1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
45 #include "cfglayout.h"
46 #include "tree-ssa-propagate.h"
47 #include "value-prof.h"
48 #include "pointer-set.h"
49 #include "tree-inline.h"
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
54 /* Local declarations. */
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity
= 20;
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
72 static struct pointer_map_t
*edge_to_cases
;
77 long num_merged_labels
;
80 static struct cfg_stats_d cfg_stats
;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto
;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
91 static htab_t discriminator_per_locus
;
93 /* Basic blocks and flowgraphs. */
94 static void make_blocks (gimple_seq
);
95 static void factor_computed_gotos (void);
98 static void make_edges (void);
99 static void make_cond_expr_edges (basic_block
);
100 static void make_gimple_switch_edges (basic_block
);
101 static void make_goto_expr_edges (basic_block
);
102 static unsigned int locus_map_hash (const void *);
103 static int locus_map_eq (const void *, const void *);
104 static void assign_discriminator (location_t
, basic_block
);
105 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
106 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
107 static unsigned int split_critical_edges (void);
109 /* Various helpers. */
110 static inline bool stmt_starts_bb_p (gimple
, gimple
);
111 static int gimple_verify_flow_info (void);
112 static void gimple_make_forwarder_block (edge
);
113 static void gimple_cfg2vcg (FILE *);
114 static gimple
first_non_label_stmt (basic_block
);
116 /* Flowgraph optimization and cleanup. */
117 static void gimple_merge_blocks (basic_block
, basic_block
);
118 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
119 static void remove_bb (basic_block
);
120 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
121 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
122 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
123 static tree
find_case_label_for_value (gimple
, tree
);
126 init_empty_tree_cfg_for_function (struct function
*fn
)
128 /* Initialize the basic block array. */
130 profile_status_for_function (fn
) = PROFILE_ABSENT
;
131 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
132 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
133 basic_block_info_for_function (fn
)
134 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
135 VEC_safe_grow_cleared (basic_block
, gc
,
136 basic_block_info_for_function (fn
),
137 initial_cfg_capacity
);
139 /* Build a mapping of labels to their associated blocks. */
140 label_to_block_map_for_function (fn
)
141 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
142 VEC_safe_grow_cleared (basic_block
, gc
,
143 label_to_block_map_for_function (fn
),
144 initial_cfg_capacity
);
146 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
147 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
148 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
149 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
151 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
152 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
153 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
154 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
158 init_empty_tree_cfg (void)
160 init_empty_tree_cfg_for_function (cfun
);
163 /*---------------------------------------------------------------------------
165 ---------------------------------------------------------------------------*/
167 /* Entry point to the CFG builder for trees. SEQ is the sequence of
168 statements to be added to the flowgraph. */
171 build_gimple_cfg (gimple_seq seq
)
173 /* Register specific gimple functions. */
174 gimple_register_cfg_hooks ();
176 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
178 init_empty_tree_cfg ();
180 found_computed_goto
= 0;
183 /* Computed gotos are hell to deal with, especially if there are
184 lots of them with a large number of destinations. So we factor
185 them to a common computed goto location before we build the
186 edge list. After we convert back to normal form, we will un-factor
187 the computed gotos since factoring introduces an unwanted jump. */
188 if (found_computed_goto
)
189 factor_computed_gotos ();
191 /* Make sure there is always at least one block, even if it's empty. */
192 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
193 create_empty_bb (ENTRY_BLOCK_PTR
);
195 /* Adjust the size of the array. */
196 if (VEC_length (basic_block
, basic_block_info
) < (size_t) n_basic_blocks
)
197 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, n_basic_blocks
);
199 /* To speed up statement iterator walks, we first purge dead labels. */
200 cleanup_dead_labels ();
202 /* Group case nodes to reduce the number of edges.
203 We do this after cleaning up dead labels because otherwise we miss
204 a lot of obvious case merging opportunities. */
205 group_case_labels ();
207 /* Create the edges of the flowgraph. */
208 discriminator_per_locus
= htab_create (13, locus_map_hash
, locus_map_eq
,
211 cleanup_dead_labels ();
212 htab_delete (discriminator_per_locus
);
214 /* Debugging dumps. */
216 /* Write the flowgraph to a VCG file. */
218 int local_dump_flags
;
219 FILE *vcg_file
= dump_begin (TDI_vcg
, &local_dump_flags
);
222 gimple_cfg2vcg (vcg_file
);
223 dump_end (TDI_vcg
, vcg_file
);
227 #ifdef ENABLE_CHECKING
233 execute_build_cfg (void)
235 gimple_seq body
= gimple_body (current_function_decl
);
237 build_gimple_cfg (body
);
238 gimple_set_body (current_function_decl
, NULL
);
239 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
241 fprintf (dump_file
, "Scope blocks:\n");
242 dump_scope_blocks (dump_file
, dump_flags
);
247 struct gimple_opt_pass pass_build_cfg
=
253 execute_build_cfg
, /* execute */
256 0, /* static_pass_number */
257 TV_TREE_CFG
, /* tv_id */
258 PROP_gimple_leh
, /* properties_required */
259 PROP_cfg
, /* properties_provided */
260 0, /* properties_destroyed */
261 0, /* todo_flags_start */
262 TODO_verify_stmts
| TODO_cleanup_cfg
263 | TODO_dump_func
/* todo_flags_finish */
268 /* Return true if T is a computed goto. */
271 computed_goto_p (gimple t
)
273 return (gimple_code (t
) == GIMPLE_GOTO
274 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
278 /* Search the CFG for any computed gotos. If found, factor them to a
279 common computed goto site. Also record the location of that site so
280 that we can un-factor the gotos after we have converted back to
284 factor_computed_gotos (void)
287 tree factored_label_decl
= NULL
;
289 gimple factored_computed_goto_label
= NULL
;
290 gimple factored_computed_goto
= NULL
;
292 /* We know there are one or more computed gotos in this function.
293 Examine the last statement in each basic block to see if the block
294 ends with a computed goto. */
298 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
304 last
= gsi_stmt (gsi
);
306 /* Ignore the computed goto we create when we factor the original
308 if (last
== factored_computed_goto
)
311 /* If the last statement is a computed goto, factor it. */
312 if (computed_goto_p (last
))
316 /* The first time we find a computed goto we need to create
317 the factored goto block and the variable each original
318 computed goto will use for their goto destination. */
319 if (!factored_computed_goto
)
321 basic_block new_bb
= create_empty_bb (bb
);
322 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
324 /* Create the destination of the factored goto. Each original
325 computed goto will put its desired destination into this
326 variable and jump to the label we create immediately
328 var
= create_tmp_var (ptr_type_node
, "gotovar");
330 /* Build a label for the new block which will contain the
331 factored computed goto. */
332 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
333 factored_computed_goto_label
334 = gimple_build_label (factored_label_decl
);
335 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
338 /* Build our new computed goto. */
339 factored_computed_goto
= gimple_build_goto (var
);
340 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
343 /* Copy the original computed goto's destination into VAR. */
344 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
345 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
347 /* And re-vector the computed goto to the new destination. */
348 gimple_goto_set_dest (last
, factored_label_decl
);
354 /* Build a flowgraph for the sequence of stmts SEQ. */
357 make_blocks (gimple_seq seq
)
359 gimple_stmt_iterator i
= gsi_start (seq
);
361 bool start_new_block
= true;
362 bool first_stmt_of_seq
= true;
363 basic_block bb
= ENTRY_BLOCK_PTR
;
365 while (!gsi_end_p (i
))
372 /* If the statement starts a new basic block or if we have determined
373 in a previous pass that we need to create a new block for STMT, do
375 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
377 if (!first_stmt_of_seq
)
378 seq
= gsi_split_seq_before (&i
);
379 bb
= create_basic_block (seq
, NULL
, bb
);
380 start_new_block
= false;
383 /* Now add STMT to BB and create the subgraphs for special statement
385 gimple_set_bb (stmt
, bb
);
387 if (computed_goto_p (stmt
))
388 found_computed_goto
= true;
390 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
392 if (stmt_ends_bb_p (stmt
))
394 /* If the stmt can make abnormal goto use a new temporary
395 for the assignment to the LHS. This makes sure the old value
396 of the LHS is available on the abnormal edge. Otherwise
397 we will end up with overlapping life-ranges for abnormal
399 if (gimple_has_lhs (stmt
)
400 && stmt_can_make_abnormal_goto (stmt
)
401 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
403 tree lhs
= gimple_get_lhs (stmt
);
404 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
405 gimple s
= gimple_build_assign (lhs
, tmp
);
406 gimple_set_location (s
, gimple_location (stmt
));
407 gimple_set_block (s
, gimple_block (stmt
));
408 gimple_set_lhs (stmt
, tmp
);
409 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
410 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
411 DECL_GIMPLE_REG_P (tmp
) = 1;
412 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
414 start_new_block
= true;
418 first_stmt_of_seq
= false;
423 /* Create and return a new empty basic block after bb AFTER. */
426 create_bb (void *h
, void *e
, basic_block after
)
432 /* Create and initialize a new basic block. Since alloc_block uses
433 ggc_alloc_cleared to allocate a basic block, we do not have to
434 clear the newly allocated basic block here. */
437 bb
->index
= last_basic_block
;
439 bb
->il
.gimple
= GGC_CNEW (struct gimple_bb_info
);
440 set_bb_seq (bb
, h
? (gimple_seq
) h
: gimple_seq_alloc ());
442 /* Add the new block to the linked list of blocks. */
443 link_block (bb
, after
);
445 /* Grow the basic block array if needed. */
446 if ((size_t) last_basic_block
== VEC_length (basic_block
, basic_block_info
))
448 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
449 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, new_size
);
452 /* Add the newly created block to the array. */
453 SET_BASIC_BLOCK (last_basic_block
, bb
);
462 /*---------------------------------------------------------------------------
464 ---------------------------------------------------------------------------*/
466 /* Fold COND_EXPR_COND of each COND_EXPR. */
469 fold_cond_expr_cond (void)
475 gimple stmt
= last_stmt (bb
);
477 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
479 location_t loc
= gimple_location (stmt
);
483 fold_defer_overflow_warnings ();
484 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
485 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
488 zerop
= integer_zerop (cond
);
489 onep
= integer_onep (cond
);
492 zerop
= onep
= false;
494 fold_undefer_overflow_warnings (zerop
|| onep
,
496 WARN_STRICT_OVERFLOW_CONDITIONAL
);
498 gimple_cond_make_false (stmt
);
500 gimple_cond_make_true (stmt
);
505 /* Join all the blocks in the flowgraph. */
511 struct omp_region
*cur_region
= NULL
;
513 /* Create an edge from entry to the first block with executable
515 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
517 /* Traverse the basic block array placing edges. */
520 gimple last
= last_stmt (bb
);
525 enum gimple_code code
= gimple_code (last
);
529 make_goto_expr_edges (bb
);
533 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
537 make_cond_expr_edges (bb
);
541 make_gimple_switch_edges (bb
);
545 make_eh_edges (last
);
550 /* If this function receives a nonlocal goto, then we need to
551 make edges from this call site to all the nonlocal goto
553 if (stmt_can_make_abnormal_goto (last
))
554 make_abnormal_goto_edges (bb
, true);
556 /* If this statement has reachable exception handlers, then
557 create abnormal edges to them. */
558 make_eh_edges (last
);
560 /* Some calls are known not to return. */
561 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
565 /* A GIMPLE_ASSIGN may throw internally and thus be considered
567 if (is_ctrl_altering_stmt (last
))
569 make_eh_edges (last
);
574 case GIMPLE_OMP_PARALLEL
:
575 case GIMPLE_OMP_TASK
:
577 case GIMPLE_OMP_SINGLE
:
578 case GIMPLE_OMP_MASTER
:
579 case GIMPLE_OMP_ORDERED
:
580 case GIMPLE_OMP_CRITICAL
:
581 case GIMPLE_OMP_SECTION
:
582 cur_region
= new_omp_region (bb
, code
, cur_region
);
586 case GIMPLE_OMP_SECTIONS
:
587 cur_region
= new_omp_region (bb
, code
, cur_region
);
591 case GIMPLE_OMP_SECTIONS_SWITCH
:
596 case GIMPLE_OMP_ATOMIC_LOAD
:
597 case GIMPLE_OMP_ATOMIC_STORE
:
602 case GIMPLE_OMP_RETURN
:
603 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
604 somewhere other than the next block. This will be
606 cur_region
->exit
= bb
;
607 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
608 cur_region
= cur_region
->outer
;
611 case GIMPLE_OMP_CONTINUE
:
612 cur_region
->cont
= bb
;
613 switch (cur_region
->type
)
616 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
617 succs edges as abnormal to prevent splitting
619 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
620 /* Make the loopback edge. */
621 make_edge (bb
, single_succ (cur_region
->entry
),
624 /* Create an edge from GIMPLE_OMP_FOR to exit, which
625 corresponds to the case that the body of the loop
626 is not executed at all. */
627 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
628 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
632 case GIMPLE_OMP_SECTIONS
:
633 /* Wire up the edges into and out of the nested sections. */
635 basic_block switch_bb
= single_succ (cur_region
->entry
);
637 struct omp_region
*i
;
638 for (i
= cur_region
->inner
; i
; i
= i
->next
)
640 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
641 make_edge (switch_bb
, i
->entry
, 0);
642 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
645 /* Make the loopback edge to the block with
646 GIMPLE_OMP_SECTIONS_SWITCH. */
647 make_edge (bb
, switch_bb
, 0);
649 /* Make the edge from the switch to exit. */
650 make_edge (switch_bb
, bb
->next_bb
, 0);
661 gcc_assert (!stmt_ends_bb_p (last
));
670 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
672 assign_discriminator (gimple_location (last
), bb
->next_bb
);
679 /* Fold COND_EXPR_COND of each COND_EXPR. */
680 fold_cond_expr_cond ();
683 /* Trivial hash function for a location_t. ITEM is a pointer to
684 a hash table entry that maps a location_t to a discriminator. */
687 locus_map_hash (const void *item
)
689 return ((const struct locus_discrim_map
*) item
)->locus
;
692 /* Equality function for the locus-to-discriminator map. VA and VB
693 point to the two hash table entries to compare. */
696 locus_map_eq (const void *va
, const void *vb
)
698 const struct locus_discrim_map
*a
= (const struct locus_discrim_map
*) va
;
699 const struct locus_discrim_map
*b
= (const struct locus_discrim_map
*) vb
;
700 return a
->locus
== b
->locus
;
703 /* Find the next available discriminator value for LOCUS. The
704 discriminator distinguishes among several basic blocks that
705 share a common locus, allowing for more accurate sample-based
709 next_discriminator_for_locus (location_t locus
)
711 struct locus_discrim_map item
;
712 struct locus_discrim_map
**slot
;
715 item
.discriminator
= 0;
716 slot
= (struct locus_discrim_map
**)
717 htab_find_slot_with_hash (discriminator_per_locus
, (void *) &item
,
718 (hashval_t
) locus
, INSERT
);
720 if (*slot
== HTAB_EMPTY_ENTRY
)
722 *slot
= XNEW (struct locus_discrim_map
);
724 (*slot
)->locus
= locus
;
725 (*slot
)->discriminator
= 0;
727 (*slot
)->discriminator
++;
728 return (*slot
)->discriminator
;
731 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
734 same_line_p (location_t locus1
, location_t locus2
)
736 expanded_location from
, to
;
738 if (locus1
== locus2
)
741 from
= expand_location (locus1
);
742 to
= expand_location (locus2
);
744 if (from
.line
!= to
.line
)
746 if (from
.file
== to
.file
)
748 return (from
.file
!= NULL
750 && strcmp (from
.file
, to
.file
) == 0);
753 /* Assign a unique discriminator value to block BB if it begins at the same
754 LOCUS as its predecessor block. */
757 assign_discriminator (location_t locus
, basic_block bb
)
759 gimple first_in_to_bb
, last_in_to_bb
;
761 if (locus
== 0 || bb
->discriminator
!= 0)
764 first_in_to_bb
= first_non_label_stmt (bb
);
765 last_in_to_bb
= last_stmt (bb
);
766 if ((first_in_to_bb
&& same_line_p (locus
, gimple_location (first_in_to_bb
)))
767 || (last_in_to_bb
&& same_line_p (locus
, gimple_location (last_in_to_bb
))))
768 bb
->discriminator
= next_discriminator_for_locus (locus
);
771 /* Create the edges for a GIMPLE_COND starting at block BB. */
774 make_cond_expr_edges (basic_block bb
)
776 gimple entry
= last_stmt (bb
);
777 gimple then_stmt
, else_stmt
;
778 basic_block then_bb
, else_bb
;
779 tree then_label
, else_label
;
781 location_t entry_locus
;
784 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
786 entry_locus
= gimple_location (entry
);
788 /* Entry basic blocks for each component. */
789 then_label
= gimple_cond_true_label (entry
);
790 else_label
= gimple_cond_false_label (entry
);
791 then_bb
= label_to_block (then_label
);
792 else_bb
= label_to_block (else_label
);
793 then_stmt
= first_stmt (then_bb
);
794 else_stmt
= first_stmt (else_bb
);
796 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
797 assign_discriminator (entry_locus
, then_bb
);
798 e
->goto_locus
= gimple_location (then_stmt
);
800 e
->goto_block
= gimple_block (then_stmt
);
801 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
804 assign_discriminator (entry_locus
, else_bb
);
805 e
->goto_locus
= gimple_location (else_stmt
);
807 e
->goto_block
= gimple_block (else_stmt
);
810 /* We do not need the labels anymore. */
811 gimple_cond_set_true_label (entry
, NULL_TREE
);
812 gimple_cond_set_false_label (entry
, NULL_TREE
);
816 /* Called for each element in the hash table (P) as we delete the
817 edge to cases hash table.
819 Clear all the TREE_CHAINs to prevent problems with copying of
820 SWITCH_EXPRs and structure sharing rules, then free the hash table
824 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
825 void *data ATTRIBUTE_UNUSED
)
829 for (t
= (tree
) *value
; t
; t
= next
)
831 next
= TREE_CHAIN (t
);
832 TREE_CHAIN (t
) = NULL
;
839 /* Start recording information mapping edges to case labels. */
842 start_recording_case_labels (void)
844 gcc_assert (edge_to_cases
== NULL
);
845 edge_to_cases
= pointer_map_create ();
848 /* Return nonzero if we are recording information for case labels. */
851 recording_case_labels_p (void)
853 return (edge_to_cases
!= NULL
);
856 /* Stop recording information mapping edges to case labels and
857 remove any information we have recorded. */
859 end_recording_case_labels (void)
861 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
862 pointer_map_destroy (edge_to_cases
);
863 edge_to_cases
= NULL
;
866 /* If we are inside a {start,end}_recording_cases block, then return
867 a chain of CASE_LABEL_EXPRs from T which reference E.
869 Otherwise return NULL. */
872 get_cases_for_edge (edge e
, gimple t
)
877 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
878 chains available. Return NULL so the caller can detect this case. */
879 if (!recording_case_labels_p ())
882 slot
= pointer_map_contains (edge_to_cases
, e
);
886 /* If we did not find E in the hash table, then this must be the first
887 time we have been queried for information about E & T. Add all the
888 elements from T to the hash table then perform the query again. */
890 n
= gimple_switch_num_labels (t
);
891 for (i
= 0; i
< n
; i
++)
893 tree elt
= gimple_switch_label (t
, i
);
894 tree lab
= CASE_LABEL (elt
);
895 basic_block label_bb
= label_to_block (lab
);
896 edge this_edge
= find_edge (e
->src
, label_bb
);
898 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
900 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
901 TREE_CHAIN (elt
) = (tree
) *slot
;
905 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
908 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
911 make_gimple_switch_edges (basic_block bb
)
913 gimple entry
= last_stmt (bb
);
914 location_t entry_locus
;
917 entry_locus
= gimple_location (entry
);
919 n
= gimple_switch_num_labels (entry
);
921 for (i
= 0; i
< n
; ++i
)
923 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
924 basic_block label_bb
= label_to_block (lab
);
925 make_edge (bb
, label_bb
, 0);
926 assign_discriminator (entry_locus
, label_bb
);
931 /* Return the basic block holding label DEST. */
934 label_to_block_fn (struct function
*ifun
, tree dest
)
936 int uid
= LABEL_DECL_UID (dest
);
938 /* We would die hard when faced by an undefined label. Emit a label to
939 the very first basic block. This will hopefully make even the dataflow
940 and undefined variable warnings quite right. */
941 if ((errorcount
|| sorrycount
) && uid
< 0)
943 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
946 stmt
= gimple_build_label (dest
);
947 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
948 uid
= LABEL_DECL_UID (dest
);
950 if (VEC_length (basic_block
, ifun
->cfg
->x_label_to_block_map
)
951 <= (unsigned int) uid
)
953 return VEC_index (basic_block
, ifun
->cfg
->x_label_to_block_map
, uid
);
956 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
957 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
960 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
962 basic_block target_bb
;
963 gimple_stmt_iterator gsi
;
965 FOR_EACH_BB (target_bb
)
966 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
968 gimple label_stmt
= gsi_stmt (gsi
);
971 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
974 target
= gimple_label_label (label_stmt
);
976 /* Make an edge to every label block that has been marked as a
977 potential target for a computed goto or a non-local goto. */
978 if ((FORCED_LABEL (target
) && !for_call
)
979 || (DECL_NONLOCAL (target
) && for_call
))
981 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
987 /* Create edges for a goto statement at block BB. */
990 make_goto_expr_edges (basic_block bb
)
992 gimple_stmt_iterator last
= gsi_last_bb (bb
);
993 gimple goto_t
= gsi_stmt (last
);
995 /* A simple GOTO creates normal edges. */
996 if (simple_goto_p (goto_t
))
998 tree dest
= gimple_goto_dest (goto_t
);
999 basic_block label_bb
= label_to_block (dest
);
1000 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1001 e
->goto_locus
= gimple_location (goto_t
);
1002 assign_discriminator (e
->goto_locus
, label_bb
);
1004 e
->goto_block
= gimple_block (goto_t
);
1005 gsi_remove (&last
, true);
1009 /* A computed GOTO creates abnormal edges. */
1010 make_abnormal_goto_edges (bb
, false);
1014 /*---------------------------------------------------------------------------
1016 ---------------------------------------------------------------------------*/
1018 /* Cleanup useless labels in basic blocks. This is something we wish
1019 to do early because it allows us to group case labels before creating
1020 the edges for the CFG, and it speeds up block statement iterators in
1021 all passes later on.
1022 We rerun this pass after CFG is created, to get rid of the labels that
1023 are no longer referenced. After then we do not run it any more, since
1024 (almost) no new labels should be created. */
1026 /* A map from basic block index to the leading label of that block. */
1027 static struct label_record
1032 /* True if the label is referenced from somewhere. */
1036 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
1038 update_eh_label (struct eh_region_d
*region
)
1040 tree old_label
= get_eh_region_tree_label (region
);
1044 basic_block bb
= label_to_block (old_label
);
1046 /* ??? After optimizing, there may be EH regions with labels
1047 that have already been removed from the function body, so
1048 there is no basic block for them. */
1052 new_label
= label_for_bb
[bb
->index
].label
;
1053 label_for_bb
[bb
->index
].used
= true;
1054 set_eh_region_tree_label (region
, new_label
);
1059 /* Given LABEL return the first label in the same basic block. */
1062 main_block_label (tree label
)
1064 basic_block bb
= label_to_block (label
);
1065 tree main_label
= label_for_bb
[bb
->index
].label
;
1067 /* label_to_block possibly inserted undefined label into the chain. */
1070 label_for_bb
[bb
->index
].label
= label
;
1074 label_for_bb
[bb
->index
].used
= true;
1078 /* Cleanup redundant labels. This is a three-step process:
1079 1) Find the leading label for each block.
1080 2) Redirect all references to labels to the leading labels.
1081 3) Cleanup all useless labels. */
1084 cleanup_dead_labels (void)
1087 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1089 /* Find a suitable label for each block. We use the first user-defined
1090 label if there is one, or otherwise just the first label we see. */
1093 gimple_stmt_iterator i
;
1095 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1098 gimple stmt
= gsi_stmt (i
);
1100 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1103 label
= gimple_label_label (stmt
);
1105 /* If we have not yet seen a label for the current block,
1106 remember this one and see if there are more labels. */
1107 if (!label_for_bb
[bb
->index
].label
)
1109 label_for_bb
[bb
->index
].label
= label
;
1113 /* If we did see a label for the current block already, but it
1114 is an artificially created label, replace it if the current
1115 label is a user defined label. */
1116 if (!DECL_ARTIFICIAL (label
)
1117 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1119 label_for_bb
[bb
->index
].label
= label
;
1125 /* Now redirect all jumps/branches to the selected label.
1126 First do so for each block ending in a control statement. */
1129 gimple stmt
= last_stmt (bb
);
1133 switch (gimple_code (stmt
))
1137 tree true_label
= gimple_cond_true_label (stmt
);
1138 tree false_label
= gimple_cond_false_label (stmt
);
1141 gimple_cond_set_true_label (stmt
, main_block_label (true_label
));
1143 gimple_cond_set_false_label (stmt
, main_block_label (false_label
));
1149 size_t i
, n
= gimple_switch_num_labels (stmt
);
1151 /* Replace all destination labels. */
1152 for (i
= 0; i
< n
; ++i
)
1154 tree case_label
= gimple_switch_label (stmt
, i
);
1155 tree label
= main_block_label (CASE_LABEL (case_label
));
1156 CASE_LABEL (case_label
) = label
;
1161 /* We have to handle gotos until they're removed, and we don't
1162 remove them until after we've created the CFG edges. */
1164 if (!computed_goto_p (stmt
))
1166 tree new_dest
= main_block_label (gimple_goto_dest (stmt
));
1167 gimple_goto_set_dest (stmt
, new_dest
);
1176 for_each_eh_region (update_eh_label
);
1178 /* Finally, purge dead labels. All user-defined labels and labels that
1179 can be the target of non-local gotos and labels which have their
1180 address taken are preserved. */
1183 gimple_stmt_iterator i
;
1184 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1186 if (!label_for_this_bb
)
1189 /* If the main label of the block is unused, we may still remove it. */
1190 if (!label_for_bb
[bb
->index
].used
)
1191 label_for_this_bb
= NULL
;
1193 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1196 gimple stmt
= gsi_stmt (i
);
1198 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1201 label
= gimple_label_label (stmt
);
1203 if (label
== label_for_this_bb
1204 || !DECL_ARTIFICIAL (label
)
1205 || DECL_NONLOCAL (label
)
1206 || FORCED_LABEL (label
))
1209 gsi_remove (&i
, true);
1213 free (label_for_bb
);
1216 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1217 and scan the sorted vector of cases. Combine the ones jumping to the
1219 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1222 group_case_labels (void)
1228 gimple stmt
= last_stmt (bb
);
1229 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1231 int old_size
= gimple_switch_num_labels (stmt
);
1232 int i
, j
, new_size
= old_size
;
1233 tree default_case
= NULL_TREE
;
1234 tree default_label
= NULL_TREE
;
1237 /* The default label is always the first case in a switch
1238 statement after gimplification if it was not optimized
1240 if (!CASE_LOW (gimple_switch_default_label (stmt
))
1241 && !CASE_HIGH (gimple_switch_default_label (stmt
)))
1243 default_case
= gimple_switch_default_label (stmt
);
1244 default_label
= CASE_LABEL (default_case
);
1248 has_default
= false;
1250 /* Look for possible opportunities to merge cases. */
1255 while (i
< old_size
)
1257 tree base_case
, base_label
, base_high
;
1258 base_case
= gimple_switch_label (stmt
, i
);
1260 gcc_assert (base_case
);
1261 base_label
= CASE_LABEL (base_case
);
1263 /* Discard cases that have the same destination as the
1265 if (base_label
== default_label
)
1267 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1273 base_high
= CASE_HIGH (base_case
)
1274 ? CASE_HIGH (base_case
)
1275 : CASE_LOW (base_case
);
1278 /* Try to merge case labels. Break out when we reach the end
1279 of the label vector or when we cannot merge the next case
1280 label with the current one. */
1281 while (i
< old_size
)
1283 tree merge_case
= gimple_switch_label (stmt
, i
);
1284 tree merge_label
= CASE_LABEL (merge_case
);
1285 tree t
= int_const_binop (PLUS_EXPR
, base_high
,
1286 integer_one_node
, 1);
1288 /* Merge the cases if they jump to the same place,
1289 and their ranges are consecutive. */
1290 if (merge_label
== base_label
1291 && tree_int_cst_equal (CASE_LOW (merge_case
), t
))
1293 base_high
= CASE_HIGH (merge_case
) ?
1294 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1295 CASE_HIGH (base_case
) = base_high
;
1296 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1305 /* Compress the case labels in the label vector, and adjust the
1306 length of the vector. */
1307 for (i
= 0, j
= 0; i
< new_size
; i
++)
1309 while (! gimple_switch_label (stmt
, j
))
1311 gimple_switch_set_label (stmt
, i
,
1312 gimple_switch_label (stmt
, j
++));
1315 gcc_assert (new_size
<= old_size
);
1316 gimple_switch_set_num_labels (stmt
, new_size
);
1321 /* Checks whether we can merge block B into block A. */
1324 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1327 gimple_stmt_iterator gsi
;
1330 if (!single_succ_p (a
))
1333 if (single_succ_edge (a
)->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
1336 if (single_succ (a
) != b
)
1339 if (!single_pred_p (b
))
1342 if (b
== EXIT_BLOCK_PTR
)
1345 /* If A ends by a statement causing exceptions or something similar, we
1346 cannot merge the blocks. */
1347 stmt
= last_stmt (a
);
1348 if (stmt
&& stmt_ends_bb_p (stmt
))
1351 /* Do not allow a block with only a non-local label to be merged. */
1353 && gimple_code (stmt
) == GIMPLE_LABEL
1354 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1357 /* It must be possible to eliminate all phi nodes in B. If ssa form
1358 is not up-to-date, we cannot eliminate any phis; however, if only
1359 some symbols as whole are marked for renaming, this is not a problem,
1360 as phi nodes for those symbols are irrelevant in updating anyway. */
1361 phis
= phi_nodes (b
);
1362 if (!gimple_seq_empty_p (phis
))
1364 gimple_stmt_iterator i
;
1366 if (name_mappings_registered_p ())
1369 for (i
= gsi_start (phis
); !gsi_end_p (i
); gsi_next (&i
))
1371 gimple phi
= gsi_stmt (i
);
1373 if (!is_gimple_reg (gimple_phi_result (phi
))
1374 && !may_propagate_copy (gimple_phi_result (phi
),
1375 gimple_phi_arg_def (phi
, 0)))
1380 /* Do not remove user labels. */
1381 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1383 stmt
= gsi_stmt (gsi
);
1384 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1386 if (!DECL_ARTIFICIAL (gimple_label_label (stmt
)))
1390 /* Protect the loop latches. */
1392 && b
->loop_father
->latch
== b
)
1398 /* Replaces all uses of NAME by VAL. */
1401 replace_uses_by (tree name
, tree val
)
1403 imm_use_iterator imm_iter
;
1408 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1410 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1412 replace_exp (use
, val
);
1414 if (gimple_code (stmt
) == GIMPLE_PHI
)
1416 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1417 if (e
->flags
& EDGE_ABNORMAL
)
1419 /* This can only occur for virtual operands, since
1420 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1421 would prevent replacement. */
1422 gcc_assert (!is_gimple_reg (name
));
1423 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1428 if (gimple_code (stmt
) != GIMPLE_PHI
)
1432 fold_stmt_inplace (stmt
);
1433 if (cfgcleanup_altered_bbs
)
1434 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1436 /* FIXME. This should go in update_stmt. */
1437 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1439 tree op
= gimple_op (stmt
, i
);
1440 /* Operands may be empty here. For example, the labels
1441 of a GIMPLE_COND are nulled out following the creation
1442 of the corresponding CFG edges. */
1443 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1444 recompute_tree_invariant_for_addr_expr (op
);
1447 maybe_clean_or_replace_eh_stmt (stmt
, stmt
);
1452 gcc_assert (has_zero_uses (name
));
1454 /* Also update the trees stored in loop structures. */
1460 FOR_EACH_LOOP (li
, loop
, 0)
1462 substitute_in_loop_info (loop
, name
, val
);
1467 /* Merge block B into block A. */
1470 gimple_merge_blocks (basic_block a
, basic_block b
)
1472 gimple_stmt_iterator last
, gsi
, psi
;
1473 gimple_seq phis
= phi_nodes (b
);
1476 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1478 /* Remove all single-valued PHI nodes from block B of the form
1479 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1480 gsi
= gsi_last_bb (a
);
1481 for (psi
= gsi_start (phis
); !gsi_end_p (psi
); )
1483 gimple phi
= gsi_stmt (psi
);
1484 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1486 bool may_replace_uses
= !is_gimple_reg (def
)
1487 || may_propagate_copy (def
, use
);
1489 /* In case we maintain loop closed ssa form, do not propagate arguments
1490 of loop exit phi nodes. */
1492 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1493 && is_gimple_reg (def
)
1494 && TREE_CODE (use
) == SSA_NAME
1495 && a
->loop_father
!= b
->loop_father
)
1496 may_replace_uses
= false;
1498 if (!may_replace_uses
)
1500 gcc_assert (is_gimple_reg (def
));
1502 /* Note that just emitting the copies is fine -- there is no problem
1503 with ordering of phi nodes. This is because A is the single
1504 predecessor of B, therefore results of the phi nodes cannot
1505 appear as arguments of the phi nodes. */
1506 copy
= gimple_build_assign (def
, use
);
1507 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1508 remove_phi_node (&psi
, false);
1512 /* If we deal with a PHI for virtual operands, we can simply
1513 propagate these without fussing with folding or updating
1515 if (!is_gimple_reg (def
))
1517 imm_use_iterator iter
;
1518 use_operand_p use_p
;
1521 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1522 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1523 SET_USE (use_p
, use
);
1526 replace_uses_by (def
, use
);
1528 remove_phi_node (&psi
, true);
1532 /* Ensure that B follows A. */
1533 move_block_after (b
, a
);
1535 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1536 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1538 /* Remove labels from B and set gimple_bb to A for other statements. */
1539 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1541 if (gimple_code (gsi_stmt (gsi
)) == GIMPLE_LABEL
)
1543 gimple label
= gsi_stmt (gsi
);
1545 gsi_remove (&gsi
, false);
1547 /* Now that we can thread computed gotos, we might have
1548 a situation where we have a forced label in block B
1549 However, the label at the start of block B might still be
1550 used in other ways (think about the runtime checking for
1551 Fortran assigned gotos). So we can not just delete the
1552 label. Instead we move the label to the start of block A. */
1553 if (FORCED_LABEL (gimple_label_label (label
)))
1555 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1556 gsi_insert_before (&dest_gsi
, label
, GSI_NEW_STMT
);
1561 gimple_set_bb (gsi_stmt (gsi
), a
);
1566 /* Merge the sequences. */
1567 last
= gsi_last_bb (a
);
1568 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1569 set_bb_seq (b
, NULL
);
1571 if (cfgcleanup_altered_bbs
)
1572 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1576 /* Return the one of two successors of BB that is not reachable by a
1577 complex edge, if there is one. Else, return BB. We use
1578 this in optimizations that use post-dominators for their heuristics,
1579 to catch the cases in C++ where function calls are involved. */
1582 single_noncomplex_succ (basic_block bb
)
1585 if (EDGE_COUNT (bb
->succs
) != 2)
1588 e0
= EDGE_SUCC (bb
, 0);
1589 e1
= EDGE_SUCC (bb
, 1);
1590 if (e0
->flags
& EDGE_COMPLEX
)
1592 if (e1
->flags
& EDGE_COMPLEX
)
1599 /* Walk the function tree removing unnecessary statements.
1601 * Empty statement nodes are removed
1603 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1605 * Unnecessary COND_EXPRs are removed
1607 * Some unnecessary BIND_EXPRs are removed
1609 * GOTO_EXPRs immediately preceding destination are removed.
1611 Clearly more work could be done. The trick is doing the analysis
1612 and removal fast enough to be a net improvement in compile times.
1614 Note that when we remove a control structure such as a COND_EXPR
1615 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1616 to ensure we eliminate all the useless code. */
1625 gimple_stmt_iterator last_goto_gsi
;
1629 static void remove_useless_stmts_1 (gimple_stmt_iterator
*gsi
, struct rus_data
*);
1631 /* Given a statement sequence, find the first executable statement with
1632 location information, and warn that it is unreachable. When searching,
1633 descend into containers in execution order. */
1636 remove_useless_stmts_warn_notreached (gimple_seq stmts
)
1638 gimple_stmt_iterator gsi
;
1640 for (gsi
= gsi_start (stmts
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1642 gimple stmt
= gsi_stmt (gsi
);
1644 if (gimple_no_warning_p (stmt
)) return false;
1646 if (gimple_has_location (stmt
))
1648 location_t loc
= gimple_location (stmt
);
1649 if (LOCATION_LINE (loc
) > 0)
1651 warning_at (loc
, OPT_Wunreachable_code
, "will never be executed");
1656 switch (gimple_code (stmt
))
1658 /* Unfortunately, we need the CFG now to detect unreachable
1659 branches in a conditional, so conditionals are not handled here. */
1662 if (remove_useless_stmts_warn_notreached (gimple_try_eval (stmt
)))
1664 if (remove_useless_stmts_warn_notreached (gimple_try_cleanup (stmt
)))
1669 return remove_useless_stmts_warn_notreached (gimple_catch_handler (stmt
));
1671 case GIMPLE_EH_FILTER
:
1672 return remove_useless_stmts_warn_notreached (gimple_eh_filter_failure (stmt
));
1675 return remove_useless_stmts_warn_notreached (gimple_bind_body (stmt
));
1685 /* Helper for remove_useless_stmts_1. Handle GIMPLE_COND statements. */
1688 remove_useless_stmts_cond (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1690 gimple stmt
= gsi_stmt (*gsi
);
1692 /* The folded result must still be a conditional statement. */
1694 gcc_assert (gsi_stmt (*gsi
) == stmt
);
1696 data
->may_branch
= true;
1698 /* Replace trivial conditionals with gotos. */
1699 if (gimple_cond_true_p (stmt
))
1701 /* Goto THEN label. */
1702 tree then_label
= gimple_cond_true_label (stmt
);
1704 gsi_replace (gsi
, gimple_build_goto (then_label
), false);
1705 data
->last_goto_gsi
= *gsi
;
1706 data
->last_was_goto
= true;
1707 data
->repeat
= true;
1709 else if (gimple_cond_false_p (stmt
))
1711 /* Goto ELSE label. */
1712 tree else_label
= gimple_cond_false_label (stmt
);
1714 gsi_replace (gsi
, gimple_build_goto (else_label
), false);
1715 data
->last_goto_gsi
= *gsi
;
1716 data
->last_was_goto
= true;
1717 data
->repeat
= true;
1721 tree then_label
= gimple_cond_true_label (stmt
);
1722 tree else_label
= gimple_cond_false_label (stmt
);
1724 if (then_label
== else_label
)
1726 /* Goto common destination. */
1727 gsi_replace (gsi
, gimple_build_goto (then_label
), false);
1728 data
->last_goto_gsi
= *gsi
;
1729 data
->last_was_goto
= true;
1730 data
->repeat
= true;
1736 data
->last_was_goto
= false;
1739 /* Helper for remove_useless_stmts_1.
1740 Handle the try-finally case for GIMPLE_TRY statements. */
1743 remove_useless_stmts_tf (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1745 bool save_may_branch
, save_may_throw
;
1746 bool this_may_branch
, this_may_throw
;
1748 gimple_seq eval_seq
, cleanup_seq
;
1749 gimple_stmt_iterator eval_gsi
, cleanup_gsi
;
1751 gimple stmt
= gsi_stmt (*gsi
);
1753 /* Collect may_branch and may_throw information for the body only. */
1754 save_may_branch
= data
->may_branch
;
1755 save_may_throw
= data
->may_throw
;
1756 data
->may_branch
= false;
1757 data
->may_throw
= false;
1758 data
->last_was_goto
= false;
1760 eval_seq
= gimple_try_eval (stmt
);
1761 eval_gsi
= gsi_start (eval_seq
);
1762 remove_useless_stmts_1 (&eval_gsi
, data
);
1764 this_may_branch
= data
->may_branch
;
1765 this_may_throw
= data
->may_throw
;
1766 data
->may_branch
|= save_may_branch
;
1767 data
->may_throw
|= save_may_throw
;
1768 data
->last_was_goto
= false;
1770 cleanup_seq
= gimple_try_cleanup (stmt
);
1771 cleanup_gsi
= gsi_start (cleanup_seq
);
1772 remove_useless_stmts_1 (&cleanup_gsi
, data
);
1774 /* If the body is empty, then we can emit the FINALLY block without
1775 the enclosing TRY_FINALLY_EXPR. */
1776 if (gimple_seq_empty_p (eval_seq
))
1778 gsi_insert_seq_before (gsi
, cleanup_seq
, GSI_SAME_STMT
);
1779 gsi_remove (gsi
, false);
1780 data
->repeat
= true;
1783 /* If the handler is empty, then we can emit the TRY block without
1784 the enclosing TRY_FINALLY_EXPR. */
1785 else if (gimple_seq_empty_p (cleanup_seq
))
1787 gsi_insert_seq_before (gsi
, eval_seq
, GSI_SAME_STMT
);
1788 gsi_remove (gsi
, false);
1789 data
->repeat
= true;
1792 /* If the body neither throws, nor branches, then we can safely
1793 string the TRY and FINALLY blocks together. */
1794 else if (!this_may_branch
&& !this_may_throw
)
1796 gsi_insert_seq_before (gsi
, eval_seq
, GSI_SAME_STMT
);
1797 gsi_insert_seq_before (gsi
, cleanup_seq
, GSI_SAME_STMT
);
1798 gsi_remove (gsi
, false);
1799 data
->repeat
= true;
1805 /* Helper for remove_useless_stmts_1.
1806 Handle the try-catch case for GIMPLE_TRY statements. */
1809 remove_useless_stmts_tc (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1811 bool save_may_throw
, this_may_throw
;
1813 gimple_seq eval_seq
, cleanup_seq
, handler_seq
, failure_seq
;
1814 gimple_stmt_iterator eval_gsi
, cleanup_gsi
, handler_gsi
, failure_gsi
;
1816 gimple stmt
= gsi_stmt (*gsi
);
1818 /* Collect may_throw information for the body only. */
1819 save_may_throw
= data
->may_throw
;
1820 data
->may_throw
= false;
1821 data
->last_was_goto
= false;
1823 eval_seq
= gimple_try_eval (stmt
);
1824 eval_gsi
= gsi_start (eval_seq
);
1825 remove_useless_stmts_1 (&eval_gsi
, data
);
1827 this_may_throw
= data
->may_throw
;
1828 data
->may_throw
= save_may_throw
;
1830 cleanup_seq
= gimple_try_cleanup (stmt
);
1832 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1833 if (!this_may_throw
)
1835 if (warn_notreached
)
1837 remove_useless_stmts_warn_notreached (cleanup_seq
);
1839 gsi_insert_seq_before (gsi
, eval_seq
, GSI_SAME_STMT
);
1840 gsi_remove (gsi
, false);
1841 data
->repeat
= true;
1845 /* Process the catch clause specially. We may be able to tell that
1846 no exceptions propagate past this point. */
1848 this_may_throw
= true;
1849 cleanup_gsi
= gsi_start (cleanup_seq
);
1850 stmt
= gsi_stmt (cleanup_gsi
);
1851 data
->last_was_goto
= false;
1853 switch (gimple_code (stmt
))
1856 /* If the first element is a catch, they all must be. */
1857 while (!gsi_end_p (cleanup_gsi
))
1859 stmt
= gsi_stmt (cleanup_gsi
);
1860 /* If we catch all exceptions, then the body does not
1861 propagate exceptions past this point. */
1862 if (gimple_catch_types (stmt
) == NULL
)
1863 this_may_throw
= false;
1864 data
->last_was_goto
= false;
1865 handler_seq
= gimple_catch_handler (stmt
);
1866 handler_gsi
= gsi_start (handler_seq
);
1867 remove_useless_stmts_1 (&handler_gsi
, data
);
1868 gsi_next (&cleanup_gsi
);
1873 case GIMPLE_EH_FILTER
:
1874 /* If the first element is an eh_filter, it should stand alone. */
1875 if (gimple_eh_filter_must_not_throw (stmt
))
1876 this_may_throw
= false;
1877 else if (gimple_eh_filter_types (stmt
) == NULL
)
1878 this_may_throw
= false;
1879 failure_seq
= gimple_eh_filter_failure (stmt
);
1880 failure_gsi
= gsi_start (failure_seq
);
1881 remove_useless_stmts_1 (&failure_gsi
, data
);
1886 /* Otherwise this is a list of cleanup statements. */
1887 remove_useless_stmts_1 (&cleanup_gsi
, data
);
1889 /* If the cleanup is empty, then we can emit the TRY block without
1890 the enclosing TRY_CATCH_EXPR. */
1891 if (gimple_seq_empty_p (cleanup_seq
))
1893 gsi_insert_seq_before (gsi
, eval_seq
, GSI_SAME_STMT
);
1894 gsi_remove(gsi
, false);
1895 data
->repeat
= true;
1902 data
->may_throw
|= this_may_throw
;
1905 /* Helper for remove_useless_stmts_1. Handle GIMPLE_BIND statements. */
1908 remove_useless_stmts_bind (gimple_stmt_iterator
*gsi
, struct rus_data
*data ATTRIBUTE_UNUSED
)
1911 gimple_seq body_seq
, fn_body_seq
;
1912 gimple_stmt_iterator body_gsi
;
1914 gimple stmt
= gsi_stmt (*gsi
);
1916 /* First remove anything underneath the BIND_EXPR. */
1918 body_seq
= gimple_bind_body (stmt
);
1919 body_gsi
= gsi_start (body_seq
);
1920 remove_useless_stmts_1 (&body_gsi
, data
);
1922 /* If the GIMPLE_BIND has no variables, then we can pull everything
1923 up one level and remove the GIMPLE_BIND, unless this is the toplevel
1924 GIMPLE_BIND for the current function or an inlined function.
1926 When this situation occurs we will want to apply this
1927 optimization again. */
1928 block
= gimple_bind_block (stmt
);
1929 fn_body_seq
= gimple_body (current_function_decl
);
1930 if (gimple_bind_vars (stmt
) == NULL_TREE
1931 && (gimple_seq_empty_p (fn_body_seq
)
1932 || stmt
!= gimple_seq_first_stmt (fn_body_seq
))
1934 || ! BLOCK_ABSTRACT_ORIGIN (block
)
1935 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block
))
1938 tree var
= NULL_TREE
;
1939 /* Even if there are no gimple_bind_vars, there might be other
1940 decls in BLOCK_VARS rendering the GIMPLE_BIND not useless. */
1941 if (block
&& !BLOCK_NUM_NONLOCALIZED_VARS (block
))
1942 for (var
= BLOCK_VARS (block
); var
; var
= TREE_CHAIN (var
))
1943 if (TREE_CODE (var
) == IMPORTED_DECL
)
1945 if (var
|| (block
&& BLOCK_NUM_NONLOCALIZED_VARS (block
)))
1949 gsi_insert_seq_before (gsi
, body_seq
, GSI_SAME_STMT
);
1950 gsi_remove (gsi
, false);
1951 data
->repeat
= true;
1958 /* Helper for remove_useless_stmts_1. Handle GIMPLE_GOTO statements. */
1961 remove_useless_stmts_goto (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1963 gimple stmt
= gsi_stmt (*gsi
);
1965 tree dest
= gimple_goto_dest (stmt
);
1967 data
->may_branch
= true;
1968 data
->last_was_goto
= false;
1970 /* Record iterator for last goto expr, so that we can delete it if unnecessary. */
1971 if (TREE_CODE (dest
) == LABEL_DECL
)
1973 data
->last_goto_gsi
= *gsi
;
1974 data
->last_was_goto
= true;
1980 /* Helper for remove_useless_stmts_1. Handle GIMPLE_LABEL statements. */
1983 remove_useless_stmts_label (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
1985 gimple stmt
= gsi_stmt (*gsi
);
1987 tree label
= gimple_label_label (stmt
);
1989 data
->has_label
= true;
1991 /* We do want to jump across non-local label receiver code. */
1992 if (DECL_NONLOCAL (label
))
1993 data
->last_was_goto
= false;
1995 else if (data
->last_was_goto
1996 && gimple_goto_dest (gsi_stmt (data
->last_goto_gsi
)) == label
)
1998 /* Replace the preceding GIMPLE_GOTO statement with
1999 a GIMPLE_NOP, which will be subsequently removed.
2000 In this way, we avoid invalidating other iterators
2001 active on the statement sequence. */
2002 gsi_replace(&data
->last_goto_gsi
, gimple_build_nop(), false);
2003 data
->last_was_goto
= false;
2004 data
->repeat
= true;
2007 /* ??? Add something here to delete unused labels. */
2013 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2016 notice_special_calls (gimple call
)
2018 int flags
= gimple_call_flags (call
);
2020 if (flags
& ECF_MAY_BE_ALLOCA
)
2021 cfun
->calls_alloca
= true;
2022 if (flags
& ECF_RETURNS_TWICE
)
2023 cfun
->calls_setjmp
= true;
2027 /* Clear flags set by notice_special_calls. Used by dead code removal
2028 to update the flags. */
2031 clear_special_calls (void)
2033 cfun
->calls_alloca
= false;
2034 cfun
->calls_setjmp
= false;
2037 /* Remove useless statements from a statement sequence, and perform
2038 some preliminary simplifications. */
2041 remove_useless_stmts_1 (gimple_stmt_iterator
*gsi
, struct rus_data
*data
)
2043 while (!gsi_end_p (*gsi
))
2045 gimple stmt
= gsi_stmt (*gsi
);
2047 switch (gimple_code (stmt
))
2050 remove_useless_stmts_cond (gsi
, data
);
2054 remove_useless_stmts_goto (gsi
, data
);
2058 remove_useless_stmts_label (gsi
, data
);
2063 stmt
= gsi_stmt (*gsi
);
2064 data
->last_was_goto
= false;
2065 if (stmt_could_throw_p (stmt
))
2066 data
->may_throw
= true;
2072 data
->last_was_goto
= false;
2078 stmt
= gsi_stmt (*gsi
);
2079 data
->last_was_goto
= false;
2080 if (is_gimple_call (stmt
))
2081 notice_special_calls (stmt
);
2083 /* We used to call update_gimple_call_flags here,
2084 which copied side-effects and nothrows status
2085 from the function decl to the call. In the new
2086 tuplified GIMPLE, the accessors for this information
2087 always consult the function decl, so this copying
2088 is no longer necessary. */
2089 if (stmt_could_throw_p (stmt
))
2090 data
->may_throw
= true;
2096 data
->last_was_goto
= false;
2097 data
->may_branch
= true;
2102 remove_useless_stmts_bind (gsi
, data
);
2106 if (gimple_try_kind (stmt
) == GIMPLE_TRY_CATCH
)
2107 remove_useless_stmts_tc (gsi
, data
);
2108 else if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
2109 remove_useless_stmts_tf (gsi
, data
);
2119 gsi_remove (gsi
, false);
2122 case GIMPLE_OMP_FOR
:
2124 gimple_seq pre_body_seq
= gimple_omp_for_pre_body (stmt
);
2125 gimple_stmt_iterator pre_body_gsi
= gsi_start (pre_body_seq
);
2127 remove_useless_stmts_1 (&pre_body_gsi
, data
);
2128 data
->last_was_goto
= false;
2131 case GIMPLE_OMP_CRITICAL
:
2132 case GIMPLE_OMP_CONTINUE
:
2133 case GIMPLE_OMP_MASTER
:
2134 case GIMPLE_OMP_ORDERED
:
2135 case GIMPLE_OMP_SECTION
:
2136 case GIMPLE_OMP_SECTIONS
:
2137 case GIMPLE_OMP_SINGLE
:
2139 gimple_seq body_seq
= gimple_omp_body (stmt
);
2140 gimple_stmt_iterator body_gsi
= gsi_start (body_seq
);
2142 remove_useless_stmts_1 (&body_gsi
, data
);
2143 data
->last_was_goto
= false;
2148 case GIMPLE_OMP_PARALLEL
:
2149 case GIMPLE_OMP_TASK
:
2151 /* Make sure the outermost GIMPLE_BIND isn't removed
2153 gimple_seq body_seq
= gimple_omp_body (stmt
);
2154 gimple bind
= gimple_seq_first_stmt (body_seq
);
2155 gimple_seq bind_seq
= gimple_bind_body (bind
);
2156 gimple_stmt_iterator bind_gsi
= gsi_start (bind_seq
);
2158 remove_useless_stmts_1 (&bind_gsi
, data
);
2159 data
->last_was_goto
= false;
2165 data
->last_was_goto
= false;
2172 /* Walk the function tree, removing useless statements and performing
2173 some preliminary simplifications. */
2176 remove_useless_stmts (void)
2178 struct rus_data data
;
2180 clear_special_calls ();
2184 gimple_stmt_iterator gsi
;
2186 gsi
= gsi_start (gimple_body (current_function_decl
));
2187 memset (&data
, 0, sizeof (data
));
2188 remove_useless_stmts_1 (&gsi
, &data
);
2190 while (data
.repeat
);
2192 #ifdef ENABLE_TYPES_CHECKING
2193 verify_types_in_gimple_seq (gimple_body (current_function_decl
));
2200 struct gimple_opt_pass pass_remove_useless_stmts
=
2204 "useless", /* name */
2206 remove_useless_stmts
, /* execute */
2209 0, /* static_pass_number */
2210 TV_NONE
, /* tv_id */
2211 PROP_gimple_any
, /* properties_required */
2212 0, /* properties_provided */
2213 0, /* properties_destroyed */
2214 0, /* todo_flags_start */
2215 TODO_dump_func
/* todo_flags_finish */
2219 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2222 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2224 /* Since this block is no longer reachable, we can just delete all
2225 of its PHI nodes. */
2226 remove_phi_nodes (bb
);
2228 /* Remove edges to BB's successors. */
2229 while (EDGE_COUNT (bb
->succs
) > 0)
2230 remove_edge (EDGE_SUCC (bb
, 0));
2234 /* Remove statements of basic block BB. */
2237 remove_bb (basic_block bb
)
2239 gimple_stmt_iterator i
;
2240 source_location loc
= UNKNOWN_LOCATION
;
2244 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2245 if (dump_flags
& TDF_DETAILS
)
2247 dump_bb (bb
, dump_file
, 0);
2248 fprintf (dump_file
, "\n");
2254 struct loop
*loop
= bb
->loop_father
;
2256 /* If a loop gets removed, clean up the information associated
2258 if (loop
->latch
== bb
2259 || loop
->header
== bb
)
2260 free_numbers_of_iterations_estimates_loop (loop
);
2263 /* Remove all the instructions in the block. */
2264 if (bb_seq (bb
) != NULL
)
2266 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
);)
2268 gimple stmt
= gsi_stmt (i
);
2269 if (gimple_code (stmt
) == GIMPLE_LABEL
2270 && (FORCED_LABEL (gimple_label_label (stmt
))
2271 || DECL_NONLOCAL (gimple_label_label (stmt
))))
2274 gimple_stmt_iterator new_gsi
;
2276 /* A non-reachable non-local label may still be referenced.
2277 But it no longer needs to carry the extra semantics of
2279 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
2281 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
2282 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
2285 new_bb
= bb
->prev_bb
;
2286 new_gsi
= gsi_start_bb (new_bb
);
2287 gsi_remove (&i
, false);
2288 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2292 /* Release SSA definitions if we are in SSA. Note that we
2293 may be called when not in SSA. For example,
2294 final_cleanup calls this function via
2295 cleanup_tree_cfg. */
2296 if (gimple_in_ssa_p (cfun
))
2297 release_defs (stmt
);
2299 gsi_remove (&i
, true);
2302 /* Don't warn for removed gotos. Gotos are often removed due to
2303 jump threading, thus resulting in bogus warnings. Not great,
2304 since this way we lose warnings for gotos in the original
2305 program that are indeed unreachable. */
2306 if (gimple_code (stmt
) != GIMPLE_GOTO
2307 && gimple_has_location (stmt
)
2309 loc
= gimple_location (stmt
);
2313 /* If requested, give a warning that the first statement in the
2314 block is unreachable. We walk statements backwards in the
2315 loop above, so the last statement we process is the first statement
2317 if (loc
> BUILTINS_LOCATION
&& LOCATION_LINE (loc
) > 0)
2318 warning_at (loc
, OPT_Wunreachable_code
, "will never be executed");
2320 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2321 bb
->il
.gimple
= NULL
;
2325 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2326 predicate VAL, return the edge that will be taken out of the block.
2327 If VAL does not match a unique edge, NULL is returned. */
2330 find_taken_edge (basic_block bb
, tree val
)
2334 stmt
= last_stmt (bb
);
2337 gcc_assert (is_ctrl_stmt (stmt
));
2342 if (!is_gimple_min_invariant (val
))
2345 if (gimple_code (stmt
) == GIMPLE_COND
)
2346 return find_taken_edge_cond_expr (bb
, val
);
2348 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2349 return find_taken_edge_switch_expr (bb
, val
);
2351 if (computed_goto_p (stmt
))
2353 /* Only optimize if the argument is a label, if the argument is
2354 not a label then we can not construct a proper CFG.
2356 It may be the case that we only need to allow the LABEL_REF to
2357 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2358 appear inside a LABEL_EXPR just to be safe. */
2359 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2360 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2361 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2368 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2369 statement, determine which of the outgoing edges will be taken out of the
2370 block. Return NULL if either edge may be taken. */
2373 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2378 dest
= label_to_block (val
);
2381 e
= find_edge (bb
, dest
);
2382 gcc_assert (e
!= NULL
);
2388 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2389 statement, determine which of the two edges will be taken out of the
2390 block. Return NULL if either edge may be taken. */
2393 find_taken_edge_cond_expr (basic_block bb
, tree val
)
2395 edge true_edge
, false_edge
;
2397 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
2399 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
2400 return (integer_zerop (val
) ? false_edge
: true_edge
);
2403 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2404 statement, determine which edge will be taken out of the block. Return
2405 NULL if any edge may be taken. */
2408 find_taken_edge_switch_expr (basic_block bb
, tree val
)
2410 basic_block dest_bb
;
2415 switch_stmt
= last_stmt (bb
);
2416 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2417 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2419 e
= find_edge (bb
, dest_bb
);
2425 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2426 We can make optimal use here of the fact that the case labels are
2427 sorted: We can do a binary search for a case matching VAL. */
2430 find_case_label_for_value (gimple switch_stmt
, tree val
)
2432 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2433 tree default_case
= gimple_switch_default_label (switch_stmt
);
2435 for (low
= 0, high
= n
; high
- low
> 1; )
2437 size_t i
= (high
+ low
) / 2;
2438 tree t
= gimple_switch_label (switch_stmt
, i
);
2441 /* Cache the result of comparing CASE_LOW and val. */
2442 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2449 if (CASE_HIGH (t
) == NULL
)
2451 /* A singe-valued case label. */
2457 /* A case range. We can only handle integer ranges. */
2458 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2463 return default_case
;
2467 /* Dump a basic block on stderr. */
2470 gimple_debug_bb (basic_block bb
)
2472 gimple_dump_bb (bb
, stderr
, 0, TDF_VOPS
|TDF_MEMSYMS
);
2476 /* Dump basic block with index N on stderr. */
2479 gimple_debug_bb_n (int n
)
2481 gimple_debug_bb (BASIC_BLOCK (n
));
2482 return BASIC_BLOCK (n
);
2486 /* Dump the CFG on stderr.
2488 FLAGS are the same used by the tree dumping functions
2489 (see TDF_* in tree-pass.h). */
2492 gimple_debug_cfg (int flags
)
2494 gimple_dump_cfg (stderr
, flags
);
2498 /* Dump the program showing basic block boundaries on the given FILE.
2500 FLAGS are the same used by the tree dumping functions (see TDF_* in
2504 gimple_dump_cfg (FILE *file
, int flags
)
2506 if (flags
& TDF_DETAILS
)
2508 const char *funcname
2509 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2512 fprintf (file
, ";; Function %s\n\n", funcname
);
2513 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2514 n_basic_blocks
, n_edges
, last_basic_block
);
2516 brief_dump_cfg (file
);
2517 fprintf (file
, "\n");
2520 if (flags
& TDF_STATS
)
2521 dump_cfg_stats (file
);
2523 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2527 /* Dump CFG statistics on FILE. */
2530 dump_cfg_stats (FILE *file
)
2532 static long max_num_merged_labels
= 0;
2533 unsigned long size
, total
= 0;
2536 const char * const fmt_str
= "%-30s%-13s%12s\n";
2537 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2538 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2539 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2540 const char *funcname
2541 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2544 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2546 fprintf (file
, "---------------------------------------------------------\n");
2547 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2548 fprintf (file
, fmt_str
, "", " instances ", "used ");
2549 fprintf (file
, "---------------------------------------------------------\n");
2551 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2553 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2554 SCALE (size
), LABEL (size
));
2558 num_edges
+= EDGE_COUNT (bb
->succs
);
2559 size
= num_edges
* sizeof (struct edge_def
);
2561 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2563 fprintf (file
, "---------------------------------------------------------\n");
2564 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2566 fprintf (file
, "---------------------------------------------------------\n");
2567 fprintf (file
, "\n");
2569 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2570 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2572 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2573 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2575 fprintf (file
, "\n");
2579 /* Dump CFG statistics on stderr. Keep extern so that it's always
2580 linked in the final executable. */
2583 debug_cfg_stats (void)
2585 dump_cfg_stats (stderr
);
2589 /* Dump the flowgraph to a .vcg FILE. */
2592 gimple_cfg2vcg (FILE *file
)
2597 const char *funcname
2598 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2600 /* Write the file header. */
2601 fprintf (file
, "graph: { title: \"%s\"\n", funcname
);
2602 fprintf (file
, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2603 fprintf (file
, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2605 /* Write blocks and edges. */
2606 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2608 fprintf (file
, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2611 if (e
->flags
& EDGE_FAKE
)
2612 fprintf (file
, " linestyle: dotted priority: 10");
2614 fprintf (file
, " linestyle: solid priority: 100");
2616 fprintf (file
, " }\n");
2622 enum gimple_code head_code
, end_code
;
2623 const char *head_name
, *end_name
;
2626 gimple first
= first_stmt (bb
);
2627 gimple last
= last_stmt (bb
);
2631 head_code
= gimple_code (first
);
2632 head_name
= gimple_code_name
[head_code
];
2633 head_line
= get_lineno (first
);
2636 head_name
= "no-statement";
2640 end_code
= gimple_code (last
);
2641 end_name
= gimple_code_name
[end_code
];
2642 end_line
= get_lineno (last
);
2645 end_name
= "no-statement";
2647 fprintf (file
, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2648 bb
->index
, bb
->index
, head_name
, head_line
, end_name
,
2651 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2653 if (e
->dest
== EXIT_BLOCK_PTR
)
2654 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb
->index
);
2656 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb
->index
, e
->dest
->index
);
2658 if (e
->flags
& EDGE_FAKE
)
2659 fprintf (file
, " priority: 10 linestyle: dotted");
2661 fprintf (file
, " priority: 100 linestyle: solid");
2663 fprintf (file
, " }\n");
2666 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
2670 fputs ("}\n\n", file
);
2675 /*---------------------------------------------------------------------------
2676 Miscellaneous helpers
2677 ---------------------------------------------------------------------------*/
2679 /* Return true if T represents a stmt that always transfers control. */
2682 is_ctrl_stmt (gimple t
)
2684 return gimple_code (t
) == GIMPLE_COND
2685 || gimple_code (t
) == GIMPLE_SWITCH
2686 || gimple_code (t
) == GIMPLE_GOTO
2687 || gimple_code (t
) == GIMPLE_RETURN
2688 || gimple_code (t
) == GIMPLE_RESX
;
2692 /* Return true if T is a statement that may alter the flow of control
2693 (e.g., a call to a non-returning function). */
2696 is_ctrl_altering_stmt (gimple t
)
2700 if (is_gimple_call (t
))
2702 int flags
= gimple_call_flags (t
);
2704 /* A non-pure/const call alters flow control if the current
2705 function has nonlocal labels. */
2706 if (!(flags
& (ECF_CONST
| ECF_PURE
))
2707 && cfun
->has_nonlocal_label
)
2710 /* A call also alters control flow if it does not return. */
2711 if (gimple_call_flags (t
) & ECF_NORETURN
)
2715 /* OpenMP directives alter control flow. */
2716 if (is_gimple_omp (t
))
2719 /* If a statement can throw, it alters control flow. */
2720 return stmt_can_throw_internal (t
);
2724 /* Return true if T is a simple local goto. */
2727 simple_goto_p (gimple t
)
2729 return (gimple_code (t
) == GIMPLE_GOTO
2730 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2734 /* Return true if T can make an abnormal transfer of control flow.
2735 Transfers of control flow associated with EH are excluded. */
2738 stmt_can_make_abnormal_goto (gimple t
)
2740 if (computed_goto_p (t
))
2742 if (is_gimple_call (t
))
2743 return gimple_has_side_effects (t
) && cfun
->has_nonlocal_label
;
2748 /* Return true if STMT should start a new basic block. PREV_STMT is
2749 the statement preceding STMT. It is used when STMT is a label or a
2750 case label. Labels should only start a new basic block if their
2751 previous statement wasn't a label. Otherwise, sequence of labels
2752 would generate unnecessary basic blocks that only contain a single
2756 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2761 /* Labels start a new basic block only if the preceding statement
2762 wasn't a label of the same type. This prevents the creation of
2763 consecutive blocks that have nothing but a single label. */
2764 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2766 /* Nonlocal and computed GOTO targets always start a new block. */
2767 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2768 || FORCED_LABEL (gimple_label_label (stmt
)))
2771 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2773 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2776 cfg_stats
.num_merged_labels
++;
2787 /* Return true if T should end a basic block. */
2790 stmt_ends_bb_p (gimple t
)
2792 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2795 /* Remove block annotations and other data structures. */
2798 delete_tree_cfg_annotations (void)
2800 label_to_block_map
= NULL
;
2804 /* Return the first statement in basic block BB. */
2807 first_stmt (basic_block bb
)
2809 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2810 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2813 /* Return the first non-label statement in basic block BB. */
2816 first_non_label_stmt (basic_block bb
)
2818 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2819 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2821 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2824 /* Return the last statement in basic block BB. */
2827 last_stmt (basic_block bb
)
2829 gimple_stmt_iterator b
= gsi_last_bb (bb
);
2830 return !gsi_end_p (b
) ? gsi_stmt (b
) : NULL
;
2833 /* Return the last statement of an otherwise empty block. Return NULL
2834 if the block is totally empty, or if it contains more than one
2838 last_and_only_stmt (basic_block bb
)
2840 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2846 last
= gsi_stmt (i
);
2851 /* Empty statements should no longer appear in the instruction stream.
2852 Everything that might have appeared before should be deleted by
2853 remove_useless_stmts, and the optimizers should just gsi_remove
2854 instead of smashing with build_empty_stmt.
2856 Thus the only thing that should appear here in a block containing
2857 one executable statement is a label. */
2858 prev
= gsi_stmt (i
);
2859 if (gimple_code (prev
) == GIMPLE_LABEL
)
2865 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2868 reinstall_phi_args (edge new_edge
, edge old_edge
)
2870 edge_var_map_vector v
;
2873 gimple_stmt_iterator phis
;
2875 v
= redirect_edge_var_map_vector (old_edge
);
2879 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2880 VEC_iterate (edge_var_map
, v
, i
, vm
) && !gsi_end_p (phis
);
2881 i
++, gsi_next (&phis
))
2883 gimple phi
= gsi_stmt (phis
);
2884 tree result
= redirect_edge_var_map_result (vm
);
2885 tree arg
= redirect_edge_var_map_def (vm
);
2887 gcc_assert (result
== gimple_phi_result (phi
));
2889 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2892 redirect_edge_var_map_clear (old_edge
);
2895 /* Returns the basic block after which the new basic block created
2896 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2897 near its "logical" location. This is of most help to humans looking
2898 at debugging dumps. */
2901 split_edge_bb_loc (edge edge_in
)
2903 basic_block dest
= edge_in
->dest
;
2905 if (dest
->prev_bb
&& find_edge (dest
->prev_bb
, dest
))
2906 return edge_in
->src
;
2908 return dest
->prev_bb
;
2911 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2912 Abort on abnormal edges. */
2915 gimple_split_edge (edge edge_in
)
2917 basic_block new_bb
, after_bb
, dest
;
2920 /* Abnormal edges cannot be split. */
2921 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2923 dest
= edge_in
->dest
;
2925 after_bb
= split_edge_bb_loc (edge_in
);
2927 new_bb
= create_empty_bb (after_bb
);
2928 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2929 new_bb
->count
= edge_in
->count
;
2930 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2931 new_edge
->probability
= REG_BR_PROB_BASE
;
2932 new_edge
->count
= edge_in
->count
;
2934 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2935 gcc_assert (e
== edge_in
);
2936 reinstall_phi_args (new_edge
, e
);
2941 /* Callback for walk_tree, check that all elements with address taken are
2942 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2943 inside a PHI node. */
2946 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2953 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2954 #define CHECK_OP(N, MSG) \
2955 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2956 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2958 switch (TREE_CODE (t
))
2961 if (SSA_NAME_IN_FREE_LIST (t
))
2963 error ("SSA name in freelist but still referenced");
2969 x
= TREE_OPERAND (t
, 0);
2970 if (!is_gimple_reg (x
) && !is_gimple_min_invariant (x
))
2972 error ("Indirect reference's operand is not a register or a constant.");
2978 x
= fold (ASSERT_EXPR_COND (t
));
2979 if (x
== boolean_false_node
)
2981 error ("ASSERT_EXPR with an always-false condition");
2987 error ("MODIFY_EXPR not expected while having tuples.");
2993 bool old_side_effects
;
2995 bool new_side_effects
;
2997 gcc_assert (is_gimple_address (t
));
2999 old_constant
= TREE_CONSTANT (t
);
3000 old_side_effects
= TREE_SIDE_EFFECTS (t
);
3002 recompute_tree_invariant_for_addr_expr (t
);
3003 new_side_effects
= TREE_SIDE_EFFECTS (t
);
3004 new_constant
= TREE_CONSTANT (t
);
3006 if (old_constant
!= new_constant
)
3008 error ("constant not recomputed when ADDR_EXPR changed");
3011 if (old_side_effects
!= new_side_effects
)
3013 error ("side effects not recomputed when ADDR_EXPR changed");
3017 /* Skip any references (they will be checked when we recurse down the
3018 tree) and ensure that any variable used as a prefix is marked
3020 for (x
= TREE_OPERAND (t
, 0);
3021 handled_component_p (x
);
3022 x
= TREE_OPERAND (x
, 0))
3025 if (!(TREE_CODE (x
) == VAR_DECL
3026 || TREE_CODE (x
) == PARM_DECL
3027 || TREE_CODE (x
) == RESULT_DECL
))
3029 if (!TREE_ADDRESSABLE (x
))
3031 error ("address taken, but ADDRESSABLE bit not set");
3034 if (DECL_GIMPLE_REG_P (x
))
3036 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3044 x
= COND_EXPR_COND (t
);
3045 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
3047 error ("non-integral used in condition");
3050 if (!is_gimple_condexpr (x
))
3052 error ("invalid conditional operand");
3057 case NON_LVALUE_EXPR
:
3061 case FIX_TRUNC_EXPR
:
3066 case TRUTH_NOT_EXPR
:
3067 CHECK_OP (0, "invalid operand to unary operator");
3074 case ARRAY_RANGE_REF
:
3076 case VIEW_CONVERT_EXPR
:
3077 /* We have a nest of references. Verify that each of the operands
3078 that determine where to reference is either a constant or a variable,
3079 verify that the base is valid, and then show we've already checked
3081 while (handled_component_p (t
))
3083 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
3084 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3085 else if (TREE_CODE (t
) == ARRAY_REF
3086 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
3088 CHECK_OP (1, "invalid array index");
3089 if (TREE_OPERAND (t
, 2))
3090 CHECK_OP (2, "invalid array lower bound");
3091 if (TREE_OPERAND (t
, 3))
3092 CHECK_OP (3, "invalid array stride");
3094 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
3096 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
3097 || !host_integerp (TREE_OPERAND (t
, 2), 1))
3099 error ("invalid position or size operand to BIT_FIELD_REF");
3102 else if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
3103 && (TYPE_PRECISION (TREE_TYPE (t
))
3104 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
3106 error ("integral result type precision does not match "
3107 "field size of BIT_FIELD_REF");
3110 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
3111 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
3112 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
3114 error ("mode precision of non-integral result does not "
3115 "match field size of BIT_FIELD_REF");
3120 t
= TREE_OPERAND (t
, 0);
3123 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
3125 error ("invalid reference prefix");
3132 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3133 POINTER_PLUS_EXPR. */
3134 if (POINTER_TYPE_P (TREE_TYPE (t
)))
3136 error ("invalid operand to plus/minus, type is a pointer");
3139 CHECK_OP (0, "invalid operand to binary operator");
3140 CHECK_OP (1, "invalid operand to binary operator");
3143 case POINTER_PLUS_EXPR
:
3144 /* Check to make sure the first operand is a pointer or reference type. */
3145 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
3147 error ("invalid operand to pointer plus, first operand is not a pointer");
3150 /* Check to make sure the second operand is an integer with type of
3152 if (!useless_type_conversion_p (sizetype
,
3153 TREE_TYPE (TREE_OPERAND (t
, 1))))
3155 error ("invalid operand to pointer plus, second operand is not an "
3156 "integer with type of sizetype.");
3166 case UNORDERED_EXPR
:
3175 case TRUNC_DIV_EXPR
:
3177 case FLOOR_DIV_EXPR
:
3178 case ROUND_DIV_EXPR
:
3179 case TRUNC_MOD_EXPR
:
3181 case FLOOR_MOD_EXPR
:
3182 case ROUND_MOD_EXPR
:
3184 case EXACT_DIV_EXPR
:
3194 CHECK_OP (0, "invalid operand to binary operator");
3195 CHECK_OP (1, "invalid operand to binary operator");
3199 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
3212 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3213 Returns true if there is an error, otherwise false. */
3216 verify_types_in_gimple_min_lval (tree expr
)
3220 if (is_gimple_id (expr
))
3223 if (!INDIRECT_REF_P (expr
)
3224 && TREE_CODE (expr
) != TARGET_MEM_REF
)
3226 error ("invalid expression for min lvalue");
3230 /* TARGET_MEM_REFs are strange beasts. */
3231 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3234 op
= TREE_OPERAND (expr
, 0);
3235 if (!is_gimple_val (op
))
3237 error ("invalid operand in indirect reference");
3238 debug_generic_stmt (op
);
3241 if (!useless_type_conversion_p (TREE_TYPE (expr
),
3242 TREE_TYPE (TREE_TYPE (op
))))
3244 error ("type mismatch in indirect reference");
3245 debug_generic_stmt (TREE_TYPE (expr
));
3246 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3253 /* Verify if EXPR is a valid GIMPLE reference expression. If
3254 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3255 if there is an error, otherwise false. */
3258 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3260 while (handled_component_p (expr
))
3262 tree op
= TREE_OPERAND (expr
, 0);
3264 if (TREE_CODE (expr
) == ARRAY_REF
3265 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3267 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3268 || (TREE_OPERAND (expr
, 2)
3269 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3270 || (TREE_OPERAND (expr
, 3)
3271 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3273 error ("invalid operands to array reference");
3274 debug_generic_stmt (expr
);
3279 /* Verify if the reference array element types are compatible. */
3280 if (TREE_CODE (expr
) == ARRAY_REF
3281 && !useless_type_conversion_p (TREE_TYPE (expr
),
3282 TREE_TYPE (TREE_TYPE (op
))))
3284 error ("type mismatch in array reference");
3285 debug_generic_stmt (TREE_TYPE (expr
));
3286 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3289 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3290 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3291 TREE_TYPE (TREE_TYPE (op
))))
3293 error ("type mismatch in array range reference");
3294 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3295 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3299 if ((TREE_CODE (expr
) == REALPART_EXPR
3300 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3301 && !useless_type_conversion_p (TREE_TYPE (expr
),
3302 TREE_TYPE (TREE_TYPE (op
))))
3304 error ("type mismatch in real/imagpart reference");
3305 debug_generic_stmt (TREE_TYPE (expr
));
3306 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3310 if (TREE_CODE (expr
) == COMPONENT_REF
3311 && !useless_type_conversion_p (TREE_TYPE (expr
),
3312 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3314 error ("type mismatch in component reference");
3315 debug_generic_stmt (TREE_TYPE (expr
));
3316 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3320 /* For VIEW_CONVERT_EXPRs which are allowed here, too, there
3321 is nothing to verify. Gross mismatches at most invoke
3322 undefined behavior. */
3323 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
3324 && !handled_component_p (op
))
3330 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3331 && verify_types_in_gimple_min_lval (expr
));
3334 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3335 list of pointer-to types that is trivially convertible to DEST. */
3338 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3342 if (!TYPE_POINTER_TO (src_obj
))
3345 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3346 if (useless_type_conversion_p (dest
, src
))
3352 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3353 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3356 valid_fixed_convert_types_p (tree type1
, tree type2
)
3358 return (FIXED_POINT_TYPE_P (type1
)
3359 && (INTEGRAL_TYPE_P (type2
)
3360 || SCALAR_FLOAT_TYPE_P (type2
)
3361 || FIXED_POINT_TYPE_P (type2
)));
3364 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3365 is a problem, otherwise false. */
3368 verify_gimple_call (gimple stmt
)
3370 tree fn
= gimple_call_fn (stmt
);
3373 if (!POINTER_TYPE_P (TREE_TYPE (fn
))
3374 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3375 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
))
3377 error ("non-function in gimple call");
3381 if (gimple_call_lhs (stmt
)
3382 && !is_gimple_lvalue (gimple_call_lhs (stmt
)))
3384 error ("invalid LHS in gimple call");
3388 fntype
= TREE_TYPE (TREE_TYPE (fn
));
3389 if (gimple_call_lhs (stmt
)
3390 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3392 /* ??? At least C++ misses conversions at assignments from
3393 void * call results.
3394 ??? Java is completely off. Especially with functions
3395 returning java.lang.Object.
3396 For now simply allow arbitrary pointer type conversions. */
3397 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3398 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3400 error ("invalid conversion in gimple call");
3401 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3402 debug_generic_stmt (TREE_TYPE (fntype
));
3406 /* ??? The C frontend passes unpromoted arguments in case it
3407 didn't see a function declaration before the call. So for now
3408 leave the call arguments unverified. Once we gimplify
3409 unit-at-a-time we have a chance to fix this. */
3414 /* Verifies the gimple comparison with the result type TYPE and
3415 the operands OP0 and OP1. */
3418 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3420 tree op0_type
= TREE_TYPE (op0
);
3421 tree op1_type
= TREE_TYPE (op1
);
3423 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3425 error ("invalid operands in gimple comparison");
3429 /* For comparisons we do not have the operations type as the
3430 effective type the comparison is carried out in. Instead
3431 we require that either the first operand is trivially
3432 convertible into the second, or the other way around.
3433 The resulting type of a comparison may be any integral type.
3434 Because we special-case pointers to void we allow
3435 comparisons of pointers with the same mode as well. */
3436 if ((!useless_type_conversion_p (op0_type
, op1_type
)
3437 && !useless_type_conversion_p (op1_type
, op0_type
)
3438 && (!POINTER_TYPE_P (op0_type
)
3439 || !POINTER_TYPE_P (op1_type
)
3440 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3441 || !INTEGRAL_TYPE_P (type
))
3443 error ("type mismatch in comparison expression");
3444 debug_generic_expr (type
);
3445 debug_generic_expr (op0_type
);
3446 debug_generic_expr (op1_type
);
3453 /* Verify a gimple assignment statement STMT with an unary rhs.
3454 Returns true if anything is wrong. */
3457 verify_gimple_assign_unary (gimple stmt
)
3459 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3460 tree lhs
= gimple_assign_lhs (stmt
);
3461 tree lhs_type
= TREE_TYPE (lhs
);
3462 tree rhs1
= gimple_assign_rhs1 (stmt
);
3463 tree rhs1_type
= TREE_TYPE (rhs1
);
3465 if (!is_gimple_reg (lhs
)
3467 && TREE_CODE (lhs_type
) == COMPLEX_TYPE
))
3469 error ("non-register as LHS of unary operation");
3473 if (!is_gimple_val (rhs1
))
3475 error ("invalid operand in unary operation");
3479 /* First handle conversions. */
3484 /* Allow conversions between integral types and pointers only if
3485 there is no sign or zero extension involved.
3486 For targets were the precision of sizetype doesn't match that
3487 of pointers we need to allow arbitrary conversions from and
3489 if ((POINTER_TYPE_P (lhs_type
)
3490 && INTEGRAL_TYPE_P (rhs1_type
)
3491 && (TYPE_PRECISION (lhs_type
) >= TYPE_PRECISION (rhs1_type
)
3492 || rhs1_type
== sizetype
))
3493 || (POINTER_TYPE_P (rhs1_type
)
3494 && INTEGRAL_TYPE_P (lhs_type
)
3495 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3496 || lhs_type
== sizetype
)))
3499 /* Allow conversion from integer to offset type and vice versa. */
3500 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3501 && TREE_CODE (rhs1_type
) == INTEGER_TYPE
)
3502 || (TREE_CODE (lhs_type
) == INTEGER_TYPE
3503 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3506 /* Otherwise assert we are converting between types of the
3508 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3510 error ("invalid types in nop conversion");
3511 debug_generic_expr (lhs_type
);
3512 debug_generic_expr (rhs1_type
);
3519 case FIXED_CONVERT_EXPR
:
3521 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3522 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3524 error ("invalid types in fixed-point conversion");
3525 debug_generic_expr (lhs_type
);
3526 debug_generic_expr (rhs1_type
);
3535 if (!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3537 error ("invalid types in conversion to floating point");
3538 debug_generic_expr (lhs_type
);
3539 debug_generic_expr (rhs1_type
);
3546 case FIX_TRUNC_EXPR
:
3548 if (!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3550 error ("invalid types in conversion to integer");
3551 debug_generic_expr (lhs_type
);
3552 debug_generic_expr (rhs1_type
);
3559 case VEC_UNPACK_HI_EXPR
:
3560 case VEC_UNPACK_LO_EXPR
:
3561 case REDUC_MAX_EXPR
:
3562 case REDUC_MIN_EXPR
:
3563 case REDUC_PLUS_EXPR
:
3564 case VEC_UNPACK_FLOAT_HI_EXPR
:
3565 case VEC_UNPACK_FLOAT_LO_EXPR
:
3569 case TRUTH_NOT_EXPR
:
3574 case NON_LVALUE_EXPR
:
3582 /* For the remaining codes assert there is no conversion involved. */
3583 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3585 error ("non-trivial conversion in unary operation");
3586 debug_generic_expr (lhs_type
);
3587 debug_generic_expr (rhs1_type
);
3594 /* Verify a gimple assignment statement STMT with a binary rhs.
3595 Returns true if anything is wrong. */
3598 verify_gimple_assign_binary (gimple stmt
)
3600 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3601 tree lhs
= gimple_assign_lhs (stmt
);
3602 tree lhs_type
= TREE_TYPE (lhs
);
3603 tree rhs1
= gimple_assign_rhs1 (stmt
);
3604 tree rhs1_type
= TREE_TYPE (rhs1
);
3605 tree rhs2
= gimple_assign_rhs2 (stmt
);
3606 tree rhs2_type
= TREE_TYPE (rhs2
);
3608 if (!is_gimple_reg (lhs
)
3610 && TREE_CODE (lhs_type
) == COMPLEX_TYPE
))
3612 error ("non-register as LHS of binary operation");
3616 if (!is_gimple_val (rhs1
)
3617 || !is_gimple_val (rhs2
))
3619 error ("invalid operands in binary operation");
3623 /* First handle operations that involve different types. */
3628 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3629 || !(INTEGRAL_TYPE_P (rhs1_type
)
3630 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3631 || !(INTEGRAL_TYPE_P (rhs2_type
)
3632 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3634 error ("type mismatch in complex expression");
3635 debug_generic_expr (lhs_type
);
3636 debug_generic_expr (rhs1_type
);
3637 debug_generic_expr (rhs2_type
);
3649 /* Shifts and rotates are ok on integral types, fixed point
3650 types and integer vector types. */
3651 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3652 && !FIXED_POINT_TYPE_P (rhs1_type
)
3653 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3654 && TREE_CODE (TREE_TYPE (rhs1_type
)) == INTEGER_TYPE
))
3655 || (!INTEGRAL_TYPE_P (rhs2_type
)
3656 /* Vector shifts of vectors are also ok. */
3657 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3658 && TREE_CODE (TREE_TYPE (rhs1_type
)) == INTEGER_TYPE
3659 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3660 && TREE_CODE (TREE_TYPE (rhs2_type
)) == INTEGER_TYPE
))
3661 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3663 error ("type mismatch in shift expression");
3664 debug_generic_expr (lhs_type
);
3665 debug_generic_expr (rhs1_type
);
3666 debug_generic_expr (rhs2_type
);
3673 case VEC_LSHIFT_EXPR
:
3674 case VEC_RSHIFT_EXPR
:
3676 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3677 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3678 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3679 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3680 || (!INTEGRAL_TYPE_P (rhs2_type
)
3681 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3682 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3683 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3685 error ("type mismatch in vector shift expression");
3686 debug_generic_expr (lhs_type
);
3687 debug_generic_expr (rhs1_type
);
3688 debug_generic_expr (rhs2_type
);
3691 /* For shifting a vector of floating point components we
3692 only allow shifting by a constant multiple of the element size. */
3693 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))
3694 && (TREE_CODE (rhs2
) != INTEGER_CST
3695 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3696 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3698 error ("non-element sized vector shift of floating point vector");
3707 /* We use regular PLUS_EXPR for vectors.
3708 ??? This just makes the checker happy and may not be what is
3710 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3711 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3713 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3714 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3716 error ("invalid non-vector operands to vector valued plus");
3719 lhs_type
= TREE_TYPE (lhs_type
);
3720 rhs1_type
= TREE_TYPE (rhs1_type
);
3721 rhs2_type
= TREE_TYPE (rhs2_type
);
3722 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3723 the pointer to 2nd place. */
3724 if (POINTER_TYPE_P (rhs2_type
))
3726 tree tem
= rhs1_type
;
3727 rhs1_type
= rhs2_type
;
3730 goto do_pointer_plus_expr_check
;
3736 if (POINTER_TYPE_P (lhs_type
)
3737 || POINTER_TYPE_P (rhs1_type
)
3738 || POINTER_TYPE_P (rhs2_type
))
3740 error ("invalid (pointer) operands to plus/minus");
3744 /* Continue with generic binary expression handling. */
3748 case POINTER_PLUS_EXPR
:
3750 do_pointer_plus_expr_check
:
3751 if (!POINTER_TYPE_P (rhs1_type
)
3752 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3753 || !useless_type_conversion_p (sizetype
, rhs2_type
))
3755 error ("type mismatch in pointer plus expression");
3756 debug_generic_stmt (lhs_type
);
3757 debug_generic_stmt (rhs1_type
);
3758 debug_generic_stmt (rhs2_type
);
3765 case TRUTH_ANDIF_EXPR
:
3766 case TRUTH_ORIF_EXPR
:
3769 case TRUTH_AND_EXPR
:
3771 case TRUTH_XOR_EXPR
:
3773 /* We allow any kind of integral typed argument and result. */
3774 if (!INTEGRAL_TYPE_P (rhs1_type
)
3775 || !INTEGRAL_TYPE_P (rhs2_type
)
3776 || !INTEGRAL_TYPE_P (lhs_type
))
3778 error ("type mismatch in binary truth expression");
3779 debug_generic_expr (lhs_type
);
3780 debug_generic_expr (rhs1_type
);
3781 debug_generic_expr (rhs2_type
);
3794 case UNORDERED_EXPR
:
3802 /* Comparisons are also binary, but the result type is not
3803 connected to the operand types. */
3804 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3806 case WIDEN_SUM_EXPR
:
3807 case WIDEN_MULT_EXPR
:
3808 case VEC_WIDEN_MULT_HI_EXPR
:
3809 case VEC_WIDEN_MULT_LO_EXPR
:
3810 case VEC_PACK_TRUNC_EXPR
:
3811 case VEC_PACK_SAT_EXPR
:
3812 case VEC_PACK_FIX_TRUNC_EXPR
:
3813 case VEC_EXTRACT_EVEN_EXPR
:
3814 case VEC_EXTRACT_ODD_EXPR
:
3815 case VEC_INTERLEAVE_HIGH_EXPR
:
3816 case VEC_INTERLEAVE_LOW_EXPR
:
3821 case TRUNC_DIV_EXPR
:
3823 case FLOOR_DIV_EXPR
:
3824 case ROUND_DIV_EXPR
:
3825 case TRUNC_MOD_EXPR
:
3827 case FLOOR_MOD_EXPR
:
3828 case ROUND_MOD_EXPR
:
3830 case EXACT_DIV_EXPR
:
3836 /* Continue with generic binary expression handling. */
3843 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3844 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3846 error ("type mismatch in binary expression");
3847 debug_generic_stmt (lhs_type
);
3848 debug_generic_stmt (rhs1_type
);
3849 debug_generic_stmt (rhs2_type
);
3856 /* Verify a gimple assignment statement STMT with a single rhs.
3857 Returns true if anything is wrong. */
3860 verify_gimple_assign_single (gimple stmt
)
3862 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3863 tree lhs
= gimple_assign_lhs (stmt
);
3864 tree lhs_type
= TREE_TYPE (lhs
);
3865 tree rhs1
= gimple_assign_rhs1 (stmt
);
3866 tree rhs1_type
= TREE_TYPE (rhs1
);
3869 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3871 error ("non-trivial conversion at assignment");
3872 debug_generic_expr (lhs_type
);
3873 debug_generic_expr (rhs1_type
);
3877 if (handled_component_p (lhs
))
3878 res
|= verify_types_in_gimple_reference (lhs
, true);
3880 /* Special codes we cannot handle via their class. */
3885 tree op
= TREE_OPERAND (rhs1
, 0);
3886 if (!is_gimple_addressable (op
))
3888 error ("invalid operand in unary expression");
3892 if (!one_pointer_to_useless_type_conversion_p (lhs_type
,
3895 error ("type mismatch in address expression");
3896 debug_generic_stmt (lhs_type
);
3897 debug_generic_stmt (TYPE_POINTER_TO (TREE_TYPE (op
)));
3901 return verify_types_in_gimple_reference (op
, true);
3908 case ALIGN_INDIRECT_REF
:
3909 case MISALIGNED_INDIRECT_REF
:
3911 case ARRAY_RANGE_REF
:
3912 case VIEW_CONVERT_EXPR
:
3915 case TARGET_MEM_REF
:
3916 if (!is_gimple_reg (lhs
)
3917 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3919 error ("invalid rhs for gimple memory store");
3920 debug_generic_stmt (lhs
);
3921 debug_generic_stmt (rhs1
);
3924 return res
|| verify_types_in_gimple_reference (rhs1
, false);
3936 /* tcc_declaration */
3941 if (!is_gimple_reg (lhs
)
3942 && !is_gimple_reg (rhs1
)
3943 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3945 error ("invalid rhs for gimple memory store");
3946 debug_generic_stmt (lhs
);
3947 debug_generic_stmt (rhs1
);
3956 case WITH_SIZE_EXPR
:
3959 case POLYNOMIAL_CHREC
:
3962 case REALIGN_LOAD_EXPR
:
3972 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3973 is a problem, otherwise false. */
3976 verify_gimple_assign (gimple stmt
)
3978 switch (gimple_assign_rhs_class (stmt
))
3980 case GIMPLE_SINGLE_RHS
:
3981 return verify_gimple_assign_single (stmt
);
3983 case GIMPLE_UNARY_RHS
:
3984 return verify_gimple_assign_unary (stmt
);
3986 case GIMPLE_BINARY_RHS
:
3987 return verify_gimple_assign_binary (stmt
);
3994 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3995 is a problem, otherwise false. */
3998 verify_gimple_return (gimple stmt
)
4000 tree op
= gimple_return_retval (stmt
);
4001 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4003 /* We cannot test for present return values as we do not fix up missing
4004 return values from the original source. */
4008 if (!is_gimple_val (op
)
4009 && TREE_CODE (op
) != RESULT_DECL
)
4011 error ("invalid operand in return statement");
4012 debug_generic_stmt (op
);
4016 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
))
4017 /* ??? With C++ we can have the situation that the result
4018 decl is a reference type while the return type is an aggregate. */
4019 && !(TREE_CODE (op
) == RESULT_DECL
4020 && TREE_CODE (TREE_TYPE (op
)) == REFERENCE_TYPE
4021 && useless_type_conversion_p (restype
, TREE_TYPE (TREE_TYPE (op
)))))
4023 error ("invalid conversion in return statement");
4024 debug_generic_stmt (restype
);
4025 debug_generic_stmt (TREE_TYPE (op
));
4033 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4034 is a problem, otherwise false. */
4037 verify_gimple_goto (gimple stmt
)
4039 tree dest
= gimple_goto_dest (stmt
);
4041 /* ??? We have two canonical forms of direct goto destinations, a
4042 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4043 if (TREE_CODE (dest
) != LABEL_DECL
4044 && (!is_gimple_val (dest
)
4045 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4047 error ("goto destination is neither a label nor a pointer");
4054 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4055 is a problem, otherwise false. */
4058 verify_gimple_switch (gimple stmt
)
4060 if (!is_gimple_val (gimple_switch_index (stmt
)))
4062 error ("invalid operand to switch statement");
4063 debug_generic_stmt (gimple_switch_index (stmt
));
4071 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4072 and false otherwise. */
4075 verify_gimple_phi (gimple stmt
)
4077 tree type
= TREE_TYPE (gimple_phi_result (stmt
));
4080 if (!is_gimple_variable (gimple_phi_result (stmt
)))
4082 error ("Invalid PHI result");
4086 for (i
= 0; i
< gimple_phi_num_args (stmt
); i
++)
4088 tree arg
= gimple_phi_arg_def (stmt
, i
);
4089 if ((is_gimple_reg (gimple_phi_result (stmt
))
4090 && !is_gimple_val (arg
))
4091 || (!is_gimple_reg (gimple_phi_result (stmt
))
4092 && !is_gimple_addressable (arg
)))
4094 error ("Invalid PHI argument");
4095 debug_generic_stmt (arg
);
4098 if (!useless_type_conversion_p (type
, TREE_TYPE (arg
)))
4100 error ("Incompatible types in PHI argument %u", i
);
4101 debug_generic_stmt (type
);
4102 debug_generic_stmt (TREE_TYPE (arg
));
4111 /* Verify the GIMPLE statement STMT. Returns true if there is an
4112 error, otherwise false. */
4115 verify_types_in_gimple_stmt (gimple stmt
)
4117 if (is_gimple_omp (stmt
))
4119 /* OpenMP directives are validated by the FE and never operated
4120 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4121 non-gimple expressions when the main index variable has had
4122 its address taken. This does not affect the loop itself
4123 because the header of an GIMPLE_OMP_FOR is merely used to determine
4124 how to setup the parallel iteration. */
4128 switch (gimple_code (stmt
))
4131 return verify_gimple_assign (stmt
);
4134 return TREE_CODE (gimple_label_label (stmt
)) != LABEL_DECL
;
4137 return verify_gimple_call (stmt
);
4140 return verify_gimple_comparison (boolean_type_node
,
4141 gimple_cond_lhs (stmt
),
4142 gimple_cond_rhs (stmt
));
4145 return verify_gimple_goto (stmt
);
4148 return verify_gimple_switch (stmt
);
4151 return verify_gimple_return (stmt
);
4157 return verify_gimple_phi (stmt
);
4159 /* Tuples that do not have tree operands. */
4162 case GIMPLE_PREDICT
:
4170 /* Verify the GIMPLE statements inside the sequence STMTS. */
4173 verify_types_in_gimple_seq_2 (gimple_seq stmts
)
4175 gimple_stmt_iterator ittr
;
4178 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4180 gimple stmt
= gsi_stmt (ittr
);
4182 switch (gimple_code (stmt
))
4185 err
|= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt
));
4189 err
|= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt
));
4190 err
|= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt
));
4193 case GIMPLE_EH_FILTER
:
4194 err
|= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt
));
4198 err
|= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt
));
4203 bool err2
= verify_types_in_gimple_stmt (stmt
);
4205 debug_gimple_stmt (stmt
);
4215 /* Verify the GIMPLE statements inside the statement list STMTS. */
4218 verify_types_in_gimple_seq (gimple_seq stmts
)
4220 if (verify_types_in_gimple_seq_2 (stmts
))
4221 internal_error ("verify_gimple failed");
4225 /* Verify STMT, return true if STMT is not in GIMPLE form.
4226 TODO: Implement type checking. */
4229 verify_stmt (gimple_stmt_iterator
*gsi
)
4232 struct walk_stmt_info wi
;
4233 bool last_in_block
= gsi_one_before_end_p (*gsi
);
4234 gimple stmt
= gsi_stmt (*gsi
);
4236 if (is_gimple_omp (stmt
))
4238 /* OpenMP directives are validated by the FE and never operated
4239 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4240 non-gimple expressions when the main index variable has had
4241 its address taken. This does not affect the loop itself
4242 because the header of an GIMPLE_OMP_FOR is merely used to determine
4243 how to setup the parallel iteration. */
4247 /* FIXME. The C frontend passes unpromoted arguments in case it
4248 didn't see a function declaration before the call. */
4249 if (is_gimple_call (stmt
))
4253 if (!is_gimple_call_addr (gimple_call_fn (stmt
)))
4255 error ("invalid function in call statement");
4259 decl
= gimple_call_fndecl (stmt
);
4261 && TREE_CODE (decl
) == FUNCTION_DECL
4262 && DECL_LOOPING_CONST_OR_PURE_P (decl
)
4263 && (!DECL_PURE_P (decl
))
4264 && (!TREE_READONLY (decl
)))
4266 error ("invalid pure const state for function");
4271 memset (&wi
, 0, sizeof (wi
));
4272 addr
= walk_gimple_op (gsi_stmt (*gsi
), verify_expr
, &wi
);
4275 debug_generic_expr (addr
);
4276 inform (gimple_location (gsi_stmt (*gsi
)), "in statement");
4277 debug_gimple_stmt (stmt
);
4281 /* If the statement is marked as part of an EH region, then it is
4282 expected that the statement could throw. Verify that when we
4283 have optimizations that simplify statements such that we prove
4284 that they cannot throw, that we update other data structures
4286 if (lookup_stmt_eh_region (stmt
) >= 0)
4288 /* During IPA passes, ipa-pure-const sets nothrow flags on calls
4289 and they are updated on statements only after fixup_cfg
4290 is executed at beggining of expansion stage. */
4291 if (!stmt_could_throw_p (stmt
) && cgraph_state
!= CGRAPH_STATE_IPA_SSA
)
4293 error ("statement marked for throw, but doesn%'t");
4296 if (!last_in_block
&& stmt_can_throw_internal (stmt
))
4298 error ("statement marked for throw in middle of block");
4306 debug_gimple_stmt (stmt
);
4311 /* Return true when the T can be shared. */
4314 tree_node_can_be_shared (tree t
)
4316 if (IS_TYPE_OR_DECL_P (t
)
4317 || is_gimple_min_invariant (t
)
4318 || TREE_CODE (t
) == SSA_NAME
4319 || t
== error_mark_node
4320 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4323 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4326 while (((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
4327 && is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
4328 || TREE_CODE (t
) == COMPONENT_REF
4329 || TREE_CODE (t
) == REALPART_EXPR
4330 || TREE_CODE (t
) == IMAGPART_EXPR
)
4331 t
= TREE_OPERAND (t
, 0);
4340 /* Called via walk_gimple_stmt. Verify tree sharing. */
4343 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4345 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4346 struct pointer_set_t
*visited
= (struct pointer_set_t
*) wi
->info
;
4348 if (tree_node_can_be_shared (*tp
))
4350 *walk_subtrees
= false;
4354 if (pointer_set_insert (visited
, *tp
))
4361 static bool eh_error_found
;
4363 verify_eh_throw_stmt_node (void **slot
, void *data
)
4365 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4366 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4368 if (!pointer_set_contains (visited
, node
->stmt
))
4370 error ("Dead STMT in EH table");
4371 debug_gimple_stmt (node
->stmt
);
4372 eh_error_found
= true;
4378 /* Verify the GIMPLE statements in every basic block. */
4384 gimple_stmt_iterator gsi
;
4386 struct pointer_set_t
*visited
, *visited_stmts
;
4388 struct walk_stmt_info wi
;
4390 timevar_push (TV_TREE_STMT_VERIFY
);
4391 visited
= pointer_set_create ();
4392 visited_stmts
= pointer_set_create ();
4394 memset (&wi
, 0, sizeof (wi
));
4395 wi
.info
= (void *) visited
;
4402 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4404 phi
= gsi_stmt (gsi
);
4405 pointer_set_insert (visited_stmts
, phi
);
4406 if (gimple_bb (phi
) != bb
)
4408 error ("gimple_bb (phi) is set to a wrong basic block");
4412 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4414 tree t
= gimple_phi_arg_def (phi
, i
);
4419 error ("missing PHI def");
4420 debug_gimple_stmt (phi
);
4424 /* Addressable variables do have SSA_NAMEs but they
4425 are not considered gimple values. */
4426 else if (TREE_CODE (t
) != SSA_NAME
4427 && TREE_CODE (t
) != FUNCTION_DECL
4428 && !is_gimple_min_invariant (t
))
4430 error ("PHI argument is not a GIMPLE value");
4431 debug_gimple_stmt (phi
);
4432 debug_generic_expr (t
);
4436 addr
= walk_tree (&t
, verify_node_sharing
, visited
, NULL
);
4439 error ("incorrect sharing of tree nodes");
4440 debug_gimple_stmt (phi
);
4441 debug_generic_expr (addr
);
4446 #ifdef ENABLE_TYPES_CHECKING
4447 if (verify_gimple_phi (phi
))
4449 debug_gimple_stmt (phi
);
4455 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); )
4457 gimple stmt
= gsi_stmt (gsi
);
4459 if (gimple_code (stmt
) == GIMPLE_WITH_CLEANUP_EXPR
4460 || gimple_code (stmt
) == GIMPLE_BIND
)
4462 error ("invalid GIMPLE statement");
4463 debug_gimple_stmt (stmt
);
4467 pointer_set_insert (visited_stmts
, stmt
);
4469 if (gimple_bb (stmt
) != bb
)
4471 error ("gimple_bb (stmt) is set to a wrong basic block");
4472 debug_gimple_stmt (stmt
);
4476 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4478 tree decl
= gimple_label_label (stmt
);
4479 int uid
= LABEL_DECL_UID (decl
);
4482 || VEC_index (basic_block
, label_to_block_map
, uid
) != bb
)
4484 error ("incorrect entry in label_to_block_map.\n");
4489 err
|= verify_stmt (&gsi
);
4491 #ifdef ENABLE_TYPES_CHECKING
4492 if (verify_types_in_gimple_stmt (gsi_stmt (gsi
)))
4494 debug_gimple_stmt (stmt
);
4498 addr
= walk_gimple_op (gsi_stmt (gsi
), verify_node_sharing
, &wi
);
4501 error ("incorrect sharing of tree nodes");
4502 debug_gimple_stmt (stmt
);
4503 debug_generic_expr (addr
);
4510 eh_error_found
= false;
4511 if (get_eh_throw_stmt_table (cfun
))
4512 htab_traverse (get_eh_throw_stmt_table (cfun
),
4513 verify_eh_throw_stmt_node
,
4516 if (err
| eh_error_found
)
4517 internal_error ("verify_stmts failed");
4519 pointer_set_destroy (visited
);
4520 pointer_set_destroy (visited_stmts
);
4521 verify_histograms ();
4522 timevar_pop (TV_TREE_STMT_VERIFY
);
4526 /* Verifies that the flow information is OK. */
4529 gimple_verify_flow_info (void)
4533 gimple_stmt_iterator gsi
;
4538 if (ENTRY_BLOCK_PTR
->il
.gimple
)
4540 error ("ENTRY_BLOCK has IL associated with it");
4544 if (EXIT_BLOCK_PTR
->il
.gimple
)
4546 error ("EXIT_BLOCK has IL associated with it");
4550 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4551 if (e
->flags
& EDGE_FALLTHRU
)
4553 error ("fallthru to exit from bb %d", e
->src
->index
);
4559 bool found_ctrl_stmt
= false;
4563 /* Skip labels on the start of basic block. */
4564 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4567 gimple prev_stmt
= stmt
;
4569 stmt
= gsi_stmt (gsi
);
4571 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4574 label
= gimple_label_label (stmt
);
4575 if (prev_stmt
&& DECL_NONLOCAL (label
))
4577 error ("nonlocal label ");
4578 print_generic_expr (stderr
, label
, 0);
4579 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4584 if (label_to_block (label
) != bb
)
4587 print_generic_expr (stderr
, label
, 0);
4588 fprintf (stderr
, " to block does not match in bb %d",
4593 if (decl_function_context (label
) != current_function_decl
)
4596 print_generic_expr (stderr
, label
, 0);
4597 fprintf (stderr
, " has incorrect context in bb %d",
4603 /* Verify that body of basic block BB is free of control flow. */
4604 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4606 gimple stmt
= gsi_stmt (gsi
);
4608 if (found_ctrl_stmt
)
4610 error ("control flow in the middle of basic block %d",
4615 if (stmt_ends_bb_p (stmt
))
4616 found_ctrl_stmt
= true;
4618 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4621 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4622 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4627 gsi
= gsi_last_bb (bb
);
4628 if (gsi_end_p (gsi
))
4631 stmt
= gsi_stmt (gsi
);
4633 err
|= verify_eh_edges (stmt
);
4635 if (is_ctrl_stmt (stmt
))
4637 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4638 if (e
->flags
& EDGE_FALLTHRU
)
4640 error ("fallthru edge after a control statement in bb %d",
4646 if (gimple_code (stmt
) != GIMPLE_COND
)
4648 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4649 after anything else but if statement. */
4650 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4651 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4653 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4659 switch (gimple_code (stmt
))
4666 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4670 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4671 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4672 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4673 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4674 || EDGE_COUNT (bb
->succs
) >= 3)
4676 error ("wrong outgoing edge flags at end of bb %d",
4684 if (simple_goto_p (stmt
))
4686 error ("explicit goto at end of bb %d", bb
->index
);
4691 /* FIXME. We should double check that the labels in the
4692 destination blocks have their address taken. */
4693 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4694 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4695 | EDGE_FALSE_VALUE
))
4696 || !(e
->flags
& EDGE_ABNORMAL
))
4698 error ("wrong outgoing edge flags at end of bb %d",
4706 if (!single_succ_p (bb
)
4707 || (single_succ_edge (bb
)->flags
4708 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
4709 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4711 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
4714 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
4716 error ("return edge does not point to exit in bb %d",
4728 n
= gimple_switch_num_labels (stmt
);
4730 /* Mark all the destination basic blocks. */
4731 for (i
= 0; i
< n
; ++i
)
4733 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4734 basic_block label_bb
= label_to_block (lab
);
4735 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
4736 label_bb
->aux
= (void *)1;
4739 /* Verify that the case labels are sorted. */
4740 prev
= gimple_switch_label (stmt
, 0);
4741 for (i
= 1; i
< n
; ++i
)
4743 tree c
= gimple_switch_label (stmt
, i
);
4746 error ("found default case not at the start of "
4752 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
4754 error ("case labels not sorted: ");
4755 print_generic_expr (stderr
, prev
, 0);
4756 fprintf (stderr
," is greater than ");
4757 print_generic_expr (stderr
, c
, 0);
4758 fprintf (stderr
," but comes before it.\n");
4763 /* VRP will remove the default case if it can prove it will
4764 never be executed. So do not verify there always exists
4765 a default case here. */
4767 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4771 error ("extra outgoing edge %d->%d",
4772 bb
->index
, e
->dest
->index
);
4776 e
->dest
->aux
= (void *)2;
4777 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
4778 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4780 error ("wrong outgoing edge flags at end of bb %d",
4786 /* Check that we have all of them. */
4787 for (i
= 0; i
< n
; ++i
)
4789 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4790 basic_block label_bb
= label_to_block (lab
);
4792 if (label_bb
->aux
!= (void *)2)
4794 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
4799 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4800 e
->dest
->aux
= (void *)0;
4807 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
4808 verify_dominators (CDI_DOMINATORS
);
4814 /* Updates phi nodes after creating a forwarder block joined
4815 by edge FALLTHRU. */
4818 gimple_make_forwarder_block (edge fallthru
)
4822 basic_block dummy
, bb
;
4824 gimple_stmt_iterator gsi
;
4826 dummy
= fallthru
->src
;
4827 bb
= fallthru
->dest
;
4829 if (single_pred_p (bb
))
4832 /* If we redirected a branch we must create new PHI nodes at the
4834 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4836 gimple phi
, new_phi
;
4838 phi
= gsi_stmt (gsi
);
4839 var
= gimple_phi_result (phi
);
4840 new_phi
= create_phi_node (var
, bb
);
4841 SSA_NAME_DEF_STMT (var
) = new_phi
;
4842 gimple_phi_set_result (phi
, make_ssa_name (SSA_NAME_VAR (var
), phi
));
4843 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
4847 /* Add the arguments we have stored on edges. */
4848 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4853 flush_pending_stmts (e
);
4858 /* Return a non-special label in the head of basic block BLOCK.
4859 Create one if it doesn't exist. */
4862 gimple_block_label (basic_block bb
)
4864 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
4869 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
4871 stmt
= gsi_stmt (i
);
4872 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4874 label
= gimple_label_label (stmt
);
4875 if (!DECL_NONLOCAL (label
))
4878 gsi_move_before (&i
, &s
);
4883 label
= create_artificial_label (UNKNOWN_LOCATION
);
4884 stmt
= gimple_build_label (label
);
4885 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
4890 /* Attempt to perform edge redirection by replacing a possibly complex
4891 jump instruction by a goto or by removing the jump completely.
4892 This can apply only if all edges now point to the same block. The
4893 parameters and return values are equivalent to
4894 redirect_edge_and_branch. */
4897 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
4899 basic_block src
= e
->src
;
4900 gimple_stmt_iterator i
;
4903 /* We can replace or remove a complex jump only when we have exactly
4905 if (EDGE_COUNT (src
->succs
) != 2
4906 /* Verify that all targets will be TARGET. Specifically, the
4907 edge that is not E must also go to TARGET. */
4908 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
4911 i
= gsi_last_bb (src
);
4915 stmt
= gsi_stmt (i
);
4917 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
4919 gsi_remove (&i
, true);
4920 e
= ssa_redirect_edge (e
, target
);
4921 e
->flags
= EDGE_FALLTHRU
;
4929 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4930 edge representing the redirected branch. */
4933 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
4935 basic_block bb
= e
->src
;
4936 gimple_stmt_iterator gsi
;
4940 if (e
->flags
& EDGE_ABNORMAL
)
4943 if (e
->src
!= ENTRY_BLOCK_PTR
4944 && (ret
= gimple_try_redirect_by_replacing_jump (e
, dest
)))
4947 if (e
->dest
== dest
)
4950 if (e
->flags
& EDGE_EH
)
4951 return redirect_eh_edge (e
, dest
);
4953 gsi
= gsi_last_bb (bb
);
4954 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
4956 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
4959 /* For COND_EXPR, we only need to redirect the edge. */
4963 /* No non-abnormal edges should lead from a non-simple goto, and
4964 simple ones should be represented implicitly. */
4969 tree label
= gimple_block_label (dest
);
4970 tree cases
= get_cases_for_edge (e
, stmt
);
4972 /* If we have a list of cases associated with E, then use it
4973 as it's a lot faster than walking the entire case vector. */
4976 edge e2
= find_edge (e
->src
, dest
);
4983 CASE_LABEL (cases
) = label
;
4984 cases
= TREE_CHAIN (cases
);
4987 /* If there was already an edge in the CFG, then we need
4988 to move all the cases associated with E to E2. */
4991 tree cases2
= get_cases_for_edge (e2
, stmt
);
4993 TREE_CHAIN (last
) = TREE_CHAIN (cases2
);
4994 TREE_CHAIN (cases2
) = first
;
4999 size_t i
, n
= gimple_switch_num_labels (stmt
);
5001 for (i
= 0; i
< n
; i
++)
5003 tree elt
= gimple_switch_label (stmt
, i
);
5004 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5005 CASE_LABEL (elt
) = label
;
5013 gsi_remove (&gsi
, true);
5014 e
->flags
|= EDGE_FALLTHRU
;
5017 case GIMPLE_OMP_RETURN
:
5018 case GIMPLE_OMP_CONTINUE
:
5019 case GIMPLE_OMP_SECTIONS_SWITCH
:
5020 case GIMPLE_OMP_FOR
:
5021 /* The edges from OMP constructs can be simply redirected. */
5025 /* Otherwise it must be a fallthru edge, and we don't need to
5026 do anything besides redirecting it. */
5027 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5031 /* Update/insert PHI nodes as necessary. */
5033 /* Now update the edges in the CFG. */
5034 e
= ssa_redirect_edge (e
, dest
);
5039 /* Returns true if it is possible to remove edge E by redirecting
5040 it to the destination of the other edge from E->src. */
5043 gimple_can_remove_branch_p (const_edge e
)
5045 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5051 /* Simple wrapper, as we can always redirect fallthru edges. */
5054 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5056 e
= gimple_redirect_edge_and_branch (e
, dest
);
5063 /* Splits basic block BB after statement STMT (but at least after the
5064 labels). If STMT is NULL, BB is split just after the labels. */
5067 gimple_split_block (basic_block bb
, void *stmt
)
5069 gimple_stmt_iterator gsi
;
5070 gimple_stmt_iterator gsi_tgt
;
5077 new_bb
= create_empty_bb (bb
);
5079 /* Redirect the outgoing edges. */
5080 new_bb
->succs
= bb
->succs
;
5082 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5085 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5088 /* Move everything from GSI to the new basic block. */
5089 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5091 act
= gsi_stmt (gsi
);
5092 if (gimple_code (act
) == GIMPLE_LABEL
)
5105 if (gsi_end_p (gsi
))
5108 /* Split the statement list - avoid re-creating new containers as this
5109 brings ugly quadratic memory consumption in the inliner.
5110 (We are still quadratic since we need to update stmt BB pointers,
5112 list
= gsi_split_seq_before (&gsi
);
5113 set_bb_seq (new_bb
, list
);
5114 for (gsi_tgt
= gsi_start (list
);
5115 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5116 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5122 /* Moves basic block BB after block AFTER. */
5125 gimple_move_block_after (basic_block bb
, basic_block after
)
5127 if (bb
->prev_bb
== after
)
5131 link_block (bb
, after
);
5137 /* Return true if basic_block can be duplicated. */
5140 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5145 /* Create a duplicate of the basic block BB. NOTE: This does not
5146 preserve SSA form. */
5149 gimple_duplicate_bb (basic_block bb
)
5152 gimple_stmt_iterator gsi
, gsi_tgt
;
5153 gimple_seq phis
= phi_nodes (bb
);
5154 gimple phi
, stmt
, copy
;
5156 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5158 /* Copy the PHI nodes. We ignore PHI node arguments here because
5159 the incoming edges have not been setup yet. */
5160 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5162 phi
= gsi_stmt (gsi
);
5163 copy
= create_phi_node (gimple_phi_result (phi
), new_bb
);
5164 create_new_def_for (gimple_phi_result (copy
), copy
,
5165 gimple_phi_result_ptr (copy
));
5168 gsi_tgt
= gsi_start_bb (new_bb
);
5169 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5171 def_operand_p def_p
;
5172 ssa_op_iter op_iter
;
5175 stmt
= gsi_stmt (gsi
);
5176 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5179 /* Create a new copy of STMT and duplicate STMT's virtual
5181 copy
= gimple_copy (stmt
);
5182 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5183 region
= lookup_stmt_eh_region (stmt
);
5185 add_stmt_to_eh_region (copy
, region
);
5186 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5188 /* Create new names for all the definitions created by COPY and
5189 add replacement mappings for each new name. */
5190 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5191 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5197 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5200 add_phi_args_after_copy_edge (edge e_copy
)
5202 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5205 gimple phi
, phi_copy
;
5207 gimple_stmt_iterator psi
, psi_copy
;
5209 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5212 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5214 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5215 dest
= get_bb_original (e_copy
->dest
);
5217 dest
= e_copy
->dest
;
5219 e
= find_edge (bb
, dest
);
5222 /* During loop unrolling the target of the latch edge is copied.
5223 In this case we are not looking for edge to dest, but to
5224 duplicated block whose original was dest. */
5225 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5227 if ((e
->dest
->flags
& BB_DUPLICATED
)
5228 && get_bb_original (e
->dest
) == dest
)
5232 gcc_assert (e
!= NULL
);
5235 for (psi
= gsi_start_phis (e
->dest
),
5236 psi_copy
= gsi_start_phis (e_copy
->dest
);
5238 gsi_next (&psi
), gsi_next (&psi_copy
))
5240 phi
= gsi_stmt (psi
);
5241 phi_copy
= gsi_stmt (psi_copy
);
5242 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5243 add_phi_arg (phi_copy
, def
, e_copy
,
5244 gimple_phi_arg_location_from_edge (phi
, e
));
5249 /* Basic block BB_COPY was created by code duplication. Add phi node
5250 arguments for edges going out of BB_COPY. The blocks that were
5251 duplicated have BB_DUPLICATED set. */
5254 add_phi_args_after_copy_bb (basic_block bb_copy
)
5259 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5261 add_phi_args_after_copy_edge (e_copy
);
5265 /* Blocks in REGION_COPY array of length N_REGION were created by
5266 duplication of basic blocks. Add phi node arguments for edges
5267 going from these blocks. If E_COPY is not NULL, also add
5268 phi node arguments for its destination.*/
5271 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5276 for (i
= 0; i
< n_region
; i
++)
5277 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5279 for (i
= 0; i
< n_region
; i
++)
5280 add_phi_args_after_copy_bb (region_copy
[i
]);
5282 add_phi_args_after_copy_edge (e_copy
);
5284 for (i
= 0; i
< n_region
; i
++)
5285 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5288 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5289 important exit edge EXIT. By important we mean that no SSA name defined
5290 inside region is live over the other exit edges of the region. All entry
5291 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5292 to the duplicate of the region. SSA form, dominance and loop information
5293 is updated. The new basic blocks are stored to REGION_COPY in the same
5294 order as they had in REGION, provided that REGION_COPY is not NULL.
5295 The function returns false if it is unable to copy the region,
5299 gimple_duplicate_sese_region (edge entry
, edge exit
,
5300 basic_block
*region
, unsigned n_region
,
5301 basic_block
*region_copy
)
5304 bool free_region_copy
= false, copying_header
= false;
5305 struct loop
*loop
= entry
->dest
->loop_father
;
5307 VEC (basic_block
, heap
) *doms
;
5309 int total_freq
= 0, entry_freq
= 0;
5310 gcov_type total_count
= 0, entry_count
= 0;
5312 if (!can_copy_bbs_p (region
, n_region
))
5315 /* Some sanity checking. Note that we do not check for all possible
5316 missuses of the functions. I.e. if you ask to copy something weird,
5317 it will work, but the state of structures probably will not be
5319 for (i
= 0; i
< n_region
; i
++)
5321 /* We do not handle subloops, i.e. all the blocks must belong to the
5323 if (region
[i
]->loop_father
!= loop
)
5326 if (region
[i
] != entry
->dest
5327 && region
[i
] == loop
->header
)
5331 set_loop_copy (loop
, loop
);
5333 /* In case the function is used for loop header copying (which is the primary
5334 use), ensure that EXIT and its copy will be new latch and entry edges. */
5335 if (loop
->header
== entry
->dest
)
5337 copying_header
= true;
5338 set_loop_copy (loop
, loop_outer (loop
));
5340 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5343 for (i
= 0; i
< n_region
; i
++)
5344 if (region
[i
] != exit
->src
5345 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5351 region_copy
= XNEWVEC (basic_block
, n_region
);
5352 free_region_copy
= true;
5355 gcc_assert (!need_ssa_update_p (cfun
));
5357 /* Record blocks outside the region that are dominated by something
5360 initialize_original_copy_tables ();
5362 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5364 if (entry
->dest
->count
)
5366 total_count
= entry
->dest
->count
;
5367 entry_count
= entry
->count
;
5368 /* Fix up corner cases, to avoid division by zero or creation of negative
5370 if (entry_count
> total_count
)
5371 entry_count
= total_count
;
5375 total_freq
= entry
->dest
->frequency
;
5376 entry_freq
= EDGE_FREQUENCY (entry
);
5377 /* Fix up corner cases, to avoid division by zero or creation of negative
5379 if (total_freq
== 0)
5381 else if (entry_freq
> total_freq
)
5382 entry_freq
= total_freq
;
5385 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5386 split_edge_bb_loc (entry
));
5389 scale_bbs_frequencies_gcov_type (region
, n_region
,
5390 total_count
- entry_count
,
5392 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5397 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5399 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5404 loop
->header
= exit
->dest
;
5405 loop
->latch
= exit
->src
;
5408 /* Redirect the entry and add the phi node arguments. */
5409 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5410 gcc_assert (redirected
!= NULL
);
5411 flush_pending_stmts (entry
);
5413 /* Concerning updating of dominators: We must recount dominators
5414 for entry block and its copy. Anything that is outside of the
5415 region, but was dominated by something inside needs recounting as
5417 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5418 VEC_safe_push (basic_block
, heap
, doms
, get_bb_original (entry
->dest
));
5419 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5420 VEC_free (basic_block
, heap
, doms
);
5422 /* Add the other PHI node arguments. */
5423 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5425 /* Update the SSA web. */
5426 update_ssa (TODO_update_ssa
);
5428 if (free_region_copy
)
5431 free_original_copy_tables ();
5435 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5436 are stored to REGION_COPY in the same order in that they appear
5437 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5438 the region, EXIT an exit from it. The condition guarding EXIT
5439 is moved to ENTRY. Returns true if duplication succeeds, false
5465 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5466 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5467 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5470 bool free_region_copy
= false;
5471 struct loop
*loop
= exit
->dest
->loop_father
;
5472 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5473 basic_block switch_bb
, entry_bb
, nentry_bb
;
5474 VEC (basic_block
, heap
) *doms
;
5475 int total_freq
= 0, exit_freq
= 0;
5476 gcov_type total_count
= 0, exit_count
= 0;
5477 edge exits
[2], nexits
[2], e
;
5478 gimple_stmt_iterator gsi
;
5482 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5484 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5486 if (!can_copy_bbs_p (region
, n_region
))
5489 /* Some sanity checking. Note that we do not check for all possible
5490 missuses of the functions. I.e. if you ask to copy something weird
5491 (e.g., in the example, if there is a jump from inside to the middle
5492 of some_code, or come_code defines some of the values used in cond)
5493 it will work, but the resulting code will not be correct. */
5494 for (i
= 0; i
< n_region
; i
++)
5496 /* We do not handle subloops, i.e. all the blocks must belong to the
5498 if (region
[i
]->loop_father
!= orig_loop
)
5501 if (region
[i
] == orig_loop
->latch
)
5505 initialize_original_copy_tables ();
5506 set_loop_copy (orig_loop
, loop
);
5510 region_copy
= XNEWVEC (basic_block
, n_region
);
5511 free_region_copy
= true;
5514 gcc_assert (!need_ssa_update_p (cfun
));
5516 /* Record blocks outside the region that are dominated by something
5518 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5520 if (exit
->src
->count
)
5522 total_count
= exit
->src
->count
;
5523 exit_count
= exit
->count
;
5524 /* Fix up corner cases, to avoid division by zero or creation of negative
5526 if (exit_count
> total_count
)
5527 exit_count
= total_count
;
5531 total_freq
= exit
->src
->frequency
;
5532 exit_freq
= EDGE_FREQUENCY (exit
);
5533 /* Fix up corner cases, to avoid division by zero or creation of negative
5535 if (total_freq
== 0)
5537 if (exit_freq
> total_freq
)
5538 exit_freq
= total_freq
;
5541 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5542 split_edge_bb_loc (exit
));
5545 scale_bbs_frequencies_gcov_type (region
, n_region
,
5546 total_count
- exit_count
,
5548 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5553 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5555 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5558 /* Create the switch block, and put the exit condition to it. */
5559 entry_bb
= entry
->dest
;
5560 nentry_bb
= get_bb_copy (entry_bb
);
5561 if (!last_stmt (entry
->src
)
5562 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5563 switch_bb
= entry
->src
;
5565 switch_bb
= split_edge (entry
);
5566 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5568 gsi
= gsi_last_bb (switch_bb
);
5569 cond_stmt
= last_stmt (exit
->src
);
5570 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
5571 cond_stmt
= gimple_copy (cond_stmt
);
5572 gimple_cond_set_lhs (cond_stmt
, unshare_expr (gimple_cond_lhs (cond_stmt
)));
5573 gimple_cond_set_rhs (cond_stmt
, unshare_expr (gimple_cond_rhs (cond_stmt
)));
5574 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
5576 sorig
= single_succ_edge (switch_bb
);
5577 sorig
->flags
= exits
[1]->flags
;
5578 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
5580 /* Register the new edge from SWITCH_BB in loop exit lists. */
5581 rescan_loop_exit (snew
, true, false);
5583 /* Add the PHI node arguments. */
5584 add_phi_args_after_copy (region_copy
, n_region
, snew
);
5586 /* Get rid of now superfluous conditions and associated edges (and phi node
5588 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
5589 PENDING_STMT (e
) = NULL
;
5590 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
5591 PENDING_STMT (e
) = NULL
;
5593 /* Anything that is outside of the region, but was dominated by something
5594 inside needs to update dominance info. */
5595 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5596 VEC_free (basic_block
, heap
, doms
);
5598 /* Update the SSA web. */
5599 update_ssa (TODO_update_ssa
);
5601 if (free_region_copy
)
5604 free_original_copy_tables ();
5608 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5609 adding blocks when the dominator traversal reaches EXIT. This
5610 function silently assumes that ENTRY strictly dominates EXIT. */
5613 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
5614 VEC(basic_block
,heap
) **bbs_p
)
5618 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
5620 son
= next_dom_son (CDI_DOMINATORS
, son
))
5622 VEC_safe_push (basic_block
, heap
, *bbs_p
, son
);
5624 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
5628 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5629 The duplicates are recorded in VARS_MAP. */
5632 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
5635 tree t
= *tp
, new_t
;
5636 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
5639 if (DECL_CONTEXT (t
) == to_context
)
5642 loc
= pointer_map_contains (vars_map
, t
);
5646 loc
= pointer_map_insert (vars_map
, t
);
5650 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
5651 f
->local_decls
= tree_cons (NULL_TREE
, new_t
, f
->local_decls
);
5655 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
5656 new_t
= copy_node (t
);
5658 DECL_CONTEXT (new_t
) = to_context
;
5663 new_t
= (tree
) *loc
;
5669 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5670 VARS_MAP maps old ssa names and var_decls to the new ones. */
5673 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
5677 tree new_name
, decl
= SSA_NAME_VAR (name
);
5679 gcc_assert (is_gimple_reg (name
));
5681 loc
= pointer_map_contains (vars_map
, name
);
5685 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
5687 push_cfun (DECL_STRUCT_FUNCTION (to_context
));
5688 if (gimple_in_ssa_p (cfun
))
5689 add_referenced_var (decl
);
5691 new_name
= make_ssa_name (decl
, SSA_NAME_DEF_STMT (name
));
5692 if (SSA_NAME_IS_DEFAULT_DEF (name
))
5693 set_default_def (decl
, new_name
);
5696 loc
= pointer_map_insert (vars_map
, name
);
5700 new_name
= (tree
) *loc
;
5711 struct pointer_map_t
*vars_map
;
5712 htab_t new_label_map
;
5716 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5717 contained in *TP if it has been ORIG_BLOCK previously and change the
5718 DECL_CONTEXT of every local variable referenced in *TP. */
5721 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
5723 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5724 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5728 /* We should never have TREE_BLOCK set on non-statements. */
5729 gcc_assert (!TREE_BLOCK (t
));
5731 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
5733 if (TREE_CODE (t
) == SSA_NAME
)
5734 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
5735 else if (TREE_CODE (t
) == LABEL_DECL
)
5737 if (p
->new_label_map
)
5739 struct tree_map in
, *out
;
5741 out
= (struct tree_map
*)
5742 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
5747 DECL_CONTEXT (t
) = p
->to_context
;
5749 else if (p
->remap_decls_p
)
5751 /* Replace T with its duplicate. T should no longer appear in the
5752 parent function, so this looks wasteful; however, it may appear
5753 in referenced_vars, and more importantly, as virtual operands of
5754 statements, and in alias lists of other variables. It would be
5755 quite difficult to expunge it from all those places. ??? It might
5756 suffice to do this for addressable variables. */
5757 if ((TREE_CODE (t
) == VAR_DECL
5758 && !is_global_var (t
))
5759 || TREE_CODE (t
) == CONST_DECL
)
5760 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
5763 && gimple_in_ssa_p (cfun
))
5765 push_cfun (DECL_STRUCT_FUNCTION (p
->to_context
));
5766 add_referenced_var (*tp
);
5772 else if (TYPE_P (t
))
5778 /* Like move_stmt_op, but for gimple statements.
5780 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5781 contained in the current statement in *GSI_P and change the
5782 DECL_CONTEXT of every local variable referenced in the current
5786 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
5787 struct walk_stmt_info
*wi
)
5789 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5790 gimple stmt
= gsi_stmt (*gsi_p
);
5791 tree block
= gimple_block (stmt
);
5793 if (p
->orig_block
== NULL_TREE
5794 || block
== p
->orig_block
5795 || block
== NULL_TREE
)
5796 gimple_set_block (stmt
, p
->new_block
);
5797 #ifdef ENABLE_CHECKING
5798 else if (block
!= p
->new_block
)
5800 while (block
&& block
!= p
->orig_block
)
5801 block
= BLOCK_SUPERCONTEXT (block
);
5806 if (is_gimple_omp (stmt
)
5807 && gimple_code (stmt
) != GIMPLE_OMP_RETURN
5808 && gimple_code (stmt
) != GIMPLE_OMP_CONTINUE
)
5810 /* Do not remap variables inside OMP directives. Variables
5811 referenced in clauses and directive header belong to the
5812 parent function and should not be moved into the child
5814 bool save_remap_decls_p
= p
->remap_decls_p
;
5815 p
->remap_decls_p
= false;
5816 *handled_ops_p
= true;
5818 walk_gimple_seq (gimple_omp_body (stmt
), move_stmt_r
, move_stmt_op
, wi
);
5820 p
->remap_decls_p
= save_remap_decls_p
;
5826 /* Marks virtual operands of all statements in basic blocks BBS for
5830 mark_virtual_ops_in_bb (basic_block bb
)
5832 gimple_stmt_iterator gsi
;
5834 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5835 mark_virtual_ops_for_renaming (gsi_stmt (gsi
));
5837 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5838 mark_virtual_ops_for_renaming (gsi_stmt (gsi
));
5841 /* Move basic block BB from function CFUN to function DEST_FN. The
5842 block is moved out of the original linked list and placed after
5843 block AFTER in the new list. Also, the block is removed from the
5844 original array of blocks and placed in DEST_FN's array of blocks.
5845 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5846 updated to reflect the moved edges.
5848 The local variables are remapped to new instances, VARS_MAP is used
5849 to record the mapping. */
5852 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
5853 basic_block after
, bool update_edge_count_p
,
5854 struct move_stmt_d
*d
, int eh_offset
)
5856 struct control_flow_graph
*cfg
;
5859 gimple_stmt_iterator si
;
5860 unsigned old_len
, new_len
;
5862 /* Remove BB from dominance structures. */
5863 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
5865 remove_bb_from_loops (bb
);
5867 /* Link BB to the new linked list. */
5868 move_block_after (bb
, after
);
5870 /* Update the edge count in the corresponding flowgraphs. */
5871 if (update_edge_count_p
)
5872 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5874 cfun
->cfg
->x_n_edges
--;
5875 dest_cfun
->cfg
->x_n_edges
++;
5878 /* Remove BB from the original basic block array. */
5879 VEC_replace (basic_block
, cfun
->cfg
->x_basic_block_info
, bb
->index
, NULL
);
5880 cfun
->cfg
->x_n_basic_blocks
--;
5882 /* Grow DEST_CFUN's basic block array if needed. */
5883 cfg
= dest_cfun
->cfg
;
5884 cfg
->x_n_basic_blocks
++;
5885 if (bb
->index
>= cfg
->x_last_basic_block
)
5886 cfg
->x_last_basic_block
= bb
->index
+ 1;
5888 old_len
= VEC_length (basic_block
, cfg
->x_basic_block_info
);
5889 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
5891 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
5892 VEC_safe_grow_cleared (basic_block
, gc
, cfg
->x_basic_block_info
,
5896 VEC_replace (basic_block
, cfg
->x_basic_block_info
,
5899 /* Remap the variables in phi nodes. */
5900 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
5902 gimple phi
= gsi_stmt (si
);
5904 tree op
= PHI_RESULT (phi
);
5907 if (!is_gimple_reg (op
))
5909 /* Remove the phi nodes for virtual operands (alias analysis will be
5910 run for the new function, anyway). */
5911 remove_phi_node (&si
, true);
5915 SET_PHI_RESULT (phi
,
5916 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5917 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
5919 op
= USE_FROM_PTR (use
);
5920 if (TREE_CODE (op
) == SSA_NAME
)
5921 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5927 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5929 gimple stmt
= gsi_stmt (si
);
5931 struct walk_stmt_info wi
;
5933 memset (&wi
, 0, sizeof (wi
));
5935 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
5937 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5939 tree label
= gimple_label_label (stmt
);
5940 int uid
= LABEL_DECL_UID (label
);
5942 gcc_assert (uid
> -1);
5944 old_len
= VEC_length (basic_block
, cfg
->x_label_to_block_map
);
5945 if (old_len
<= (unsigned) uid
)
5947 new_len
= 3 * uid
/ 2 + 1;
5948 VEC_safe_grow_cleared (basic_block
, gc
,
5949 cfg
->x_label_to_block_map
, new_len
);
5952 VEC_replace (basic_block
, cfg
->x_label_to_block_map
, uid
, bb
);
5953 VEC_replace (basic_block
, cfun
->cfg
->x_label_to_block_map
, uid
, NULL
);
5955 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
5957 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
5958 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
5960 else if (gimple_code (stmt
) == GIMPLE_RESX
&& eh_offset
!= 0)
5961 gimple_resx_set_region (stmt
, gimple_resx_region (stmt
) + eh_offset
);
5963 region
= lookup_stmt_eh_region (stmt
);
5966 add_stmt_to_eh_region_fn (dest_cfun
, stmt
, region
+ eh_offset
);
5967 remove_stmt_from_eh_region (stmt
);
5968 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
5969 gimple_remove_stmt_histograms (cfun
, stmt
);
5972 /* We cannot leave any operands allocated from the operand caches of
5973 the current function. */
5974 free_stmt_operands (stmt
);
5975 push_cfun (dest_cfun
);
5980 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5983 tree block
= e
->goto_block
;
5984 if (d
->orig_block
== NULL_TREE
5985 || block
== d
->orig_block
)
5986 e
->goto_block
= d
->new_block
;
5987 #ifdef ENABLE_CHECKING
5988 else if (block
!= d
->new_block
)
5990 while (block
&& block
!= d
->orig_block
)
5991 block
= BLOCK_SUPERCONTEXT (block
);
5998 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5999 the outermost EH region. Use REGION as the incoming base EH region. */
6002 find_outermost_region_in_block (struct function
*src_cfun
,
6003 basic_block bb
, int region
)
6005 gimple_stmt_iterator si
;
6007 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6009 gimple stmt
= gsi_stmt (si
);
6012 if (gimple_code (stmt
) == GIMPLE_RESX
)
6013 stmt_region
= gimple_resx_region (stmt
);
6015 stmt_region
= lookup_stmt_eh_region_fn (src_cfun
, stmt
);
6016 if (stmt_region
> 0)
6019 region
= stmt_region
;
6020 else if (stmt_region
!= region
)
6022 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6023 gcc_assert (region
!= -1);
6032 new_label_mapper (tree decl
, void *data
)
6034 htab_t hash
= (htab_t
) data
;
6038 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6040 m
= XNEW (struct tree_map
);
6041 m
->hash
= DECL_UID (decl
);
6042 m
->base
.from
= decl
;
6043 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6044 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6045 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6046 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6048 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6049 gcc_assert (*slot
== NULL
);
6056 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6060 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6065 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &TREE_CHAIN (*tp
))
6068 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6070 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6073 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6075 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6076 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6078 TREE_CHAIN (t
) = TREE_CHAIN (*tp
);
6083 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6084 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6087 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6088 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6089 single basic block in the original CFG and the new basic block is
6090 returned. DEST_CFUN must not have a CFG yet.
6092 Note that the region need not be a pure SESE region. Blocks inside
6093 the region may contain calls to abort/exit. The only restriction
6094 is that ENTRY_BB should be the only entry point and it must
6097 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6098 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6099 to the new function.
6101 All local variables referenced in the region are assumed to be in
6102 the corresponding BLOCK_VARS and unexpanded variable lists
6103 associated with DEST_CFUN. */
6106 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6107 basic_block exit_bb
, tree orig_block
)
6109 VEC(basic_block
,heap
) *bbs
, *dom_bbs
;
6110 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6111 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6112 struct function
*saved_cfun
= cfun
;
6113 int *entry_flag
, *exit_flag
, eh_offset
;
6114 unsigned *entry_prob
, *exit_prob
;
6115 unsigned i
, num_entry_edges
, num_exit_edges
;
6118 htab_t new_label_map
;
6119 struct pointer_map_t
*vars_map
;
6120 struct loop
*loop
= entry_bb
->loop_father
;
6121 struct move_stmt_d d
;
6123 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6125 gcc_assert (entry_bb
!= exit_bb
6127 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6129 /* Collect all the blocks in the region. Manually add ENTRY_BB
6130 because it won't be added by dfs_enumerate_from. */
6132 VEC_safe_push (basic_block
, heap
, bbs
, entry_bb
);
6133 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6135 /* The blocks that used to be dominated by something in BBS will now be
6136 dominated by the new block. */
6137 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6138 VEC_address (basic_block
, bbs
),
6139 VEC_length (basic_block
, bbs
));
6141 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6142 the predecessor edges to ENTRY_BB and the successor edges to
6143 EXIT_BB so that we can re-attach them to the new basic block that
6144 will replace the region. */
6145 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6146 entry_pred
= (basic_block
*) xcalloc (num_entry_edges
, sizeof (basic_block
));
6147 entry_flag
= (int *) xcalloc (num_entry_edges
, sizeof (int));
6148 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6150 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6152 entry_prob
[i
] = e
->probability
;
6153 entry_flag
[i
] = e
->flags
;
6154 entry_pred
[i
++] = e
->src
;
6160 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6161 exit_succ
= (basic_block
*) xcalloc (num_exit_edges
,
6162 sizeof (basic_block
));
6163 exit_flag
= (int *) xcalloc (num_exit_edges
, sizeof (int));
6164 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6166 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6168 exit_prob
[i
] = e
->probability
;
6169 exit_flag
[i
] = e
->flags
;
6170 exit_succ
[i
++] = e
->dest
;
6182 /* Switch context to the child function to initialize DEST_FN's CFG. */
6183 gcc_assert (dest_cfun
->cfg
== NULL
);
6184 push_cfun (dest_cfun
);
6186 init_empty_tree_cfg ();
6188 /* Initialize EH information for the new function. */
6190 new_label_map
= NULL
;
6195 for (i
= 0; VEC_iterate (basic_block
, bbs
, i
, bb
); i
++)
6196 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6198 init_eh_for_function ();
6201 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6202 eh_offset
= duplicate_eh_regions (saved_cfun
, new_label_mapper
,
6203 new_label_map
, region
, 0);
6209 /* Move blocks from BBS into DEST_CFUN. */
6210 gcc_assert (VEC_length (basic_block
, bbs
) >= 2);
6211 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6212 vars_map
= pointer_map_create ();
6214 memset (&d
, 0, sizeof (d
));
6215 d
.vars_map
= vars_map
;
6216 d
.from_context
= cfun
->decl
;
6217 d
.to_context
= dest_cfun
->decl
;
6218 d
.new_label_map
= new_label_map
;
6219 d
.remap_decls_p
= true;
6220 d
.orig_block
= orig_block
;
6221 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6223 for (i
= 0; VEC_iterate (basic_block
, bbs
, i
, bb
); i
++)
6225 /* No need to update edge counts on the last block. It has
6226 already been updated earlier when we detached the region from
6227 the original CFG. */
6228 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
, eh_offset
);
6232 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6236 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6238 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6239 = BLOCK_SUBBLOCKS (orig_block
);
6240 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6241 block
; block
= BLOCK_CHAIN (block
))
6242 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6243 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6246 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6247 vars_map
, dest_cfun
->decl
);
6250 htab_delete (new_label_map
);
6251 pointer_map_destroy (vars_map
);
6253 /* Rewire the entry and exit blocks. The successor to the entry
6254 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6255 the child function. Similarly, the predecessor of DEST_FN's
6256 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6257 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6258 various CFG manipulation function get to the right CFG.
6260 FIXME, this is silly. The CFG ought to become a parameter to
6262 push_cfun (dest_cfun
);
6263 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6265 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6268 /* Back in the original function, the SESE region has disappeared,
6269 create a new basic block in its place. */
6270 bb
= create_empty_bb (entry_pred
[0]);
6272 add_bb_to_loop (bb
, loop
);
6273 for (i
= 0; i
< num_entry_edges
; i
++)
6275 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6276 e
->probability
= entry_prob
[i
];
6279 for (i
= 0; i
< num_exit_edges
; i
++)
6281 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6282 e
->probability
= exit_prob
[i
];
6285 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6286 for (i
= 0; VEC_iterate (basic_block
, dom_bbs
, i
, abb
); i
++)
6287 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6288 VEC_free (basic_block
, heap
, dom_bbs
);
6299 VEC_free (basic_block
, heap
, bbs
);
6305 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6309 dump_function_to_file (tree fn
, FILE *file
, int flags
)
6311 tree arg
, vars
, var
;
6312 struct function
*dsf
;
6313 bool ignore_topmost_bind
= false, any_var
= false;
6317 fprintf (file
, "%s (", lang_hooks
.decl_printable_name (fn
, 2));
6319 arg
= DECL_ARGUMENTS (fn
);
6322 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6323 fprintf (file
, " ");
6324 print_generic_expr (file
, arg
, dump_flags
);
6325 if (flags
& TDF_VERBOSE
)
6326 print_node (file
, "", arg
, 4);
6327 if (TREE_CHAIN (arg
))
6328 fprintf (file
, ", ");
6329 arg
= TREE_CHAIN (arg
);
6331 fprintf (file
, ")\n");
6333 if (flags
& TDF_VERBOSE
)
6334 print_node (file
, "", fn
, 2);
6336 dsf
= DECL_STRUCT_FUNCTION (fn
);
6337 if (dsf
&& (flags
& TDF_DETAILS
))
6338 dump_eh_tree (file
, dsf
);
6340 if (flags
& TDF_RAW
&& !gimple_has_body_p (fn
))
6342 dump_node (fn
, TDF_SLIM
| flags
, file
);
6346 /* Switch CFUN to point to FN. */
6347 push_cfun (DECL_STRUCT_FUNCTION (fn
));
6349 /* When GIMPLE is lowered, the variables are no longer available in
6350 BIND_EXPRs, so display them separately. */
6351 if (cfun
&& cfun
->decl
== fn
&& cfun
->local_decls
)
6353 ignore_topmost_bind
= true;
6355 fprintf (file
, "{\n");
6356 for (vars
= cfun
->local_decls
; vars
; vars
= TREE_CHAIN (vars
))
6358 var
= TREE_VALUE (vars
);
6360 print_generic_decl (file
, var
, flags
);
6361 if (flags
& TDF_VERBOSE
)
6362 print_node (file
, "", var
, 4);
6363 fprintf (file
, "\n");
6369 if (cfun
&& cfun
->decl
== fn
&& cfun
->cfg
&& basic_block_info
)
6371 /* If the CFG has been built, emit a CFG-based dump. */
6372 check_bb_profile (ENTRY_BLOCK_PTR
, file
);
6373 if (!ignore_topmost_bind
)
6374 fprintf (file
, "{\n");
6376 if (any_var
&& n_basic_blocks
)
6377 fprintf (file
, "\n");
6380 gimple_dump_bb (bb
, file
, 2, flags
);
6382 fprintf (file
, "}\n");
6383 check_bb_profile (EXIT_BLOCK_PTR
, file
);
6385 else if (DECL_SAVED_TREE (fn
) == NULL
)
6387 /* The function is now in GIMPLE form but the CFG has not been
6388 built yet. Emit the single sequence of GIMPLE statements
6389 that make up its body. */
6390 gimple_seq body
= gimple_body (fn
);
6392 if (gimple_seq_first_stmt (body
)
6393 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6394 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6395 print_gimple_seq (file
, body
, 0, flags
);
6398 if (!ignore_topmost_bind
)
6399 fprintf (file
, "{\n");
6402 fprintf (file
, "\n");
6404 print_gimple_seq (file
, body
, 2, flags
);
6405 fprintf (file
, "}\n");
6412 /* Make a tree based dump. */
6413 chain
= DECL_SAVED_TREE (fn
);
6415 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
6417 if (ignore_topmost_bind
)
6419 chain
= BIND_EXPR_BODY (chain
);
6427 if (!ignore_topmost_bind
)
6428 fprintf (file
, "{\n");
6433 fprintf (file
, "\n");
6435 print_generic_stmt_indented (file
, chain
, flags
, indent
);
6436 if (ignore_topmost_bind
)
6437 fprintf (file
, "}\n");
6440 fprintf (file
, "\n\n");
6447 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6450 debug_function (tree fn
, int flags
)
6452 dump_function_to_file (fn
, stderr
, flags
);
6456 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6459 print_pred_bbs (FILE *file
, basic_block bb
)
6464 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6465 fprintf (file
, "bb_%d ", e
->src
->index
);
6469 /* Print on FILE the indexes for the successors of basic_block BB. */
6472 print_succ_bbs (FILE *file
, basic_block bb
)
6477 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6478 fprintf (file
, "bb_%d ", e
->dest
->index
);
6481 /* Print to FILE the basic block BB following the VERBOSITY level. */
6484 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
6486 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
6487 memset ((void *) s_indent
, ' ', (size_t) indent
);
6488 s_indent
[indent
] = '\0';
6490 /* Print basic_block's header. */
6493 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
6494 print_pred_bbs (file
, bb
);
6495 fprintf (file
, "}, succs = {");
6496 print_succ_bbs (file
, bb
);
6497 fprintf (file
, "})\n");
6500 /* Print basic_block's body. */
6503 fprintf (file
, "%s {\n", s_indent
);
6504 gimple_dump_bb (bb
, file
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
6505 fprintf (file
, "%s }\n", s_indent
);
6509 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
6511 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6512 VERBOSITY level this outputs the contents of the loop, or just its
6516 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6524 s_indent
= (char *) alloca ((size_t) indent
+ 1);
6525 memset ((void *) s_indent
, ' ', (size_t) indent
);
6526 s_indent
[indent
] = '\0';
6528 /* Print loop's header. */
6529 fprintf (file
, "%sloop_%d (header = %d, latch = %d", s_indent
,
6530 loop
->num
, loop
->header
->index
, loop
->latch
->index
);
6531 fprintf (file
, ", niter = ");
6532 print_generic_expr (file
, loop
->nb_iterations
, 0);
6534 if (loop
->any_upper_bound
)
6536 fprintf (file
, ", upper_bound = ");
6537 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
6540 if (loop
->any_estimate
)
6542 fprintf (file
, ", estimate = ");
6543 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
6545 fprintf (file
, ")\n");
6547 /* Print loop's body. */
6550 fprintf (file
, "%s{\n", s_indent
);
6552 if (bb
->loop_father
== loop
)
6553 print_loops_bb (file
, bb
, indent
, verbosity
);
6555 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
6556 fprintf (file
, "%s}\n", s_indent
);
6560 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6561 spaces. Following VERBOSITY level this outputs the contents of the
6562 loop, or just its structure. */
6565 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6570 print_loop (file
, loop
, indent
, verbosity
);
6571 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
6574 /* Follow a CFG edge from the entry point of the program, and on entry
6575 of a loop, pretty print the loop structure on FILE. */
6578 print_loops (FILE *file
, int verbosity
)
6582 bb
= ENTRY_BLOCK_PTR
;
6583 if (bb
&& bb
->loop_father
)
6584 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
6588 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6591 debug_loops (int verbosity
)
6593 print_loops (stderr
, verbosity
);
6596 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6599 debug_loop (struct loop
*loop
, int verbosity
)
6601 print_loop (stderr
, loop
, 0, verbosity
);
6604 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6608 debug_loop_num (unsigned num
, int verbosity
)
6610 debug_loop (get_loop (num
), verbosity
);
6613 /* Return true if BB ends with a call, possibly followed by some
6614 instructions that must stay with the call. Return false,
6618 gimple_block_ends_with_call_p (basic_block bb
)
6620 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
6621 return is_gimple_call (gsi_stmt (gsi
));
6625 /* Return true if BB ends with a conditional branch. Return false,
6629 gimple_block_ends_with_condjump_p (const_basic_block bb
)
6631 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
6632 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
6636 /* Return true if we need to add fake edge to exit at statement T.
6637 Helper function for gimple_flow_call_edges_add. */
6640 need_fake_edge_p (gimple t
)
6642 tree fndecl
= NULL_TREE
;
6645 /* NORETURN and LONGJMP calls already have an edge to exit.
6646 CONST and PURE calls do not need one.
6647 We don't currently check for CONST and PURE here, although
6648 it would be a good idea, because those attributes are
6649 figured out from the RTL in mark_constant_function, and
6650 the counter incrementation code from -fprofile-arcs
6651 leads to different results from -fbranch-probabilities. */
6652 if (is_gimple_call (t
))
6654 fndecl
= gimple_call_fndecl (t
);
6655 call_flags
= gimple_call_flags (t
);
6658 if (is_gimple_call (t
)
6660 && DECL_BUILT_IN (fndecl
)
6661 && (call_flags
& ECF_NOTHROW
)
6662 && !(call_flags
& ECF_RETURNS_TWICE
)
6663 /* fork() doesn't really return twice, but the effect of
6664 wrapping it in __gcov_fork() which calls __gcov_flush()
6665 and clears the counters before forking has the same
6666 effect as returning twice. Force a fake edge. */
6667 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
6668 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
6671 if (is_gimple_call (t
)
6672 && !(call_flags
& ECF_NORETURN
))
6675 if (gimple_code (t
) == GIMPLE_ASM
6676 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
6683 /* Add fake edges to the function exit for any non constant and non
6684 noreturn calls, volatile inline assembly in the bitmap of blocks
6685 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6686 the number of blocks that were split.
6688 The goal is to expose cases in which entering a basic block does
6689 not imply that all subsequent instructions must be executed. */
6692 gimple_flow_call_edges_add (sbitmap blocks
)
6695 int blocks_split
= 0;
6696 int last_bb
= last_basic_block
;
6697 bool check_last_block
= false;
6699 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
6703 check_last_block
= true;
6705 check_last_block
= TEST_BIT (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
6707 /* In the last basic block, before epilogue generation, there will be
6708 a fallthru edge to EXIT. Special care is required if the last insn
6709 of the last basic block is a call because make_edge folds duplicate
6710 edges, which would result in the fallthru edge also being marked
6711 fake, which would result in the fallthru edge being removed by
6712 remove_fake_edges, which would result in an invalid CFG.
6714 Moreover, we can't elide the outgoing fake edge, since the block
6715 profiler needs to take this into account in order to solve the minimal
6716 spanning tree in the case that the call doesn't return.
6718 Handle this by adding a dummy instruction in a new last basic block. */
6719 if (check_last_block
)
6721 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
6722 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
6725 if (!gsi_end_p (gsi
))
6728 if (t
&& need_fake_edge_p (t
))
6732 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6735 gsi_insert_on_edge (e
, gimple_build_nop ());
6736 gsi_commit_edge_inserts ();
6741 /* Now add fake edges to the function exit for any non constant
6742 calls since there is no way that we can determine if they will
6744 for (i
= 0; i
< last_bb
; i
++)
6746 basic_block bb
= BASIC_BLOCK (i
);
6747 gimple_stmt_iterator gsi
;
6748 gimple stmt
, last_stmt
;
6753 if (blocks
&& !TEST_BIT (blocks
, i
))
6756 gsi
= gsi_last_bb (bb
);
6757 if (!gsi_end_p (gsi
))
6759 last_stmt
= gsi_stmt (gsi
);
6762 stmt
= gsi_stmt (gsi
);
6763 if (need_fake_edge_p (stmt
))
6767 /* The handling above of the final block before the
6768 epilogue should be enough to verify that there is
6769 no edge to the exit block in CFG already.
6770 Calling make_edge in such case would cause us to
6771 mark that edge as fake and remove it later. */
6772 #ifdef ENABLE_CHECKING
6773 if (stmt
== last_stmt
)
6775 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6776 gcc_assert (e
== NULL
);
6780 /* Note that the following may create a new basic block
6781 and renumber the existing basic blocks. */
6782 if (stmt
!= last_stmt
)
6784 e
= split_block (bb
, stmt
);
6788 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
6792 while (!gsi_end_p (gsi
));
6797 verify_flow_info ();
6799 return blocks_split
;
6802 /* Purge dead abnormal call edges from basic block BB. */
6805 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
6807 bool changed
= gimple_purge_dead_eh_edges (bb
);
6809 if (cfun
->has_nonlocal_label
)
6811 gimple stmt
= last_stmt (bb
);
6815 if (!(stmt
&& stmt_can_make_abnormal_goto (stmt
)))
6816 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
6818 if (e
->flags
& EDGE_ABNORMAL
)
6827 /* See gimple_purge_dead_eh_edges below. */
6829 free_dominance_info (CDI_DOMINATORS
);
6835 /* Removes edge E and all the blocks dominated by it, and updates dominance
6836 information. The IL in E->src needs to be updated separately.
6837 If dominance info is not available, only the edge E is removed.*/
6840 remove_edge_and_dominated_blocks (edge e
)
6842 VEC (basic_block
, heap
) *bbs_to_remove
= NULL
;
6843 VEC (basic_block
, heap
) *bbs_to_fix_dom
= NULL
;
6847 bool none_removed
= false;
6849 basic_block bb
, dbb
;
6852 if (!dom_info_available_p (CDI_DOMINATORS
))
6858 /* No updating is needed for edges to exit. */
6859 if (e
->dest
== EXIT_BLOCK_PTR
)
6861 if (cfgcleanup_altered_bbs
)
6862 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6867 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6868 that is not dominated by E->dest, then this set is empty. Otherwise,
6869 all the basic blocks dominated by E->dest are removed.
6871 Also, to DF_IDOM we store the immediate dominators of the blocks in
6872 the dominance frontier of E (i.e., of the successors of the
6873 removed blocks, if there are any, and of E->dest otherwise). */
6874 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
6879 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
6881 none_removed
= true;
6886 df
= BITMAP_ALLOC (NULL
);
6887 df_idom
= BITMAP_ALLOC (NULL
);
6890 bitmap_set_bit (df_idom
,
6891 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
6894 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
6895 for (i
= 0; VEC_iterate (basic_block
, bbs_to_remove
, i
, bb
); i
++)
6897 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
6899 if (f
->dest
!= EXIT_BLOCK_PTR
)
6900 bitmap_set_bit (df
, f
->dest
->index
);
6903 for (i
= 0; VEC_iterate (basic_block
, bbs_to_remove
, i
, bb
); i
++)
6904 bitmap_clear_bit (df
, bb
->index
);
6906 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
6908 bb
= BASIC_BLOCK (i
);
6909 bitmap_set_bit (df_idom
,
6910 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
6914 if (cfgcleanup_altered_bbs
)
6916 /* Record the set of the altered basic blocks. */
6917 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6918 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
6921 /* Remove E and the cancelled blocks. */
6926 for (i
= 0; VEC_iterate (basic_block
, bbs_to_remove
, i
, bb
); i
++)
6927 delete_basic_block (bb
);
6930 /* Update the dominance information. The immediate dominator may change only
6931 for blocks whose immediate dominator belongs to DF_IDOM:
6933 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6934 removal. Let Z the arbitrary block such that idom(Z) = Y and
6935 Z dominates X after the removal. Before removal, there exists a path P
6936 from Y to X that avoids Z. Let F be the last edge on P that is
6937 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6938 dominates W, and because of P, Z does not dominate W), and W belongs to
6939 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6940 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
6942 bb
= BASIC_BLOCK (i
);
6943 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
6945 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
6946 VEC_safe_push (basic_block
, heap
, bbs_to_fix_dom
, dbb
);
6949 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
6952 BITMAP_FREE (df_idom
);
6953 VEC_free (basic_block
, heap
, bbs_to_remove
);
6954 VEC_free (basic_block
, heap
, bbs_to_fix_dom
);
6957 /* Purge dead EH edges from basic block BB. */
6960 gimple_purge_dead_eh_edges (basic_block bb
)
6962 bool changed
= false;
6965 gimple stmt
= last_stmt (bb
);
6967 if (stmt
&& stmt_can_throw_internal (stmt
))
6970 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
6972 if (e
->flags
& EDGE_EH
)
6974 remove_edge_and_dominated_blocks (e
);
6985 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
6987 bool changed
= false;
6991 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
6993 basic_block bb
= BASIC_BLOCK (i
);
6995 /* Earlier gimple_purge_dead_eh_edges could have removed
6996 this basic block already. */
6997 gcc_assert (bb
|| changed
);
6999 changed
|= gimple_purge_dead_eh_edges (bb
);
7005 /* This function is called whenever a new edge is created or
7009 gimple_execute_on_growing_pred (edge e
)
7011 basic_block bb
= e
->dest
;
7014 reserve_phi_args_for_new_edge (bb
);
7017 /* This function is called immediately before edge E is removed from
7018 the edge vector E->dest->preds. */
7021 gimple_execute_on_shrinking_pred (edge e
)
7023 if (phi_nodes (e
->dest
))
7024 remove_phi_args (e
);
7027 /*---------------------------------------------------------------------------
7028 Helper functions for Loop versioning
7029 ---------------------------------------------------------------------------*/
7031 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7032 of 'first'. Both of them are dominated by 'new_head' basic block. When
7033 'new_head' was created by 'second's incoming edge it received phi arguments
7034 on the edge by split_edge(). Later, additional edge 'e' was created to
7035 connect 'new_head' and 'first'. Now this routine adds phi args on this
7036 additional edge 'e' that new_head to second edge received as part of edge
7040 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7041 basic_block new_head
, edge e
)
7044 gimple_stmt_iterator psi1
, psi2
;
7046 edge e2
= find_edge (new_head
, second
);
7048 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7049 edge, we should always have an edge from NEW_HEAD to SECOND. */
7050 gcc_assert (e2
!= NULL
);
7052 /* Browse all 'second' basic block phi nodes and add phi args to
7053 edge 'e' for 'first' head. PHI args are always in correct order. */
7055 for (psi2
= gsi_start_phis (second
),
7056 psi1
= gsi_start_phis (first
);
7057 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7058 gsi_next (&psi2
), gsi_next (&psi1
))
7060 phi1
= gsi_stmt (psi1
);
7061 phi2
= gsi_stmt (psi2
);
7062 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7063 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7068 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7069 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7070 the destination of the ELSE part. */
7073 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7074 basic_block second_head ATTRIBUTE_UNUSED
,
7075 basic_block cond_bb
, void *cond_e
)
7077 gimple_stmt_iterator gsi
;
7078 gimple new_cond_expr
;
7079 tree cond_expr
= (tree
) cond_e
;
7082 /* Build new conditional expr */
7083 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7084 NULL_TREE
, NULL_TREE
);
7086 /* Add new cond in cond_bb. */
7087 gsi
= gsi_last_bb (cond_bb
);
7088 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7090 /* Adjust edges appropriately to connect new head with first head
7091 as well as second head. */
7092 e0
= single_succ_edge (cond_bb
);
7093 e0
->flags
&= ~EDGE_FALLTHRU
;
7094 e0
->flags
|= EDGE_FALSE_VALUE
;
7097 struct cfg_hooks gimple_cfg_hooks
= {
7099 gimple_verify_flow_info
,
7100 gimple_dump_bb
, /* dump_bb */
7101 create_bb
, /* create_basic_block */
7102 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7103 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7104 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7105 remove_bb
, /* delete_basic_block */
7106 gimple_split_block
, /* split_block */
7107 gimple_move_block_after
, /* move_block_after */
7108 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7109 gimple_merge_blocks
, /* merge_blocks */
7110 gimple_predict_edge
, /* predict_edge */
7111 gimple_predicted_by_p
, /* predicted_by_p */
7112 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7113 gimple_duplicate_bb
, /* duplicate_block */
7114 gimple_split_edge
, /* split_edge */
7115 gimple_make_forwarder_block
, /* make_forward_block */
7116 NULL
, /* tidy_fallthru_edge */
7117 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7118 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7119 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7120 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7121 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7122 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7123 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7124 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7125 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7126 flush_pending_stmts
/* flush_pending_stmts */
7130 /* Split all critical edges. */
7133 split_critical_edges (void)
7139 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7140 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7141 mappings around the calls to split_edge. */
7142 start_recording_case_labels ();
7145 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7147 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7149 /* PRE inserts statements to edges and expects that
7150 since split_critical_edges was done beforehand, committing edge
7151 insertions will not split more edges. In addition to critical
7152 edges we must split edges that have multiple successors and
7153 end by control flow statements, such as RESX.
7154 Go ahead and split them too. This matches the logic in
7155 gimple_find_edge_insert_loc. */
7156 else if ((!single_pred_p (e
->dest
)
7157 || phi_nodes (e
->dest
)
7158 || e
->dest
== EXIT_BLOCK_PTR
)
7159 && e
->src
!= ENTRY_BLOCK_PTR
7160 && !(e
->flags
& EDGE_ABNORMAL
))
7162 gimple_stmt_iterator gsi
;
7164 gsi
= gsi_last_bb (e
->src
);
7165 if (!gsi_end_p (gsi
)
7166 && stmt_ends_bb_p (gsi_stmt (gsi
))
7167 && gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
)
7172 end_recording_case_labels ();
7176 struct gimple_opt_pass pass_split_crit_edges
=
7180 "crited", /* name */
7182 split_critical_edges
, /* execute */
7185 0, /* static_pass_number */
7186 TV_TREE_SPLIT_EDGES
, /* tv_id */
7187 PROP_cfg
, /* properties required */
7188 PROP_no_crit_edges
, /* properties_provided */
7189 0, /* properties_destroyed */
7190 0, /* todo_flags_start */
7191 TODO_dump_func
| TODO_verify_flow
/* todo_flags_finish */
7196 /* Build a ternary operation and gimplify it. Emit code before GSI.
7197 Return the gimple_val holding the result. */
7200 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7201 tree type
, tree a
, tree b
, tree c
)
7204 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7206 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7209 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7213 /* Build a binary operation and gimplify it. Emit code before GSI.
7214 Return the gimple_val holding the result. */
7217 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7218 tree type
, tree a
, tree b
)
7222 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7225 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7229 /* Build a unary operation and gimplify it. Emit code before GSI.
7230 Return the gimple_val holding the result. */
7233 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7238 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7241 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7247 /* Emit return warnings. */
7250 execute_warn_function_return (void)
7252 source_location location
;
7257 /* If we have a path to EXIT, then we do return. */
7258 if (TREE_THIS_VOLATILE (cfun
->decl
)
7259 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7261 location
= UNKNOWN_LOCATION
;
7262 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7264 last
= last_stmt (e
->src
);
7265 if (gimple_code (last
) == GIMPLE_RETURN
7266 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7269 if (location
== UNKNOWN_LOCATION
)
7270 location
= cfun
->function_end_locus
;
7271 warning_at (location
, 0, "%<noreturn%> function does return");
7274 /* If we see "return;" in some basic block, then we do reach the end
7275 without returning a value. */
7276 else if (warn_return_type
7277 && !TREE_NO_WARNING (cfun
->decl
)
7278 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
7279 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
7281 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7283 gimple last
= last_stmt (e
->src
);
7284 if (gimple_code (last
) == GIMPLE_RETURN
7285 && gimple_return_retval (last
) == NULL
7286 && !gimple_no_warning_p (last
))
7288 location
= gimple_location (last
);
7289 if (location
== UNKNOWN_LOCATION
)
7290 location
= cfun
->function_end_locus
;
7291 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
7292 TREE_NO_WARNING (cfun
->decl
) = 1;
7301 /* Given a basic block B which ends with a conditional and has
7302 precisely two successors, determine which of the edges is taken if
7303 the conditional is true and which is taken if the conditional is
7304 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7307 extract_true_false_edges_from_block (basic_block b
,
7311 edge e
= EDGE_SUCC (b
, 0);
7313 if (e
->flags
& EDGE_TRUE_VALUE
)
7316 *false_edge
= EDGE_SUCC (b
, 1);
7321 *true_edge
= EDGE_SUCC (b
, 1);
7325 struct gimple_opt_pass pass_warn_function_return
=
7331 execute_warn_function_return
, /* execute */
7334 0, /* static_pass_number */
7335 TV_NONE
, /* tv_id */
7336 PROP_cfg
, /* properties_required */
7337 0, /* properties_provided */
7338 0, /* properties_destroyed */
7339 0, /* todo_flags_start */
7340 0 /* todo_flags_finish */
7344 /* Emit noreturn warnings. */
7347 execute_warn_function_noreturn (void)
7349 if (warn_missing_noreturn
7350 && !TREE_THIS_VOLATILE (cfun
->decl
)
7351 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0
7352 && !lang_hooks
.missing_noreturn_ok_p (cfun
->decl
))
7353 warning_at (DECL_SOURCE_LOCATION (cfun
->decl
), OPT_Wmissing_noreturn
,
7354 "function might be possible candidate "
7355 "for attribute %<noreturn%>");
7359 struct gimple_opt_pass pass_warn_function_noreturn
=
7365 execute_warn_function_noreturn
, /* execute */
7368 0, /* static_pass_number */
7369 TV_NONE
, /* tv_id */
7370 PROP_cfg
, /* properties_required */
7371 0, /* properties_provided */
7372 0, /* properties_destroyed */
7373 0, /* todo_flags_start */
7374 0 /* todo_flags_finish */
7379 /* Walk a gimplified function and warn for functions whose return value is
7380 ignored and attribute((warn_unused_result)) is set. This is done before
7381 inlining, so we don't have to worry about that. */
7384 do_warn_unused_result (gimple_seq seq
)
7387 gimple_stmt_iterator i
;
7389 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
7391 gimple g
= gsi_stmt (i
);
7393 switch (gimple_code (g
))
7396 do_warn_unused_result (gimple_bind_body (g
));
7399 do_warn_unused_result (gimple_try_eval (g
));
7400 do_warn_unused_result (gimple_try_cleanup (g
));
7403 do_warn_unused_result (gimple_catch_handler (g
));
7405 case GIMPLE_EH_FILTER
:
7406 do_warn_unused_result (gimple_eh_filter_failure (g
));
7410 if (gimple_call_lhs (g
))
7413 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7414 LHS. All calls whose value is ignored should be
7415 represented like this. Look for the attribute. */
7416 fdecl
= gimple_call_fndecl (g
);
7417 ftype
= TREE_TYPE (TREE_TYPE (gimple_call_fn (g
)));
7419 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
7421 location_t loc
= gimple_location (g
);
7424 warning_at (loc
, OPT_Wunused_result
,
7425 "ignoring return value of %qD, "
7426 "declared with attribute warn_unused_result",
7429 warning_at (loc
, OPT_Wunused_result
,
7430 "ignoring return value of function "
7431 "declared with attribute warn_unused_result");
7436 /* Not a container, not a call, or a call whose value is used. */
7443 run_warn_unused_result (void)
7445 do_warn_unused_result (gimple_body (current_function_decl
));
7450 gate_warn_unused_result (void)
7452 return flag_warn_unused_result
;
7455 struct gimple_opt_pass pass_warn_unused_result
=
7459 "*warn_unused_result", /* name */
7460 gate_warn_unused_result
, /* gate */
7461 run_warn_unused_result
, /* execute */
7464 0, /* static_pass_number */
7465 TV_NONE
, /* tv_id */
7466 PROP_gimple_any
, /* properties_required */
7467 0, /* properties_provided */
7468 0, /* properties_destroyed */
7469 0, /* todo_flags_start */
7470 0, /* todo_flags_finish */