* inclhack.def (aix_complex): Redefine _Complex_I. Do not
[official-gcc.git] / gcc / tree-cfg.c
blob3b99d6c5a3093fb1c019b1fc116c3da5c7b8cef4
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "ggc.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
39 #include "timevar.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "cfgloop.h"
45 #include "cfglayout.h"
46 #include "tree-ssa-propagate.h"
47 #include "value-prof.h"
48 #include "pointer-set.h"
49 #include "tree-inline.h"
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
54 /* Local declarations. */
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
72 static struct pointer_map_t *edge_to_cases;
74 /* CFG statistics. */
75 struct cfg_stats_d
77 long num_merged_labels;
80 static struct cfg_stats_d cfg_stats;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
88 location_t locus;
89 int discriminator;
91 static htab_t discriminator_per_locus;
93 /* Basic blocks and flowgraphs. */
94 static void make_blocks (gimple_seq);
95 static void factor_computed_gotos (void);
97 /* Edges. */
98 static void make_edges (void);
99 static void make_cond_expr_edges (basic_block);
100 static void make_gimple_switch_edges (basic_block);
101 static void make_goto_expr_edges (basic_block);
102 static unsigned int locus_map_hash (const void *);
103 static int locus_map_eq (const void *, const void *);
104 static void assign_discriminator (location_t, basic_block);
105 static edge gimple_redirect_edge_and_branch (edge, basic_block);
106 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
107 static unsigned int split_critical_edges (void);
109 /* Various helpers. */
110 static inline bool stmt_starts_bb_p (gimple, gimple);
111 static int gimple_verify_flow_info (void);
112 static void gimple_make_forwarder_block (edge);
113 static void gimple_cfg2vcg (FILE *);
114 static gimple first_non_label_stmt (basic_block);
116 /* Flowgraph optimization and cleanup. */
117 static void gimple_merge_blocks (basic_block, basic_block);
118 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
119 static void remove_bb (basic_block);
120 static edge find_taken_edge_computed_goto (basic_block, tree);
121 static edge find_taken_edge_cond_expr (basic_block, tree);
122 static edge find_taken_edge_switch_expr (basic_block, tree);
123 static tree find_case_label_for_value (gimple, tree);
125 void
126 init_empty_tree_cfg_for_function (struct function *fn)
128 /* Initialize the basic block array. */
129 init_flow (fn);
130 profile_status_for_function (fn) = PROFILE_ABSENT;
131 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
132 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
133 basic_block_info_for_function (fn)
134 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
135 VEC_safe_grow_cleared (basic_block, gc,
136 basic_block_info_for_function (fn),
137 initial_cfg_capacity);
139 /* Build a mapping of labels to their associated blocks. */
140 label_to_block_map_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 label_to_block_map_for_function (fn),
144 initial_cfg_capacity);
146 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
147 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
148 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
149 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
151 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
152 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
153 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
154 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
157 void
158 init_empty_tree_cfg (void)
160 init_empty_tree_cfg_for_function (cfun);
163 /*---------------------------------------------------------------------------
164 Create basic blocks
165 ---------------------------------------------------------------------------*/
167 /* Entry point to the CFG builder for trees. SEQ is the sequence of
168 statements to be added to the flowgraph. */
170 static void
171 build_gimple_cfg (gimple_seq seq)
173 /* Register specific gimple functions. */
174 gimple_register_cfg_hooks ();
176 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
178 init_empty_tree_cfg ();
180 found_computed_goto = 0;
181 make_blocks (seq);
183 /* Computed gotos are hell to deal with, especially if there are
184 lots of them with a large number of destinations. So we factor
185 them to a common computed goto location before we build the
186 edge list. After we convert back to normal form, we will un-factor
187 the computed gotos since factoring introduces an unwanted jump. */
188 if (found_computed_goto)
189 factor_computed_gotos ();
191 /* Make sure there is always at least one block, even if it's empty. */
192 if (n_basic_blocks == NUM_FIXED_BLOCKS)
193 create_empty_bb (ENTRY_BLOCK_PTR);
195 /* Adjust the size of the array. */
196 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
197 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
199 /* To speed up statement iterator walks, we first purge dead labels. */
200 cleanup_dead_labels ();
202 /* Group case nodes to reduce the number of edges.
203 We do this after cleaning up dead labels because otherwise we miss
204 a lot of obvious case merging opportunities. */
205 group_case_labels ();
207 /* Create the edges of the flowgraph. */
208 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
209 free);
210 make_edges ();
211 cleanup_dead_labels ();
212 htab_delete (discriminator_per_locus);
214 /* Debugging dumps. */
216 /* Write the flowgraph to a VCG file. */
218 int local_dump_flags;
219 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
220 if (vcg_file)
222 gimple_cfg2vcg (vcg_file);
223 dump_end (TDI_vcg, vcg_file);
227 #ifdef ENABLE_CHECKING
228 verify_stmts ();
229 #endif
232 static unsigned int
233 execute_build_cfg (void)
235 gimple_seq body = gimple_body (current_function_decl);
237 build_gimple_cfg (body);
238 gimple_set_body (current_function_decl, NULL);
239 if (dump_file && (dump_flags & TDF_DETAILS))
241 fprintf (dump_file, "Scope blocks:\n");
242 dump_scope_blocks (dump_file, dump_flags);
244 return 0;
247 struct gimple_opt_pass pass_build_cfg =
250 GIMPLE_PASS,
251 "cfg", /* name */
252 NULL, /* gate */
253 execute_build_cfg, /* execute */
254 NULL, /* sub */
255 NULL, /* next */
256 0, /* static_pass_number */
257 TV_TREE_CFG, /* tv_id */
258 PROP_gimple_leh, /* properties_required */
259 PROP_cfg, /* properties_provided */
260 0, /* properties_destroyed */
261 0, /* todo_flags_start */
262 TODO_verify_stmts | TODO_cleanup_cfg
263 | TODO_dump_func /* todo_flags_finish */
268 /* Return true if T is a computed goto. */
270 static bool
271 computed_goto_p (gimple t)
273 return (gimple_code (t) == GIMPLE_GOTO
274 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
278 /* Search the CFG for any computed gotos. If found, factor them to a
279 common computed goto site. Also record the location of that site so
280 that we can un-factor the gotos after we have converted back to
281 normal form. */
283 static void
284 factor_computed_gotos (void)
286 basic_block bb;
287 tree factored_label_decl = NULL;
288 tree var = NULL;
289 gimple factored_computed_goto_label = NULL;
290 gimple factored_computed_goto = NULL;
292 /* We know there are one or more computed gotos in this function.
293 Examine the last statement in each basic block to see if the block
294 ends with a computed goto. */
296 FOR_EACH_BB (bb)
298 gimple_stmt_iterator gsi = gsi_last_bb (bb);
299 gimple last;
301 if (gsi_end_p (gsi))
302 continue;
304 last = gsi_stmt (gsi);
306 /* Ignore the computed goto we create when we factor the original
307 computed gotos. */
308 if (last == factored_computed_goto)
309 continue;
311 /* If the last statement is a computed goto, factor it. */
312 if (computed_goto_p (last))
314 gimple assignment;
316 /* The first time we find a computed goto we need to create
317 the factored goto block and the variable each original
318 computed goto will use for their goto destination. */
319 if (!factored_computed_goto)
321 basic_block new_bb = create_empty_bb (bb);
322 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
324 /* Create the destination of the factored goto. Each original
325 computed goto will put its desired destination into this
326 variable and jump to the label we create immediately
327 below. */
328 var = create_tmp_var (ptr_type_node, "gotovar");
330 /* Build a label for the new block which will contain the
331 factored computed goto. */
332 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
333 factored_computed_goto_label
334 = gimple_build_label (factored_label_decl);
335 gsi_insert_after (&new_gsi, factored_computed_goto_label,
336 GSI_NEW_STMT);
338 /* Build our new computed goto. */
339 factored_computed_goto = gimple_build_goto (var);
340 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 /* Copy the original computed goto's destination into VAR. */
344 assignment = gimple_build_assign (var, gimple_goto_dest (last));
345 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
347 /* And re-vector the computed goto to the new destination. */
348 gimple_goto_set_dest (last, factored_label_decl);
354 /* Build a flowgraph for the sequence of stmts SEQ. */
356 static void
357 make_blocks (gimple_seq seq)
359 gimple_stmt_iterator i = gsi_start (seq);
360 gimple stmt = NULL;
361 bool start_new_block = true;
362 bool first_stmt_of_seq = true;
363 basic_block bb = ENTRY_BLOCK_PTR;
365 while (!gsi_end_p (i))
367 gimple prev_stmt;
369 prev_stmt = stmt;
370 stmt = gsi_stmt (i);
372 /* If the statement starts a new basic block or if we have determined
373 in a previous pass that we need to create a new block for STMT, do
374 so now. */
375 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
377 if (!first_stmt_of_seq)
378 seq = gsi_split_seq_before (&i);
379 bb = create_basic_block (seq, NULL, bb);
380 start_new_block = false;
383 /* Now add STMT to BB and create the subgraphs for special statement
384 codes. */
385 gimple_set_bb (stmt, bb);
387 if (computed_goto_p (stmt))
388 found_computed_goto = true;
390 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
391 next iteration. */
392 if (stmt_ends_bb_p (stmt))
394 /* If the stmt can make abnormal goto use a new temporary
395 for the assignment to the LHS. This makes sure the old value
396 of the LHS is available on the abnormal edge. Otherwise
397 we will end up with overlapping life-ranges for abnormal
398 SSA names. */
399 if (gimple_has_lhs (stmt)
400 && stmt_can_make_abnormal_goto (stmt)
401 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
403 tree lhs = gimple_get_lhs (stmt);
404 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
405 gimple s = gimple_build_assign (lhs, tmp);
406 gimple_set_location (s, gimple_location (stmt));
407 gimple_set_block (s, gimple_block (stmt));
408 gimple_set_lhs (stmt, tmp);
409 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
410 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
411 DECL_GIMPLE_REG_P (tmp) = 1;
412 gsi_insert_after (&i, s, GSI_SAME_STMT);
414 start_new_block = true;
417 gsi_next (&i);
418 first_stmt_of_seq = false;
423 /* Create and return a new empty basic block after bb AFTER. */
425 static basic_block
426 create_bb (void *h, void *e, basic_block after)
428 basic_block bb;
430 gcc_assert (!e);
432 /* Create and initialize a new basic block. Since alloc_block uses
433 ggc_alloc_cleared to allocate a basic block, we do not have to
434 clear the newly allocated basic block here. */
435 bb = alloc_block ();
437 bb->index = last_basic_block;
438 bb->flags = BB_NEW;
439 bb->il.gimple = GGC_CNEW (struct gimple_bb_info);
440 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
442 /* Add the new block to the linked list of blocks. */
443 link_block (bb, after);
445 /* Grow the basic block array if needed. */
446 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
448 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
449 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 /* Add the newly created block to the array. */
453 SET_BASIC_BLOCK (last_basic_block, bb);
455 n_basic_blocks++;
456 last_basic_block++;
458 return bb;
462 /*---------------------------------------------------------------------------
463 Edge creation
464 ---------------------------------------------------------------------------*/
466 /* Fold COND_EXPR_COND of each COND_EXPR. */
468 void
469 fold_cond_expr_cond (void)
471 basic_block bb;
473 FOR_EACH_BB (bb)
475 gimple stmt = last_stmt (bb);
477 if (stmt && gimple_code (stmt) == GIMPLE_COND)
479 location_t loc = gimple_location (stmt);
480 tree cond;
481 bool zerop, onep;
483 fold_defer_overflow_warnings ();
484 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
485 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
486 if (cond)
488 zerop = integer_zerop (cond);
489 onep = integer_onep (cond);
491 else
492 zerop = onep = false;
494 fold_undefer_overflow_warnings (zerop || onep,
495 stmt,
496 WARN_STRICT_OVERFLOW_CONDITIONAL);
497 if (zerop)
498 gimple_cond_make_false (stmt);
499 else if (onep)
500 gimple_cond_make_true (stmt);
505 /* Join all the blocks in the flowgraph. */
507 static void
508 make_edges (void)
510 basic_block bb;
511 struct omp_region *cur_region = NULL;
513 /* Create an edge from entry to the first block with executable
514 statements in it. */
515 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
517 /* Traverse the basic block array placing edges. */
518 FOR_EACH_BB (bb)
520 gimple last = last_stmt (bb);
521 bool fallthru;
523 if (last)
525 enum gimple_code code = gimple_code (last);
526 switch (code)
528 case GIMPLE_GOTO:
529 make_goto_expr_edges (bb);
530 fallthru = false;
531 break;
532 case GIMPLE_RETURN:
533 make_edge (bb, EXIT_BLOCK_PTR, 0);
534 fallthru = false;
535 break;
536 case GIMPLE_COND:
537 make_cond_expr_edges (bb);
538 fallthru = false;
539 break;
540 case GIMPLE_SWITCH:
541 make_gimple_switch_edges (bb);
542 fallthru = false;
543 break;
544 case GIMPLE_RESX:
545 make_eh_edges (last);
546 fallthru = false;
547 break;
549 case GIMPLE_CALL:
550 /* If this function receives a nonlocal goto, then we need to
551 make edges from this call site to all the nonlocal goto
552 handlers. */
553 if (stmt_can_make_abnormal_goto (last))
554 make_abnormal_goto_edges (bb, true);
556 /* If this statement has reachable exception handlers, then
557 create abnormal edges to them. */
558 make_eh_edges (last);
560 /* Some calls are known not to return. */
561 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
562 break;
564 case GIMPLE_ASSIGN:
565 /* A GIMPLE_ASSIGN may throw internally and thus be considered
566 control-altering. */
567 if (is_ctrl_altering_stmt (last))
569 make_eh_edges (last);
571 fallthru = true;
572 break;
574 case GIMPLE_OMP_PARALLEL:
575 case GIMPLE_OMP_TASK:
576 case GIMPLE_OMP_FOR:
577 case GIMPLE_OMP_SINGLE:
578 case GIMPLE_OMP_MASTER:
579 case GIMPLE_OMP_ORDERED:
580 case GIMPLE_OMP_CRITICAL:
581 case GIMPLE_OMP_SECTION:
582 cur_region = new_omp_region (bb, code, cur_region);
583 fallthru = true;
584 break;
586 case GIMPLE_OMP_SECTIONS:
587 cur_region = new_omp_region (bb, code, cur_region);
588 fallthru = true;
589 break;
591 case GIMPLE_OMP_SECTIONS_SWITCH:
592 fallthru = false;
593 break;
596 case GIMPLE_OMP_ATOMIC_LOAD:
597 case GIMPLE_OMP_ATOMIC_STORE:
598 fallthru = true;
599 break;
602 case GIMPLE_OMP_RETURN:
603 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
604 somewhere other than the next block. This will be
605 created later. */
606 cur_region->exit = bb;
607 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
608 cur_region = cur_region->outer;
609 break;
611 case GIMPLE_OMP_CONTINUE:
612 cur_region->cont = bb;
613 switch (cur_region->type)
615 case GIMPLE_OMP_FOR:
616 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
617 succs edges as abnormal to prevent splitting
618 them. */
619 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
620 /* Make the loopback edge. */
621 make_edge (bb, single_succ (cur_region->entry),
622 EDGE_ABNORMAL);
624 /* Create an edge from GIMPLE_OMP_FOR to exit, which
625 corresponds to the case that the body of the loop
626 is not executed at all. */
627 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
628 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
629 fallthru = false;
630 break;
632 case GIMPLE_OMP_SECTIONS:
633 /* Wire up the edges into and out of the nested sections. */
635 basic_block switch_bb = single_succ (cur_region->entry);
637 struct omp_region *i;
638 for (i = cur_region->inner; i ; i = i->next)
640 gcc_assert (i->type == GIMPLE_OMP_SECTION);
641 make_edge (switch_bb, i->entry, 0);
642 make_edge (i->exit, bb, EDGE_FALLTHRU);
645 /* Make the loopback edge to the block with
646 GIMPLE_OMP_SECTIONS_SWITCH. */
647 make_edge (bb, switch_bb, 0);
649 /* Make the edge from the switch to exit. */
650 make_edge (switch_bb, bb->next_bb, 0);
651 fallthru = false;
653 break;
655 default:
656 gcc_unreachable ();
658 break;
660 default:
661 gcc_assert (!stmt_ends_bb_p (last));
662 fallthru = true;
665 else
666 fallthru = true;
668 if (fallthru)
670 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
671 if (last)
672 assign_discriminator (gimple_location (last), bb->next_bb);
676 if (root_omp_region)
677 free_omp_regions ();
679 /* Fold COND_EXPR_COND of each COND_EXPR. */
680 fold_cond_expr_cond ();
683 /* Trivial hash function for a location_t. ITEM is a pointer to
684 a hash table entry that maps a location_t to a discriminator. */
686 static unsigned int
687 locus_map_hash (const void *item)
689 return ((const struct locus_discrim_map *) item)->locus;
692 /* Equality function for the locus-to-discriminator map. VA and VB
693 point to the two hash table entries to compare. */
695 static int
696 locus_map_eq (const void *va, const void *vb)
698 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
699 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
700 return a->locus == b->locus;
703 /* Find the next available discriminator value for LOCUS. The
704 discriminator distinguishes among several basic blocks that
705 share a common locus, allowing for more accurate sample-based
706 profiling. */
708 static int
709 next_discriminator_for_locus (location_t locus)
711 struct locus_discrim_map item;
712 struct locus_discrim_map **slot;
714 item.locus = locus;
715 item.discriminator = 0;
716 slot = (struct locus_discrim_map **)
717 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
718 (hashval_t) locus, INSERT);
719 gcc_assert (slot);
720 if (*slot == HTAB_EMPTY_ENTRY)
722 *slot = XNEW (struct locus_discrim_map);
723 gcc_assert (*slot);
724 (*slot)->locus = locus;
725 (*slot)->discriminator = 0;
727 (*slot)->discriminator++;
728 return (*slot)->discriminator;
731 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
733 static bool
734 same_line_p (location_t locus1, location_t locus2)
736 expanded_location from, to;
738 if (locus1 == locus2)
739 return true;
741 from = expand_location (locus1);
742 to = expand_location (locus2);
744 if (from.line != to.line)
745 return false;
746 if (from.file == to.file)
747 return true;
748 return (from.file != NULL
749 && to.file != NULL
750 && strcmp (from.file, to.file) == 0);
753 /* Assign a unique discriminator value to block BB if it begins at the same
754 LOCUS as its predecessor block. */
756 static void
757 assign_discriminator (location_t locus, basic_block bb)
759 gimple first_in_to_bb, last_in_to_bb;
761 if (locus == 0 || bb->discriminator != 0)
762 return;
764 first_in_to_bb = first_non_label_stmt (bb);
765 last_in_to_bb = last_stmt (bb);
766 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
767 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
768 bb->discriminator = next_discriminator_for_locus (locus);
771 /* Create the edges for a GIMPLE_COND starting at block BB. */
773 static void
774 make_cond_expr_edges (basic_block bb)
776 gimple entry = last_stmt (bb);
777 gimple then_stmt, else_stmt;
778 basic_block then_bb, else_bb;
779 tree then_label, else_label;
780 edge e;
781 location_t entry_locus;
783 gcc_assert (entry);
784 gcc_assert (gimple_code (entry) == GIMPLE_COND);
786 entry_locus = gimple_location (entry);
788 /* Entry basic blocks for each component. */
789 then_label = gimple_cond_true_label (entry);
790 else_label = gimple_cond_false_label (entry);
791 then_bb = label_to_block (then_label);
792 else_bb = label_to_block (else_label);
793 then_stmt = first_stmt (then_bb);
794 else_stmt = first_stmt (else_bb);
796 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
797 assign_discriminator (entry_locus, then_bb);
798 e->goto_locus = gimple_location (then_stmt);
799 if (e->goto_locus)
800 e->goto_block = gimple_block (then_stmt);
801 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
802 if (e)
804 assign_discriminator (entry_locus, else_bb);
805 e->goto_locus = gimple_location (else_stmt);
806 if (e->goto_locus)
807 e->goto_block = gimple_block (else_stmt);
810 /* We do not need the labels anymore. */
811 gimple_cond_set_true_label (entry, NULL_TREE);
812 gimple_cond_set_false_label (entry, NULL_TREE);
816 /* Called for each element in the hash table (P) as we delete the
817 edge to cases hash table.
819 Clear all the TREE_CHAINs to prevent problems with copying of
820 SWITCH_EXPRs and structure sharing rules, then free the hash table
821 element. */
823 static bool
824 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
825 void *data ATTRIBUTE_UNUSED)
827 tree t, next;
829 for (t = (tree) *value; t; t = next)
831 next = TREE_CHAIN (t);
832 TREE_CHAIN (t) = NULL;
835 *value = NULL;
836 return false;
839 /* Start recording information mapping edges to case labels. */
841 void
842 start_recording_case_labels (void)
844 gcc_assert (edge_to_cases == NULL);
845 edge_to_cases = pointer_map_create ();
848 /* Return nonzero if we are recording information for case labels. */
850 static bool
851 recording_case_labels_p (void)
853 return (edge_to_cases != NULL);
856 /* Stop recording information mapping edges to case labels and
857 remove any information we have recorded. */
858 void
859 end_recording_case_labels (void)
861 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
862 pointer_map_destroy (edge_to_cases);
863 edge_to_cases = NULL;
866 /* If we are inside a {start,end}_recording_cases block, then return
867 a chain of CASE_LABEL_EXPRs from T which reference E.
869 Otherwise return NULL. */
871 static tree
872 get_cases_for_edge (edge e, gimple t)
874 void **slot;
875 size_t i, n;
877 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
878 chains available. Return NULL so the caller can detect this case. */
879 if (!recording_case_labels_p ())
880 return NULL;
882 slot = pointer_map_contains (edge_to_cases, e);
883 if (slot)
884 return (tree) *slot;
886 /* If we did not find E in the hash table, then this must be the first
887 time we have been queried for information about E & T. Add all the
888 elements from T to the hash table then perform the query again. */
890 n = gimple_switch_num_labels (t);
891 for (i = 0; i < n; i++)
893 tree elt = gimple_switch_label (t, i);
894 tree lab = CASE_LABEL (elt);
895 basic_block label_bb = label_to_block (lab);
896 edge this_edge = find_edge (e->src, label_bb);
898 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
899 a new chain. */
900 slot = pointer_map_insert (edge_to_cases, this_edge);
901 TREE_CHAIN (elt) = (tree) *slot;
902 *slot = elt;
905 return (tree) *pointer_map_contains (edge_to_cases, e);
908 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
910 static void
911 make_gimple_switch_edges (basic_block bb)
913 gimple entry = last_stmt (bb);
914 location_t entry_locus;
915 size_t i, n;
917 entry_locus = gimple_location (entry);
919 n = gimple_switch_num_labels (entry);
921 for (i = 0; i < n; ++i)
923 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
924 basic_block label_bb = label_to_block (lab);
925 make_edge (bb, label_bb, 0);
926 assign_discriminator (entry_locus, label_bb);
931 /* Return the basic block holding label DEST. */
933 basic_block
934 label_to_block_fn (struct function *ifun, tree dest)
936 int uid = LABEL_DECL_UID (dest);
938 /* We would die hard when faced by an undefined label. Emit a label to
939 the very first basic block. This will hopefully make even the dataflow
940 and undefined variable warnings quite right. */
941 if ((errorcount || sorrycount) && uid < 0)
943 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
944 gimple stmt;
946 stmt = gimple_build_label (dest);
947 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
948 uid = LABEL_DECL_UID (dest);
950 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
951 <= (unsigned int) uid)
952 return NULL;
953 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
956 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
957 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
959 void
960 make_abnormal_goto_edges (basic_block bb, bool for_call)
962 basic_block target_bb;
963 gimple_stmt_iterator gsi;
965 FOR_EACH_BB (target_bb)
966 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
968 gimple label_stmt = gsi_stmt (gsi);
969 tree target;
971 if (gimple_code (label_stmt) != GIMPLE_LABEL)
972 break;
974 target = gimple_label_label (label_stmt);
976 /* Make an edge to every label block that has been marked as a
977 potential target for a computed goto or a non-local goto. */
978 if ((FORCED_LABEL (target) && !for_call)
979 || (DECL_NONLOCAL (target) && for_call))
981 make_edge (bb, target_bb, EDGE_ABNORMAL);
982 break;
987 /* Create edges for a goto statement at block BB. */
989 static void
990 make_goto_expr_edges (basic_block bb)
992 gimple_stmt_iterator last = gsi_last_bb (bb);
993 gimple goto_t = gsi_stmt (last);
995 /* A simple GOTO creates normal edges. */
996 if (simple_goto_p (goto_t))
998 tree dest = gimple_goto_dest (goto_t);
999 basic_block label_bb = label_to_block (dest);
1000 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1001 e->goto_locus = gimple_location (goto_t);
1002 assign_discriminator (e->goto_locus, label_bb);
1003 if (e->goto_locus)
1004 e->goto_block = gimple_block (goto_t);
1005 gsi_remove (&last, true);
1006 return;
1009 /* A computed GOTO creates abnormal edges. */
1010 make_abnormal_goto_edges (bb, false);
1014 /*---------------------------------------------------------------------------
1015 Flowgraph analysis
1016 ---------------------------------------------------------------------------*/
1018 /* Cleanup useless labels in basic blocks. This is something we wish
1019 to do early because it allows us to group case labels before creating
1020 the edges for the CFG, and it speeds up block statement iterators in
1021 all passes later on.
1022 We rerun this pass after CFG is created, to get rid of the labels that
1023 are no longer referenced. After then we do not run it any more, since
1024 (almost) no new labels should be created. */
1026 /* A map from basic block index to the leading label of that block. */
1027 static struct label_record
1029 /* The label. */
1030 tree label;
1032 /* True if the label is referenced from somewhere. */
1033 bool used;
1034 } *label_for_bb;
1036 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
1037 static void
1038 update_eh_label (struct eh_region_d *region)
1040 tree old_label = get_eh_region_tree_label (region);
1041 if (old_label)
1043 tree new_label;
1044 basic_block bb = label_to_block (old_label);
1046 /* ??? After optimizing, there may be EH regions with labels
1047 that have already been removed from the function body, so
1048 there is no basic block for them. */
1049 if (! bb)
1050 return;
1052 new_label = label_for_bb[bb->index].label;
1053 label_for_bb[bb->index].used = true;
1054 set_eh_region_tree_label (region, new_label);
1059 /* Given LABEL return the first label in the same basic block. */
1061 static tree
1062 main_block_label (tree label)
1064 basic_block bb = label_to_block (label);
1065 tree main_label = label_for_bb[bb->index].label;
1067 /* label_to_block possibly inserted undefined label into the chain. */
1068 if (!main_label)
1070 label_for_bb[bb->index].label = label;
1071 main_label = label;
1074 label_for_bb[bb->index].used = true;
1075 return main_label;
1078 /* Cleanup redundant labels. This is a three-step process:
1079 1) Find the leading label for each block.
1080 2) Redirect all references to labels to the leading labels.
1081 3) Cleanup all useless labels. */
1083 void
1084 cleanup_dead_labels (void)
1086 basic_block bb;
1087 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1089 /* Find a suitable label for each block. We use the first user-defined
1090 label if there is one, or otherwise just the first label we see. */
1091 FOR_EACH_BB (bb)
1093 gimple_stmt_iterator i;
1095 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1097 tree label;
1098 gimple stmt = gsi_stmt (i);
1100 if (gimple_code (stmt) != GIMPLE_LABEL)
1101 break;
1103 label = gimple_label_label (stmt);
1105 /* If we have not yet seen a label for the current block,
1106 remember this one and see if there are more labels. */
1107 if (!label_for_bb[bb->index].label)
1109 label_for_bb[bb->index].label = label;
1110 continue;
1113 /* If we did see a label for the current block already, but it
1114 is an artificially created label, replace it if the current
1115 label is a user defined label. */
1116 if (!DECL_ARTIFICIAL (label)
1117 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1119 label_for_bb[bb->index].label = label;
1120 break;
1125 /* Now redirect all jumps/branches to the selected label.
1126 First do so for each block ending in a control statement. */
1127 FOR_EACH_BB (bb)
1129 gimple stmt = last_stmt (bb);
1130 if (!stmt)
1131 continue;
1133 switch (gimple_code (stmt))
1135 case GIMPLE_COND:
1137 tree true_label = gimple_cond_true_label (stmt);
1138 tree false_label = gimple_cond_false_label (stmt);
1140 if (true_label)
1141 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1142 if (false_label)
1143 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1144 break;
1147 case GIMPLE_SWITCH:
1149 size_t i, n = gimple_switch_num_labels (stmt);
1151 /* Replace all destination labels. */
1152 for (i = 0; i < n; ++i)
1154 tree case_label = gimple_switch_label (stmt, i);
1155 tree label = main_block_label (CASE_LABEL (case_label));
1156 CASE_LABEL (case_label) = label;
1158 break;
1161 /* We have to handle gotos until they're removed, and we don't
1162 remove them until after we've created the CFG edges. */
1163 case GIMPLE_GOTO:
1164 if (!computed_goto_p (stmt))
1166 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1167 gimple_goto_set_dest (stmt, new_dest);
1168 break;
1171 default:
1172 break;
1176 for_each_eh_region (update_eh_label);
1178 /* Finally, purge dead labels. All user-defined labels and labels that
1179 can be the target of non-local gotos and labels which have their
1180 address taken are preserved. */
1181 FOR_EACH_BB (bb)
1183 gimple_stmt_iterator i;
1184 tree label_for_this_bb = label_for_bb[bb->index].label;
1186 if (!label_for_this_bb)
1187 continue;
1189 /* If the main label of the block is unused, we may still remove it. */
1190 if (!label_for_bb[bb->index].used)
1191 label_for_this_bb = NULL;
1193 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1195 tree label;
1196 gimple stmt = gsi_stmt (i);
1198 if (gimple_code (stmt) != GIMPLE_LABEL)
1199 break;
1201 label = gimple_label_label (stmt);
1203 if (label == label_for_this_bb
1204 || !DECL_ARTIFICIAL (label)
1205 || DECL_NONLOCAL (label)
1206 || FORCED_LABEL (label))
1207 gsi_next (&i);
1208 else
1209 gsi_remove (&i, true);
1213 free (label_for_bb);
1216 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1217 and scan the sorted vector of cases. Combine the ones jumping to the
1218 same label.
1219 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1221 void
1222 group_case_labels (void)
1224 basic_block bb;
1226 FOR_EACH_BB (bb)
1228 gimple stmt = last_stmt (bb);
1229 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1231 int old_size = gimple_switch_num_labels (stmt);
1232 int i, j, new_size = old_size;
1233 tree default_case = NULL_TREE;
1234 tree default_label = NULL_TREE;
1235 bool has_default;
1237 /* The default label is always the first case in a switch
1238 statement after gimplification if it was not optimized
1239 away */
1240 if (!CASE_LOW (gimple_switch_default_label (stmt))
1241 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1243 default_case = gimple_switch_default_label (stmt);
1244 default_label = CASE_LABEL (default_case);
1245 has_default = true;
1247 else
1248 has_default = false;
1250 /* Look for possible opportunities to merge cases. */
1251 if (has_default)
1252 i = 1;
1253 else
1254 i = 0;
1255 while (i < old_size)
1257 tree base_case, base_label, base_high;
1258 base_case = gimple_switch_label (stmt, i);
1260 gcc_assert (base_case);
1261 base_label = CASE_LABEL (base_case);
1263 /* Discard cases that have the same destination as the
1264 default case. */
1265 if (base_label == default_label)
1267 gimple_switch_set_label (stmt, i, NULL_TREE);
1268 i++;
1269 new_size--;
1270 continue;
1273 base_high = CASE_HIGH (base_case)
1274 ? CASE_HIGH (base_case)
1275 : CASE_LOW (base_case);
1276 i++;
1278 /* Try to merge case labels. Break out when we reach the end
1279 of the label vector or when we cannot merge the next case
1280 label with the current one. */
1281 while (i < old_size)
1283 tree merge_case = gimple_switch_label (stmt, i);
1284 tree merge_label = CASE_LABEL (merge_case);
1285 tree t = int_const_binop (PLUS_EXPR, base_high,
1286 integer_one_node, 1);
1288 /* Merge the cases if they jump to the same place,
1289 and their ranges are consecutive. */
1290 if (merge_label == base_label
1291 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1293 base_high = CASE_HIGH (merge_case) ?
1294 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1295 CASE_HIGH (base_case) = base_high;
1296 gimple_switch_set_label (stmt, i, NULL_TREE);
1297 new_size--;
1298 i++;
1300 else
1301 break;
1305 /* Compress the case labels in the label vector, and adjust the
1306 length of the vector. */
1307 for (i = 0, j = 0; i < new_size; i++)
1309 while (! gimple_switch_label (stmt, j))
1310 j++;
1311 gimple_switch_set_label (stmt, i,
1312 gimple_switch_label (stmt, j++));
1315 gcc_assert (new_size <= old_size);
1316 gimple_switch_set_num_labels (stmt, new_size);
1321 /* Checks whether we can merge block B into block A. */
1323 static bool
1324 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1326 gimple stmt;
1327 gimple_stmt_iterator gsi;
1328 gimple_seq phis;
1330 if (!single_succ_p (a))
1331 return false;
1333 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1334 return false;
1336 if (single_succ (a) != b)
1337 return false;
1339 if (!single_pred_p (b))
1340 return false;
1342 if (b == EXIT_BLOCK_PTR)
1343 return false;
1345 /* If A ends by a statement causing exceptions or something similar, we
1346 cannot merge the blocks. */
1347 stmt = last_stmt (a);
1348 if (stmt && stmt_ends_bb_p (stmt))
1349 return false;
1351 /* Do not allow a block with only a non-local label to be merged. */
1352 if (stmt
1353 && gimple_code (stmt) == GIMPLE_LABEL
1354 && DECL_NONLOCAL (gimple_label_label (stmt)))
1355 return false;
1357 /* It must be possible to eliminate all phi nodes in B. If ssa form
1358 is not up-to-date, we cannot eliminate any phis; however, if only
1359 some symbols as whole are marked for renaming, this is not a problem,
1360 as phi nodes for those symbols are irrelevant in updating anyway. */
1361 phis = phi_nodes (b);
1362 if (!gimple_seq_empty_p (phis))
1364 gimple_stmt_iterator i;
1366 if (name_mappings_registered_p ())
1367 return false;
1369 for (i = gsi_start (phis); !gsi_end_p (i); gsi_next (&i))
1371 gimple phi = gsi_stmt (i);
1373 if (!is_gimple_reg (gimple_phi_result (phi))
1374 && !may_propagate_copy (gimple_phi_result (phi),
1375 gimple_phi_arg_def (phi, 0)))
1376 return false;
1380 /* Do not remove user labels. */
1381 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1383 stmt = gsi_stmt (gsi);
1384 if (gimple_code (stmt) != GIMPLE_LABEL)
1385 break;
1386 if (!DECL_ARTIFICIAL (gimple_label_label (stmt)))
1387 return false;
1390 /* Protect the loop latches. */
1391 if (current_loops
1392 && b->loop_father->latch == b)
1393 return false;
1395 return true;
1398 /* Replaces all uses of NAME by VAL. */
1400 void
1401 replace_uses_by (tree name, tree val)
1403 imm_use_iterator imm_iter;
1404 use_operand_p use;
1405 gimple stmt;
1406 edge e;
1408 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1410 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1412 replace_exp (use, val);
1414 if (gimple_code (stmt) == GIMPLE_PHI)
1416 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1417 if (e->flags & EDGE_ABNORMAL)
1419 /* This can only occur for virtual operands, since
1420 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1421 would prevent replacement. */
1422 gcc_assert (!is_gimple_reg (name));
1423 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1428 if (gimple_code (stmt) != GIMPLE_PHI)
1430 size_t i;
1432 fold_stmt_inplace (stmt);
1433 if (cfgcleanup_altered_bbs)
1434 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1436 /* FIXME. This should go in update_stmt. */
1437 for (i = 0; i < gimple_num_ops (stmt); i++)
1439 tree op = gimple_op (stmt, i);
1440 /* Operands may be empty here. For example, the labels
1441 of a GIMPLE_COND are nulled out following the creation
1442 of the corresponding CFG edges. */
1443 if (op && TREE_CODE (op) == ADDR_EXPR)
1444 recompute_tree_invariant_for_addr_expr (op);
1447 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1448 update_stmt (stmt);
1452 gcc_assert (has_zero_uses (name));
1454 /* Also update the trees stored in loop structures. */
1455 if (current_loops)
1457 struct loop *loop;
1458 loop_iterator li;
1460 FOR_EACH_LOOP (li, loop, 0)
1462 substitute_in_loop_info (loop, name, val);
1467 /* Merge block B into block A. */
1469 static void
1470 gimple_merge_blocks (basic_block a, basic_block b)
1472 gimple_stmt_iterator last, gsi, psi;
1473 gimple_seq phis = phi_nodes (b);
1475 if (dump_file)
1476 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1478 /* Remove all single-valued PHI nodes from block B of the form
1479 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1480 gsi = gsi_last_bb (a);
1481 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1483 gimple phi = gsi_stmt (psi);
1484 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1485 gimple copy;
1486 bool may_replace_uses = !is_gimple_reg (def)
1487 || may_propagate_copy (def, use);
1489 /* In case we maintain loop closed ssa form, do not propagate arguments
1490 of loop exit phi nodes. */
1491 if (current_loops
1492 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1493 && is_gimple_reg (def)
1494 && TREE_CODE (use) == SSA_NAME
1495 && a->loop_father != b->loop_father)
1496 may_replace_uses = false;
1498 if (!may_replace_uses)
1500 gcc_assert (is_gimple_reg (def));
1502 /* Note that just emitting the copies is fine -- there is no problem
1503 with ordering of phi nodes. This is because A is the single
1504 predecessor of B, therefore results of the phi nodes cannot
1505 appear as arguments of the phi nodes. */
1506 copy = gimple_build_assign (def, use);
1507 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1508 remove_phi_node (&psi, false);
1510 else
1512 /* If we deal with a PHI for virtual operands, we can simply
1513 propagate these without fussing with folding or updating
1514 the stmt. */
1515 if (!is_gimple_reg (def))
1517 imm_use_iterator iter;
1518 use_operand_p use_p;
1519 gimple stmt;
1521 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1522 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1523 SET_USE (use_p, use);
1525 else
1526 replace_uses_by (def, use);
1528 remove_phi_node (&psi, true);
1532 /* Ensure that B follows A. */
1533 move_block_after (b, a);
1535 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1536 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1538 /* Remove labels from B and set gimple_bb to A for other statements. */
1539 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1541 if (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL)
1543 gimple label = gsi_stmt (gsi);
1545 gsi_remove (&gsi, false);
1547 /* Now that we can thread computed gotos, we might have
1548 a situation where we have a forced label in block B
1549 However, the label at the start of block B might still be
1550 used in other ways (think about the runtime checking for
1551 Fortran assigned gotos). So we can not just delete the
1552 label. Instead we move the label to the start of block A. */
1553 if (FORCED_LABEL (gimple_label_label (label)))
1555 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1556 gsi_insert_before (&dest_gsi, label, GSI_NEW_STMT);
1559 else
1561 gimple_set_bb (gsi_stmt (gsi), a);
1562 gsi_next (&gsi);
1566 /* Merge the sequences. */
1567 last = gsi_last_bb (a);
1568 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1569 set_bb_seq (b, NULL);
1571 if (cfgcleanup_altered_bbs)
1572 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1576 /* Return the one of two successors of BB that is not reachable by a
1577 complex edge, if there is one. Else, return BB. We use
1578 this in optimizations that use post-dominators for their heuristics,
1579 to catch the cases in C++ where function calls are involved. */
1581 basic_block
1582 single_noncomplex_succ (basic_block bb)
1584 edge e0, e1;
1585 if (EDGE_COUNT (bb->succs) != 2)
1586 return bb;
1588 e0 = EDGE_SUCC (bb, 0);
1589 e1 = EDGE_SUCC (bb, 1);
1590 if (e0->flags & EDGE_COMPLEX)
1591 return e1->dest;
1592 if (e1->flags & EDGE_COMPLEX)
1593 return e0->dest;
1595 return bb;
1599 /* Walk the function tree removing unnecessary statements.
1601 * Empty statement nodes are removed
1603 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1605 * Unnecessary COND_EXPRs are removed
1607 * Some unnecessary BIND_EXPRs are removed
1609 * GOTO_EXPRs immediately preceding destination are removed.
1611 Clearly more work could be done. The trick is doing the analysis
1612 and removal fast enough to be a net improvement in compile times.
1614 Note that when we remove a control structure such as a COND_EXPR
1615 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1616 to ensure we eliminate all the useless code. */
1618 struct rus_data
1620 bool repeat;
1621 bool may_throw;
1622 bool may_branch;
1623 bool has_label;
1624 bool last_was_goto;
1625 gimple_stmt_iterator last_goto_gsi;
1629 static void remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *);
1631 /* Given a statement sequence, find the first executable statement with
1632 location information, and warn that it is unreachable. When searching,
1633 descend into containers in execution order. */
1635 static bool
1636 remove_useless_stmts_warn_notreached (gimple_seq stmts)
1638 gimple_stmt_iterator gsi;
1640 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
1642 gimple stmt = gsi_stmt (gsi);
1644 if (gimple_no_warning_p (stmt)) return false;
1646 if (gimple_has_location (stmt))
1648 location_t loc = gimple_location (stmt);
1649 if (LOCATION_LINE (loc) > 0)
1651 warning_at (loc, OPT_Wunreachable_code, "will never be executed");
1652 return true;
1656 switch (gimple_code (stmt))
1658 /* Unfortunately, we need the CFG now to detect unreachable
1659 branches in a conditional, so conditionals are not handled here. */
1661 case GIMPLE_TRY:
1662 if (remove_useless_stmts_warn_notreached (gimple_try_eval (stmt)))
1663 return true;
1664 if (remove_useless_stmts_warn_notreached (gimple_try_cleanup (stmt)))
1665 return true;
1666 break;
1668 case GIMPLE_CATCH:
1669 return remove_useless_stmts_warn_notreached (gimple_catch_handler (stmt));
1671 case GIMPLE_EH_FILTER:
1672 return remove_useless_stmts_warn_notreached (gimple_eh_filter_failure (stmt));
1674 case GIMPLE_BIND:
1675 return remove_useless_stmts_warn_notreached (gimple_bind_body (stmt));
1677 default:
1678 break;
1682 return false;
1685 /* Helper for remove_useless_stmts_1. Handle GIMPLE_COND statements. */
1687 static void
1688 remove_useless_stmts_cond (gimple_stmt_iterator *gsi, struct rus_data *data)
1690 gimple stmt = gsi_stmt (*gsi);
1692 /* The folded result must still be a conditional statement. */
1693 fold_stmt (gsi);
1694 gcc_assert (gsi_stmt (*gsi) == stmt);
1696 data->may_branch = true;
1698 /* Replace trivial conditionals with gotos. */
1699 if (gimple_cond_true_p (stmt))
1701 /* Goto THEN label. */
1702 tree then_label = gimple_cond_true_label (stmt);
1704 gsi_replace (gsi, gimple_build_goto (then_label), false);
1705 data->last_goto_gsi = *gsi;
1706 data->last_was_goto = true;
1707 data->repeat = true;
1709 else if (gimple_cond_false_p (stmt))
1711 /* Goto ELSE label. */
1712 tree else_label = gimple_cond_false_label (stmt);
1714 gsi_replace (gsi, gimple_build_goto (else_label), false);
1715 data->last_goto_gsi = *gsi;
1716 data->last_was_goto = true;
1717 data->repeat = true;
1719 else
1721 tree then_label = gimple_cond_true_label (stmt);
1722 tree else_label = gimple_cond_false_label (stmt);
1724 if (then_label == else_label)
1726 /* Goto common destination. */
1727 gsi_replace (gsi, gimple_build_goto (then_label), false);
1728 data->last_goto_gsi = *gsi;
1729 data->last_was_goto = true;
1730 data->repeat = true;
1734 gsi_next (gsi);
1736 data->last_was_goto = false;
1739 /* Helper for remove_useless_stmts_1.
1740 Handle the try-finally case for GIMPLE_TRY statements. */
1742 static void
1743 remove_useless_stmts_tf (gimple_stmt_iterator *gsi, struct rus_data *data)
1745 bool save_may_branch, save_may_throw;
1746 bool this_may_branch, this_may_throw;
1748 gimple_seq eval_seq, cleanup_seq;
1749 gimple_stmt_iterator eval_gsi, cleanup_gsi;
1751 gimple stmt = gsi_stmt (*gsi);
1753 /* Collect may_branch and may_throw information for the body only. */
1754 save_may_branch = data->may_branch;
1755 save_may_throw = data->may_throw;
1756 data->may_branch = false;
1757 data->may_throw = false;
1758 data->last_was_goto = false;
1760 eval_seq = gimple_try_eval (stmt);
1761 eval_gsi = gsi_start (eval_seq);
1762 remove_useless_stmts_1 (&eval_gsi, data);
1764 this_may_branch = data->may_branch;
1765 this_may_throw = data->may_throw;
1766 data->may_branch |= save_may_branch;
1767 data->may_throw |= save_may_throw;
1768 data->last_was_goto = false;
1770 cleanup_seq = gimple_try_cleanup (stmt);
1771 cleanup_gsi = gsi_start (cleanup_seq);
1772 remove_useless_stmts_1 (&cleanup_gsi, data);
1774 /* If the body is empty, then we can emit the FINALLY block without
1775 the enclosing TRY_FINALLY_EXPR. */
1776 if (gimple_seq_empty_p (eval_seq))
1778 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1779 gsi_remove (gsi, false);
1780 data->repeat = true;
1783 /* If the handler is empty, then we can emit the TRY block without
1784 the enclosing TRY_FINALLY_EXPR. */
1785 else if (gimple_seq_empty_p (cleanup_seq))
1787 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1788 gsi_remove (gsi, false);
1789 data->repeat = true;
1792 /* If the body neither throws, nor branches, then we can safely
1793 string the TRY and FINALLY blocks together. */
1794 else if (!this_may_branch && !this_may_throw)
1796 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1797 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1798 gsi_remove (gsi, false);
1799 data->repeat = true;
1801 else
1802 gsi_next (gsi);
1805 /* Helper for remove_useless_stmts_1.
1806 Handle the try-catch case for GIMPLE_TRY statements. */
1808 static void
1809 remove_useless_stmts_tc (gimple_stmt_iterator *gsi, struct rus_data *data)
1811 bool save_may_throw, this_may_throw;
1813 gimple_seq eval_seq, cleanup_seq, handler_seq, failure_seq;
1814 gimple_stmt_iterator eval_gsi, cleanup_gsi, handler_gsi, failure_gsi;
1816 gimple stmt = gsi_stmt (*gsi);
1818 /* Collect may_throw information for the body only. */
1819 save_may_throw = data->may_throw;
1820 data->may_throw = false;
1821 data->last_was_goto = false;
1823 eval_seq = gimple_try_eval (stmt);
1824 eval_gsi = gsi_start (eval_seq);
1825 remove_useless_stmts_1 (&eval_gsi, data);
1827 this_may_throw = data->may_throw;
1828 data->may_throw = save_may_throw;
1830 cleanup_seq = gimple_try_cleanup (stmt);
1832 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1833 if (!this_may_throw)
1835 if (warn_notreached)
1837 remove_useless_stmts_warn_notreached (cleanup_seq);
1839 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1840 gsi_remove (gsi, false);
1841 data->repeat = true;
1842 return;
1845 /* Process the catch clause specially. We may be able to tell that
1846 no exceptions propagate past this point. */
1848 this_may_throw = true;
1849 cleanup_gsi = gsi_start (cleanup_seq);
1850 stmt = gsi_stmt (cleanup_gsi);
1851 data->last_was_goto = false;
1853 switch (gimple_code (stmt))
1855 case GIMPLE_CATCH:
1856 /* If the first element is a catch, they all must be. */
1857 while (!gsi_end_p (cleanup_gsi))
1859 stmt = gsi_stmt (cleanup_gsi);
1860 /* If we catch all exceptions, then the body does not
1861 propagate exceptions past this point. */
1862 if (gimple_catch_types (stmt) == NULL)
1863 this_may_throw = false;
1864 data->last_was_goto = false;
1865 handler_seq = gimple_catch_handler (stmt);
1866 handler_gsi = gsi_start (handler_seq);
1867 remove_useless_stmts_1 (&handler_gsi, data);
1868 gsi_next (&cleanup_gsi);
1870 gsi_next (gsi);
1871 break;
1873 case GIMPLE_EH_FILTER:
1874 /* If the first element is an eh_filter, it should stand alone. */
1875 if (gimple_eh_filter_must_not_throw (stmt))
1876 this_may_throw = false;
1877 else if (gimple_eh_filter_types (stmt) == NULL)
1878 this_may_throw = false;
1879 failure_seq = gimple_eh_filter_failure (stmt);
1880 failure_gsi = gsi_start (failure_seq);
1881 remove_useless_stmts_1 (&failure_gsi, data);
1882 gsi_next (gsi);
1883 break;
1885 default:
1886 /* Otherwise this is a list of cleanup statements. */
1887 remove_useless_stmts_1 (&cleanup_gsi, data);
1889 /* If the cleanup is empty, then we can emit the TRY block without
1890 the enclosing TRY_CATCH_EXPR. */
1891 if (gimple_seq_empty_p (cleanup_seq))
1893 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1894 gsi_remove(gsi, false);
1895 data->repeat = true;
1897 else
1898 gsi_next (gsi);
1899 break;
1902 data->may_throw |= this_may_throw;
1905 /* Helper for remove_useless_stmts_1. Handle GIMPLE_BIND statements. */
1907 static void
1908 remove_useless_stmts_bind (gimple_stmt_iterator *gsi, struct rus_data *data ATTRIBUTE_UNUSED)
1910 tree block;
1911 gimple_seq body_seq, fn_body_seq;
1912 gimple_stmt_iterator body_gsi;
1914 gimple stmt = gsi_stmt (*gsi);
1916 /* First remove anything underneath the BIND_EXPR. */
1918 body_seq = gimple_bind_body (stmt);
1919 body_gsi = gsi_start (body_seq);
1920 remove_useless_stmts_1 (&body_gsi, data);
1922 /* If the GIMPLE_BIND has no variables, then we can pull everything
1923 up one level and remove the GIMPLE_BIND, unless this is the toplevel
1924 GIMPLE_BIND for the current function or an inlined function.
1926 When this situation occurs we will want to apply this
1927 optimization again. */
1928 block = gimple_bind_block (stmt);
1929 fn_body_seq = gimple_body (current_function_decl);
1930 if (gimple_bind_vars (stmt) == NULL_TREE
1931 && (gimple_seq_empty_p (fn_body_seq)
1932 || stmt != gimple_seq_first_stmt (fn_body_seq))
1933 && (! block
1934 || ! BLOCK_ABSTRACT_ORIGIN (block)
1935 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1936 != FUNCTION_DECL)))
1938 tree var = NULL_TREE;
1939 /* Even if there are no gimple_bind_vars, there might be other
1940 decls in BLOCK_VARS rendering the GIMPLE_BIND not useless. */
1941 if (block && !BLOCK_NUM_NONLOCALIZED_VARS (block))
1942 for (var = BLOCK_VARS (block); var; var = TREE_CHAIN (var))
1943 if (TREE_CODE (var) == IMPORTED_DECL)
1944 break;
1945 if (var || (block && BLOCK_NUM_NONLOCALIZED_VARS (block)))
1946 gsi_next (gsi);
1947 else
1949 gsi_insert_seq_before (gsi, body_seq, GSI_SAME_STMT);
1950 gsi_remove (gsi, false);
1951 data->repeat = true;
1954 else
1955 gsi_next (gsi);
1958 /* Helper for remove_useless_stmts_1. Handle GIMPLE_GOTO statements. */
1960 static void
1961 remove_useless_stmts_goto (gimple_stmt_iterator *gsi, struct rus_data *data)
1963 gimple stmt = gsi_stmt (*gsi);
1965 tree dest = gimple_goto_dest (stmt);
1967 data->may_branch = true;
1968 data->last_was_goto = false;
1970 /* Record iterator for last goto expr, so that we can delete it if unnecessary. */
1971 if (TREE_CODE (dest) == LABEL_DECL)
1973 data->last_goto_gsi = *gsi;
1974 data->last_was_goto = true;
1977 gsi_next(gsi);
1980 /* Helper for remove_useless_stmts_1. Handle GIMPLE_LABEL statements. */
1982 static void
1983 remove_useless_stmts_label (gimple_stmt_iterator *gsi, struct rus_data *data)
1985 gimple stmt = gsi_stmt (*gsi);
1987 tree label = gimple_label_label (stmt);
1989 data->has_label = true;
1991 /* We do want to jump across non-local label receiver code. */
1992 if (DECL_NONLOCAL (label))
1993 data->last_was_goto = false;
1995 else if (data->last_was_goto
1996 && gimple_goto_dest (gsi_stmt (data->last_goto_gsi)) == label)
1998 /* Replace the preceding GIMPLE_GOTO statement with
1999 a GIMPLE_NOP, which will be subsequently removed.
2000 In this way, we avoid invalidating other iterators
2001 active on the statement sequence. */
2002 gsi_replace(&data->last_goto_gsi, gimple_build_nop(), false);
2003 data->last_was_goto = false;
2004 data->repeat = true;
2007 /* ??? Add something here to delete unused labels. */
2009 gsi_next (gsi);
2013 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2015 void
2016 notice_special_calls (gimple call)
2018 int flags = gimple_call_flags (call);
2020 if (flags & ECF_MAY_BE_ALLOCA)
2021 cfun->calls_alloca = true;
2022 if (flags & ECF_RETURNS_TWICE)
2023 cfun->calls_setjmp = true;
2027 /* Clear flags set by notice_special_calls. Used by dead code removal
2028 to update the flags. */
2030 void
2031 clear_special_calls (void)
2033 cfun->calls_alloca = false;
2034 cfun->calls_setjmp = false;
2037 /* Remove useless statements from a statement sequence, and perform
2038 some preliminary simplifications. */
2040 static void
2041 remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *data)
2043 while (!gsi_end_p (*gsi))
2045 gimple stmt = gsi_stmt (*gsi);
2047 switch (gimple_code (stmt))
2049 case GIMPLE_COND:
2050 remove_useless_stmts_cond (gsi, data);
2051 break;
2053 case GIMPLE_GOTO:
2054 remove_useless_stmts_goto (gsi, data);
2055 break;
2057 case GIMPLE_LABEL:
2058 remove_useless_stmts_label (gsi, data);
2059 break;
2061 case GIMPLE_ASSIGN:
2062 fold_stmt (gsi);
2063 stmt = gsi_stmt (*gsi);
2064 data->last_was_goto = false;
2065 if (stmt_could_throw_p (stmt))
2066 data->may_throw = true;
2067 gsi_next (gsi);
2068 break;
2070 case GIMPLE_ASM:
2071 fold_stmt (gsi);
2072 data->last_was_goto = false;
2073 gsi_next (gsi);
2074 break;
2076 case GIMPLE_CALL:
2077 fold_stmt (gsi);
2078 stmt = gsi_stmt (*gsi);
2079 data->last_was_goto = false;
2080 if (is_gimple_call (stmt))
2081 notice_special_calls (stmt);
2083 /* We used to call update_gimple_call_flags here,
2084 which copied side-effects and nothrows status
2085 from the function decl to the call. In the new
2086 tuplified GIMPLE, the accessors for this information
2087 always consult the function decl, so this copying
2088 is no longer necessary. */
2089 if (stmt_could_throw_p (stmt))
2090 data->may_throw = true;
2091 gsi_next (gsi);
2092 break;
2094 case GIMPLE_RETURN:
2095 fold_stmt (gsi);
2096 data->last_was_goto = false;
2097 data->may_branch = true;
2098 gsi_next (gsi);
2099 break;
2101 case GIMPLE_BIND:
2102 remove_useless_stmts_bind (gsi, data);
2103 break;
2105 case GIMPLE_TRY:
2106 if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
2107 remove_useless_stmts_tc (gsi, data);
2108 else if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2109 remove_useless_stmts_tf (gsi, data);
2110 else
2111 gcc_unreachable ();
2112 break;
2114 case GIMPLE_CATCH:
2115 gcc_unreachable ();
2116 break;
2118 case GIMPLE_NOP:
2119 gsi_remove (gsi, false);
2120 break;
2122 case GIMPLE_OMP_FOR:
2124 gimple_seq pre_body_seq = gimple_omp_for_pre_body (stmt);
2125 gimple_stmt_iterator pre_body_gsi = gsi_start (pre_body_seq);
2127 remove_useless_stmts_1 (&pre_body_gsi, data);
2128 data->last_was_goto = false;
2130 /* FALLTHROUGH */
2131 case GIMPLE_OMP_CRITICAL:
2132 case GIMPLE_OMP_CONTINUE:
2133 case GIMPLE_OMP_MASTER:
2134 case GIMPLE_OMP_ORDERED:
2135 case GIMPLE_OMP_SECTION:
2136 case GIMPLE_OMP_SECTIONS:
2137 case GIMPLE_OMP_SINGLE:
2139 gimple_seq body_seq = gimple_omp_body (stmt);
2140 gimple_stmt_iterator body_gsi = gsi_start (body_seq);
2142 remove_useless_stmts_1 (&body_gsi, data);
2143 data->last_was_goto = false;
2144 gsi_next (gsi);
2146 break;
2148 case GIMPLE_OMP_PARALLEL:
2149 case GIMPLE_OMP_TASK:
2151 /* Make sure the outermost GIMPLE_BIND isn't removed
2152 as useless. */
2153 gimple_seq body_seq = gimple_omp_body (stmt);
2154 gimple bind = gimple_seq_first_stmt (body_seq);
2155 gimple_seq bind_seq = gimple_bind_body (bind);
2156 gimple_stmt_iterator bind_gsi = gsi_start (bind_seq);
2158 remove_useless_stmts_1 (&bind_gsi, data);
2159 data->last_was_goto = false;
2160 gsi_next (gsi);
2162 break;
2164 default:
2165 data->last_was_goto = false;
2166 gsi_next (gsi);
2167 break;
2172 /* Walk the function tree, removing useless statements and performing
2173 some preliminary simplifications. */
2175 static unsigned int
2176 remove_useless_stmts (void)
2178 struct rus_data data;
2180 clear_special_calls ();
2184 gimple_stmt_iterator gsi;
2186 gsi = gsi_start (gimple_body (current_function_decl));
2187 memset (&data, 0, sizeof (data));
2188 remove_useless_stmts_1 (&gsi, &data);
2190 while (data.repeat);
2192 #ifdef ENABLE_TYPES_CHECKING
2193 verify_types_in_gimple_seq (gimple_body (current_function_decl));
2194 #endif
2196 return 0;
2200 struct gimple_opt_pass pass_remove_useless_stmts =
2203 GIMPLE_PASS,
2204 "useless", /* name */
2205 NULL, /* gate */
2206 remove_useless_stmts, /* execute */
2207 NULL, /* sub */
2208 NULL, /* next */
2209 0, /* static_pass_number */
2210 TV_NONE, /* tv_id */
2211 PROP_gimple_any, /* properties_required */
2212 0, /* properties_provided */
2213 0, /* properties_destroyed */
2214 0, /* todo_flags_start */
2215 TODO_dump_func /* todo_flags_finish */
2219 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2221 static void
2222 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2224 /* Since this block is no longer reachable, we can just delete all
2225 of its PHI nodes. */
2226 remove_phi_nodes (bb);
2228 /* Remove edges to BB's successors. */
2229 while (EDGE_COUNT (bb->succs) > 0)
2230 remove_edge (EDGE_SUCC (bb, 0));
2234 /* Remove statements of basic block BB. */
2236 static void
2237 remove_bb (basic_block bb)
2239 gimple_stmt_iterator i;
2240 source_location loc = UNKNOWN_LOCATION;
2242 if (dump_file)
2244 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2245 if (dump_flags & TDF_DETAILS)
2247 dump_bb (bb, dump_file, 0);
2248 fprintf (dump_file, "\n");
2252 if (current_loops)
2254 struct loop *loop = bb->loop_father;
2256 /* If a loop gets removed, clean up the information associated
2257 with it. */
2258 if (loop->latch == bb
2259 || loop->header == bb)
2260 free_numbers_of_iterations_estimates_loop (loop);
2263 /* Remove all the instructions in the block. */
2264 if (bb_seq (bb) != NULL)
2266 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2268 gimple stmt = gsi_stmt (i);
2269 if (gimple_code (stmt) == GIMPLE_LABEL
2270 && (FORCED_LABEL (gimple_label_label (stmt))
2271 || DECL_NONLOCAL (gimple_label_label (stmt))))
2273 basic_block new_bb;
2274 gimple_stmt_iterator new_gsi;
2276 /* A non-reachable non-local label may still be referenced.
2277 But it no longer needs to carry the extra semantics of
2278 non-locality. */
2279 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2281 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2282 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2285 new_bb = bb->prev_bb;
2286 new_gsi = gsi_start_bb (new_bb);
2287 gsi_remove (&i, false);
2288 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2290 else
2292 /* Release SSA definitions if we are in SSA. Note that we
2293 may be called when not in SSA. For example,
2294 final_cleanup calls this function via
2295 cleanup_tree_cfg. */
2296 if (gimple_in_ssa_p (cfun))
2297 release_defs (stmt);
2299 gsi_remove (&i, true);
2302 /* Don't warn for removed gotos. Gotos are often removed due to
2303 jump threading, thus resulting in bogus warnings. Not great,
2304 since this way we lose warnings for gotos in the original
2305 program that are indeed unreachable. */
2306 if (gimple_code (stmt) != GIMPLE_GOTO
2307 && gimple_has_location (stmt)
2308 && !loc)
2309 loc = gimple_location (stmt);
2313 /* If requested, give a warning that the first statement in the
2314 block is unreachable. We walk statements backwards in the
2315 loop above, so the last statement we process is the first statement
2316 in the block. */
2317 if (loc > BUILTINS_LOCATION && LOCATION_LINE (loc) > 0)
2318 warning_at (loc, OPT_Wunreachable_code, "will never be executed");
2320 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2321 bb->il.gimple = NULL;
2325 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2326 predicate VAL, return the edge that will be taken out of the block.
2327 If VAL does not match a unique edge, NULL is returned. */
2329 edge
2330 find_taken_edge (basic_block bb, tree val)
2332 gimple stmt;
2334 stmt = last_stmt (bb);
2336 gcc_assert (stmt);
2337 gcc_assert (is_ctrl_stmt (stmt));
2339 if (val == NULL)
2340 return NULL;
2342 if (!is_gimple_min_invariant (val))
2343 return NULL;
2345 if (gimple_code (stmt) == GIMPLE_COND)
2346 return find_taken_edge_cond_expr (bb, val);
2348 if (gimple_code (stmt) == GIMPLE_SWITCH)
2349 return find_taken_edge_switch_expr (bb, val);
2351 if (computed_goto_p (stmt))
2353 /* Only optimize if the argument is a label, if the argument is
2354 not a label then we can not construct a proper CFG.
2356 It may be the case that we only need to allow the LABEL_REF to
2357 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2358 appear inside a LABEL_EXPR just to be safe. */
2359 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2360 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2361 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2362 return NULL;
2365 gcc_unreachable ();
2368 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2369 statement, determine which of the outgoing edges will be taken out of the
2370 block. Return NULL if either edge may be taken. */
2372 static edge
2373 find_taken_edge_computed_goto (basic_block bb, tree val)
2375 basic_block dest;
2376 edge e = NULL;
2378 dest = label_to_block (val);
2379 if (dest)
2381 e = find_edge (bb, dest);
2382 gcc_assert (e != NULL);
2385 return e;
2388 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2389 statement, determine which of the two edges will be taken out of the
2390 block. Return NULL if either edge may be taken. */
2392 static edge
2393 find_taken_edge_cond_expr (basic_block bb, tree val)
2395 edge true_edge, false_edge;
2397 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2399 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2400 return (integer_zerop (val) ? false_edge : true_edge);
2403 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2404 statement, determine which edge will be taken out of the block. Return
2405 NULL if any edge may be taken. */
2407 static edge
2408 find_taken_edge_switch_expr (basic_block bb, tree val)
2410 basic_block dest_bb;
2411 edge e;
2412 gimple switch_stmt;
2413 tree taken_case;
2415 switch_stmt = last_stmt (bb);
2416 taken_case = find_case_label_for_value (switch_stmt, val);
2417 dest_bb = label_to_block (CASE_LABEL (taken_case));
2419 e = find_edge (bb, dest_bb);
2420 gcc_assert (e);
2421 return e;
2425 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2426 We can make optimal use here of the fact that the case labels are
2427 sorted: We can do a binary search for a case matching VAL. */
2429 static tree
2430 find_case_label_for_value (gimple switch_stmt, tree val)
2432 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2433 tree default_case = gimple_switch_default_label (switch_stmt);
2435 for (low = 0, high = n; high - low > 1; )
2437 size_t i = (high + low) / 2;
2438 tree t = gimple_switch_label (switch_stmt, i);
2439 int cmp;
2441 /* Cache the result of comparing CASE_LOW and val. */
2442 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2444 if (cmp > 0)
2445 high = i;
2446 else
2447 low = i;
2449 if (CASE_HIGH (t) == NULL)
2451 /* A singe-valued case label. */
2452 if (cmp == 0)
2453 return t;
2455 else
2457 /* A case range. We can only handle integer ranges. */
2458 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2459 return t;
2463 return default_case;
2467 /* Dump a basic block on stderr. */
2469 void
2470 gimple_debug_bb (basic_block bb)
2472 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2476 /* Dump basic block with index N on stderr. */
2478 basic_block
2479 gimple_debug_bb_n (int n)
2481 gimple_debug_bb (BASIC_BLOCK (n));
2482 return BASIC_BLOCK (n);
2486 /* Dump the CFG on stderr.
2488 FLAGS are the same used by the tree dumping functions
2489 (see TDF_* in tree-pass.h). */
2491 void
2492 gimple_debug_cfg (int flags)
2494 gimple_dump_cfg (stderr, flags);
2498 /* Dump the program showing basic block boundaries on the given FILE.
2500 FLAGS are the same used by the tree dumping functions (see TDF_* in
2501 tree.h). */
2503 void
2504 gimple_dump_cfg (FILE *file, int flags)
2506 if (flags & TDF_DETAILS)
2508 const char *funcname
2509 = lang_hooks.decl_printable_name (current_function_decl, 2);
2511 fputc ('\n', file);
2512 fprintf (file, ";; Function %s\n\n", funcname);
2513 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2514 n_basic_blocks, n_edges, last_basic_block);
2516 brief_dump_cfg (file);
2517 fprintf (file, "\n");
2520 if (flags & TDF_STATS)
2521 dump_cfg_stats (file);
2523 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2527 /* Dump CFG statistics on FILE. */
2529 void
2530 dump_cfg_stats (FILE *file)
2532 static long max_num_merged_labels = 0;
2533 unsigned long size, total = 0;
2534 long num_edges;
2535 basic_block bb;
2536 const char * const fmt_str = "%-30s%-13s%12s\n";
2537 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2538 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2539 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2540 const char *funcname
2541 = lang_hooks.decl_printable_name (current_function_decl, 2);
2544 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2546 fprintf (file, "---------------------------------------------------------\n");
2547 fprintf (file, fmt_str, "", " Number of ", "Memory");
2548 fprintf (file, fmt_str, "", " instances ", "used ");
2549 fprintf (file, "---------------------------------------------------------\n");
2551 size = n_basic_blocks * sizeof (struct basic_block_def);
2552 total += size;
2553 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2554 SCALE (size), LABEL (size));
2556 num_edges = 0;
2557 FOR_EACH_BB (bb)
2558 num_edges += EDGE_COUNT (bb->succs);
2559 size = num_edges * sizeof (struct edge_def);
2560 total += size;
2561 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2563 fprintf (file, "---------------------------------------------------------\n");
2564 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2565 LABEL (total));
2566 fprintf (file, "---------------------------------------------------------\n");
2567 fprintf (file, "\n");
2569 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2570 max_num_merged_labels = cfg_stats.num_merged_labels;
2572 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2573 cfg_stats.num_merged_labels, max_num_merged_labels);
2575 fprintf (file, "\n");
2579 /* Dump CFG statistics on stderr. Keep extern so that it's always
2580 linked in the final executable. */
2582 void
2583 debug_cfg_stats (void)
2585 dump_cfg_stats (stderr);
2589 /* Dump the flowgraph to a .vcg FILE. */
2591 static void
2592 gimple_cfg2vcg (FILE *file)
2594 edge e;
2595 edge_iterator ei;
2596 basic_block bb;
2597 const char *funcname
2598 = lang_hooks.decl_printable_name (current_function_decl, 2);
2600 /* Write the file header. */
2601 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2602 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2603 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2605 /* Write blocks and edges. */
2606 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2608 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2609 e->dest->index);
2611 if (e->flags & EDGE_FAKE)
2612 fprintf (file, " linestyle: dotted priority: 10");
2613 else
2614 fprintf (file, " linestyle: solid priority: 100");
2616 fprintf (file, " }\n");
2618 fputc ('\n', file);
2620 FOR_EACH_BB (bb)
2622 enum gimple_code head_code, end_code;
2623 const char *head_name, *end_name;
2624 int head_line = 0;
2625 int end_line = 0;
2626 gimple first = first_stmt (bb);
2627 gimple last = last_stmt (bb);
2629 if (first)
2631 head_code = gimple_code (first);
2632 head_name = gimple_code_name[head_code];
2633 head_line = get_lineno (first);
2635 else
2636 head_name = "no-statement";
2638 if (last)
2640 end_code = gimple_code (last);
2641 end_name = gimple_code_name[end_code];
2642 end_line = get_lineno (last);
2644 else
2645 end_name = "no-statement";
2647 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2648 bb->index, bb->index, head_name, head_line, end_name,
2649 end_line);
2651 FOR_EACH_EDGE (e, ei, bb->succs)
2653 if (e->dest == EXIT_BLOCK_PTR)
2654 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2655 else
2656 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2658 if (e->flags & EDGE_FAKE)
2659 fprintf (file, " priority: 10 linestyle: dotted");
2660 else
2661 fprintf (file, " priority: 100 linestyle: solid");
2663 fprintf (file, " }\n");
2666 if (bb->next_bb != EXIT_BLOCK_PTR)
2667 fputc ('\n', file);
2670 fputs ("}\n\n", file);
2675 /*---------------------------------------------------------------------------
2676 Miscellaneous helpers
2677 ---------------------------------------------------------------------------*/
2679 /* Return true if T represents a stmt that always transfers control. */
2681 bool
2682 is_ctrl_stmt (gimple t)
2684 return gimple_code (t) == GIMPLE_COND
2685 || gimple_code (t) == GIMPLE_SWITCH
2686 || gimple_code (t) == GIMPLE_GOTO
2687 || gimple_code (t) == GIMPLE_RETURN
2688 || gimple_code (t) == GIMPLE_RESX;
2692 /* Return true if T is a statement that may alter the flow of control
2693 (e.g., a call to a non-returning function). */
2695 bool
2696 is_ctrl_altering_stmt (gimple t)
2698 gcc_assert (t);
2700 if (is_gimple_call (t))
2702 int flags = gimple_call_flags (t);
2704 /* A non-pure/const call alters flow control if the current
2705 function has nonlocal labels. */
2706 if (!(flags & (ECF_CONST | ECF_PURE))
2707 && cfun->has_nonlocal_label)
2708 return true;
2710 /* A call also alters control flow if it does not return. */
2711 if (gimple_call_flags (t) & ECF_NORETURN)
2712 return true;
2715 /* OpenMP directives alter control flow. */
2716 if (is_gimple_omp (t))
2717 return true;
2719 /* If a statement can throw, it alters control flow. */
2720 return stmt_can_throw_internal (t);
2724 /* Return true if T is a simple local goto. */
2726 bool
2727 simple_goto_p (gimple t)
2729 return (gimple_code (t) == GIMPLE_GOTO
2730 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2734 /* Return true if T can make an abnormal transfer of control flow.
2735 Transfers of control flow associated with EH are excluded. */
2737 bool
2738 stmt_can_make_abnormal_goto (gimple t)
2740 if (computed_goto_p (t))
2741 return true;
2742 if (is_gimple_call (t))
2743 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2744 return false;
2748 /* Return true if STMT should start a new basic block. PREV_STMT is
2749 the statement preceding STMT. It is used when STMT is a label or a
2750 case label. Labels should only start a new basic block if their
2751 previous statement wasn't a label. Otherwise, sequence of labels
2752 would generate unnecessary basic blocks that only contain a single
2753 label. */
2755 static inline bool
2756 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2758 if (stmt == NULL)
2759 return false;
2761 /* Labels start a new basic block only if the preceding statement
2762 wasn't a label of the same type. This prevents the creation of
2763 consecutive blocks that have nothing but a single label. */
2764 if (gimple_code (stmt) == GIMPLE_LABEL)
2766 /* Nonlocal and computed GOTO targets always start a new block. */
2767 if (DECL_NONLOCAL (gimple_label_label (stmt))
2768 || FORCED_LABEL (gimple_label_label (stmt)))
2769 return true;
2771 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2773 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2774 return true;
2776 cfg_stats.num_merged_labels++;
2777 return false;
2779 else
2780 return true;
2783 return false;
2787 /* Return true if T should end a basic block. */
2789 bool
2790 stmt_ends_bb_p (gimple t)
2792 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2795 /* Remove block annotations and other data structures. */
2797 void
2798 delete_tree_cfg_annotations (void)
2800 label_to_block_map = NULL;
2804 /* Return the first statement in basic block BB. */
2806 gimple
2807 first_stmt (basic_block bb)
2809 gimple_stmt_iterator i = gsi_start_bb (bb);
2810 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2813 /* Return the first non-label statement in basic block BB. */
2815 static gimple
2816 first_non_label_stmt (basic_block bb)
2818 gimple_stmt_iterator i = gsi_start_bb (bb);
2819 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2820 gsi_next (&i);
2821 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2824 /* Return the last statement in basic block BB. */
2826 gimple
2827 last_stmt (basic_block bb)
2829 gimple_stmt_iterator b = gsi_last_bb (bb);
2830 return !gsi_end_p (b) ? gsi_stmt (b) : NULL;
2833 /* Return the last statement of an otherwise empty block. Return NULL
2834 if the block is totally empty, or if it contains more than one
2835 statement. */
2837 gimple
2838 last_and_only_stmt (basic_block bb)
2840 gimple_stmt_iterator i = gsi_last_bb (bb);
2841 gimple last, prev;
2843 if (gsi_end_p (i))
2844 return NULL;
2846 last = gsi_stmt (i);
2847 gsi_prev (&i);
2848 if (gsi_end_p (i))
2849 return last;
2851 /* Empty statements should no longer appear in the instruction stream.
2852 Everything that might have appeared before should be deleted by
2853 remove_useless_stmts, and the optimizers should just gsi_remove
2854 instead of smashing with build_empty_stmt.
2856 Thus the only thing that should appear here in a block containing
2857 one executable statement is a label. */
2858 prev = gsi_stmt (i);
2859 if (gimple_code (prev) == GIMPLE_LABEL)
2860 return last;
2861 else
2862 return NULL;
2865 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2867 static void
2868 reinstall_phi_args (edge new_edge, edge old_edge)
2870 edge_var_map_vector v;
2871 edge_var_map *vm;
2872 int i;
2873 gimple_stmt_iterator phis;
2875 v = redirect_edge_var_map_vector (old_edge);
2876 if (!v)
2877 return;
2879 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2880 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2881 i++, gsi_next (&phis))
2883 gimple phi = gsi_stmt (phis);
2884 tree result = redirect_edge_var_map_result (vm);
2885 tree arg = redirect_edge_var_map_def (vm);
2887 gcc_assert (result == gimple_phi_result (phi));
2889 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2892 redirect_edge_var_map_clear (old_edge);
2895 /* Returns the basic block after which the new basic block created
2896 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2897 near its "logical" location. This is of most help to humans looking
2898 at debugging dumps. */
2900 static basic_block
2901 split_edge_bb_loc (edge edge_in)
2903 basic_block dest = edge_in->dest;
2905 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
2906 return edge_in->src;
2907 else
2908 return dest->prev_bb;
2911 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2912 Abort on abnormal edges. */
2914 static basic_block
2915 gimple_split_edge (edge edge_in)
2917 basic_block new_bb, after_bb, dest;
2918 edge new_edge, e;
2920 /* Abnormal edges cannot be split. */
2921 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2923 dest = edge_in->dest;
2925 after_bb = split_edge_bb_loc (edge_in);
2927 new_bb = create_empty_bb (after_bb);
2928 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2929 new_bb->count = edge_in->count;
2930 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2931 new_edge->probability = REG_BR_PROB_BASE;
2932 new_edge->count = edge_in->count;
2934 e = redirect_edge_and_branch (edge_in, new_bb);
2935 gcc_assert (e == edge_in);
2936 reinstall_phi_args (new_edge, e);
2938 return new_bb;
2941 /* Callback for walk_tree, check that all elements with address taken are
2942 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2943 inside a PHI node. */
2945 static tree
2946 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2948 tree t = *tp, x;
2950 if (TYPE_P (t))
2951 *walk_subtrees = 0;
2953 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2954 #define CHECK_OP(N, MSG) \
2955 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2956 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2958 switch (TREE_CODE (t))
2960 case SSA_NAME:
2961 if (SSA_NAME_IN_FREE_LIST (t))
2963 error ("SSA name in freelist but still referenced");
2964 return *tp;
2966 break;
2968 case INDIRECT_REF:
2969 x = TREE_OPERAND (t, 0);
2970 if (!is_gimple_reg (x) && !is_gimple_min_invariant (x))
2972 error ("Indirect reference's operand is not a register or a constant.");
2973 return x;
2975 break;
2977 case ASSERT_EXPR:
2978 x = fold (ASSERT_EXPR_COND (t));
2979 if (x == boolean_false_node)
2981 error ("ASSERT_EXPR with an always-false condition");
2982 return *tp;
2984 break;
2986 case MODIFY_EXPR:
2987 error ("MODIFY_EXPR not expected while having tuples.");
2988 return *tp;
2990 case ADDR_EXPR:
2992 bool old_constant;
2993 bool old_side_effects;
2994 bool new_constant;
2995 bool new_side_effects;
2997 gcc_assert (is_gimple_address (t));
2999 old_constant = TREE_CONSTANT (t);
3000 old_side_effects = TREE_SIDE_EFFECTS (t);
3002 recompute_tree_invariant_for_addr_expr (t);
3003 new_side_effects = TREE_SIDE_EFFECTS (t);
3004 new_constant = TREE_CONSTANT (t);
3006 if (old_constant != new_constant)
3008 error ("constant not recomputed when ADDR_EXPR changed");
3009 return t;
3011 if (old_side_effects != new_side_effects)
3013 error ("side effects not recomputed when ADDR_EXPR changed");
3014 return t;
3017 /* Skip any references (they will be checked when we recurse down the
3018 tree) and ensure that any variable used as a prefix is marked
3019 addressable. */
3020 for (x = TREE_OPERAND (t, 0);
3021 handled_component_p (x);
3022 x = TREE_OPERAND (x, 0))
3025 if (!(TREE_CODE (x) == VAR_DECL
3026 || TREE_CODE (x) == PARM_DECL
3027 || TREE_CODE (x) == RESULT_DECL))
3028 return NULL;
3029 if (!TREE_ADDRESSABLE (x))
3031 error ("address taken, but ADDRESSABLE bit not set");
3032 return x;
3034 if (DECL_GIMPLE_REG_P (x))
3036 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3037 return x;
3040 break;
3043 case COND_EXPR:
3044 x = COND_EXPR_COND (t);
3045 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
3047 error ("non-integral used in condition");
3048 return x;
3050 if (!is_gimple_condexpr (x))
3052 error ("invalid conditional operand");
3053 return x;
3055 break;
3057 case NON_LVALUE_EXPR:
3058 gcc_unreachable ();
3060 CASE_CONVERT:
3061 case FIX_TRUNC_EXPR:
3062 case FLOAT_EXPR:
3063 case NEGATE_EXPR:
3064 case ABS_EXPR:
3065 case BIT_NOT_EXPR:
3066 case TRUTH_NOT_EXPR:
3067 CHECK_OP (0, "invalid operand to unary operator");
3068 break;
3070 case REALPART_EXPR:
3071 case IMAGPART_EXPR:
3072 case COMPONENT_REF:
3073 case ARRAY_REF:
3074 case ARRAY_RANGE_REF:
3075 case BIT_FIELD_REF:
3076 case VIEW_CONVERT_EXPR:
3077 /* We have a nest of references. Verify that each of the operands
3078 that determine where to reference is either a constant or a variable,
3079 verify that the base is valid, and then show we've already checked
3080 the subtrees. */
3081 while (handled_component_p (t))
3083 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3084 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3085 else if (TREE_CODE (t) == ARRAY_REF
3086 || TREE_CODE (t) == ARRAY_RANGE_REF)
3088 CHECK_OP (1, "invalid array index");
3089 if (TREE_OPERAND (t, 2))
3090 CHECK_OP (2, "invalid array lower bound");
3091 if (TREE_OPERAND (t, 3))
3092 CHECK_OP (3, "invalid array stride");
3094 else if (TREE_CODE (t) == BIT_FIELD_REF)
3096 if (!host_integerp (TREE_OPERAND (t, 1), 1)
3097 || !host_integerp (TREE_OPERAND (t, 2), 1))
3099 error ("invalid position or size operand to BIT_FIELD_REF");
3100 return t;
3102 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
3103 && (TYPE_PRECISION (TREE_TYPE (t))
3104 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
3106 error ("integral result type precision does not match "
3107 "field size of BIT_FIELD_REF");
3108 return t;
3110 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
3111 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
3112 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
3114 error ("mode precision of non-integral result does not "
3115 "match field size of BIT_FIELD_REF");
3116 return t;
3120 t = TREE_OPERAND (t, 0);
3123 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3125 error ("invalid reference prefix");
3126 return t;
3128 *walk_subtrees = 0;
3129 break;
3130 case PLUS_EXPR:
3131 case MINUS_EXPR:
3132 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3133 POINTER_PLUS_EXPR. */
3134 if (POINTER_TYPE_P (TREE_TYPE (t)))
3136 error ("invalid operand to plus/minus, type is a pointer");
3137 return t;
3139 CHECK_OP (0, "invalid operand to binary operator");
3140 CHECK_OP (1, "invalid operand to binary operator");
3141 break;
3143 case POINTER_PLUS_EXPR:
3144 /* Check to make sure the first operand is a pointer or reference type. */
3145 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3147 error ("invalid operand to pointer plus, first operand is not a pointer");
3148 return t;
3150 /* Check to make sure the second operand is an integer with type of
3151 sizetype. */
3152 if (!useless_type_conversion_p (sizetype,
3153 TREE_TYPE (TREE_OPERAND (t, 1))))
3155 error ("invalid operand to pointer plus, second operand is not an "
3156 "integer with type of sizetype.");
3157 return t;
3159 /* FALLTHROUGH */
3160 case LT_EXPR:
3161 case LE_EXPR:
3162 case GT_EXPR:
3163 case GE_EXPR:
3164 case EQ_EXPR:
3165 case NE_EXPR:
3166 case UNORDERED_EXPR:
3167 case ORDERED_EXPR:
3168 case UNLT_EXPR:
3169 case UNLE_EXPR:
3170 case UNGT_EXPR:
3171 case UNGE_EXPR:
3172 case UNEQ_EXPR:
3173 case LTGT_EXPR:
3174 case MULT_EXPR:
3175 case TRUNC_DIV_EXPR:
3176 case CEIL_DIV_EXPR:
3177 case FLOOR_DIV_EXPR:
3178 case ROUND_DIV_EXPR:
3179 case TRUNC_MOD_EXPR:
3180 case CEIL_MOD_EXPR:
3181 case FLOOR_MOD_EXPR:
3182 case ROUND_MOD_EXPR:
3183 case RDIV_EXPR:
3184 case EXACT_DIV_EXPR:
3185 case MIN_EXPR:
3186 case MAX_EXPR:
3187 case LSHIFT_EXPR:
3188 case RSHIFT_EXPR:
3189 case LROTATE_EXPR:
3190 case RROTATE_EXPR:
3191 case BIT_IOR_EXPR:
3192 case BIT_XOR_EXPR:
3193 case BIT_AND_EXPR:
3194 CHECK_OP (0, "invalid operand to binary operator");
3195 CHECK_OP (1, "invalid operand to binary operator");
3196 break;
3198 case CONSTRUCTOR:
3199 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3200 *walk_subtrees = 0;
3201 break;
3203 default:
3204 break;
3206 return NULL;
3208 #undef CHECK_OP
3212 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3213 Returns true if there is an error, otherwise false. */
3215 static bool
3216 verify_types_in_gimple_min_lval (tree expr)
3218 tree op;
3220 if (is_gimple_id (expr))
3221 return false;
3223 if (!INDIRECT_REF_P (expr)
3224 && TREE_CODE (expr) != TARGET_MEM_REF)
3226 error ("invalid expression for min lvalue");
3227 return true;
3230 /* TARGET_MEM_REFs are strange beasts. */
3231 if (TREE_CODE (expr) == TARGET_MEM_REF)
3232 return false;
3234 op = TREE_OPERAND (expr, 0);
3235 if (!is_gimple_val (op))
3237 error ("invalid operand in indirect reference");
3238 debug_generic_stmt (op);
3239 return true;
3241 if (!useless_type_conversion_p (TREE_TYPE (expr),
3242 TREE_TYPE (TREE_TYPE (op))))
3244 error ("type mismatch in indirect reference");
3245 debug_generic_stmt (TREE_TYPE (expr));
3246 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3247 return true;
3250 return false;
3253 /* Verify if EXPR is a valid GIMPLE reference expression. If
3254 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3255 if there is an error, otherwise false. */
3257 static bool
3258 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3260 while (handled_component_p (expr))
3262 tree op = TREE_OPERAND (expr, 0);
3264 if (TREE_CODE (expr) == ARRAY_REF
3265 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3267 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3268 || (TREE_OPERAND (expr, 2)
3269 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3270 || (TREE_OPERAND (expr, 3)
3271 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3273 error ("invalid operands to array reference");
3274 debug_generic_stmt (expr);
3275 return true;
3279 /* Verify if the reference array element types are compatible. */
3280 if (TREE_CODE (expr) == ARRAY_REF
3281 && !useless_type_conversion_p (TREE_TYPE (expr),
3282 TREE_TYPE (TREE_TYPE (op))))
3284 error ("type mismatch in array reference");
3285 debug_generic_stmt (TREE_TYPE (expr));
3286 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3287 return true;
3289 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3290 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3291 TREE_TYPE (TREE_TYPE (op))))
3293 error ("type mismatch in array range reference");
3294 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3295 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3296 return true;
3299 if ((TREE_CODE (expr) == REALPART_EXPR
3300 || TREE_CODE (expr) == IMAGPART_EXPR)
3301 && !useless_type_conversion_p (TREE_TYPE (expr),
3302 TREE_TYPE (TREE_TYPE (op))))
3304 error ("type mismatch in real/imagpart reference");
3305 debug_generic_stmt (TREE_TYPE (expr));
3306 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3307 return true;
3310 if (TREE_CODE (expr) == COMPONENT_REF
3311 && !useless_type_conversion_p (TREE_TYPE (expr),
3312 TREE_TYPE (TREE_OPERAND (expr, 1))))
3314 error ("type mismatch in component reference");
3315 debug_generic_stmt (TREE_TYPE (expr));
3316 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3317 return true;
3320 /* For VIEW_CONVERT_EXPRs which are allowed here, too, there
3321 is nothing to verify. Gross mismatches at most invoke
3322 undefined behavior. */
3323 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
3324 && !handled_component_p (op))
3325 return false;
3327 expr = op;
3330 return ((require_lvalue || !is_gimple_min_invariant (expr))
3331 && verify_types_in_gimple_min_lval (expr));
3334 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3335 list of pointer-to types that is trivially convertible to DEST. */
3337 static bool
3338 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3340 tree src;
3342 if (!TYPE_POINTER_TO (src_obj))
3343 return true;
3345 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3346 if (useless_type_conversion_p (dest, src))
3347 return true;
3349 return false;
3352 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3353 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3355 static bool
3356 valid_fixed_convert_types_p (tree type1, tree type2)
3358 return (FIXED_POINT_TYPE_P (type1)
3359 && (INTEGRAL_TYPE_P (type2)
3360 || SCALAR_FLOAT_TYPE_P (type2)
3361 || FIXED_POINT_TYPE_P (type2)));
3364 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3365 is a problem, otherwise false. */
3367 static bool
3368 verify_gimple_call (gimple stmt)
3370 tree fn = gimple_call_fn (stmt);
3371 tree fntype;
3373 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3374 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3375 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3377 error ("non-function in gimple call");
3378 return true;
3381 if (gimple_call_lhs (stmt)
3382 && !is_gimple_lvalue (gimple_call_lhs (stmt)))
3384 error ("invalid LHS in gimple call");
3385 return true;
3388 fntype = TREE_TYPE (TREE_TYPE (fn));
3389 if (gimple_call_lhs (stmt)
3390 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3391 TREE_TYPE (fntype))
3392 /* ??? At least C++ misses conversions at assignments from
3393 void * call results.
3394 ??? Java is completely off. Especially with functions
3395 returning java.lang.Object.
3396 For now simply allow arbitrary pointer type conversions. */
3397 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3398 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3400 error ("invalid conversion in gimple call");
3401 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3402 debug_generic_stmt (TREE_TYPE (fntype));
3403 return true;
3406 /* ??? The C frontend passes unpromoted arguments in case it
3407 didn't see a function declaration before the call. So for now
3408 leave the call arguments unverified. Once we gimplify
3409 unit-at-a-time we have a chance to fix this. */
3411 return false;
3414 /* Verifies the gimple comparison with the result type TYPE and
3415 the operands OP0 and OP1. */
3417 static bool
3418 verify_gimple_comparison (tree type, tree op0, tree op1)
3420 tree op0_type = TREE_TYPE (op0);
3421 tree op1_type = TREE_TYPE (op1);
3423 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3425 error ("invalid operands in gimple comparison");
3426 return true;
3429 /* For comparisons we do not have the operations type as the
3430 effective type the comparison is carried out in. Instead
3431 we require that either the first operand is trivially
3432 convertible into the second, or the other way around.
3433 The resulting type of a comparison may be any integral type.
3434 Because we special-case pointers to void we allow
3435 comparisons of pointers with the same mode as well. */
3436 if ((!useless_type_conversion_p (op0_type, op1_type)
3437 && !useless_type_conversion_p (op1_type, op0_type)
3438 && (!POINTER_TYPE_P (op0_type)
3439 || !POINTER_TYPE_P (op1_type)
3440 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3441 || !INTEGRAL_TYPE_P (type))
3443 error ("type mismatch in comparison expression");
3444 debug_generic_expr (type);
3445 debug_generic_expr (op0_type);
3446 debug_generic_expr (op1_type);
3447 return true;
3450 return false;
3453 /* Verify a gimple assignment statement STMT with an unary rhs.
3454 Returns true if anything is wrong. */
3456 static bool
3457 verify_gimple_assign_unary (gimple stmt)
3459 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3460 tree lhs = gimple_assign_lhs (stmt);
3461 tree lhs_type = TREE_TYPE (lhs);
3462 tree rhs1 = gimple_assign_rhs1 (stmt);
3463 tree rhs1_type = TREE_TYPE (rhs1);
3465 if (!is_gimple_reg (lhs)
3466 && !(optimize == 0
3467 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3469 error ("non-register as LHS of unary operation");
3470 return true;
3473 if (!is_gimple_val (rhs1))
3475 error ("invalid operand in unary operation");
3476 return true;
3479 /* First handle conversions. */
3480 switch (rhs_code)
3482 CASE_CONVERT:
3484 /* Allow conversions between integral types and pointers only if
3485 there is no sign or zero extension involved.
3486 For targets were the precision of sizetype doesn't match that
3487 of pointers we need to allow arbitrary conversions from and
3488 to sizetype. */
3489 if ((POINTER_TYPE_P (lhs_type)
3490 && INTEGRAL_TYPE_P (rhs1_type)
3491 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3492 || rhs1_type == sizetype))
3493 || (POINTER_TYPE_P (rhs1_type)
3494 && INTEGRAL_TYPE_P (lhs_type)
3495 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3496 || lhs_type == sizetype)))
3497 return false;
3499 /* Allow conversion from integer to offset type and vice versa. */
3500 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3501 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3502 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3503 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3504 return false;
3506 /* Otherwise assert we are converting between types of the
3507 same kind. */
3508 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3510 error ("invalid types in nop conversion");
3511 debug_generic_expr (lhs_type);
3512 debug_generic_expr (rhs1_type);
3513 return true;
3516 return false;
3519 case FIXED_CONVERT_EXPR:
3521 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3522 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3524 error ("invalid types in fixed-point conversion");
3525 debug_generic_expr (lhs_type);
3526 debug_generic_expr (rhs1_type);
3527 return true;
3530 return false;
3533 case FLOAT_EXPR:
3535 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3537 error ("invalid types in conversion to floating point");
3538 debug_generic_expr (lhs_type);
3539 debug_generic_expr (rhs1_type);
3540 return true;
3543 return false;
3546 case FIX_TRUNC_EXPR:
3548 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3550 error ("invalid types in conversion to integer");
3551 debug_generic_expr (lhs_type);
3552 debug_generic_expr (rhs1_type);
3553 return true;
3556 return false;
3559 case VEC_UNPACK_HI_EXPR:
3560 case VEC_UNPACK_LO_EXPR:
3561 case REDUC_MAX_EXPR:
3562 case REDUC_MIN_EXPR:
3563 case REDUC_PLUS_EXPR:
3564 case VEC_UNPACK_FLOAT_HI_EXPR:
3565 case VEC_UNPACK_FLOAT_LO_EXPR:
3566 /* FIXME. */
3567 return false;
3569 case TRUTH_NOT_EXPR:
3570 case NEGATE_EXPR:
3571 case ABS_EXPR:
3572 case BIT_NOT_EXPR:
3573 case PAREN_EXPR:
3574 case NON_LVALUE_EXPR:
3575 case CONJ_EXPR:
3576 break;
3578 default:
3579 gcc_unreachable ();
3582 /* For the remaining codes assert there is no conversion involved. */
3583 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3585 error ("non-trivial conversion in unary operation");
3586 debug_generic_expr (lhs_type);
3587 debug_generic_expr (rhs1_type);
3588 return true;
3591 return false;
3594 /* Verify a gimple assignment statement STMT with a binary rhs.
3595 Returns true if anything is wrong. */
3597 static bool
3598 verify_gimple_assign_binary (gimple stmt)
3600 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3601 tree lhs = gimple_assign_lhs (stmt);
3602 tree lhs_type = TREE_TYPE (lhs);
3603 tree rhs1 = gimple_assign_rhs1 (stmt);
3604 tree rhs1_type = TREE_TYPE (rhs1);
3605 tree rhs2 = gimple_assign_rhs2 (stmt);
3606 tree rhs2_type = TREE_TYPE (rhs2);
3608 if (!is_gimple_reg (lhs)
3609 && !(optimize == 0
3610 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3612 error ("non-register as LHS of binary operation");
3613 return true;
3616 if (!is_gimple_val (rhs1)
3617 || !is_gimple_val (rhs2))
3619 error ("invalid operands in binary operation");
3620 return true;
3623 /* First handle operations that involve different types. */
3624 switch (rhs_code)
3626 case COMPLEX_EXPR:
3628 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3629 || !(INTEGRAL_TYPE_P (rhs1_type)
3630 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3631 || !(INTEGRAL_TYPE_P (rhs2_type)
3632 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3634 error ("type mismatch in complex expression");
3635 debug_generic_expr (lhs_type);
3636 debug_generic_expr (rhs1_type);
3637 debug_generic_expr (rhs2_type);
3638 return true;
3641 return false;
3644 case LSHIFT_EXPR:
3645 case RSHIFT_EXPR:
3646 case LROTATE_EXPR:
3647 case RROTATE_EXPR:
3649 /* Shifts and rotates are ok on integral types, fixed point
3650 types and integer vector types. */
3651 if ((!INTEGRAL_TYPE_P (rhs1_type)
3652 && !FIXED_POINT_TYPE_P (rhs1_type)
3653 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3654 && TREE_CODE (TREE_TYPE (rhs1_type)) == INTEGER_TYPE))
3655 || (!INTEGRAL_TYPE_P (rhs2_type)
3656 /* Vector shifts of vectors are also ok. */
3657 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3658 && TREE_CODE (TREE_TYPE (rhs1_type)) == INTEGER_TYPE
3659 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3660 && TREE_CODE (TREE_TYPE (rhs2_type)) == INTEGER_TYPE))
3661 || !useless_type_conversion_p (lhs_type, rhs1_type))
3663 error ("type mismatch in shift expression");
3664 debug_generic_expr (lhs_type);
3665 debug_generic_expr (rhs1_type);
3666 debug_generic_expr (rhs2_type);
3667 return true;
3670 return false;
3673 case VEC_LSHIFT_EXPR:
3674 case VEC_RSHIFT_EXPR:
3676 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3677 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3678 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3679 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3680 || (!INTEGRAL_TYPE_P (rhs2_type)
3681 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3682 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3683 || !useless_type_conversion_p (lhs_type, rhs1_type))
3685 error ("type mismatch in vector shift expression");
3686 debug_generic_expr (lhs_type);
3687 debug_generic_expr (rhs1_type);
3688 debug_generic_expr (rhs2_type);
3689 return true;
3691 /* For shifting a vector of floating point components we
3692 only allow shifting by a constant multiple of the element size. */
3693 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
3694 && (TREE_CODE (rhs2) != INTEGER_CST
3695 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3696 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3698 error ("non-element sized vector shift of floating point vector");
3699 return true;
3702 return false;
3705 case PLUS_EXPR:
3707 /* We use regular PLUS_EXPR for vectors.
3708 ??? This just makes the checker happy and may not be what is
3709 intended. */
3710 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3711 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3713 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3714 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3716 error ("invalid non-vector operands to vector valued plus");
3717 return true;
3719 lhs_type = TREE_TYPE (lhs_type);
3720 rhs1_type = TREE_TYPE (rhs1_type);
3721 rhs2_type = TREE_TYPE (rhs2_type);
3722 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3723 the pointer to 2nd place. */
3724 if (POINTER_TYPE_P (rhs2_type))
3726 tree tem = rhs1_type;
3727 rhs1_type = rhs2_type;
3728 rhs2_type = tem;
3730 goto do_pointer_plus_expr_check;
3733 /* Fallthru. */
3734 case MINUS_EXPR:
3736 if (POINTER_TYPE_P (lhs_type)
3737 || POINTER_TYPE_P (rhs1_type)
3738 || POINTER_TYPE_P (rhs2_type))
3740 error ("invalid (pointer) operands to plus/minus");
3741 return true;
3744 /* Continue with generic binary expression handling. */
3745 break;
3748 case POINTER_PLUS_EXPR:
3750 do_pointer_plus_expr_check:
3751 if (!POINTER_TYPE_P (rhs1_type)
3752 || !useless_type_conversion_p (lhs_type, rhs1_type)
3753 || !useless_type_conversion_p (sizetype, rhs2_type))
3755 error ("type mismatch in pointer plus expression");
3756 debug_generic_stmt (lhs_type);
3757 debug_generic_stmt (rhs1_type);
3758 debug_generic_stmt (rhs2_type);
3759 return true;
3762 return false;
3765 case TRUTH_ANDIF_EXPR:
3766 case TRUTH_ORIF_EXPR:
3767 gcc_unreachable ();
3769 case TRUTH_AND_EXPR:
3770 case TRUTH_OR_EXPR:
3771 case TRUTH_XOR_EXPR:
3773 /* We allow any kind of integral typed argument and result. */
3774 if (!INTEGRAL_TYPE_P (rhs1_type)
3775 || !INTEGRAL_TYPE_P (rhs2_type)
3776 || !INTEGRAL_TYPE_P (lhs_type))
3778 error ("type mismatch in binary truth expression");
3779 debug_generic_expr (lhs_type);
3780 debug_generic_expr (rhs1_type);
3781 debug_generic_expr (rhs2_type);
3782 return true;
3785 return false;
3788 case LT_EXPR:
3789 case LE_EXPR:
3790 case GT_EXPR:
3791 case GE_EXPR:
3792 case EQ_EXPR:
3793 case NE_EXPR:
3794 case UNORDERED_EXPR:
3795 case ORDERED_EXPR:
3796 case UNLT_EXPR:
3797 case UNLE_EXPR:
3798 case UNGT_EXPR:
3799 case UNGE_EXPR:
3800 case UNEQ_EXPR:
3801 case LTGT_EXPR:
3802 /* Comparisons are also binary, but the result type is not
3803 connected to the operand types. */
3804 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3806 case WIDEN_SUM_EXPR:
3807 case WIDEN_MULT_EXPR:
3808 case VEC_WIDEN_MULT_HI_EXPR:
3809 case VEC_WIDEN_MULT_LO_EXPR:
3810 case VEC_PACK_TRUNC_EXPR:
3811 case VEC_PACK_SAT_EXPR:
3812 case VEC_PACK_FIX_TRUNC_EXPR:
3813 case VEC_EXTRACT_EVEN_EXPR:
3814 case VEC_EXTRACT_ODD_EXPR:
3815 case VEC_INTERLEAVE_HIGH_EXPR:
3816 case VEC_INTERLEAVE_LOW_EXPR:
3817 /* FIXME. */
3818 return false;
3820 case MULT_EXPR:
3821 case TRUNC_DIV_EXPR:
3822 case CEIL_DIV_EXPR:
3823 case FLOOR_DIV_EXPR:
3824 case ROUND_DIV_EXPR:
3825 case TRUNC_MOD_EXPR:
3826 case CEIL_MOD_EXPR:
3827 case FLOOR_MOD_EXPR:
3828 case ROUND_MOD_EXPR:
3829 case RDIV_EXPR:
3830 case EXACT_DIV_EXPR:
3831 case MIN_EXPR:
3832 case MAX_EXPR:
3833 case BIT_IOR_EXPR:
3834 case BIT_XOR_EXPR:
3835 case BIT_AND_EXPR:
3836 /* Continue with generic binary expression handling. */
3837 break;
3839 default:
3840 gcc_unreachable ();
3843 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3844 || !useless_type_conversion_p (lhs_type, rhs2_type))
3846 error ("type mismatch in binary expression");
3847 debug_generic_stmt (lhs_type);
3848 debug_generic_stmt (rhs1_type);
3849 debug_generic_stmt (rhs2_type);
3850 return true;
3853 return false;
3856 /* Verify a gimple assignment statement STMT with a single rhs.
3857 Returns true if anything is wrong. */
3859 static bool
3860 verify_gimple_assign_single (gimple stmt)
3862 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3863 tree lhs = gimple_assign_lhs (stmt);
3864 tree lhs_type = TREE_TYPE (lhs);
3865 tree rhs1 = gimple_assign_rhs1 (stmt);
3866 tree rhs1_type = TREE_TYPE (rhs1);
3867 bool res = false;
3869 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3871 error ("non-trivial conversion at assignment");
3872 debug_generic_expr (lhs_type);
3873 debug_generic_expr (rhs1_type);
3874 return true;
3877 if (handled_component_p (lhs))
3878 res |= verify_types_in_gimple_reference (lhs, true);
3880 /* Special codes we cannot handle via their class. */
3881 switch (rhs_code)
3883 case ADDR_EXPR:
3885 tree op = TREE_OPERAND (rhs1, 0);
3886 if (!is_gimple_addressable (op))
3888 error ("invalid operand in unary expression");
3889 return true;
3892 if (!one_pointer_to_useless_type_conversion_p (lhs_type,
3893 TREE_TYPE (op)))
3895 error ("type mismatch in address expression");
3896 debug_generic_stmt (lhs_type);
3897 debug_generic_stmt (TYPE_POINTER_TO (TREE_TYPE (op)));
3898 return true;
3901 return verify_types_in_gimple_reference (op, true);
3904 /* tcc_reference */
3905 case COMPONENT_REF:
3906 case BIT_FIELD_REF:
3907 case INDIRECT_REF:
3908 case ALIGN_INDIRECT_REF:
3909 case MISALIGNED_INDIRECT_REF:
3910 case ARRAY_REF:
3911 case ARRAY_RANGE_REF:
3912 case VIEW_CONVERT_EXPR:
3913 case REALPART_EXPR:
3914 case IMAGPART_EXPR:
3915 case TARGET_MEM_REF:
3916 if (!is_gimple_reg (lhs)
3917 && is_gimple_reg_type (TREE_TYPE (lhs)))
3919 error ("invalid rhs for gimple memory store");
3920 debug_generic_stmt (lhs);
3921 debug_generic_stmt (rhs1);
3922 return true;
3924 return res || verify_types_in_gimple_reference (rhs1, false);
3926 /* tcc_constant */
3927 case SSA_NAME:
3928 case INTEGER_CST:
3929 case REAL_CST:
3930 case FIXED_CST:
3931 case COMPLEX_CST:
3932 case VECTOR_CST:
3933 case STRING_CST:
3934 return res;
3936 /* tcc_declaration */
3937 case CONST_DECL:
3938 return res;
3939 case VAR_DECL:
3940 case PARM_DECL:
3941 if (!is_gimple_reg (lhs)
3942 && !is_gimple_reg (rhs1)
3943 && is_gimple_reg_type (TREE_TYPE (lhs)))
3945 error ("invalid rhs for gimple memory store");
3946 debug_generic_stmt (lhs);
3947 debug_generic_stmt (rhs1);
3948 return true;
3950 return res;
3952 case COND_EXPR:
3953 case CONSTRUCTOR:
3954 case OBJ_TYPE_REF:
3955 case ASSERT_EXPR:
3956 case WITH_SIZE_EXPR:
3957 case EXC_PTR_EXPR:
3958 case FILTER_EXPR:
3959 case POLYNOMIAL_CHREC:
3960 case DOT_PROD_EXPR:
3961 case VEC_COND_EXPR:
3962 case REALIGN_LOAD_EXPR:
3963 /* FIXME. */
3964 return res;
3966 default:;
3969 return res;
3972 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3973 is a problem, otherwise false. */
3975 static bool
3976 verify_gimple_assign (gimple stmt)
3978 switch (gimple_assign_rhs_class (stmt))
3980 case GIMPLE_SINGLE_RHS:
3981 return verify_gimple_assign_single (stmt);
3983 case GIMPLE_UNARY_RHS:
3984 return verify_gimple_assign_unary (stmt);
3986 case GIMPLE_BINARY_RHS:
3987 return verify_gimple_assign_binary (stmt);
3989 default:
3990 gcc_unreachable ();
3994 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3995 is a problem, otherwise false. */
3997 static bool
3998 verify_gimple_return (gimple stmt)
4000 tree op = gimple_return_retval (stmt);
4001 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4003 /* We cannot test for present return values as we do not fix up missing
4004 return values from the original source. */
4005 if (op == NULL)
4006 return false;
4008 if (!is_gimple_val (op)
4009 && TREE_CODE (op) != RESULT_DECL)
4011 error ("invalid operand in return statement");
4012 debug_generic_stmt (op);
4013 return true;
4016 if (!useless_type_conversion_p (restype, TREE_TYPE (op))
4017 /* ??? With C++ we can have the situation that the result
4018 decl is a reference type while the return type is an aggregate. */
4019 && !(TREE_CODE (op) == RESULT_DECL
4020 && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
4021 && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
4023 error ("invalid conversion in return statement");
4024 debug_generic_stmt (restype);
4025 debug_generic_stmt (TREE_TYPE (op));
4026 return true;
4029 return false;
4033 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4034 is a problem, otherwise false. */
4036 static bool
4037 verify_gimple_goto (gimple stmt)
4039 tree dest = gimple_goto_dest (stmt);
4041 /* ??? We have two canonical forms of direct goto destinations, a
4042 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4043 if (TREE_CODE (dest) != LABEL_DECL
4044 && (!is_gimple_val (dest)
4045 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4047 error ("goto destination is neither a label nor a pointer");
4048 return true;
4051 return false;
4054 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4055 is a problem, otherwise false. */
4057 static bool
4058 verify_gimple_switch (gimple stmt)
4060 if (!is_gimple_val (gimple_switch_index (stmt)))
4062 error ("invalid operand to switch statement");
4063 debug_generic_stmt (gimple_switch_index (stmt));
4064 return true;
4067 return false;
4071 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4072 and false otherwise. */
4074 static bool
4075 verify_gimple_phi (gimple stmt)
4077 tree type = TREE_TYPE (gimple_phi_result (stmt));
4078 unsigned i;
4080 if (!is_gimple_variable (gimple_phi_result (stmt)))
4082 error ("Invalid PHI result");
4083 return true;
4086 for (i = 0; i < gimple_phi_num_args (stmt); i++)
4088 tree arg = gimple_phi_arg_def (stmt, i);
4089 if ((is_gimple_reg (gimple_phi_result (stmt))
4090 && !is_gimple_val (arg))
4091 || (!is_gimple_reg (gimple_phi_result (stmt))
4092 && !is_gimple_addressable (arg)))
4094 error ("Invalid PHI argument");
4095 debug_generic_stmt (arg);
4096 return true;
4098 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
4100 error ("Incompatible types in PHI argument %u", i);
4101 debug_generic_stmt (type);
4102 debug_generic_stmt (TREE_TYPE (arg));
4103 return true;
4107 return false;
4111 /* Verify the GIMPLE statement STMT. Returns true if there is an
4112 error, otherwise false. */
4114 static bool
4115 verify_types_in_gimple_stmt (gimple stmt)
4117 if (is_gimple_omp (stmt))
4119 /* OpenMP directives are validated by the FE and never operated
4120 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4121 non-gimple expressions when the main index variable has had
4122 its address taken. This does not affect the loop itself
4123 because the header of an GIMPLE_OMP_FOR is merely used to determine
4124 how to setup the parallel iteration. */
4125 return false;
4128 switch (gimple_code (stmt))
4130 case GIMPLE_ASSIGN:
4131 return verify_gimple_assign (stmt);
4133 case GIMPLE_LABEL:
4134 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
4136 case GIMPLE_CALL:
4137 return verify_gimple_call (stmt);
4139 case GIMPLE_COND:
4140 return verify_gimple_comparison (boolean_type_node,
4141 gimple_cond_lhs (stmt),
4142 gimple_cond_rhs (stmt));
4144 case GIMPLE_GOTO:
4145 return verify_gimple_goto (stmt);
4147 case GIMPLE_SWITCH:
4148 return verify_gimple_switch (stmt);
4150 case GIMPLE_RETURN:
4151 return verify_gimple_return (stmt);
4153 case GIMPLE_ASM:
4154 return false;
4156 case GIMPLE_PHI:
4157 return verify_gimple_phi (stmt);
4159 /* Tuples that do not have tree operands. */
4160 case GIMPLE_NOP:
4161 case GIMPLE_RESX:
4162 case GIMPLE_PREDICT:
4163 return false;
4165 default:
4166 gcc_unreachable ();
4170 /* Verify the GIMPLE statements inside the sequence STMTS. */
4172 static bool
4173 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4175 gimple_stmt_iterator ittr;
4176 bool err = false;
4178 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4180 gimple stmt = gsi_stmt (ittr);
4182 switch (gimple_code (stmt))
4184 case GIMPLE_BIND:
4185 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4186 break;
4188 case GIMPLE_TRY:
4189 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4190 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4191 break;
4193 case GIMPLE_EH_FILTER:
4194 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4195 break;
4197 case GIMPLE_CATCH:
4198 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4199 break;
4201 default:
4203 bool err2 = verify_types_in_gimple_stmt (stmt);
4204 if (err2)
4205 debug_gimple_stmt (stmt);
4206 err |= err2;
4211 return err;
4215 /* Verify the GIMPLE statements inside the statement list STMTS. */
4217 void
4218 verify_types_in_gimple_seq (gimple_seq stmts)
4220 if (verify_types_in_gimple_seq_2 (stmts))
4221 internal_error ("verify_gimple failed");
4225 /* Verify STMT, return true if STMT is not in GIMPLE form.
4226 TODO: Implement type checking. */
4228 static bool
4229 verify_stmt (gimple_stmt_iterator *gsi)
4231 tree addr;
4232 struct walk_stmt_info wi;
4233 bool last_in_block = gsi_one_before_end_p (*gsi);
4234 gimple stmt = gsi_stmt (*gsi);
4236 if (is_gimple_omp (stmt))
4238 /* OpenMP directives are validated by the FE and never operated
4239 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4240 non-gimple expressions when the main index variable has had
4241 its address taken. This does not affect the loop itself
4242 because the header of an GIMPLE_OMP_FOR is merely used to determine
4243 how to setup the parallel iteration. */
4244 return false;
4247 /* FIXME. The C frontend passes unpromoted arguments in case it
4248 didn't see a function declaration before the call. */
4249 if (is_gimple_call (stmt))
4251 tree decl;
4253 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4255 error ("invalid function in call statement");
4256 return true;
4259 decl = gimple_call_fndecl (stmt);
4260 if (decl
4261 && TREE_CODE (decl) == FUNCTION_DECL
4262 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4263 && (!DECL_PURE_P (decl))
4264 && (!TREE_READONLY (decl)))
4266 error ("invalid pure const state for function");
4267 return true;
4271 memset (&wi, 0, sizeof (wi));
4272 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4273 if (addr)
4275 debug_generic_expr (addr);
4276 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4277 debug_gimple_stmt (stmt);
4278 return true;
4281 /* If the statement is marked as part of an EH region, then it is
4282 expected that the statement could throw. Verify that when we
4283 have optimizations that simplify statements such that we prove
4284 that they cannot throw, that we update other data structures
4285 to match. */
4286 if (lookup_stmt_eh_region (stmt) >= 0)
4288 /* During IPA passes, ipa-pure-const sets nothrow flags on calls
4289 and they are updated on statements only after fixup_cfg
4290 is executed at beggining of expansion stage. */
4291 if (!stmt_could_throw_p (stmt) && cgraph_state != CGRAPH_STATE_IPA_SSA)
4293 error ("statement marked for throw, but doesn%'t");
4294 goto fail;
4296 if (!last_in_block && stmt_can_throw_internal (stmt))
4298 error ("statement marked for throw in middle of block");
4299 goto fail;
4303 return false;
4305 fail:
4306 debug_gimple_stmt (stmt);
4307 return true;
4311 /* Return true when the T can be shared. */
4313 static bool
4314 tree_node_can_be_shared (tree t)
4316 if (IS_TYPE_OR_DECL_P (t)
4317 || is_gimple_min_invariant (t)
4318 || TREE_CODE (t) == SSA_NAME
4319 || t == error_mark_node
4320 || TREE_CODE (t) == IDENTIFIER_NODE)
4321 return true;
4323 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4324 return true;
4326 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4327 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4328 || TREE_CODE (t) == COMPONENT_REF
4329 || TREE_CODE (t) == REALPART_EXPR
4330 || TREE_CODE (t) == IMAGPART_EXPR)
4331 t = TREE_OPERAND (t, 0);
4333 if (DECL_P (t))
4334 return true;
4336 return false;
4340 /* Called via walk_gimple_stmt. Verify tree sharing. */
4342 static tree
4343 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4345 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4346 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4348 if (tree_node_can_be_shared (*tp))
4350 *walk_subtrees = false;
4351 return NULL;
4354 if (pointer_set_insert (visited, *tp))
4355 return *tp;
4357 return NULL;
4361 static bool eh_error_found;
4362 static int
4363 verify_eh_throw_stmt_node (void **slot, void *data)
4365 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4366 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4368 if (!pointer_set_contains (visited, node->stmt))
4370 error ("Dead STMT in EH table");
4371 debug_gimple_stmt (node->stmt);
4372 eh_error_found = true;
4374 return 1;
4378 /* Verify the GIMPLE statements in every basic block. */
4380 void
4381 verify_stmts (void)
4383 basic_block bb;
4384 gimple_stmt_iterator gsi;
4385 bool err = false;
4386 struct pointer_set_t *visited, *visited_stmts;
4387 tree addr;
4388 struct walk_stmt_info wi;
4390 timevar_push (TV_TREE_STMT_VERIFY);
4391 visited = pointer_set_create ();
4392 visited_stmts = pointer_set_create ();
4394 memset (&wi, 0, sizeof (wi));
4395 wi.info = (void *) visited;
4397 FOR_EACH_BB (bb)
4399 gimple phi;
4400 size_t i;
4402 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4404 phi = gsi_stmt (gsi);
4405 pointer_set_insert (visited_stmts, phi);
4406 if (gimple_bb (phi) != bb)
4408 error ("gimple_bb (phi) is set to a wrong basic block");
4409 err |= true;
4412 for (i = 0; i < gimple_phi_num_args (phi); i++)
4414 tree t = gimple_phi_arg_def (phi, i);
4415 tree addr;
4417 if (!t)
4419 error ("missing PHI def");
4420 debug_gimple_stmt (phi);
4421 err |= true;
4422 continue;
4424 /* Addressable variables do have SSA_NAMEs but they
4425 are not considered gimple values. */
4426 else if (TREE_CODE (t) != SSA_NAME
4427 && TREE_CODE (t) != FUNCTION_DECL
4428 && !is_gimple_min_invariant (t))
4430 error ("PHI argument is not a GIMPLE value");
4431 debug_gimple_stmt (phi);
4432 debug_generic_expr (t);
4433 err |= true;
4436 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4437 if (addr)
4439 error ("incorrect sharing of tree nodes");
4440 debug_gimple_stmt (phi);
4441 debug_generic_expr (addr);
4442 err |= true;
4446 #ifdef ENABLE_TYPES_CHECKING
4447 if (verify_gimple_phi (phi))
4449 debug_gimple_stmt (phi);
4450 err |= true;
4452 #endif
4455 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4457 gimple stmt = gsi_stmt (gsi);
4459 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4460 || gimple_code (stmt) == GIMPLE_BIND)
4462 error ("invalid GIMPLE statement");
4463 debug_gimple_stmt (stmt);
4464 err |= true;
4467 pointer_set_insert (visited_stmts, stmt);
4469 if (gimple_bb (stmt) != bb)
4471 error ("gimple_bb (stmt) is set to a wrong basic block");
4472 debug_gimple_stmt (stmt);
4473 err |= true;
4476 if (gimple_code (stmt) == GIMPLE_LABEL)
4478 tree decl = gimple_label_label (stmt);
4479 int uid = LABEL_DECL_UID (decl);
4481 if (uid == -1
4482 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4484 error ("incorrect entry in label_to_block_map.\n");
4485 err |= true;
4489 err |= verify_stmt (&gsi);
4491 #ifdef ENABLE_TYPES_CHECKING
4492 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4494 debug_gimple_stmt (stmt);
4495 err |= true;
4497 #endif
4498 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4499 if (addr)
4501 error ("incorrect sharing of tree nodes");
4502 debug_gimple_stmt (stmt);
4503 debug_generic_expr (addr);
4504 err |= true;
4506 gsi_next (&gsi);
4510 eh_error_found = false;
4511 if (get_eh_throw_stmt_table (cfun))
4512 htab_traverse (get_eh_throw_stmt_table (cfun),
4513 verify_eh_throw_stmt_node,
4514 visited_stmts);
4516 if (err | eh_error_found)
4517 internal_error ("verify_stmts failed");
4519 pointer_set_destroy (visited);
4520 pointer_set_destroy (visited_stmts);
4521 verify_histograms ();
4522 timevar_pop (TV_TREE_STMT_VERIFY);
4526 /* Verifies that the flow information is OK. */
4528 static int
4529 gimple_verify_flow_info (void)
4531 int err = 0;
4532 basic_block bb;
4533 gimple_stmt_iterator gsi;
4534 gimple stmt;
4535 edge e;
4536 edge_iterator ei;
4538 if (ENTRY_BLOCK_PTR->il.gimple)
4540 error ("ENTRY_BLOCK has IL associated with it");
4541 err = 1;
4544 if (EXIT_BLOCK_PTR->il.gimple)
4546 error ("EXIT_BLOCK has IL associated with it");
4547 err = 1;
4550 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4551 if (e->flags & EDGE_FALLTHRU)
4553 error ("fallthru to exit from bb %d", e->src->index);
4554 err = 1;
4557 FOR_EACH_BB (bb)
4559 bool found_ctrl_stmt = false;
4561 stmt = NULL;
4563 /* Skip labels on the start of basic block. */
4564 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4566 tree label;
4567 gimple prev_stmt = stmt;
4569 stmt = gsi_stmt (gsi);
4571 if (gimple_code (stmt) != GIMPLE_LABEL)
4572 break;
4574 label = gimple_label_label (stmt);
4575 if (prev_stmt && DECL_NONLOCAL (label))
4577 error ("nonlocal label ");
4578 print_generic_expr (stderr, label, 0);
4579 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4580 bb->index);
4581 err = 1;
4584 if (label_to_block (label) != bb)
4586 error ("label ");
4587 print_generic_expr (stderr, label, 0);
4588 fprintf (stderr, " to block does not match in bb %d",
4589 bb->index);
4590 err = 1;
4593 if (decl_function_context (label) != current_function_decl)
4595 error ("label ");
4596 print_generic_expr (stderr, label, 0);
4597 fprintf (stderr, " has incorrect context in bb %d",
4598 bb->index);
4599 err = 1;
4603 /* Verify that body of basic block BB is free of control flow. */
4604 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4606 gimple stmt = gsi_stmt (gsi);
4608 if (found_ctrl_stmt)
4610 error ("control flow in the middle of basic block %d",
4611 bb->index);
4612 err = 1;
4615 if (stmt_ends_bb_p (stmt))
4616 found_ctrl_stmt = true;
4618 if (gimple_code (stmt) == GIMPLE_LABEL)
4620 error ("label ");
4621 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4622 fprintf (stderr, " in the middle of basic block %d", bb->index);
4623 err = 1;
4627 gsi = gsi_last_bb (bb);
4628 if (gsi_end_p (gsi))
4629 continue;
4631 stmt = gsi_stmt (gsi);
4633 err |= verify_eh_edges (stmt);
4635 if (is_ctrl_stmt (stmt))
4637 FOR_EACH_EDGE (e, ei, bb->succs)
4638 if (e->flags & EDGE_FALLTHRU)
4640 error ("fallthru edge after a control statement in bb %d",
4641 bb->index);
4642 err = 1;
4646 if (gimple_code (stmt) != GIMPLE_COND)
4648 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4649 after anything else but if statement. */
4650 FOR_EACH_EDGE (e, ei, bb->succs)
4651 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4653 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4654 bb->index);
4655 err = 1;
4659 switch (gimple_code (stmt))
4661 case GIMPLE_COND:
4663 edge true_edge;
4664 edge false_edge;
4666 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4668 if (!true_edge
4669 || !false_edge
4670 || !(true_edge->flags & EDGE_TRUE_VALUE)
4671 || !(false_edge->flags & EDGE_FALSE_VALUE)
4672 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4673 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4674 || EDGE_COUNT (bb->succs) >= 3)
4676 error ("wrong outgoing edge flags at end of bb %d",
4677 bb->index);
4678 err = 1;
4681 break;
4683 case GIMPLE_GOTO:
4684 if (simple_goto_p (stmt))
4686 error ("explicit goto at end of bb %d", bb->index);
4687 err = 1;
4689 else
4691 /* FIXME. We should double check that the labels in the
4692 destination blocks have their address taken. */
4693 FOR_EACH_EDGE (e, ei, bb->succs)
4694 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4695 | EDGE_FALSE_VALUE))
4696 || !(e->flags & EDGE_ABNORMAL))
4698 error ("wrong outgoing edge flags at end of bb %d",
4699 bb->index);
4700 err = 1;
4703 break;
4705 case GIMPLE_RETURN:
4706 if (!single_succ_p (bb)
4707 || (single_succ_edge (bb)->flags
4708 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4709 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4711 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4712 err = 1;
4714 if (single_succ (bb) != EXIT_BLOCK_PTR)
4716 error ("return edge does not point to exit in bb %d",
4717 bb->index);
4718 err = 1;
4720 break;
4722 case GIMPLE_SWITCH:
4724 tree prev;
4725 edge e;
4726 size_t i, n;
4728 n = gimple_switch_num_labels (stmt);
4730 /* Mark all the destination basic blocks. */
4731 for (i = 0; i < n; ++i)
4733 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4734 basic_block label_bb = label_to_block (lab);
4735 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4736 label_bb->aux = (void *)1;
4739 /* Verify that the case labels are sorted. */
4740 prev = gimple_switch_label (stmt, 0);
4741 for (i = 1; i < n; ++i)
4743 tree c = gimple_switch_label (stmt, i);
4744 if (!CASE_LOW (c))
4746 error ("found default case not at the start of "
4747 "case vector");
4748 err = 1;
4749 continue;
4751 if (CASE_LOW (prev)
4752 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4754 error ("case labels not sorted: ");
4755 print_generic_expr (stderr, prev, 0);
4756 fprintf (stderr," is greater than ");
4757 print_generic_expr (stderr, c, 0);
4758 fprintf (stderr," but comes before it.\n");
4759 err = 1;
4761 prev = c;
4763 /* VRP will remove the default case if it can prove it will
4764 never be executed. So do not verify there always exists
4765 a default case here. */
4767 FOR_EACH_EDGE (e, ei, bb->succs)
4769 if (!e->dest->aux)
4771 error ("extra outgoing edge %d->%d",
4772 bb->index, e->dest->index);
4773 err = 1;
4776 e->dest->aux = (void *)2;
4777 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4778 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4780 error ("wrong outgoing edge flags at end of bb %d",
4781 bb->index);
4782 err = 1;
4786 /* Check that we have all of them. */
4787 for (i = 0; i < n; ++i)
4789 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4790 basic_block label_bb = label_to_block (lab);
4792 if (label_bb->aux != (void *)2)
4794 error ("missing edge %i->%i", bb->index, label_bb->index);
4795 err = 1;
4799 FOR_EACH_EDGE (e, ei, bb->succs)
4800 e->dest->aux = (void *)0;
4803 default: ;
4807 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4808 verify_dominators (CDI_DOMINATORS);
4810 return err;
4814 /* Updates phi nodes after creating a forwarder block joined
4815 by edge FALLTHRU. */
4817 static void
4818 gimple_make_forwarder_block (edge fallthru)
4820 edge e;
4821 edge_iterator ei;
4822 basic_block dummy, bb;
4823 tree var;
4824 gimple_stmt_iterator gsi;
4826 dummy = fallthru->src;
4827 bb = fallthru->dest;
4829 if (single_pred_p (bb))
4830 return;
4832 /* If we redirected a branch we must create new PHI nodes at the
4833 start of BB. */
4834 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4836 gimple phi, new_phi;
4838 phi = gsi_stmt (gsi);
4839 var = gimple_phi_result (phi);
4840 new_phi = create_phi_node (var, bb);
4841 SSA_NAME_DEF_STMT (var) = new_phi;
4842 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4843 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4844 UNKNOWN_LOCATION);
4847 /* Add the arguments we have stored on edges. */
4848 FOR_EACH_EDGE (e, ei, bb->preds)
4850 if (e == fallthru)
4851 continue;
4853 flush_pending_stmts (e);
4858 /* Return a non-special label in the head of basic block BLOCK.
4859 Create one if it doesn't exist. */
4861 tree
4862 gimple_block_label (basic_block bb)
4864 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4865 bool first = true;
4866 tree label;
4867 gimple stmt;
4869 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4871 stmt = gsi_stmt (i);
4872 if (gimple_code (stmt) != GIMPLE_LABEL)
4873 break;
4874 label = gimple_label_label (stmt);
4875 if (!DECL_NONLOCAL (label))
4877 if (!first)
4878 gsi_move_before (&i, &s);
4879 return label;
4883 label = create_artificial_label (UNKNOWN_LOCATION);
4884 stmt = gimple_build_label (label);
4885 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4886 return label;
4890 /* Attempt to perform edge redirection by replacing a possibly complex
4891 jump instruction by a goto or by removing the jump completely.
4892 This can apply only if all edges now point to the same block. The
4893 parameters and return values are equivalent to
4894 redirect_edge_and_branch. */
4896 static edge
4897 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4899 basic_block src = e->src;
4900 gimple_stmt_iterator i;
4901 gimple stmt;
4903 /* We can replace or remove a complex jump only when we have exactly
4904 two edges. */
4905 if (EDGE_COUNT (src->succs) != 2
4906 /* Verify that all targets will be TARGET. Specifically, the
4907 edge that is not E must also go to TARGET. */
4908 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4909 return NULL;
4911 i = gsi_last_bb (src);
4912 if (gsi_end_p (i))
4913 return NULL;
4915 stmt = gsi_stmt (i);
4917 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4919 gsi_remove (&i, true);
4920 e = ssa_redirect_edge (e, target);
4921 e->flags = EDGE_FALLTHRU;
4922 return e;
4925 return NULL;
4929 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4930 edge representing the redirected branch. */
4932 static edge
4933 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4935 basic_block bb = e->src;
4936 gimple_stmt_iterator gsi;
4937 edge ret;
4938 gimple stmt;
4940 if (e->flags & EDGE_ABNORMAL)
4941 return NULL;
4943 if (e->src != ENTRY_BLOCK_PTR
4944 && (ret = gimple_try_redirect_by_replacing_jump (e, dest)))
4945 return ret;
4947 if (e->dest == dest)
4948 return NULL;
4950 if (e->flags & EDGE_EH)
4951 return redirect_eh_edge (e, dest);
4953 gsi = gsi_last_bb (bb);
4954 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4956 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4958 case GIMPLE_COND:
4959 /* For COND_EXPR, we only need to redirect the edge. */
4960 break;
4962 case GIMPLE_GOTO:
4963 /* No non-abnormal edges should lead from a non-simple goto, and
4964 simple ones should be represented implicitly. */
4965 gcc_unreachable ();
4967 case GIMPLE_SWITCH:
4969 tree label = gimple_block_label (dest);
4970 tree cases = get_cases_for_edge (e, stmt);
4972 /* If we have a list of cases associated with E, then use it
4973 as it's a lot faster than walking the entire case vector. */
4974 if (cases)
4976 edge e2 = find_edge (e->src, dest);
4977 tree last, first;
4979 first = cases;
4980 while (cases)
4982 last = cases;
4983 CASE_LABEL (cases) = label;
4984 cases = TREE_CHAIN (cases);
4987 /* If there was already an edge in the CFG, then we need
4988 to move all the cases associated with E to E2. */
4989 if (e2)
4991 tree cases2 = get_cases_for_edge (e2, stmt);
4993 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4994 TREE_CHAIN (cases2) = first;
4997 else
4999 size_t i, n = gimple_switch_num_labels (stmt);
5001 for (i = 0; i < n; i++)
5003 tree elt = gimple_switch_label (stmt, i);
5004 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5005 CASE_LABEL (elt) = label;
5009 break;
5012 case GIMPLE_RETURN:
5013 gsi_remove (&gsi, true);
5014 e->flags |= EDGE_FALLTHRU;
5015 break;
5017 case GIMPLE_OMP_RETURN:
5018 case GIMPLE_OMP_CONTINUE:
5019 case GIMPLE_OMP_SECTIONS_SWITCH:
5020 case GIMPLE_OMP_FOR:
5021 /* The edges from OMP constructs can be simply redirected. */
5022 break;
5024 default:
5025 /* Otherwise it must be a fallthru edge, and we don't need to
5026 do anything besides redirecting it. */
5027 gcc_assert (e->flags & EDGE_FALLTHRU);
5028 break;
5031 /* Update/insert PHI nodes as necessary. */
5033 /* Now update the edges in the CFG. */
5034 e = ssa_redirect_edge (e, dest);
5036 return e;
5039 /* Returns true if it is possible to remove edge E by redirecting
5040 it to the destination of the other edge from E->src. */
5042 static bool
5043 gimple_can_remove_branch_p (const_edge e)
5045 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5046 return false;
5048 return true;
5051 /* Simple wrapper, as we can always redirect fallthru edges. */
5053 static basic_block
5054 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5056 e = gimple_redirect_edge_and_branch (e, dest);
5057 gcc_assert (e);
5059 return NULL;
5063 /* Splits basic block BB after statement STMT (but at least after the
5064 labels). If STMT is NULL, BB is split just after the labels. */
5066 static basic_block
5067 gimple_split_block (basic_block bb, void *stmt)
5069 gimple_stmt_iterator gsi;
5070 gimple_stmt_iterator gsi_tgt;
5071 gimple act;
5072 gimple_seq list;
5073 basic_block new_bb;
5074 edge e;
5075 edge_iterator ei;
5077 new_bb = create_empty_bb (bb);
5079 /* Redirect the outgoing edges. */
5080 new_bb->succs = bb->succs;
5081 bb->succs = NULL;
5082 FOR_EACH_EDGE (e, ei, new_bb->succs)
5083 e->src = new_bb;
5085 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5086 stmt = NULL;
5088 /* Move everything from GSI to the new basic block. */
5089 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5091 act = gsi_stmt (gsi);
5092 if (gimple_code (act) == GIMPLE_LABEL)
5093 continue;
5095 if (!stmt)
5096 break;
5098 if (stmt == act)
5100 gsi_next (&gsi);
5101 break;
5105 if (gsi_end_p (gsi))
5106 return new_bb;
5108 /* Split the statement list - avoid re-creating new containers as this
5109 brings ugly quadratic memory consumption in the inliner.
5110 (We are still quadratic since we need to update stmt BB pointers,
5111 sadly.) */
5112 list = gsi_split_seq_before (&gsi);
5113 set_bb_seq (new_bb, list);
5114 for (gsi_tgt = gsi_start (list);
5115 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5116 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5118 return new_bb;
5122 /* Moves basic block BB after block AFTER. */
5124 static bool
5125 gimple_move_block_after (basic_block bb, basic_block after)
5127 if (bb->prev_bb == after)
5128 return true;
5130 unlink_block (bb);
5131 link_block (bb, after);
5133 return true;
5137 /* Return true if basic_block can be duplicated. */
5139 static bool
5140 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5142 return true;
5145 /* Create a duplicate of the basic block BB. NOTE: This does not
5146 preserve SSA form. */
5148 static basic_block
5149 gimple_duplicate_bb (basic_block bb)
5151 basic_block new_bb;
5152 gimple_stmt_iterator gsi, gsi_tgt;
5153 gimple_seq phis = phi_nodes (bb);
5154 gimple phi, stmt, copy;
5156 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5158 /* Copy the PHI nodes. We ignore PHI node arguments here because
5159 the incoming edges have not been setup yet. */
5160 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5162 phi = gsi_stmt (gsi);
5163 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5164 create_new_def_for (gimple_phi_result (copy), copy,
5165 gimple_phi_result_ptr (copy));
5168 gsi_tgt = gsi_start_bb (new_bb);
5169 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5171 def_operand_p def_p;
5172 ssa_op_iter op_iter;
5173 int region;
5175 stmt = gsi_stmt (gsi);
5176 if (gimple_code (stmt) == GIMPLE_LABEL)
5177 continue;
5179 /* Create a new copy of STMT and duplicate STMT's virtual
5180 operands. */
5181 copy = gimple_copy (stmt);
5182 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5183 region = lookup_stmt_eh_region (stmt);
5184 if (region >= 0)
5185 add_stmt_to_eh_region (copy, region);
5186 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5188 /* Create new names for all the definitions created by COPY and
5189 add replacement mappings for each new name. */
5190 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5191 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5194 return new_bb;
5197 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5199 static void
5200 add_phi_args_after_copy_edge (edge e_copy)
5202 basic_block bb, bb_copy = e_copy->src, dest;
5203 edge e;
5204 edge_iterator ei;
5205 gimple phi, phi_copy;
5206 tree def;
5207 gimple_stmt_iterator psi, psi_copy;
5209 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5210 return;
5212 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5214 if (e_copy->dest->flags & BB_DUPLICATED)
5215 dest = get_bb_original (e_copy->dest);
5216 else
5217 dest = e_copy->dest;
5219 e = find_edge (bb, dest);
5220 if (!e)
5222 /* During loop unrolling the target of the latch edge is copied.
5223 In this case we are not looking for edge to dest, but to
5224 duplicated block whose original was dest. */
5225 FOR_EACH_EDGE (e, ei, bb->succs)
5227 if ((e->dest->flags & BB_DUPLICATED)
5228 && get_bb_original (e->dest) == dest)
5229 break;
5232 gcc_assert (e != NULL);
5235 for (psi = gsi_start_phis (e->dest),
5236 psi_copy = gsi_start_phis (e_copy->dest);
5237 !gsi_end_p (psi);
5238 gsi_next (&psi), gsi_next (&psi_copy))
5240 phi = gsi_stmt (psi);
5241 phi_copy = gsi_stmt (psi_copy);
5242 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5243 add_phi_arg (phi_copy, def, e_copy,
5244 gimple_phi_arg_location_from_edge (phi, e));
5249 /* Basic block BB_COPY was created by code duplication. Add phi node
5250 arguments for edges going out of BB_COPY. The blocks that were
5251 duplicated have BB_DUPLICATED set. */
5253 void
5254 add_phi_args_after_copy_bb (basic_block bb_copy)
5256 edge e_copy;
5257 edge_iterator ei;
5259 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5261 add_phi_args_after_copy_edge (e_copy);
5265 /* Blocks in REGION_COPY array of length N_REGION were created by
5266 duplication of basic blocks. Add phi node arguments for edges
5267 going from these blocks. If E_COPY is not NULL, also add
5268 phi node arguments for its destination.*/
5270 void
5271 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5272 edge e_copy)
5274 unsigned i;
5276 for (i = 0; i < n_region; i++)
5277 region_copy[i]->flags |= BB_DUPLICATED;
5279 for (i = 0; i < n_region; i++)
5280 add_phi_args_after_copy_bb (region_copy[i]);
5281 if (e_copy)
5282 add_phi_args_after_copy_edge (e_copy);
5284 for (i = 0; i < n_region; i++)
5285 region_copy[i]->flags &= ~BB_DUPLICATED;
5288 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5289 important exit edge EXIT. By important we mean that no SSA name defined
5290 inside region is live over the other exit edges of the region. All entry
5291 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5292 to the duplicate of the region. SSA form, dominance and loop information
5293 is updated. The new basic blocks are stored to REGION_COPY in the same
5294 order as they had in REGION, provided that REGION_COPY is not NULL.
5295 The function returns false if it is unable to copy the region,
5296 true otherwise. */
5298 bool
5299 gimple_duplicate_sese_region (edge entry, edge exit,
5300 basic_block *region, unsigned n_region,
5301 basic_block *region_copy)
5303 unsigned i;
5304 bool free_region_copy = false, copying_header = false;
5305 struct loop *loop = entry->dest->loop_father;
5306 edge exit_copy;
5307 VEC (basic_block, heap) *doms;
5308 edge redirected;
5309 int total_freq = 0, entry_freq = 0;
5310 gcov_type total_count = 0, entry_count = 0;
5312 if (!can_copy_bbs_p (region, n_region))
5313 return false;
5315 /* Some sanity checking. Note that we do not check for all possible
5316 missuses of the functions. I.e. if you ask to copy something weird,
5317 it will work, but the state of structures probably will not be
5318 correct. */
5319 for (i = 0; i < n_region; i++)
5321 /* We do not handle subloops, i.e. all the blocks must belong to the
5322 same loop. */
5323 if (region[i]->loop_father != loop)
5324 return false;
5326 if (region[i] != entry->dest
5327 && region[i] == loop->header)
5328 return false;
5331 set_loop_copy (loop, loop);
5333 /* In case the function is used for loop header copying (which is the primary
5334 use), ensure that EXIT and its copy will be new latch and entry edges. */
5335 if (loop->header == entry->dest)
5337 copying_header = true;
5338 set_loop_copy (loop, loop_outer (loop));
5340 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5341 return false;
5343 for (i = 0; i < n_region; i++)
5344 if (region[i] != exit->src
5345 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5346 return false;
5349 if (!region_copy)
5351 region_copy = XNEWVEC (basic_block, n_region);
5352 free_region_copy = true;
5355 gcc_assert (!need_ssa_update_p (cfun));
5357 /* Record blocks outside the region that are dominated by something
5358 inside. */
5359 doms = NULL;
5360 initialize_original_copy_tables ();
5362 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5364 if (entry->dest->count)
5366 total_count = entry->dest->count;
5367 entry_count = entry->count;
5368 /* Fix up corner cases, to avoid division by zero or creation of negative
5369 frequencies. */
5370 if (entry_count > total_count)
5371 entry_count = total_count;
5373 else
5375 total_freq = entry->dest->frequency;
5376 entry_freq = EDGE_FREQUENCY (entry);
5377 /* Fix up corner cases, to avoid division by zero or creation of negative
5378 frequencies. */
5379 if (total_freq == 0)
5380 total_freq = 1;
5381 else if (entry_freq > total_freq)
5382 entry_freq = total_freq;
5385 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5386 split_edge_bb_loc (entry));
5387 if (total_count)
5389 scale_bbs_frequencies_gcov_type (region, n_region,
5390 total_count - entry_count,
5391 total_count);
5392 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5393 total_count);
5395 else
5397 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5398 total_freq);
5399 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5402 if (copying_header)
5404 loop->header = exit->dest;
5405 loop->latch = exit->src;
5408 /* Redirect the entry and add the phi node arguments. */
5409 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5410 gcc_assert (redirected != NULL);
5411 flush_pending_stmts (entry);
5413 /* Concerning updating of dominators: We must recount dominators
5414 for entry block and its copy. Anything that is outside of the
5415 region, but was dominated by something inside needs recounting as
5416 well. */
5417 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5418 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5419 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5420 VEC_free (basic_block, heap, doms);
5422 /* Add the other PHI node arguments. */
5423 add_phi_args_after_copy (region_copy, n_region, NULL);
5425 /* Update the SSA web. */
5426 update_ssa (TODO_update_ssa);
5428 if (free_region_copy)
5429 free (region_copy);
5431 free_original_copy_tables ();
5432 return true;
5435 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5436 are stored to REGION_COPY in the same order in that they appear
5437 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5438 the region, EXIT an exit from it. The condition guarding EXIT
5439 is moved to ENTRY. Returns true if duplication succeeds, false
5440 otherwise.
5442 For example,
5444 some_code;
5445 if (cond)
5447 else
5450 is transformed to
5452 if (cond)
5454 some_code;
5457 else
5459 some_code;
5464 bool
5465 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5466 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5467 basic_block *region_copy ATTRIBUTE_UNUSED)
5469 unsigned i;
5470 bool free_region_copy = false;
5471 struct loop *loop = exit->dest->loop_father;
5472 struct loop *orig_loop = entry->dest->loop_father;
5473 basic_block switch_bb, entry_bb, nentry_bb;
5474 VEC (basic_block, heap) *doms;
5475 int total_freq = 0, exit_freq = 0;
5476 gcov_type total_count = 0, exit_count = 0;
5477 edge exits[2], nexits[2], e;
5478 gimple_stmt_iterator gsi;
5479 gimple cond_stmt;
5480 edge sorig, snew;
5482 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5483 exits[0] = exit;
5484 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5486 if (!can_copy_bbs_p (region, n_region))
5487 return false;
5489 /* Some sanity checking. Note that we do not check for all possible
5490 missuses of the functions. I.e. if you ask to copy something weird
5491 (e.g., in the example, if there is a jump from inside to the middle
5492 of some_code, or come_code defines some of the values used in cond)
5493 it will work, but the resulting code will not be correct. */
5494 for (i = 0; i < n_region; i++)
5496 /* We do not handle subloops, i.e. all the blocks must belong to the
5497 same loop. */
5498 if (region[i]->loop_father != orig_loop)
5499 return false;
5501 if (region[i] == orig_loop->latch)
5502 return false;
5505 initialize_original_copy_tables ();
5506 set_loop_copy (orig_loop, loop);
5508 if (!region_copy)
5510 region_copy = XNEWVEC (basic_block, n_region);
5511 free_region_copy = true;
5514 gcc_assert (!need_ssa_update_p (cfun));
5516 /* Record blocks outside the region that are dominated by something
5517 inside. */
5518 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5520 if (exit->src->count)
5522 total_count = exit->src->count;
5523 exit_count = exit->count;
5524 /* Fix up corner cases, to avoid division by zero or creation of negative
5525 frequencies. */
5526 if (exit_count > total_count)
5527 exit_count = total_count;
5529 else
5531 total_freq = exit->src->frequency;
5532 exit_freq = EDGE_FREQUENCY (exit);
5533 /* Fix up corner cases, to avoid division by zero or creation of negative
5534 frequencies. */
5535 if (total_freq == 0)
5536 total_freq = 1;
5537 if (exit_freq > total_freq)
5538 exit_freq = total_freq;
5541 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5542 split_edge_bb_loc (exit));
5543 if (total_count)
5545 scale_bbs_frequencies_gcov_type (region, n_region,
5546 total_count - exit_count,
5547 total_count);
5548 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5549 total_count);
5551 else
5553 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5554 total_freq);
5555 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5558 /* Create the switch block, and put the exit condition to it. */
5559 entry_bb = entry->dest;
5560 nentry_bb = get_bb_copy (entry_bb);
5561 if (!last_stmt (entry->src)
5562 || !stmt_ends_bb_p (last_stmt (entry->src)))
5563 switch_bb = entry->src;
5564 else
5565 switch_bb = split_edge (entry);
5566 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5568 gsi = gsi_last_bb (switch_bb);
5569 cond_stmt = last_stmt (exit->src);
5570 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5571 cond_stmt = gimple_copy (cond_stmt);
5572 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5573 gimple_cond_set_rhs (cond_stmt, unshare_expr (gimple_cond_rhs (cond_stmt)));
5574 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5576 sorig = single_succ_edge (switch_bb);
5577 sorig->flags = exits[1]->flags;
5578 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5580 /* Register the new edge from SWITCH_BB in loop exit lists. */
5581 rescan_loop_exit (snew, true, false);
5583 /* Add the PHI node arguments. */
5584 add_phi_args_after_copy (region_copy, n_region, snew);
5586 /* Get rid of now superfluous conditions and associated edges (and phi node
5587 arguments). */
5588 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5589 PENDING_STMT (e) = NULL;
5590 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
5591 PENDING_STMT (e) = NULL;
5593 /* Anything that is outside of the region, but was dominated by something
5594 inside needs to update dominance info. */
5595 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5596 VEC_free (basic_block, heap, doms);
5598 /* Update the SSA web. */
5599 update_ssa (TODO_update_ssa);
5601 if (free_region_copy)
5602 free (region_copy);
5604 free_original_copy_tables ();
5605 return true;
5608 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5609 adding blocks when the dominator traversal reaches EXIT. This
5610 function silently assumes that ENTRY strictly dominates EXIT. */
5612 void
5613 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5614 VEC(basic_block,heap) **bbs_p)
5616 basic_block son;
5618 for (son = first_dom_son (CDI_DOMINATORS, entry);
5619 son;
5620 son = next_dom_son (CDI_DOMINATORS, son))
5622 VEC_safe_push (basic_block, heap, *bbs_p, son);
5623 if (son != exit)
5624 gather_blocks_in_sese_region (son, exit, bbs_p);
5628 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5629 The duplicates are recorded in VARS_MAP. */
5631 static void
5632 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5633 tree to_context)
5635 tree t = *tp, new_t;
5636 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5637 void **loc;
5639 if (DECL_CONTEXT (t) == to_context)
5640 return;
5642 loc = pointer_map_contains (vars_map, t);
5644 if (!loc)
5646 loc = pointer_map_insert (vars_map, t);
5648 if (SSA_VAR_P (t))
5650 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5651 f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
5653 else
5655 gcc_assert (TREE_CODE (t) == CONST_DECL);
5656 new_t = copy_node (t);
5658 DECL_CONTEXT (new_t) = to_context;
5660 *loc = new_t;
5662 else
5663 new_t = (tree) *loc;
5665 *tp = new_t;
5669 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5670 VARS_MAP maps old ssa names and var_decls to the new ones. */
5672 static tree
5673 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5674 tree to_context)
5676 void **loc;
5677 tree new_name, decl = SSA_NAME_VAR (name);
5679 gcc_assert (is_gimple_reg (name));
5681 loc = pointer_map_contains (vars_map, name);
5683 if (!loc)
5685 replace_by_duplicate_decl (&decl, vars_map, to_context);
5687 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5688 if (gimple_in_ssa_p (cfun))
5689 add_referenced_var (decl);
5691 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5692 if (SSA_NAME_IS_DEFAULT_DEF (name))
5693 set_default_def (decl, new_name);
5694 pop_cfun ();
5696 loc = pointer_map_insert (vars_map, name);
5697 *loc = new_name;
5699 else
5700 new_name = (tree) *loc;
5702 return new_name;
5705 struct move_stmt_d
5707 tree orig_block;
5708 tree new_block;
5709 tree from_context;
5710 tree to_context;
5711 struct pointer_map_t *vars_map;
5712 htab_t new_label_map;
5713 bool remap_decls_p;
5716 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5717 contained in *TP if it has been ORIG_BLOCK previously and change the
5718 DECL_CONTEXT of every local variable referenced in *TP. */
5720 static tree
5721 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5723 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5724 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5725 tree t = *tp;
5727 if (EXPR_P (t))
5728 /* We should never have TREE_BLOCK set on non-statements. */
5729 gcc_assert (!TREE_BLOCK (t));
5731 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5733 if (TREE_CODE (t) == SSA_NAME)
5734 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5735 else if (TREE_CODE (t) == LABEL_DECL)
5737 if (p->new_label_map)
5739 struct tree_map in, *out;
5740 in.base.from = t;
5741 out = (struct tree_map *)
5742 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5743 if (out)
5744 *tp = t = out->to;
5747 DECL_CONTEXT (t) = p->to_context;
5749 else if (p->remap_decls_p)
5751 /* Replace T with its duplicate. T should no longer appear in the
5752 parent function, so this looks wasteful; however, it may appear
5753 in referenced_vars, and more importantly, as virtual operands of
5754 statements, and in alias lists of other variables. It would be
5755 quite difficult to expunge it from all those places. ??? It might
5756 suffice to do this for addressable variables. */
5757 if ((TREE_CODE (t) == VAR_DECL
5758 && !is_global_var (t))
5759 || TREE_CODE (t) == CONST_DECL)
5760 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5762 if (SSA_VAR_P (t)
5763 && gimple_in_ssa_p (cfun))
5765 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5766 add_referenced_var (*tp);
5767 pop_cfun ();
5770 *walk_subtrees = 0;
5772 else if (TYPE_P (t))
5773 *walk_subtrees = 0;
5775 return NULL_TREE;
5778 /* Like move_stmt_op, but for gimple statements.
5780 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5781 contained in the current statement in *GSI_P and change the
5782 DECL_CONTEXT of every local variable referenced in the current
5783 statement. */
5785 static tree
5786 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5787 struct walk_stmt_info *wi)
5789 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5790 gimple stmt = gsi_stmt (*gsi_p);
5791 tree block = gimple_block (stmt);
5793 if (p->orig_block == NULL_TREE
5794 || block == p->orig_block
5795 || block == NULL_TREE)
5796 gimple_set_block (stmt, p->new_block);
5797 #ifdef ENABLE_CHECKING
5798 else if (block != p->new_block)
5800 while (block && block != p->orig_block)
5801 block = BLOCK_SUPERCONTEXT (block);
5802 gcc_assert (block);
5804 #endif
5806 if (is_gimple_omp (stmt)
5807 && gimple_code (stmt) != GIMPLE_OMP_RETURN
5808 && gimple_code (stmt) != GIMPLE_OMP_CONTINUE)
5810 /* Do not remap variables inside OMP directives. Variables
5811 referenced in clauses and directive header belong to the
5812 parent function and should not be moved into the child
5813 function. */
5814 bool save_remap_decls_p = p->remap_decls_p;
5815 p->remap_decls_p = false;
5816 *handled_ops_p = true;
5818 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r, move_stmt_op, wi);
5820 p->remap_decls_p = save_remap_decls_p;
5823 return NULL_TREE;
5826 /* Marks virtual operands of all statements in basic blocks BBS for
5827 renaming. */
5829 void
5830 mark_virtual_ops_in_bb (basic_block bb)
5832 gimple_stmt_iterator gsi;
5834 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5835 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5837 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5838 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5841 /* Move basic block BB from function CFUN to function DEST_FN. The
5842 block is moved out of the original linked list and placed after
5843 block AFTER in the new list. Also, the block is removed from the
5844 original array of blocks and placed in DEST_FN's array of blocks.
5845 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5846 updated to reflect the moved edges.
5848 The local variables are remapped to new instances, VARS_MAP is used
5849 to record the mapping. */
5851 static void
5852 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5853 basic_block after, bool update_edge_count_p,
5854 struct move_stmt_d *d, int eh_offset)
5856 struct control_flow_graph *cfg;
5857 edge_iterator ei;
5858 edge e;
5859 gimple_stmt_iterator si;
5860 unsigned old_len, new_len;
5862 /* Remove BB from dominance structures. */
5863 delete_from_dominance_info (CDI_DOMINATORS, bb);
5864 if (current_loops)
5865 remove_bb_from_loops (bb);
5867 /* Link BB to the new linked list. */
5868 move_block_after (bb, after);
5870 /* Update the edge count in the corresponding flowgraphs. */
5871 if (update_edge_count_p)
5872 FOR_EACH_EDGE (e, ei, bb->succs)
5874 cfun->cfg->x_n_edges--;
5875 dest_cfun->cfg->x_n_edges++;
5878 /* Remove BB from the original basic block array. */
5879 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5880 cfun->cfg->x_n_basic_blocks--;
5882 /* Grow DEST_CFUN's basic block array if needed. */
5883 cfg = dest_cfun->cfg;
5884 cfg->x_n_basic_blocks++;
5885 if (bb->index >= cfg->x_last_basic_block)
5886 cfg->x_last_basic_block = bb->index + 1;
5888 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5889 if ((unsigned) cfg->x_last_basic_block >= old_len)
5891 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5892 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5893 new_len);
5896 VEC_replace (basic_block, cfg->x_basic_block_info,
5897 bb->index, bb);
5899 /* Remap the variables in phi nodes. */
5900 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5902 gimple phi = gsi_stmt (si);
5903 use_operand_p use;
5904 tree op = PHI_RESULT (phi);
5905 ssa_op_iter oi;
5907 if (!is_gimple_reg (op))
5909 /* Remove the phi nodes for virtual operands (alias analysis will be
5910 run for the new function, anyway). */
5911 remove_phi_node (&si, true);
5912 continue;
5915 SET_PHI_RESULT (phi,
5916 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5917 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5919 op = USE_FROM_PTR (use);
5920 if (TREE_CODE (op) == SSA_NAME)
5921 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5924 gsi_next (&si);
5927 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5929 gimple stmt = gsi_stmt (si);
5930 int region;
5931 struct walk_stmt_info wi;
5933 memset (&wi, 0, sizeof (wi));
5934 wi.info = d;
5935 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5937 if (gimple_code (stmt) == GIMPLE_LABEL)
5939 tree label = gimple_label_label (stmt);
5940 int uid = LABEL_DECL_UID (label);
5942 gcc_assert (uid > -1);
5944 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5945 if (old_len <= (unsigned) uid)
5947 new_len = 3 * uid / 2 + 1;
5948 VEC_safe_grow_cleared (basic_block, gc,
5949 cfg->x_label_to_block_map, new_len);
5952 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5953 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5955 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5957 if (uid >= dest_cfun->cfg->last_label_uid)
5958 dest_cfun->cfg->last_label_uid = uid + 1;
5960 else if (gimple_code (stmt) == GIMPLE_RESX && eh_offset != 0)
5961 gimple_resx_set_region (stmt, gimple_resx_region (stmt) + eh_offset);
5963 region = lookup_stmt_eh_region (stmt);
5964 if (region >= 0)
5966 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
5967 remove_stmt_from_eh_region (stmt);
5968 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5969 gimple_remove_stmt_histograms (cfun, stmt);
5972 /* We cannot leave any operands allocated from the operand caches of
5973 the current function. */
5974 free_stmt_operands (stmt);
5975 push_cfun (dest_cfun);
5976 update_stmt (stmt);
5977 pop_cfun ();
5980 FOR_EACH_EDGE (e, ei, bb->succs)
5981 if (e->goto_locus)
5983 tree block = e->goto_block;
5984 if (d->orig_block == NULL_TREE
5985 || block == d->orig_block)
5986 e->goto_block = d->new_block;
5987 #ifdef ENABLE_CHECKING
5988 else if (block != d->new_block)
5990 while (block && block != d->orig_block)
5991 block = BLOCK_SUPERCONTEXT (block);
5992 gcc_assert (block);
5994 #endif
5998 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5999 the outermost EH region. Use REGION as the incoming base EH region. */
6001 static int
6002 find_outermost_region_in_block (struct function *src_cfun,
6003 basic_block bb, int region)
6005 gimple_stmt_iterator si;
6007 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6009 gimple stmt = gsi_stmt (si);
6010 int stmt_region;
6012 if (gimple_code (stmt) == GIMPLE_RESX)
6013 stmt_region = gimple_resx_region (stmt);
6014 else
6015 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
6016 if (stmt_region > 0)
6018 if (region < 0)
6019 region = stmt_region;
6020 else if (stmt_region != region)
6022 region = eh_region_outermost (src_cfun, stmt_region, region);
6023 gcc_assert (region != -1);
6028 return region;
6031 static tree
6032 new_label_mapper (tree decl, void *data)
6034 htab_t hash = (htab_t) data;
6035 struct tree_map *m;
6036 void **slot;
6038 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6040 m = XNEW (struct tree_map);
6041 m->hash = DECL_UID (decl);
6042 m->base.from = decl;
6043 m->to = create_artificial_label (UNKNOWN_LOCATION);
6044 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6045 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6046 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6048 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6049 gcc_assert (*slot == NULL);
6051 *slot = m;
6053 return m->to;
6056 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6057 subblocks. */
6059 static void
6060 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6061 tree to_context)
6063 tree *tp, t;
6065 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
6067 t = *tp;
6068 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6069 continue;
6070 replace_by_duplicate_decl (&t, vars_map, to_context);
6071 if (t != *tp)
6073 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6075 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6076 DECL_HAS_VALUE_EXPR_P (t) = 1;
6078 TREE_CHAIN (t) = TREE_CHAIN (*tp);
6079 *tp = t;
6083 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6084 replace_block_vars_by_duplicates (block, vars_map, to_context);
6087 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6088 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6089 single basic block in the original CFG and the new basic block is
6090 returned. DEST_CFUN must not have a CFG yet.
6092 Note that the region need not be a pure SESE region. Blocks inside
6093 the region may contain calls to abort/exit. The only restriction
6094 is that ENTRY_BB should be the only entry point and it must
6095 dominate EXIT_BB.
6097 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6098 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6099 to the new function.
6101 All local variables referenced in the region are assumed to be in
6102 the corresponding BLOCK_VARS and unexpanded variable lists
6103 associated with DEST_CFUN. */
6105 basic_block
6106 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6107 basic_block exit_bb, tree orig_block)
6109 VEC(basic_block,heap) *bbs, *dom_bbs;
6110 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6111 basic_block after, bb, *entry_pred, *exit_succ, abb;
6112 struct function *saved_cfun = cfun;
6113 int *entry_flag, *exit_flag, eh_offset;
6114 unsigned *entry_prob, *exit_prob;
6115 unsigned i, num_entry_edges, num_exit_edges;
6116 edge e;
6117 edge_iterator ei;
6118 htab_t new_label_map;
6119 struct pointer_map_t *vars_map;
6120 struct loop *loop = entry_bb->loop_father;
6121 struct move_stmt_d d;
6123 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6124 region. */
6125 gcc_assert (entry_bb != exit_bb
6126 && (!exit_bb
6127 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6129 /* Collect all the blocks in the region. Manually add ENTRY_BB
6130 because it won't be added by dfs_enumerate_from. */
6131 bbs = NULL;
6132 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6133 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6135 /* The blocks that used to be dominated by something in BBS will now be
6136 dominated by the new block. */
6137 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6138 VEC_address (basic_block, bbs),
6139 VEC_length (basic_block, bbs));
6141 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6142 the predecessor edges to ENTRY_BB and the successor edges to
6143 EXIT_BB so that we can re-attach them to the new basic block that
6144 will replace the region. */
6145 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6146 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6147 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6148 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6149 i = 0;
6150 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6152 entry_prob[i] = e->probability;
6153 entry_flag[i] = e->flags;
6154 entry_pred[i++] = e->src;
6155 remove_edge (e);
6158 if (exit_bb)
6160 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6161 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6162 sizeof (basic_block));
6163 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6164 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6165 i = 0;
6166 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6168 exit_prob[i] = e->probability;
6169 exit_flag[i] = e->flags;
6170 exit_succ[i++] = e->dest;
6171 remove_edge (e);
6174 else
6176 num_exit_edges = 0;
6177 exit_succ = NULL;
6178 exit_flag = NULL;
6179 exit_prob = NULL;
6182 /* Switch context to the child function to initialize DEST_FN's CFG. */
6183 gcc_assert (dest_cfun->cfg == NULL);
6184 push_cfun (dest_cfun);
6186 init_empty_tree_cfg ();
6188 /* Initialize EH information for the new function. */
6189 eh_offset = 0;
6190 new_label_map = NULL;
6191 if (saved_cfun->eh)
6193 int region = -1;
6195 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6196 region = find_outermost_region_in_block (saved_cfun, bb, region);
6198 init_eh_for_function ();
6199 if (region != -1)
6201 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6202 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
6203 new_label_map, region, 0);
6207 pop_cfun ();
6209 /* Move blocks from BBS into DEST_CFUN. */
6210 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6211 after = dest_cfun->cfg->x_entry_block_ptr;
6212 vars_map = pointer_map_create ();
6214 memset (&d, 0, sizeof (d));
6215 d.vars_map = vars_map;
6216 d.from_context = cfun->decl;
6217 d.to_context = dest_cfun->decl;
6218 d.new_label_map = new_label_map;
6219 d.remap_decls_p = true;
6220 d.orig_block = orig_block;
6221 d.new_block = DECL_INITIAL (dest_cfun->decl);
6223 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6225 /* No need to update edge counts on the last block. It has
6226 already been updated earlier when we detached the region from
6227 the original CFG. */
6228 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d, eh_offset);
6229 after = bb;
6232 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6233 if (orig_block)
6235 tree block;
6236 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6237 == NULL_TREE);
6238 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6239 = BLOCK_SUBBLOCKS (orig_block);
6240 for (block = BLOCK_SUBBLOCKS (orig_block);
6241 block; block = BLOCK_CHAIN (block))
6242 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6243 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6246 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6247 vars_map, dest_cfun->decl);
6249 if (new_label_map)
6250 htab_delete (new_label_map);
6251 pointer_map_destroy (vars_map);
6253 /* Rewire the entry and exit blocks. The successor to the entry
6254 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6255 the child function. Similarly, the predecessor of DEST_FN's
6256 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6257 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6258 various CFG manipulation function get to the right CFG.
6260 FIXME, this is silly. The CFG ought to become a parameter to
6261 these helpers. */
6262 push_cfun (dest_cfun);
6263 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6264 if (exit_bb)
6265 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6266 pop_cfun ();
6268 /* Back in the original function, the SESE region has disappeared,
6269 create a new basic block in its place. */
6270 bb = create_empty_bb (entry_pred[0]);
6271 if (current_loops)
6272 add_bb_to_loop (bb, loop);
6273 for (i = 0; i < num_entry_edges; i++)
6275 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6276 e->probability = entry_prob[i];
6279 for (i = 0; i < num_exit_edges; i++)
6281 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6282 e->probability = exit_prob[i];
6285 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6286 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6287 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6288 VEC_free (basic_block, heap, dom_bbs);
6290 if (exit_bb)
6292 free (exit_prob);
6293 free (exit_flag);
6294 free (exit_succ);
6296 free (entry_prob);
6297 free (entry_flag);
6298 free (entry_pred);
6299 VEC_free (basic_block, heap, bbs);
6301 return bb;
6305 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6308 void
6309 dump_function_to_file (tree fn, FILE *file, int flags)
6311 tree arg, vars, var;
6312 struct function *dsf;
6313 bool ignore_topmost_bind = false, any_var = false;
6314 basic_block bb;
6315 tree chain;
6317 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6319 arg = DECL_ARGUMENTS (fn);
6320 while (arg)
6322 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6323 fprintf (file, " ");
6324 print_generic_expr (file, arg, dump_flags);
6325 if (flags & TDF_VERBOSE)
6326 print_node (file, "", arg, 4);
6327 if (TREE_CHAIN (arg))
6328 fprintf (file, ", ");
6329 arg = TREE_CHAIN (arg);
6331 fprintf (file, ")\n");
6333 if (flags & TDF_VERBOSE)
6334 print_node (file, "", fn, 2);
6336 dsf = DECL_STRUCT_FUNCTION (fn);
6337 if (dsf && (flags & TDF_DETAILS))
6338 dump_eh_tree (file, dsf);
6340 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6342 dump_node (fn, TDF_SLIM | flags, file);
6343 return;
6346 /* Switch CFUN to point to FN. */
6347 push_cfun (DECL_STRUCT_FUNCTION (fn));
6349 /* When GIMPLE is lowered, the variables are no longer available in
6350 BIND_EXPRs, so display them separately. */
6351 if (cfun && cfun->decl == fn && cfun->local_decls)
6353 ignore_topmost_bind = true;
6355 fprintf (file, "{\n");
6356 for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
6358 var = TREE_VALUE (vars);
6360 print_generic_decl (file, var, flags);
6361 if (flags & TDF_VERBOSE)
6362 print_node (file, "", var, 4);
6363 fprintf (file, "\n");
6365 any_var = true;
6369 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6371 /* If the CFG has been built, emit a CFG-based dump. */
6372 check_bb_profile (ENTRY_BLOCK_PTR, file);
6373 if (!ignore_topmost_bind)
6374 fprintf (file, "{\n");
6376 if (any_var && n_basic_blocks)
6377 fprintf (file, "\n");
6379 FOR_EACH_BB (bb)
6380 gimple_dump_bb (bb, file, 2, flags);
6382 fprintf (file, "}\n");
6383 check_bb_profile (EXIT_BLOCK_PTR, file);
6385 else if (DECL_SAVED_TREE (fn) == NULL)
6387 /* The function is now in GIMPLE form but the CFG has not been
6388 built yet. Emit the single sequence of GIMPLE statements
6389 that make up its body. */
6390 gimple_seq body = gimple_body (fn);
6392 if (gimple_seq_first_stmt (body)
6393 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6394 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6395 print_gimple_seq (file, body, 0, flags);
6396 else
6398 if (!ignore_topmost_bind)
6399 fprintf (file, "{\n");
6401 if (any_var)
6402 fprintf (file, "\n");
6404 print_gimple_seq (file, body, 2, flags);
6405 fprintf (file, "}\n");
6408 else
6410 int indent;
6412 /* Make a tree based dump. */
6413 chain = DECL_SAVED_TREE (fn);
6415 if (chain && TREE_CODE (chain) == BIND_EXPR)
6417 if (ignore_topmost_bind)
6419 chain = BIND_EXPR_BODY (chain);
6420 indent = 2;
6422 else
6423 indent = 0;
6425 else
6427 if (!ignore_topmost_bind)
6428 fprintf (file, "{\n");
6429 indent = 2;
6432 if (any_var)
6433 fprintf (file, "\n");
6435 print_generic_stmt_indented (file, chain, flags, indent);
6436 if (ignore_topmost_bind)
6437 fprintf (file, "}\n");
6440 fprintf (file, "\n\n");
6442 /* Restore CFUN. */
6443 pop_cfun ();
6447 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6449 void
6450 debug_function (tree fn, int flags)
6452 dump_function_to_file (fn, stderr, flags);
6456 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6458 static void
6459 print_pred_bbs (FILE *file, basic_block bb)
6461 edge e;
6462 edge_iterator ei;
6464 FOR_EACH_EDGE (e, ei, bb->preds)
6465 fprintf (file, "bb_%d ", e->src->index);
6469 /* Print on FILE the indexes for the successors of basic_block BB. */
6471 static void
6472 print_succ_bbs (FILE *file, basic_block bb)
6474 edge e;
6475 edge_iterator ei;
6477 FOR_EACH_EDGE (e, ei, bb->succs)
6478 fprintf (file, "bb_%d ", e->dest->index);
6481 /* Print to FILE the basic block BB following the VERBOSITY level. */
6483 void
6484 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6486 char *s_indent = (char *) alloca ((size_t) indent + 1);
6487 memset ((void *) s_indent, ' ', (size_t) indent);
6488 s_indent[indent] = '\0';
6490 /* Print basic_block's header. */
6491 if (verbosity >= 2)
6493 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6494 print_pred_bbs (file, bb);
6495 fprintf (file, "}, succs = {");
6496 print_succ_bbs (file, bb);
6497 fprintf (file, "})\n");
6500 /* Print basic_block's body. */
6501 if (verbosity >= 3)
6503 fprintf (file, "%s {\n", s_indent);
6504 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6505 fprintf (file, "%s }\n", s_indent);
6509 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6511 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6512 VERBOSITY level this outputs the contents of the loop, or just its
6513 structure. */
6515 static void
6516 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6518 char *s_indent;
6519 basic_block bb;
6521 if (loop == NULL)
6522 return;
6524 s_indent = (char *) alloca ((size_t) indent + 1);
6525 memset ((void *) s_indent, ' ', (size_t) indent);
6526 s_indent[indent] = '\0';
6528 /* Print loop's header. */
6529 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6530 loop->num, loop->header->index, loop->latch->index);
6531 fprintf (file, ", niter = ");
6532 print_generic_expr (file, loop->nb_iterations, 0);
6534 if (loop->any_upper_bound)
6536 fprintf (file, ", upper_bound = ");
6537 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6540 if (loop->any_estimate)
6542 fprintf (file, ", estimate = ");
6543 dump_double_int (file, loop->nb_iterations_estimate, true);
6545 fprintf (file, ")\n");
6547 /* Print loop's body. */
6548 if (verbosity >= 1)
6550 fprintf (file, "%s{\n", s_indent);
6551 FOR_EACH_BB (bb)
6552 if (bb->loop_father == loop)
6553 print_loops_bb (file, bb, indent, verbosity);
6555 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6556 fprintf (file, "%s}\n", s_indent);
6560 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6561 spaces. Following VERBOSITY level this outputs the contents of the
6562 loop, or just its structure. */
6564 static void
6565 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6567 if (loop == NULL)
6568 return;
6570 print_loop (file, loop, indent, verbosity);
6571 print_loop_and_siblings (file, loop->next, indent, verbosity);
6574 /* Follow a CFG edge from the entry point of the program, and on entry
6575 of a loop, pretty print the loop structure on FILE. */
6577 void
6578 print_loops (FILE *file, int verbosity)
6580 basic_block bb;
6582 bb = ENTRY_BLOCK_PTR;
6583 if (bb && bb->loop_father)
6584 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6588 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6590 void
6591 debug_loops (int verbosity)
6593 print_loops (stderr, verbosity);
6596 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6598 void
6599 debug_loop (struct loop *loop, int verbosity)
6601 print_loop (stderr, loop, 0, verbosity);
6604 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6605 level. */
6607 void
6608 debug_loop_num (unsigned num, int verbosity)
6610 debug_loop (get_loop (num), verbosity);
6613 /* Return true if BB ends with a call, possibly followed by some
6614 instructions that must stay with the call. Return false,
6615 otherwise. */
6617 static bool
6618 gimple_block_ends_with_call_p (basic_block bb)
6620 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6621 return is_gimple_call (gsi_stmt (gsi));
6625 /* Return true if BB ends with a conditional branch. Return false,
6626 otherwise. */
6628 static bool
6629 gimple_block_ends_with_condjump_p (const_basic_block bb)
6631 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6632 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6636 /* Return true if we need to add fake edge to exit at statement T.
6637 Helper function for gimple_flow_call_edges_add. */
6639 static bool
6640 need_fake_edge_p (gimple t)
6642 tree fndecl = NULL_TREE;
6643 int call_flags = 0;
6645 /* NORETURN and LONGJMP calls already have an edge to exit.
6646 CONST and PURE calls do not need one.
6647 We don't currently check for CONST and PURE here, although
6648 it would be a good idea, because those attributes are
6649 figured out from the RTL in mark_constant_function, and
6650 the counter incrementation code from -fprofile-arcs
6651 leads to different results from -fbranch-probabilities. */
6652 if (is_gimple_call (t))
6654 fndecl = gimple_call_fndecl (t);
6655 call_flags = gimple_call_flags (t);
6658 if (is_gimple_call (t)
6659 && fndecl
6660 && DECL_BUILT_IN (fndecl)
6661 && (call_flags & ECF_NOTHROW)
6662 && !(call_flags & ECF_RETURNS_TWICE)
6663 /* fork() doesn't really return twice, but the effect of
6664 wrapping it in __gcov_fork() which calls __gcov_flush()
6665 and clears the counters before forking has the same
6666 effect as returning twice. Force a fake edge. */
6667 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6668 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6669 return false;
6671 if (is_gimple_call (t)
6672 && !(call_flags & ECF_NORETURN))
6673 return true;
6675 if (gimple_code (t) == GIMPLE_ASM
6676 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6677 return true;
6679 return false;
6683 /* Add fake edges to the function exit for any non constant and non
6684 noreturn calls, volatile inline assembly in the bitmap of blocks
6685 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6686 the number of blocks that were split.
6688 The goal is to expose cases in which entering a basic block does
6689 not imply that all subsequent instructions must be executed. */
6691 static int
6692 gimple_flow_call_edges_add (sbitmap blocks)
6694 int i;
6695 int blocks_split = 0;
6696 int last_bb = last_basic_block;
6697 bool check_last_block = false;
6699 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6700 return 0;
6702 if (! blocks)
6703 check_last_block = true;
6704 else
6705 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6707 /* In the last basic block, before epilogue generation, there will be
6708 a fallthru edge to EXIT. Special care is required if the last insn
6709 of the last basic block is a call because make_edge folds duplicate
6710 edges, which would result in the fallthru edge also being marked
6711 fake, which would result in the fallthru edge being removed by
6712 remove_fake_edges, which would result in an invalid CFG.
6714 Moreover, we can't elide the outgoing fake edge, since the block
6715 profiler needs to take this into account in order to solve the minimal
6716 spanning tree in the case that the call doesn't return.
6718 Handle this by adding a dummy instruction in a new last basic block. */
6719 if (check_last_block)
6721 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6722 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6723 gimple t = NULL;
6725 if (!gsi_end_p (gsi))
6726 t = gsi_stmt (gsi);
6728 if (t && need_fake_edge_p (t))
6730 edge e;
6732 e = find_edge (bb, EXIT_BLOCK_PTR);
6733 if (e)
6735 gsi_insert_on_edge (e, gimple_build_nop ());
6736 gsi_commit_edge_inserts ();
6741 /* Now add fake edges to the function exit for any non constant
6742 calls since there is no way that we can determine if they will
6743 return or not... */
6744 for (i = 0; i < last_bb; i++)
6746 basic_block bb = BASIC_BLOCK (i);
6747 gimple_stmt_iterator gsi;
6748 gimple stmt, last_stmt;
6750 if (!bb)
6751 continue;
6753 if (blocks && !TEST_BIT (blocks, i))
6754 continue;
6756 gsi = gsi_last_bb (bb);
6757 if (!gsi_end_p (gsi))
6759 last_stmt = gsi_stmt (gsi);
6762 stmt = gsi_stmt (gsi);
6763 if (need_fake_edge_p (stmt))
6765 edge e;
6767 /* The handling above of the final block before the
6768 epilogue should be enough to verify that there is
6769 no edge to the exit block in CFG already.
6770 Calling make_edge in such case would cause us to
6771 mark that edge as fake and remove it later. */
6772 #ifdef ENABLE_CHECKING
6773 if (stmt == last_stmt)
6775 e = find_edge (bb, EXIT_BLOCK_PTR);
6776 gcc_assert (e == NULL);
6778 #endif
6780 /* Note that the following may create a new basic block
6781 and renumber the existing basic blocks. */
6782 if (stmt != last_stmt)
6784 e = split_block (bb, stmt);
6785 if (e)
6786 blocks_split++;
6788 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6790 gsi_prev (&gsi);
6792 while (!gsi_end_p (gsi));
6796 if (blocks_split)
6797 verify_flow_info ();
6799 return blocks_split;
6802 /* Purge dead abnormal call edges from basic block BB. */
6804 bool
6805 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6807 bool changed = gimple_purge_dead_eh_edges (bb);
6809 if (cfun->has_nonlocal_label)
6811 gimple stmt = last_stmt (bb);
6812 edge_iterator ei;
6813 edge e;
6815 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6816 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6818 if (e->flags & EDGE_ABNORMAL)
6820 remove_edge (e);
6821 changed = true;
6823 else
6824 ei_next (&ei);
6827 /* See gimple_purge_dead_eh_edges below. */
6828 if (changed)
6829 free_dominance_info (CDI_DOMINATORS);
6832 return changed;
6835 /* Removes edge E and all the blocks dominated by it, and updates dominance
6836 information. The IL in E->src needs to be updated separately.
6837 If dominance info is not available, only the edge E is removed.*/
6839 void
6840 remove_edge_and_dominated_blocks (edge e)
6842 VEC (basic_block, heap) *bbs_to_remove = NULL;
6843 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6844 bitmap df, df_idom;
6845 edge f;
6846 edge_iterator ei;
6847 bool none_removed = false;
6848 unsigned i;
6849 basic_block bb, dbb;
6850 bitmap_iterator bi;
6852 if (!dom_info_available_p (CDI_DOMINATORS))
6854 remove_edge (e);
6855 return;
6858 /* No updating is needed for edges to exit. */
6859 if (e->dest == EXIT_BLOCK_PTR)
6861 if (cfgcleanup_altered_bbs)
6862 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6863 remove_edge (e);
6864 return;
6867 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6868 that is not dominated by E->dest, then this set is empty. Otherwise,
6869 all the basic blocks dominated by E->dest are removed.
6871 Also, to DF_IDOM we store the immediate dominators of the blocks in
6872 the dominance frontier of E (i.e., of the successors of the
6873 removed blocks, if there are any, and of E->dest otherwise). */
6874 FOR_EACH_EDGE (f, ei, e->dest->preds)
6876 if (f == e)
6877 continue;
6879 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6881 none_removed = true;
6882 break;
6886 df = BITMAP_ALLOC (NULL);
6887 df_idom = BITMAP_ALLOC (NULL);
6889 if (none_removed)
6890 bitmap_set_bit (df_idom,
6891 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6892 else
6894 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6895 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6897 FOR_EACH_EDGE (f, ei, bb->succs)
6899 if (f->dest != EXIT_BLOCK_PTR)
6900 bitmap_set_bit (df, f->dest->index);
6903 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6904 bitmap_clear_bit (df, bb->index);
6906 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6908 bb = BASIC_BLOCK (i);
6909 bitmap_set_bit (df_idom,
6910 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6914 if (cfgcleanup_altered_bbs)
6916 /* Record the set of the altered basic blocks. */
6917 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6918 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6921 /* Remove E and the cancelled blocks. */
6922 if (none_removed)
6923 remove_edge (e);
6924 else
6926 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6927 delete_basic_block (bb);
6930 /* Update the dominance information. The immediate dominator may change only
6931 for blocks whose immediate dominator belongs to DF_IDOM:
6933 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6934 removal. Let Z the arbitrary block such that idom(Z) = Y and
6935 Z dominates X after the removal. Before removal, there exists a path P
6936 from Y to X that avoids Z. Let F be the last edge on P that is
6937 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6938 dominates W, and because of P, Z does not dominate W), and W belongs to
6939 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6940 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6942 bb = BASIC_BLOCK (i);
6943 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6944 dbb;
6945 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6946 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6949 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6951 BITMAP_FREE (df);
6952 BITMAP_FREE (df_idom);
6953 VEC_free (basic_block, heap, bbs_to_remove);
6954 VEC_free (basic_block, heap, bbs_to_fix_dom);
6957 /* Purge dead EH edges from basic block BB. */
6959 bool
6960 gimple_purge_dead_eh_edges (basic_block bb)
6962 bool changed = false;
6963 edge e;
6964 edge_iterator ei;
6965 gimple stmt = last_stmt (bb);
6967 if (stmt && stmt_can_throw_internal (stmt))
6968 return false;
6970 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6972 if (e->flags & EDGE_EH)
6974 remove_edge_and_dominated_blocks (e);
6975 changed = true;
6977 else
6978 ei_next (&ei);
6981 return changed;
6984 bool
6985 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6987 bool changed = false;
6988 unsigned i;
6989 bitmap_iterator bi;
6991 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6993 basic_block bb = BASIC_BLOCK (i);
6995 /* Earlier gimple_purge_dead_eh_edges could have removed
6996 this basic block already. */
6997 gcc_assert (bb || changed);
6998 if (bb != NULL)
6999 changed |= gimple_purge_dead_eh_edges (bb);
7002 return changed;
7005 /* This function is called whenever a new edge is created or
7006 redirected. */
7008 static void
7009 gimple_execute_on_growing_pred (edge e)
7011 basic_block bb = e->dest;
7013 if (phi_nodes (bb))
7014 reserve_phi_args_for_new_edge (bb);
7017 /* This function is called immediately before edge E is removed from
7018 the edge vector E->dest->preds. */
7020 static void
7021 gimple_execute_on_shrinking_pred (edge e)
7023 if (phi_nodes (e->dest))
7024 remove_phi_args (e);
7027 /*---------------------------------------------------------------------------
7028 Helper functions for Loop versioning
7029 ---------------------------------------------------------------------------*/
7031 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7032 of 'first'. Both of them are dominated by 'new_head' basic block. When
7033 'new_head' was created by 'second's incoming edge it received phi arguments
7034 on the edge by split_edge(). Later, additional edge 'e' was created to
7035 connect 'new_head' and 'first'. Now this routine adds phi args on this
7036 additional edge 'e' that new_head to second edge received as part of edge
7037 splitting. */
7039 static void
7040 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7041 basic_block new_head, edge e)
7043 gimple phi1, phi2;
7044 gimple_stmt_iterator psi1, psi2;
7045 tree def;
7046 edge e2 = find_edge (new_head, second);
7048 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7049 edge, we should always have an edge from NEW_HEAD to SECOND. */
7050 gcc_assert (e2 != NULL);
7052 /* Browse all 'second' basic block phi nodes and add phi args to
7053 edge 'e' for 'first' head. PHI args are always in correct order. */
7055 for (psi2 = gsi_start_phis (second),
7056 psi1 = gsi_start_phis (first);
7057 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7058 gsi_next (&psi2), gsi_next (&psi1))
7060 phi1 = gsi_stmt (psi1);
7061 phi2 = gsi_stmt (psi2);
7062 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7063 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7068 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7069 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7070 the destination of the ELSE part. */
7072 static void
7073 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7074 basic_block second_head ATTRIBUTE_UNUSED,
7075 basic_block cond_bb, void *cond_e)
7077 gimple_stmt_iterator gsi;
7078 gimple new_cond_expr;
7079 tree cond_expr = (tree) cond_e;
7080 edge e0;
7082 /* Build new conditional expr */
7083 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7084 NULL_TREE, NULL_TREE);
7086 /* Add new cond in cond_bb. */
7087 gsi = gsi_last_bb (cond_bb);
7088 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7090 /* Adjust edges appropriately to connect new head with first head
7091 as well as second head. */
7092 e0 = single_succ_edge (cond_bb);
7093 e0->flags &= ~EDGE_FALLTHRU;
7094 e0->flags |= EDGE_FALSE_VALUE;
7097 struct cfg_hooks gimple_cfg_hooks = {
7098 "gimple",
7099 gimple_verify_flow_info,
7100 gimple_dump_bb, /* dump_bb */
7101 create_bb, /* create_basic_block */
7102 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7103 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7104 gimple_can_remove_branch_p, /* can_remove_branch_p */
7105 remove_bb, /* delete_basic_block */
7106 gimple_split_block, /* split_block */
7107 gimple_move_block_after, /* move_block_after */
7108 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7109 gimple_merge_blocks, /* merge_blocks */
7110 gimple_predict_edge, /* predict_edge */
7111 gimple_predicted_by_p, /* predicted_by_p */
7112 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7113 gimple_duplicate_bb, /* duplicate_block */
7114 gimple_split_edge, /* split_edge */
7115 gimple_make_forwarder_block, /* make_forward_block */
7116 NULL, /* tidy_fallthru_edge */
7117 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7118 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7119 gimple_flow_call_edges_add, /* flow_call_edges_add */
7120 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7121 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7122 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7123 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7124 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7125 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7126 flush_pending_stmts /* flush_pending_stmts */
7130 /* Split all critical edges. */
7132 static unsigned int
7133 split_critical_edges (void)
7135 basic_block bb;
7136 edge e;
7137 edge_iterator ei;
7139 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7140 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7141 mappings around the calls to split_edge. */
7142 start_recording_case_labels ();
7143 FOR_ALL_BB (bb)
7145 FOR_EACH_EDGE (e, ei, bb->succs)
7147 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7148 split_edge (e);
7149 /* PRE inserts statements to edges and expects that
7150 since split_critical_edges was done beforehand, committing edge
7151 insertions will not split more edges. In addition to critical
7152 edges we must split edges that have multiple successors and
7153 end by control flow statements, such as RESX.
7154 Go ahead and split them too. This matches the logic in
7155 gimple_find_edge_insert_loc. */
7156 else if ((!single_pred_p (e->dest)
7157 || phi_nodes (e->dest)
7158 || e->dest == EXIT_BLOCK_PTR)
7159 && e->src != ENTRY_BLOCK_PTR
7160 && !(e->flags & EDGE_ABNORMAL))
7162 gimple_stmt_iterator gsi;
7164 gsi = gsi_last_bb (e->src);
7165 if (!gsi_end_p (gsi)
7166 && stmt_ends_bb_p (gsi_stmt (gsi))
7167 && gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN)
7168 split_edge (e);
7172 end_recording_case_labels ();
7173 return 0;
7176 struct gimple_opt_pass pass_split_crit_edges =
7179 GIMPLE_PASS,
7180 "crited", /* name */
7181 NULL, /* gate */
7182 split_critical_edges, /* execute */
7183 NULL, /* sub */
7184 NULL, /* next */
7185 0, /* static_pass_number */
7186 TV_TREE_SPLIT_EDGES, /* tv_id */
7187 PROP_cfg, /* properties required */
7188 PROP_no_crit_edges, /* properties_provided */
7189 0, /* properties_destroyed */
7190 0, /* todo_flags_start */
7191 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7196 /* Build a ternary operation and gimplify it. Emit code before GSI.
7197 Return the gimple_val holding the result. */
7199 tree
7200 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7201 tree type, tree a, tree b, tree c)
7203 tree ret;
7204 location_t loc = gimple_location (gsi_stmt (*gsi));
7206 ret = fold_build3_loc (loc, code, type, a, b, c);
7207 STRIP_NOPS (ret);
7209 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7210 GSI_SAME_STMT);
7213 /* Build a binary operation and gimplify it. Emit code before GSI.
7214 Return the gimple_val holding the result. */
7216 tree
7217 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7218 tree type, tree a, tree b)
7220 tree ret;
7222 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7223 STRIP_NOPS (ret);
7225 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7226 GSI_SAME_STMT);
7229 /* Build a unary operation and gimplify it. Emit code before GSI.
7230 Return the gimple_val holding the result. */
7232 tree
7233 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7234 tree a)
7236 tree ret;
7238 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7239 STRIP_NOPS (ret);
7241 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7242 GSI_SAME_STMT);
7247 /* Emit return warnings. */
7249 static unsigned int
7250 execute_warn_function_return (void)
7252 source_location location;
7253 gimple last;
7254 edge e;
7255 edge_iterator ei;
7257 /* If we have a path to EXIT, then we do return. */
7258 if (TREE_THIS_VOLATILE (cfun->decl)
7259 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7261 location = UNKNOWN_LOCATION;
7262 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7264 last = last_stmt (e->src);
7265 if (gimple_code (last) == GIMPLE_RETURN
7266 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7267 break;
7269 if (location == UNKNOWN_LOCATION)
7270 location = cfun->function_end_locus;
7271 warning_at (location, 0, "%<noreturn%> function does return");
7274 /* If we see "return;" in some basic block, then we do reach the end
7275 without returning a value. */
7276 else if (warn_return_type
7277 && !TREE_NO_WARNING (cfun->decl)
7278 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7279 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7281 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7283 gimple last = last_stmt (e->src);
7284 if (gimple_code (last) == GIMPLE_RETURN
7285 && gimple_return_retval (last) == NULL
7286 && !gimple_no_warning_p (last))
7288 location = gimple_location (last);
7289 if (location == UNKNOWN_LOCATION)
7290 location = cfun->function_end_locus;
7291 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7292 TREE_NO_WARNING (cfun->decl) = 1;
7293 break;
7297 return 0;
7301 /* Given a basic block B which ends with a conditional and has
7302 precisely two successors, determine which of the edges is taken if
7303 the conditional is true and which is taken if the conditional is
7304 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7306 void
7307 extract_true_false_edges_from_block (basic_block b,
7308 edge *true_edge,
7309 edge *false_edge)
7311 edge e = EDGE_SUCC (b, 0);
7313 if (e->flags & EDGE_TRUE_VALUE)
7315 *true_edge = e;
7316 *false_edge = EDGE_SUCC (b, 1);
7318 else
7320 *false_edge = e;
7321 *true_edge = EDGE_SUCC (b, 1);
7325 struct gimple_opt_pass pass_warn_function_return =
7328 GIMPLE_PASS,
7329 NULL, /* name */
7330 NULL, /* gate */
7331 execute_warn_function_return, /* execute */
7332 NULL, /* sub */
7333 NULL, /* next */
7334 0, /* static_pass_number */
7335 TV_NONE, /* tv_id */
7336 PROP_cfg, /* properties_required */
7337 0, /* properties_provided */
7338 0, /* properties_destroyed */
7339 0, /* todo_flags_start */
7340 0 /* todo_flags_finish */
7344 /* Emit noreturn warnings. */
7346 static unsigned int
7347 execute_warn_function_noreturn (void)
7349 if (warn_missing_noreturn
7350 && !TREE_THIS_VOLATILE (cfun->decl)
7351 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
7352 && !lang_hooks.missing_noreturn_ok_p (cfun->decl))
7353 warning_at (DECL_SOURCE_LOCATION (cfun->decl), OPT_Wmissing_noreturn,
7354 "function might be possible candidate "
7355 "for attribute %<noreturn%>");
7356 return 0;
7359 struct gimple_opt_pass pass_warn_function_noreturn =
7362 GIMPLE_PASS,
7363 NULL, /* name */
7364 NULL, /* gate */
7365 execute_warn_function_noreturn, /* execute */
7366 NULL, /* sub */
7367 NULL, /* next */
7368 0, /* static_pass_number */
7369 TV_NONE, /* tv_id */
7370 PROP_cfg, /* properties_required */
7371 0, /* properties_provided */
7372 0, /* properties_destroyed */
7373 0, /* todo_flags_start */
7374 0 /* todo_flags_finish */
7379 /* Walk a gimplified function and warn for functions whose return value is
7380 ignored and attribute((warn_unused_result)) is set. This is done before
7381 inlining, so we don't have to worry about that. */
7383 static void
7384 do_warn_unused_result (gimple_seq seq)
7386 tree fdecl, ftype;
7387 gimple_stmt_iterator i;
7389 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7391 gimple g = gsi_stmt (i);
7393 switch (gimple_code (g))
7395 case GIMPLE_BIND:
7396 do_warn_unused_result (gimple_bind_body (g));
7397 break;
7398 case GIMPLE_TRY:
7399 do_warn_unused_result (gimple_try_eval (g));
7400 do_warn_unused_result (gimple_try_cleanup (g));
7401 break;
7402 case GIMPLE_CATCH:
7403 do_warn_unused_result (gimple_catch_handler (g));
7404 break;
7405 case GIMPLE_EH_FILTER:
7406 do_warn_unused_result (gimple_eh_filter_failure (g));
7407 break;
7409 case GIMPLE_CALL:
7410 if (gimple_call_lhs (g))
7411 break;
7413 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7414 LHS. All calls whose value is ignored should be
7415 represented like this. Look for the attribute. */
7416 fdecl = gimple_call_fndecl (g);
7417 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7419 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7421 location_t loc = gimple_location (g);
7423 if (fdecl)
7424 warning_at (loc, OPT_Wunused_result,
7425 "ignoring return value of %qD, "
7426 "declared with attribute warn_unused_result",
7427 fdecl);
7428 else
7429 warning_at (loc, OPT_Wunused_result,
7430 "ignoring return value of function "
7431 "declared with attribute warn_unused_result");
7433 break;
7435 default:
7436 /* Not a container, not a call, or a call whose value is used. */
7437 break;
7442 static unsigned int
7443 run_warn_unused_result (void)
7445 do_warn_unused_result (gimple_body (current_function_decl));
7446 return 0;
7449 static bool
7450 gate_warn_unused_result (void)
7452 return flag_warn_unused_result;
7455 struct gimple_opt_pass pass_warn_unused_result =
7458 GIMPLE_PASS,
7459 "*warn_unused_result", /* name */
7460 gate_warn_unused_result, /* gate */
7461 run_warn_unused_result, /* execute */
7462 NULL, /* sub */
7463 NULL, /* next */
7464 0, /* static_pass_number */
7465 TV_NONE, /* tv_id */
7466 PROP_gimple_any, /* properties_required */
7467 0, /* properties_provided */
7468 0, /* properties_destroyed */
7469 0, /* todo_flags_start */
7470 0, /* todo_flags_finish */