* inclhack.def (aix_complex): Redefine _Complex_I. Do not
[official-gcc.git] / gcc / ggc-zone.c
blob442c80e6713905c01f6db6e50bdcd3310b2d9ebf
1 /* "Bag-of-pages" zone garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
3 Free Software Foundation, Inc.
5 Contributed by Richard Henderson (rth@redhat.com) and Daniel Berlin
6 (dberlin@dberlin.org). Rewritten by Daniel Jacobowitz
7 <dan@codesourcery.com>.
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "toplev.h"
33 #include "varray.h"
34 #include "flags.h"
35 #include "ggc.h"
36 #include "timevar.h"
37 #include "params.h"
38 #include "bitmap.h"
39 #include "plugin.h"
41 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
42 file open. Prefer either to valloc. */
43 #ifdef HAVE_MMAP_ANON
44 # undef HAVE_MMAP_DEV_ZERO
46 # include <sys/mman.h>
47 # ifndef MAP_FAILED
48 # define MAP_FAILED -1
49 # endif
50 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
51 # define MAP_ANONYMOUS MAP_ANON
52 # endif
53 # define USING_MMAP
54 #endif
56 #ifdef HAVE_MMAP_DEV_ZERO
57 # include <sys/mman.h>
58 # ifndef MAP_FAILED
59 # define MAP_FAILED -1
60 # endif
61 # define USING_MMAP
62 #endif
64 #ifndef USING_MMAP
65 #error Zone collector requires mmap
66 #endif
68 #if (GCC_VERSION < 3001)
69 #define prefetch(X) ((void) X)
70 #define prefetchw(X) ((void) X)
71 #else
72 #define prefetch(X) __builtin_prefetch (X)
73 #define prefetchw(X) __builtin_prefetch (X, 1, 3)
74 #endif
76 /* FUTURE NOTES:
78 If we track inter-zone pointers, we can mark single zones at a
79 time.
81 If we have a zone where we guarantee no inter-zone pointers, we
82 could mark that zone separately.
84 The garbage zone should not be marked, and we should return 1 in
85 ggc_set_mark for any object in the garbage zone, which cuts off
86 marking quickly. */
88 /* Strategy:
90 This garbage-collecting allocator segregates objects into zones.
91 It also segregates objects into "large" and "small" bins. Large
92 objects are greater than page size.
94 Pages for small objects are broken up into chunks. The page has
95 a bitmap which marks the start position of each chunk (whether
96 allocated or free). Free chunks are on one of the zone's free
97 lists and contain a pointer to the next free chunk. Chunks in
98 most of the free lists have a fixed size determined by the
99 free list. Chunks in the "other" sized free list have their size
100 stored right after their chain pointer.
102 Empty pages (of all sizes) are kept on a single page cache list,
103 and are considered first when new pages are required; they are
104 deallocated at the start of the next collection if they haven't
105 been recycled by then. The free page list is currently per-zone. */
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108 0: No debugging output.
109 1: GC statistics only.
110 2: Page-entry allocations/deallocations as well.
111 3: Object allocations as well.
112 4: Object marks as well. */
113 #define GGC_DEBUG_LEVEL (0)
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
117 #endif
119 /* This structure manages small free chunks. The SIZE field is only
120 initialized if the chunk is in the "other" sized free list. Large
121 chunks are allocated one at a time to their own page, and so don't
122 come in here. */
124 struct alloc_chunk {
125 struct alloc_chunk *next_free;
126 unsigned int size;
129 /* The size of the fixed-size portion of a small page descriptor. */
130 #define PAGE_OVERHEAD (offsetof (struct small_page_entry, alloc_bits))
132 /* The collector's idea of the page size. This must be a power of two
133 no larger than the system page size, because pages must be aligned
134 to this amount and are tracked at this granularity in the page
135 table. We choose a size at compile time for efficiency.
137 We could make a better guess at compile time if PAGE_SIZE is a
138 constant in system headers, and PAGE_SHIFT is defined... */
139 #define GGC_PAGE_SIZE 4096
140 #define GGC_PAGE_MASK (GGC_PAGE_SIZE - 1)
141 #define GGC_PAGE_SHIFT 12
143 #if 0
144 /* Alternative definitions which use the runtime page size. */
145 #define GGC_PAGE_SIZE G.pagesize
146 #define GGC_PAGE_MASK G.page_mask
147 #define GGC_PAGE_SHIFT G.lg_pagesize
148 #endif
150 /* The size of a small page managed by the garbage collector. This
151 must currently be GGC_PAGE_SIZE, but with a few changes could
152 be any multiple of it to reduce certain kinds of overhead. */
153 #define SMALL_PAGE_SIZE GGC_PAGE_SIZE
155 /* Free bin information. These numbers may be in need of re-tuning.
156 In general, decreasing the number of free bins would seem to
157 increase the time it takes to allocate... */
159 /* FIXME: We can't use anything but MAX_ALIGNMENT for the bin size
160 today. */
162 #define NUM_FREE_BINS 64
163 #define FREE_BIN_DELTA MAX_ALIGNMENT
164 #define SIZE_BIN_DOWN(SIZE) ((SIZE) / FREE_BIN_DELTA)
166 /* Allocation and marking parameters. */
168 /* The smallest allocatable unit to keep track of. */
169 #define BYTES_PER_ALLOC_BIT MAX_ALIGNMENT
171 /* The smallest markable unit. If we require each allocated object
172 to contain at least two allocatable units, we can use half as many
173 bits for the mark bitmap. But this adds considerable complexity
174 to sweeping. */
175 #define BYTES_PER_MARK_BIT BYTES_PER_ALLOC_BIT
177 #define BYTES_PER_MARK_WORD (8 * BYTES_PER_MARK_BIT * sizeof (mark_type))
179 /* We use this structure to determine the alignment required for
180 allocations.
182 There are several things wrong with this estimation of alignment.
184 The maximum alignment for a structure is often less than the
185 maximum alignment for a basic data type; for instance, on some
186 targets long long must be aligned to sizeof (int) in a structure
187 and sizeof (long long) in a variable. i386-linux is one example;
188 Darwin is another (sometimes, depending on the compiler in use).
190 Also, long double is not included. Nothing in GCC uses long
191 double, so we assume that this is OK. On powerpc-darwin, adding
192 long double would bring the maximum alignment up to 16 bytes,
193 and until we need long double (or to vectorize compiler operations)
194 that's painfully wasteful. This will need to change, some day. */
196 struct max_alignment {
197 char c;
198 union {
199 HOST_WIDEST_INT i;
200 double d;
201 } u;
204 /* The biggest alignment required. */
206 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
208 /* Compute the smallest multiple of F that is >= X. */
210 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
212 /* Types to use for the allocation and mark bitmaps. It might be
213 a good idea to add ffsl to libiberty and use unsigned long
214 instead; that could speed us up where long is wider than int. */
216 typedef unsigned int alloc_type;
217 typedef unsigned int mark_type;
218 #define alloc_ffs(x) ffs(x)
220 /* A page_entry records the status of an allocation page. This is the
221 common data between all three kinds of pages - small, large, and
222 PCH. */
223 typedef struct page_entry
225 /* The address at which the memory is allocated. */
226 char *page;
228 /* The zone that this page entry belongs to. */
229 struct alloc_zone *zone;
231 #ifdef GATHER_STATISTICS
232 /* How many collections we've survived. */
233 size_t survived;
234 #endif
236 /* Does this page contain small objects, or one large object? */
237 bool large_p;
239 /* Is this page part of the loaded PCH? */
240 bool pch_p;
241 } page_entry;
243 /* Additional data needed for small pages. */
244 struct small_page_entry
246 struct page_entry common;
248 /* The next small page entry, or NULL if this is the last. */
249 struct small_page_entry *next;
251 /* If currently marking this zone, a pointer to the mark bits
252 for this page. If we aren't currently marking this zone,
253 this pointer may be stale (pointing to freed memory). */
254 mark_type *mark_bits;
256 /* The allocation bitmap. This array extends far enough to have
257 one bit for every BYTES_PER_ALLOC_BIT bytes in the page. */
258 alloc_type alloc_bits[1];
261 /* Additional data needed for large pages. */
262 struct large_page_entry
264 struct page_entry common;
266 /* The next large page entry, or NULL if this is the last. */
267 struct large_page_entry *next;
269 /* The number of bytes allocated, not including the page entry. */
270 size_t bytes;
272 /* The previous page in the list, so that we can unlink this one. */
273 struct large_page_entry *prev;
275 /* During marking, is this object marked? */
276 bool mark_p;
279 /* A two-level tree is used to look up the page-entry for a given
280 pointer. Two chunks of the pointer's bits are extracted to index
281 the first and second levels of the tree, as follows:
283 HOST_PAGE_SIZE_BITS
284 32 | |
285 msb +----------------+----+------+------+ lsb
286 | | |
287 PAGE_L1_BITS |
289 PAGE_L2_BITS
291 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
292 pages are aligned on system page boundaries. The next most
293 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
294 index values in the lookup table, respectively.
296 For 32-bit architectures and the settings below, there are no
297 leftover bits. For architectures with wider pointers, the lookup
298 tree points to a list of pages, which must be scanned to find the
299 correct one. */
301 #define PAGE_L1_BITS (8)
302 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - GGC_PAGE_SHIFT)
303 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
304 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
306 #define LOOKUP_L1(p) \
307 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
309 #define LOOKUP_L2(p) \
310 (((size_t) (p) >> GGC_PAGE_SHIFT) & ((1 << PAGE_L2_BITS) - 1))
312 #if HOST_BITS_PER_PTR <= 32
314 /* On 32-bit hosts, we use a two level page table, as pictured above. */
315 typedef page_entry **page_table[PAGE_L1_SIZE];
317 #else
319 /* On 64-bit hosts, we use the same two level page tables plus a linked
320 list that disambiguates the top 32-bits. There will almost always be
321 exactly one entry in the list. */
322 typedef struct page_table_chain
324 struct page_table_chain *next;
325 size_t high_bits;
326 page_entry **table[PAGE_L1_SIZE];
327 } *page_table;
329 #endif
331 /* The global variables. */
332 static struct globals
334 /* The linked list of zones. */
335 struct alloc_zone *zones;
337 /* Lookup table for associating allocation pages with object addresses. */
338 page_table lookup;
340 /* The system's page size, and related constants. */
341 size_t pagesize;
342 size_t lg_pagesize;
343 size_t page_mask;
345 /* The size to allocate for a small page entry. This includes
346 the size of the structure and the size of the allocation
347 bitmap. */
348 size_t small_page_overhead;
350 #if defined (HAVE_MMAP_DEV_ZERO)
351 /* A file descriptor open to /dev/zero for reading. */
352 int dev_zero_fd;
353 #endif
355 /* Allocate pages in chunks of this size, to throttle calls to memory
356 allocation routines. The first page is used, the rest go onto the
357 free list. */
358 size_t quire_size;
360 /* The file descriptor for debugging output. */
361 FILE *debug_file;
362 } G;
364 /* A zone allocation structure. There is one of these for every
365 distinct allocation zone. */
366 struct alloc_zone
368 /* The most recent free chunk is saved here, instead of in the linked
369 free list, to decrease list manipulation. It is most likely that we
370 will want this one. */
371 char *cached_free;
372 size_t cached_free_size;
374 /* Linked lists of free storage. Slots 1 ... NUM_FREE_BINS have chunks of size
375 FREE_BIN_DELTA. All other chunks are in slot 0. */
376 struct alloc_chunk *free_chunks[NUM_FREE_BINS + 1];
378 /* The highest bin index which might be non-empty. It may turn out
379 to be empty, in which case we have to search downwards. */
380 size_t high_free_bin;
382 /* Bytes currently allocated in this zone. */
383 size_t allocated;
385 /* Linked list of the small pages in this zone. */
386 struct small_page_entry *pages;
388 /* Doubly linked list of large pages in this zone. */
389 struct large_page_entry *large_pages;
391 /* If we are currently marking this zone, a pointer to the mark bits. */
392 mark_type *mark_bits;
394 /* Name of the zone. */
395 const char *name;
397 /* The number of small pages currently allocated in this zone. */
398 size_t n_small_pages;
400 /* Bytes allocated at the end of the last collection. */
401 size_t allocated_last_gc;
403 /* Total amount of memory mapped. */
404 size_t bytes_mapped;
406 /* A cache of free system pages. */
407 struct small_page_entry *free_pages;
409 /* Next zone in the linked list of zones. */
410 struct alloc_zone *next_zone;
412 /* True if this zone was collected during this collection. */
413 bool was_collected;
415 /* True if this zone should be destroyed after the next collection. */
416 bool dead;
418 #ifdef GATHER_STATISTICS
419 struct
421 /* Total memory allocated with ggc_alloc. */
422 unsigned long long total_allocated;
423 /* Total overhead for memory to be allocated with ggc_alloc. */
424 unsigned long long total_overhead;
426 /* Total allocations and overhead for sizes less than 32, 64 and 128.
427 These sizes are interesting because they are typical cache line
428 sizes. */
430 unsigned long long total_allocated_under32;
431 unsigned long long total_overhead_under32;
433 unsigned long long total_allocated_under64;
434 unsigned long long total_overhead_under64;
436 unsigned long long total_allocated_under128;
437 unsigned long long total_overhead_under128;
438 } stats;
439 #endif
440 } main_zone;
442 /* Some default zones. */
443 struct alloc_zone rtl_zone;
444 struct alloc_zone tree_zone;
445 struct alloc_zone tree_id_zone;
447 /* The PCH zone does not need a normal zone structure, and it does
448 not live on the linked list of zones. */
449 struct pch_zone
451 /* The start of the PCH zone. NULL if there is none. */
452 char *page;
454 /* The end of the PCH zone. NULL if there is none. */
455 char *end;
457 /* The size of the PCH zone. 0 if there is none. */
458 size_t bytes;
460 /* The allocation bitmap for the PCH zone. */
461 alloc_type *alloc_bits;
463 /* If we are currently marking, the mark bitmap for the PCH zone.
464 When it is first read in, we could avoid marking the PCH,
465 because it will not contain any pointers to GC memory outside
466 of the PCH; however, the PCH is currently mapped as writable,
467 so we must mark it in case new pointers are added. */
468 mark_type *mark_bits;
469 } pch_zone;
471 #ifdef USING_MMAP
472 static char *alloc_anon (char *, size_t, struct alloc_zone *);
473 #endif
474 static struct small_page_entry * alloc_small_page (struct alloc_zone *);
475 static struct large_page_entry * alloc_large_page (size_t, struct alloc_zone *);
476 static void free_chunk (char *, size_t, struct alloc_zone *);
477 static void free_small_page (struct small_page_entry *);
478 static void free_large_page (struct large_page_entry *);
479 static void release_pages (struct alloc_zone *);
480 static void sweep_pages (struct alloc_zone *);
481 static bool ggc_collect_1 (struct alloc_zone *, bool);
482 static void new_ggc_zone_1 (struct alloc_zone *, const char *);
484 /* Traverse the page table and find the entry for a page.
485 Die (probably) if the object wasn't allocated via GC. */
487 static inline page_entry *
488 lookup_page_table_entry (const void *p)
490 page_entry ***base;
491 size_t L1, L2;
493 #if HOST_BITS_PER_PTR <= 32
494 base = &G.lookup[0];
495 #else
496 page_table table = G.lookup;
497 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
498 while (table->high_bits != high_bits)
499 table = table->next;
500 base = &table->table[0];
501 #endif
503 /* Extract the level 1 and 2 indices. */
504 L1 = LOOKUP_L1 (p);
505 L2 = LOOKUP_L2 (p);
507 return base[L1][L2];
510 /* Traverse the page table and find the entry for a page.
511 Return NULL if the object wasn't allocated via the GC. */
513 static inline page_entry *
514 lookup_page_table_if_allocated (const void *p)
516 page_entry ***base;
517 size_t L1, L2;
519 #if HOST_BITS_PER_PTR <= 32
520 base = &G.lookup[0];
521 #else
522 page_table table = G.lookup;
523 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
524 while (1)
526 if (table == NULL)
527 return NULL;
528 if (table->high_bits == high_bits)
529 break;
530 table = table->next;
532 base = &table->table[0];
533 #endif
535 /* Extract the level 1 and 2 indices. */
536 L1 = LOOKUP_L1 (p);
537 if (! base[L1])
538 return NULL;
540 L2 = LOOKUP_L2 (p);
541 if (L2 >= PAGE_L2_SIZE)
542 return NULL;
543 /* We might have a page entry which does not correspond exactly to a
544 system page. */
545 if (base[L1][L2] && (const char *) p < base[L1][L2]->page)
546 return NULL;
548 return base[L1][L2];
551 /* Set the page table entry for the page that starts at P. If ENTRY
552 is NULL, clear the entry. */
554 static void
555 set_page_table_entry (void *p, page_entry *entry)
557 page_entry ***base;
558 size_t L1, L2;
560 #if HOST_BITS_PER_PTR <= 32
561 base = &G.lookup[0];
562 #else
563 page_table table;
564 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
565 for (table = G.lookup; table; table = table->next)
566 if (table->high_bits == high_bits)
567 goto found;
569 /* Not found -- allocate a new table. */
570 table = XCNEW (struct page_table_chain);
571 table->next = G.lookup;
572 table->high_bits = high_bits;
573 G.lookup = table;
574 found:
575 base = &table->table[0];
576 #endif
578 /* Extract the level 1 and 2 indices. */
579 L1 = LOOKUP_L1 (p);
580 L2 = LOOKUP_L2 (p);
582 if (base[L1] == NULL)
583 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
585 base[L1][L2] = entry;
588 /* Find the page table entry associated with OBJECT. */
590 static inline struct page_entry *
591 zone_get_object_page (const void *object)
593 return lookup_page_table_entry (object);
596 /* Find which element of the alloc_bits array OBJECT should be
597 recorded in. */
598 static inline unsigned int
599 zone_get_object_alloc_word (const void *object)
601 return (((size_t) object & (GGC_PAGE_SIZE - 1))
602 / (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
605 /* Find which bit of the appropriate word in the alloc_bits array
606 OBJECT should be recorded in. */
607 static inline unsigned int
608 zone_get_object_alloc_bit (const void *object)
610 return (((size_t) object / BYTES_PER_ALLOC_BIT)
611 % (8 * sizeof (alloc_type)));
614 /* Find which element of the mark_bits array OBJECT should be recorded
615 in. */
616 static inline unsigned int
617 zone_get_object_mark_word (const void *object)
619 return (((size_t) object & (GGC_PAGE_SIZE - 1))
620 / (8 * sizeof (mark_type) * BYTES_PER_MARK_BIT));
623 /* Find which bit of the appropriate word in the mark_bits array
624 OBJECT should be recorded in. */
625 static inline unsigned int
626 zone_get_object_mark_bit (const void *object)
628 return (((size_t) object / BYTES_PER_MARK_BIT)
629 % (8 * sizeof (mark_type)));
632 /* Set the allocation bit corresponding to OBJECT in its page's
633 bitmap. Used to split this object from the preceding one. */
634 static inline void
635 zone_set_object_alloc_bit (const void *object)
637 struct small_page_entry *page
638 = (struct small_page_entry *) zone_get_object_page (object);
639 unsigned int start_word = zone_get_object_alloc_word (object);
640 unsigned int start_bit = zone_get_object_alloc_bit (object);
642 page->alloc_bits[start_word] |= 1L << start_bit;
645 /* Clear the allocation bit corresponding to OBJECT in PAGE's
646 bitmap. Used to coalesce this object with the preceding
647 one. */
648 static inline void
649 zone_clear_object_alloc_bit (struct small_page_entry *page,
650 const void *object)
652 unsigned int start_word = zone_get_object_alloc_word (object);
653 unsigned int start_bit = zone_get_object_alloc_bit (object);
655 /* Would xor be quicker? */
656 page->alloc_bits[start_word] &= ~(1L << start_bit);
659 /* Find the size of the object which starts at START_WORD and
660 START_BIT in ALLOC_BITS, which is at most MAX_SIZE bytes.
661 Helper function for ggc_get_size and zone_find_object_size. */
663 static inline size_t
664 zone_object_size_1 (alloc_type *alloc_bits,
665 size_t start_word, size_t start_bit,
666 size_t max_size)
668 size_t size;
669 alloc_type alloc_word;
670 int indx;
672 /* Load the first word. */
673 alloc_word = alloc_bits[start_word++];
675 /* If that was the last bit in this word, we'll want to continue
676 with the next word. Otherwise, handle the rest of this word. */
677 if (start_bit)
679 indx = alloc_ffs (alloc_word >> start_bit);
680 if (indx)
681 /* indx is 1-based. We started at the bit after the object's
682 start, but we also ended at the bit after the object's end.
683 It cancels out. */
684 return indx * BYTES_PER_ALLOC_BIT;
686 /* The extra 1 accounts for the starting unit, before start_bit. */
687 size = (sizeof (alloc_type) * 8 - start_bit + 1) * BYTES_PER_ALLOC_BIT;
689 if (size >= max_size)
690 return max_size;
692 alloc_word = alloc_bits[start_word++];
694 else
695 size = BYTES_PER_ALLOC_BIT;
697 while (alloc_word == 0)
699 size += sizeof (alloc_type) * 8 * BYTES_PER_ALLOC_BIT;
700 if (size >= max_size)
701 return max_size;
702 alloc_word = alloc_bits[start_word++];
705 indx = alloc_ffs (alloc_word);
706 return size + (indx - 1) * BYTES_PER_ALLOC_BIT;
709 /* Find the size of OBJECT on small page PAGE. */
711 static inline size_t
712 zone_find_object_size (struct small_page_entry *page,
713 const void *object)
715 const char *object_midptr = (const char *) object + BYTES_PER_ALLOC_BIT;
716 unsigned int start_word = zone_get_object_alloc_word (object_midptr);
717 unsigned int start_bit = zone_get_object_alloc_bit (object_midptr);
718 size_t max_size = (page->common.page + SMALL_PAGE_SIZE
719 - (const char *) object);
721 return zone_object_size_1 (page->alloc_bits, start_word, start_bit,
722 max_size);
725 /* highest_bit assumes that alloc_type is 32 bits. */
726 extern char check_alloc_type_size[(sizeof (alloc_type) == 4) ? 1 : -1];
728 /* Find the highest set bit in VALUE. Returns the bit number of that
729 bit, using the same values as ffs. */
730 static inline alloc_type
731 highest_bit (alloc_type value)
733 /* This also assumes that alloc_type is unsigned. */
734 value |= value >> 1;
735 value |= value >> 2;
736 value |= value >> 4;
737 value |= value >> 8;
738 value |= value >> 16;
739 value = value ^ (value >> 1);
740 return alloc_ffs (value);
743 /* Find the offset from the start of an object to P, which may point
744 into the interior of the object. */
746 static unsigned long
747 zone_find_object_offset (alloc_type *alloc_bits, size_t start_word,
748 size_t start_bit)
750 unsigned int offset_in_bits;
751 alloc_type alloc_word = alloc_bits[start_word];
753 /* Mask off any bits after the initial bit, but make sure to include
754 the initial bit in the result. Note that START_BIT is
755 0-based. */
756 if (start_bit < 8 * sizeof (alloc_type) - 1)
757 alloc_word &= (1 << (start_bit + 1)) - 1;
758 offset_in_bits = start_bit;
760 /* Search for the start of the object. */
761 while (alloc_word == 0 && start_word > 0)
763 alloc_word = alloc_bits[--start_word];
764 offset_in_bits += 8 * sizeof (alloc_type);
766 /* We must always find a set bit. */
767 gcc_assert (alloc_word != 0);
768 /* Note that the result of highest_bit is 1-based. */
769 offset_in_bits -= highest_bit (alloc_word) - 1;
771 return BYTES_PER_ALLOC_BIT * offset_in_bits;
774 /* Allocate the mark bits for every zone, and set the pointers on each
775 page. */
776 static void
777 zone_allocate_marks (void)
779 struct alloc_zone *zone;
781 for (zone = G.zones; zone; zone = zone->next_zone)
783 struct small_page_entry *page;
784 mark_type *cur_marks;
785 size_t mark_words, mark_words_per_page;
786 #ifdef ENABLE_CHECKING
787 size_t n = 0;
788 #endif
790 mark_words_per_page
791 = (GGC_PAGE_SIZE + BYTES_PER_MARK_WORD - 1) / BYTES_PER_MARK_WORD;
792 mark_words = zone->n_small_pages * mark_words_per_page;
793 zone->mark_bits = (mark_type *) xcalloc (sizeof (mark_type),
794 mark_words);
795 cur_marks = zone->mark_bits;
796 for (page = zone->pages; page; page = page->next)
798 page->mark_bits = cur_marks;
799 cur_marks += mark_words_per_page;
800 #ifdef ENABLE_CHECKING
801 n++;
802 #endif
804 #ifdef ENABLE_CHECKING
805 gcc_assert (n == zone->n_small_pages);
806 #endif
809 /* We don't collect the PCH zone, but we do have to mark it
810 (for now). */
811 if (pch_zone.bytes)
812 pch_zone.mark_bits
813 = (mark_type *) xcalloc (sizeof (mark_type),
814 CEIL (pch_zone.bytes, BYTES_PER_MARK_WORD));
817 /* After marking and sweeping, release the memory used for mark bits. */
818 static void
819 zone_free_marks (void)
821 struct alloc_zone *zone;
823 for (zone = G.zones; zone; zone = zone->next_zone)
824 if (zone->mark_bits)
826 free (zone->mark_bits);
827 zone->mark_bits = NULL;
830 if (pch_zone.bytes)
832 free (pch_zone.mark_bits);
833 pch_zone.mark_bits = NULL;
837 #ifdef USING_MMAP
838 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
839 (if non-null). The ifdef structure here is intended to cause a
840 compile error unless exactly one of the HAVE_* is defined. */
842 static inline char *
843 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, struct alloc_zone *zone)
845 #ifdef HAVE_MMAP_ANON
846 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
847 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
848 #endif
849 #ifdef HAVE_MMAP_DEV_ZERO
850 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
851 MAP_PRIVATE, G.dev_zero_fd, 0);
852 #endif
854 if (page == (char *) MAP_FAILED)
856 perror ("virtual memory exhausted");
857 exit (FATAL_EXIT_CODE);
860 /* Remember that we allocated this memory. */
861 zone->bytes_mapped += size;
863 /* Pretend we don't have access to the allocated pages. We'll enable
864 access to smaller pieces of the area in ggc_alloc. Discard the
865 handle to avoid handle leak. */
866 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
868 return page;
870 #endif
872 /* Allocate a new page for allocating small objects in ZONE, and
873 return an entry for it. */
875 static struct small_page_entry *
876 alloc_small_page (struct alloc_zone *zone)
878 struct small_page_entry *entry;
880 /* Check the list of free pages for one we can use. */
881 entry = zone->free_pages;
882 if (entry != NULL)
884 /* Recycle the allocated memory from this page ... */
885 zone->free_pages = entry->next;
887 else
889 /* We want just one page. Allocate a bunch of them and put the
890 extras on the freelist. (Can only do this optimization with
891 mmap for backing store.) */
892 struct small_page_entry *e, *f = zone->free_pages;
893 int i;
894 char *page;
896 page = alloc_anon (NULL, GGC_PAGE_SIZE * G.quire_size, zone);
898 /* This loop counts down so that the chain will be in ascending
899 memory order. */
900 for (i = G.quire_size - 1; i >= 1; i--)
902 e = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
903 e->common.page = page + (i << GGC_PAGE_SHIFT);
904 e->common.zone = zone;
905 e->next = f;
906 f = e;
907 set_page_table_entry (e->common.page, &e->common);
910 zone->free_pages = f;
912 entry = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
913 entry->common.page = page;
914 entry->common.zone = zone;
915 set_page_table_entry (page, &entry->common);
918 zone->n_small_pages++;
920 if (GGC_DEBUG_LEVEL >= 2)
921 fprintf (G.debug_file,
922 "Allocating %s page at %p, data %p-%p\n",
923 entry->common.zone->name, (PTR) entry, entry->common.page,
924 entry->common.page + SMALL_PAGE_SIZE - 1);
926 return entry;
929 /* Allocate a large page of size SIZE in ZONE. */
931 static struct large_page_entry *
932 alloc_large_page (size_t size, struct alloc_zone *zone)
934 struct large_page_entry *entry;
935 char *page;
936 size_t needed_size;
938 needed_size = size + sizeof (struct large_page_entry);
939 page = XNEWVAR (char, needed_size);
941 entry = (struct large_page_entry *) page;
943 entry->next = NULL;
944 entry->common.page = page + sizeof (struct large_page_entry);
945 entry->common.large_p = true;
946 entry->common.pch_p = false;
947 entry->common.zone = zone;
948 #ifdef GATHER_STATISTICS
949 entry->common.survived = 0;
950 #endif
951 entry->mark_p = false;
952 entry->bytes = size;
953 entry->prev = NULL;
955 set_page_table_entry (entry->common.page, &entry->common);
957 if (GGC_DEBUG_LEVEL >= 2)
958 fprintf (G.debug_file,
959 "Allocating %s large page at %p, data %p-%p\n",
960 entry->common.zone->name, (PTR) entry, entry->common.page,
961 entry->common.page + SMALL_PAGE_SIZE - 1);
963 return entry;
967 /* For a page that is no longer needed, put it on the free page list. */
969 static inline void
970 free_small_page (struct small_page_entry *entry)
972 if (GGC_DEBUG_LEVEL >= 2)
973 fprintf (G.debug_file,
974 "Deallocating %s page at %p, data %p-%p\n",
975 entry->common.zone->name, (PTR) entry,
976 entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
978 gcc_assert (!entry->common.large_p);
980 /* Mark the page as inaccessible. Discard the handle to
981 avoid handle leak. */
982 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->common.page,
983 SMALL_PAGE_SIZE));
985 entry->next = entry->common.zone->free_pages;
986 entry->common.zone->free_pages = entry;
987 entry->common.zone->n_small_pages--;
990 /* Release a large page that is no longer needed. */
992 static inline void
993 free_large_page (struct large_page_entry *entry)
995 if (GGC_DEBUG_LEVEL >= 2)
996 fprintf (G.debug_file,
997 "Deallocating %s page at %p, data %p-%p\n",
998 entry->common.zone->name, (PTR) entry,
999 entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
1001 gcc_assert (entry->common.large_p);
1003 set_page_table_entry (entry->common.page, NULL);
1004 free (entry);
1007 /* Release the free page cache to the system. */
1009 static void
1010 release_pages (struct alloc_zone *zone)
1012 #ifdef USING_MMAP
1013 struct small_page_entry *p, *next;
1014 char *start;
1015 size_t len;
1017 /* Gather up adjacent pages so they are unmapped together. */
1018 p = zone->free_pages;
1020 while (p)
1022 start = p->common.page;
1023 next = p->next;
1024 len = SMALL_PAGE_SIZE;
1025 set_page_table_entry (p->common.page, NULL);
1026 p = next;
1028 while (p && p->common.page == start + len)
1030 next = p->next;
1031 len += SMALL_PAGE_SIZE;
1032 set_page_table_entry (p->common.page, NULL);
1033 p = next;
1036 munmap (start, len);
1037 zone->bytes_mapped -= len;
1040 zone->free_pages = NULL;
1041 #endif
1044 /* Place the block at PTR of size SIZE on the free list for ZONE. */
1046 static inline void
1047 free_chunk (char *ptr, size_t size, struct alloc_zone *zone)
1049 struct alloc_chunk *chunk = (struct alloc_chunk *) ptr;
1050 size_t bin = 0;
1052 bin = SIZE_BIN_DOWN (size);
1053 gcc_assert (bin != 0);
1054 if (bin > NUM_FREE_BINS)
1056 bin = 0;
1057 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (chunk,
1058 sizeof (struct
1059 alloc_chunk)));
1060 chunk->size = size;
1061 chunk->next_free = zone->free_chunks[bin];
1062 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (ptr
1063 + sizeof (struct
1064 alloc_chunk),
1065 size
1066 - sizeof (struct
1067 alloc_chunk)));
1069 else
1071 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (chunk,
1072 sizeof (struct
1073 alloc_chunk *)));
1074 chunk->next_free = zone->free_chunks[bin];
1075 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (ptr
1076 + sizeof (struct
1077 alloc_chunk *),
1078 size
1079 - sizeof (struct
1080 alloc_chunk *)));
1083 zone->free_chunks[bin] = chunk;
1084 if (bin > zone->high_free_bin)
1085 zone->high_free_bin = bin;
1086 if (GGC_DEBUG_LEVEL >= 3)
1087 fprintf (G.debug_file, "Deallocating object, chunk=%p\n", (void *)chunk);
1090 /* Allocate a chunk of memory of at least ORIG_SIZE bytes, in ZONE. */
1092 void *
1093 ggc_alloc_zone_stat (size_t orig_size, struct alloc_zone *zone
1094 MEM_STAT_DECL)
1096 size_t bin;
1097 size_t csize;
1098 struct small_page_entry *entry;
1099 struct alloc_chunk *chunk, **pp;
1100 void *result;
1101 size_t size = orig_size;
1103 /* Make sure that zero-sized allocations get a unique and freeable
1104 pointer. */
1105 if (size == 0)
1106 size = MAX_ALIGNMENT;
1107 else
1108 size = (size + MAX_ALIGNMENT - 1) & -MAX_ALIGNMENT;
1110 /* Try to allocate the object from several different sources. Each
1111 of these cases is responsible for setting RESULT and SIZE to
1112 describe the allocated block, before jumping to FOUND. If a
1113 chunk is split, the allocate bit for the new chunk should also be
1114 set.
1116 Large objects are handled specially. However, they'll just fail
1117 the next couple of conditions, so we can wait to check for them
1118 below. The large object case is relatively rare (< 1%), so this
1119 is a win. */
1121 /* First try to split the last chunk we allocated. For best
1122 fragmentation behavior it would be better to look for a
1123 free bin of the appropriate size for a small object. However,
1124 we're unlikely (1% - 7%) to find one, and this gives better
1125 locality behavior anyway. This case handles the lion's share
1126 of all calls to this function. */
1127 if (size <= zone->cached_free_size)
1129 result = zone->cached_free;
1131 zone->cached_free_size -= size;
1132 if (zone->cached_free_size)
1134 zone->cached_free += size;
1135 zone_set_object_alloc_bit (zone->cached_free);
1138 goto found;
1141 /* Next, try to find a free bin of the exactly correct size. */
1143 /* We want to round SIZE up, rather than down, but we know it's
1144 already aligned to at least FREE_BIN_DELTA, so we can just
1145 shift. */
1146 bin = SIZE_BIN_DOWN (size);
1148 if (bin <= NUM_FREE_BINS
1149 && (chunk = zone->free_chunks[bin]) != NULL)
1151 /* We have a chunk of the right size. Pull it off the free list
1152 and use it. */
1154 zone->free_chunks[bin] = chunk->next_free;
1156 /* NOTE: SIZE is only guaranteed to be right if MAX_ALIGNMENT
1157 == FREE_BIN_DELTA. */
1158 result = chunk;
1160 /* The allocation bits are already set correctly. HIGH_FREE_BIN
1161 may now be wrong, if this was the last chunk in the high bin.
1162 Rather than fixing it up now, wait until we need to search
1163 the free bins. */
1165 goto found;
1168 /* Next, if there wasn't a chunk of the ideal size, look for a chunk
1169 to split. We can find one in the too-big bin, or in the largest
1170 sized bin with a chunk in it. Try the largest normal-sized bin
1171 first. */
1173 if (zone->high_free_bin > bin)
1175 /* Find the highest numbered free bin. It will be at or below
1176 the watermark. */
1177 while (zone->high_free_bin > bin
1178 && zone->free_chunks[zone->high_free_bin] == NULL)
1179 zone->high_free_bin--;
1181 if (zone->high_free_bin > bin)
1183 size_t tbin = zone->high_free_bin;
1184 chunk = zone->free_chunks[tbin];
1186 /* Remove the chunk from its previous bin. */
1187 zone->free_chunks[tbin] = chunk->next_free;
1189 result = (char *) chunk;
1191 /* Save the rest of the chunk for future allocation. */
1192 if (zone->cached_free_size)
1193 free_chunk (zone->cached_free, zone->cached_free_size, zone);
1195 chunk = (struct alloc_chunk *) ((char *) result + size);
1196 zone->cached_free = (char *) chunk;
1197 zone->cached_free_size = (tbin - bin) * FREE_BIN_DELTA;
1199 /* Mark the new free chunk as an object, so that we can
1200 find the size of the newly allocated object. */
1201 zone_set_object_alloc_bit (chunk);
1203 /* HIGH_FREE_BIN may now be wrong, if this was the last
1204 chunk in the high bin. Rather than fixing it up now,
1205 wait until we need to search the free bins. */
1207 goto found;
1211 /* Failing that, look through the "other" bucket for a chunk
1212 that is large enough. */
1213 pp = &(zone->free_chunks[0]);
1214 chunk = *pp;
1215 while (chunk && chunk->size < size)
1217 pp = &chunk->next_free;
1218 chunk = *pp;
1221 if (chunk)
1223 /* Remove the chunk from its previous bin. */
1224 *pp = chunk->next_free;
1226 result = (char *) chunk;
1228 /* Save the rest of the chunk for future allocation, if there's any
1229 left over. */
1230 csize = chunk->size;
1231 if (csize > size)
1233 if (zone->cached_free_size)
1234 free_chunk (zone->cached_free, zone->cached_free_size, zone);
1236 chunk = (struct alloc_chunk *) ((char *) result + size);
1237 zone->cached_free = (char *) chunk;
1238 zone->cached_free_size = csize - size;
1240 /* Mark the new free chunk as an object. */
1241 zone_set_object_alloc_bit (chunk);
1244 goto found;
1247 /* Handle large allocations. We could choose any threshold between
1248 GGC_PAGE_SIZE - sizeof (struct large_page_entry) and
1249 GGC_PAGE_SIZE. It can't be smaller, because then it wouldn't
1250 be guaranteed to have a unique entry in the lookup table. Large
1251 allocations will always fall through to here. */
1252 if (size > GGC_PAGE_SIZE)
1254 struct large_page_entry *entry = alloc_large_page (size, zone);
1256 #ifdef GATHER_STATISTICS
1257 entry->common.survived = 0;
1258 #endif
1260 entry->next = zone->large_pages;
1261 if (zone->large_pages)
1262 zone->large_pages->prev = entry;
1263 zone->large_pages = entry;
1265 result = entry->common.page;
1267 goto found;
1270 /* Failing everything above, allocate a new small page. */
1272 entry = alloc_small_page (zone);
1273 entry->next = zone->pages;
1274 zone->pages = entry;
1276 /* Mark the first chunk in the new page. */
1277 entry->alloc_bits[0] = 1;
1279 result = entry->common.page;
1280 if (size < SMALL_PAGE_SIZE)
1282 if (zone->cached_free_size)
1283 free_chunk (zone->cached_free, zone->cached_free_size, zone);
1285 zone->cached_free = (char *) result + size;
1286 zone->cached_free_size = SMALL_PAGE_SIZE - size;
1288 /* Mark the new free chunk as an object. */
1289 zone_set_object_alloc_bit (zone->cached_free);
1292 found:
1294 /* We could save TYPE in the chunk, but we don't use that for
1295 anything yet. If we wanted to, we could do it by adding it
1296 either before the beginning of the chunk or after its end,
1297 and adjusting the size and pointer appropriately. */
1299 /* We'll probably write to this after we return. */
1300 prefetchw (result);
1302 #ifdef ENABLE_GC_CHECKING
1303 /* `Poison' the entire allocated object. */
1304 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1305 memset (result, 0xaf, size);
1306 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (result + orig_size,
1307 size - orig_size));
1308 #endif
1310 /* Tell Valgrind that the memory is there, but its content isn't
1311 defined. The bytes at the end of the object are still marked
1312 unaccessible. */
1313 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, orig_size));
1315 /* Keep track of how many bytes are being allocated. This
1316 information is used in deciding when to collect. */
1317 zone->allocated += size;
1319 timevar_ggc_mem_total += size;
1321 #ifdef GATHER_STATISTICS
1322 ggc_record_overhead (orig_size, size - orig_size, result PASS_MEM_STAT);
1325 size_t object_size = size;
1326 size_t overhead = object_size - orig_size;
1328 zone->stats.total_overhead += overhead;
1329 zone->stats.total_allocated += object_size;
1331 if (orig_size <= 32)
1333 zone->stats.total_overhead_under32 += overhead;
1334 zone->stats.total_allocated_under32 += object_size;
1336 if (orig_size <= 64)
1338 zone->stats.total_overhead_under64 += overhead;
1339 zone->stats.total_allocated_under64 += object_size;
1341 if (orig_size <= 128)
1343 zone->stats.total_overhead_under128 += overhead;
1344 zone->stats.total_allocated_under128 += object_size;
1347 #endif
1349 if (GGC_DEBUG_LEVEL >= 3)
1350 fprintf (G.debug_file, "Allocating object, size=%lu at %p\n",
1351 (unsigned long) size, result);
1353 return result;
1356 /* Allocate a SIZE of chunk memory of GTE type, into an appropriate zone
1357 for that type. */
1359 void *
1360 ggc_alloc_typed_stat (enum gt_types_enum gte, size_t size
1361 MEM_STAT_DECL)
1363 switch (gte)
1365 case gt_ggc_e_14lang_tree_node:
1366 return ggc_alloc_zone_pass_stat (size, &tree_zone);
1368 case gt_ggc_e_7rtx_def:
1369 return ggc_alloc_zone_pass_stat (size, &rtl_zone);
1371 case gt_ggc_e_9rtvec_def:
1372 return ggc_alloc_zone_pass_stat (size, &rtl_zone);
1374 default:
1375 return ggc_alloc_zone_pass_stat (size, &main_zone);
1379 /* Normal ggc_alloc simply allocates into the main zone. */
1381 void *
1382 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1384 return ggc_alloc_zone_pass_stat (size, &main_zone);
1387 /* Poison the chunk. */
1388 #ifdef ENABLE_GC_CHECKING
1389 #define poison_region(PTR, SIZE) \
1390 memset ((PTR), 0xa5, (SIZE))
1391 #else
1392 #define poison_region(PTR, SIZE)
1393 #endif
1395 /* Free the object at P. */
1397 void
1398 ggc_free (void *p)
1400 struct page_entry *page;
1402 #ifdef GATHER_STATISTICS
1403 ggc_free_overhead (p);
1404 #endif
1406 poison_region (p, ggc_get_size (p));
1408 page = zone_get_object_page (p);
1410 if (page->large_p)
1412 struct large_page_entry *large_page
1413 = (struct large_page_entry *) page;
1415 /* Remove the page from the linked list. */
1416 if (large_page->prev)
1417 large_page->prev->next = large_page->next;
1418 else
1420 gcc_assert (large_page->common.zone->large_pages == large_page);
1421 large_page->common.zone->large_pages = large_page->next;
1423 if (large_page->next)
1424 large_page->next->prev = large_page->prev;
1426 large_page->common.zone->allocated -= large_page->bytes;
1428 /* Release the memory associated with this object. */
1429 free_large_page (large_page);
1431 else if (page->pch_p)
1432 /* Don't do anything. We won't allocate a new object from the
1433 PCH zone so there's no point in releasing anything. */
1435 else
1437 size_t size = ggc_get_size (p);
1439 page->zone->allocated -= size;
1441 /* Add the chunk to the free list. We don't bother with coalescing,
1442 since we are likely to want a chunk of this size again. */
1443 free_chunk ((char *)p, size, page->zone);
1447 /* Mark function for strings. */
1449 void
1450 gt_ggc_m_S (const void *p)
1452 page_entry *entry;
1453 unsigned long offset;
1455 if (!p)
1456 return;
1458 /* Look up the page on which the object is alloced. . */
1459 entry = lookup_page_table_if_allocated (p);
1460 if (! entry)
1461 return;
1463 if (entry->pch_p)
1465 size_t alloc_word, alloc_bit, t;
1466 t = ((const char *) p - pch_zone.page) / BYTES_PER_ALLOC_BIT;
1467 alloc_word = t / (8 * sizeof (alloc_type));
1468 alloc_bit = t % (8 * sizeof (alloc_type));
1469 offset = zone_find_object_offset (pch_zone.alloc_bits, alloc_word,
1470 alloc_bit);
1472 else if (entry->large_p)
1474 struct large_page_entry *le = (struct large_page_entry *) entry;
1475 offset = ((const char *) p) - entry->page;
1476 gcc_assert (offset < le->bytes);
1478 else
1480 struct small_page_entry *se = (struct small_page_entry *) entry;
1481 unsigned int start_word = zone_get_object_alloc_word (p);
1482 unsigned int start_bit = zone_get_object_alloc_bit (p);
1483 offset = zone_find_object_offset (se->alloc_bits, start_word, start_bit);
1485 /* On some platforms a char* will not necessarily line up on an
1486 allocation boundary, so we have to update the offset to
1487 account for the leftover bytes. */
1488 offset += (size_t) p % BYTES_PER_ALLOC_BIT;
1491 if (offset)
1493 /* Here we've seen a char* which does not point to the beginning
1494 of an allocated object. We assume it points to the middle of
1495 a STRING_CST. */
1496 gcc_assert (offset == offsetof (struct tree_string, str));
1497 p = ((const char *) p) - offset;
1498 gt_ggc_mx_lang_tree_node (CONST_CAST(void *, p));
1499 return;
1502 /* Inefficient, but also unlikely to matter. */
1503 ggc_set_mark (p);
1506 /* If P is not marked, mark it and return false. Otherwise return true.
1507 P must have been allocated by the GC allocator; it mustn't point to
1508 static objects, stack variables, or memory allocated with malloc. */
1511 ggc_set_mark (const void *p)
1513 struct page_entry *page;
1514 const char *ptr = (const char *) p;
1516 page = zone_get_object_page (p);
1518 if (page->pch_p)
1520 size_t mark_word, mark_bit, offset;
1521 offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
1522 mark_word = offset / (8 * sizeof (mark_type));
1523 mark_bit = offset % (8 * sizeof (mark_type));
1525 if (pch_zone.mark_bits[mark_word] & (1 << mark_bit))
1526 return 1;
1527 pch_zone.mark_bits[mark_word] |= (1 << mark_bit);
1529 else if (page->large_p)
1531 struct large_page_entry *large_page
1532 = (struct large_page_entry *) page;
1534 if (large_page->mark_p)
1535 return 1;
1536 large_page->mark_p = true;
1538 else
1540 struct small_page_entry *small_page
1541 = (struct small_page_entry *) page;
1543 if (small_page->mark_bits[zone_get_object_mark_word (p)]
1544 & (1 << zone_get_object_mark_bit (p)))
1545 return 1;
1546 small_page->mark_bits[zone_get_object_mark_word (p)]
1547 |= (1 << zone_get_object_mark_bit (p));
1550 if (GGC_DEBUG_LEVEL >= 4)
1551 fprintf (G.debug_file, "Marking %p\n", p);
1553 return 0;
1556 /* Return 1 if P has been marked, zero otherwise.
1557 P must have been allocated by the GC allocator; it mustn't point to
1558 static objects, stack variables, or memory allocated with malloc. */
1561 ggc_marked_p (const void *p)
1563 struct page_entry *page;
1564 const char *ptr = (const char *) p;
1566 page = zone_get_object_page (p);
1568 if (page->pch_p)
1570 size_t mark_word, mark_bit, offset;
1571 offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
1572 mark_word = offset / (8 * sizeof (mark_type));
1573 mark_bit = offset % (8 * sizeof (mark_type));
1575 return (pch_zone.mark_bits[mark_word] & (1 << mark_bit)) != 0;
1578 if (page->large_p)
1580 struct large_page_entry *large_page
1581 = (struct large_page_entry *) page;
1583 return large_page->mark_p;
1585 else
1587 struct small_page_entry *small_page
1588 = (struct small_page_entry *) page;
1590 return 0 != (small_page->mark_bits[zone_get_object_mark_word (p)]
1591 & (1 << zone_get_object_mark_bit (p)));
1595 /* Return the size of the gc-able object P. */
1597 size_t
1598 ggc_get_size (const void *p)
1600 struct page_entry *page;
1601 const char *ptr = (const char *) p;
1603 page = zone_get_object_page (p);
1605 if (page->pch_p)
1607 size_t alloc_word, alloc_bit, offset, max_size;
1608 offset = (ptr - pch_zone.page) / BYTES_PER_ALLOC_BIT + 1;
1609 alloc_word = offset / (8 * sizeof (alloc_type));
1610 alloc_bit = offset % (8 * sizeof (alloc_type));
1611 max_size = pch_zone.bytes - (ptr - pch_zone.page);
1612 return zone_object_size_1 (pch_zone.alloc_bits, alloc_word, alloc_bit,
1613 max_size);
1616 if (page->large_p)
1617 return ((struct large_page_entry *)page)->bytes;
1618 else
1619 return zone_find_object_size ((struct small_page_entry *) page, p);
1622 /* Initialize the ggc-zone-mmap allocator. */
1623 void
1624 init_ggc (void)
1626 /* The allocation size must be greater than BYTES_PER_MARK_BIT, and
1627 a multiple of both BYTES_PER_ALLOC_BIT and FREE_BIN_DELTA, for
1628 the current assumptions to hold. */
1630 gcc_assert (FREE_BIN_DELTA == MAX_ALIGNMENT);
1632 /* Set up the main zone by hand. */
1633 main_zone.name = "Main zone";
1634 G.zones = &main_zone;
1636 /* Allocate the default zones. */
1637 new_ggc_zone_1 (&rtl_zone, "RTL zone");
1638 new_ggc_zone_1 (&tree_zone, "Tree zone");
1639 new_ggc_zone_1 (&tree_id_zone, "Tree identifier zone");
1641 G.pagesize = getpagesize();
1642 G.lg_pagesize = exact_log2 (G.pagesize);
1643 G.page_mask = ~(G.pagesize - 1);
1645 /* Require the system page size to be a multiple of GGC_PAGE_SIZE. */
1646 gcc_assert ((G.pagesize & (GGC_PAGE_SIZE - 1)) == 0);
1648 /* Allocate 16 system pages at a time. */
1649 G.quire_size = 16 * G.pagesize / GGC_PAGE_SIZE;
1651 /* Calculate the size of the allocation bitmap and other overhead. */
1652 /* Right now we allocate bits for the page header and bitmap. These
1653 are wasted, but a little tricky to eliminate. */
1654 G.small_page_overhead
1655 = PAGE_OVERHEAD + (GGC_PAGE_SIZE / BYTES_PER_ALLOC_BIT / 8);
1656 /* G.small_page_overhead = ROUND_UP (G.small_page_overhead, MAX_ALIGNMENT); */
1658 #ifdef HAVE_MMAP_DEV_ZERO
1659 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1660 gcc_assert (G.dev_zero_fd != -1);
1661 #endif
1663 #if 0
1664 G.debug_file = fopen ("ggc-mmap.debug", "w");
1665 setlinebuf (G.debug_file);
1666 #else
1667 G.debug_file = stdout;
1668 #endif
1670 #ifdef USING_MMAP
1671 /* StunOS has an amazing off-by-one error for the first mmap allocation
1672 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1673 believe, is an unaligned page allocation, which would cause us to
1674 hork badly if we tried to use it. */
1676 char *p = alloc_anon (NULL, G.pagesize, &main_zone);
1677 struct small_page_entry *e;
1678 if ((size_t)p & (G.pagesize - 1))
1680 /* How losing. Discard this one and try another. If we still
1681 can't get something useful, give up. */
1683 p = alloc_anon (NULL, G.pagesize, &main_zone);
1684 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1687 if (GGC_PAGE_SIZE == G.pagesize)
1689 /* We have a good page, might as well hold onto it... */
1690 e = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
1691 e->common.page = p;
1692 e->common.zone = &main_zone;
1693 e->next = main_zone.free_pages;
1694 set_page_table_entry (e->common.page, &e->common);
1695 main_zone.free_pages = e;
1697 else
1699 munmap (p, G.pagesize);
1702 #endif
1705 /* Start a new GGC zone. */
1707 static void
1708 new_ggc_zone_1 (struct alloc_zone *new_zone, const char * name)
1710 new_zone->name = name;
1711 new_zone->next_zone = G.zones->next_zone;
1712 G.zones->next_zone = new_zone;
1715 struct alloc_zone *
1716 new_ggc_zone (const char * name)
1718 struct alloc_zone *new_zone = XCNEW (struct alloc_zone);
1719 new_ggc_zone_1 (new_zone, name);
1720 return new_zone;
1723 /* Destroy a GGC zone. */
1724 void
1725 destroy_ggc_zone (struct alloc_zone * dead_zone)
1727 struct alloc_zone *z;
1729 for (z = G.zones; z && z->next_zone != dead_zone; z = z->next_zone)
1730 /* Just find that zone. */
1731 continue;
1733 /* We should have found the zone in the list. Anything else is fatal. */
1734 gcc_assert (z);
1736 /* z is dead, baby. z is dead. */
1737 z->dead = true;
1740 /* Free all empty pages and objects within a page for a given zone */
1742 static void
1743 sweep_pages (struct alloc_zone *zone)
1745 struct large_page_entry **lpp, *lp, *lnext;
1746 struct small_page_entry **spp, *sp, *snext;
1747 char *last_free;
1748 size_t allocated = 0;
1749 bool nomarksinpage;
1751 /* First, reset the free_chunks lists, since we are going to
1752 re-free free chunks in hopes of coalescing them into large chunks. */
1753 memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
1754 zone->high_free_bin = 0;
1755 zone->cached_free = NULL;
1756 zone->cached_free_size = 0;
1758 /* Large pages are all or none affairs. Either they are completely
1759 empty, or they are completely full. */
1760 lpp = &zone->large_pages;
1761 for (lp = zone->large_pages; lp != NULL; lp = lnext)
1763 gcc_assert (lp->common.large_p);
1765 lnext = lp->next;
1767 #ifdef GATHER_STATISTICS
1768 /* This page has now survived another collection. */
1769 lp->common.survived++;
1770 #endif
1772 if (lp->mark_p)
1774 lp->mark_p = false;
1775 allocated += lp->bytes;
1776 lpp = &lp->next;
1778 else
1780 *lpp = lnext;
1781 #ifdef ENABLE_GC_CHECKING
1782 /* Poison the page. */
1783 memset (lp->common.page, 0xb5, SMALL_PAGE_SIZE);
1784 #endif
1785 if (lp->prev)
1786 lp->prev->next = lp->next;
1787 if (lp->next)
1788 lp->next->prev = lp->prev;
1789 free_large_page (lp);
1793 spp = &zone->pages;
1794 for (sp = zone->pages; sp != NULL; sp = snext)
1796 char *object, *last_object;
1797 char *end;
1798 alloc_type *alloc_word_p;
1799 mark_type *mark_word_p;
1801 gcc_assert (!sp->common.large_p);
1803 snext = sp->next;
1805 #ifdef GATHER_STATISTICS
1806 /* This page has now survived another collection. */
1807 sp->common.survived++;
1808 #endif
1810 /* Step through all chunks, consolidate those that are free and
1811 insert them into the free lists. Note that consolidation
1812 slows down collection slightly. */
1814 last_object = object = sp->common.page;
1815 end = sp->common.page + SMALL_PAGE_SIZE;
1816 last_free = NULL;
1817 nomarksinpage = true;
1818 mark_word_p = sp->mark_bits;
1819 alloc_word_p = sp->alloc_bits;
1821 gcc_assert (BYTES_PER_ALLOC_BIT == BYTES_PER_MARK_BIT);
1823 object = sp->common.page;
1826 unsigned int i, n;
1827 alloc_type alloc_word;
1828 mark_type mark_word;
1830 alloc_word = *alloc_word_p++;
1831 mark_word = *mark_word_p++;
1833 if (mark_word)
1834 nomarksinpage = false;
1836 /* There ought to be some way to do this without looping... */
1837 i = 0;
1838 while ((n = alloc_ffs (alloc_word)) != 0)
1840 /* Extend the current state for n - 1 bits. We can't
1841 shift alloc_word by n, even though it isn't used in the
1842 loop, in case only the highest bit was set. */
1843 alloc_word >>= n - 1;
1844 mark_word >>= n - 1;
1845 object += BYTES_PER_MARK_BIT * (n - 1);
1847 if (mark_word & 1)
1849 if (last_free)
1851 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (last_free,
1852 object
1853 - last_free));
1854 poison_region (last_free, object - last_free);
1855 free_chunk (last_free, object - last_free, zone);
1856 last_free = NULL;
1858 else
1859 allocated += object - last_object;
1860 last_object = object;
1862 else
1864 if (last_free == NULL)
1866 last_free = object;
1867 allocated += object - last_object;
1869 else
1870 zone_clear_object_alloc_bit (sp, object);
1873 /* Shift to just after the alloc bit we handled. */
1874 alloc_word >>= 1;
1875 mark_word >>= 1;
1876 object += BYTES_PER_MARK_BIT;
1878 i += n;
1881 object += BYTES_PER_MARK_BIT * (8 * sizeof (alloc_type) - i);
1883 while (object < end);
1885 if (nomarksinpage)
1887 *spp = snext;
1888 #ifdef ENABLE_GC_CHECKING
1889 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (sp->common.page,
1890 SMALL_PAGE_SIZE));
1891 /* Poison the page. */
1892 memset (sp->common.page, 0xb5, SMALL_PAGE_SIZE);
1893 #endif
1894 free_small_page (sp);
1895 continue;
1897 else if (last_free)
1899 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (last_free,
1900 object - last_free));
1901 poison_region (last_free, object - last_free);
1902 free_chunk (last_free, object - last_free, zone);
1904 else
1905 allocated += object - last_object;
1907 spp = &sp->next;
1910 zone->allocated = allocated;
1913 /* mark-and-sweep routine for collecting a single zone. NEED_MARKING
1914 is true if we need to mark before sweeping, false if some other
1915 zone collection has already performed marking for us. Returns true
1916 if we collected, false otherwise. */
1918 static bool
1919 ggc_collect_1 (struct alloc_zone *zone, bool need_marking)
1921 #if 0
1922 /* */
1924 int i;
1925 for (i = 0; i < NUM_FREE_BINS + 1; i++)
1927 struct alloc_chunk *chunk;
1928 int n, tot;
1930 n = 0;
1931 tot = 0;
1932 chunk = zone->free_chunks[i];
1933 while (chunk)
1935 n++;
1936 tot += chunk->size;
1937 chunk = chunk->next_free;
1939 fprintf (stderr, "Bin %d: %d free chunks (%d bytes)\n",
1940 i, n, tot);
1943 /* */
1944 #endif
1946 if (!quiet_flag)
1947 fprintf (stderr, " {%s GC %luk -> ",
1948 zone->name, (unsigned long) zone->allocated / 1024);
1950 /* Zero the total allocated bytes. This will be recalculated in the
1951 sweep phase. */
1952 zone->allocated = 0;
1954 /* Release the pages we freed the last time we collected, but didn't
1955 reuse in the interim. */
1956 release_pages (zone);
1958 if (need_marking)
1960 zone_allocate_marks ();
1961 ggc_mark_roots ();
1962 #ifdef GATHER_STATISTICS
1963 ggc_prune_overhead_list ();
1964 #endif
1967 sweep_pages (zone);
1968 zone->was_collected = true;
1969 zone->allocated_last_gc = zone->allocated;
1971 if (!quiet_flag)
1972 fprintf (stderr, "%luk}", (unsigned long) zone->allocated / 1024);
1973 return true;
1976 #ifdef GATHER_STATISTICS
1977 /* Calculate the average page survival rate in terms of number of
1978 collections. */
1980 static float
1981 calculate_average_page_survival (struct alloc_zone *zone)
1983 float count = 0.0;
1984 float survival = 0.0;
1985 struct small_page_entry *p;
1986 struct large_page_entry *lp;
1987 for (p = zone->pages; p; p = p->next)
1989 count += 1.0;
1990 survival += p->common.survived;
1992 for (lp = zone->large_pages; lp; lp = lp->next)
1994 count += 1.0;
1995 survival += lp->common.survived;
1997 return survival/count;
1999 #endif
2001 /* Top level collection routine. */
2003 void
2004 ggc_collect (void)
2006 struct alloc_zone *zone;
2007 bool marked = false;
2009 timevar_push (TV_GC);
2011 if (!ggc_force_collect)
2013 float allocated_last_gc = 0, allocated = 0, min_expand;
2015 for (zone = G.zones; zone; zone = zone->next_zone)
2017 allocated_last_gc += zone->allocated_last_gc;
2018 allocated += zone->allocated;
2021 allocated_last_gc =
2022 MAX (allocated_last_gc,
2023 (size_t) PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2024 min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2026 if (allocated < allocated_last_gc + min_expand)
2028 timevar_pop (TV_GC);
2029 return;
2033 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2035 /* Start by possibly collecting the main zone. */
2036 main_zone.was_collected = false;
2037 marked |= ggc_collect_1 (&main_zone, true);
2039 /* In order to keep the number of collections down, we don't
2040 collect other zones unless we are collecting the main zone. This
2041 gives us roughly the same number of collections as we used to
2042 have with the old gc. The number of collection is important
2043 because our main slowdown (according to profiling) is now in
2044 marking. So if we mark twice as often as we used to, we'll be
2045 twice as slow. Hopefully we'll avoid this cost when we mark
2046 zone-at-a-time. */
2047 /* NOTE drow/2004-07-28: We now always collect the main zone, but
2048 keep this code in case the heuristics are further refined. */
2050 if (main_zone.was_collected)
2052 struct alloc_zone *zone;
2054 for (zone = main_zone.next_zone; zone; zone = zone->next_zone)
2056 zone->was_collected = false;
2057 marked |= ggc_collect_1 (zone, !marked);
2061 #ifdef GATHER_STATISTICS
2062 /* Print page survival stats, if someone wants them. */
2063 if (GGC_DEBUG_LEVEL >= 2)
2065 for (zone = G.zones; zone; zone = zone->next_zone)
2067 if (zone->was_collected)
2069 float f = calculate_average_page_survival (zone);
2070 printf ("Average page survival in zone `%s' is %f\n",
2071 zone->name, f);
2075 #endif
2077 if (marked)
2078 zone_free_marks ();
2080 /* Free dead zones. */
2081 for (zone = G.zones; zone && zone->next_zone; zone = zone->next_zone)
2083 if (zone->next_zone->dead)
2085 struct alloc_zone *dead_zone = zone->next_zone;
2087 printf ("Zone `%s' is dead and will be freed.\n", dead_zone->name);
2089 /* The zone must be empty. */
2090 gcc_assert (!dead_zone->allocated);
2092 /* Unchain the dead zone, release all its pages and free it. */
2093 zone->next_zone = zone->next_zone->next_zone;
2094 release_pages (dead_zone);
2095 free (dead_zone);
2099 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2101 timevar_pop (TV_GC);
2104 /* Print allocation statistics. */
2105 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2106 ? (x) \
2107 : ((x) < 1024*1024*10 \
2108 ? (x) / 1024 \
2109 : (x) / (1024*1024))))
2110 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2112 void
2113 ggc_print_statistics (void)
2115 struct alloc_zone *zone;
2116 struct ggc_statistics stats;
2117 size_t total_overhead = 0, total_allocated = 0, total_bytes_mapped = 0;
2118 size_t pte_overhead, i;
2120 /* Clear the statistics. */
2121 memset (&stats, 0, sizeof (stats));
2123 /* Make sure collection will really occur. */
2124 ggc_force_collect = true;
2126 /* Collect and print the statistics common across collectors. */
2127 ggc_print_common_statistics (stderr, &stats);
2129 ggc_force_collect = false;
2131 /* Release free pages so that we will not count the bytes allocated
2132 there as part of the total allocated memory. */
2133 for (zone = G.zones; zone; zone = zone->next_zone)
2134 release_pages (zone);
2136 /* Collect some information about the various sizes of
2137 allocation. */
2138 fprintf (stderr,
2139 "Memory still allocated at the end of the compilation process\n");
2141 fprintf (stderr, "%20s %10s %10s %10s\n",
2142 "Zone", "Allocated", "Used", "Overhead");
2143 for (zone = G.zones; zone; zone = zone->next_zone)
2145 struct large_page_entry *large_page;
2146 size_t overhead, allocated, in_use;
2148 /* Skip empty zones. */
2149 if (!zone->pages && !zone->large_pages)
2150 continue;
2152 allocated = in_use = 0;
2154 overhead = sizeof (struct alloc_zone);
2156 for (large_page = zone->large_pages; large_page != NULL;
2157 large_page = large_page->next)
2159 allocated += large_page->bytes;
2160 in_use += large_page->bytes;
2161 overhead += sizeof (struct large_page_entry);
2164 /* There's no easy way to walk through the small pages finding
2165 used and unused objects. Instead, add all the pages, and
2166 subtract out the free list. */
2168 allocated += GGC_PAGE_SIZE * zone->n_small_pages;
2169 in_use += GGC_PAGE_SIZE * zone->n_small_pages;
2170 overhead += G.small_page_overhead * zone->n_small_pages;
2172 for (i = 0; i <= NUM_FREE_BINS; i++)
2174 struct alloc_chunk *chunk = zone->free_chunks[i];
2175 while (chunk)
2177 in_use -= ggc_get_size (chunk);
2178 chunk = chunk->next_free;
2182 fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n",
2183 zone->name,
2184 SCALE (allocated), LABEL (allocated),
2185 SCALE (in_use), LABEL (in_use),
2186 SCALE (overhead), LABEL (overhead));
2188 gcc_assert (in_use == zone->allocated);
2190 total_overhead += overhead;
2191 total_allocated += zone->allocated;
2192 total_bytes_mapped += zone->bytes_mapped;
2195 /* Count the size of the page table as best we can. */
2196 #if HOST_BITS_PER_PTR <= 32
2197 pte_overhead = sizeof (G.lookup);
2198 for (i = 0; i < PAGE_L1_SIZE; i++)
2199 if (G.lookup[i])
2200 pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
2201 #else
2203 page_table table = G.lookup;
2204 pte_overhead = 0;
2205 while (table)
2207 pte_overhead += sizeof (*table);
2208 for (i = 0; i < PAGE_L1_SIZE; i++)
2209 if (table->table[i])
2210 pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
2211 table = table->next;
2214 #endif
2215 fprintf (stderr, "%20s %11s %11s %10lu%c\n", "Page Table",
2216 "", "", SCALE (pte_overhead), LABEL (pte_overhead));
2217 total_overhead += pte_overhead;
2219 fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n", "Total",
2220 SCALE (total_bytes_mapped), LABEL (total_bytes_mapped),
2221 SCALE (total_allocated), LABEL(total_allocated),
2222 SCALE (total_overhead), LABEL (total_overhead));
2224 #ifdef GATHER_STATISTICS
2226 unsigned long long all_overhead = 0, all_allocated = 0;
2227 unsigned long long all_overhead_under32 = 0, all_allocated_under32 = 0;
2228 unsigned long long all_overhead_under64 = 0, all_allocated_under64 = 0;
2229 unsigned long long all_overhead_under128 = 0, all_allocated_under128 = 0;
2231 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2233 for (zone = G.zones; zone; zone = zone->next_zone)
2235 all_overhead += zone->stats.total_overhead;
2236 all_allocated += zone->stats.total_allocated;
2238 all_allocated_under32 += zone->stats.total_allocated_under32;
2239 all_overhead_under32 += zone->stats.total_overhead_under32;
2241 all_allocated_under64 += zone->stats.total_allocated_under64;
2242 all_overhead_under64 += zone->stats.total_overhead_under64;
2244 all_allocated_under128 += zone->stats.total_allocated_under128;
2245 all_overhead_under128 += zone->stats.total_overhead_under128;
2247 fprintf (stderr, "%20s: %10lld\n",
2248 zone->name, zone->stats.total_allocated);
2251 fprintf (stderr, "\n");
2253 fprintf (stderr, "Total Overhead: %10lld\n",
2254 all_overhead);
2255 fprintf (stderr, "Total Allocated: %10lld\n",
2256 all_allocated);
2258 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2259 all_overhead_under32);
2260 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2261 all_allocated_under32);
2262 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2263 all_overhead_under64);
2264 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2265 all_allocated_under64);
2266 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2267 all_overhead_under128);
2268 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2269 all_allocated_under128);
2271 #endif
2274 /* Precompiled header support. */
2276 /* For precompiled headers, we sort objects based on their type. We
2277 also sort various objects into their own buckets; currently this
2278 covers strings and IDENTIFIER_NODE trees. The choices of how
2279 to sort buckets have not yet been tuned. */
2281 #define NUM_PCH_BUCKETS (gt_types_enum_last + 3)
2283 #define OTHER_BUCKET (gt_types_enum_last + 0)
2284 #define IDENTIFIER_BUCKET (gt_types_enum_last + 1)
2285 #define STRING_BUCKET (gt_types_enum_last + 2)
2287 struct ggc_pch_ondisk
2289 size_t total;
2290 size_t type_totals[NUM_PCH_BUCKETS];
2293 struct ggc_pch_data
2295 struct ggc_pch_ondisk d;
2296 size_t base;
2297 size_t orig_base;
2298 size_t alloc_size;
2299 alloc_type *alloc_bits;
2300 size_t type_bases[NUM_PCH_BUCKETS];
2301 size_t start_offset;
2304 /* Initialize the PCH data structure. */
2306 struct ggc_pch_data *
2307 init_ggc_pch (void)
2309 return XCNEW (struct ggc_pch_data);
2312 /* Return which of the page-aligned buckets the object at X, with type
2313 TYPE, should be sorted into in the PCH. Strings will have
2314 IS_STRING set and TYPE will be gt_types_enum_last. Other objects
2315 of unknown type will also have TYPE equal to gt_types_enum_last. */
2317 static int
2318 pch_bucket (void *x, enum gt_types_enum type,
2319 bool is_string)
2321 /* Sort identifiers into their own bucket, to improve locality
2322 when searching the identifier hash table. */
2323 if (type == gt_ggc_e_14lang_tree_node
2324 && TREE_CODE ((tree) x) == IDENTIFIER_NODE)
2325 return IDENTIFIER_BUCKET;
2326 else if (type == gt_types_enum_last)
2328 if (is_string)
2329 return STRING_BUCKET;
2330 return OTHER_BUCKET;
2332 return type;
2335 /* Add the size of object X to the size of the PCH data. */
2337 void
2338 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2339 size_t size, bool is_string, enum gt_types_enum type)
2341 /* NOTE: Right now we don't need to align up the size of any objects.
2342 Strings can be unaligned, and everything else is allocated to a
2343 MAX_ALIGNMENT boundary already. */
2345 d->d.type_totals[pch_bucket (x, type, is_string)] += size;
2348 /* Return the total size of the PCH data. */
2350 size_t
2351 ggc_pch_total_size (struct ggc_pch_data *d)
2353 enum gt_types_enum i;
2354 size_t alloc_size, total_size;
2356 total_size = 0;
2357 for (i = 0; i < NUM_PCH_BUCKETS; i++)
2359 d->d.type_totals[i] = ROUND_UP (d->d.type_totals[i], GGC_PAGE_SIZE);
2360 total_size += d->d.type_totals[i];
2362 d->d.total = total_size;
2364 /* Include the size of the allocation bitmap. */
2365 alloc_size = CEIL (d->d.total, BYTES_PER_ALLOC_BIT * 8);
2366 alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
2367 d->alloc_size = alloc_size;
2369 return d->d.total + alloc_size;
2372 /* Set the base address for the objects in the PCH file. */
2374 void
2375 ggc_pch_this_base (struct ggc_pch_data *d, void *base_)
2377 int i;
2378 size_t base = (size_t) base_;
2380 d->base = d->orig_base = base;
2381 for (i = 0; i < NUM_PCH_BUCKETS; i++)
2383 d->type_bases[i] = base;
2384 base += d->d.type_totals[i];
2387 if (d->alloc_bits == NULL)
2388 d->alloc_bits = XCNEWVAR (alloc_type, d->alloc_size);
2391 /* Allocate a place for object X of size SIZE in the PCH file. */
2393 char *
2394 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x,
2395 size_t size, bool is_string,
2396 enum gt_types_enum type)
2398 size_t alloc_word, alloc_bit;
2399 char *result;
2400 int bucket = pch_bucket (x, type, is_string);
2402 /* Record the start of the object in the allocation bitmap. We
2403 can't assert that the allocation bit is previously clear, because
2404 strings may violate the invariant that they are at least
2405 BYTES_PER_ALLOC_BIT long. This is harmless - ggc_get_size
2406 should not be called for strings. */
2407 alloc_word = ((d->type_bases[bucket] - d->orig_base)
2408 / (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
2409 alloc_bit = ((d->type_bases[bucket] - d->orig_base)
2410 / BYTES_PER_ALLOC_BIT) % (8 * sizeof (alloc_type));
2411 d->alloc_bits[alloc_word] |= 1L << alloc_bit;
2413 /* Place the object at the current pointer for this bucket. */
2414 result = (char *) d->type_bases[bucket];
2415 d->type_bases[bucket] += size;
2416 return result;
2419 /* Prepare to write out the PCH data to file F. */
2421 void
2422 ggc_pch_prepare_write (struct ggc_pch_data *d,
2423 FILE *f)
2425 /* We seek around a lot while writing. Record where the end
2426 of the padding in the PCH file is, so that we can
2427 locate each object's offset. */
2428 d->start_offset = ftell (f);
2431 /* Write out object X of SIZE to file F. */
2433 void
2434 ggc_pch_write_object (struct ggc_pch_data *d,
2435 FILE *f, void *x, void *newx,
2436 size_t size, bool is_string ATTRIBUTE_UNUSED)
2438 if (fseek (f, (size_t) newx - d->orig_base + d->start_offset, SEEK_SET) != 0)
2439 fatal_error ("can't seek PCH file: %m");
2441 if (fwrite (x, size, 1, f) != 1)
2442 fatal_error ("can't write PCH file: %m");
2445 void
2446 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2448 /* Write out the allocation bitmap. */
2449 if (fseek (f, d->start_offset + d->d.total, SEEK_SET) != 0)
2450 fatal_error ("can't seek PCH file: %m");
2452 if (fwrite (d->alloc_bits, d->alloc_size, 1, f) != 1)
2453 fatal_error ("can't write PCH file: %m");
2455 /* Done with the PCH, so write out our footer. */
2456 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2457 fatal_error ("can't write PCH file: %m");
2459 free (d->alloc_bits);
2460 free (d);
2463 /* The PCH file from F has been mapped at ADDR. Read in any
2464 additional data from the file and set up the GC state. */
2466 void
2467 ggc_pch_read (FILE *f, void *addr)
2469 struct ggc_pch_ondisk d;
2470 size_t alloc_size;
2471 struct alloc_zone *zone;
2472 struct page_entry *pch_page;
2473 char *p;
2475 if (fread (&d, sizeof (d), 1, f) != 1)
2476 fatal_error ("can't read PCH file: %m");
2478 alloc_size = CEIL (d.total, BYTES_PER_ALLOC_BIT * 8);
2479 alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
2481 pch_zone.bytes = d.total;
2482 pch_zone.alloc_bits = (alloc_type *) ((char *) addr + pch_zone.bytes);
2483 pch_zone.page = (char *) addr;
2484 pch_zone.end = (char *) pch_zone.alloc_bits;
2486 /* We've just read in a PCH file. So, every object that used to be
2487 allocated is now free. */
2488 for (zone = G.zones; zone; zone = zone->next_zone)
2490 struct small_page_entry *page, *next_page;
2491 struct large_page_entry *large_page, *next_large_page;
2493 zone->allocated = 0;
2495 /* Clear the zone's free chunk list. */
2496 memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
2497 zone->high_free_bin = 0;
2498 zone->cached_free = NULL;
2499 zone->cached_free_size = 0;
2501 /* Move all the small pages onto the free list. */
2502 for (page = zone->pages; page != NULL; page = next_page)
2504 next_page = page->next;
2505 memset (page->alloc_bits, 0,
2506 G.small_page_overhead - PAGE_OVERHEAD);
2507 free_small_page (page);
2510 /* Discard all the large pages. */
2511 for (large_page = zone->large_pages; large_page != NULL;
2512 large_page = next_large_page)
2514 next_large_page = large_page->next;
2515 free_large_page (large_page);
2518 zone->pages = NULL;
2519 zone->large_pages = NULL;
2522 /* Allocate the dummy page entry for the PCH, and set all pages
2523 mapped into the PCH to reference it. */
2524 pch_page = XCNEW (struct page_entry);
2525 pch_page->page = pch_zone.page;
2526 pch_page->pch_p = true;
2528 for (p = pch_zone.page; p < pch_zone.end; p += GGC_PAGE_SIZE)
2529 set_page_table_entry (p, pch_page);