn
;
3869 insn
= as_a
<rtx_jump_insn
*> (rtx_alloc (JUMP_INSN
));
3870 INSN_UID (insn
) = cur_insn_uid
++;
3872 PATTERN (insn
) = pattern
;
3873 INSN_CODE (insn
) = -1;
3874 REG_NOTES (insn
) = NULL
;
3875 JUMP_LABEL (insn
) = NULL
;
3876 INSN_LOCATION (insn
) = curr_insn_location ();
3877 BLOCK_FOR_INSN (insn
) = NULL
;
3882 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3885 make_call_insn_raw (rtx pattern
)
3887 rtx_call_insn
*insn
;
3889 insn
= as_a
<rtx_call_insn
*> (rtx_alloc (CALL_INSN
));
3890 INSN_UID (insn
) = cur_insn_uid
++;
3892 PATTERN (insn
) = pattern
;
3893 INSN_CODE (insn
) = -1;
3894 REG_NOTES (insn
) = NULL
;
3895 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3896 INSN_LOCATION (insn
) = curr_insn_location ();
3897 BLOCK_FOR_INSN (insn
) = NULL
;
3902 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3905 make_note_raw (enum insn_note subtype
)
3907 /* Some notes are never created this way at all. These notes are
3908 only created by patching out insns. */
3909 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
3910 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
3912 rtx_note
*note
= as_a
<rtx_note
*> (rtx_alloc (NOTE
));
3913 INSN_UID (note
) = cur_insn_uid
++;
3914 NOTE_KIND (note
) = subtype
;
3915 BLOCK_FOR_INSN (note
) = NULL
;
3916 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3920 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3921 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3922 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3925 link_insn_into_chain (rtx_insn
*insn
, rtx_insn
*prev
, rtx_insn
*next
)
3927 SET_PREV_INSN (insn
) = prev
;
3928 SET_NEXT_INSN (insn
) = next
;
3931 SET_NEXT_INSN (prev
) = insn
;
3932 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3934 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
3935 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = insn
;
3940 SET_PREV_INSN (next
) = insn
;
3941 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3943 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
3944 SET_PREV_INSN (sequence
->insn (0)) = insn
;
3948 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3950 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (insn
));
3951 SET_PREV_INSN (sequence
->insn (0)) = prev
;
3952 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
3956 /* Add INSN to the end of the doubly-linked list.
3957 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3960 add_insn (rtx_insn
*insn
)
3962 rtx_insn
*prev
= get_last_insn ();
3963 link_insn_into_chain (insn
, prev
, NULL
);
3964 if (NULL
== get_insns ())
3965 set_first_insn (insn
);
3966 set_last_insn (insn
);
3969 /* Add INSN into the doubly-linked list after insn AFTER. */
3972 add_insn_after_nobb (rtx_insn
*insn
, rtx_insn
*after
)
3974 rtx_insn
*next
= NEXT_INSN (after
);
3976 gcc_assert (!optimize
|| !after
->deleted ());
3978 link_insn_into_chain (insn
, after
, next
);
3982 if (get_last_insn () == after
)
3983 set_last_insn (insn
);
3986 struct sequence_stack
*stack
= seq_stack
;
3987 /* Scan all pending sequences too. */
3988 for (; stack
; stack
= stack
->next
)
3989 if (after
== stack
->last
)
3998 /* Add INSN into the doubly-linked list before insn BEFORE. */
4001 add_insn_before_nobb (rtx_insn
*insn
, rtx_insn
*before
)
4003 rtx_insn
*prev
= PREV_INSN (before
);
4005 gcc_assert (!optimize
|| !before
->deleted ());
4007 link_insn_into_chain (insn
, prev
, before
);
4011 if (get_insns () == before
)
4012 set_first_insn (insn
);
4015 struct sequence_stack
*stack
= seq_stack
;
4016 /* Scan all pending sequences too. */
4017 for (; stack
; stack
= stack
->next
)
4018 if (before
== stack
->first
)
4020 stack
->first
= insn
;
4029 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4030 If BB is NULL, an attempt is made to infer the bb from before.
4032 This and the next function should be the only functions called
4033 to insert an insn once delay slots have been filled since only
4034 they know how to update a SEQUENCE. */
4037 add_insn_after (rtx uncast_insn
, rtx uncast_after
, basic_block bb
)
4039 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4040 rtx_insn
*after
= as_a
<rtx_insn
*> (uncast_after
);
4041 add_insn_after_nobb (insn
, after
);
4042 if (!BARRIER_P (after
)
4043 && !BARRIER_P (insn
)
4044 && (bb
= BLOCK_FOR_INSN (after
)))
4046 set_block_for_insn (insn
, bb
);
4048 df_insn_rescan (insn
);
4049 /* Should not happen as first in the BB is always
4050 either NOTE or LABEL. */
4051 if (BB_END (bb
) == after
4052 /* Avoid clobbering of structure when creating new BB. */
4053 && !BARRIER_P (insn
)
4054 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
4059 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4060 If BB is NULL, an attempt is made to infer the bb from before.
4062 This and the previous function should be the only functions called
4063 to insert an insn once delay slots have been filled since only
4064 they know how to update a SEQUENCE. */
4067 add_insn_before (rtx uncast_insn
, rtx uncast_before
, basic_block bb
)
4069 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4070 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4071 add_insn_before_nobb (insn
, before
);
4074 && !BARRIER_P (before
)
4075 && !BARRIER_P (insn
))
4076 bb
= BLOCK_FOR_INSN (before
);
4080 set_block_for_insn (insn
, bb
);
4082 df_insn_rescan (insn
);
4083 /* Should not happen as first in the BB is always either NOTE or
4085 gcc_assert (BB_HEAD (bb
) != insn
4086 /* Avoid clobbering of structure when creating new BB. */
4088 || NOTE_INSN_BASIC_BLOCK_P (insn
));
4092 /* Replace insn with an deleted instruction note. */
4095 set_insn_deleted (rtx insn
)
4098 df_insn_delete (as_a
<rtx_insn
*> (insn
));
4099 PUT_CODE (insn
, NOTE
);
4100 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
4104 /* Unlink INSN from the insn chain.
4106 This function knows how to handle sequences.
4108 This function does not invalidate data flow information associated with
4109 INSN (i.e. does not call df_insn_delete). That makes this function
4110 usable for only disconnecting an insn from the chain, and re-emit it
4113 To later insert INSN elsewhere in the insn chain via add_insn and
4114 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4115 the caller. Nullifying them here breaks many insn chain walks.
4117 To really delete an insn and related DF information, use delete_insn. */
4120 remove_insn (rtx uncast_insn
)
4122 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4123 rtx_insn
*next
= NEXT_INSN (insn
);
4124 rtx_insn
*prev
= PREV_INSN (insn
);
4129 SET_NEXT_INSN (prev
) = next
;
4130 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
4132 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
4133 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
4136 else if (get_insns () == insn
)
4139 SET_PREV_INSN (next
) = NULL
;
4140 set_first_insn (next
);
4144 struct sequence_stack
*stack
= seq_stack
;
4145 /* Scan all pending sequences too. */
4146 for (; stack
; stack
= stack
->next
)
4147 if (insn
== stack
->first
)
4149 stack
->first
= next
;
4158 SET_PREV_INSN (next
) = prev
;
4159 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
4161 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
4162 SET_PREV_INSN (sequence
->insn (0)) = prev
;
4165 else if (get_last_insn () == insn
)
4166 set_last_insn (prev
);
4169 struct sequence_stack
*stack
= seq_stack
;
4170 /* Scan all pending sequences too. */
4171 for (; stack
; stack
= stack
->next
)
4172 if (insn
== stack
->last
)
4181 /* Fix up basic block boundaries, if necessary. */
4182 if (!BARRIER_P (insn
)
4183 && (bb
= BLOCK_FOR_INSN (insn
)))
4185 if (BB_HEAD (bb
) == insn
)
4187 /* Never ever delete the basic block note without deleting whole
4189 gcc_assert (!NOTE_P (insn
));
4190 BB_HEAD (bb
) = next
;
4192 if (BB_END (bb
) == insn
)
4197 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4200 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4202 gcc_assert (call_insn
&& CALL_P (call_insn
));
4204 /* Put the register usage information on the CALL. If there is already
4205 some usage information, put ours at the end. */
4206 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4210 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4211 link
= XEXP (link
, 1))
4214 XEXP (link
, 1) = call_fusage
;
4217 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4220 /* Delete all insns made since FROM.
4221 FROM becomes the new last instruction. */
4224 delete_insns_since (rtx_insn
*from
)
4229 SET_NEXT_INSN (from
) = 0;
4230 set_last_insn (from
);
4233 /* This function is deprecated, please use sequences instead.
4235 Move a consecutive bunch of insns to a different place in the chain.
4236 The insns to be moved are those between FROM and TO.
4237 They are moved to a new position after the insn AFTER.
4238 AFTER must not be FROM or TO or any insn in between.
4240 This function does not know about SEQUENCEs and hence should not be
4241 called after delay-slot filling has been done. */
4244 reorder_insns_nobb (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4246 #ifdef ENABLE_CHECKING
4248 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4249 gcc_assert (after
!= x
);
4250 gcc_assert (after
!= to
);
4253 /* Splice this bunch out of where it is now. */
4254 if (PREV_INSN (from
))
4255 SET_NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4257 SET_PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4258 if (get_last_insn () == to
)
4259 set_last_insn (PREV_INSN (from
));
4260 if (get_insns () == from
)
4261 set_first_insn (NEXT_INSN (to
));
4263 /* Make the new neighbors point to it and it to them. */
4264 if (NEXT_INSN (after
))
4265 SET_PREV_INSN (NEXT_INSN (after
)) = to
;
4267 SET_NEXT_INSN (to
) = NEXT_INSN (after
);
4268 SET_PREV_INSN (from
) = after
;
4269 SET_NEXT_INSN (after
) = from
;
4270 if (after
== get_last_insn ())
4274 /* Same as function above, but take care to update BB boundaries. */
4276 reorder_insns (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4278 rtx_insn
*prev
= PREV_INSN (from
);
4279 basic_block bb
, bb2
;
4281 reorder_insns_nobb (from
, to
, after
);
4283 if (!BARRIER_P (after
)
4284 && (bb
= BLOCK_FOR_INSN (after
)))
4287 df_set_bb_dirty (bb
);
4289 if (!BARRIER_P (from
)
4290 && (bb2
= BLOCK_FOR_INSN (from
)))
4292 if (BB_END (bb2
) == to
)
4293 BB_END (bb2
) = prev
;
4294 df_set_bb_dirty (bb2
);
4297 if (BB_END (bb
) == after
)
4300 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4302 df_insn_change_bb (x
, bb
);
4307 /* Emit insn(s) of given code and pattern
4308 at a specified place within the doubly-linked list.
4310 All of the emit_foo global entry points accept an object
4311 X which is either an insn list or a PATTERN of a single
4314 There are thus a few canonical ways to generate code and
4315 emit it at a specific place in the instruction stream. For
4316 example, consider the instruction named SPOT and the fact that
4317 we would like to emit some instructions before SPOT. We might
4321 ... emit the new instructions ...
4322 insns_head = get_insns ();
4325 emit_insn_before (insns_head, SPOT);
4327 It used to be common to generate SEQUENCE rtl instead, but that
4328 is a relic of the past which no longer occurs. The reason is that
4329 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4330 generated would almost certainly die right after it was created. */
4333 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4334 rtx_insn
*(*make_raw
) (rtx
))
4338 gcc_assert (before
);
4341 return safe_as_a
<rtx_insn
*> (last
);
4343 switch (GET_CODE (x
))
4352 insn
= as_a
<rtx_insn
*> (x
);
4355 rtx_insn
*next
= NEXT_INSN (insn
);
4356 add_insn_before (insn
, before
, bb
);
4362 #ifdef ENABLE_RTL_CHECKING
4369 last
= (*make_raw
) (x
);
4370 add_insn_before (last
, before
, bb
);
4374 return safe_as_a
<rtx_insn
*> (last
);
4377 /* Make X be output before the instruction BEFORE. */
4380 emit_insn_before_noloc (rtx x
, rtx_insn
*before
, basic_block bb
)
4382 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4385 /* Make an instruction with body X and code JUMP_INSN
4386 and output it before the instruction BEFORE. */
4389 emit_jump_insn_before_noloc (rtx x
, rtx_insn
*before
)
4391 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4392 make_jump_insn_raw
);
4395 /* Make an instruction with body X and code CALL_INSN
4396 and output it before the instruction BEFORE. */
4399 emit_call_insn_before_noloc (rtx x
, rtx_insn
*before
)
4401 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4402 make_call_insn_raw
);
4405 /* Make an instruction with body X and code DEBUG_INSN
4406 and output it before the instruction BEFORE. */
4409 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4411 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4412 make_debug_insn_raw
);
4415 /* Make an insn of code BARRIER
4416 and output it before the insn BEFORE. */
4419 emit_barrier_before (rtx before
)
4421 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4423 INSN_UID (insn
) = cur_insn_uid
++;
4425 add_insn_before (insn
, before
, NULL
);
4429 /* Emit the label LABEL before the insn BEFORE. */
4432 emit_label_before (rtx label
, rtx_insn
*before
)
4434 gcc_checking_assert (INSN_UID (label
) == 0);
4435 INSN_UID (label
) = cur_insn_uid
++;
4436 add_insn_before (label
, before
, NULL
);
4437 return as_a
<rtx_insn
*> (label
);
4440 /* Helper for emit_insn_after, handles lists of instructions
4444 emit_insn_after_1 (rtx_insn
*first
, rtx uncast_after
, basic_block bb
)
4446 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4448 rtx_insn
*after_after
;
4449 if (!bb
&& !BARRIER_P (after
))
4450 bb
= BLOCK_FOR_INSN (after
);
4454 df_set_bb_dirty (bb
);
4455 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4456 if (!BARRIER_P (last
))
4458 set_block_for_insn (last
, bb
);
4459 df_insn_rescan (last
);
4461 if (!BARRIER_P (last
))
4463 set_block_for_insn (last
, bb
);
4464 df_insn_rescan (last
);
4466 if (BB_END (bb
) == after
)
4470 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4473 after_after
= NEXT_INSN (after
);
4475 SET_NEXT_INSN (after
) = first
;
4476 SET_PREV_INSN (first
) = after
;
4477 SET_NEXT_INSN (last
) = after_after
;
4479 SET_PREV_INSN (after_after
) = last
;
4481 if (after
== get_last_insn ())
4482 set_last_insn (last
);
4488 emit_pattern_after_noloc (rtx x
, rtx uncast_after
, basic_block bb
,
4489 rtx_insn
*(*make_raw
)(rtx
))
4491 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4492 rtx_insn
*last
= after
;
4499 switch (GET_CODE (x
))
4508 last
= emit_insn_after_1 (as_a
<rtx_insn
*> (x
), after
, bb
);
4511 #ifdef ENABLE_RTL_CHECKING
4518 last
= (*make_raw
) (x
);
4519 add_insn_after (last
, after
, bb
);
4526 /* Make X be output after the insn AFTER and set the BB of insn. If
4527 BB is NULL, an attempt is made to infer the BB from AFTER. */
4530 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4532 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4536 /* Make an insn of code JUMP_INSN with body X
4537 and output it after the insn AFTER. */
4540 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4542 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4545 /* Make an instruction with body X and code CALL_INSN
4546 and output it after the instruction AFTER. */
4549 emit_call_insn_after_noloc (rtx x
, rtx after
)
4551 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4554 /* Make an instruction with body X and code CALL_INSN
4555 and output it after the instruction AFTER. */
4558 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4560 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4563 /* Make an insn of code BARRIER
4564 and output it after the insn AFTER. */
4567 emit_barrier_after (rtx after
)
4569 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4571 INSN_UID (insn
) = cur_insn_uid
++;
4573 add_insn_after (insn
, after
, NULL
);
4577 /* Emit the label LABEL after the insn AFTER. */
4580 emit_label_after (rtx label
, rtx_insn
*after
)
4582 gcc_checking_assert (INSN_UID (label
) == 0);
4583 INSN_UID (label
) = cur_insn_uid
++;
4584 add_insn_after (label
, after
, NULL
);
4585 return as_a
<rtx_insn
*> (label
);
4588 /* Notes require a bit of special handling: Some notes need to have their
4589 BLOCK_FOR_INSN set, others should never have it set, and some should
4590 have it set or clear depending on the context. */
4592 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4593 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4594 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4597 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4601 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4602 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4605 /* Notes for var tracking and EH region markers can appear between or
4606 inside basic blocks. If the caller is emitting on the basic block
4607 boundary, do not set BLOCK_FOR_INSN on the new note. */
4608 case NOTE_INSN_VAR_LOCATION
:
4609 case NOTE_INSN_CALL_ARG_LOCATION
:
4610 case NOTE_INSN_EH_REGION_BEG
:
4611 case NOTE_INSN_EH_REGION_END
:
4612 return on_bb_boundary_p
;
4614 /* Otherwise, BLOCK_FOR_INSN must be set. */
4620 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4623 emit_note_after (enum insn_note subtype
, rtx uncast_after
)
4625 rtx_insn
*after
= as_a
<rtx_insn
*> (uncast_after
);
4626 rtx_note
*note
= make_note_raw (subtype
);
4627 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4628 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4630 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4631 add_insn_after_nobb (note
, after
);
4633 add_insn_after (note
, after
, bb
);
4637 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4640 emit_note_before (enum insn_note subtype
, rtx uncast_before
)
4642 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4643 rtx_note
*note
= make_note_raw (subtype
);
4644 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4645 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4647 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4648 add_insn_before_nobb (note
, before
);
4650 add_insn_before (note
, before
, bb
);
4654 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4655 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4658 emit_pattern_after_setloc (rtx pattern
, rtx uncast_after
, int loc
,
4659 rtx_insn
*(*make_raw
) (rtx
))
4661 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4662 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4664 if (pattern
== NULL_RTX
|| !loc
)
4665 return safe_as_a
<rtx_insn
*> (last
);
4667 after
= NEXT_INSN (after
);
4670 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4671 INSN_LOCATION (after
) = loc
;
4674 after
= NEXT_INSN (after
);
4676 return safe_as_a
<rtx_insn
*> (last
);
4679 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4680 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4684 emit_pattern_after (rtx pattern
, rtx uncast_after
, bool skip_debug_insns
,
4685 rtx_insn
*(*make_raw
) (rtx
))
4687 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4688 rtx_insn
*prev
= after
;
4690 if (skip_debug_insns
)
4691 while (DEBUG_INSN_P (prev
))
4692 prev
= PREV_INSN (prev
);
4695 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4698 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4701 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4703 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4705 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4708 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4710 emit_insn_after (rtx pattern
, rtx after
)
4712 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4715 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4717 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4719 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4722 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4724 emit_jump_insn_after (rtx pattern
, rtx after
)
4726 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4729 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4731 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4733 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4736 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4738 emit_call_insn_after (rtx pattern
, rtx after
)
4740 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4743 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4745 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4747 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4750 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4752 emit_debug_insn_after (rtx pattern
, rtx after
)
4754 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4757 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4758 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4759 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4763 emit_pattern_before_setloc (rtx pattern
, rtx uncast_before
, int loc
, bool insnp
,
4764 rtx_insn
*(*make_raw
) (rtx
))
4766 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4767 rtx_insn
*first
= PREV_INSN (before
);
4768 rtx_insn
*last
= emit_pattern_before_noloc (pattern
, before
,
4769 insnp
? before
: NULL_RTX
,
4772 if (pattern
== NULL_RTX
|| !loc
)
4776 first
= get_insns ();
4778 first
= NEXT_INSN (first
);
4781 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4782 INSN_LOCATION (first
) = loc
;
4785 first
= NEXT_INSN (first
);
4790 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4791 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4792 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4793 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4796 emit_pattern_before (rtx pattern
, rtx uncast_before
, bool skip_debug_insns
,
4797 bool insnp
, rtx_insn
*(*make_raw
) (rtx
))
4799 rtx_insn
*before
= safe_as_a
<rtx_insn
*> (uncast_before
);
4800 rtx_insn
*next
= before
;
4802 if (skip_debug_insns
)
4803 while (DEBUG_INSN_P (next
))
4804 next
= PREV_INSN (next
);
4807 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4810 return emit_pattern_before_noloc (pattern
, before
,
4811 insnp
? before
: NULL_RTX
,
4815 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4817 emit_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4819 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4823 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4825 emit_insn_before (rtx pattern
, rtx before
)
4827 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4830 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4832 emit_jump_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4834 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4835 make_jump_insn_raw
);
4838 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4840 emit_jump_insn_before (rtx pattern
, rtx before
)
4842 return emit_pattern_before (pattern
, before
, true, false,
4843 make_jump_insn_raw
);
4846 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4848 emit_call_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4850 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4851 make_call_insn_raw
);
4854 /* Like emit_call_insn_before_noloc,
4855 but set insn_location according to BEFORE. */
4857 emit_call_insn_before (rtx pattern
, rtx_insn
*before
)
4859 return emit_pattern_before (pattern
, before
, true, false,
4860 make_call_insn_raw
);
4863 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4865 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4867 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4868 make_debug_insn_raw
);
4871 /* Like emit_debug_insn_before_noloc,
4872 but set insn_location according to BEFORE. */
4874 emit_debug_insn_before (rtx pattern
, rtx before
)
4876 return emit_pattern_before (pattern
, before
, false, false,
4877 make_debug_insn_raw
);
4880 /* Take X and emit it at the end of the doubly-linked
4883 Returns the last insn emitted. */
4888 rtx_insn
*last
= get_last_insn ();
4894 switch (GET_CODE (x
))
4903 insn
= as_a
<rtx_insn
*> (x
);
4906 rtx_insn
*next
= NEXT_INSN (insn
);
4913 #ifdef ENABLE_RTL_CHECKING
4914 case JUMP_TABLE_DATA
:
4921 last
= make_insn_raw (x
);
4929 /* Make an insn of code DEBUG_INSN with pattern X
4930 and add it to the end of the doubly-linked list. */
4933 emit_debug_insn (rtx x
)
4935 rtx_insn
*last
= get_last_insn ();
4941 switch (GET_CODE (x
))
4950 insn
= as_a
<rtx_insn
*> (x
);
4953 rtx_insn
*next
= NEXT_INSN (insn
);
4960 #ifdef ENABLE_RTL_CHECKING
4961 case JUMP_TABLE_DATA
:
4968 last
= make_debug_insn_raw (x
);
4976 /* Make an insn of code JUMP_INSN with pattern X
4977 and add it to the end of the doubly-linked list. */
4980 emit_jump_insn (rtx x
)
4982 rtx_insn
*last
= NULL
;
4985 switch (GET_CODE (x
))
4994 insn
= as_a
<rtx_insn
*> (x
);
4997 rtx_insn
*next
= NEXT_INSN (insn
);
5004 #ifdef ENABLE_RTL_CHECKING
5005 case JUMP_TABLE_DATA
:
5012 last
= make_jump_insn_raw (x
);
5020 /* Make an insn of code CALL_INSN with pattern X
5021 and add it to the end of the doubly-linked list. */
5024 emit_call_insn (rtx x
)
5028 switch (GET_CODE (x
))
5037 insn
= emit_insn (x
);
5040 #ifdef ENABLE_RTL_CHECKING
5042 case JUMP_TABLE_DATA
:
5048 insn
= make_call_insn_raw (x
);
5056 /* Add the label LABEL to the end of the doubly-linked list. */
5059 emit_label (rtx label
)
5061 gcc_checking_assert (INSN_UID (label
) == 0);
5062 INSN_UID (label
) = cur_insn_uid
++;
5063 add_insn (as_a
<rtx_insn
*> (label
));
5064 return as_a
<rtx_insn
*> (label
);
5067 /* Make an insn of code JUMP_TABLE_DATA
5068 and add it to the end of the doubly-linked list. */
5070 rtx_jump_table_data
*
5071 emit_jump_table_data (rtx table
)
5073 rtx_jump_table_data
*jump_table_data
=
5074 as_a
<rtx_jump_table_data
*> (rtx_alloc (JUMP_TABLE_DATA
));
5075 INSN_UID (jump_table_data
) = cur_insn_uid
++;
5076 PATTERN (jump_table_data
) = table
;
5077 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
5078 add_insn (jump_table_data
);
5079 return jump_table_data
;
5082 /* Make an insn of code BARRIER
5083 and add it to the end of the doubly-linked list. */
5088 rtx_barrier
*barrier
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
5089 INSN_UID (barrier
) = cur_insn_uid
++;
5094 /* Emit a copy of note ORIG. */
5097 emit_note_copy (rtx_note
*orig
)
5099 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
5100 rtx_note
*note
= make_note_raw (kind
);
5101 NOTE_DATA (note
) = NOTE_DATA (orig
);
5106 /* Make an insn of code NOTE or type NOTE_NO
5107 and add it to the end of the doubly-linked list. */
5110 emit_note (enum insn_note kind
)
5112 rtx_note
*note
= make_note_raw (kind
);
5117 /* Emit a clobber of lvalue X. */
5120 emit_clobber (rtx x
)
5122 /* CONCATs should not appear in the insn stream. */
5123 if (GET_CODE (x
) == CONCAT
)
5125 emit_clobber (XEXP (x
, 0));
5126 return emit_clobber (XEXP (x
, 1));
5128 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
5131 /* Return a sequence of insns to clobber lvalue X. */
5145 /* Emit a use of rvalue X. */
5150 /* CONCATs should not appear in the insn stream. */
5151 if (GET_CODE (x
) == CONCAT
)
5153 emit_use (XEXP (x
, 0));
5154 return emit_use (XEXP (x
, 1));
5156 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
5159 /* Return a sequence of insns to use rvalue X. */
5173 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5174 Return the set in INSN that such notes describe, or NULL if the notes
5175 have no meaning for INSN. */
5178 set_for_reg_notes (rtx insn
)
5185 pat
= PATTERN (insn
);
5186 if (GET_CODE (pat
) == PARALLEL
)
5188 /* We do not use single_set because that ignores SETs of unused
5189 registers. REG_EQUAL and REG_EQUIV notes really do require the
5190 PARALLEL to have a single SET. */
5191 if (multiple_sets (insn
))
5193 pat
= XVECEXP (pat
, 0, 0);
5196 if (GET_CODE (pat
) != SET
)
5199 reg
= SET_DEST (pat
);
5201 /* Notes apply to the contents of a STRICT_LOW_PART. */
5202 if (GET_CODE (reg
) == STRICT_LOW_PART
)
5203 reg
= XEXP (reg
, 0);
5205 /* Check that we have a register. */
5206 if (!(REG_P (reg
) || GET_CODE (reg
) == SUBREG
))
5212 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5213 note of this type already exists, remove it first. */
5216 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
5218 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5224 if (!set_for_reg_notes (insn
))
5227 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5228 It serves no useful purpose and breaks eliminate_regs. */
5229 if (GET_CODE (datum
) == ASM_OPERANDS
)
5232 /* Notes with side effects are dangerous. Even if the side-effect
5233 initially mirrors one in PATTERN (INSN), later optimizations
5234 might alter the way that the final register value is calculated
5235 and so move or alter the side-effect in some way. The note would
5236 then no longer be a valid substitution for SET_SRC. */
5237 if (side_effects_p (datum
))
5246 XEXP (note
, 0) = datum
;
5249 add_reg_note (insn
, kind
, datum
);
5250 note
= REG_NOTES (insn
);
5257 df_notes_rescan (as_a
<rtx_insn
*> (insn
));
5266 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5268 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5270 rtx set
= set_for_reg_notes (insn
);
5272 if (set
&& SET_DEST (set
) == dst
)
5273 return set_unique_reg_note (insn
, kind
, datum
);
5277 /* Return an indication of which type of insn should have X as a body.
5278 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5280 static enum rtx_code
5281 classify_insn (rtx x
)
5285 if (GET_CODE (x
) == CALL
)
5287 if (ANY_RETURN_P (x
))
5289 if (GET_CODE (x
) == SET
)
5291 if (SET_DEST (x
) == pc_rtx
)
5293 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5298 if (GET_CODE (x
) == PARALLEL
)
5301 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5302 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5304 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5305 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5307 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5308 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5314 /* Emit the rtl pattern X as an appropriate kind of insn.
5315 If X is a label, it is simply added into the insn chain. */
5320 enum rtx_code code
= classify_insn (x
);
5325 return emit_label (x
);
5327 return emit_insn (x
);
5330 rtx_insn
*insn
= emit_jump_insn (x
);
5331 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5332 return emit_barrier ();
5336 return emit_call_insn (x
);
5338 return emit_debug_insn (x
);
5344 /* Space for free sequence stack entries. */
5345 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5347 /* Begin emitting insns to a sequence. If this sequence will contain
5348 something that might cause the compiler to pop arguments to function
5349 calls (because those pops have previously been deferred; see
5350 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5351 before calling this function. That will ensure that the deferred
5352 pops are not accidentally emitted in the middle of this sequence. */
5355 start_sequence (void)
5357 struct sequence_stack
*tem
;
5359 if (free_sequence_stack
!= NULL
)
5361 tem
= free_sequence_stack
;
5362 free_sequence_stack
= tem
->next
;
5365 tem
= ggc_alloc
<sequence_stack
> ();
5367 tem
->next
= seq_stack
;
5368 tem
->first
= get_insns ();
5369 tem
->last
= get_last_insn ();
5377 /* Set up the insn chain starting with FIRST as the current sequence,
5378 saving the previously current one. See the documentation for
5379 start_sequence for more information about how to use this function. */
5382 push_to_sequence (rtx_insn
*first
)
5388 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5391 set_first_insn (first
);
5392 set_last_insn (last
);
5395 /* Like push_to_sequence, but take the last insn as an argument to avoid
5396 looping through the list. */
5399 push_to_sequence2 (rtx_insn
*first
, rtx_insn
*last
)
5403 set_first_insn (first
);
5404 set_last_insn (last
);
5407 /* Set up the outer-level insn chain
5408 as the current sequence, saving the previously current one. */
5411 push_topmost_sequence (void)
5413 struct sequence_stack
*stack
, *top
= NULL
;
5417 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5420 set_first_insn (top
->first
);
5421 set_last_insn (top
->last
);
5424 /* After emitting to the outer-level insn chain, update the outer-level
5425 insn chain, and restore the previous saved state. */
5428 pop_topmost_sequence (void)
5430 struct sequence_stack
*stack
, *top
= NULL
;
5432 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5435 top
->first
= get_insns ();
5436 top
->last
= get_last_insn ();
5441 /* After emitting to a sequence, restore previous saved state.
5443 To get the contents of the sequence just made, you must call
5444 `get_insns' *before* calling here.
5446 If the compiler might have deferred popping arguments while
5447 generating this sequence, and this sequence will not be immediately
5448 inserted into the instruction stream, use do_pending_stack_adjust
5449 before calling get_insns. That will ensure that the deferred
5450 pops are inserted into this sequence, and not into some random
5451 location in the instruction stream. See INHIBIT_DEFER_POP for more
5452 information about deferred popping of arguments. */
5457 struct sequence_stack
*tem
= seq_stack
;
5459 set_first_insn (tem
->first
);
5460 set_last_insn (tem
->last
);
5461 seq_stack
= tem
->next
;
5463 memset (tem
, 0, sizeof (*tem
));
5464 tem
->next
= free_sequence_stack
;
5465 free_sequence_stack
= tem
;
5468 /* Return 1 if currently emitting into a sequence. */
5471 in_sequence_p (void)
5473 return seq_stack
!= 0;
5476 /* Put the various virtual registers into REGNO_REG_RTX. */
5479 init_virtual_regs (void)
5481 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5482 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5483 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5484 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5485 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5486 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5487 = virtual_preferred_stack_boundary_rtx
;
5491 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5492 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5493 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5494 static int copy_insn_n_scratches
;
5496 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5497 copied an ASM_OPERANDS.
5498 In that case, it is the original input-operand vector. */
5499 static rtvec orig_asm_operands_vector
;
5501 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5502 copied an ASM_OPERANDS.
5503 In that case, it is the copied input-operand vector. */
5504 static rtvec copy_asm_operands_vector
;
5506 /* Likewise for the constraints vector. */
5507 static rtvec orig_asm_constraints_vector
;
5508 static rtvec copy_asm_constraints_vector
;
5510 /* Recursively create a new copy of an rtx for copy_insn.
5511 This function differs from copy_rtx in that it handles SCRATCHes and
5512 ASM_OPERANDs properly.
5513 Normally, this function is not used directly; use copy_insn as front end.
5514 However, you could first copy an insn pattern with copy_insn and then use
5515 this function afterwards to properly copy any REG_NOTEs containing
5519 copy_insn_1 (rtx orig
)
5524 const char *format_ptr
;
5529 code
= GET_CODE (orig
);
5544 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5545 clobbers or clobbers of hard registers that originated as pseudos.
5546 This is needed to allow safe register renaming. */
5547 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
5548 && ORIGINAL_REGNO (XEXP (orig
, 0)) == REGNO (XEXP (orig
, 0)))
5553 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5554 if (copy_insn_scratch_in
[i
] == orig
)
5555 return copy_insn_scratch_out
[i
];
5559 if (shared_const_p (orig
))
5563 /* A MEM with a constant address is not sharable. The problem is that
5564 the constant address may need to be reloaded. If the mem is shared,
5565 then reloading one copy of this mem will cause all copies to appear
5566 to have been reloaded. */
5572 /* Copy the various flags, fields, and other information. We assume
5573 that all fields need copying, and then clear the fields that should
5574 not be copied. That is the sensible default behavior, and forces
5575 us to explicitly document why we are *not* copying a flag. */
5576 copy
= shallow_copy_rtx (orig
);
5578 /* We do not copy the USED flag, which is used as a mark bit during
5579 walks over the RTL. */
5580 RTX_FLAG (copy
, used
) = 0;
5582 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5585 RTX_FLAG (copy
, jump
) = 0;
5586 RTX_FLAG (copy
, call
) = 0;
5587 RTX_FLAG (copy
, frame_related
) = 0;
5590 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5592 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5593 switch (*format_ptr
++)
5596 if (XEXP (orig
, i
) != NULL
)
5597 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5602 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5603 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5604 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5605 XVEC (copy
, i
) = copy_asm_operands_vector
;
5606 else if (XVEC (orig
, i
) != NULL
)
5608 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5609 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5610 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5621 /* These are left unchanged. */
5628 if (code
== SCRATCH
)
5630 i
= copy_insn_n_scratches
++;
5631 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5632 copy_insn_scratch_in
[i
] = orig
;
5633 copy_insn_scratch_out
[i
] = copy
;
5635 else if (code
== ASM_OPERANDS
)
5637 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5638 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5639 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5640 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5646 /* Create a new copy of an rtx.
5647 This function differs from copy_rtx in that it handles SCRATCHes and
5648 ASM_OPERANDs properly.
5649 INSN doesn't really have to be a full INSN; it could be just the
5652 copy_insn (rtx insn
)
5654 copy_insn_n_scratches
= 0;
5655 orig_asm_operands_vector
= 0;
5656 orig_asm_constraints_vector
= 0;
5657 copy_asm_operands_vector
= 0;
5658 copy_asm_constraints_vector
= 0;
5659 return copy_insn_1 (insn
);
5662 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5663 on that assumption that INSN itself remains in its original place. */
5666 copy_delay_slot_insn (rtx_insn
*insn
)
5668 /* Copy INSN with its rtx_code, all its notes, location etc. */
5669 insn
= as_a
<rtx_insn
*> (copy_rtx (insn
));
5670 INSN_UID (insn
) = cur_insn_uid
++;
5674 /* Initialize data structures and variables in this file
5675 before generating rtl for each function. */
5680 set_first_insn (NULL
);
5681 set_last_insn (NULL
);
5682 if (MIN_NONDEBUG_INSN_UID
)
5683 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5686 cur_debug_insn_uid
= 1;
5687 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5688 first_label_num
= label_num
;
5691 /* Init the tables that describe all the pseudo regs. */
5693 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5695 crtl
->emit
.regno_pointer_align
5696 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5698 regno_reg_rtx
= ggc_vec_alloc
<rtx
> (crtl
->emit
.regno_pointer_align_length
);
5700 /* Put copies of all the hard registers into regno_reg_rtx. */
5701 memcpy (regno_reg_rtx
,
5702 initial_regno_reg_rtx
,
5703 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5705 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5706 init_virtual_regs ();
5708 /* Indicate that the virtual registers and stack locations are
5710 REG_POINTER (stack_pointer_rtx
) = 1;
5711 REG_POINTER (frame_pointer_rtx
) = 1;
5712 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5713 REG_POINTER (arg_pointer_rtx
) = 1;
5715 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5716 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5717 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5718 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5719 REG_POINTER (virtual_cfa_rtx
) = 1;
5721 #ifdef STACK_BOUNDARY
5722 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5723 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5724 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5725 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5727 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5728 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5729 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5730 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5731 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5734 #ifdef INIT_EXPANDERS
5739 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5742 gen_const_vector (enum machine_mode mode
, int constant
)
5747 enum machine_mode inner
;
5749 units
= GET_MODE_NUNITS (mode
);
5750 inner
= GET_MODE_INNER (mode
);
5752 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5754 v
= rtvec_alloc (units
);
5756 /* We need to call this function after we set the scalar const_tiny_rtx
5758 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5760 for (i
= 0; i
< units
; ++i
)
5761 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5763 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5767 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5768 all elements are zero, and the one vector when all elements are one. */
5770 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5772 enum machine_mode inner
= GET_MODE_INNER (mode
);
5773 int nunits
= GET_MODE_NUNITS (mode
);
5777 /* Check to see if all of the elements have the same value. */
5778 x
= RTVEC_ELT (v
, nunits
- 1);
5779 for (i
= nunits
- 2; i
>= 0; i
--)
5780 if (RTVEC_ELT (v
, i
) != x
)
5783 /* If the values are all the same, check to see if we can use one of the
5784 standard constant vectors. */
5787 if (x
== CONST0_RTX (inner
))
5788 return CONST0_RTX (mode
);
5789 else if (x
== CONST1_RTX (inner
))
5790 return CONST1_RTX (mode
);
5791 else if (x
== CONSTM1_RTX (inner
))
5792 return CONSTM1_RTX (mode
);
5795 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5798 /* Initialise global register information required by all functions. */
5801 init_emit_regs (void)
5804 enum machine_mode mode
;
5807 /* Reset register attributes */
5808 htab_empty (reg_attrs_htab
);
5810 /* We need reg_raw_mode, so initialize the modes now. */
5811 init_reg_modes_target ();
5813 /* Assign register numbers to the globally defined register rtx. */
5814 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5815 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5816 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5817 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5818 virtual_incoming_args_rtx
=
5819 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5820 virtual_stack_vars_rtx
=
5821 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5822 virtual_stack_dynamic_rtx
=
5823 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5824 virtual_outgoing_args_rtx
=
5825 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5826 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5827 virtual_preferred_stack_boundary_rtx
=
5828 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5830 /* Initialize RTL for commonly used hard registers. These are
5831 copied into regno_reg_rtx as we begin to compile each function. */
5832 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5833 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5835 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5836 return_address_pointer_rtx
5837 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5840 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5841 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5843 pic_offset_table_rtx
= NULL_RTX
;
5845 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5847 mode
= (enum machine_mode
) i
;
5848 attrs
= ggc_cleared_alloc
<mem_attrs
> ();
5849 attrs
->align
= BITS_PER_UNIT
;
5850 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5851 if (mode
!= BLKmode
)
5853 attrs
->size_known_p
= true;
5854 attrs
->size
= GET_MODE_SIZE (mode
);
5855 if (STRICT_ALIGNMENT
)
5856 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5858 mode_mem_attrs
[i
] = attrs
;
5862 /* Initialize global machine_mode variables. */
5865 init_derived_machine_modes (void)
5867 byte_mode
= VOIDmode
;
5868 word_mode
= VOIDmode
;
5870 for (enum machine_mode mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5872 mode
= GET_MODE_WIDER_MODE (mode
))
5874 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5875 && byte_mode
== VOIDmode
)
5878 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5879 && word_mode
== VOIDmode
)
5883 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5886 /* Create some permanent unique rtl objects shared between all functions. */
5889 init_emit_once (void)
5892 enum machine_mode mode
;
5893 enum machine_mode double_mode
;
5895 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5896 CONST_FIXED, and memory attribute hash tables. */
5897 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5898 const_int_htab_eq
, NULL
);
5900 #if TARGET_SUPPORTS_WIDE_INT
5901 const_wide_int_htab
= htab_create_ggc (37, const_wide_int_htab_hash
,
5902 const_wide_int_htab_eq
, NULL
);
5904 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5905 const_double_htab_eq
, NULL
);
5907 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5908 const_fixed_htab_eq
, NULL
);
5910 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5911 reg_attrs_htab_eq
, NULL
);
5913 #ifdef INIT_EXPANDERS
5914 /* This is to initialize {init|mark|free}_machine_status before the first
5915 call to push_function_context_to. This is needed by the Chill front
5916 end which calls push_function_context_to before the first call to
5917 init_function_start. */
5921 /* Create the unique rtx's for certain rtx codes and operand values. */
5923 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5924 tries to use these variables. */
5925 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5926 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5927 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5929 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5930 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5931 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5933 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5935 double_mode
= mode_for_size (DOUBLE_TYPE_SIZE
, MODE_FLOAT
, 0);
5937 real_from_integer (&dconst0
, double_mode
, 0, SIGNED
);
5938 real_from_integer (&dconst1
, double_mode
, 1, SIGNED
);
5939 real_from_integer (&dconst2
, double_mode
, 2, SIGNED
);
5944 dconsthalf
= dconst1
;
5945 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5947 for (i
= 0; i
< 3; i
++)
5949 const REAL_VALUE_TYPE
*const r
=
5950 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5952 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5954 mode
= GET_MODE_WIDER_MODE (mode
))
5955 const_tiny_rtx
[i
][(int) mode
] =
5956 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5958 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5960 mode
= GET_MODE_WIDER_MODE (mode
))
5961 const_tiny_rtx
[i
][(int) mode
] =
5962 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5964 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5966 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5968 mode
= GET_MODE_WIDER_MODE (mode
))
5969 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5971 for (mode
= MIN_MODE_PARTIAL_INT
;
5972 mode
<= MAX_MODE_PARTIAL_INT
;
5973 mode
= (enum machine_mode
)((int)(mode
) + 1))
5974 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5977 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5979 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5981 mode
= GET_MODE_WIDER_MODE (mode
))
5982 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5984 for (mode
= MIN_MODE_PARTIAL_INT
;
5985 mode
<= MAX_MODE_PARTIAL_INT
;
5986 mode
= (enum machine_mode
)((int)(mode
) + 1))
5987 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5989 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5991 mode
= GET_MODE_WIDER_MODE (mode
))
5993 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5994 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5997 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5999 mode
= GET_MODE_WIDER_MODE (mode
))
6001 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
6002 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
6005 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
6007 mode
= GET_MODE_WIDER_MODE (mode
))
6009 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6010 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6011 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
6014 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
6016 mode
= GET_MODE_WIDER_MODE (mode
))
6018 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6019 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6022 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
6024 mode
= GET_MODE_WIDER_MODE (mode
))
6026 FCONST0 (mode
).data
.high
= 0;
6027 FCONST0 (mode
).data
.low
= 0;
6028 FCONST0 (mode
).mode
= mode
;
6029 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6030 FCONST0 (mode
), mode
);
6033 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
6035 mode
= GET_MODE_WIDER_MODE (mode
))
6037 FCONST0 (mode
).data
.high
= 0;
6038 FCONST0 (mode
).data
.low
= 0;
6039 FCONST0 (mode
).mode
= mode
;
6040 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6041 FCONST0 (mode
), mode
);
6044 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
6046 mode
= GET_MODE_WIDER_MODE (mode
))
6048 FCONST0 (mode
).data
.high
= 0;
6049 FCONST0 (mode
).data
.low
= 0;
6050 FCONST0 (mode
).mode
= mode
;
6051 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6052 FCONST0 (mode
), mode
);
6054 /* We store the value 1. */
6055 FCONST1 (mode
).data
.high
= 0;
6056 FCONST1 (mode
).data
.low
= 0;
6057 FCONST1 (mode
).mode
= mode
;
6059 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
6060 HOST_BITS_PER_DOUBLE_INT
,
6061 SIGNED_FIXED_POINT_MODE_P (mode
));
6062 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6063 FCONST1 (mode
), mode
);
6066 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
6068 mode
= GET_MODE_WIDER_MODE (mode
))
6070 FCONST0 (mode
).data
.high
= 0;
6071 FCONST0 (mode
).data
.low
= 0;
6072 FCONST0 (mode
).mode
= mode
;
6073 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6074 FCONST0 (mode
), mode
);
6076 /* We store the value 1. */
6077 FCONST1 (mode
).data
.high
= 0;
6078 FCONST1 (mode
).data
.low
= 0;
6079 FCONST1 (mode
).mode
= mode
;
6081 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
6082 HOST_BITS_PER_DOUBLE_INT
,
6083 SIGNED_FIXED_POINT_MODE_P (mode
));
6084 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
6085 FCONST1 (mode
), mode
);
6088 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
6090 mode
= GET_MODE_WIDER_MODE (mode
))
6092 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6095 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
6097 mode
= GET_MODE_WIDER_MODE (mode
))
6099 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6102 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
6104 mode
= GET_MODE_WIDER_MODE (mode
))
6106 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6107 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6110 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
6112 mode
= GET_MODE_WIDER_MODE (mode
))
6114 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6115 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6118 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
6119 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
6120 const_tiny_rtx
[0][i
] = const0_rtx
;
6122 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
6123 if (STORE_FLAG_VALUE
== 1)
6124 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
6126 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
6127 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
6128 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
6129 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
6132 /* Produce exact duplicate of insn INSN after AFTER.
6133 Care updating of libcall regions if present. */
6136 emit_copy_of_insn_after (rtx_insn
*insn
, rtx_insn
*after
)
6141 switch (GET_CODE (insn
))
6144 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
6148 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
6149 CROSSING_JUMP_P (new_rtx
) = CROSSING_JUMP_P (insn
);
6153 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
6157 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
6158 if (CALL_INSN_FUNCTION_USAGE (insn
))
6159 CALL_INSN_FUNCTION_USAGE (new_rtx
)
6160 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
6161 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
6162 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
6163 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
6164 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
6165 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
6172 /* Update LABEL_NUSES. */
6173 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
6175 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
6177 /* If the old insn is frame related, then so is the new one. This is
6178 primarily needed for IA-64 unwind info which marks epilogue insns,
6179 which may be duplicated by the basic block reordering code. */
6180 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
6182 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6183 will make them. REG_LABEL_TARGETs are created there too, but are
6184 supposed to be sticky, so we copy them. */
6185 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
6186 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
6188 if (GET_CODE (link
) == EXPR_LIST
)
6189 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
6190 copy_insn_1 (XEXP (link
, 0)));
6192 add_shallow_copy_of_reg_note (new_rtx
, link
);
6195 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
6199 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
6201 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
6203 if (hard_reg_clobbers
[mode
][regno
])
6204 return hard_reg_clobbers
[mode
][regno
];
6206 return (hard_reg_clobbers
[mode
][regno
] =
6207 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
6210 location_t prologue_location
;
6211 location_t epilogue_location
;
6213 /* Hold current location information and last location information, so the
6214 datastructures are built lazily only when some instructions in given
6215 place are needed. */
6216 static location_t curr_location
;
6218 /* Allocate insn location datastructure. */
6220 insn_locations_init (void)
6222 prologue_location
= epilogue_location
= 0;
6223 curr_location
= UNKNOWN_LOCATION
;
6226 /* At the end of emit stage, clear current location. */
6228 insn_locations_finalize (void)
6230 epilogue_location
= curr_location
;
6231 curr_location
= UNKNOWN_LOCATION
;
6234 /* Set current location. */
6236 set_curr_insn_location (location_t location
)
6238 curr_location
= location
;
6241 /* Get current location. */
6243 curr_insn_location (void)
6245 return curr_location
;
6248 /* Return lexical scope block insn belongs to. */
6250 insn_scope (const rtx_insn
*insn
)
6252 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6255 /* Return line number of the statement that produced this insn. */
6257 insn_line (const rtx_insn
*insn
)
6259 return LOCATION_LINE (INSN_LOCATION (insn
));
6262 /* Return source file of the statement that produced this insn. */
6264 insn_file (const rtx_insn
*insn
)
6266 return LOCATION_FILE (INSN_LOCATION (insn
));
6269 /* Return expanded location of the statement that produced this insn. */
6271 insn_location (const rtx_insn
*insn
)
6273 return expand_location (INSN_LOCATION (insn
));
6276 /* Return true if memory model MODEL requires a pre-operation (release-style)
6277 barrier or a post-operation (acquire-style) barrier. While not universal,
6278 this function matches behavior of several targets. */
6281 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6283 switch (model
& MEMMODEL_MASK
)
6285 case MEMMODEL_RELAXED
:
6286 case MEMMODEL_CONSUME
:
6288 case MEMMODEL_RELEASE
:
6290 case MEMMODEL_ACQUIRE
:
6292 case MEMMODEL_ACQ_REL
:
6293 case MEMMODEL_SEQ_CST
:
6300 #include "gt-emit-rtl.h"