* events.c (hash_param_callback): Allow NULL to stand for empty
[official-gcc.git] / gcc / tree-vect-data-refs.c
blobc13c2750270f1dd72a492e6af2d035d9edd60d9b
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software
3 Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "target.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "tree-chrec.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-vectorizer.h"
40 #include "toplev.h"
43 /* Return the smallest scalar part of STMT.
44 This is used to determine the vectype of the stmt. We generally set the
45 vectype according to the type of the result (lhs). For stmts whose
46 result-type is different than the type of the arguments (e.g., demotion,
47 promotion), vectype will be reset appropriately (later). Note that we have
48 to visit the smallest datatype in this function, because that determines the
49 VF. If the smallest datatype in the loop is present only as the rhs of a
50 promotion operation - we'd miss it.
51 Such a case, where a variable of this datatype does not appear in the lhs
52 anywhere in the loop, can only occur if it's an invariant: e.g.:
53 'int_x = (int) short_inv', which we'd expect to have been optimized away by
54 invariant motion. However, we cannot rely on invariant motion to always take
55 invariants out of the loop, and so in the case of promotion we also have to
56 check the rhs.
57 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
58 types. */
60 tree
61 vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
62 HOST_WIDE_INT *rhs_size_unit)
64 tree scalar_type = gimple_expr_type (stmt);
65 HOST_WIDE_INT lhs, rhs;
67 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
69 if (is_gimple_assign (stmt)
70 && (gimple_assign_cast_p (stmt)
71 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
72 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
74 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
76 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
77 if (rhs < lhs)
78 scalar_type = rhs_type;
81 *lhs_size_unit = lhs;
82 *rhs_size_unit = rhs;
83 return scalar_type;
87 /* Find the place of the data-ref in STMT in the interleaving chain that starts
88 from FIRST_STMT. Return -1 if the data-ref is not a part of the chain. */
90 int
91 vect_get_place_in_interleaving_chain (gimple stmt, gimple first_stmt)
93 gimple next_stmt = first_stmt;
94 int result = 0;
96 if (first_stmt != DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)))
97 return -1;
99 while (next_stmt && next_stmt != stmt)
101 result++;
102 next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
105 if (next_stmt)
106 return result;
107 else
108 return -1;
112 /* Function vect_insert_into_interleaving_chain.
114 Insert DRA into the interleaving chain of DRB according to DRA's INIT. */
116 static void
117 vect_insert_into_interleaving_chain (struct data_reference *dra,
118 struct data_reference *drb)
120 gimple prev, next;
121 tree next_init;
122 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
123 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
125 prev = DR_GROUP_FIRST_DR (stmtinfo_b);
126 next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));
127 while (next)
129 next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
130 if (tree_int_cst_compare (next_init, DR_INIT (dra)) > 0)
132 /* Insert here. */
133 DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = DR_STMT (dra);
134 DR_GROUP_NEXT_DR (stmtinfo_a) = next;
135 return;
137 prev = next;
138 next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));
141 /* We got to the end of the list. Insert here. */
142 DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = DR_STMT (dra);
143 DR_GROUP_NEXT_DR (stmtinfo_a) = NULL;
147 /* Function vect_update_interleaving_chain.
149 For two data-refs DRA and DRB that are a part of a chain interleaved data
150 accesses, update the interleaving chain. DRB's INIT is smaller than DRA's.
152 There are four possible cases:
153 1. New stmts - both DRA and DRB are not a part of any chain:
154 FIRST_DR = DRB
155 NEXT_DR (DRB) = DRA
156 2. DRB is a part of a chain and DRA is not:
157 no need to update FIRST_DR
158 no need to insert DRB
159 insert DRA according to init
160 3. DRA is a part of a chain and DRB is not:
161 if (init of FIRST_DR > init of DRB)
162 FIRST_DR = DRB
163 NEXT(FIRST_DR) = previous FIRST_DR
164 else
165 insert DRB according to its init
166 4. both DRA and DRB are in some interleaving chains:
167 choose the chain with the smallest init of FIRST_DR
168 insert the nodes of the second chain into the first one. */
170 static void
171 vect_update_interleaving_chain (struct data_reference *drb,
172 struct data_reference *dra)
174 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
175 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
176 tree next_init, init_dra_chain, init_drb_chain;
177 gimple first_a, first_b;
178 tree node_init;
179 gimple node, prev, next, first_stmt;
181 /* 1. New stmts - both DRA and DRB are not a part of any chain. */
182 if (!DR_GROUP_FIRST_DR (stmtinfo_a) && !DR_GROUP_FIRST_DR (stmtinfo_b))
184 DR_GROUP_FIRST_DR (stmtinfo_a) = DR_STMT (drb);
185 DR_GROUP_FIRST_DR (stmtinfo_b) = DR_STMT (drb);
186 DR_GROUP_NEXT_DR (stmtinfo_b) = DR_STMT (dra);
187 return;
190 /* 2. DRB is a part of a chain and DRA is not. */
191 if (!DR_GROUP_FIRST_DR (stmtinfo_a) && DR_GROUP_FIRST_DR (stmtinfo_b))
193 DR_GROUP_FIRST_DR (stmtinfo_a) = DR_GROUP_FIRST_DR (stmtinfo_b);
194 /* Insert DRA into the chain of DRB. */
195 vect_insert_into_interleaving_chain (dra, drb);
196 return;
199 /* 3. DRA is a part of a chain and DRB is not. */
200 if (DR_GROUP_FIRST_DR (stmtinfo_a) && !DR_GROUP_FIRST_DR (stmtinfo_b))
202 gimple old_first_stmt = DR_GROUP_FIRST_DR (stmtinfo_a);
203 tree init_old = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (
204 old_first_stmt)));
205 gimple tmp;
207 if (tree_int_cst_compare (init_old, DR_INIT (drb)) > 0)
209 /* DRB's init is smaller than the init of the stmt previously marked
210 as the first stmt of the interleaving chain of DRA. Therefore, we
211 update FIRST_STMT and put DRB in the head of the list. */
212 DR_GROUP_FIRST_DR (stmtinfo_b) = DR_STMT (drb);
213 DR_GROUP_NEXT_DR (stmtinfo_b) = old_first_stmt;
215 /* Update all the stmts in the list to point to the new FIRST_STMT. */
216 tmp = old_first_stmt;
217 while (tmp)
219 DR_GROUP_FIRST_DR (vinfo_for_stmt (tmp)) = DR_STMT (drb);
220 tmp = DR_GROUP_NEXT_DR (vinfo_for_stmt (tmp));
223 else
225 /* Insert DRB in the list of DRA. */
226 vect_insert_into_interleaving_chain (drb, dra);
227 DR_GROUP_FIRST_DR (stmtinfo_b) = DR_GROUP_FIRST_DR (stmtinfo_a);
229 return;
232 /* 4. both DRA and DRB are in some interleaving chains. */
233 first_a = DR_GROUP_FIRST_DR (stmtinfo_a);
234 first_b = DR_GROUP_FIRST_DR (stmtinfo_b);
235 if (first_a == first_b)
236 return;
237 init_dra_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_a)));
238 init_drb_chain = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_b)));
240 if (tree_int_cst_compare (init_dra_chain, init_drb_chain) > 0)
242 /* Insert the nodes of DRA chain into the DRB chain.
243 After inserting a node, continue from this node of the DRB chain (don't
244 start from the beginning. */
245 node = DR_GROUP_FIRST_DR (stmtinfo_a);
246 prev = DR_GROUP_FIRST_DR (stmtinfo_b);
247 first_stmt = first_b;
249 else
251 /* Insert the nodes of DRB chain into the DRA chain.
252 After inserting a node, continue from this node of the DRA chain (don't
253 start from the beginning. */
254 node = DR_GROUP_FIRST_DR (stmtinfo_b);
255 prev = DR_GROUP_FIRST_DR (stmtinfo_a);
256 first_stmt = first_a;
259 while (node)
261 node_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (node)));
262 next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));
263 while (next)
265 next_init = DR_INIT (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
266 if (tree_int_cst_compare (next_init, node_init) > 0)
268 /* Insert here. */
269 DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = node;
270 DR_GROUP_NEXT_DR (vinfo_for_stmt (node)) = next;
271 prev = node;
272 break;
274 prev = next;
275 next = DR_GROUP_NEXT_DR (vinfo_for_stmt (prev));
277 if (!next)
279 /* We got to the end of the list. Insert here. */
280 DR_GROUP_NEXT_DR (vinfo_for_stmt (prev)) = node;
281 DR_GROUP_NEXT_DR (vinfo_for_stmt (node)) = NULL;
282 prev = node;
284 DR_GROUP_FIRST_DR (vinfo_for_stmt (node)) = first_stmt;
285 node = DR_GROUP_NEXT_DR (vinfo_for_stmt (node));
290 /* Function vect_equal_offsets.
292 Check if OFFSET1 and OFFSET2 are identical expressions. */
294 static bool
295 vect_equal_offsets (tree offset1, tree offset2)
297 bool res0, res1;
299 STRIP_NOPS (offset1);
300 STRIP_NOPS (offset2);
302 if (offset1 == offset2)
303 return true;
305 if (TREE_CODE (offset1) != TREE_CODE (offset2)
306 || !BINARY_CLASS_P (offset1)
307 || !BINARY_CLASS_P (offset2))
308 return false;
310 res0 = vect_equal_offsets (TREE_OPERAND (offset1, 0),
311 TREE_OPERAND (offset2, 0));
312 res1 = vect_equal_offsets (TREE_OPERAND (offset1, 1),
313 TREE_OPERAND (offset2, 1));
315 return (res0 && res1);
319 /* Function vect_check_interleaving.
321 Check if DRA and DRB are a part of interleaving. In case they are, insert
322 DRA and DRB in an interleaving chain. */
324 static bool
325 vect_check_interleaving (struct data_reference *dra,
326 struct data_reference *drb)
328 HOST_WIDE_INT type_size_a, type_size_b, diff_mod_size, step, init_a, init_b;
330 /* Check that the data-refs have same first location (except init) and they
331 are both either store or load (not load and store). */
332 if ((DR_BASE_ADDRESS (dra) != DR_BASE_ADDRESS (drb)
333 && (TREE_CODE (DR_BASE_ADDRESS (dra)) != ADDR_EXPR
334 || TREE_CODE (DR_BASE_ADDRESS (drb)) != ADDR_EXPR
335 || TREE_OPERAND (DR_BASE_ADDRESS (dra), 0)
336 != TREE_OPERAND (DR_BASE_ADDRESS (drb),0)))
337 || !vect_equal_offsets (DR_OFFSET (dra), DR_OFFSET (drb))
338 || !tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb))
339 || DR_IS_READ (dra) != DR_IS_READ (drb))
340 return false;
342 /* Check:
343 1. data-refs are of the same type
344 2. their steps are equal
345 3. the step (if greater than zero) is greater than the difference between
346 data-refs' inits. */
347 type_size_a = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))));
348 type_size_b = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
350 if (type_size_a != type_size_b
351 || tree_int_cst_compare (DR_STEP (dra), DR_STEP (drb))
352 || !types_compatible_p (TREE_TYPE (DR_REF (dra)),
353 TREE_TYPE (DR_REF (drb))))
354 return false;
356 init_a = TREE_INT_CST_LOW (DR_INIT (dra));
357 init_b = TREE_INT_CST_LOW (DR_INIT (drb));
358 step = TREE_INT_CST_LOW (DR_STEP (dra));
360 if (init_a > init_b)
362 /* If init_a == init_b + the size of the type * k, we have an interleaving,
363 and DRB is accessed before DRA. */
364 diff_mod_size = (init_a - init_b) % type_size_a;
366 if (step && (init_a - init_b) > step)
367 return false;
369 if (diff_mod_size == 0)
371 vect_update_interleaving_chain (drb, dra);
372 if (vect_print_dump_info (REPORT_DR_DETAILS))
374 fprintf (vect_dump, "Detected interleaving ");
375 print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
376 fprintf (vect_dump, " and ");
377 print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
379 return true;
382 else
384 /* If init_b == init_a + the size of the type * k, we have an
385 interleaving, and DRA is accessed before DRB. */
386 diff_mod_size = (init_b - init_a) % type_size_a;
388 if (step && (init_b - init_a) > step)
389 return false;
391 if (diff_mod_size == 0)
393 vect_update_interleaving_chain (dra, drb);
394 if (vect_print_dump_info (REPORT_DR_DETAILS))
396 fprintf (vect_dump, "Detected interleaving ");
397 print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
398 fprintf (vect_dump, " and ");
399 print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
401 return true;
405 return false;
408 /* Check if data references pointed by DR_I and DR_J are same or
409 belong to same interleaving group. Return FALSE if drs are
410 different, otherwise return TRUE. */
412 static bool
413 vect_same_range_drs (data_reference_p dr_i, data_reference_p dr_j)
415 gimple stmt_i = DR_STMT (dr_i);
416 gimple stmt_j = DR_STMT (dr_j);
418 if (operand_equal_p (DR_REF (dr_i), DR_REF (dr_j), 0)
419 || (DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_i))
420 && DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_j))
421 && (DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_i))
422 == DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_j)))))
423 return true;
424 else
425 return false;
428 /* If address ranges represented by DDR_I and DDR_J are equal,
429 return TRUE, otherwise return FALSE. */
431 static bool
432 vect_vfa_range_equal (ddr_p ddr_i, ddr_p ddr_j)
434 if ((vect_same_range_drs (DDR_A (ddr_i), DDR_A (ddr_j))
435 && vect_same_range_drs (DDR_B (ddr_i), DDR_B (ddr_j)))
436 || (vect_same_range_drs (DDR_A (ddr_i), DDR_B (ddr_j))
437 && vect_same_range_drs (DDR_B (ddr_i), DDR_A (ddr_j))))
438 return true;
439 else
440 return false;
443 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
444 tested at run-time. Return TRUE if DDR was successfully inserted.
445 Return false if versioning is not supported. */
447 static bool
448 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
450 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
452 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
453 return false;
455 if (vect_print_dump_info (REPORT_DR_DETAILS))
457 fprintf (vect_dump, "mark for run-time aliasing test between ");
458 print_generic_expr (vect_dump, DR_REF (DDR_A (ddr)), TDF_SLIM);
459 fprintf (vect_dump, " and ");
460 print_generic_expr (vect_dump, DR_REF (DDR_B (ddr)), TDF_SLIM);
463 if (optimize_loop_nest_for_size_p (loop))
465 if (vect_print_dump_info (REPORT_DR_DETAILS))
466 fprintf (vect_dump, "versioning not supported when optimizing for size.");
467 return false;
470 /* FORNOW: We don't support versioning with outer-loop vectorization. */
471 if (loop->inner)
473 if (vect_print_dump_info (REPORT_DR_DETAILS))
474 fprintf (vect_dump, "versioning not yet supported for outer-loops.");
475 return false;
478 VEC_safe_push (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo), ddr);
479 return true;
483 /* Function vect_analyze_data_ref_dependence.
485 Return TRUE if there (might) exist a dependence between a memory-reference
486 DRA and a memory-reference DRB. When versioning for alias may check a
487 dependence at run-time, return FALSE. */
489 static bool
490 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
491 loop_vec_info loop_vinfo)
493 unsigned int i;
494 struct loop *loop = NULL;
495 int vectorization_factor = 0;
496 struct data_reference *dra = DDR_A (ddr);
497 struct data_reference *drb = DDR_B (ddr);
498 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
499 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
500 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
501 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
502 lambda_vector dist_v;
503 unsigned int loop_depth;
505 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
507 /* Independent data accesses. */
508 vect_check_interleaving (dra, drb);
509 return false;
512 if (loop_vinfo)
514 loop = LOOP_VINFO_LOOP (loop_vinfo);
515 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
518 if ((DR_IS_READ (dra) && DR_IS_READ (drb) && loop_vinfo) || dra == drb)
519 return false;
521 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
523 if (loop_vinfo)
525 if (vect_print_dump_info (REPORT_DR_DETAILS))
527 fprintf (vect_dump, "versioning for alias required: "
528 "can't determine dependence between ");
529 print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
530 fprintf (vect_dump, " and ");
531 print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
534 /* Add to list of ddrs that need to be tested at run-time. */
535 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
538 /* When vectorizing a basic block unknown depnedence can still mean
539 strided access. */
540 if (vect_check_interleaving (dra, drb))
541 return false;
543 if (vect_print_dump_info (REPORT_DR_DETAILS))
545 fprintf (vect_dump, "can't determine dependence between ");
546 print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
547 fprintf (vect_dump, " and ");
548 print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
551 return true;
554 /* Versioning for alias is not yet supported for basic block SLP, and
555 dependence distance is unapplicable, hence, in case of known data
556 dependence, basic block vectorization is impossible for now. */
557 if (!loop_vinfo)
559 if (dra != drb && vect_check_interleaving (dra, drb))
560 return false;
562 if (vect_print_dump_info (REPORT_DR_DETAILS))
564 fprintf (vect_dump, "determined dependence between ");
565 print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
566 fprintf (vect_dump, " and ");
567 print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
570 return true;
573 /* Loop-based vectorization and known data dependence. */
574 if (DDR_NUM_DIST_VECTS (ddr) == 0)
576 if (vect_print_dump_info (REPORT_DR_DETAILS))
578 fprintf (vect_dump, "versioning for alias required: bad dist vector for ");
579 print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
580 fprintf (vect_dump, " and ");
581 print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
583 /* Add to list of ddrs that need to be tested at run-time. */
584 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
587 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
588 for (i = 0; VEC_iterate (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v); i++)
590 int dist = dist_v[loop_depth];
592 if (vect_print_dump_info (REPORT_DR_DETAILS))
593 fprintf (vect_dump, "dependence distance = %d.", dist);
595 /* Same loop iteration. */
596 if (dist % vectorization_factor == 0 && dra_size == drb_size)
598 /* Two references with distance zero have the same alignment. */
599 VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a), drb);
600 VEC_safe_push (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b), dra);
601 if (vect_print_dump_info (REPORT_ALIGNMENT))
602 fprintf (vect_dump, "accesses have the same alignment.");
603 if (vect_print_dump_info (REPORT_DR_DETAILS))
605 fprintf (vect_dump, "dependence distance modulo vf == 0 between ");
606 print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
607 fprintf (vect_dump, " and ");
608 print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
611 /* For interleaving, mark that there is a read-write dependency if
612 necessary. We check before that one of the data-refs is store. */
613 if (DR_IS_READ (dra))
614 DR_GROUP_READ_WRITE_DEPENDENCE (stmtinfo_a) = true;
615 else
617 if (DR_IS_READ (drb))
618 DR_GROUP_READ_WRITE_DEPENDENCE (stmtinfo_b) = true;
621 continue;
624 if (abs (dist) >= vectorization_factor
625 || (dist > 0 && DDR_REVERSED_P (ddr)))
627 /* Dependence distance does not create dependence, as far as
628 vectorization is concerned, in this case. If DDR_REVERSED_P the
629 order of the data-refs in DDR was reversed (to make distance
630 vector positive), and the actual distance is negative. */
631 if (vect_print_dump_info (REPORT_DR_DETAILS))
632 fprintf (vect_dump, "dependence distance >= VF or negative.");
633 continue;
636 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
638 fprintf (vect_dump, "not vectorized, possible dependence "
639 "between data-refs ");
640 print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
641 fprintf (vect_dump, " and ");
642 print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
645 return true;
648 return false;
651 /* Function vect_analyze_data_ref_dependences.
653 Examine all the data references in the loop, and make sure there do not
654 exist any data dependences between them. */
656 bool
657 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo,
658 bb_vec_info bb_vinfo)
660 unsigned int i;
661 VEC (ddr_p, heap) *ddrs = NULL;
662 struct data_dependence_relation *ddr;
664 if (vect_print_dump_info (REPORT_DETAILS))
665 fprintf (vect_dump, "=== vect_analyze_dependences ===");
667 if (loop_vinfo)
668 ddrs = LOOP_VINFO_DDRS (loop_vinfo);
669 else
670 ddrs = BB_VINFO_DDRS (bb_vinfo);
672 for (i = 0; VEC_iterate (ddr_p, ddrs, i, ddr); i++)
673 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo))
674 return false;
676 return true;
680 /* Function vect_compute_data_ref_alignment
682 Compute the misalignment of the data reference DR.
684 Output:
685 1. If during the misalignment computation it is found that the data reference
686 cannot be vectorized then false is returned.
687 2. DR_MISALIGNMENT (DR) is defined.
689 FOR NOW: No analysis is actually performed. Misalignment is calculated
690 only for trivial cases. TODO. */
692 static bool
693 vect_compute_data_ref_alignment (struct data_reference *dr)
695 gimple stmt = DR_STMT (dr);
696 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
697 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
698 struct loop *loop = NULL;
699 tree ref = DR_REF (dr);
700 tree vectype;
701 tree base, base_addr;
702 bool base_aligned;
703 tree misalign;
704 tree aligned_to, alignment;
706 if (vect_print_dump_info (REPORT_DETAILS))
707 fprintf (vect_dump, "vect_compute_data_ref_alignment:");
709 if (loop_vinfo)
710 loop = LOOP_VINFO_LOOP (loop_vinfo);
712 /* Initialize misalignment to unknown. */
713 SET_DR_MISALIGNMENT (dr, -1);
715 misalign = DR_INIT (dr);
716 aligned_to = DR_ALIGNED_TO (dr);
717 base_addr = DR_BASE_ADDRESS (dr);
718 vectype = STMT_VINFO_VECTYPE (stmt_info);
720 /* In case the dataref is in an inner-loop of the loop that is being
721 vectorized (LOOP), we use the base and misalignment information
722 relative to the outer-loop (LOOP). This is ok only if the misalignment
723 stays the same throughout the execution of the inner-loop, which is why
724 we have to check that the stride of the dataref in the inner-loop evenly
725 divides by the vector size. */
726 if (loop && nested_in_vect_loop_p (loop, stmt))
728 tree step = DR_STEP (dr);
729 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
731 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
733 if (vect_print_dump_info (REPORT_ALIGNMENT))
734 fprintf (vect_dump, "inner step divides the vector-size.");
735 misalign = STMT_VINFO_DR_INIT (stmt_info);
736 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
737 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
739 else
741 if (vect_print_dump_info (REPORT_ALIGNMENT))
742 fprintf (vect_dump, "inner step doesn't divide the vector-size.");
743 misalign = NULL_TREE;
747 base = build_fold_indirect_ref (base_addr);
748 alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
750 if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
751 || !misalign)
753 if (vect_print_dump_info (REPORT_ALIGNMENT))
755 fprintf (vect_dump, "Unknown alignment for access: ");
756 print_generic_expr (vect_dump, base, TDF_SLIM);
758 return true;
761 if ((DECL_P (base)
762 && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
763 alignment) >= 0)
764 || (TREE_CODE (base_addr) == SSA_NAME
765 && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
766 TREE_TYPE (base_addr)))),
767 alignment) >= 0))
768 base_aligned = true;
769 else
770 base_aligned = false;
772 if (!base_aligned)
774 /* Do not change the alignment of global variables if
775 flag_section_anchors is enabled. */
776 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
777 || (TREE_STATIC (base) && flag_section_anchors))
779 if (vect_print_dump_info (REPORT_DETAILS))
781 fprintf (vect_dump, "can't force alignment of ref: ");
782 print_generic_expr (vect_dump, ref, TDF_SLIM);
784 return true;
787 /* Force the alignment of the decl.
788 NOTE: This is the only change to the code we make during
789 the analysis phase, before deciding to vectorize the loop. */
790 if (vect_print_dump_info (REPORT_DETAILS))
791 fprintf (vect_dump, "force alignment");
792 DECL_ALIGN (base) = TYPE_ALIGN (vectype);
793 DECL_USER_ALIGN (base) = 1;
796 /* At this point we assume that the base is aligned. */
797 gcc_assert (base_aligned
798 || (TREE_CODE (base) == VAR_DECL
799 && DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
801 /* Modulo alignment. */
802 misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
804 if (!host_integerp (misalign, 1))
806 /* Negative or overflowed misalignment value. */
807 if (vect_print_dump_info (REPORT_DETAILS))
808 fprintf (vect_dump, "unexpected misalign value");
809 return false;
812 SET_DR_MISALIGNMENT (dr, TREE_INT_CST_LOW (misalign));
814 if (vect_print_dump_info (REPORT_DETAILS))
816 fprintf (vect_dump, "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
817 print_generic_expr (vect_dump, ref, TDF_SLIM);
820 return true;
824 /* Function vect_compute_data_refs_alignment
826 Compute the misalignment of data references in the loop.
827 Return FALSE if a data reference is found that cannot be vectorized. */
829 static bool
830 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
831 bb_vec_info bb_vinfo)
833 VEC (data_reference_p, heap) *datarefs;
834 struct data_reference *dr;
835 unsigned int i;
837 if (loop_vinfo)
838 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
839 else
840 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
842 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
843 if (!vect_compute_data_ref_alignment (dr))
844 return false;
846 return true;
850 /* Function vect_update_misalignment_for_peel
852 DR - the data reference whose misalignment is to be adjusted.
853 DR_PEEL - the data reference whose misalignment is being made
854 zero in the vector loop by the peel.
855 NPEEL - the number of iterations in the peel loop if the misalignment
856 of DR_PEEL is known at compile time. */
858 static void
859 vect_update_misalignment_for_peel (struct data_reference *dr,
860 struct data_reference *dr_peel, int npeel)
862 unsigned int i;
863 VEC(dr_p,heap) *same_align_drs;
864 struct data_reference *current_dr;
865 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
866 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
867 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
868 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
870 /* For interleaved data accesses the step in the loop must be multiplied by
871 the size of the interleaving group. */
872 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
873 dr_size *= DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_DR (stmt_info)));
874 if (STMT_VINFO_STRIDED_ACCESS (peel_stmt_info))
875 dr_peel_size *= DR_GROUP_SIZE (peel_stmt_info);
877 /* It can be assumed that the data refs with the same alignment as dr_peel
878 are aligned in the vector loop. */
879 same_align_drs
880 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
881 for (i = 0; VEC_iterate (dr_p, same_align_drs, i, current_dr); i++)
883 if (current_dr != dr)
884 continue;
885 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
886 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
887 SET_DR_MISALIGNMENT (dr, 0);
888 return;
891 if (known_alignment_for_access_p (dr)
892 && known_alignment_for_access_p (dr_peel))
894 int misal = DR_MISALIGNMENT (dr);
895 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
896 misal += npeel * dr_size;
897 misal %= GET_MODE_SIZE (TYPE_MODE (vectype));
898 SET_DR_MISALIGNMENT (dr, misal);
899 return;
902 if (vect_print_dump_info (REPORT_DETAILS))
903 fprintf (vect_dump, "Setting misalignment to -1.");
904 SET_DR_MISALIGNMENT (dr, -1);
908 /* Function vect_verify_datarefs_alignment
910 Return TRUE if all data references in the loop can be
911 handled with respect to alignment. */
913 bool
914 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
916 VEC (data_reference_p, heap) *datarefs;
917 struct data_reference *dr;
918 enum dr_alignment_support supportable_dr_alignment;
919 unsigned int i;
921 if (loop_vinfo)
922 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
923 else
924 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
926 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
928 gimple stmt = DR_STMT (dr);
929 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
931 /* For interleaving, only the alignment of the first access matters. */
932 if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
933 && DR_GROUP_FIRST_DR (stmt_info) != stmt)
934 continue;
936 supportable_dr_alignment = vect_supportable_dr_alignment (dr);
937 if (!supportable_dr_alignment)
939 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
941 if (DR_IS_READ (dr))
942 fprintf (vect_dump,
943 "not vectorized: unsupported unaligned load.");
944 else
945 fprintf (vect_dump,
946 "not vectorized: unsupported unaligned store.");
948 return false;
950 if (supportable_dr_alignment != dr_aligned
951 && vect_print_dump_info (REPORT_ALIGNMENT))
952 fprintf (vect_dump, "Vectorizing an unaligned access.");
954 return true;
958 /* Function vector_alignment_reachable_p
960 Return true if vector alignment for DR is reachable by peeling
961 a few loop iterations. Return false otherwise. */
963 static bool
964 vector_alignment_reachable_p (struct data_reference *dr)
966 gimple stmt = DR_STMT (dr);
967 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
968 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
970 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
972 /* For interleaved access we peel only if number of iterations in
973 the prolog loop ({VF - misalignment}), is a multiple of the
974 number of the interleaved accesses. */
975 int elem_size, mis_in_elements;
976 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
978 /* FORNOW: handle only known alignment. */
979 if (!known_alignment_for_access_p (dr))
980 return false;
982 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
983 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
985 if ((nelements - mis_in_elements) % DR_GROUP_SIZE (stmt_info))
986 return false;
989 /* If misalignment is known at the compile time then allow peeling
990 only if natural alignment is reachable through peeling. */
991 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
993 HOST_WIDE_INT elmsize =
994 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
995 if (vect_print_dump_info (REPORT_DETAILS))
997 fprintf (vect_dump, "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
998 fprintf (vect_dump, ". misalignment = %d. ", DR_MISALIGNMENT (dr));
1000 if (DR_MISALIGNMENT (dr) % elmsize)
1002 if (vect_print_dump_info (REPORT_DETAILS))
1003 fprintf (vect_dump, "data size does not divide the misalignment.\n");
1004 return false;
1008 if (!known_alignment_for_access_p (dr))
1010 tree type = (TREE_TYPE (DR_REF (dr)));
1011 tree ba = DR_BASE_OBJECT (dr);
1012 bool is_packed = false;
1014 if (ba)
1015 is_packed = contains_packed_reference (ba);
1017 if (vect_print_dump_info (REPORT_DETAILS))
1018 fprintf (vect_dump, "Unknown misalignment, is_packed = %d",is_packed);
1019 if (targetm.vectorize.vector_alignment_reachable (type, is_packed))
1020 return true;
1021 else
1022 return false;
1025 return true;
1028 /* Function vect_enhance_data_refs_alignment
1030 This pass will use loop versioning and loop peeling in order to enhance
1031 the alignment of data references in the loop.
1033 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1034 original loop is to be vectorized; Any other loops that are created by
1035 the transformations performed in this pass - are not supposed to be
1036 vectorized. This restriction will be relaxed.
1038 This pass will require a cost model to guide it whether to apply peeling
1039 or versioning or a combination of the two. For example, the scheme that
1040 intel uses when given a loop with several memory accesses, is as follows:
1041 choose one memory access ('p') which alignment you want to force by doing
1042 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1043 other accesses are not necessarily aligned, or (2) use loop versioning to
1044 generate one loop in which all accesses are aligned, and another loop in
1045 which only 'p' is necessarily aligned.
1047 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1048 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1049 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1051 Devising a cost model is the most critical aspect of this work. It will
1052 guide us on which access to peel for, whether to use loop versioning, how
1053 many versions to create, etc. The cost model will probably consist of
1054 generic considerations as well as target specific considerations (on
1055 powerpc for example, misaligned stores are more painful than misaligned
1056 loads).
1058 Here are the general steps involved in alignment enhancements:
1060 -- original loop, before alignment analysis:
1061 for (i=0; i<N; i++){
1062 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1063 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1066 -- After vect_compute_data_refs_alignment:
1067 for (i=0; i<N; i++){
1068 x = q[i]; # DR_MISALIGNMENT(q) = 3
1069 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1072 -- Possibility 1: we do loop versioning:
1073 if (p is aligned) {
1074 for (i=0; i<N; i++){ # loop 1A
1075 x = q[i]; # DR_MISALIGNMENT(q) = 3
1076 p[i] = y; # DR_MISALIGNMENT(p) = 0
1079 else {
1080 for (i=0; i<N; i++){ # loop 1B
1081 x = q[i]; # DR_MISALIGNMENT(q) = 3
1082 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1086 -- Possibility 2: we do loop peeling:
1087 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1088 x = q[i];
1089 p[i] = y;
1091 for (i = 3; i < N; i++){ # loop 2A
1092 x = q[i]; # DR_MISALIGNMENT(q) = 0
1093 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1096 -- Possibility 3: combination of loop peeling and versioning:
1097 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1098 x = q[i];
1099 p[i] = y;
1101 if (p is aligned) {
1102 for (i = 3; i<N; i++){ # loop 3A
1103 x = q[i]; # DR_MISALIGNMENT(q) = 0
1104 p[i] = y; # DR_MISALIGNMENT(p) = 0
1107 else {
1108 for (i = 3; i<N; i++){ # loop 3B
1109 x = q[i]; # DR_MISALIGNMENT(q) = 0
1110 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1114 These loops are later passed to loop_transform to be vectorized. The
1115 vectorizer will use the alignment information to guide the transformation
1116 (whether to generate regular loads/stores, or with special handling for
1117 misalignment). */
1119 bool
1120 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1122 VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1123 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1124 enum dr_alignment_support supportable_dr_alignment;
1125 struct data_reference *dr0 = NULL;
1126 struct data_reference *dr;
1127 unsigned int i;
1128 bool do_peeling = false;
1129 bool do_versioning = false;
1130 bool stat;
1131 gimple stmt;
1132 stmt_vec_info stmt_info;
1133 int vect_versioning_for_alias_required;
1135 if (vect_print_dump_info (REPORT_DETAILS))
1136 fprintf (vect_dump, "=== vect_enhance_data_refs_alignment ===");
1138 /* While cost model enhancements are expected in the future, the high level
1139 view of the code at this time is as follows:
1141 A) If there is a misaligned access then see if peeling to align
1142 this access can make all data references satisfy
1143 vect_supportable_dr_alignment. If so, update data structures
1144 as needed and return true.
1146 B) If peeling wasn't possible and there is a data reference with an
1147 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1148 then see if loop versioning checks can be used to make all data
1149 references satisfy vect_supportable_dr_alignment. If so, update
1150 data structures as needed and return true.
1152 C) If neither peeling nor versioning were successful then return false if
1153 any data reference does not satisfy vect_supportable_dr_alignment.
1155 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1157 Note, Possibility 3 above (which is peeling and versioning together) is not
1158 being done at this time. */
1160 /* (1) Peeling to force alignment. */
1162 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1163 Considerations:
1164 + How many accesses will become aligned due to the peeling
1165 - How many accesses will become unaligned due to the peeling,
1166 and the cost of misaligned accesses.
1167 - The cost of peeling (the extra runtime checks, the increase
1168 in code size).
1170 The scheme we use FORNOW: peel to force the alignment of the first
1171 unsupported misaligned access in the loop.
1173 TODO: Use a cost model. */
1175 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1177 stmt = DR_STMT (dr);
1178 stmt_info = vinfo_for_stmt (stmt);
1180 /* For interleaving, only the alignment of the first access
1181 matters. */
1182 if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
1183 && DR_GROUP_FIRST_DR (stmt_info) != stmt)
1184 continue;
1186 if (!DR_IS_READ (dr) && !aligned_access_p (dr))
1188 do_peeling = vector_alignment_reachable_p (dr);
1189 if (do_peeling)
1190 dr0 = dr;
1191 if (!do_peeling && vect_print_dump_info (REPORT_DETAILS))
1192 fprintf (vect_dump, "vector alignment may not be reachable");
1193 break;
1197 vect_versioning_for_alias_required
1198 = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
1200 /* Temporarily, if versioning for alias is required, we disable peeling
1201 until we support peeling and versioning. Often peeling for alignment
1202 will require peeling for loop-bound, which in turn requires that we
1203 know how to adjust the loop ivs after the loop. */
1204 if (vect_versioning_for_alias_required
1205 || !vect_can_advance_ivs_p (loop_vinfo)
1206 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1207 do_peeling = false;
1209 if (do_peeling)
1211 int mis;
1212 int npeel = 0;
1213 gimple stmt = DR_STMT (dr0);
1214 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1215 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1216 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1218 if (known_alignment_for_access_p (dr0))
1220 /* Since it's known at compile time, compute the number of iterations
1221 in the peeled loop (the peeling factor) for use in updating
1222 DR_MISALIGNMENT values. The peeling factor is the vectorization
1223 factor minus the misalignment as an element count. */
1224 mis = DR_MISALIGNMENT (dr0);
1225 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1226 npeel = nelements - mis;
1228 /* For interleaved data access every iteration accesses all the
1229 members of the group, therefore we divide the number of iterations
1230 by the group size. */
1231 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1232 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
1233 npeel /= DR_GROUP_SIZE (stmt_info);
1235 if (vect_print_dump_info (REPORT_DETAILS))
1236 fprintf (vect_dump, "Try peeling by %d", npeel);
1239 /* Ensure that all data refs can be vectorized after the peel. */
1240 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1242 int save_misalignment;
1244 if (dr == dr0)
1245 continue;
1247 stmt = DR_STMT (dr);
1248 stmt_info = vinfo_for_stmt (stmt);
1249 /* For interleaving, only the alignment of the first access
1250 matters. */
1251 if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
1252 && DR_GROUP_FIRST_DR (stmt_info) != stmt)
1253 continue;
1255 save_misalignment = DR_MISALIGNMENT (dr);
1256 vect_update_misalignment_for_peel (dr, dr0, npeel);
1257 supportable_dr_alignment = vect_supportable_dr_alignment (dr);
1258 SET_DR_MISALIGNMENT (dr, save_misalignment);
1260 if (!supportable_dr_alignment)
1262 do_peeling = false;
1263 break;
1267 if (do_peeling)
1269 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1270 If the misalignment of DR_i is identical to that of dr0 then set
1271 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1272 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1273 by the peeling factor times the element size of DR_i (MOD the
1274 vectorization factor times the size). Otherwise, the
1275 misalignment of DR_i must be set to unknown. */
1276 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1277 if (dr != dr0)
1278 vect_update_misalignment_for_peel (dr, dr0, npeel);
1280 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1281 LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) = DR_MISALIGNMENT (dr0);
1282 SET_DR_MISALIGNMENT (dr0, 0);
1283 if (vect_print_dump_info (REPORT_ALIGNMENT))
1284 fprintf (vect_dump, "Alignment of access forced using peeling.");
1286 if (vect_print_dump_info (REPORT_DETAILS))
1287 fprintf (vect_dump, "Peeling for alignment will be applied.");
1289 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1290 gcc_assert (stat);
1291 return stat;
1296 /* (2) Versioning to force alignment. */
1298 /* Try versioning if:
1299 1) flag_tree_vect_loop_version is TRUE
1300 2) optimize loop for speed
1301 3) there is at least one unsupported misaligned data ref with an unknown
1302 misalignment, and
1303 4) all misaligned data refs with a known misalignment are supported, and
1304 5) the number of runtime alignment checks is within reason. */
1306 do_versioning =
1307 flag_tree_vect_loop_version
1308 && optimize_loop_nest_for_speed_p (loop)
1309 && (!loop->inner); /* FORNOW */
1311 if (do_versioning)
1313 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1315 stmt = DR_STMT (dr);
1316 stmt_info = vinfo_for_stmt (stmt);
1318 /* For interleaving, only the alignment of the first access
1319 matters. */
1320 if (aligned_access_p (dr)
1321 || (STMT_VINFO_STRIDED_ACCESS (stmt_info)
1322 && DR_GROUP_FIRST_DR (stmt_info) != stmt))
1323 continue;
1325 supportable_dr_alignment = vect_supportable_dr_alignment (dr);
1327 if (!supportable_dr_alignment)
1329 gimple stmt;
1330 int mask;
1331 tree vectype;
1333 if (known_alignment_for_access_p (dr)
1334 || VEC_length (gimple,
1335 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
1336 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
1338 do_versioning = false;
1339 break;
1342 stmt = DR_STMT (dr);
1343 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1344 gcc_assert (vectype);
1346 /* The rightmost bits of an aligned address must be zeros.
1347 Construct the mask needed for this test. For example,
1348 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1349 mask must be 15 = 0xf. */
1350 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
1352 /* FORNOW: use the same mask to test all potentially unaligned
1353 references in the loop. The vectorizer currently supports
1354 a single vector size, see the reference to
1355 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1356 vectorization factor is computed. */
1357 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
1358 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
1359 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
1360 VEC_safe_push (gimple, heap,
1361 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo),
1362 DR_STMT (dr));
1366 /* Versioning requires at least one misaligned data reference. */
1367 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1368 do_versioning = false;
1369 else if (!do_versioning)
1370 VEC_truncate (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo), 0);
1373 if (do_versioning)
1375 VEC(gimple,heap) *may_misalign_stmts
1376 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1377 gimple stmt;
1379 /* It can now be assumed that the data references in the statements
1380 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1381 of the loop being vectorized. */
1382 for (i = 0; VEC_iterate (gimple, may_misalign_stmts, i, stmt); i++)
1384 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1385 dr = STMT_VINFO_DATA_REF (stmt_info);
1386 SET_DR_MISALIGNMENT (dr, 0);
1387 if (vect_print_dump_info (REPORT_ALIGNMENT))
1388 fprintf (vect_dump, "Alignment of access forced using versioning.");
1391 if (vect_print_dump_info (REPORT_DETAILS))
1392 fprintf (vect_dump, "Versioning for alignment will be applied.");
1394 /* Peeling and versioning can't be done together at this time. */
1395 gcc_assert (! (do_peeling && do_versioning));
1397 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1398 gcc_assert (stat);
1399 return stat;
1402 /* This point is reached if neither peeling nor versioning is being done. */
1403 gcc_assert (! (do_peeling || do_versioning));
1405 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1406 return stat;
1410 /* Function vect_analyze_data_refs_alignment
1412 Analyze the alignment of the data-references in the loop.
1413 Return FALSE if a data reference is found that cannot be vectorized. */
1415 bool
1416 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
1417 bb_vec_info bb_vinfo)
1419 if (vect_print_dump_info (REPORT_DETAILS))
1420 fprintf (vect_dump, "=== vect_analyze_data_refs_alignment ===");
1422 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
1424 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1425 fprintf (vect_dump,
1426 "not vectorized: can't calculate alignment for data ref.");
1427 return false;
1430 return true;
1434 /* Analyze groups of strided accesses: check that DR belongs to a group of
1435 strided accesses of legal size, step, etc. Detect gaps, single element
1436 interleaving, and other special cases. Set strided access info.
1437 Collect groups of strided stores for further use in SLP analysis. */
1439 static bool
1440 vect_analyze_group_access (struct data_reference *dr)
1442 tree step = DR_STEP (dr);
1443 tree scalar_type = TREE_TYPE (DR_REF (dr));
1444 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
1445 gimple stmt = DR_STMT (dr);
1446 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1447 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1448 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
1449 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
1450 HOST_WIDE_INT stride;
1451 bool slp_impossible = false;
1453 /* For interleaving, STRIDE is STEP counted in elements, i.e., the size of the
1454 interleaving group (including gaps). */
1455 stride = dr_step / type_size;
1457 /* Not consecutive access is possible only if it is a part of interleaving. */
1458 if (!DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)))
1460 /* Check if it this DR is a part of interleaving, and is a single
1461 element of the group that is accessed in the loop. */
1463 /* Gaps are supported only for loads. STEP must be a multiple of the type
1464 size. The size of the group must be a power of 2. */
1465 if (DR_IS_READ (dr)
1466 && (dr_step % type_size) == 0
1467 && stride > 0
1468 && exact_log2 (stride) != -1)
1470 DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) = stmt;
1471 DR_GROUP_SIZE (vinfo_for_stmt (stmt)) = stride;
1472 if (vect_print_dump_info (REPORT_DR_DETAILS))
1474 fprintf (vect_dump, "Detected single element interleaving ");
1475 print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
1476 fprintf (vect_dump, " step ");
1477 print_generic_expr (vect_dump, step, TDF_SLIM);
1479 return true;
1481 if (vect_print_dump_info (REPORT_DETAILS))
1482 fprintf (vect_dump, "not consecutive access");
1483 return false;
1486 if (DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) == stmt)
1488 /* First stmt in the interleaving chain. Check the chain. */
1489 gimple next = DR_GROUP_NEXT_DR (vinfo_for_stmt (stmt));
1490 struct data_reference *data_ref = dr;
1491 unsigned int count = 1;
1492 tree next_step;
1493 tree prev_init = DR_INIT (data_ref);
1494 gimple prev = stmt;
1495 HOST_WIDE_INT diff, count_in_bytes, gaps = 0;
1497 while (next)
1499 /* Skip same data-refs. In case that two or more stmts share data-ref
1500 (supported only for loads), we vectorize only the first stmt, and
1501 the rest get their vectorized loads from the first one. */
1502 if (!tree_int_cst_compare (DR_INIT (data_ref),
1503 DR_INIT (STMT_VINFO_DATA_REF (
1504 vinfo_for_stmt (next)))))
1506 if (!DR_IS_READ (data_ref))
1508 if (vect_print_dump_info (REPORT_DETAILS))
1509 fprintf (vect_dump, "Two store stmts share the same dr.");
1510 return false;
1513 /* Check that there is no load-store dependencies for this loads
1514 to prevent a case of load-store-load to the same location. */
1515 if (DR_GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (next))
1516 || DR_GROUP_READ_WRITE_DEPENDENCE (vinfo_for_stmt (prev)))
1518 if (vect_print_dump_info (REPORT_DETAILS))
1519 fprintf (vect_dump,
1520 "READ_WRITE dependence in interleaving.");
1521 return false;
1524 /* For load use the same data-ref load. */
1525 DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
1527 prev = next;
1528 next = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
1529 continue;
1531 prev = next;
1533 /* Check that all the accesses have the same STEP. */
1534 next_step = DR_STEP (STMT_VINFO_DATA_REF (vinfo_for_stmt (next)));
1535 if (tree_int_cst_compare (step, next_step))
1537 if (vect_print_dump_info (REPORT_DETAILS))
1538 fprintf (vect_dump, "not consecutive access in interleaving");
1539 return false;
1542 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
1543 /* Check that the distance between two accesses is equal to the type
1544 size. Otherwise, we have gaps. */
1545 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
1546 - TREE_INT_CST_LOW (prev_init)) / type_size;
1547 if (diff != 1)
1549 /* FORNOW: SLP of accesses with gaps is not supported. */
1550 slp_impossible = true;
1551 if (!DR_IS_READ (data_ref))
1553 if (vect_print_dump_info (REPORT_DETAILS))
1554 fprintf (vect_dump, "interleaved store with gaps");
1555 return false;
1558 gaps += diff - 1;
1561 /* Store the gap from the previous member of the group. If there is no
1562 gap in the access, DR_GROUP_GAP is always 1. */
1563 DR_GROUP_GAP (vinfo_for_stmt (next)) = diff;
1565 prev_init = DR_INIT (data_ref);
1566 next = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
1567 /* Count the number of data-refs in the chain. */
1568 count++;
1571 /* COUNT is the number of accesses found, we multiply it by the size of
1572 the type to get COUNT_IN_BYTES. */
1573 count_in_bytes = type_size * count;
1575 /* Check that the size of the interleaving (including gaps) is not
1576 greater than STEP. */
1577 if (dr_step && dr_step < count_in_bytes + gaps * type_size)
1579 if (vect_print_dump_info (REPORT_DETAILS))
1581 fprintf (vect_dump, "interleaving size is greater than step for ");
1582 print_generic_expr (vect_dump, DR_REF (dr), TDF_SLIM);
1584 return false;
1587 /* Check that the size of the interleaving is equal to STEP for stores,
1588 i.e., that there are no gaps. */
1589 if (dr_step && dr_step != count_in_bytes)
1591 if (DR_IS_READ (dr))
1593 slp_impossible = true;
1594 /* There is a gap after the last load in the group. This gap is a
1595 difference between the stride and the number of elements. When
1596 there is no gap, this difference should be 0. */
1597 DR_GROUP_GAP (vinfo_for_stmt (stmt)) = stride - count;
1599 else
1601 if (vect_print_dump_info (REPORT_DETAILS))
1602 fprintf (vect_dump, "interleaved store with gaps");
1603 return false;
1607 /* Check that STEP is a multiple of type size. */
1608 if (dr_step && (dr_step % type_size) != 0)
1610 if (vect_print_dump_info (REPORT_DETAILS))
1612 fprintf (vect_dump, "step is not a multiple of type size: step ");
1613 print_generic_expr (vect_dump, step, TDF_SLIM);
1614 fprintf (vect_dump, " size ");
1615 print_generic_expr (vect_dump, TYPE_SIZE_UNIT (scalar_type),
1616 TDF_SLIM);
1618 return false;
1621 /* FORNOW: we handle only interleaving that is a power of 2.
1622 We don't fail here if it may be still possible to vectorize the
1623 group using SLP. If not, the size of the group will be checked in
1624 vect_analyze_operations, and the vectorization will fail. */
1625 if (exact_log2 (stride) == -1)
1627 if (vect_print_dump_info (REPORT_DETAILS))
1628 fprintf (vect_dump, "interleaving is not a power of 2");
1630 if (slp_impossible)
1631 return false;
1634 if (stride == 0)
1635 stride = count;
1637 DR_GROUP_SIZE (vinfo_for_stmt (stmt)) = stride;
1638 if (vect_print_dump_info (REPORT_DETAILS))
1639 fprintf (vect_dump, "Detected interleaving of size %d", (int)stride);
1641 /* SLP: create an SLP data structure for every interleaving group of
1642 stores for further analysis in vect_analyse_slp. */
1643 if (!DR_IS_READ (dr) && !slp_impossible)
1645 if (loop_vinfo)
1646 VEC_safe_push (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo),
1647 stmt);
1648 if (bb_vinfo)
1649 VEC_safe_push (gimple, heap, BB_VINFO_STRIDED_STORES (bb_vinfo),
1650 stmt);
1654 return true;
1658 /* Analyze the access pattern of the data-reference DR.
1659 In case of non-consecutive accesses call vect_analyze_group_access() to
1660 analyze groups of strided accesses. */
1662 static bool
1663 vect_analyze_data_ref_access (struct data_reference *dr)
1665 tree step = DR_STEP (dr);
1666 tree scalar_type = TREE_TYPE (DR_REF (dr));
1667 gimple stmt = DR_STMT (dr);
1668 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1669 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1670 struct loop *loop = NULL;
1671 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
1673 if (loop_vinfo)
1674 loop = LOOP_VINFO_LOOP (loop_vinfo);
1676 if (loop_vinfo && !step)
1678 if (vect_print_dump_info (REPORT_DETAILS))
1679 fprintf (vect_dump, "bad data-ref access in loop");
1680 return false;
1683 /* Don't allow invariant accesses in loops. */
1684 if (loop_vinfo && dr_step == 0)
1685 return false;
1687 if (loop && nested_in_vect_loop_p (loop, stmt))
1689 /* Interleaved accesses are not yet supported within outer-loop
1690 vectorization for references in the inner-loop. */
1691 DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) = NULL;
1693 /* For the rest of the analysis we use the outer-loop step. */
1694 step = STMT_VINFO_DR_STEP (stmt_info);
1695 dr_step = TREE_INT_CST_LOW (step);
1697 if (dr_step == 0)
1699 if (vect_print_dump_info (REPORT_ALIGNMENT))
1700 fprintf (vect_dump, "zero step in outer loop.");
1701 if (DR_IS_READ (dr))
1702 return true;
1703 else
1704 return false;
1708 /* Consecutive? */
1709 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type)))
1711 /* Mark that it is not interleaving. */
1712 DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt)) = NULL;
1713 return true;
1716 if (loop && nested_in_vect_loop_p (loop, stmt))
1718 if (vect_print_dump_info (REPORT_ALIGNMENT))
1719 fprintf (vect_dump, "strided access in outer loop.");
1720 return false;
1723 /* Not consecutive access - check if it's a part of interleaving group. */
1724 return vect_analyze_group_access (dr);
1728 /* Function vect_analyze_data_ref_accesses.
1730 Analyze the access pattern of all the data references in the loop.
1732 FORNOW: the only access pattern that is considered vectorizable is a
1733 simple step 1 (consecutive) access.
1735 FORNOW: handle only arrays and pointer accesses. */
1737 bool
1738 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
1740 unsigned int i;
1741 VEC (data_reference_p, heap) *datarefs;
1742 struct data_reference *dr;
1744 if (vect_print_dump_info (REPORT_DETAILS))
1745 fprintf (vect_dump, "=== vect_analyze_data_ref_accesses ===");
1747 if (loop_vinfo)
1748 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1749 else
1750 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
1752 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1753 if (!vect_analyze_data_ref_access (dr))
1755 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1756 fprintf (vect_dump, "not vectorized: complicated access pattern.");
1757 return false;
1760 return true;
1763 /* Function vect_prune_runtime_alias_test_list.
1765 Prune a list of ddrs to be tested at run-time by versioning for alias.
1766 Return FALSE if resulting list of ddrs is longer then allowed by
1767 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
1769 bool
1770 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
1772 VEC (ddr_p, heap) * ddrs =
1773 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
1774 unsigned i, j;
1776 if (vect_print_dump_info (REPORT_DETAILS))
1777 fprintf (vect_dump, "=== vect_prune_runtime_alias_test_list ===");
1779 for (i = 0; i < VEC_length (ddr_p, ddrs); )
1781 bool found;
1782 ddr_p ddr_i;
1784 ddr_i = VEC_index (ddr_p, ddrs, i);
1785 found = false;
1787 for (j = 0; j < i; j++)
1789 ddr_p ddr_j = VEC_index (ddr_p, ddrs, j);
1791 if (vect_vfa_range_equal (ddr_i, ddr_j))
1793 if (vect_print_dump_info (REPORT_DR_DETAILS))
1795 fprintf (vect_dump, "found equal ranges ");
1796 print_generic_expr (vect_dump, DR_REF (DDR_A (ddr_i)), TDF_SLIM);
1797 fprintf (vect_dump, ", ");
1798 print_generic_expr (vect_dump, DR_REF (DDR_B (ddr_i)), TDF_SLIM);
1799 fprintf (vect_dump, " and ");
1800 print_generic_expr (vect_dump, DR_REF (DDR_A (ddr_j)), TDF_SLIM);
1801 fprintf (vect_dump, ", ");
1802 print_generic_expr (vect_dump, DR_REF (DDR_B (ddr_j)), TDF_SLIM);
1804 found = true;
1805 break;
1809 if (found)
1811 VEC_ordered_remove (ddr_p, ddrs, i);
1812 continue;
1814 i++;
1817 if (VEC_length (ddr_p, ddrs) >
1818 (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
1820 if (vect_print_dump_info (REPORT_DR_DETAILS))
1822 fprintf (vect_dump,
1823 "disable versioning for alias - max number of generated "
1824 "checks exceeded.");
1827 VEC_truncate (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo), 0);
1829 return false;
1832 return true;
1836 /* Function vect_analyze_data_refs.
1838 Find all the data references in the loop or basic block.
1840 The general structure of the analysis of data refs in the vectorizer is as
1841 follows:
1842 1- vect_analyze_data_refs(loop/bb): call
1843 compute_data_dependences_for_loop/bb to find and analyze all data-refs
1844 in the loop/bb and their dependences.
1845 2- vect_analyze_dependences(): apply dependence testing using ddrs.
1846 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
1847 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
1851 bool
1852 vect_analyze_data_refs (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
1854 struct loop *loop = NULL;
1855 basic_block bb = NULL;
1856 unsigned int i;
1857 VEC (data_reference_p, heap) *datarefs;
1858 struct data_reference *dr;
1859 tree scalar_type;
1861 if (vect_print_dump_info (REPORT_DETAILS))
1862 fprintf (vect_dump, "=== vect_analyze_data_refs ===\n");
1864 if (loop_vinfo)
1866 loop = LOOP_VINFO_LOOP (loop_vinfo);
1867 compute_data_dependences_for_loop (loop, true,
1868 &LOOP_VINFO_DATAREFS (loop_vinfo),
1869 &LOOP_VINFO_DDRS (loop_vinfo));
1870 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1872 else
1874 bb = BB_VINFO_BB (bb_vinfo);
1875 compute_data_dependences_for_bb (bb, true,
1876 &BB_VINFO_DATAREFS (bb_vinfo),
1877 &BB_VINFO_DDRS (bb_vinfo));
1878 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
1881 /* Go through the data-refs, check that the analysis succeeded. Update pointer
1882 from stmt_vec_info struct to DR and vectype. */
1884 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1886 gimple stmt;
1887 stmt_vec_info stmt_info;
1888 basic_block bb;
1889 tree base, offset, init;
1891 if (!dr || !DR_REF (dr))
1893 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1894 fprintf (vect_dump, "not vectorized: unhandled data-ref ");
1895 return false;
1898 stmt = DR_STMT (dr);
1899 stmt_info = vinfo_for_stmt (stmt);
1901 /* Check that analysis of the data-ref succeeded. */
1902 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
1903 || !DR_STEP (dr))
1905 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1907 fprintf (vect_dump, "not vectorized: data ref analysis failed ");
1908 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
1910 return false;
1913 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
1915 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1916 fprintf (vect_dump, "not vectorized: base addr of dr is a "
1917 "constant");
1918 return false;
1921 base = unshare_expr (DR_BASE_ADDRESS (dr));
1922 offset = unshare_expr (DR_OFFSET (dr));
1923 init = unshare_expr (DR_INIT (dr));
1925 /* Update DR field in stmt_vec_info struct. */
1926 bb = gimple_bb (stmt);
1928 /* If the dataref is in an inner-loop of the loop that is considered for
1929 for vectorization, we also want to analyze the access relative to
1930 the outer-loop (DR contains information only relative to the
1931 inner-most enclosing loop). We do that by building a reference to the
1932 first location accessed by the inner-loop, and analyze it relative to
1933 the outer-loop. */
1934 if (loop && nested_in_vect_loop_p (loop, stmt))
1936 tree outer_step, outer_base, outer_init;
1937 HOST_WIDE_INT pbitsize, pbitpos;
1938 tree poffset;
1939 enum machine_mode pmode;
1940 int punsignedp, pvolatilep;
1941 affine_iv base_iv, offset_iv;
1942 tree dinit;
1944 /* Build a reference to the first location accessed by the
1945 inner-loop: *(BASE+INIT). (The first location is actually
1946 BASE+INIT+OFFSET, but we add OFFSET separately later). */
1947 tree inner_base = build_fold_indirect_ref
1948 (fold_build2 (POINTER_PLUS_EXPR,
1949 TREE_TYPE (base), base,
1950 fold_convert (sizetype, init)));
1952 if (vect_print_dump_info (REPORT_DETAILS))
1954 fprintf (vect_dump, "analyze in outer-loop: ");
1955 print_generic_expr (vect_dump, inner_base, TDF_SLIM);
1958 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
1959 &poffset, &pmode, &punsignedp, &pvolatilep, false);
1960 gcc_assert (outer_base != NULL_TREE);
1962 if (pbitpos % BITS_PER_UNIT != 0)
1964 if (vect_print_dump_info (REPORT_DETAILS))
1965 fprintf (vect_dump, "failed: bit offset alignment.\n");
1966 return false;
1969 outer_base = build_fold_addr_expr (outer_base);
1970 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
1971 &base_iv, false))
1973 if (vect_print_dump_info (REPORT_DETAILS))
1974 fprintf (vect_dump, "failed: evolution of base is not affine.\n");
1975 return false;
1978 if (offset)
1980 if (poffset)
1981 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
1982 poffset);
1983 else
1984 poffset = offset;
1987 if (!poffset)
1989 offset_iv.base = ssize_int (0);
1990 offset_iv.step = ssize_int (0);
1992 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
1993 &offset_iv, false))
1995 if (vect_print_dump_info (REPORT_DETAILS))
1996 fprintf (vect_dump, "evolution of offset is not affine.\n");
1997 return false;
2000 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
2001 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
2002 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
2003 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
2004 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
2006 outer_step = size_binop (PLUS_EXPR,
2007 fold_convert (ssizetype, base_iv.step),
2008 fold_convert (ssizetype, offset_iv.step));
2010 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
2011 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
2012 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
2013 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
2014 STMT_VINFO_DR_OFFSET (stmt_info) =
2015 fold_convert (ssizetype, offset_iv.base);
2016 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
2017 size_int (highest_pow2_factor (offset_iv.base));
2019 if (vect_print_dump_info (REPORT_DETAILS))
2021 fprintf (vect_dump, "\touter base_address: ");
2022 print_generic_expr (vect_dump, STMT_VINFO_DR_BASE_ADDRESS (stmt_info), TDF_SLIM);
2023 fprintf (vect_dump, "\n\touter offset from base address: ");
2024 print_generic_expr (vect_dump, STMT_VINFO_DR_OFFSET (stmt_info), TDF_SLIM);
2025 fprintf (vect_dump, "\n\touter constant offset from base address: ");
2026 print_generic_expr (vect_dump, STMT_VINFO_DR_INIT (stmt_info), TDF_SLIM);
2027 fprintf (vect_dump, "\n\touter step: ");
2028 print_generic_expr (vect_dump, STMT_VINFO_DR_STEP (stmt_info), TDF_SLIM);
2029 fprintf (vect_dump, "\n\touter aligned to: ");
2030 print_generic_expr (vect_dump, STMT_VINFO_DR_ALIGNED_TO (stmt_info), TDF_SLIM);
2034 if (STMT_VINFO_DATA_REF (stmt_info))
2036 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
2038 fprintf (vect_dump,
2039 "not vectorized: more than one data ref in stmt: ");
2040 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
2042 return false;
2045 STMT_VINFO_DATA_REF (stmt_info) = dr;
2047 /* Set vectype for STMT. */
2048 scalar_type = TREE_TYPE (DR_REF (dr));
2049 STMT_VINFO_VECTYPE (stmt_info) =
2050 get_vectype_for_scalar_type (scalar_type);
2051 if (!STMT_VINFO_VECTYPE (stmt_info))
2053 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
2055 fprintf (vect_dump,
2056 "not vectorized: no vectype for stmt: ");
2057 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
2058 fprintf (vect_dump, " scalar_type: ");
2059 print_generic_expr (vect_dump, scalar_type, TDF_DETAILS);
2061 return false;
2065 return true;
2069 /* Function vect_get_new_vect_var.
2071 Returns a name for a new variable. The current naming scheme appends the
2072 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
2073 the name of vectorizer generated variables, and appends that to NAME if
2074 provided. */
2076 tree
2077 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
2079 const char *prefix;
2080 tree new_vect_var;
2082 switch (var_kind)
2084 case vect_simple_var:
2085 prefix = "vect_";
2086 break;
2087 case vect_scalar_var:
2088 prefix = "stmp_";
2089 break;
2090 case vect_pointer_var:
2091 prefix = "vect_p";
2092 break;
2093 default:
2094 gcc_unreachable ();
2097 if (name)
2099 char* tmp = concat (prefix, name, NULL);
2100 new_vect_var = create_tmp_var (type, tmp);
2101 free (tmp);
2103 else
2104 new_vect_var = create_tmp_var (type, prefix);
2106 /* Mark vector typed variable as a gimple register variable. */
2107 if (TREE_CODE (type) == VECTOR_TYPE)
2108 DECL_GIMPLE_REG_P (new_vect_var) = true;
2110 return new_vect_var;
2114 /* Function vect_create_addr_base_for_vector_ref.
2116 Create an expression that computes the address of the first memory location
2117 that will be accessed for a data reference.
2119 Input:
2120 STMT: The statement containing the data reference.
2121 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
2122 OFFSET: Optional. If supplied, it is be added to the initial address.
2123 LOOP: Specify relative to which loop-nest should the address be computed.
2124 For example, when the dataref is in an inner-loop nested in an
2125 outer-loop that is now being vectorized, LOOP can be either the
2126 outer-loop, or the inner-loop. The first memory location accessed
2127 by the following dataref ('in' points to short):
2129 for (i=0; i<N; i++)
2130 for (j=0; j<M; j++)
2131 s += in[i+j]
2133 is as follows:
2134 if LOOP=i_loop: &in (relative to i_loop)
2135 if LOOP=j_loop: &in+i*2B (relative to j_loop)
2137 Output:
2138 1. Return an SSA_NAME whose value is the address of the memory location of
2139 the first vector of the data reference.
2140 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
2141 these statement(s) which define the returned SSA_NAME.
2143 FORNOW: We are only handling array accesses with step 1. */
2145 tree
2146 vect_create_addr_base_for_vector_ref (gimple stmt,
2147 gimple_seq *new_stmt_list,
2148 tree offset,
2149 struct loop *loop)
2151 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2152 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2153 tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
2154 tree base_name;
2155 tree data_ref_base_var;
2156 tree vec_stmt;
2157 tree addr_base, addr_expr;
2158 tree dest;
2159 gimple_seq seq = NULL;
2160 tree base_offset = unshare_expr (DR_OFFSET (dr));
2161 tree init = unshare_expr (DR_INIT (dr));
2162 tree vect_ptr_type;
2163 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2164 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2166 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
2168 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
2170 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
2172 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
2173 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
2174 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
2177 if (loop_vinfo)
2178 base_name = build_fold_indirect_ref (data_ref_base);
2179 else
2181 base_offset = ssize_int (0);
2182 init = ssize_int (0);
2183 base_name = build_fold_indirect_ref (unshare_expr (DR_REF (dr)));
2186 data_ref_base_var = create_tmp_var (TREE_TYPE (data_ref_base), "batmp");
2187 add_referenced_var (data_ref_base_var);
2188 data_ref_base = force_gimple_operand (data_ref_base, &seq, true,
2189 data_ref_base_var);
2190 gimple_seq_add_seq (new_stmt_list, seq);
2192 /* Create base_offset */
2193 base_offset = size_binop (PLUS_EXPR,
2194 fold_convert (sizetype, base_offset),
2195 fold_convert (sizetype, init));
2196 dest = create_tmp_var (sizetype, "base_off");
2197 add_referenced_var (dest);
2198 base_offset = force_gimple_operand (base_offset, &seq, true, dest);
2199 gimple_seq_add_seq (new_stmt_list, seq);
2201 if (offset)
2203 tree tmp = create_tmp_var (sizetype, "offset");
2205 add_referenced_var (tmp);
2206 offset = fold_build2 (MULT_EXPR, sizetype,
2207 fold_convert (sizetype, offset), step);
2208 base_offset = fold_build2 (PLUS_EXPR, sizetype,
2209 base_offset, offset);
2210 base_offset = force_gimple_operand (base_offset, &seq, false, tmp);
2211 gimple_seq_add_seq (new_stmt_list, seq);
2214 /* base + base_offset */
2215 if (loop_vinfo)
2216 addr_base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (data_ref_base),
2217 data_ref_base, base_offset);
2218 else
2220 if (TREE_CODE (DR_REF (dr)) == INDIRECT_REF)
2221 addr_base = unshare_expr (TREE_OPERAND (DR_REF (dr), 0));
2222 else
2223 addr_base = build1 (ADDR_EXPR,
2224 build_pointer_type (TREE_TYPE (DR_REF (dr))),
2225 unshare_expr (DR_REF (dr)));
2228 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
2230 vec_stmt = fold_convert (vect_ptr_type, addr_base);
2231 addr_expr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
2232 get_name (base_name));
2233 add_referenced_var (addr_expr);
2234 vec_stmt = force_gimple_operand (vec_stmt, &seq, false, addr_expr);
2235 gimple_seq_add_seq (new_stmt_list, seq);
2237 if (vect_print_dump_info (REPORT_DETAILS))
2239 fprintf (vect_dump, "created ");
2240 print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
2243 return vec_stmt;
2247 /* Function vect_create_data_ref_ptr.
2249 Create a new pointer to vector type (vp), that points to the first location
2250 accessed in the loop by STMT, along with the def-use update chain to
2251 appropriately advance the pointer through the loop iterations. Also set
2252 aliasing information for the pointer. This vector pointer is used by the
2253 callers to this function to create a memory reference expression for vector
2254 load/store access.
2256 Input:
2257 1. STMT: a stmt that references memory. Expected to be of the form
2258 GIMPLE_ASSIGN <name, data-ref> or
2259 GIMPLE_ASSIGN <data-ref, name>.
2260 2. AT_LOOP: the loop where the vector memref is to be created.
2261 3. OFFSET (optional): an offset to be added to the initial address accessed
2262 by the data-ref in STMT.
2263 4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
2264 pointing to the initial address.
2265 5. TYPE: if not NULL indicates the required type of the data-ref.
2267 Output:
2268 1. Declare a new ptr to vector_type, and have it point to the base of the
2269 data reference (initial addressed accessed by the data reference).
2270 For example, for vector of type V8HI, the following code is generated:
2272 v8hi *vp;
2273 vp = (v8hi *)initial_address;
2275 if OFFSET is not supplied:
2276 initial_address = &a[init];
2277 if OFFSET is supplied:
2278 initial_address = &a[init + OFFSET];
2280 Return the initial_address in INITIAL_ADDRESS.
2282 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
2283 update the pointer in each iteration of the loop.
2285 Return the increment stmt that updates the pointer in PTR_INCR.
2287 3. Set INV_P to true if the access pattern of the data reference in the
2288 vectorized loop is invariant. Set it to false otherwise.
2290 4. Return the pointer. */
2292 tree
2293 vect_create_data_ref_ptr (gimple stmt, struct loop *at_loop,
2294 tree offset, tree *initial_address, gimple *ptr_incr,
2295 bool only_init, bool *inv_p)
2297 tree base_name;
2298 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2299 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2300 struct loop *loop = NULL;
2301 bool nested_in_vect_loop = false;
2302 struct loop *containing_loop = NULL;
2303 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2304 tree vect_ptr_type;
2305 tree vect_ptr;
2306 tree new_temp;
2307 gimple vec_stmt;
2308 gimple_seq new_stmt_list = NULL;
2309 edge pe = NULL;
2310 basic_block new_bb;
2311 tree vect_ptr_init;
2312 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2313 tree vptr;
2314 gimple_stmt_iterator incr_gsi;
2315 bool insert_after;
2316 tree indx_before_incr, indx_after_incr;
2317 gimple incr;
2318 tree step;
2319 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2320 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2322 if (loop_vinfo)
2324 loop = LOOP_VINFO_LOOP (loop_vinfo);
2325 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
2326 containing_loop = (gimple_bb (stmt))->loop_father;
2327 pe = loop_preheader_edge (loop);
2329 else
2331 gcc_assert (bb_vinfo);
2332 only_init = true;
2333 *ptr_incr = NULL;
2336 /* Check the step (evolution) of the load in LOOP, and record
2337 whether it's invariant. */
2338 if (nested_in_vect_loop)
2339 step = STMT_VINFO_DR_STEP (stmt_info);
2340 else
2341 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
2343 if (tree_int_cst_compare (step, size_zero_node) == 0)
2344 *inv_p = true;
2345 else
2346 *inv_p = false;
2348 /* Create an expression for the first address accessed by this load
2349 in LOOP. */
2350 base_name = build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
2352 if (vect_print_dump_info (REPORT_DETAILS))
2354 tree data_ref_base = base_name;
2355 fprintf (vect_dump, "create vector-pointer variable to type: ");
2356 print_generic_expr (vect_dump, vectype, TDF_SLIM);
2357 if (TREE_CODE (data_ref_base) == VAR_DECL
2358 || TREE_CODE (data_ref_base) == ARRAY_REF)
2359 fprintf (vect_dump, " vectorizing an array ref: ");
2360 else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
2361 fprintf (vect_dump, " vectorizing a record based array ref: ");
2362 else if (TREE_CODE (data_ref_base) == SSA_NAME)
2363 fprintf (vect_dump, " vectorizing a pointer ref: ");
2364 print_generic_expr (vect_dump, base_name, TDF_SLIM);
2367 /** (1) Create the new vector-pointer variable: **/
2368 vect_ptr_type = build_pointer_type (vectype);
2369 vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
2370 get_name (base_name));
2372 /* Vector types inherit the alias set of their component type by default so
2373 we need to use a ref-all pointer if the data reference does not conflict
2374 with the created vector data reference because it is not addressable. */
2375 if (!alias_sets_conflict_p (get_deref_alias_set (vect_ptr),
2376 get_alias_set (DR_REF (dr))))
2378 vect_ptr_type
2379 = build_pointer_type_for_mode (vectype,
2380 TYPE_MODE (vect_ptr_type), true);
2381 vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
2382 get_name (base_name));
2385 /* Likewise for any of the data references in the stmt group. */
2386 else if (STMT_VINFO_DR_GROUP_SIZE (stmt_info) > 1)
2388 gimple orig_stmt = STMT_VINFO_DR_GROUP_FIRST_DR (stmt_info);
2391 tree lhs = gimple_assign_lhs (orig_stmt);
2392 if (!alias_sets_conflict_p (get_deref_alias_set (vect_ptr),
2393 get_alias_set (lhs)))
2395 vect_ptr_type
2396 = build_pointer_type_for_mode (vectype,
2397 TYPE_MODE (vect_ptr_type), true);
2398 vect_ptr
2399 = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
2400 get_name (base_name));
2401 break;
2404 orig_stmt = STMT_VINFO_DR_GROUP_NEXT_DR (vinfo_for_stmt (orig_stmt));
2406 while (orig_stmt);
2409 add_referenced_var (vect_ptr);
2411 /** Note: If the dataref is in an inner-loop nested in LOOP, and we are
2412 vectorizing LOOP (i.e. outer-loop vectorization), we need to create two
2413 def-use update cycles for the pointer: One relative to the outer-loop
2414 (LOOP), which is what steps (3) and (4) below do. The other is relative
2415 to the inner-loop (which is the inner-most loop containing the dataref),
2416 and this is done be step (5) below.
2418 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
2419 inner-most loop, and so steps (3),(4) work the same, and step (5) is
2420 redundant. Steps (3),(4) create the following:
2422 vp0 = &base_addr;
2423 LOOP: vp1 = phi(vp0,vp2)
2424 ...
2426 vp2 = vp1 + step
2427 goto LOOP
2429 If there is an inner-loop nested in loop, then step (5) will also be
2430 applied, and an additional update in the inner-loop will be created:
2432 vp0 = &base_addr;
2433 LOOP: vp1 = phi(vp0,vp2)
2435 inner: vp3 = phi(vp1,vp4)
2436 vp4 = vp3 + inner_step
2437 if () goto inner
2439 vp2 = vp1 + step
2440 if () goto LOOP */
2442 /** (3) Calculate the initial address the vector-pointer, and set
2443 the vector-pointer to point to it before the loop: **/
2445 /* Create: (&(base[init_val+offset]) in the loop preheader. */
2447 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
2448 offset, loop);
2449 if (new_stmt_list)
2451 if (pe)
2453 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
2454 gcc_assert (!new_bb);
2456 else
2457 gsi_insert_seq_before (&gsi, new_stmt_list, GSI_SAME_STMT);
2460 *initial_address = new_temp;
2462 /* Create: p = (vectype *) initial_base */
2463 vec_stmt = gimple_build_assign (vect_ptr,
2464 fold_convert (vect_ptr_type, new_temp));
2465 vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
2466 gimple_assign_set_lhs (vec_stmt, vect_ptr_init);
2467 if (pe)
2469 new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
2470 gcc_assert (!new_bb);
2472 else
2473 gsi_insert_before (&gsi, vec_stmt, GSI_SAME_STMT);
2475 /** (4) Handle the updating of the vector-pointer inside the loop.
2476 This is needed when ONLY_INIT is false, and also when AT_LOOP
2477 is the inner-loop nested in LOOP (during outer-loop vectorization).
2480 /* No update in loop is required. */
2481 if (only_init && (!loop_vinfo || at_loop == loop))
2483 /* Copy the points-to information if it exists. */
2484 if (DR_PTR_INFO (dr))
2485 duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
2486 vptr = vect_ptr_init;
2488 else
2490 /* The step of the vector pointer is the Vector Size. */
2491 tree step = TYPE_SIZE_UNIT (vectype);
2492 /* One exception to the above is when the scalar step of the load in
2493 LOOP is zero. In this case the step here is also zero. */
2494 if (*inv_p)
2495 step = size_zero_node;
2497 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
2499 create_iv (vect_ptr_init,
2500 fold_convert (vect_ptr_type, step),
2501 vect_ptr, loop, &incr_gsi, insert_after,
2502 &indx_before_incr, &indx_after_incr);
2503 incr = gsi_stmt (incr_gsi);
2504 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
2506 /* Copy the points-to information if it exists. */
2507 if (DR_PTR_INFO (dr))
2509 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
2510 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
2512 if (ptr_incr)
2513 *ptr_incr = incr;
2515 vptr = indx_before_incr;
2518 if (!nested_in_vect_loop || only_init)
2519 return vptr;
2522 /** (5) Handle the updating of the vector-pointer inside the inner-loop
2523 nested in LOOP, if exists: **/
2525 gcc_assert (nested_in_vect_loop);
2526 if (!only_init)
2528 standard_iv_increment_position (containing_loop, &incr_gsi,
2529 &insert_after);
2530 create_iv (vptr, fold_convert (vect_ptr_type, DR_STEP (dr)), vect_ptr,
2531 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
2532 &indx_after_incr);
2533 incr = gsi_stmt (incr_gsi);
2534 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
2536 /* Copy the points-to information if it exists. */
2537 if (DR_PTR_INFO (dr))
2539 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
2540 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
2542 if (ptr_incr)
2543 *ptr_incr = incr;
2545 return indx_before_incr;
2547 else
2548 gcc_unreachable ();
2552 /* Function bump_vector_ptr
2554 Increment a pointer (to a vector type) by vector-size. If requested,
2555 i.e. if PTR-INCR is given, then also connect the new increment stmt
2556 to the existing def-use update-chain of the pointer, by modifying
2557 the PTR_INCR as illustrated below:
2559 The pointer def-use update-chain before this function:
2560 DATAREF_PTR = phi (p_0, p_2)
2561 ....
2562 PTR_INCR: p_2 = DATAREF_PTR + step
2564 The pointer def-use update-chain after this function:
2565 DATAREF_PTR = phi (p_0, p_2)
2566 ....
2567 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
2568 ....
2569 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
2571 Input:
2572 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
2573 in the loop.
2574 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
2575 the loop. The increment amount across iterations is expected
2576 to be vector_size.
2577 BSI - location where the new update stmt is to be placed.
2578 STMT - the original scalar memory-access stmt that is being vectorized.
2579 BUMP - optional. The offset by which to bump the pointer. If not given,
2580 the offset is assumed to be vector_size.
2582 Output: Return NEW_DATAREF_PTR as illustrated above.
2586 tree
2587 bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
2588 gimple stmt, tree bump)
2590 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2591 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2592 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2593 tree ptr_var = SSA_NAME_VAR (dataref_ptr);
2594 tree update = TYPE_SIZE_UNIT (vectype);
2595 gimple incr_stmt;
2596 ssa_op_iter iter;
2597 use_operand_p use_p;
2598 tree new_dataref_ptr;
2600 if (bump)
2601 update = bump;
2603 incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, ptr_var,
2604 dataref_ptr, update);
2605 new_dataref_ptr = make_ssa_name (ptr_var, incr_stmt);
2606 gimple_assign_set_lhs (incr_stmt, new_dataref_ptr);
2607 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
2609 /* Copy the points-to information if it exists. */
2610 if (DR_PTR_INFO (dr))
2611 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
2613 if (!ptr_incr)
2614 return new_dataref_ptr;
2616 /* Update the vector-pointer's cross-iteration increment. */
2617 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
2619 tree use = USE_FROM_PTR (use_p);
2621 if (use == dataref_ptr)
2622 SET_USE (use_p, new_dataref_ptr);
2623 else
2624 gcc_assert (tree_int_cst_compare (use, update) == 0);
2627 return new_dataref_ptr;
2631 /* Function vect_create_destination_var.
2633 Create a new temporary of type VECTYPE. */
2635 tree
2636 vect_create_destination_var (tree scalar_dest, tree vectype)
2638 tree vec_dest;
2639 const char *new_name;
2640 tree type;
2641 enum vect_var_kind kind;
2643 kind = vectype ? vect_simple_var : vect_scalar_var;
2644 type = vectype ? vectype : TREE_TYPE (scalar_dest);
2646 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
2648 new_name = get_name (scalar_dest);
2649 if (!new_name)
2650 new_name = "var_";
2651 vec_dest = vect_get_new_vect_var (type, kind, new_name);
2652 add_referenced_var (vec_dest);
2654 return vec_dest;
2657 /* Function vect_strided_store_supported.
2659 Returns TRUE is INTERLEAVE_HIGH and INTERLEAVE_LOW operations are supported,
2660 and FALSE otherwise. */
2662 bool
2663 vect_strided_store_supported (tree vectype)
2665 optab interleave_high_optab, interleave_low_optab;
2666 int mode;
2668 mode = (int) TYPE_MODE (vectype);
2670 /* Check that the operation is supported. */
2671 interleave_high_optab = optab_for_tree_code (VEC_INTERLEAVE_HIGH_EXPR,
2672 vectype, optab_default);
2673 interleave_low_optab = optab_for_tree_code (VEC_INTERLEAVE_LOW_EXPR,
2674 vectype, optab_default);
2675 if (!interleave_high_optab || !interleave_low_optab)
2677 if (vect_print_dump_info (REPORT_DETAILS))
2678 fprintf (vect_dump, "no optab for interleave.");
2679 return false;
2682 if (optab_handler (interleave_high_optab, mode)->insn_code
2683 == CODE_FOR_nothing
2684 || optab_handler (interleave_low_optab, mode)->insn_code
2685 == CODE_FOR_nothing)
2687 if (vect_print_dump_info (REPORT_DETAILS))
2688 fprintf (vect_dump, "interleave op not supported by target.");
2689 return false;
2692 return true;
2696 /* Function vect_permute_store_chain.
2698 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
2699 a power of 2, generate interleave_high/low stmts to reorder the data
2700 correctly for the stores. Return the final references for stores in
2701 RESULT_CHAIN.
2703 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
2704 The input is 4 vectors each containing 8 elements. We assign a number to each
2705 element, the input sequence is:
2707 1st vec: 0 1 2 3 4 5 6 7
2708 2nd vec: 8 9 10 11 12 13 14 15
2709 3rd vec: 16 17 18 19 20 21 22 23
2710 4th vec: 24 25 26 27 28 29 30 31
2712 The output sequence should be:
2714 1st vec: 0 8 16 24 1 9 17 25
2715 2nd vec: 2 10 18 26 3 11 19 27
2716 3rd vec: 4 12 20 28 5 13 21 30
2717 4th vec: 6 14 22 30 7 15 23 31
2719 i.e., we interleave the contents of the four vectors in their order.
2721 We use interleave_high/low instructions to create such output. The input of
2722 each interleave_high/low operation is two vectors:
2723 1st vec 2nd vec
2724 0 1 2 3 4 5 6 7
2725 the even elements of the result vector are obtained left-to-right from the
2726 high/low elements of the first vector. The odd elements of the result are
2727 obtained left-to-right from the high/low elements of the second vector.
2728 The output of interleave_high will be: 0 4 1 5
2729 and of interleave_low: 2 6 3 7
2732 The permutation is done in log LENGTH stages. In each stage interleave_high
2733 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
2734 where the first argument is taken from the first half of DR_CHAIN and the
2735 second argument from it's second half.
2736 In our example,
2738 I1: interleave_high (1st vec, 3rd vec)
2739 I2: interleave_low (1st vec, 3rd vec)
2740 I3: interleave_high (2nd vec, 4th vec)
2741 I4: interleave_low (2nd vec, 4th vec)
2743 The output for the first stage is:
2745 I1: 0 16 1 17 2 18 3 19
2746 I2: 4 20 5 21 6 22 7 23
2747 I3: 8 24 9 25 10 26 11 27
2748 I4: 12 28 13 29 14 30 15 31
2750 The output of the second stage, i.e. the final result is:
2752 I1: 0 8 16 24 1 9 17 25
2753 I2: 2 10 18 26 3 11 19 27
2754 I3: 4 12 20 28 5 13 21 30
2755 I4: 6 14 22 30 7 15 23 31. */
2757 bool
2758 vect_permute_store_chain (VEC(tree,heap) *dr_chain,
2759 unsigned int length,
2760 gimple stmt,
2761 gimple_stmt_iterator *gsi,
2762 VEC(tree,heap) **result_chain)
2764 tree perm_dest, vect1, vect2, high, low;
2765 gimple perm_stmt;
2766 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
2767 tree scalar_dest;
2768 int i;
2769 unsigned int j;
2770 enum tree_code high_code, low_code;
2772 scalar_dest = gimple_assign_lhs (stmt);
2774 /* Check that the operation is supported. */
2775 if (!vect_strided_store_supported (vectype))
2776 return false;
2778 *result_chain = VEC_copy (tree, heap, dr_chain);
2780 for (i = 0; i < exact_log2 (length); i++)
2782 for (j = 0; j < length/2; j++)
2784 vect1 = VEC_index (tree, dr_chain, j);
2785 vect2 = VEC_index (tree, dr_chain, j+length/2);
2787 /* Create interleaving stmt:
2788 in the case of big endian:
2789 high = interleave_high (vect1, vect2)
2790 and in the case of little endian:
2791 high = interleave_low (vect1, vect2). */
2792 perm_dest = create_tmp_var (vectype, "vect_inter_high");
2793 DECL_GIMPLE_REG_P (perm_dest) = 1;
2794 add_referenced_var (perm_dest);
2795 if (BYTES_BIG_ENDIAN)
2797 high_code = VEC_INTERLEAVE_HIGH_EXPR;
2798 low_code = VEC_INTERLEAVE_LOW_EXPR;
2800 else
2802 low_code = VEC_INTERLEAVE_HIGH_EXPR;
2803 high_code = VEC_INTERLEAVE_LOW_EXPR;
2805 perm_stmt = gimple_build_assign_with_ops (high_code, perm_dest,
2806 vect1, vect2);
2807 high = make_ssa_name (perm_dest, perm_stmt);
2808 gimple_assign_set_lhs (perm_stmt, high);
2809 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
2810 VEC_replace (tree, *result_chain, 2*j, high);
2812 /* Create interleaving stmt:
2813 in the case of big endian:
2814 low = interleave_low (vect1, vect2)
2815 and in the case of little endian:
2816 low = interleave_high (vect1, vect2). */
2817 perm_dest = create_tmp_var (vectype, "vect_inter_low");
2818 DECL_GIMPLE_REG_P (perm_dest) = 1;
2819 add_referenced_var (perm_dest);
2820 perm_stmt = gimple_build_assign_with_ops (low_code, perm_dest,
2821 vect1, vect2);
2822 low = make_ssa_name (perm_dest, perm_stmt);
2823 gimple_assign_set_lhs (perm_stmt, low);
2824 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
2825 VEC_replace (tree, *result_chain, 2*j+1, low);
2827 dr_chain = VEC_copy (tree, heap, *result_chain);
2829 return true;
2832 /* Function vect_setup_realignment
2834 This function is called when vectorizing an unaligned load using
2835 the dr_explicit_realign[_optimized] scheme.
2836 This function generates the following code at the loop prolog:
2838 p = initial_addr;
2839 x msq_init = *(floor(p)); # prolog load
2840 realignment_token = call target_builtin;
2841 loop:
2842 x msq = phi (msq_init, ---)
2844 The stmts marked with x are generated only for the case of
2845 dr_explicit_realign_optimized.
2847 The code above sets up a new (vector) pointer, pointing to the first
2848 location accessed by STMT, and a "floor-aligned" load using that pointer.
2849 It also generates code to compute the "realignment-token" (if the relevant
2850 target hook was defined), and creates a phi-node at the loop-header bb
2851 whose arguments are the result of the prolog-load (created by this
2852 function) and the result of a load that takes place in the loop (to be
2853 created by the caller to this function).
2855 For the case of dr_explicit_realign_optimized:
2856 The caller to this function uses the phi-result (msq) to create the
2857 realignment code inside the loop, and sets up the missing phi argument,
2858 as follows:
2859 loop:
2860 msq = phi (msq_init, lsq)
2861 lsq = *(floor(p')); # load in loop
2862 result = realign_load (msq, lsq, realignment_token);
2864 For the case of dr_explicit_realign:
2865 loop:
2866 msq = *(floor(p)); # load in loop
2867 p' = p + (VS-1);
2868 lsq = *(floor(p')); # load in loop
2869 result = realign_load (msq, lsq, realignment_token);
2871 Input:
2872 STMT - (scalar) load stmt to be vectorized. This load accesses
2873 a memory location that may be unaligned.
2874 BSI - place where new code is to be inserted.
2875 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
2876 is used.
2878 Output:
2879 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
2880 target hook, if defined.
2881 Return value - the result of the loop-header phi node. */
2883 tree
2884 vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
2885 tree *realignment_token,
2886 enum dr_alignment_support alignment_support_scheme,
2887 tree init_addr,
2888 struct loop **at_loop)
2890 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2891 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2892 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2893 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2894 edge pe;
2895 tree scalar_dest = gimple_assign_lhs (stmt);
2896 tree vec_dest;
2897 gimple inc;
2898 tree ptr;
2899 tree data_ref;
2900 gimple new_stmt;
2901 basic_block new_bb;
2902 tree msq_init = NULL_TREE;
2903 tree new_temp;
2904 gimple phi_stmt;
2905 tree msq = NULL_TREE;
2906 gimple_seq stmts = NULL;
2907 bool inv_p;
2908 bool compute_in_loop = false;
2909 bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
2910 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
2911 struct loop *loop_for_initial_load;
2913 gcc_assert (alignment_support_scheme == dr_explicit_realign
2914 || alignment_support_scheme == dr_explicit_realign_optimized);
2916 /* We need to generate three things:
2917 1. the misalignment computation
2918 2. the extra vector load (for the optimized realignment scheme).
2919 3. the phi node for the two vectors from which the realignment is
2920 done (for the optimized realignment scheme).
2923 /* 1. Determine where to generate the misalignment computation.
2925 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
2926 calculation will be generated by this function, outside the loop (in the
2927 preheader). Otherwise, INIT_ADDR had already been computed for us by the
2928 caller, inside the loop.
2930 Background: If the misalignment remains fixed throughout the iterations of
2931 the loop, then both realignment schemes are applicable, and also the
2932 misalignment computation can be done outside LOOP. This is because we are
2933 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
2934 are a multiple of VS (the Vector Size), and therefore the misalignment in
2935 different vectorized LOOP iterations is always the same.
2936 The problem arises only if the memory access is in an inner-loop nested
2937 inside LOOP, which is now being vectorized using outer-loop vectorization.
2938 This is the only case when the misalignment of the memory access may not
2939 remain fixed throughout the iterations of the inner-loop (as explained in
2940 detail in vect_supportable_dr_alignment). In this case, not only is the
2941 optimized realignment scheme not applicable, but also the misalignment
2942 computation (and generation of the realignment token that is passed to
2943 REALIGN_LOAD) have to be done inside the loop.
2945 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
2946 or not, which in turn determines if the misalignment is computed inside
2947 the inner-loop, or outside LOOP. */
2949 if (init_addr != NULL_TREE)
2951 compute_in_loop = true;
2952 gcc_assert (alignment_support_scheme == dr_explicit_realign);
2956 /* 2. Determine where to generate the extra vector load.
2958 For the optimized realignment scheme, instead of generating two vector
2959 loads in each iteration, we generate a single extra vector load in the
2960 preheader of the loop, and in each iteration reuse the result of the
2961 vector load from the previous iteration. In case the memory access is in
2962 an inner-loop nested inside LOOP, which is now being vectorized using
2963 outer-loop vectorization, we need to determine whether this initial vector
2964 load should be generated at the preheader of the inner-loop, or can be
2965 generated at the preheader of LOOP. If the memory access has no evolution
2966 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
2967 to be generated inside LOOP (in the preheader of the inner-loop). */
2969 if (nested_in_vect_loop)
2971 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
2972 bool invariant_in_outerloop =
2973 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
2974 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
2976 else
2977 loop_for_initial_load = loop;
2978 if (at_loop)
2979 *at_loop = loop_for_initial_load;
2981 /* 3. For the case of the optimized realignment, create the first vector
2982 load at the loop preheader. */
2984 if (alignment_support_scheme == dr_explicit_realign_optimized)
2986 /* Create msq_init = *(floor(p1)) in the loop preheader */
2988 gcc_assert (!compute_in_loop);
2989 pe = loop_preheader_edge (loop_for_initial_load);
2990 vec_dest = vect_create_destination_var (scalar_dest, vectype);
2991 ptr = vect_create_data_ref_ptr (stmt, loop_for_initial_load, NULL_TREE,
2992 &init_addr, &inc, true, &inv_p);
2993 data_ref = build1 (ALIGN_INDIRECT_REF, vectype, ptr);
2994 new_stmt = gimple_build_assign (vec_dest, data_ref);
2995 new_temp = make_ssa_name (vec_dest, new_stmt);
2996 gimple_assign_set_lhs (new_stmt, new_temp);
2997 mark_symbols_for_renaming (new_stmt);
2998 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
2999 gcc_assert (!new_bb);
3000 msq_init = gimple_assign_lhs (new_stmt);
3003 /* 4. Create realignment token using a target builtin, if available.
3004 It is done either inside the containing loop, or before LOOP (as
3005 determined above). */
3007 if (targetm.vectorize.builtin_mask_for_load)
3009 tree builtin_decl;
3011 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
3012 if (compute_in_loop)
3013 gcc_assert (init_addr); /* already computed by the caller. */
3014 else
3016 /* Generate the INIT_ADDR computation outside LOOP. */
3017 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
3018 NULL_TREE, loop);
3019 pe = loop_preheader_edge (loop);
3020 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3021 gcc_assert (!new_bb);
3024 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
3025 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
3026 vec_dest =
3027 vect_create_destination_var (scalar_dest,
3028 gimple_call_return_type (new_stmt));
3029 new_temp = make_ssa_name (vec_dest, new_stmt);
3030 gimple_call_set_lhs (new_stmt, new_temp);
3032 if (compute_in_loop)
3033 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
3034 else
3036 /* Generate the misalignment computation outside LOOP. */
3037 pe = loop_preheader_edge (loop);
3038 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
3039 gcc_assert (!new_bb);
3042 *realignment_token = gimple_call_lhs (new_stmt);
3044 /* The result of the CALL_EXPR to this builtin is determined from
3045 the value of the parameter and no global variables are touched
3046 which makes the builtin a "const" function. Requiring the
3047 builtin to have the "const" attribute makes it unnecessary
3048 to call mark_call_clobbered. */
3049 gcc_assert (TREE_READONLY (builtin_decl));
3052 if (alignment_support_scheme == dr_explicit_realign)
3053 return msq;
3055 gcc_assert (!compute_in_loop);
3056 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
3059 /* 5. Create msq = phi <msq_init, lsq> in loop */
3061 pe = loop_preheader_edge (containing_loop);
3062 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3063 msq = make_ssa_name (vec_dest, NULL);
3064 phi_stmt = create_phi_node (msq, containing_loop->header);
3065 SSA_NAME_DEF_STMT (msq) = phi_stmt;
3066 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
3068 return msq;
3072 /* Function vect_strided_load_supported.
3074 Returns TRUE is EXTRACT_EVEN and EXTRACT_ODD operations are supported,
3075 and FALSE otherwise. */
3077 bool
3078 vect_strided_load_supported (tree vectype)
3080 optab perm_even_optab, perm_odd_optab;
3081 int mode;
3083 mode = (int) TYPE_MODE (vectype);
3085 perm_even_optab = optab_for_tree_code (VEC_EXTRACT_EVEN_EXPR, vectype,
3086 optab_default);
3087 if (!perm_even_optab)
3089 if (vect_print_dump_info (REPORT_DETAILS))
3090 fprintf (vect_dump, "no optab for perm_even.");
3091 return false;
3094 if (optab_handler (perm_even_optab, mode)->insn_code == CODE_FOR_nothing)
3096 if (vect_print_dump_info (REPORT_DETAILS))
3097 fprintf (vect_dump, "perm_even op not supported by target.");
3098 return false;
3101 perm_odd_optab = optab_for_tree_code (VEC_EXTRACT_ODD_EXPR, vectype,
3102 optab_default);
3103 if (!perm_odd_optab)
3105 if (vect_print_dump_info (REPORT_DETAILS))
3106 fprintf (vect_dump, "no optab for perm_odd.");
3107 return false;
3110 if (optab_handler (perm_odd_optab, mode)->insn_code == CODE_FOR_nothing)
3112 if (vect_print_dump_info (REPORT_DETAILS))
3113 fprintf (vect_dump, "perm_odd op not supported by target.");
3114 return false;
3116 return true;
3120 /* Function vect_permute_load_chain.
3122 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
3123 a power of 2, generate extract_even/odd stmts to reorder the input data
3124 correctly. Return the final references for loads in RESULT_CHAIN.
3126 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
3127 The input is 4 vectors each containing 8 elements. We assign a number to each
3128 element, the input sequence is:
3130 1st vec: 0 1 2 3 4 5 6 7
3131 2nd vec: 8 9 10 11 12 13 14 15
3132 3rd vec: 16 17 18 19 20 21 22 23
3133 4th vec: 24 25 26 27 28 29 30 31
3135 The output sequence should be:
3137 1st vec: 0 4 8 12 16 20 24 28
3138 2nd vec: 1 5 9 13 17 21 25 29
3139 3rd vec: 2 6 10 14 18 22 26 30
3140 4th vec: 3 7 11 15 19 23 27 31
3142 i.e., the first output vector should contain the first elements of each
3143 interleaving group, etc.
3145 We use extract_even/odd instructions to create such output. The input of each
3146 extract_even/odd operation is two vectors
3147 1st vec 2nd vec
3148 0 1 2 3 4 5 6 7
3150 and the output is the vector of extracted even/odd elements. The output of
3151 extract_even will be: 0 2 4 6
3152 and of extract_odd: 1 3 5 7
3155 The permutation is done in log LENGTH stages. In each stage extract_even and
3156 extract_odd stmts are created for each pair of vectors in DR_CHAIN in their
3157 order. In our example,
3159 E1: extract_even (1st vec, 2nd vec)
3160 E2: extract_odd (1st vec, 2nd vec)
3161 E3: extract_even (3rd vec, 4th vec)
3162 E4: extract_odd (3rd vec, 4th vec)
3164 The output for the first stage will be:
3166 E1: 0 2 4 6 8 10 12 14
3167 E2: 1 3 5 7 9 11 13 15
3168 E3: 16 18 20 22 24 26 28 30
3169 E4: 17 19 21 23 25 27 29 31
3171 In order to proceed and create the correct sequence for the next stage (or
3172 for the correct output, if the second stage is the last one, as in our
3173 example), we first put the output of extract_even operation and then the
3174 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
3175 The input for the second stage is:
3177 1st vec (E1): 0 2 4 6 8 10 12 14
3178 2nd vec (E3): 16 18 20 22 24 26 28 30
3179 3rd vec (E2): 1 3 5 7 9 11 13 15
3180 4th vec (E4): 17 19 21 23 25 27 29 31
3182 The output of the second stage:
3184 E1: 0 4 8 12 16 20 24 28
3185 E2: 2 6 10 14 18 22 26 30
3186 E3: 1 5 9 13 17 21 25 29
3187 E4: 3 7 11 15 19 23 27 31
3189 And RESULT_CHAIN after reordering:
3191 1st vec (E1): 0 4 8 12 16 20 24 28
3192 2nd vec (E3): 1 5 9 13 17 21 25 29
3193 3rd vec (E2): 2 6 10 14 18 22 26 30
3194 4th vec (E4): 3 7 11 15 19 23 27 31. */
3196 bool
3197 vect_permute_load_chain (VEC(tree,heap) *dr_chain,
3198 unsigned int length,
3199 gimple stmt,
3200 gimple_stmt_iterator *gsi,
3201 VEC(tree,heap) **result_chain)
3203 tree perm_dest, data_ref, first_vect, second_vect;
3204 gimple perm_stmt;
3205 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
3206 int i;
3207 unsigned int j;
3209 /* Check that the operation is supported. */
3210 if (!vect_strided_load_supported (vectype))
3211 return false;
3213 *result_chain = VEC_copy (tree, heap, dr_chain);
3214 for (i = 0; i < exact_log2 (length); i++)
3216 for (j = 0; j < length; j +=2)
3218 first_vect = VEC_index (tree, dr_chain, j);
3219 second_vect = VEC_index (tree, dr_chain, j+1);
3221 /* data_ref = permute_even (first_data_ref, second_data_ref); */
3222 perm_dest = create_tmp_var (vectype, "vect_perm_even");
3223 DECL_GIMPLE_REG_P (perm_dest) = 1;
3224 add_referenced_var (perm_dest);
3226 perm_stmt = gimple_build_assign_with_ops (VEC_EXTRACT_EVEN_EXPR,
3227 perm_dest, first_vect,
3228 second_vect);
3230 data_ref = make_ssa_name (perm_dest, perm_stmt);
3231 gimple_assign_set_lhs (perm_stmt, data_ref);
3232 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
3233 mark_symbols_for_renaming (perm_stmt);
3235 VEC_replace (tree, *result_chain, j/2, data_ref);
3237 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
3238 perm_dest = create_tmp_var (vectype, "vect_perm_odd");
3239 DECL_GIMPLE_REG_P (perm_dest) = 1;
3240 add_referenced_var (perm_dest);
3242 perm_stmt = gimple_build_assign_with_ops (VEC_EXTRACT_ODD_EXPR,
3243 perm_dest, first_vect,
3244 second_vect);
3245 data_ref = make_ssa_name (perm_dest, perm_stmt);
3246 gimple_assign_set_lhs (perm_stmt, data_ref);
3247 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
3248 mark_symbols_for_renaming (perm_stmt);
3250 VEC_replace (tree, *result_chain, j/2+length/2, data_ref);
3252 dr_chain = VEC_copy (tree, heap, *result_chain);
3254 return true;
3258 /* Function vect_transform_strided_load.
3260 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
3261 to perform their permutation and ascribe the result vectorized statements to
3262 the scalar statements.
3265 bool
3266 vect_transform_strided_load (gimple stmt, VEC(tree,heap) *dr_chain, int size,
3267 gimple_stmt_iterator *gsi)
3269 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3270 gimple first_stmt = DR_GROUP_FIRST_DR (stmt_info);
3271 gimple next_stmt, new_stmt;
3272 VEC(tree,heap) *result_chain = NULL;
3273 unsigned int i, gap_count;
3274 tree tmp_data_ref;
3276 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
3277 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
3278 vectors, that are ready for vector computation. */
3279 result_chain = VEC_alloc (tree, heap, size);
3280 /* Permute. */
3281 if (!vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain))
3282 return false;
3284 /* Put a permuted data-ref in the VECTORIZED_STMT field.
3285 Since we scan the chain starting from it's first node, their order
3286 corresponds the order of data-refs in RESULT_CHAIN. */
3287 next_stmt = first_stmt;
3288 gap_count = 1;
3289 for (i = 0; VEC_iterate (tree, result_chain, i, tmp_data_ref); i++)
3291 if (!next_stmt)
3292 break;
3294 /* Skip the gaps. Loads created for the gaps will be removed by dead
3295 code elimination pass later. No need to check for the first stmt in
3296 the group, since it always exists.
3297 DR_GROUP_GAP is the number of steps in elements from the previous
3298 access (if there is no gap DR_GROUP_GAP is 1). We skip loads that
3299 correspond to the gaps.
3301 if (next_stmt != first_stmt
3302 && gap_count < DR_GROUP_GAP (vinfo_for_stmt (next_stmt)))
3304 gap_count++;
3305 continue;
3308 while (next_stmt)
3310 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
3311 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
3312 copies, and we put the new vector statement in the first available
3313 RELATED_STMT. */
3314 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
3315 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
3316 else
3318 if (!DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
3320 gimple prev_stmt =
3321 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
3322 gimple rel_stmt =
3323 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
3324 while (rel_stmt)
3326 prev_stmt = rel_stmt;
3327 rel_stmt =
3328 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
3331 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
3332 new_stmt;
3336 next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
3337 gap_count = 1;
3338 /* If NEXT_STMT accesses the same DR as the previous statement,
3339 put the same TMP_DATA_REF as its vectorized statement; otherwise
3340 get the next data-ref from RESULT_CHAIN. */
3341 if (!next_stmt || !DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
3342 break;
3346 VEC_free (tree, heap, result_chain);
3347 return true;
3350 /* Function vect_force_dr_alignment_p.
3352 Returns whether the alignment of a DECL can be forced to be aligned
3353 on ALIGNMENT bit boundary. */
3355 bool
3356 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
3358 if (TREE_CODE (decl) != VAR_DECL)
3359 return false;
3361 if (DECL_EXTERNAL (decl))
3362 return false;
3364 if (TREE_ASM_WRITTEN (decl))
3365 return false;
3367 if (TREE_STATIC (decl))
3368 return (alignment <= MAX_OFILE_ALIGNMENT);
3369 else
3370 return (alignment <= MAX_STACK_ALIGNMENT);
3373 /* Function vect_supportable_dr_alignment
3375 Return whether the data reference DR is supported with respect to its
3376 alignment. */
3378 enum dr_alignment_support
3379 vect_supportable_dr_alignment (struct data_reference *dr)
3381 gimple stmt = DR_STMT (dr);
3382 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3383 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3384 enum machine_mode mode = TYPE_MODE (vectype);
3385 bool invariant_in_outerloop = false;
3386 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3387 struct loop *vect_loop = NULL;
3388 bool nested_in_vect_loop = false;
3390 if (aligned_access_p (dr))
3391 return dr_aligned;
3393 if (!loop_vinfo)
3394 /* FORNOW: Misaligned accesses are supported only in loops. */
3395 return dr_unaligned_unsupported;
3397 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
3398 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
3400 if (nested_in_vect_loop)
3402 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
3403 invariant_in_outerloop =
3404 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
3407 /* Possibly unaligned access. */
3409 /* We can choose between using the implicit realignment scheme (generating
3410 a misaligned_move stmt) and the explicit realignment scheme (generating
3411 aligned loads with a REALIGN_LOAD). There are two variants to the explicit
3412 realignment scheme: optimized, and unoptimized.
3413 We can optimize the realignment only if the step between consecutive
3414 vector loads is equal to the vector size. Since the vector memory
3415 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
3416 is guaranteed that the misalignment amount remains the same throughout the
3417 execution of the vectorized loop. Therefore, we can create the
3418 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
3419 at the loop preheader.
3421 However, in the case of outer-loop vectorization, when vectorizing a
3422 memory access in the inner-loop nested within the LOOP that is now being
3423 vectorized, while it is guaranteed that the misalignment of the
3424 vectorized memory access will remain the same in different outer-loop
3425 iterations, it is *not* guaranteed that is will remain the same throughout
3426 the execution of the inner-loop. This is because the inner-loop advances
3427 with the original scalar step (and not in steps of VS). If the inner-loop
3428 step happens to be a multiple of VS, then the misalignment remains fixed
3429 and we can use the optimized realignment scheme. For example:
3431 for (i=0; i<N; i++)
3432 for (j=0; j<M; j++)
3433 s += a[i+j];
3435 When vectorizing the i-loop in the above example, the step between
3436 consecutive vector loads is 1, and so the misalignment does not remain
3437 fixed across the execution of the inner-loop, and the realignment cannot
3438 be optimized (as illustrated in the following pseudo vectorized loop):
3440 for (i=0; i<N; i+=4)
3441 for (j=0; j<M; j++){
3442 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
3443 // when j is {0,1,2,3,4,5,6,7,...} respectively.
3444 // (assuming that we start from an aligned address).
3447 We therefore have to use the unoptimized realignment scheme:
3449 for (i=0; i<N; i+=4)
3450 for (j=k; j<M; j+=4)
3451 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
3452 // that the misalignment of the initial address is
3453 // 0).
3455 The loop can then be vectorized as follows:
3457 for (k=0; k<4; k++){
3458 rt = get_realignment_token (&vp[k]);
3459 for (i=0; i<N; i+=4){
3460 v1 = vp[i+k];
3461 for (j=k; j<M; j+=4){
3462 v2 = vp[i+j+VS-1];
3463 va = REALIGN_LOAD <v1,v2,rt>;
3464 vs += va;
3465 v1 = v2;
3468 } */
3470 if (DR_IS_READ (dr))
3472 bool is_packed = false;
3473 tree type = (TREE_TYPE (DR_REF (dr)));
3475 if (optab_handler (vec_realign_load_optab, mode)->insn_code !=
3476 CODE_FOR_nothing
3477 && (!targetm.vectorize.builtin_mask_for_load
3478 || targetm.vectorize.builtin_mask_for_load ()))
3480 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3481 if (nested_in_vect_loop
3482 && (TREE_INT_CST_LOW (DR_STEP (dr))
3483 != GET_MODE_SIZE (TYPE_MODE (vectype))))
3484 return dr_explicit_realign;
3485 else
3486 return dr_explicit_realign_optimized;
3488 if (!known_alignment_for_access_p (dr))
3490 tree ba = DR_BASE_OBJECT (dr);
3492 if (ba)
3493 is_packed = contains_packed_reference (ba);
3496 if (targetm.vectorize.
3497 builtin_support_vector_misalignment (mode, type,
3498 DR_MISALIGNMENT (dr), is_packed))
3499 /* Can't software pipeline the loads, but can at least do them. */
3500 return dr_unaligned_supported;
3502 else
3504 bool is_packed = false;
3505 tree type = (TREE_TYPE (DR_REF (dr)));
3507 if (!known_alignment_for_access_p (dr))
3509 tree ba = DR_BASE_OBJECT (dr);
3511 if (ba)
3512 is_packed = contains_packed_reference (ba);
3515 if (targetm.vectorize.
3516 builtin_support_vector_misalignment (mode, type,
3517 DR_MISALIGNMENT (dr), is_packed))
3518 return dr_unaligned_supported;
3521 /* Unsupported. */
3522 return dr_unaligned_unsupported;