* inclhack.def (aix_complex): Redefine _Complex_I. Do not
[official-gcc.git] / gcc / jump.c
blob28a9b0f43ea4755781dd25d0a4b6e2b994249530
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
24 operate with jumps.
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
34 The subroutines redirect_jump and invert_jump are used
35 from other passes as well. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "hard-reg-set.h"
45 #include "regs.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
48 #include "recog.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "real.h"
52 #include "except.h"
53 #include "diagnostic.h"
54 #include "toplev.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "timevar.h"
58 #include "tree-pass.h"
59 #include "target.h"
61 /* Optimize jump y; x: ... y: jumpif... x?
62 Don't know if it is worth bothering with. */
63 /* Optimize two cases of conditional jump to conditional jump?
64 This can never delete any instruction or make anything dead,
65 or even change what is live at any point.
66 So perhaps let combiner do it. */
68 static void init_label_info (rtx);
69 static void mark_all_labels (rtx);
70 static void mark_jump_label_1 (rtx, rtx, bool, bool);
71 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
72 static int invert_exp_1 (rtx, rtx);
73 static int returnjump_p_1 (rtx *, void *);
75 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
76 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
77 instructions and jumping insns that have labels as operands
78 (e.g. cbranchsi4). */
79 void
80 rebuild_jump_labels (rtx f)
82 rtx insn;
84 timevar_push (TV_REBUILD_JUMP);
85 init_label_info (f);
86 mark_all_labels (f);
88 /* Keep track of labels used from static data; we don't track them
89 closely enough to delete them here, so make sure their reference
90 count doesn't drop to zero. */
92 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
93 if (LABEL_P (XEXP (insn, 0)))
94 LABEL_NUSES (XEXP (insn, 0))++;
95 timevar_pop (TV_REBUILD_JUMP);
98 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
99 non-fallthru insn. This is not generally true, as multiple barriers
100 may have crept in, or the BARRIER may be separated from the last
101 real insn by one or more NOTEs.
103 This simple pass moves barriers and removes duplicates so that the
104 old code is happy.
106 unsigned int
107 cleanup_barriers (void)
109 rtx insn, next, prev;
110 for (insn = get_insns (); insn; insn = next)
112 next = NEXT_INSN (insn);
113 if (BARRIER_P (insn))
115 prev = prev_nonnote_insn (insn);
116 if (!prev)
117 continue;
118 if (BARRIER_P (prev))
119 delete_insn (insn);
120 else if (prev != PREV_INSN (insn))
121 reorder_insns (insn, insn, prev);
124 return 0;
127 struct rtl_opt_pass pass_cleanup_barriers =
130 RTL_PASS,
131 "barriers", /* name */
132 NULL, /* gate */
133 cleanup_barriers, /* execute */
134 NULL, /* sub */
135 NULL, /* next */
136 0, /* static_pass_number */
137 TV_NONE, /* tv_id */
138 0, /* properties_required */
139 0, /* properties_provided */
140 0, /* properties_destroyed */
141 0, /* todo_flags_start */
142 TODO_dump_func /* todo_flags_finish */
147 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
148 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
149 notes whose labels don't occur in the insn any more. */
151 static void
152 init_label_info (rtx f)
154 rtx insn;
156 for (insn = f; insn; insn = NEXT_INSN (insn))
158 if (LABEL_P (insn))
159 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
161 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
162 sticky and not reset here; that way we won't lose association
163 with a label when e.g. the source for a target register
164 disappears out of reach for targets that may use jump-target
165 registers. Jump transformations are supposed to transform
166 any REG_LABEL_TARGET notes. The target label reference in a
167 branch may disappear from the branch (and from the
168 instruction before it) for other reasons, like register
169 allocation. */
171 if (INSN_P (insn))
173 rtx note, next;
175 for (note = REG_NOTES (insn); note; note = next)
177 next = XEXP (note, 1);
178 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
179 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
180 remove_note (insn, note);
186 /* Mark the label each jump jumps to.
187 Combine consecutive labels, and count uses of labels. */
189 static void
190 mark_all_labels (rtx f)
192 rtx insn;
193 rtx prev_nonjump_insn = NULL;
195 for (insn = f; insn; insn = NEXT_INSN (insn))
196 if (INSN_P (insn))
198 mark_jump_label (PATTERN (insn), insn, 0);
200 /* If the previous non-jump insn sets something to a label,
201 something that this jump insn uses, make that label the primary
202 target of this insn if we don't yet have any. That previous
203 insn must be a single_set and not refer to more than one label.
204 The jump insn must not refer to other labels as jump targets
205 and must be a plain (set (pc) ...), maybe in a parallel, and
206 may refer to the item being set only directly or as one of the
207 arms in an IF_THEN_ELSE. */
208 if (! INSN_DELETED_P (insn)
209 && JUMP_P (insn)
210 && JUMP_LABEL (insn) == NULL)
212 rtx label_note = NULL;
213 rtx pc = pc_set (insn);
214 rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
216 if (prev_nonjump_insn != NULL)
217 label_note
218 = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
220 if (label_note != NULL && pc_src != NULL)
222 rtx label_set = single_set (prev_nonjump_insn);
223 rtx label_dest
224 = label_set != NULL ? SET_DEST (label_set) : NULL;
226 if (label_set != NULL
227 /* The source must be the direct LABEL_REF, not a
228 PLUS, UNSPEC, IF_THEN_ELSE etc. */
229 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
230 && (rtx_equal_p (label_dest, pc_src)
231 || (GET_CODE (pc_src) == IF_THEN_ELSE
232 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
233 || rtx_equal_p (label_dest,
234 XEXP (pc_src, 2))))))
237 /* The CODE_LABEL referred to in the note must be the
238 CODE_LABEL in the LABEL_REF of the "set". We can
239 conveniently use it for the marker function, which
240 requires a LABEL_REF wrapping. */
241 gcc_assert (XEXP (label_note, 0)
242 == XEXP (SET_SRC (label_set), 0));
244 mark_jump_label_1 (label_set, insn, false, true);
245 gcc_assert (JUMP_LABEL (insn)
246 == XEXP (SET_SRC (label_set), 0));
250 else if (! INSN_DELETED_P (insn))
251 prev_nonjump_insn = insn;
253 else if (LABEL_P (insn))
254 prev_nonjump_insn = NULL;
256 /* If we are in cfglayout mode, there may be non-insns between the
257 basic blocks. If those non-insns represent tablejump data, they
258 contain label references that we must record. */
259 if (current_ir_type () == IR_RTL_CFGLAYOUT)
261 basic_block bb;
262 rtx insn;
263 FOR_EACH_BB (bb)
265 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
266 if (INSN_P (insn))
268 gcc_assert (JUMP_TABLE_DATA_P (insn));
269 mark_jump_label (PATTERN (insn), insn, 0);
272 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
273 if (INSN_P (insn))
275 gcc_assert (JUMP_TABLE_DATA_P (insn));
276 mark_jump_label (PATTERN (insn), insn, 0);
282 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
283 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
284 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
285 know whether it's source is floating point or integer comparison. Machine
286 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
287 to help this function avoid overhead in these cases. */
288 enum rtx_code
289 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
290 const_rtx arg1, const_rtx insn)
292 enum machine_mode mode;
294 /* If this is not actually a comparison, we can't reverse it. */
295 if (GET_RTX_CLASS (code) != RTX_COMPARE
296 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
297 return UNKNOWN;
299 mode = GET_MODE (arg0);
300 if (mode == VOIDmode)
301 mode = GET_MODE (arg1);
303 /* First see if machine description supplies us way to reverse the
304 comparison. Give it priority over everything else to allow
305 machine description to do tricks. */
306 if (GET_MODE_CLASS (mode) == MODE_CC
307 && REVERSIBLE_CC_MODE (mode))
309 #ifdef REVERSE_CONDITION
310 return REVERSE_CONDITION (code, mode);
311 #endif
312 return reverse_condition (code);
315 /* Try a few special cases based on the comparison code. */
316 switch (code)
318 case GEU:
319 case GTU:
320 case LEU:
321 case LTU:
322 case NE:
323 case EQ:
324 /* It is always safe to reverse EQ and NE, even for the floating
325 point. Similarly the unsigned comparisons are never used for
326 floating point so we can reverse them in the default way. */
327 return reverse_condition (code);
328 case ORDERED:
329 case UNORDERED:
330 case LTGT:
331 case UNEQ:
332 /* In case we already see unordered comparison, we can be sure to
333 be dealing with floating point so we don't need any more tests. */
334 return reverse_condition_maybe_unordered (code);
335 case UNLT:
336 case UNLE:
337 case UNGT:
338 case UNGE:
339 /* We don't have safe way to reverse these yet. */
340 return UNKNOWN;
341 default:
342 break;
345 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
347 const_rtx prev;
348 /* Try to search for the comparison to determine the real mode.
349 This code is expensive, but with sane machine description it
350 will be never used, since REVERSIBLE_CC_MODE will return true
351 in all cases. */
352 if (! insn)
353 return UNKNOWN;
355 /* These CONST_CAST's are okay because prev_nonnote_insn just
356 returns its argument and we assign it to a const_rtx
357 variable. */
358 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
359 prev != 0 && !LABEL_P (prev);
360 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
362 const_rtx set = set_of (arg0, prev);
363 if (set && GET_CODE (set) == SET
364 && rtx_equal_p (SET_DEST (set), arg0))
366 rtx src = SET_SRC (set);
368 if (GET_CODE (src) == COMPARE)
370 rtx comparison = src;
371 arg0 = XEXP (src, 0);
372 mode = GET_MODE (arg0);
373 if (mode == VOIDmode)
374 mode = GET_MODE (XEXP (comparison, 1));
375 break;
377 /* We can get past reg-reg moves. This may be useful for model
378 of i387 comparisons that first move flag registers around. */
379 if (REG_P (src))
381 arg0 = src;
382 continue;
385 /* If register is clobbered in some ununderstandable way,
386 give up. */
387 if (set)
388 return UNKNOWN;
392 /* Test for an integer condition, or a floating-point comparison
393 in which NaNs can be ignored. */
394 if (CONST_INT_P (arg0)
395 || (GET_MODE (arg0) != VOIDmode
396 && GET_MODE_CLASS (mode) != MODE_CC
397 && !HONOR_NANS (mode)))
398 return reverse_condition (code);
400 return UNKNOWN;
403 /* A wrapper around the previous function to take COMPARISON as rtx
404 expression. This simplifies many callers. */
405 enum rtx_code
406 reversed_comparison_code (const_rtx comparison, const_rtx insn)
408 if (!COMPARISON_P (comparison))
409 return UNKNOWN;
410 return reversed_comparison_code_parts (GET_CODE (comparison),
411 XEXP (comparison, 0),
412 XEXP (comparison, 1), insn);
415 /* Return comparison with reversed code of EXP.
416 Return NULL_RTX in case we fail to do the reversal. */
418 reversed_comparison (const_rtx exp, enum machine_mode mode)
420 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
421 if (reversed_code == UNKNOWN)
422 return NULL_RTX;
423 else
424 return simplify_gen_relational (reversed_code, mode, VOIDmode,
425 XEXP (exp, 0), XEXP (exp, 1));
429 /* Given an rtx-code for a comparison, return the code for the negated
430 comparison. If no such code exists, return UNKNOWN.
432 WATCH OUT! reverse_condition is not safe to use on a jump that might
433 be acting on the results of an IEEE floating point comparison, because
434 of the special treatment of non-signaling nans in comparisons.
435 Use reversed_comparison_code instead. */
437 enum rtx_code
438 reverse_condition (enum rtx_code code)
440 switch (code)
442 case EQ:
443 return NE;
444 case NE:
445 return EQ;
446 case GT:
447 return LE;
448 case GE:
449 return LT;
450 case LT:
451 return GE;
452 case LE:
453 return GT;
454 case GTU:
455 return LEU;
456 case GEU:
457 return LTU;
458 case LTU:
459 return GEU;
460 case LEU:
461 return GTU;
462 case UNORDERED:
463 return ORDERED;
464 case ORDERED:
465 return UNORDERED;
467 case UNLT:
468 case UNLE:
469 case UNGT:
470 case UNGE:
471 case UNEQ:
472 case LTGT:
473 return UNKNOWN;
475 default:
476 gcc_unreachable ();
480 /* Similar, but we're allowed to generate unordered comparisons, which
481 makes it safe for IEEE floating-point. Of course, we have to recognize
482 that the target will support them too... */
484 enum rtx_code
485 reverse_condition_maybe_unordered (enum rtx_code code)
487 switch (code)
489 case EQ:
490 return NE;
491 case NE:
492 return EQ;
493 case GT:
494 return UNLE;
495 case GE:
496 return UNLT;
497 case LT:
498 return UNGE;
499 case LE:
500 return UNGT;
501 case LTGT:
502 return UNEQ;
503 case UNORDERED:
504 return ORDERED;
505 case ORDERED:
506 return UNORDERED;
507 case UNLT:
508 return GE;
509 case UNLE:
510 return GT;
511 case UNGT:
512 return LE;
513 case UNGE:
514 return LT;
515 case UNEQ:
516 return LTGT;
518 default:
519 gcc_unreachable ();
523 /* Similar, but return the code when two operands of a comparison are swapped.
524 This IS safe for IEEE floating-point. */
526 enum rtx_code
527 swap_condition (enum rtx_code code)
529 switch (code)
531 case EQ:
532 case NE:
533 case UNORDERED:
534 case ORDERED:
535 case UNEQ:
536 case LTGT:
537 return code;
539 case GT:
540 return LT;
541 case GE:
542 return LE;
543 case LT:
544 return GT;
545 case LE:
546 return GE;
547 case GTU:
548 return LTU;
549 case GEU:
550 return LEU;
551 case LTU:
552 return GTU;
553 case LEU:
554 return GEU;
555 case UNLT:
556 return UNGT;
557 case UNLE:
558 return UNGE;
559 case UNGT:
560 return UNLT;
561 case UNGE:
562 return UNLE;
564 default:
565 gcc_unreachable ();
569 /* Given a comparison CODE, return the corresponding unsigned comparison.
570 If CODE is an equality comparison or already an unsigned comparison,
571 CODE is returned. */
573 enum rtx_code
574 unsigned_condition (enum rtx_code code)
576 switch (code)
578 case EQ:
579 case NE:
580 case GTU:
581 case GEU:
582 case LTU:
583 case LEU:
584 return code;
586 case GT:
587 return GTU;
588 case GE:
589 return GEU;
590 case LT:
591 return LTU;
592 case LE:
593 return LEU;
595 default:
596 gcc_unreachable ();
600 /* Similarly, return the signed version of a comparison. */
602 enum rtx_code
603 signed_condition (enum rtx_code code)
605 switch (code)
607 case EQ:
608 case NE:
609 case GT:
610 case GE:
611 case LT:
612 case LE:
613 return code;
615 case GTU:
616 return GT;
617 case GEU:
618 return GE;
619 case LTU:
620 return LT;
621 case LEU:
622 return LE;
624 default:
625 gcc_unreachable ();
629 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
630 truth of CODE1 implies the truth of CODE2. */
633 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
635 /* UNKNOWN comparison codes can happen as a result of trying to revert
636 comparison codes.
637 They can't match anything, so we have to reject them here. */
638 if (code1 == UNKNOWN || code2 == UNKNOWN)
639 return 0;
641 if (code1 == code2)
642 return 1;
644 switch (code1)
646 case UNEQ:
647 if (code2 == UNLE || code2 == UNGE)
648 return 1;
649 break;
651 case EQ:
652 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
653 || code2 == ORDERED)
654 return 1;
655 break;
657 case UNLT:
658 if (code2 == UNLE || code2 == NE)
659 return 1;
660 break;
662 case LT:
663 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
664 return 1;
665 break;
667 case UNGT:
668 if (code2 == UNGE || code2 == NE)
669 return 1;
670 break;
672 case GT:
673 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
674 return 1;
675 break;
677 case GE:
678 case LE:
679 if (code2 == ORDERED)
680 return 1;
681 break;
683 case LTGT:
684 if (code2 == NE || code2 == ORDERED)
685 return 1;
686 break;
688 case LTU:
689 if (code2 == LEU || code2 == NE)
690 return 1;
691 break;
693 case GTU:
694 if (code2 == GEU || code2 == NE)
695 return 1;
696 break;
698 case UNORDERED:
699 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
700 || code2 == UNGE || code2 == UNGT)
701 return 1;
702 break;
704 default:
705 break;
708 return 0;
711 /* Return 1 if INSN is an unconditional jump and nothing else. */
714 simplejump_p (const_rtx insn)
716 return (JUMP_P (insn)
717 && GET_CODE (PATTERN (insn)) == SET
718 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
719 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
722 /* Return nonzero if INSN is a (possibly) conditional jump
723 and nothing more.
725 Use of this function is deprecated, since we need to support combined
726 branch and compare insns. Use any_condjump_p instead whenever possible. */
729 condjump_p (const_rtx insn)
731 const_rtx x = PATTERN (insn);
733 if (GET_CODE (x) != SET
734 || GET_CODE (SET_DEST (x)) != PC)
735 return 0;
737 x = SET_SRC (x);
738 if (GET_CODE (x) == LABEL_REF)
739 return 1;
740 else
741 return (GET_CODE (x) == IF_THEN_ELSE
742 && ((GET_CODE (XEXP (x, 2)) == PC
743 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
744 || GET_CODE (XEXP (x, 1)) == RETURN))
745 || (GET_CODE (XEXP (x, 1)) == PC
746 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
747 || GET_CODE (XEXP (x, 2)) == RETURN))));
750 /* Return nonzero if INSN is a (possibly) conditional jump inside a
751 PARALLEL.
753 Use this function is deprecated, since we need to support combined
754 branch and compare insns. Use any_condjump_p instead whenever possible. */
757 condjump_in_parallel_p (const_rtx insn)
759 const_rtx x = PATTERN (insn);
761 if (GET_CODE (x) != PARALLEL)
762 return 0;
763 else
764 x = XVECEXP (x, 0, 0);
766 if (GET_CODE (x) != SET)
767 return 0;
768 if (GET_CODE (SET_DEST (x)) != PC)
769 return 0;
770 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
771 return 1;
772 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
773 return 0;
774 if (XEXP (SET_SRC (x), 2) == pc_rtx
775 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
776 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
777 return 1;
778 if (XEXP (SET_SRC (x), 1) == pc_rtx
779 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
780 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
781 return 1;
782 return 0;
785 /* Return set of PC, otherwise NULL. */
788 pc_set (const_rtx insn)
790 rtx pat;
791 if (!JUMP_P (insn))
792 return NULL_RTX;
793 pat = PATTERN (insn);
795 /* The set is allowed to appear either as the insn pattern or
796 the first set in a PARALLEL. */
797 if (GET_CODE (pat) == PARALLEL)
798 pat = XVECEXP (pat, 0, 0);
799 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
800 return pat;
802 return NULL_RTX;
805 /* Return true when insn is an unconditional direct jump,
806 possibly bundled inside a PARALLEL. */
809 any_uncondjump_p (const_rtx insn)
811 const_rtx x = pc_set (insn);
812 if (!x)
813 return 0;
814 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
815 return 0;
816 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
817 return 0;
818 return 1;
821 /* Return true when insn is a conditional jump. This function works for
822 instructions containing PC sets in PARALLELs. The instruction may have
823 various other effects so before removing the jump you must verify
824 onlyjump_p.
826 Note that unlike condjump_p it returns false for unconditional jumps. */
829 any_condjump_p (const_rtx insn)
831 const_rtx x = pc_set (insn);
832 enum rtx_code a, b;
834 if (!x)
835 return 0;
836 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
837 return 0;
839 a = GET_CODE (XEXP (SET_SRC (x), 1));
840 b = GET_CODE (XEXP (SET_SRC (x), 2));
842 return ((b == PC && (a == LABEL_REF || a == RETURN))
843 || (a == PC && (b == LABEL_REF || b == RETURN)));
846 /* Return the label of a conditional jump. */
849 condjump_label (const_rtx insn)
851 rtx x = pc_set (insn);
853 if (!x)
854 return NULL_RTX;
855 x = SET_SRC (x);
856 if (GET_CODE (x) == LABEL_REF)
857 return x;
858 if (GET_CODE (x) != IF_THEN_ELSE)
859 return NULL_RTX;
860 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
861 return XEXP (x, 1);
862 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
863 return XEXP (x, 2);
864 return NULL_RTX;
867 /* Return true if INSN is a (possibly conditional) return insn. */
869 static int
870 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
872 rtx x = *loc;
874 if (x == NULL)
875 return false;
877 switch (GET_CODE (x))
879 case RETURN:
880 case EH_RETURN:
881 return true;
883 case SET:
884 return SET_IS_RETURN_P (x);
886 default:
887 return false;
891 /* Return TRUE if INSN is a return jump. */
894 returnjump_p (rtx insn)
896 if (!JUMP_P (insn))
897 return 0;
898 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
901 /* Return true if INSN is a (possibly conditional) return insn. */
903 static int
904 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
906 return *loc && GET_CODE (*loc) == EH_RETURN;
910 eh_returnjump_p (rtx insn)
912 if (!JUMP_P (insn))
913 return 0;
914 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
917 /* Return true if INSN is a jump that only transfers control and
918 nothing more. */
921 onlyjump_p (const_rtx insn)
923 rtx set;
925 if (!JUMP_P (insn))
926 return 0;
928 set = single_set (insn);
929 if (set == NULL)
930 return 0;
931 if (GET_CODE (SET_DEST (set)) != PC)
932 return 0;
933 if (side_effects_p (SET_SRC (set)))
934 return 0;
936 return 1;
939 #ifdef HAVE_cc0
941 /* Return nonzero if X is an RTX that only sets the condition codes
942 and has no side effects. */
945 only_sets_cc0_p (const_rtx x)
947 if (! x)
948 return 0;
950 if (INSN_P (x))
951 x = PATTERN (x);
953 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
956 /* Return 1 if X is an RTX that does nothing but set the condition codes
957 and CLOBBER or USE registers.
958 Return -1 if X does explicitly set the condition codes,
959 but also does other things. */
962 sets_cc0_p (const_rtx x)
964 if (! x)
965 return 0;
967 if (INSN_P (x))
968 x = PATTERN (x);
970 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
971 return 1;
972 if (GET_CODE (x) == PARALLEL)
974 int i;
975 int sets_cc0 = 0;
976 int other_things = 0;
977 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
979 if (GET_CODE (XVECEXP (x, 0, i)) == SET
980 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
981 sets_cc0 = 1;
982 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
983 other_things = 1;
985 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
987 return 0;
989 #endif
991 /* Find all CODE_LABELs referred to in X, and increment their use
992 counts. If INSN is a JUMP_INSN and there is at least one
993 CODE_LABEL referenced in INSN as a jump target, then store the last
994 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
995 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
996 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
997 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
998 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1000 Note that two labels separated by a loop-beginning note
1001 must be kept distinct if we have not yet done loop-optimization,
1002 because the gap between them is where loop-optimize
1003 will want to move invariant code to. CROSS_JUMP tells us
1004 that loop-optimization is done with. */
1006 void
1007 mark_jump_label (rtx x, rtx insn, int in_mem)
1009 mark_jump_label_1 (x, insn, in_mem != 0,
1010 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1013 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1014 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1015 jump-target; when the JUMP_LABEL field of INSN should be set or a
1016 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1017 note. */
1019 static void
1020 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1022 RTX_CODE code = GET_CODE (x);
1023 int i;
1024 const char *fmt;
1026 switch (code)
1028 case PC:
1029 case CC0:
1030 case REG:
1031 case CONST_INT:
1032 case CONST_DOUBLE:
1033 case CLOBBER:
1034 case CALL:
1035 return;
1037 case MEM:
1038 in_mem = true;
1039 break;
1041 case SEQUENCE:
1042 for (i = 0; i < XVECLEN (x, 0); i++)
1043 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1044 XVECEXP (x, 0, i), 0);
1045 return;
1047 case SYMBOL_REF:
1048 if (!in_mem)
1049 return;
1051 /* If this is a constant-pool reference, see if it is a label. */
1052 if (CONSTANT_POOL_ADDRESS_P (x))
1053 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1054 break;
1056 /* Handle operands in the condition of an if-then-else as for a
1057 non-jump insn. */
1058 case IF_THEN_ELSE:
1059 if (!is_target)
1060 break;
1061 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1062 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1063 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1064 return;
1066 case LABEL_REF:
1068 rtx label = XEXP (x, 0);
1070 /* Ignore remaining references to unreachable labels that
1071 have been deleted. */
1072 if (NOTE_P (label)
1073 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1074 break;
1076 gcc_assert (LABEL_P (label));
1078 /* Ignore references to labels of containing functions. */
1079 if (LABEL_REF_NONLOCAL_P (x))
1080 break;
1082 XEXP (x, 0) = label;
1083 if (! insn || ! INSN_DELETED_P (insn))
1084 ++LABEL_NUSES (label);
1086 if (insn)
1088 if (is_target
1089 /* Do not change a previous setting of JUMP_LABEL. If the
1090 JUMP_LABEL slot is occupied by a different label,
1091 create a note for this label. */
1092 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1093 JUMP_LABEL (insn) = label;
1094 else
1096 enum reg_note kind
1097 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1099 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1100 for LABEL unless there already is one. All uses of
1101 a label, except for the primary target of a jump,
1102 must have such a note. */
1103 if (! find_reg_note (insn, kind, label))
1104 add_reg_note (insn, kind, label);
1107 return;
1110 /* Do walk the labels in a vector, but not the first operand of an
1111 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1112 case ADDR_VEC:
1113 case ADDR_DIFF_VEC:
1114 if (! INSN_DELETED_P (insn))
1116 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1118 for (i = 0; i < XVECLEN (x, eltnum); i++)
1119 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1120 is_target);
1122 return;
1124 default:
1125 break;
1128 fmt = GET_RTX_FORMAT (code);
1130 /* The primary target of a tablejump is the label of the ADDR_VEC,
1131 which is canonically mentioned *last* in the insn. To get it
1132 marked as JUMP_LABEL, we iterate over items in reverse order. */
1133 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1135 if (fmt[i] == 'e')
1136 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1137 else if (fmt[i] == 'E')
1139 int j;
1141 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1142 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1143 is_target);
1149 /* Delete insn INSN from the chain of insns and update label ref counts
1150 and delete insns now unreachable.
1152 Returns the first insn after INSN that was not deleted.
1154 Usage of this instruction is deprecated. Use delete_insn instead and
1155 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1158 delete_related_insns (rtx insn)
1160 int was_code_label = (LABEL_P (insn));
1161 rtx note;
1162 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1164 while (next && INSN_DELETED_P (next))
1165 next = NEXT_INSN (next);
1167 /* This insn is already deleted => return first following nondeleted. */
1168 if (INSN_DELETED_P (insn))
1169 return next;
1171 delete_insn (insn);
1173 /* If instruction is followed by a barrier,
1174 delete the barrier too. */
1176 if (next != 0 && BARRIER_P (next))
1177 delete_insn (next);
1179 /* If deleting a jump, decrement the count of the label,
1180 and delete the label if it is now unused. */
1182 if (JUMP_P (insn) && JUMP_LABEL (insn))
1184 rtx lab = JUMP_LABEL (insn), lab_next;
1186 if (LABEL_NUSES (lab) == 0)
1187 /* This can delete NEXT or PREV,
1188 either directly if NEXT is JUMP_LABEL (INSN),
1189 or indirectly through more levels of jumps. */
1190 delete_related_insns (lab);
1191 else if (tablejump_p (insn, NULL, &lab_next))
1193 /* If we're deleting the tablejump, delete the dispatch table.
1194 We may not be able to kill the label immediately preceding
1195 just yet, as it might be referenced in code leading up to
1196 the tablejump. */
1197 delete_related_insns (lab_next);
1201 /* Likewise if we're deleting a dispatch table. */
1203 if (JUMP_TABLE_DATA_P (insn))
1205 rtx pat = PATTERN (insn);
1206 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1207 int len = XVECLEN (pat, diff_vec_p);
1209 for (i = 0; i < len; i++)
1210 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1211 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1212 while (next && INSN_DELETED_P (next))
1213 next = NEXT_INSN (next);
1214 return next;
1217 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1218 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1219 if (INSN_P (insn))
1220 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1221 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1222 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1223 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1224 && LABEL_P (XEXP (note, 0)))
1225 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1226 delete_related_insns (XEXP (note, 0));
1228 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1229 prev = PREV_INSN (prev);
1231 /* If INSN was a label and a dispatch table follows it,
1232 delete the dispatch table. The tablejump must have gone already.
1233 It isn't useful to fall through into a table. */
1235 if (was_code_label
1236 && NEXT_INSN (insn) != 0
1237 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1238 next = delete_related_insns (NEXT_INSN (insn));
1240 /* If INSN was a label, delete insns following it if now unreachable. */
1242 if (was_code_label && prev && BARRIER_P (prev))
1244 enum rtx_code code;
1245 while (next)
1247 code = GET_CODE (next);
1248 if (code == NOTE)
1249 next = NEXT_INSN (next);
1250 /* Keep going past other deleted labels to delete what follows. */
1251 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1252 next = NEXT_INSN (next);
1253 else if (code == BARRIER || INSN_P (next))
1254 /* Note: if this deletes a jump, it can cause more
1255 deletion of unreachable code, after a different label.
1256 As long as the value from this recursive call is correct,
1257 this invocation functions correctly. */
1258 next = delete_related_insns (next);
1259 else
1260 break;
1264 /* I feel a little doubtful about this loop,
1265 but I see no clean and sure alternative way
1266 to find the first insn after INSN that is not now deleted.
1267 I hope this works. */
1268 while (next && INSN_DELETED_P (next))
1269 next = NEXT_INSN (next);
1270 return next;
1273 /* Delete a range of insns from FROM to TO, inclusive.
1274 This is for the sake of peephole optimization, so assume
1275 that whatever these insns do will still be done by a new
1276 peephole insn that will replace them. */
1278 void
1279 delete_for_peephole (rtx from, rtx to)
1281 rtx insn = from;
1283 while (1)
1285 rtx next = NEXT_INSN (insn);
1286 rtx prev = PREV_INSN (insn);
1288 if (!NOTE_P (insn))
1290 INSN_DELETED_P (insn) = 1;
1292 /* Patch this insn out of the chain. */
1293 /* We don't do this all at once, because we
1294 must preserve all NOTEs. */
1295 if (prev)
1296 NEXT_INSN (prev) = next;
1298 if (next)
1299 PREV_INSN (next) = prev;
1302 if (insn == to)
1303 break;
1304 insn = next;
1307 /* Note that if TO is an unconditional jump
1308 we *do not* delete the BARRIER that follows,
1309 since the peephole that replaces this sequence
1310 is also an unconditional jump in that case. */
1313 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1314 NLABEL as a return. Accrue modifications into the change group. */
1316 static void
1317 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1319 rtx x = *loc;
1320 RTX_CODE code = GET_CODE (x);
1321 int i;
1322 const char *fmt;
1324 if (code == LABEL_REF)
1326 if (XEXP (x, 0) == olabel)
1328 rtx n;
1329 if (nlabel)
1330 n = gen_rtx_LABEL_REF (Pmode, nlabel);
1331 else
1332 n = gen_rtx_RETURN (VOIDmode);
1334 validate_change (insn, loc, n, 1);
1335 return;
1338 else if (code == RETURN && olabel == 0)
1340 if (nlabel)
1341 x = gen_rtx_LABEL_REF (Pmode, nlabel);
1342 else
1343 x = gen_rtx_RETURN (VOIDmode);
1344 if (loc == &PATTERN (insn))
1345 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1346 validate_change (insn, loc, x, 1);
1347 return;
1350 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1351 && GET_CODE (SET_SRC (x)) == LABEL_REF
1352 && XEXP (SET_SRC (x), 0) == olabel)
1354 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1355 return;
1358 if (code == IF_THEN_ELSE)
1360 /* Skip the condition of an IF_THEN_ELSE. We only want to
1361 change jump destinations, not eventual label comparisons. */
1362 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1363 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1364 return;
1367 fmt = GET_RTX_FORMAT (code);
1368 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1370 if (fmt[i] == 'e')
1371 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1372 else if (fmt[i] == 'E')
1374 int j;
1375 for (j = 0; j < XVECLEN (x, i); j++)
1376 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1381 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1382 the modifications into the change group. Return false if we did
1383 not see how to do that. */
1386 redirect_jump_1 (rtx jump, rtx nlabel)
1388 int ochanges = num_validated_changes ();
1389 rtx *loc;
1391 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1392 loc = &XVECEXP (PATTERN (jump), 0, 0);
1393 else
1394 loc = &PATTERN (jump);
1396 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1397 return num_validated_changes () > ochanges;
1400 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1401 jump target label is unused as a result, it and the code following
1402 it may be deleted.
1404 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1405 RETURN insn.
1407 The return value will be 1 if the change was made, 0 if it wasn't
1408 (this can only occur for NLABEL == 0). */
1411 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1413 rtx olabel = JUMP_LABEL (jump);
1415 if (nlabel == olabel)
1416 return 1;
1418 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1419 return 0;
1421 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1422 return 1;
1425 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1426 NLABEL in JUMP.
1427 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1428 count has dropped to zero. */
1429 void
1430 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1431 int invert)
1433 rtx note;
1435 gcc_assert (JUMP_LABEL (jump) == olabel);
1437 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1438 moving FUNCTION_END note. Just sanity check that no user still worry
1439 about this. */
1440 gcc_assert (delete_unused >= 0);
1441 JUMP_LABEL (jump) = nlabel;
1442 if (nlabel)
1443 ++LABEL_NUSES (nlabel);
1445 /* Update labels in any REG_EQUAL note. */
1446 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1448 if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1449 remove_note (jump, note);
1450 else
1452 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1453 confirm_change_group ();
1457 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1458 /* Undefined labels will remain outside the insn stream. */
1459 && INSN_UID (olabel))
1460 delete_related_insns (olabel);
1461 if (invert)
1462 invert_br_probabilities (jump);
1465 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1466 modifications into the change group. Return nonzero for success. */
1467 static int
1468 invert_exp_1 (rtx x, rtx insn)
1470 RTX_CODE code = GET_CODE (x);
1472 if (code == IF_THEN_ELSE)
1474 rtx comp = XEXP (x, 0);
1475 rtx tem;
1476 enum rtx_code reversed_code;
1478 /* We can do this in two ways: The preferable way, which can only
1479 be done if this is not an integer comparison, is to reverse
1480 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1481 of the IF_THEN_ELSE. If we can't do either, fail. */
1483 reversed_code = reversed_comparison_code (comp, insn);
1485 if (reversed_code != UNKNOWN)
1487 validate_change (insn, &XEXP (x, 0),
1488 gen_rtx_fmt_ee (reversed_code,
1489 GET_MODE (comp), XEXP (comp, 0),
1490 XEXP (comp, 1)),
1492 return 1;
1495 tem = XEXP (x, 1);
1496 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1497 validate_change (insn, &XEXP (x, 2), tem, 1);
1498 return 1;
1500 else
1501 return 0;
1504 /* Invert the condition of the jump JUMP, and make it jump to label
1505 NLABEL instead of where it jumps now. Accrue changes into the
1506 change group. Return false if we didn't see how to perform the
1507 inversion and redirection. */
1510 invert_jump_1 (rtx jump, rtx nlabel)
1512 rtx x = pc_set (jump);
1513 int ochanges;
1514 int ok;
1516 ochanges = num_validated_changes ();
1517 gcc_assert (x);
1518 ok = invert_exp_1 (SET_SRC (x), jump);
1519 gcc_assert (ok);
1521 if (num_validated_changes () == ochanges)
1522 return 0;
1524 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1525 in Pmode, so checking this is not merely an optimization. */
1526 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1529 /* Invert the condition of the jump JUMP, and make it jump to label
1530 NLABEL instead of where it jumps now. Return true if successful. */
1533 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1535 rtx olabel = JUMP_LABEL (jump);
1537 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1539 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1540 return 1;
1542 cancel_changes (0);
1543 return 0;
1547 /* Like rtx_equal_p except that it considers two REGs as equal
1548 if they renumber to the same value and considers two commutative
1549 operations to be the same if the order of the operands has been
1550 reversed. */
1553 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1555 int i;
1556 const enum rtx_code code = GET_CODE (x);
1557 const char *fmt;
1559 if (x == y)
1560 return 1;
1562 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1563 && (REG_P (y) || (GET_CODE (y) == SUBREG
1564 && REG_P (SUBREG_REG (y)))))
1566 int reg_x = -1, reg_y = -1;
1567 int byte_x = 0, byte_y = 0;
1568 struct subreg_info info;
1570 if (GET_MODE (x) != GET_MODE (y))
1571 return 0;
1573 /* If we haven't done any renumbering, don't
1574 make any assumptions. */
1575 if (reg_renumber == 0)
1576 return rtx_equal_p (x, y);
1578 if (code == SUBREG)
1580 reg_x = REGNO (SUBREG_REG (x));
1581 byte_x = SUBREG_BYTE (x);
1583 if (reg_renumber[reg_x] >= 0)
1585 subreg_get_info (reg_renumber[reg_x],
1586 GET_MODE (SUBREG_REG (x)), byte_x,
1587 GET_MODE (x), &info);
1588 if (!info.representable_p)
1589 return 0;
1590 reg_x = info.offset;
1591 byte_x = 0;
1594 else
1596 reg_x = REGNO (x);
1597 if (reg_renumber[reg_x] >= 0)
1598 reg_x = reg_renumber[reg_x];
1601 if (GET_CODE (y) == SUBREG)
1603 reg_y = REGNO (SUBREG_REG (y));
1604 byte_y = SUBREG_BYTE (y);
1606 if (reg_renumber[reg_y] >= 0)
1608 subreg_get_info (reg_renumber[reg_y],
1609 GET_MODE (SUBREG_REG (y)), byte_y,
1610 GET_MODE (y), &info);
1611 if (!info.representable_p)
1612 return 0;
1613 reg_y = info.offset;
1614 byte_y = 0;
1617 else
1619 reg_y = REGNO (y);
1620 if (reg_renumber[reg_y] >= 0)
1621 reg_y = reg_renumber[reg_y];
1624 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1627 /* Now we have disposed of all the cases
1628 in which different rtx codes can match. */
1629 if (code != GET_CODE (y))
1630 return 0;
1632 switch (code)
1634 case PC:
1635 case CC0:
1636 case ADDR_VEC:
1637 case ADDR_DIFF_VEC:
1638 case CONST_INT:
1639 case CONST_DOUBLE:
1640 return 0;
1642 case LABEL_REF:
1643 /* We can't assume nonlocal labels have their following insns yet. */
1644 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1645 return XEXP (x, 0) == XEXP (y, 0);
1647 /* Two label-refs are equivalent if they point at labels
1648 in the same position in the instruction stream. */
1649 return (next_real_insn (XEXP (x, 0))
1650 == next_real_insn (XEXP (y, 0)));
1652 case SYMBOL_REF:
1653 return XSTR (x, 0) == XSTR (y, 0);
1655 case CODE_LABEL:
1656 /* If we didn't match EQ equality above, they aren't the same. */
1657 return 0;
1659 default:
1660 break;
1663 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1665 if (GET_MODE (x) != GET_MODE (y))
1666 return 0;
1668 /* For commutative operations, the RTX match if the operand match in any
1669 order. Also handle the simple binary and unary cases without a loop. */
1670 if (targetm.commutative_p (x, UNKNOWN))
1671 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1672 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1673 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1674 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1675 else if (NON_COMMUTATIVE_P (x))
1676 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1677 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1678 else if (UNARY_P (x))
1679 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1681 /* Compare the elements. If any pair of corresponding elements
1682 fail to match, return 0 for the whole things. */
1684 fmt = GET_RTX_FORMAT (code);
1685 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1687 int j;
1688 switch (fmt[i])
1690 case 'w':
1691 if (XWINT (x, i) != XWINT (y, i))
1692 return 0;
1693 break;
1695 case 'i':
1696 if (XINT (x, i) != XINT (y, i))
1697 return 0;
1698 break;
1700 case 't':
1701 if (XTREE (x, i) != XTREE (y, i))
1702 return 0;
1703 break;
1705 case 's':
1706 if (strcmp (XSTR (x, i), XSTR (y, i)))
1707 return 0;
1708 break;
1710 case 'e':
1711 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1712 return 0;
1713 break;
1715 case 'u':
1716 if (XEXP (x, i) != XEXP (y, i))
1717 return 0;
1718 /* Fall through. */
1719 case '0':
1720 break;
1722 case 'E':
1723 if (XVECLEN (x, i) != XVECLEN (y, i))
1724 return 0;
1725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1726 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1727 return 0;
1728 break;
1730 default:
1731 gcc_unreachable ();
1734 return 1;
1737 /* If X is a hard register or equivalent to one or a subregister of one,
1738 return the hard register number. If X is a pseudo register that was not
1739 assigned a hard register, return the pseudo register number. Otherwise,
1740 return -1. Any rtx is valid for X. */
1743 true_regnum (const_rtx x)
1745 if (REG_P (x))
1747 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1748 return reg_renumber[REGNO (x)];
1749 return REGNO (x);
1751 if (GET_CODE (x) == SUBREG)
1753 int base = true_regnum (SUBREG_REG (x));
1754 if (base >= 0
1755 && base < FIRST_PSEUDO_REGISTER)
1757 struct subreg_info info;
1759 subreg_get_info (REGNO (SUBREG_REG (x)),
1760 GET_MODE (SUBREG_REG (x)),
1761 SUBREG_BYTE (x), GET_MODE (x), &info);
1763 if (info.representable_p)
1764 return base + info.offset;
1767 return -1;
1770 /* Return regno of the register REG and handle subregs too. */
1771 unsigned int
1772 reg_or_subregno (const_rtx reg)
1774 if (GET_CODE (reg) == SUBREG)
1775 reg = SUBREG_REG (reg);
1776 gcc_assert (REG_P (reg));
1777 return REGNO (reg);