2013-11-19 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-vect-stmts.c
blob6f3de12c182cdbd52db699b78463f006dd818171
1 /* Statement Analysis and Transformation for Vectorization
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "target.h"
30 #include "basic-block.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "cfgloop.h"
34 #include "expr.h"
35 #include "recog.h" /* FIXME: for insn_data */
36 #include "optabs.h"
37 #include "diagnostic-core.h"
38 #include "tree-vectorizer.h"
39 #include "dumpfile.h"
41 /* For lang_hooks.types.type_for_mode. */
42 #include "langhooks.h"
44 /* Return the vectorized type for the given statement. */
46 tree
47 stmt_vectype (struct _stmt_vec_info *stmt_info)
49 return STMT_VINFO_VECTYPE (stmt_info);
52 /* Return TRUE iff the given statement is in an inner loop relative to
53 the loop being vectorized. */
54 bool
55 stmt_in_inner_loop_p (struct _stmt_vec_info *stmt_info)
57 gimple stmt = STMT_VINFO_STMT (stmt_info);
58 basic_block bb = gimple_bb (stmt);
59 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
60 struct loop* loop;
62 if (!loop_vinfo)
63 return false;
65 loop = LOOP_VINFO_LOOP (loop_vinfo);
67 return (bb->loop_father == loop->inner);
70 /* Record the cost of a statement, either by directly informing the
71 target model or by saving it in a vector for later processing.
72 Return a preliminary estimate of the statement's cost. */
74 unsigned
75 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
76 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
77 int misalign, enum vect_cost_model_location where)
79 if (body_cost_vec)
81 tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
82 add_stmt_info_to_vec (body_cost_vec, count, kind,
83 stmt_info ? STMT_VINFO_STMT (stmt_info) : NULL,
84 misalign);
85 return (unsigned)
86 (builtin_vectorization_cost (kind, vectype, misalign) * count);
89 else
91 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
92 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
93 void *target_cost_data;
95 if (loop_vinfo)
96 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
97 else
98 target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
100 return add_stmt_cost (target_cost_data, count, kind, stmt_info,
101 misalign, where);
105 /* Return a variable of type ELEM_TYPE[NELEMS]. */
107 static tree
108 create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems)
110 return create_tmp_var (build_array_type_nelts (elem_type, nelems),
111 "vect_array");
114 /* ARRAY is an array of vectors created by create_vector_array.
115 Return an SSA_NAME for the vector in index N. The reference
116 is part of the vectorization of STMT and the vector is associated
117 with scalar destination SCALAR_DEST. */
119 static tree
120 read_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree scalar_dest,
121 tree array, unsigned HOST_WIDE_INT n)
123 tree vect_type, vect, vect_name, array_ref;
124 gimple new_stmt;
126 gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE);
127 vect_type = TREE_TYPE (TREE_TYPE (array));
128 vect = vect_create_destination_var (scalar_dest, vect_type);
129 array_ref = build4 (ARRAY_REF, vect_type, array,
130 build_int_cst (size_type_node, n),
131 NULL_TREE, NULL_TREE);
133 new_stmt = gimple_build_assign (vect, array_ref);
134 vect_name = make_ssa_name (vect, new_stmt);
135 gimple_assign_set_lhs (new_stmt, vect_name);
136 vect_finish_stmt_generation (stmt, new_stmt, gsi);
138 return vect_name;
141 /* ARRAY is an array of vectors created by create_vector_array.
142 Emit code to store SSA_NAME VECT in index N of the array.
143 The store is part of the vectorization of STMT. */
145 static void
146 write_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree vect,
147 tree array, unsigned HOST_WIDE_INT n)
149 tree array_ref;
150 gimple new_stmt;
152 array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array,
153 build_int_cst (size_type_node, n),
154 NULL_TREE, NULL_TREE);
156 new_stmt = gimple_build_assign (array_ref, vect);
157 vect_finish_stmt_generation (stmt, new_stmt, gsi);
160 /* PTR is a pointer to an array of type TYPE. Return a representation
161 of *PTR. The memory reference replaces those in FIRST_DR
162 (and its group). */
164 static tree
165 create_array_ref (tree type, tree ptr, struct data_reference *first_dr)
167 tree mem_ref, alias_ptr_type;
169 alias_ptr_type = reference_alias_ptr_type (DR_REF (first_dr));
170 mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0));
171 /* Arrays have the same alignment as their type. */
172 set_ptr_info_alignment (get_ptr_info (ptr), TYPE_ALIGN_UNIT (type), 0);
173 return mem_ref;
176 /* Utility functions used by vect_mark_stmts_to_be_vectorized. */
178 /* Function vect_mark_relevant.
180 Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
182 static void
183 vect_mark_relevant (vec<gimple> *worklist, gimple stmt,
184 enum vect_relevant relevant, bool live_p,
185 bool used_in_pattern)
187 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
188 enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
189 bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
190 gimple pattern_stmt;
192 if (dump_enabled_p ())
193 dump_printf_loc (MSG_NOTE, vect_location,
194 "mark relevant %d, live %d.", relevant, live_p);
196 /* If this stmt is an original stmt in a pattern, we might need to mark its
197 related pattern stmt instead of the original stmt. However, such stmts
198 may have their own uses that are not in any pattern, in such cases the
199 stmt itself should be marked. */
200 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
202 bool found = false;
203 if (!used_in_pattern)
205 imm_use_iterator imm_iter;
206 use_operand_p use_p;
207 gimple use_stmt;
208 tree lhs;
209 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
210 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
212 if (is_gimple_assign (stmt))
213 lhs = gimple_assign_lhs (stmt);
214 else
215 lhs = gimple_call_lhs (stmt);
217 /* This use is out of pattern use, if LHS has other uses that are
218 pattern uses, we should mark the stmt itself, and not the pattern
219 stmt. */
220 if (TREE_CODE (lhs) == SSA_NAME)
221 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
223 if (is_gimple_debug (USE_STMT (use_p)))
224 continue;
225 use_stmt = USE_STMT (use_p);
227 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
228 continue;
230 if (vinfo_for_stmt (use_stmt)
231 && STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
233 found = true;
234 break;
239 if (!found)
241 /* This is the last stmt in a sequence that was detected as a
242 pattern that can potentially be vectorized. Don't mark the stmt
243 as relevant/live because it's not going to be vectorized.
244 Instead mark the pattern-stmt that replaces it. */
246 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
248 if (dump_enabled_p ())
249 dump_printf_loc (MSG_NOTE, vect_location,
250 "last stmt in pattern. don't mark"
251 " relevant/live.");
252 stmt_info = vinfo_for_stmt (pattern_stmt);
253 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
254 save_relevant = STMT_VINFO_RELEVANT (stmt_info);
255 save_live_p = STMT_VINFO_LIVE_P (stmt_info);
256 stmt = pattern_stmt;
260 STMT_VINFO_LIVE_P (stmt_info) |= live_p;
261 if (relevant > STMT_VINFO_RELEVANT (stmt_info))
262 STMT_VINFO_RELEVANT (stmt_info) = relevant;
264 if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
265 && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
267 if (dump_enabled_p ())
268 dump_printf_loc (MSG_NOTE, vect_location,
269 "already marked relevant/live.");
270 return;
273 worklist->safe_push (stmt);
277 /* Function vect_stmt_relevant_p.
279 Return true if STMT in loop that is represented by LOOP_VINFO is
280 "relevant for vectorization".
282 A stmt is considered "relevant for vectorization" if:
283 - it has uses outside the loop.
284 - it has vdefs (it alters memory).
285 - control stmts in the loop (except for the exit condition).
287 CHECKME: what other side effects would the vectorizer allow? */
289 static bool
290 vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo,
291 enum vect_relevant *relevant, bool *live_p)
293 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
294 ssa_op_iter op_iter;
295 imm_use_iterator imm_iter;
296 use_operand_p use_p;
297 def_operand_p def_p;
299 *relevant = vect_unused_in_scope;
300 *live_p = false;
302 /* cond stmt other than loop exit cond. */
303 if (is_ctrl_stmt (stmt)
304 && STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
305 != loop_exit_ctrl_vec_info_type)
306 *relevant = vect_used_in_scope;
308 /* changing memory. */
309 if (gimple_code (stmt) != GIMPLE_PHI)
310 if (gimple_vdef (stmt))
312 if (dump_enabled_p ())
313 dump_printf_loc (MSG_NOTE, vect_location,
314 "vec_stmt_relevant_p: stmt has vdefs.");
315 *relevant = vect_used_in_scope;
318 /* uses outside the loop. */
319 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
321 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
323 basic_block bb = gimple_bb (USE_STMT (use_p));
324 if (!flow_bb_inside_loop_p (loop, bb))
326 if (dump_enabled_p ())
327 dump_printf_loc (MSG_NOTE, vect_location,
328 "vec_stmt_relevant_p: used out of loop.");
330 if (is_gimple_debug (USE_STMT (use_p)))
331 continue;
333 /* We expect all such uses to be in the loop exit phis
334 (because of loop closed form) */
335 gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
336 gcc_assert (bb == single_exit (loop)->dest);
338 *live_p = true;
343 return (*live_p || *relevant);
347 /* Function exist_non_indexing_operands_for_use_p
349 USE is one of the uses attached to STMT. Check if USE is
350 used in STMT for anything other than indexing an array. */
352 static bool
353 exist_non_indexing_operands_for_use_p (tree use, gimple stmt)
355 tree operand;
356 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
358 /* USE corresponds to some operand in STMT. If there is no data
359 reference in STMT, then any operand that corresponds to USE
360 is not indexing an array. */
361 if (!STMT_VINFO_DATA_REF (stmt_info))
362 return true;
364 /* STMT has a data_ref. FORNOW this means that its of one of
365 the following forms:
366 -1- ARRAY_REF = var
367 -2- var = ARRAY_REF
368 (This should have been verified in analyze_data_refs).
370 'var' in the second case corresponds to a def, not a use,
371 so USE cannot correspond to any operands that are not used
372 for array indexing.
374 Therefore, all we need to check is if STMT falls into the
375 first case, and whether var corresponds to USE. */
377 if (!gimple_assign_copy_p (stmt))
378 return false;
379 if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
380 return false;
381 operand = gimple_assign_rhs1 (stmt);
382 if (TREE_CODE (operand) != SSA_NAME)
383 return false;
385 if (operand == use)
386 return true;
388 return false;
393 Function process_use.
395 Inputs:
396 - a USE in STMT in a loop represented by LOOP_VINFO
397 - LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt
398 that defined USE. This is done by calling mark_relevant and passing it
399 the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
400 - FORCE is true if exist_non_indexing_operands_for_use_p check shouldn't
401 be performed.
403 Outputs:
404 Generally, LIVE_P and RELEVANT are used to define the liveness and
405 relevance info of the DEF_STMT of this USE:
406 STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
407 STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
408 Exceptions:
409 - case 1: If USE is used only for address computations (e.g. array indexing),
410 which does not need to be directly vectorized, then the liveness/relevance
411 of the respective DEF_STMT is left unchanged.
412 - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
413 skip DEF_STMT cause it had already been processed.
414 - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
415 be modified accordingly.
417 Return true if everything is as expected. Return false otherwise. */
419 static bool
420 process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p,
421 enum vect_relevant relevant, vec<gimple> *worklist,
422 bool force)
424 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
425 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
426 stmt_vec_info dstmt_vinfo;
427 basic_block bb, def_bb;
428 tree def;
429 gimple def_stmt;
430 enum vect_def_type dt;
432 /* case 1: we are only interested in uses that need to be vectorized. Uses
433 that are used for address computation are not considered relevant. */
434 if (!force && !exist_non_indexing_operands_for_use_p (use, stmt))
435 return true;
437 if (!vect_is_simple_use (use, stmt, loop_vinfo, NULL, &def_stmt, &def, &dt))
439 if (dump_enabled_p ())
440 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
441 "not vectorized: unsupported use in stmt.");
442 return false;
445 if (!def_stmt || gimple_nop_p (def_stmt))
446 return true;
448 def_bb = gimple_bb (def_stmt);
449 if (!flow_bb_inside_loop_p (loop, def_bb))
451 if (dump_enabled_p ())
452 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt is out of loop.");
453 return true;
456 /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
457 DEF_STMT must have already been processed, because this should be the
458 only way that STMT, which is a reduction-phi, was put in the worklist,
459 as there should be no other uses for DEF_STMT in the loop. So we just
460 check that everything is as expected, and we are done. */
461 dstmt_vinfo = vinfo_for_stmt (def_stmt);
462 bb = gimple_bb (stmt);
463 if (gimple_code (stmt) == GIMPLE_PHI
464 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
465 && gimple_code (def_stmt) != GIMPLE_PHI
466 && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
467 && bb->loop_father == def_bb->loop_father)
469 if (dump_enabled_p ())
470 dump_printf_loc (MSG_NOTE, vect_location,
471 "reduc-stmt defining reduc-phi in the same nest.");
472 if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
473 dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
474 gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
475 gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
476 || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
477 return true;
480 /* case 3a: outer-loop stmt defining an inner-loop stmt:
481 outer-loop-header-bb:
482 d = def_stmt
483 inner-loop:
484 stmt # use (d)
485 outer-loop-tail-bb:
486 ... */
487 if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
489 if (dump_enabled_p ())
490 dump_printf_loc (MSG_NOTE, vect_location,
491 "outer-loop def-stmt defining inner-loop stmt.");
493 switch (relevant)
495 case vect_unused_in_scope:
496 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
497 vect_used_in_scope : vect_unused_in_scope;
498 break;
500 case vect_used_in_outer_by_reduction:
501 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
502 relevant = vect_used_by_reduction;
503 break;
505 case vect_used_in_outer:
506 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
507 relevant = vect_used_in_scope;
508 break;
510 case vect_used_in_scope:
511 break;
513 default:
514 gcc_unreachable ();
518 /* case 3b: inner-loop stmt defining an outer-loop stmt:
519 outer-loop-header-bb:
521 inner-loop:
522 d = def_stmt
523 outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
524 stmt # use (d) */
525 else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
527 if (dump_enabled_p ())
528 dump_printf_loc (MSG_NOTE, vect_location,
529 "inner-loop def-stmt defining outer-loop stmt.");
531 switch (relevant)
533 case vect_unused_in_scope:
534 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
535 || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
536 vect_used_in_outer_by_reduction : vect_unused_in_scope;
537 break;
539 case vect_used_by_reduction:
540 relevant = vect_used_in_outer_by_reduction;
541 break;
543 case vect_used_in_scope:
544 relevant = vect_used_in_outer;
545 break;
547 default:
548 gcc_unreachable ();
552 vect_mark_relevant (worklist, def_stmt, relevant, live_p,
553 is_pattern_stmt_p (stmt_vinfo));
554 return true;
558 /* Function vect_mark_stmts_to_be_vectorized.
560 Not all stmts in the loop need to be vectorized. For example:
562 for i...
563 for j...
564 1. T0 = i + j
565 2. T1 = a[T0]
567 3. j = j + 1
569 Stmt 1 and 3 do not need to be vectorized, because loop control and
570 addressing of vectorized data-refs are handled differently.
572 This pass detects such stmts. */
574 bool
575 vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
577 vec<gimple> worklist;
578 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
579 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
580 unsigned int nbbs = loop->num_nodes;
581 gimple_stmt_iterator si;
582 gimple stmt;
583 unsigned int i;
584 stmt_vec_info stmt_vinfo;
585 basic_block bb;
586 gimple phi;
587 bool live_p;
588 enum vect_relevant relevant, tmp_relevant;
589 enum vect_def_type def_type;
591 if (dump_enabled_p ())
592 dump_printf_loc (MSG_NOTE, vect_location,
593 "=== vect_mark_stmts_to_be_vectorized ===");
595 worklist.create (64);
597 /* 1. Init worklist. */
598 for (i = 0; i < nbbs; i++)
600 bb = bbs[i];
601 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
603 phi = gsi_stmt (si);
604 if (dump_enabled_p ())
606 dump_printf_loc (MSG_NOTE, vect_location, "init: phi relevant? ");
607 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
610 if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
611 vect_mark_relevant (&worklist, phi, relevant, live_p, false);
613 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
615 stmt = gsi_stmt (si);
616 if (dump_enabled_p ())
618 dump_printf_loc (MSG_NOTE, vect_location, "init: stmt relevant? ");
619 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
622 if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
623 vect_mark_relevant (&worklist, stmt, relevant, live_p, false);
627 /* 2. Process_worklist */
628 while (worklist.length () > 0)
630 use_operand_p use_p;
631 ssa_op_iter iter;
633 stmt = worklist.pop ();
634 if (dump_enabled_p ())
636 dump_printf_loc (MSG_NOTE, vect_location, "worklist: examine stmt: ");
637 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
640 /* Examine the USEs of STMT. For each USE, mark the stmt that defines it
641 (DEF_STMT) as relevant/irrelevant and live/dead according to the
642 liveness and relevance properties of STMT. */
643 stmt_vinfo = vinfo_for_stmt (stmt);
644 relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
645 live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
647 /* Generally, the liveness and relevance properties of STMT are
648 propagated as is to the DEF_STMTs of its USEs:
649 live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
650 relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)
652 One exception is when STMT has been identified as defining a reduction
653 variable; in this case we set the liveness/relevance as follows:
654 live_p = false
655 relevant = vect_used_by_reduction
656 This is because we distinguish between two kinds of relevant stmts -
657 those that are used by a reduction computation, and those that are
658 (also) used by a regular computation. This allows us later on to
659 identify stmts that are used solely by a reduction, and therefore the
660 order of the results that they produce does not have to be kept. */
662 def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo);
663 tmp_relevant = relevant;
664 switch (def_type)
666 case vect_reduction_def:
667 switch (tmp_relevant)
669 case vect_unused_in_scope:
670 relevant = vect_used_by_reduction;
671 break;
673 case vect_used_by_reduction:
674 if (gimple_code (stmt) == GIMPLE_PHI)
675 break;
676 /* fall through */
678 default:
679 if (dump_enabled_p ())
680 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
681 "unsupported use of reduction.");
682 worklist.release ();
683 return false;
686 live_p = false;
687 break;
689 case vect_nested_cycle:
690 if (tmp_relevant != vect_unused_in_scope
691 && tmp_relevant != vect_used_in_outer_by_reduction
692 && tmp_relevant != vect_used_in_outer)
694 if (dump_enabled_p ())
695 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
696 "unsupported use of nested cycle.");
698 worklist.release ();
699 return false;
702 live_p = false;
703 break;
705 case vect_double_reduction_def:
706 if (tmp_relevant != vect_unused_in_scope
707 && tmp_relevant != vect_used_by_reduction)
709 if (dump_enabled_p ())
710 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
711 "unsupported use of double reduction.");
713 worklist.release ();
714 return false;
717 live_p = false;
718 break;
720 default:
721 break;
724 if (is_pattern_stmt_p (stmt_vinfo))
726 /* Pattern statements are not inserted into the code, so
727 FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we
728 have to scan the RHS or function arguments instead. */
729 if (is_gimple_assign (stmt))
731 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
732 tree op = gimple_assign_rhs1 (stmt);
734 i = 1;
735 if (rhs_code == COND_EXPR && COMPARISON_CLASS_P (op))
737 if (!process_use (stmt, TREE_OPERAND (op, 0), loop_vinfo,
738 live_p, relevant, &worklist, false)
739 || !process_use (stmt, TREE_OPERAND (op, 1), loop_vinfo,
740 live_p, relevant, &worklist, false))
742 worklist.release ();
743 return false;
745 i = 2;
747 for (; i < gimple_num_ops (stmt); i++)
749 op = gimple_op (stmt, i);
750 if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
751 &worklist, false))
753 worklist.release ();
754 return false;
758 else if (is_gimple_call (stmt))
760 for (i = 0; i < gimple_call_num_args (stmt); i++)
762 tree arg = gimple_call_arg (stmt, i);
763 if (!process_use (stmt, arg, loop_vinfo, live_p, relevant,
764 &worklist, false))
766 worklist.release ();
767 return false;
772 else
773 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
775 tree op = USE_FROM_PTR (use_p);
776 if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
777 &worklist, false))
779 worklist.release ();
780 return false;
784 if (STMT_VINFO_GATHER_P (stmt_vinfo))
786 tree off;
787 tree decl = vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
788 gcc_assert (decl);
789 if (!process_use (stmt, off, loop_vinfo, live_p, relevant,
790 &worklist, true))
792 worklist.release ();
793 return false;
796 } /* while worklist */
798 worklist.release ();
799 return true;
803 /* Function vect_model_simple_cost.
805 Models cost for simple operations, i.e. those that only emit ncopies of a
806 single op. Right now, this does not account for multiple insns that could
807 be generated for the single vector op. We will handle that shortly. */
809 void
810 vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
811 enum vect_def_type *dt,
812 stmt_vector_for_cost *prologue_cost_vec,
813 stmt_vector_for_cost *body_cost_vec)
815 int i;
816 int inside_cost = 0, prologue_cost = 0;
818 /* The SLP costs were already calculated during SLP tree build. */
819 if (PURE_SLP_STMT (stmt_info))
820 return;
822 /* FORNOW: Assuming maximum 2 args per stmts. */
823 for (i = 0; i < 2; i++)
824 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
825 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, vector_stmt,
826 stmt_info, 0, vect_prologue);
828 /* Pass the inside-of-loop statements to the target-specific cost model. */
829 inside_cost = record_stmt_cost (body_cost_vec, ncopies, vector_stmt,
830 stmt_info, 0, vect_body);
832 if (dump_enabled_p ())
833 dump_printf_loc (MSG_NOTE, vect_location,
834 "vect_model_simple_cost: inside_cost = %d, "
835 "prologue_cost = %d .", inside_cost, prologue_cost);
839 /* Model cost for type demotion and promotion operations. PWR is normally
840 zero for single-step promotions and demotions. It will be one if
841 two-step promotion/demotion is required, and so on. Each additional
842 step doubles the number of instructions required. */
844 static void
845 vect_model_promotion_demotion_cost (stmt_vec_info stmt_info,
846 enum vect_def_type *dt, int pwr)
848 int i, tmp;
849 int inside_cost = 0, prologue_cost = 0;
850 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
851 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
852 void *target_cost_data;
854 /* The SLP costs were already calculated during SLP tree build. */
855 if (PURE_SLP_STMT (stmt_info))
856 return;
858 if (loop_vinfo)
859 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
860 else
861 target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
863 for (i = 0; i < pwr + 1; i++)
865 tmp = (STMT_VINFO_TYPE (stmt_info) == type_promotion_vec_info_type) ?
866 (i + 1) : i;
867 inside_cost += add_stmt_cost (target_cost_data, vect_pow2 (tmp),
868 vec_promote_demote, stmt_info, 0,
869 vect_body);
872 /* FORNOW: Assuming maximum 2 args per stmts. */
873 for (i = 0; i < 2; i++)
874 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
875 prologue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
876 stmt_info, 0, vect_prologue);
878 if (dump_enabled_p ())
879 dump_printf_loc (MSG_NOTE, vect_location,
880 "vect_model_promotion_demotion_cost: inside_cost = %d, "
881 "prologue_cost = %d .", inside_cost, prologue_cost);
884 /* Function vect_cost_group_size
886 For grouped load or store, return the group_size only if it is the first
887 load or store of a group, else return 1. This ensures that group size is
888 only returned once per group. */
890 static int
891 vect_cost_group_size (stmt_vec_info stmt_info)
893 gimple first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
895 if (first_stmt == STMT_VINFO_STMT (stmt_info))
896 return GROUP_SIZE (stmt_info);
898 return 1;
902 /* Function vect_model_store_cost
904 Models cost for stores. In the case of grouped accesses, one access
905 has the overhead of the grouped access attributed to it. */
907 void
908 vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
909 bool store_lanes_p, enum vect_def_type dt,
910 slp_tree slp_node,
911 stmt_vector_for_cost *prologue_cost_vec,
912 stmt_vector_for_cost *body_cost_vec)
914 int group_size;
915 unsigned int inside_cost = 0, prologue_cost = 0;
916 struct data_reference *first_dr;
917 gimple first_stmt;
919 /* The SLP costs were already calculated during SLP tree build. */
920 if (PURE_SLP_STMT (stmt_info))
921 return;
923 if (dt == vect_constant_def || dt == vect_external_def)
924 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, scalar_to_vec,
925 stmt_info, 0, vect_prologue);
927 /* Grouped access? */
928 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
930 if (slp_node)
932 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
933 group_size = 1;
935 else
937 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
938 group_size = vect_cost_group_size (stmt_info);
941 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
943 /* Not a grouped access. */
944 else
946 group_size = 1;
947 first_dr = STMT_VINFO_DATA_REF (stmt_info);
950 /* We assume that the cost of a single store-lanes instruction is
951 equivalent to the cost of GROUP_SIZE separate stores. If a grouped
952 access is instead being provided by a permute-and-store operation,
953 include the cost of the permutes. */
954 if (!store_lanes_p && group_size > 1)
956 /* Uses a high and low interleave operation for each needed permute. */
958 int nstmts = ncopies * exact_log2 (group_size) * group_size;
959 inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
960 stmt_info, 0, vect_body);
962 if (dump_enabled_p ())
963 dump_printf_loc (MSG_NOTE, vect_location,
964 "vect_model_store_cost: strided group_size = %d .",
965 group_size);
968 /* Costs of the stores. */
969 vect_get_store_cost (first_dr, ncopies, &inside_cost, body_cost_vec);
971 if (dump_enabled_p ())
972 dump_printf_loc (MSG_NOTE, vect_location,
973 "vect_model_store_cost: inside_cost = %d, "
974 "prologue_cost = %d .", inside_cost, prologue_cost);
978 /* Calculate cost of DR's memory access. */
979 void
980 vect_get_store_cost (struct data_reference *dr, int ncopies,
981 unsigned int *inside_cost,
982 stmt_vector_for_cost *body_cost_vec)
984 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
985 gimple stmt = DR_STMT (dr);
986 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
988 switch (alignment_support_scheme)
990 case dr_aligned:
992 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
993 vector_store, stmt_info, 0,
994 vect_body);
996 if (dump_enabled_p ())
997 dump_printf_loc (MSG_NOTE, vect_location,
998 "vect_model_store_cost: aligned.");
999 break;
1002 case dr_unaligned_supported:
1004 /* Here, we assign an additional cost for the unaligned store. */
1005 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1006 unaligned_store, stmt_info,
1007 DR_MISALIGNMENT (dr), vect_body);
1008 if (dump_enabled_p ())
1009 dump_printf_loc (MSG_NOTE, vect_location,
1010 "vect_model_store_cost: unaligned supported by "
1011 "hardware.");
1012 break;
1015 case dr_unaligned_unsupported:
1017 *inside_cost = VECT_MAX_COST;
1019 if (dump_enabled_p ())
1020 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1021 "vect_model_store_cost: unsupported access.");
1022 break;
1025 default:
1026 gcc_unreachable ();
1031 /* Function vect_model_load_cost
1033 Models cost for loads. In the case of grouped accesses, the last access
1034 has the overhead of the grouped access attributed to it. Since unaligned
1035 accesses are supported for loads, we also account for the costs of the
1036 access scheme chosen. */
1038 void
1039 vect_model_load_cost (stmt_vec_info stmt_info, int ncopies,
1040 bool load_lanes_p, slp_tree slp_node,
1041 stmt_vector_for_cost *prologue_cost_vec,
1042 stmt_vector_for_cost *body_cost_vec)
1044 int group_size;
1045 gimple first_stmt;
1046 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
1047 unsigned int inside_cost = 0, prologue_cost = 0;
1049 /* The SLP costs were already calculated during SLP tree build. */
1050 if (PURE_SLP_STMT (stmt_info))
1051 return;
1053 /* Grouped accesses? */
1054 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
1055 if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && first_stmt && !slp_node)
1057 group_size = vect_cost_group_size (stmt_info);
1058 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
1060 /* Not a grouped access. */
1061 else
1063 group_size = 1;
1064 first_dr = dr;
1067 /* We assume that the cost of a single load-lanes instruction is
1068 equivalent to the cost of GROUP_SIZE separate loads. If a grouped
1069 access is instead being provided by a load-and-permute operation,
1070 include the cost of the permutes. */
1071 if (!load_lanes_p && group_size > 1)
1073 /* Uses an even and odd extract operations for each needed permute. */
1074 int nstmts = ncopies * exact_log2 (group_size) * group_size;
1075 inside_cost += record_stmt_cost (body_cost_vec, nstmts, vec_perm,
1076 stmt_info, 0, vect_body);
1078 if (dump_enabled_p ())
1079 dump_printf_loc (MSG_NOTE, vect_location,
1080 "vect_model_load_cost: strided group_size = %d .",
1081 group_size);
1084 /* The loads themselves. */
1085 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1087 /* N scalar loads plus gathering them into a vector. */
1088 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1089 inside_cost += record_stmt_cost (body_cost_vec,
1090 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
1091 scalar_load, stmt_info, 0, vect_body);
1092 inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_construct,
1093 stmt_info, 0, vect_body);
1095 else
1096 vect_get_load_cost (first_dr, ncopies,
1097 ((!STMT_VINFO_GROUPED_ACCESS (stmt_info))
1098 || group_size > 1 || slp_node),
1099 &inside_cost, &prologue_cost,
1100 prologue_cost_vec, body_cost_vec, true);
1102 if (dump_enabled_p ())
1103 dump_printf_loc (MSG_NOTE, vect_location,
1104 "vect_model_load_cost: inside_cost = %d, "
1105 "prologue_cost = %d .", inside_cost, prologue_cost);
1109 /* Calculate cost of DR's memory access. */
1110 void
1111 vect_get_load_cost (struct data_reference *dr, int ncopies,
1112 bool add_realign_cost, unsigned int *inside_cost,
1113 unsigned int *prologue_cost,
1114 stmt_vector_for_cost *prologue_cost_vec,
1115 stmt_vector_for_cost *body_cost_vec,
1116 bool record_prologue_costs)
1118 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
1119 gimple stmt = DR_STMT (dr);
1120 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1122 switch (alignment_support_scheme)
1124 case dr_aligned:
1126 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1127 stmt_info, 0, vect_body);
1129 if (dump_enabled_p ())
1130 dump_printf_loc (MSG_NOTE, vect_location,
1131 "vect_model_load_cost: aligned.");
1133 break;
1135 case dr_unaligned_supported:
1137 /* Here, we assign an additional cost for the unaligned load. */
1138 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1139 unaligned_load, stmt_info,
1140 DR_MISALIGNMENT (dr), vect_body);
1142 if (dump_enabled_p ())
1143 dump_printf_loc (MSG_NOTE, vect_location,
1144 "vect_model_load_cost: unaligned supported by "
1145 "hardware.");
1147 break;
1149 case dr_explicit_realign:
1151 *inside_cost += record_stmt_cost (body_cost_vec, ncopies * 2,
1152 vector_load, stmt_info, 0, vect_body);
1153 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1154 vec_perm, stmt_info, 0, vect_body);
1156 /* FIXME: If the misalignment remains fixed across the iterations of
1157 the containing loop, the following cost should be added to the
1158 prologue costs. */
1159 if (targetm.vectorize.builtin_mask_for_load)
1160 *inside_cost += record_stmt_cost (body_cost_vec, 1, vector_stmt,
1161 stmt_info, 0, vect_body);
1163 if (dump_enabled_p ())
1164 dump_printf_loc (MSG_NOTE, vect_location,
1165 "vect_model_load_cost: explicit realign");
1167 break;
1169 case dr_explicit_realign_optimized:
1171 if (dump_enabled_p ())
1172 dump_printf_loc (MSG_NOTE, vect_location,
1173 "vect_model_load_cost: unaligned software "
1174 "pipelined.");
1176 /* Unaligned software pipeline has a load of an address, an initial
1177 load, and possibly a mask operation to "prime" the loop. However,
1178 if this is an access in a group of loads, which provide grouped
1179 access, then the above cost should only be considered for one
1180 access in the group. Inside the loop, there is a load op
1181 and a realignment op. */
1183 if (add_realign_cost && record_prologue_costs)
1185 *prologue_cost += record_stmt_cost (prologue_cost_vec, 2,
1186 vector_stmt, stmt_info,
1187 0, vect_prologue);
1188 if (targetm.vectorize.builtin_mask_for_load)
1189 *prologue_cost += record_stmt_cost (prologue_cost_vec, 1,
1190 vector_stmt, stmt_info,
1191 0, vect_prologue);
1194 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1195 stmt_info, 0, vect_body);
1196 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_perm,
1197 stmt_info, 0, vect_body);
1199 if (dump_enabled_p ())
1200 dump_printf_loc (MSG_NOTE, vect_location,
1201 "vect_model_load_cost: explicit realign optimized");
1203 break;
1206 case dr_unaligned_unsupported:
1208 *inside_cost = VECT_MAX_COST;
1210 if (dump_enabled_p ())
1211 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1212 "vect_model_load_cost: unsupported access.");
1213 break;
1216 default:
1217 gcc_unreachable ();
1221 /* Insert the new stmt NEW_STMT at *GSI or at the appropriate place in
1222 the loop preheader for the vectorized stmt STMT. */
1224 static void
1225 vect_init_vector_1 (gimple stmt, gimple new_stmt, gimple_stmt_iterator *gsi)
1227 if (gsi)
1228 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1229 else
1231 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1232 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1234 if (loop_vinfo)
1236 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1237 basic_block new_bb;
1238 edge pe;
1240 if (nested_in_vect_loop_p (loop, stmt))
1241 loop = loop->inner;
1243 pe = loop_preheader_edge (loop);
1244 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
1245 gcc_assert (!new_bb);
1247 else
1249 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
1250 basic_block bb;
1251 gimple_stmt_iterator gsi_bb_start;
1253 gcc_assert (bb_vinfo);
1254 bb = BB_VINFO_BB (bb_vinfo);
1255 gsi_bb_start = gsi_after_labels (bb);
1256 gsi_insert_before (&gsi_bb_start, new_stmt, GSI_SAME_STMT);
1260 if (dump_enabled_p ())
1262 dump_printf_loc (MSG_NOTE, vect_location,
1263 "created new init_stmt: ");
1264 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
1268 /* Function vect_init_vector.
1270 Insert a new stmt (INIT_STMT) that initializes a new variable of type
1271 TYPE with the value VAL. If TYPE is a vector type and VAL does not have
1272 vector type a vector with all elements equal to VAL is created first.
1273 Place the initialization at BSI if it is not NULL. Otherwise, place the
1274 initialization at the loop preheader.
1275 Return the DEF of INIT_STMT.
1276 It will be used in the vectorization of STMT. */
1278 tree
1279 vect_init_vector (gimple stmt, tree val, tree type, gimple_stmt_iterator *gsi)
1281 tree new_var;
1282 gimple init_stmt;
1283 tree vec_oprnd;
1284 tree new_temp;
1286 if (TREE_CODE (type) == VECTOR_TYPE
1287 && TREE_CODE (TREE_TYPE (val)) != VECTOR_TYPE)
1289 if (!types_compatible_p (TREE_TYPE (type), TREE_TYPE (val)))
1291 if (CONSTANT_CLASS_P (val))
1292 val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (type), val);
1293 else
1295 new_temp = make_ssa_name (TREE_TYPE (type), NULL);
1296 init_stmt = gimple_build_assign_with_ops (NOP_EXPR,
1297 new_temp, val,
1298 NULL_TREE);
1299 vect_init_vector_1 (stmt, init_stmt, gsi);
1300 val = new_temp;
1303 val = build_vector_from_val (type, val);
1306 new_var = vect_get_new_vect_var (type, vect_simple_var, "cst_");
1307 init_stmt = gimple_build_assign (new_var, val);
1308 new_temp = make_ssa_name (new_var, init_stmt);
1309 gimple_assign_set_lhs (init_stmt, new_temp);
1310 vect_init_vector_1 (stmt, init_stmt, gsi);
1311 vec_oprnd = gimple_assign_lhs (init_stmt);
1312 return vec_oprnd;
1316 /* Function vect_get_vec_def_for_operand.
1318 OP is an operand in STMT. This function returns a (vector) def that will be
1319 used in the vectorized stmt for STMT.
1321 In the case that OP is an SSA_NAME which is defined in the loop, then
1322 STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
1324 In case OP is an invariant or constant, a new stmt that creates a vector def
1325 needs to be introduced. */
1327 tree
1328 vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
1330 tree vec_oprnd;
1331 gimple vec_stmt;
1332 gimple def_stmt;
1333 stmt_vec_info def_stmt_info = NULL;
1334 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1335 unsigned int nunits;
1336 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1337 tree def;
1338 enum vect_def_type dt;
1339 bool is_simple_use;
1340 tree vector_type;
1342 if (dump_enabled_p ())
1344 dump_printf_loc (MSG_NOTE, vect_location,
1345 "vect_get_vec_def_for_operand: ");
1346 dump_generic_expr (MSG_NOTE, TDF_SLIM, op);
1349 is_simple_use = vect_is_simple_use (op, stmt, loop_vinfo, NULL,
1350 &def_stmt, &def, &dt);
1351 gcc_assert (is_simple_use);
1352 if (dump_enabled_p ())
1354 int loc_printed = 0;
1355 if (def)
1357 dump_printf_loc (MSG_NOTE, vect_location, "def = ");
1358 loc_printed = 1;
1359 dump_generic_expr (MSG_NOTE, TDF_SLIM, def);
1361 if (def_stmt)
1363 if (loc_printed)
1364 dump_printf (MSG_NOTE, " def_stmt = ");
1365 else
1366 dump_printf_loc (MSG_NOTE, vect_location, " def_stmt = ");
1367 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
1371 switch (dt)
1373 /* Case 1: operand is a constant. */
1374 case vect_constant_def:
1376 vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
1377 gcc_assert (vector_type);
1378 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
1380 if (scalar_def)
1381 *scalar_def = op;
1383 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1384 if (dump_enabled_p ())
1385 dump_printf_loc (MSG_NOTE, vect_location,
1386 "Create vector_cst. nunits = %d", nunits);
1388 return vect_init_vector (stmt, op, vector_type, NULL);
1391 /* Case 2: operand is defined outside the loop - loop invariant. */
1392 case vect_external_def:
1394 vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
1395 gcc_assert (vector_type);
1397 if (scalar_def)
1398 *scalar_def = def;
1400 /* Create 'vec_inv = {inv,inv,..,inv}' */
1401 if (dump_enabled_p ())
1402 dump_printf_loc (MSG_NOTE, vect_location, "Create vector_inv.");
1404 return vect_init_vector (stmt, def, vector_type, NULL);
1407 /* Case 3: operand is defined inside the loop. */
1408 case vect_internal_def:
1410 if (scalar_def)
1411 *scalar_def = NULL/* FIXME tuples: def_stmt*/;
1413 /* Get the def from the vectorized stmt. */
1414 def_stmt_info = vinfo_for_stmt (def_stmt);
1416 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1417 /* Get vectorized pattern statement. */
1418 if (!vec_stmt
1419 && STMT_VINFO_IN_PATTERN_P (def_stmt_info)
1420 && !STMT_VINFO_RELEVANT (def_stmt_info))
1421 vec_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (
1422 STMT_VINFO_RELATED_STMT (def_stmt_info)));
1423 gcc_assert (vec_stmt);
1424 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1425 vec_oprnd = PHI_RESULT (vec_stmt);
1426 else if (is_gimple_call (vec_stmt))
1427 vec_oprnd = gimple_call_lhs (vec_stmt);
1428 else
1429 vec_oprnd = gimple_assign_lhs (vec_stmt);
1430 return vec_oprnd;
1433 /* Case 4: operand is defined by a loop header phi - reduction */
1434 case vect_reduction_def:
1435 case vect_double_reduction_def:
1436 case vect_nested_cycle:
1438 struct loop *loop;
1440 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1441 loop = (gimple_bb (def_stmt))->loop_father;
1443 /* Get the def before the loop */
1444 op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
1445 return get_initial_def_for_reduction (stmt, op, scalar_def);
1448 /* Case 5: operand is defined by loop-header phi - induction. */
1449 case vect_induction_def:
1451 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1453 /* Get the def from the vectorized stmt. */
1454 def_stmt_info = vinfo_for_stmt (def_stmt);
1455 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1456 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1457 vec_oprnd = PHI_RESULT (vec_stmt);
1458 else
1459 vec_oprnd = gimple_get_lhs (vec_stmt);
1460 return vec_oprnd;
1463 default:
1464 gcc_unreachable ();
1469 /* Function vect_get_vec_def_for_stmt_copy
1471 Return a vector-def for an operand. This function is used when the
1472 vectorized stmt to be created (by the caller to this function) is a "copy"
1473 created in case the vectorized result cannot fit in one vector, and several
1474 copies of the vector-stmt are required. In this case the vector-def is
1475 retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
1476 of the stmt that defines VEC_OPRND.
1477 DT is the type of the vector def VEC_OPRND.
1479 Context:
1480 In case the vectorization factor (VF) is bigger than the number
1481 of elements that can fit in a vectype (nunits), we have to generate
1482 more than one vector stmt to vectorize the scalar stmt. This situation
1483 arises when there are multiple data-types operated upon in the loop; the
1484 smallest data-type determines the VF, and as a result, when vectorizing
1485 stmts operating on wider types we need to create 'VF/nunits' "copies" of the
1486 vector stmt (each computing a vector of 'nunits' results, and together
1487 computing 'VF' results in each iteration). This function is called when
1488 vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
1489 which VF=16 and nunits=4, so the number of copies required is 4):
1491 scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
1493 S1: x = load VS1.0: vx.0 = memref0 VS1.1
1494 VS1.1: vx.1 = memref1 VS1.2
1495 VS1.2: vx.2 = memref2 VS1.3
1496 VS1.3: vx.3 = memref3
1498 S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
1499 VSnew.1: vz1 = vx.1 + ... VSnew.2
1500 VSnew.2: vz2 = vx.2 + ... VSnew.3
1501 VSnew.3: vz3 = vx.3 + ...
1503 The vectorization of S1 is explained in vectorizable_load.
1504 The vectorization of S2:
1505 To create the first vector-stmt out of the 4 copies - VSnew.0 -
1506 the function 'vect_get_vec_def_for_operand' is called to
1507 get the relevant vector-def for each operand of S2. For operand x it
1508 returns the vector-def 'vx.0'.
1510 To create the remaining copies of the vector-stmt (VSnew.j), this
1511 function is called to get the relevant vector-def for each operand. It is
1512 obtained from the respective VS1.j stmt, which is recorded in the
1513 STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
1515 For example, to obtain the vector-def 'vx.1' in order to create the
1516 vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
1517 Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
1518 STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
1519 and return its def ('vx.1').
1520 Overall, to create the above sequence this function will be called 3 times:
1521 vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
1522 vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
1523 vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
1525 tree
1526 vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
1528 gimple vec_stmt_for_operand;
1529 stmt_vec_info def_stmt_info;
1531 /* Do nothing; can reuse same def. */
1532 if (dt == vect_external_def || dt == vect_constant_def )
1533 return vec_oprnd;
1535 vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
1536 def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
1537 gcc_assert (def_stmt_info);
1538 vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
1539 gcc_assert (vec_stmt_for_operand);
1540 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1541 if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
1542 vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
1543 else
1544 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1545 return vec_oprnd;
1549 /* Get vectorized definitions for the operands to create a copy of an original
1550 stmt. See vect_get_vec_def_for_stmt_copy () for details. */
1552 static void
1553 vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
1554 vec<tree> *vec_oprnds0,
1555 vec<tree> *vec_oprnds1)
1557 tree vec_oprnd = vec_oprnds0->pop ();
1559 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
1560 vec_oprnds0->quick_push (vec_oprnd);
1562 if (vec_oprnds1 && vec_oprnds1->length ())
1564 vec_oprnd = vec_oprnds1->pop ();
1565 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
1566 vec_oprnds1->quick_push (vec_oprnd);
1571 /* Get vectorized definitions for OP0 and OP1.
1572 REDUC_INDEX is the index of reduction operand in case of reduction,
1573 and -1 otherwise. */
1575 void
1576 vect_get_vec_defs (tree op0, tree op1, gimple stmt,
1577 vec<tree> *vec_oprnds0,
1578 vec<tree> *vec_oprnds1,
1579 slp_tree slp_node, int reduc_index)
1581 if (slp_node)
1583 int nops = (op1 == NULL_TREE) ? 1 : 2;
1584 vec<tree> ops;
1585 ops.create (nops);
1586 vec<vec<tree> > vec_defs;
1587 vec_defs.create (nops);
1589 ops.quick_push (op0);
1590 if (op1)
1591 ops.quick_push (op1);
1593 vect_get_slp_defs (ops, slp_node, &vec_defs, reduc_index);
1595 *vec_oprnds0 = vec_defs[0];
1596 if (op1)
1597 *vec_oprnds1 = vec_defs[1];
1599 ops.release ();
1600 vec_defs.release ();
1602 else
1604 tree vec_oprnd;
1606 vec_oprnds0->create (1);
1607 vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);
1608 vec_oprnds0->quick_push (vec_oprnd);
1610 if (op1)
1612 vec_oprnds1->create (1);
1613 vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);
1614 vec_oprnds1->quick_push (vec_oprnd);
1620 /* Function vect_finish_stmt_generation.
1622 Insert a new stmt. */
1624 void
1625 vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
1626 gimple_stmt_iterator *gsi)
1628 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1629 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1630 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
1632 gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
1634 if (!gsi_end_p (*gsi)
1635 && gimple_has_mem_ops (vec_stmt))
1637 gimple at_stmt = gsi_stmt (*gsi);
1638 tree vuse = gimple_vuse (at_stmt);
1639 if (vuse && TREE_CODE (vuse) == SSA_NAME)
1641 tree vdef = gimple_vdef (at_stmt);
1642 gimple_set_vuse (vec_stmt, gimple_vuse (at_stmt));
1643 /* If we have an SSA vuse and insert a store, update virtual
1644 SSA form to avoid triggering the renamer. Do so only
1645 if we can easily see all uses - which is what almost always
1646 happens with the way vectorized stmts are inserted. */
1647 if ((vdef && TREE_CODE (vdef) == SSA_NAME)
1648 && ((is_gimple_assign (vec_stmt)
1649 && !is_gimple_reg (gimple_assign_lhs (vec_stmt)))
1650 || (is_gimple_call (vec_stmt)
1651 && !(gimple_call_flags (vec_stmt)
1652 & (ECF_CONST|ECF_PURE|ECF_NOVOPS)))))
1654 tree new_vdef = copy_ssa_name (vuse, vec_stmt);
1655 gimple_set_vdef (vec_stmt, new_vdef);
1656 SET_USE (gimple_vuse_op (at_stmt), new_vdef);
1660 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
1662 set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo,
1663 bb_vinfo));
1665 if (dump_enabled_p ())
1667 dump_printf_loc (MSG_NOTE, vect_location, "add new stmt: ");
1668 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vec_stmt, 0);
1671 gimple_set_location (vec_stmt, gimple_location (stmt));
1674 /* Checks if CALL can be vectorized in type VECTYPE. Returns
1675 a function declaration if the target has a vectorized version
1676 of the function, or NULL_TREE if the function cannot be vectorized. */
1678 tree
1679 vectorizable_function (gimple call, tree vectype_out, tree vectype_in)
1681 tree fndecl = gimple_call_fndecl (call);
1683 /* We only handle functions that do not read or clobber memory -- i.e.
1684 const or novops ones. */
1685 if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
1686 return NULL_TREE;
1688 if (!fndecl
1689 || TREE_CODE (fndecl) != FUNCTION_DECL
1690 || !DECL_BUILT_IN (fndecl))
1691 return NULL_TREE;
1693 return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out,
1694 vectype_in);
1697 /* Function vectorizable_call.
1699 Check if STMT performs a function call that can be vectorized.
1700 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
1701 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
1702 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
1704 static bool
1705 vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
1706 slp_tree slp_node)
1708 tree vec_dest;
1709 tree scalar_dest;
1710 tree op, type;
1711 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
1712 stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
1713 tree vectype_out, vectype_in;
1714 int nunits_in;
1715 int nunits_out;
1716 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1717 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
1718 tree fndecl, new_temp, def, rhs_type;
1719 gimple def_stmt;
1720 enum vect_def_type dt[3]
1721 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
1722 gimple new_stmt = NULL;
1723 int ncopies, j;
1724 vec<tree> vargs = vNULL;
1725 enum { NARROW, NONE, WIDEN } modifier;
1726 size_t i, nargs;
1727 tree lhs;
1729 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
1730 return false;
1732 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
1733 return false;
1735 /* Is STMT a vectorizable call? */
1736 if (!is_gimple_call (stmt))
1737 return false;
1739 if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
1740 return false;
1742 if (stmt_can_throw_internal (stmt))
1743 return false;
1745 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
1747 /* Process function arguments. */
1748 rhs_type = NULL_TREE;
1749 vectype_in = NULL_TREE;
1750 nargs = gimple_call_num_args (stmt);
1752 /* Bail out if the function has more than three arguments, we do not have
1753 interesting builtin functions to vectorize with more than two arguments
1754 except for fma. No arguments is also not good. */
1755 if (nargs == 0 || nargs > 3)
1756 return false;
1758 for (i = 0; i < nargs; i++)
1760 tree opvectype;
1762 op = gimple_call_arg (stmt, i);
1764 /* We can only handle calls with arguments of the same type. */
1765 if (rhs_type
1766 && !types_compatible_p (rhs_type, TREE_TYPE (op)))
1768 if (dump_enabled_p ())
1769 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1770 "argument types differ.");
1771 return false;
1773 if (!rhs_type)
1774 rhs_type = TREE_TYPE (op);
1776 if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
1777 &def_stmt, &def, &dt[i], &opvectype))
1779 if (dump_enabled_p ())
1780 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1781 "use not simple.");
1782 return false;
1785 if (!vectype_in)
1786 vectype_in = opvectype;
1787 else if (opvectype
1788 && opvectype != vectype_in)
1790 if (dump_enabled_p ())
1791 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1792 "argument vector types differ.");
1793 return false;
1796 /* If all arguments are external or constant defs use a vector type with
1797 the same size as the output vector type. */
1798 if (!vectype_in)
1799 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
1800 if (vec_stmt)
1801 gcc_assert (vectype_in);
1802 if (!vectype_in)
1804 if (dump_enabled_p ())
1806 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1807 "no vectype for scalar type ");
1808 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
1811 return false;
1814 /* FORNOW */
1815 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
1816 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
1817 if (nunits_in == nunits_out / 2)
1818 modifier = NARROW;
1819 else if (nunits_out == nunits_in)
1820 modifier = NONE;
1821 else if (nunits_out == nunits_in / 2)
1822 modifier = WIDEN;
1823 else
1824 return false;
1826 /* For now, we only vectorize functions if a target specific builtin
1827 is available. TODO -- in some cases, it might be profitable to
1828 insert the calls for pieces of the vector, in order to be able
1829 to vectorize other operations in the loop. */
1830 fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
1831 if (fndecl == NULL_TREE)
1833 if (dump_enabled_p ())
1834 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1835 "function is not vectorizable.");
1837 return false;
1840 gcc_assert (!gimple_vuse (stmt));
1842 if (slp_node || PURE_SLP_STMT (stmt_info))
1843 ncopies = 1;
1844 else if (modifier == NARROW)
1845 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
1846 else
1847 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
1849 /* Sanity check: make sure that at least one copy of the vectorized stmt
1850 needs to be generated. */
1851 gcc_assert (ncopies >= 1);
1853 if (!vec_stmt) /* transformation not required. */
1855 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
1856 if (dump_enabled_p ())
1857 dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_call ===");
1858 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
1859 return true;
1862 /** Transform. **/
1864 if (dump_enabled_p ())
1865 dump_printf_loc (MSG_NOTE, vect_location, "transform call.");
1867 /* Handle def. */
1868 scalar_dest = gimple_call_lhs (stmt);
1869 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
1871 prev_stmt_info = NULL;
1872 switch (modifier)
1874 case NONE:
1875 for (j = 0; j < ncopies; ++j)
1877 /* Build argument list for the vectorized call. */
1878 if (j == 0)
1879 vargs.create (nargs);
1880 else
1881 vargs.truncate (0);
1883 if (slp_node)
1885 vec<vec<tree> > vec_defs;
1886 vec_defs.create (nargs);
1887 vec<tree> vec_oprnds0;
1889 for (i = 0; i < nargs; i++)
1890 vargs.quick_push (gimple_call_arg (stmt, i));
1891 vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
1892 vec_oprnds0 = vec_defs[0];
1894 /* Arguments are ready. Create the new vector stmt. */
1895 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_oprnd0)
1897 size_t k;
1898 for (k = 0; k < nargs; k++)
1900 vec<tree> vec_oprndsk = vec_defs[k];
1901 vargs[k] = vec_oprndsk[i];
1903 new_stmt = gimple_build_call_vec (fndecl, vargs);
1904 new_temp = make_ssa_name (vec_dest, new_stmt);
1905 gimple_call_set_lhs (new_stmt, new_temp);
1906 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1907 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
1910 for (i = 0; i < nargs; i++)
1912 vec<tree> vec_oprndsi = vec_defs[i];
1913 vec_oprndsi.release ();
1915 vec_defs.release ();
1916 continue;
1919 for (i = 0; i < nargs; i++)
1921 op = gimple_call_arg (stmt, i);
1922 if (j == 0)
1923 vec_oprnd0
1924 = vect_get_vec_def_for_operand (op, stmt, NULL);
1925 else
1927 vec_oprnd0 = gimple_call_arg (new_stmt, i);
1928 vec_oprnd0
1929 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
1932 vargs.quick_push (vec_oprnd0);
1935 new_stmt = gimple_build_call_vec (fndecl, vargs);
1936 new_temp = make_ssa_name (vec_dest, new_stmt);
1937 gimple_call_set_lhs (new_stmt, new_temp);
1938 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1940 if (j == 0)
1941 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
1942 else
1943 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
1945 prev_stmt_info = vinfo_for_stmt (new_stmt);
1948 break;
1950 case NARROW:
1951 for (j = 0; j < ncopies; ++j)
1953 /* Build argument list for the vectorized call. */
1954 if (j == 0)
1955 vargs.create (nargs * 2);
1956 else
1957 vargs.truncate (0);
1959 if (slp_node)
1961 vec<vec<tree> > vec_defs;
1962 vec_defs.create (nargs);
1963 vec<tree> vec_oprnds0;
1965 for (i = 0; i < nargs; i++)
1966 vargs.quick_push (gimple_call_arg (stmt, i));
1967 vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
1968 vec_oprnds0 = vec_defs[0];
1970 /* Arguments are ready. Create the new vector stmt. */
1971 for (i = 0; vec_oprnds0.iterate (i, &vec_oprnd0); i += 2)
1973 size_t k;
1974 vargs.truncate (0);
1975 for (k = 0; k < nargs; k++)
1977 vec<tree> vec_oprndsk = vec_defs[k];
1978 vargs.quick_push (vec_oprndsk[i]);
1979 vargs.quick_push (vec_oprndsk[i + 1]);
1981 new_stmt = gimple_build_call_vec (fndecl, vargs);
1982 new_temp = make_ssa_name (vec_dest, new_stmt);
1983 gimple_call_set_lhs (new_stmt, new_temp);
1984 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1985 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
1988 for (i = 0; i < nargs; i++)
1990 vec<tree> vec_oprndsi = vec_defs[i];
1991 vec_oprndsi.release ();
1993 vec_defs.release ();
1994 continue;
1997 for (i = 0; i < nargs; i++)
1999 op = gimple_call_arg (stmt, i);
2000 if (j == 0)
2002 vec_oprnd0
2003 = vect_get_vec_def_for_operand (op, stmt, NULL);
2004 vec_oprnd1
2005 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2007 else
2009 vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1);
2010 vec_oprnd0
2011 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
2012 vec_oprnd1
2013 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2016 vargs.quick_push (vec_oprnd0);
2017 vargs.quick_push (vec_oprnd1);
2020 new_stmt = gimple_build_call_vec (fndecl, vargs);
2021 new_temp = make_ssa_name (vec_dest, new_stmt);
2022 gimple_call_set_lhs (new_stmt, new_temp);
2023 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2025 if (j == 0)
2026 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
2027 else
2028 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2030 prev_stmt_info = vinfo_for_stmt (new_stmt);
2033 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
2035 break;
2037 case WIDEN:
2038 /* No current target implements this case. */
2039 return false;
2042 vargs.release ();
2044 /* Update the exception handling table with the vector stmt if necessary. */
2045 if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt))
2046 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2048 /* The call in STMT might prevent it from being removed in dce.
2049 We however cannot remove it here, due to the way the ssa name
2050 it defines is mapped to the new definition. So just replace
2051 rhs of the statement with something harmless. */
2053 if (slp_node)
2054 return true;
2056 type = TREE_TYPE (scalar_dest);
2057 if (is_pattern_stmt_p (stmt_info))
2058 lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
2059 else
2060 lhs = gimple_call_lhs (stmt);
2061 new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
2062 set_vinfo_for_stmt (new_stmt, stmt_info);
2063 set_vinfo_for_stmt (stmt, NULL);
2064 STMT_VINFO_STMT (stmt_info) = new_stmt;
2065 gsi_replace (gsi, new_stmt, false);
2066 SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
2068 return true;
2072 /* Function vect_gen_widened_results_half
2074 Create a vector stmt whose code, type, number of arguments, and result
2075 variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
2076 VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
2077 In the case that CODE is a CALL_EXPR, this means that a call to DECL
2078 needs to be created (DECL is a function-decl of a target-builtin).
2079 STMT is the original scalar stmt that we are vectorizing. */
2081 static gimple
2082 vect_gen_widened_results_half (enum tree_code code,
2083 tree decl,
2084 tree vec_oprnd0, tree vec_oprnd1, int op_type,
2085 tree vec_dest, gimple_stmt_iterator *gsi,
2086 gimple stmt)
2088 gimple new_stmt;
2089 tree new_temp;
2091 /* Generate half of the widened result: */
2092 if (code == CALL_EXPR)
2094 /* Target specific support */
2095 if (op_type == binary_op)
2096 new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
2097 else
2098 new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
2099 new_temp = make_ssa_name (vec_dest, new_stmt);
2100 gimple_call_set_lhs (new_stmt, new_temp);
2102 else
2104 /* Generic support */
2105 gcc_assert (op_type == TREE_CODE_LENGTH (code));
2106 if (op_type != binary_op)
2107 vec_oprnd1 = NULL;
2108 new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0,
2109 vec_oprnd1);
2110 new_temp = make_ssa_name (vec_dest, new_stmt);
2111 gimple_assign_set_lhs (new_stmt, new_temp);
2113 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2115 return new_stmt;
2119 /* Get vectorized definitions for loop-based vectorization. For the first
2120 operand we call vect_get_vec_def_for_operand() (with OPRND containing
2121 scalar operand), and for the rest we get a copy with
2122 vect_get_vec_def_for_stmt_copy() using the previous vector definition
2123 (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
2124 The vectors are collected into VEC_OPRNDS. */
2126 static void
2127 vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt,
2128 vec<tree> *vec_oprnds, int multi_step_cvt)
2130 tree vec_oprnd;
2132 /* Get first vector operand. */
2133 /* All the vector operands except the very first one (that is scalar oprnd)
2134 are stmt copies. */
2135 if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
2136 vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
2137 else
2138 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
2140 vec_oprnds->quick_push (vec_oprnd);
2142 /* Get second vector operand. */
2143 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
2144 vec_oprnds->quick_push (vec_oprnd);
2146 *oprnd = vec_oprnd;
2148 /* For conversion in multiple steps, continue to get operands
2149 recursively. */
2150 if (multi_step_cvt)
2151 vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
2155 /* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
2156 For multi-step conversions store the resulting vectors and call the function
2157 recursively. */
2159 static void
2160 vect_create_vectorized_demotion_stmts (vec<tree> *vec_oprnds,
2161 int multi_step_cvt, gimple stmt,
2162 vec<tree> vec_dsts,
2163 gimple_stmt_iterator *gsi,
2164 slp_tree slp_node, enum tree_code code,
2165 stmt_vec_info *prev_stmt_info)
2167 unsigned int i;
2168 tree vop0, vop1, new_tmp, vec_dest;
2169 gimple new_stmt;
2170 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2172 vec_dest = vec_dsts.pop ();
2174 for (i = 0; i < vec_oprnds->length (); i += 2)
2176 /* Create demotion operation. */
2177 vop0 = (*vec_oprnds)[i];
2178 vop1 = (*vec_oprnds)[i + 1];
2179 new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
2180 new_tmp = make_ssa_name (vec_dest, new_stmt);
2181 gimple_assign_set_lhs (new_stmt, new_tmp);
2182 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2184 if (multi_step_cvt)
2185 /* Store the resulting vector for next recursive call. */
2186 (*vec_oprnds)[i/2] = new_tmp;
2187 else
2189 /* This is the last step of the conversion sequence. Store the
2190 vectors in SLP_NODE or in vector info of the scalar statement
2191 (or in STMT_VINFO_RELATED_STMT chain). */
2192 if (slp_node)
2193 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2194 else
2196 if (!*prev_stmt_info)
2197 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
2198 else
2199 STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
2201 *prev_stmt_info = vinfo_for_stmt (new_stmt);
2206 /* For multi-step demotion operations we first generate demotion operations
2207 from the source type to the intermediate types, and then combine the
2208 results (stored in VEC_OPRNDS) in demotion operation to the destination
2209 type. */
2210 if (multi_step_cvt)
2212 /* At each level of recursion we have half of the operands we had at the
2213 previous level. */
2214 vec_oprnds->truncate ((i+1)/2);
2215 vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
2216 stmt, vec_dsts, gsi, slp_node,
2217 VEC_PACK_TRUNC_EXPR,
2218 prev_stmt_info);
2221 vec_dsts.quick_push (vec_dest);
2225 /* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
2226 and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
2227 the resulting vectors and call the function recursively. */
2229 static void
2230 vect_create_vectorized_promotion_stmts (vec<tree> *vec_oprnds0,
2231 vec<tree> *vec_oprnds1,
2232 gimple stmt, tree vec_dest,
2233 gimple_stmt_iterator *gsi,
2234 enum tree_code code1,
2235 enum tree_code code2, tree decl1,
2236 tree decl2, int op_type)
2238 int i;
2239 tree vop0, vop1, new_tmp1, new_tmp2;
2240 gimple new_stmt1, new_stmt2;
2241 vec<tree> vec_tmp = vNULL;
2243 vec_tmp.create (vec_oprnds0->length () * 2);
2244 FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0)
2246 if (op_type == binary_op)
2247 vop1 = (*vec_oprnds1)[i];
2248 else
2249 vop1 = NULL_TREE;
2251 /* Generate the two halves of promotion operation. */
2252 new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
2253 op_type, vec_dest, gsi, stmt);
2254 new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
2255 op_type, vec_dest, gsi, stmt);
2256 if (is_gimple_call (new_stmt1))
2258 new_tmp1 = gimple_call_lhs (new_stmt1);
2259 new_tmp2 = gimple_call_lhs (new_stmt2);
2261 else
2263 new_tmp1 = gimple_assign_lhs (new_stmt1);
2264 new_tmp2 = gimple_assign_lhs (new_stmt2);
2267 /* Store the results for the next step. */
2268 vec_tmp.quick_push (new_tmp1);
2269 vec_tmp.quick_push (new_tmp2);
2272 vec_oprnds0->release ();
2273 *vec_oprnds0 = vec_tmp;
2277 /* Check if STMT performs a conversion operation, that can be vectorized.
2278 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2279 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
2280 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2282 static bool
2283 vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
2284 gimple *vec_stmt, slp_tree slp_node)
2286 tree vec_dest;
2287 tree scalar_dest;
2288 tree op0, op1 = NULL_TREE;
2289 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
2290 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2291 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2292 enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
2293 enum tree_code codecvt1 = ERROR_MARK, codecvt2 = ERROR_MARK;
2294 tree decl1 = NULL_TREE, decl2 = NULL_TREE;
2295 tree new_temp;
2296 tree def;
2297 gimple def_stmt;
2298 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
2299 gimple new_stmt = NULL;
2300 stmt_vec_info prev_stmt_info;
2301 int nunits_in;
2302 int nunits_out;
2303 tree vectype_out, vectype_in;
2304 int ncopies, i, j;
2305 tree lhs_type, rhs_type;
2306 enum { NARROW, NONE, WIDEN } modifier;
2307 vec<tree> vec_oprnds0 = vNULL;
2308 vec<tree> vec_oprnds1 = vNULL;
2309 tree vop0;
2310 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2311 int multi_step_cvt = 0;
2312 vec<tree> vec_dsts = vNULL;
2313 vec<tree> interm_types = vNULL;
2314 tree last_oprnd, intermediate_type, cvt_type = NULL_TREE;
2315 int op_type;
2316 enum machine_mode rhs_mode;
2317 unsigned short fltsz;
2319 /* Is STMT a vectorizable conversion? */
2321 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2322 return false;
2324 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2325 return false;
2327 if (!is_gimple_assign (stmt))
2328 return false;
2330 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2331 return false;
2333 code = gimple_assign_rhs_code (stmt);
2334 if (!CONVERT_EXPR_CODE_P (code)
2335 && code != FIX_TRUNC_EXPR
2336 && code != FLOAT_EXPR
2337 && code != WIDEN_MULT_EXPR
2338 && code != WIDEN_LSHIFT_EXPR)
2339 return false;
2341 op_type = TREE_CODE_LENGTH (code);
2343 /* Check types of lhs and rhs. */
2344 scalar_dest = gimple_assign_lhs (stmt);
2345 lhs_type = TREE_TYPE (scalar_dest);
2346 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
2348 op0 = gimple_assign_rhs1 (stmt);
2349 rhs_type = TREE_TYPE (op0);
2351 if ((code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
2352 && !((INTEGRAL_TYPE_P (lhs_type)
2353 && INTEGRAL_TYPE_P (rhs_type))
2354 || (SCALAR_FLOAT_TYPE_P (lhs_type)
2355 && SCALAR_FLOAT_TYPE_P (rhs_type))))
2356 return false;
2358 if ((INTEGRAL_TYPE_P (lhs_type)
2359 && (TYPE_PRECISION (lhs_type)
2360 != GET_MODE_PRECISION (TYPE_MODE (lhs_type))))
2361 || (INTEGRAL_TYPE_P (rhs_type)
2362 && (TYPE_PRECISION (rhs_type)
2363 != GET_MODE_PRECISION (TYPE_MODE (rhs_type)))))
2365 if (dump_enabled_p ())
2366 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2367 "type conversion to/from bit-precision unsupported.");
2368 return false;
2371 /* Check the operands of the operation. */
2372 if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
2373 &def_stmt, &def, &dt[0], &vectype_in))
2375 if (dump_enabled_p ())
2376 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2377 "use not simple.");
2378 return false;
2380 if (op_type == binary_op)
2382 bool ok;
2384 op1 = gimple_assign_rhs2 (stmt);
2385 gcc_assert (code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR);
2386 /* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of
2387 OP1. */
2388 if (CONSTANT_CLASS_P (op0))
2389 ok = vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo,
2390 &def_stmt, &def, &dt[1], &vectype_in);
2391 else
2392 ok = vect_is_simple_use (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
2393 &def, &dt[1]);
2395 if (!ok)
2397 if (dump_enabled_p ())
2398 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2399 "use not simple.");
2400 return false;
2404 /* If op0 is an external or constant defs use a vector type of
2405 the same size as the output vector type. */
2406 if (!vectype_in)
2407 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
2408 if (vec_stmt)
2409 gcc_assert (vectype_in);
2410 if (!vectype_in)
2412 if (dump_enabled_p ())
2414 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2415 "no vectype for scalar type ");
2416 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
2419 return false;
2422 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
2423 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
2424 if (nunits_in < nunits_out)
2425 modifier = NARROW;
2426 else if (nunits_out == nunits_in)
2427 modifier = NONE;
2428 else
2429 modifier = WIDEN;
2431 /* Multiple types in SLP are handled by creating the appropriate number of
2432 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
2433 case of SLP. */
2434 if (slp_node || PURE_SLP_STMT (stmt_info))
2435 ncopies = 1;
2436 else if (modifier == NARROW)
2437 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
2438 else
2439 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
2441 /* Sanity check: make sure that at least one copy of the vectorized stmt
2442 needs to be generated. */
2443 gcc_assert (ncopies >= 1);
2445 /* Supportable by target? */
2446 switch (modifier)
2448 case NONE:
2449 if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
2450 return false;
2451 if (supportable_convert_operation (code, vectype_out, vectype_in,
2452 &decl1, &code1))
2453 break;
2454 /* FALLTHRU */
2455 unsupported:
2456 if (dump_enabled_p ())
2457 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2458 "conversion not supported by target.");
2459 return false;
2461 case WIDEN:
2462 if (supportable_widening_operation (code, stmt, vectype_out, vectype_in,
2463 &code1, &code2, &multi_step_cvt,
2464 &interm_types))
2466 /* Binary widening operation can only be supported directly by the
2467 architecture. */
2468 gcc_assert (!(multi_step_cvt && op_type == binary_op));
2469 break;
2472 if (code != FLOAT_EXPR
2473 || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
2474 <= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
2475 goto unsupported;
2477 rhs_mode = TYPE_MODE (rhs_type);
2478 fltsz = GET_MODE_SIZE (TYPE_MODE (lhs_type));
2479 for (rhs_mode = GET_MODE_2XWIDER_MODE (TYPE_MODE (rhs_type));
2480 rhs_mode != VOIDmode && GET_MODE_SIZE (rhs_mode) <= fltsz;
2481 rhs_mode = GET_MODE_2XWIDER_MODE (rhs_mode))
2483 cvt_type
2484 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
2485 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
2486 if (cvt_type == NULL_TREE)
2487 goto unsupported;
2489 if (GET_MODE_SIZE (rhs_mode) == fltsz)
2491 if (!supportable_convert_operation (code, vectype_out,
2492 cvt_type, &decl1, &codecvt1))
2493 goto unsupported;
2495 else if (!supportable_widening_operation (code, stmt, vectype_out,
2496 cvt_type, &codecvt1,
2497 &codecvt2, &multi_step_cvt,
2498 &interm_types))
2499 continue;
2500 else
2501 gcc_assert (multi_step_cvt == 0);
2503 if (supportable_widening_operation (NOP_EXPR, stmt, cvt_type,
2504 vectype_in, &code1, &code2,
2505 &multi_step_cvt, &interm_types))
2506 break;
2509 if (rhs_mode == VOIDmode || GET_MODE_SIZE (rhs_mode) > fltsz)
2510 goto unsupported;
2512 if (GET_MODE_SIZE (rhs_mode) == fltsz)
2513 codecvt2 = ERROR_MARK;
2514 else
2516 multi_step_cvt++;
2517 interm_types.safe_push (cvt_type);
2518 cvt_type = NULL_TREE;
2520 break;
2522 case NARROW:
2523 gcc_assert (op_type == unary_op);
2524 if (supportable_narrowing_operation (code, vectype_out, vectype_in,
2525 &code1, &multi_step_cvt,
2526 &interm_types))
2527 break;
2529 if (code != FIX_TRUNC_EXPR
2530 || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
2531 >= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
2532 goto unsupported;
2534 rhs_mode = TYPE_MODE (rhs_type);
2535 cvt_type
2536 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
2537 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
2538 if (cvt_type == NULL_TREE)
2539 goto unsupported;
2540 if (!supportable_convert_operation (code, cvt_type, vectype_in,
2541 &decl1, &codecvt1))
2542 goto unsupported;
2543 if (supportable_narrowing_operation (NOP_EXPR, vectype_out, cvt_type,
2544 &code1, &multi_step_cvt,
2545 &interm_types))
2546 break;
2547 goto unsupported;
2549 default:
2550 gcc_unreachable ();
2553 if (!vec_stmt) /* transformation not required. */
2555 if (dump_enabled_p ())
2556 dump_printf_loc (MSG_NOTE, vect_location,
2557 "=== vectorizable_conversion ===");
2558 if (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR)
2560 STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
2561 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
2563 else if (modifier == NARROW)
2565 STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
2566 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
2568 else
2570 STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
2571 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
2573 interm_types.release ();
2574 return true;
2577 /** Transform. **/
2578 if (dump_enabled_p ())
2579 dump_printf_loc (MSG_NOTE, vect_location,
2580 "transform conversion. ncopies = %d.", ncopies);
2582 if (op_type == binary_op)
2584 if (CONSTANT_CLASS_P (op0))
2585 op0 = fold_convert (TREE_TYPE (op1), op0);
2586 else if (CONSTANT_CLASS_P (op1))
2587 op1 = fold_convert (TREE_TYPE (op0), op1);
2590 /* In case of multi-step conversion, we first generate conversion operations
2591 to the intermediate types, and then from that types to the final one.
2592 We create vector destinations for the intermediate type (TYPES) received
2593 from supportable_*_operation, and store them in the correct order
2594 for future use in vect_create_vectorized_*_stmts (). */
2595 vec_dsts.create (multi_step_cvt + 1);
2596 vec_dest = vect_create_destination_var (scalar_dest,
2597 (cvt_type && modifier == WIDEN)
2598 ? cvt_type : vectype_out);
2599 vec_dsts.quick_push (vec_dest);
2601 if (multi_step_cvt)
2603 for (i = interm_types.length () - 1;
2604 interm_types.iterate (i, &intermediate_type); i--)
2606 vec_dest = vect_create_destination_var (scalar_dest,
2607 intermediate_type);
2608 vec_dsts.quick_push (vec_dest);
2612 if (cvt_type)
2613 vec_dest = vect_create_destination_var (scalar_dest,
2614 modifier == WIDEN
2615 ? vectype_out : cvt_type);
2617 if (!slp_node)
2619 if (modifier == WIDEN)
2621 vec_oprnds0.create (multi_step_cvt ? vect_pow2(multi_step_cvt) : 1);
2622 if (op_type == binary_op)
2623 vec_oprnds1.create (1);
2625 else if (modifier == NARROW)
2626 vec_oprnds0.create (
2627 2 * (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
2629 else if (code == WIDEN_LSHIFT_EXPR)
2630 vec_oprnds1.create (slp_node->vec_stmts_size);
2632 last_oprnd = op0;
2633 prev_stmt_info = NULL;
2634 switch (modifier)
2636 case NONE:
2637 for (j = 0; j < ncopies; j++)
2639 if (j == 0)
2640 vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node,
2641 -1);
2642 else
2643 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
2645 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
2647 /* Arguments are ready, create the new vector stmt. */
2648 if (code1 == CALL_EXPR)
2650 new_stmt = gimple_build_call (decl1, 1, vop0);
2651 new_temp = make_ssa_name (vec_dest, new_stmt);
2652 gimple_call_set_lhs (new_stmt, new_temp);
2654 else
2656 gcc_assert (TREE_CODE_LENGTH (code1) == unary_op);
2657 new_stmt = gimple_build_assign_with_ops (code1, vec_dest,
2658 vop0, NULL);
2659 new_temp = make_ssa_name (vec_dest, new_stmt);
2660 gimple_assign_set_lhs (new_stmt, new_temp);
2663 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2664 if (slp_node)
2665 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2668 if (j == 0)
2669 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2670 else
2671 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2672 prev_stmt_info = vinfo_for_stmt (new_stmt);
2674 break;
2676 case WIDEN:
2677 /* In case the vectorization factor (VF) is bigger than the number
2678 of elements that we can fit in a vectype (nunits), we have to
2679 generate more than one vector stmt - i.e - we need to "unroll"
2680 the vector stmt by a factor VF/nunits. */
2681 for (j = 0; j < ncopies; j++)
2683 /* Handle uses. */
2684 if (j == 0)
2686 if (slp_node)
2688 if (code == WIDEN_LSHIFT_EXPR)
2690 unsigned int k;
2692 vec_oprnd1 = op1;
2693 /* Store vec_oprnd1 for every vector stmt to be created
2694 for SLP_NODE. We check during the analysis that all
2695 the shift arguments are the same. */
2696 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
2697 vec_oprnds1.quick_push (vec_oprnd1);
2699 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
2700 slp_node, -1);
2702 else
2703 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0,
2704 &vec_oprnds1, slp_node, -1);
2706 else
2708 vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
2709 vec_oprnds0.quick_push (vec_oprnd0);
2710 if (op_type == binary_op)
2712 if (code == WIDEN_LSHIFT_EXPR)
2713 vec_oprnd1 = op1;
2714 else
2715 vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt,
2716 NULL);
2717 vec_oprnds1.quick_push (vec_oprnd1);
2721 else
2723 vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
2724 vec_oprnds0.truncate (0);
2725 vec_oprnds0.quick_push (vec_oprnd0);
2726 if (op_type == binary_op)
2728 if (code == WIDEN_LSHIFT_EXPR)
2729 vec_oprnd1 = op1;
2730 else
2731 vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1],
2732 vec_oprnd1);
2733 vec_oprnds1.truncate (0);
2734 vec_oprnds1.quick_push (vec_oprnd1);
2738 /* Arguments are ready. Create the new vector stmts. */
2739 for (i = multi_step_cvt; i >= 0; i--)
2741 tree this_dest = vec_dsts[i];
2742 enum tree_code c1 = code1, c2 = code2;
2743 if (i == 0 && codecvt2 != ERROR_MARK)
2745 c1 = codecvt1;
2746 c2 = codecvt2;
2748 vect_create_vectorized_promotion_stmts (&vec_oprnds0,
2749 &vec_oprnds1,
2750 stmt, this_dest, gsi,
2751 c1, c2, decl1, decl2,
2752 op_type);
2755 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
2757 if (cvt_type)
2759 if (codecvt1 == CALL_EXPR)
2761 new_stmt = gimple_build_call (decl1, 1, vop0);
2762 new_temp = make_ssa_name (vec_dest, new_stmt);
2763 gimple_call_set_lhs (new_stmt, new_temp);
2765 else
2767 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
2768 new_temp = make_ssa_name (vec_dest, NULL);
2769 new_stmt = gimple_build_assign_with_ops (codecvt1,
2770 new_temp,
2771 vop0, NULL);
2774 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2776 else
2777 new_stmt = SSA_NAME_DEF_STMT (vop0);
2779 if (slp_node)
2780 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2781 else
2783 if (!prev_stmt_info)
2784 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
2785 else
2786 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2787 prev_stmt_info = vinfo_for_stmt (new_stmt);
2792 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
2793 break;
2795 case NARROW:
2796 /* In case the vectorization factor (VF) is bigger than the number
2797 of elements that we can fit in a vectype (nunits), we have to
2798 generate more than one vector stmt - i.e - we need to "unroll"
2799 the vector stmt by a factor VF/nunits. */
2800 for (j = 0; j < ncopies; j++)
2802 /* Handle uses. */
2803 if (slp_node)
2804 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
2805 slp_node, -1);
2806 else
2808 vec_oprnds0.truncate (0);
2809 vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
2810 vect_pow2 (multi_step_cvt) - 1);
2813 /* Arguments are ready. Create the new vector stmts. */
2814 if (cvt_type)
2815 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
2817 if (codecvt1 == CALL_EXPR)
2819 new_stmt = gimple_build_call (decl1, 1, vop0);
2820 new_temp = make_ssa_name (vec_dest, new_stmt);
2821 gimple_call_set_lhs (new_stmt, new_temp);
2823 else
2825 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
2826 new_temp = make_ssa_name (vec_dest, NULL);
2827 new_stmt = gimple_build_assign_with_ops (codecvt1, new_temp,
2828 vop0, NULL);
2831 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2832 vec_oprnds0[i] = new_temp;
2835 vect_create_vectorized_demotion_stmts (&vec_oprnds0, multi_step_cvt,
2836 stmt, vec_dsts, gsi,
2837 slp_node, code1,
2838 &prev_stmt_info);
2841 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
2842 break;
2845 vec_oprnds0.release ();
2846 vec_oprnds1.release ();
2847 vec_dsts.release ();
2848 interm_types.release ();
2850 return true;
2854 /* Function vectorizable_assignment.
2856 Check if STMT performs an assignment (copy) that can be vectorized.
2857 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2858 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2859 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2861 static bool
2862 vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
2863 gimple *vec_stmt, slp_tree slp_node)
2865 tree vec_dest;
2866 tree scalar_dest;
2867 tree op;
2868 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2869 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2870 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2871 tree new_temp;
2872 tree def;
2873 gimple def_stmt;
2874 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
2875 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
2876 int ncopies;
2877 int i, j;
2878 vec<tree> vec_oprnds = vNULL;
2879 tree vop;
2880 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2881 gimple new_stmt = NULL;
2882 stmt_vec_info prev_stmt_info = NULL;
2883 enum tree_code code;
2884 tree vectype_in;
2886 /* Multiple types in SLP are handled by creating the appropriate number of
2887 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
2888 case of SLP. */
2889 if (slp_node || PURE_SLP_STMT (stmt_info))
2890 ncopies = 1;
2891 else
2892 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
2894 gcc_assert (ncopies >= 1);
2896 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2897 return false;
2899 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2900 return false;
2902 /* Is vectorizable assignment? */
2903 if (!is_gimple_assign (stmt))
2904 return false;
2906 scalar_dest = gimple_assign_lhs (stmt);
2907 if (TREE_CODE (scalar_dest) != SSA_NAME)
2908 return false;
2910 code = gimple_assign_rhs_code (stmt);
2911 if (gimple_assign_single_p (stmt)
2912 || code == PAREN_EXPR
2913 || CONVERT_EXPR_CODE_P (code))
2914 op = gimple_assign_rhs1 (stmt);
2915 else
2916 return false;
2918 if (code == VIEW_CONVERT_EXPR)
2919 op = TREE_OPERAND (op, 0);
2921 if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
2922 &def_stmt, &def, &dt[0], &vectype_in))
2924 if (dump_enabled_p ())
2925 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2926 "use not simple.");
2927 return false;
2930 /* We can handle NOP_EXPR conversions that do not change the number
2931 of elements or the vector size. */
2932 if ((CONVERT_EXPR_CODE_P (code)
2933 || code == VIEW_CONVERT_EXPR)
2934 && (!vectype_in
2935 || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
2936 || (GET_MODE_SIZE (TYPE_MODE (vectype))
2937 != GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
2938 return false;
2940 /* We do not handle bit-precision changes. */
2941 if ((CONVERT_EXPR_CODE_P (code)
2942 || code == VIEW_CONVERT_EXPR)
2943 && INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
2944 && ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
2945 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
2946 || ((TYPE_PRECISION (TREE_TYPE (op))
2947 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (op))))))
2948 /* But a conversion that does not change the bit-pattern is ok. */
2949 && !((TYPE_PRECISION (TREE_TYPE (scalar_dest))
2950 > TYPE_PRECISION (TREE_TYPE (op)))
2951 && TYPE_UNSIGNED (TREE_TYPE (op))))
2953 if (dump_enabled_p ())
2954 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2955 "type conversion to/from bit-precision "
2956 "unsupported.");
2957 return false;
2960 if (!vec_stmt) /* transformation not required. */
2962 STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
2963 if (dump_enabled_p ())
2964 dump_printf_loc (MSG_NOTE, vect_location,
2965 "=== vectorizable_assignment ===");
2966 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
2967 return true;
2970 /** Transform. **/
2971 if (dump_enabled_p ())
2972 dump_printf_loc (MSG_NOTE, vect_location, "transform assignment.");
2974 /* Handle def. */
2975 vec_dest = vect_create_destination_var (scalar_dest, vectype);
2977 /* Handle use. */
2978 for (j = 0; j < ncopies; j++)
2980 /* Handle uses. */
2981 if (j == 0)
2982 vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node, -1);
2983 else
2984 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
2986 /* Arguments are ready. create the new vector stmt. */
2987 FOR_EACH_VEC_ELT (vec_oprnds, i, vop)
2989 if (CONVERT_EXPR_CODE_P (code)
2990 || code == VIEW_CONVERT_EXPR)
2991 vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
2992 new_stmt = gimple_build_assign (vec_dest, vop);
2993 new_temp = make_ssa_name (vec_dest, new_stmt);
2994 gimple_assign_set_lhs (new_stmt, new_temp);
2995 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2996 if (slp_node)
2997 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3000 if (slp_node)
3001 continue;
3003 if (j == 0)
3004 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3005 else
3006 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3008 prev_stmt_info = vinfo_for_stmt (new_stmt);
3011 vec_oprnds.release ();
3012 return true;
3016 /* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE
3017 either as shift by a scalar or by a vector. */
3019 bool
3020 vect_supportable_shift (enum tree_code code, tree scalar_type)
3023 enum machine_mode vec_mode;
3024 optab optab;
3025 int icode;
3026 tree vectype;
3028 vectype = get_vectype_for_scalar_type (scalar_type);
3029 if (!vectype)
3030 return false;
3032 optab = optab_for_tree_code (code, vectype, optab_scalar);
3033 if (!optab
3034 || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
3036 optab = optab_for_tree_code (code, vectype, optab_vector);
3037 if (!optab
3038 || (optab_handler (optab, TYPE_MODE (vectype))
3039 == CODE_FOR_nothing))
3040 return false;
3043 vec_mode = TYPE_MODE (vectype);
3044 icode = (int) optab_handler (optab, vec_mode);
3045 if (icode == CODE_FOR_nothing)
3046 return false;
3048 return true;
3052 /* Function vectorizable_shift.
3054 Check if STMT performs a shift operation that can be vectorized.
3055 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3056 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
3057 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3059 static bool
3060 vectorizable_shift (gimple stmt, gimple_stmt_iterator *gsi,
3061 gimple *vec_stmt, slp_tree slp_node)
3063 tree vec_dest;
3064 tree scalar_dest;
3065 tree op0, op1 = NULL;
3066 tree vec_oprnd1 = NULL_TREE;
3067 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3068 tree vectype;
3069 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3070 enum tree_code code;
3071 enum machine_mode vec_mode;
3072 tree new_temp;
3073 optab optab;
3074 int icode;
3075 enum machine_mode optab_op2_mode;
3076 tree def;
3077 gimple def_stmt;
3078 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
3079 gimple new_stmt = NULL;
3080 stmt_vec_info prev_stmt_info;
3081 int nunits_in;
3082 int nunits_out;
3083 tree vectype_out;
3084 tree op1_vectype;
3085 int ncopies;
3086 int j, i;
3087 vec<tree> vec_oprnds0 = vNULL;
3088 vec<tree> vec_oprnds1 = vNULL;
3089 tree vop0, vop1;
3090 unsigned int k;
3091 bool scalar_shift_arg = true;
3092 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3093 int vf;
3095 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3096 return false;
3098 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
3099 return false;
3101 /* Is STMT a vectorizable binary/unary operation? */
3102 if (!is_gimple_assign (stmt))
3103 return false;
3105 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
3106 return false;
3108 code = gimple_assign_rhs_code (stmt);
3110 if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
3111 || code == RROTATE_EXPR))
3112 return false;
3114 scalar_dest = gimple_assign_lhs (stmt);
3115 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
3116 if (TYPE_PRECISION (TREE_TYPE (scalar_dest))
3117 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
3119 if (dump_enabled_p ())
3120 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3121 "bit-precision shifts not supported.");
3122 return false;
3125 op0 = gimple_assign_rhs1 (stmt);
3126 if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
3127 &def_stmt, &def, &dt[0], &vectype))
3129 if (dump_enabled_p ())
3130 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3131 "use not simple.");
3132 return false;
3134 /* If op0 is an external or constant def use a vector type with
3135 the same size as the output vector type. */
3136 if (!vectype)
3137 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
3138 if (vec_stmt)
3139 gcc_assert (vectype);
3140 if (!vectype)
3142 if (dump_enabled_p ())
3143 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3144 "no vectype for scalar type ");
3145 return false;
3148 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
3149 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
3150 if (nunits_out != nunits_in)
3151 return false;
3153 op1 = gimple_assign_rhs2 (stmt);
3154 if (!vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
3155 &def, &dt[1], &op1_vectype))
3157 if (dump_enabled_p ())
3158 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3159 "use not simple.");
3160 return false;
3163 if (loop_vinfo)
3164 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3165 else
3166 vf = 1;
3168 /* Multiple types in SLP are handled by creating the appropriate number of
3169 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
3170 case of SLP. */
3171 if (slp_node || PURE_SLP_STMT (stmt_info))
3172 ncopies = 1;
3173 else
3174 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
3176 gcc_assert (ncopies >= 1);
3178 /* Determine whether the shift amount is a vector, or scalar. If the
3179 shift/rotate amount is a vector, use the vector/vector shift optabs. */
3181 if (dt[1] == vect_internal_def && !slp_node)
3182 scalar_shift_arg = false;
3183 else if (dt[1] == vect_constant_def
3184 || dt[1] == vect_external_def
3185 || dt[1] == vect_internal_def)
3187 /* In SLP, need to check whether the shift count is the same,
3188 in loops if it is a constant or invariant, it is always
3189 a scalar shift. */
3190 if (slp_node)
3192 vec<gimple> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
3193 gimple slpstmt;
3195 FOR_EACH_VEC_ELT (stmts, k, slpstmt)
3196 if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0))
3197 scalar_shift_arg = false;
3200 else
3202 if (dump_enabled_p ())
3203 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3204 "operand mode requires invariant argument.");
3205 return false;
3208 /* Vector shifted by vector. */
3209 if (!scalar_shift_arg)
3211 optab = optab_for_tree_code (code, vectype, optab_vector);
3212 if (dump_enabled_p ())
3213 dump_printf_loc (MSG_NOTE, vect_location,
3214 "vector/vector shift/rotate found.");
3216 if (!op1_vectype)
3217 op1_vectype = get_same_sized_vectype (TREE_TYPE (op1), vectype_out);
3218 if (op1_vectype == NULL_TREE
3219 || TYPE_MODE (op1_vectype) != TYPE_MODE (vectype))
3221 if (dump_enabled_p ())
3222 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3223 "unusable type for last operand in"
3224 " vector/vector shift/rotate.");
3225 return false;
3228 /* See if the machine has a vector shifted by scalar insn and if not
3229 then see if it has a vector shifted by vector insn. */
3230 else
3232 optab = optab_for_tree_code (code, vectype, optab_scalar);
3233 if (optab
3234 && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
3236 if (dump_enabled_p ())
3237 dump_printf_loc (MSG_NOTE, vect_location,
3238 "vector/scalar shift/rotate found.");
3240 else
3242 optab = optab_for_tree_code (code, vectype, optab_vector);
3243 if (optab
3244 && (optab_handler (optab, TYPE_MODE (vectype))
3245 != CODE_FOR_nothing))
3247 scalar_shift_arg = false;
3249 if (dump_enabled_p ())
3250 dump_printf_loc (MSG_NOTE, vect_location,
3251 "vector/vector shift/rotate found.");
3253 /* Unlike the other binary operators, shifts/rotates have
3254 the rhs being int, instead of the same type as the lhs,
3255 so make sure the scalar is the right type if we are
3256 dealing with vectors of long long/long/short/char. */
3257 if (dt[1] == vect_constant_def)
3258 op1 = fold_convert (TREE_TYPE (vectype), op1);
3259 else if (!useless_type_conversion_p (TREE_TYPE (vectype),
3260 TREE_TYPE (op1)))
3262 if (slp_node
3263 && TYPE_MODE (TREE_TYPE (vectype))
3264 != TYPE_MODE (TREE_TYPE (op1)))
3266 if (dump_enabled_p ())
3267 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3268 "unusable type for last operand in"
3269 " vector/vector shift/rotate.");
3270 return false;
3272 if (vec_stmt && !slp_node)
3274 op1 = fold_convert (TREE_TYPE (vectype), op1);
3275 op1 = vect_init_vector (stmt, op1,
3276 TREE_TYPE (vectype), NULL);
3283 /* Supportable by target? */
3284 if (!optab)
3286 if (dump_enabled_p ())
3287 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3288 "no optab.");
3289 return false;
3291 vec_mode = TYPE_MODE (vectype);
3292 icode = (int) optab_handler (optab, vec_mode);
3293 if (icode == CODE_FOR_nothing)
3295 if (dump_enabled_p ())
3296 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3297 "op not supported by target.");
3298 /* Check only during analysis. */
3299 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
3300 || (vf < vect_min_worthwhile_factor (code)
3301 && !vec_stmt))
3302 return false;
3303 if (dump_enabled_p ())
3304 dump_printf_loc (MSG_NOTE, vect_location, "proceeding using word mode.");
3307 /* Worthwhile without SIMD support? Check only during analysis. */
3308 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
3309 && vf < vect_min_worthwhile_factor (code)
3310 && !vec_stmt)
3312 if (dump_enabled_p ())
3313 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3314 "not worthwhile without SIMD support.");
3315 return false;
3318 if (!vec_stmt) /* transformation not required. */
3320 STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type;
3321 if (dump_enabled_p ())
3322 dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_shift ===");
3323 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
3324 return true;
3327 /** Transform. **/
3329 if (dump_enabled_p ())
3330 dump_printf_loc (MSG_NOTE, vect_location,
3331 "transform binary/unary operation.");
3333 /* Handle def. */
3334 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3336 prev_stmt_info = NULL;
3337 for (j = 0; j < ncopies; j++)
3339 /* Handle uses. */
3340 if (j == 0)
3342 if (scalar_shift_arg)
3344 /* Vector shl and shr insn patterns can be defined with scalar
3345 operand 2 (shift operand). In this case, use constant or loop
3346 invariant op1 directly, without extending it to vector mode
3347 first. */
3348 optab_op2_mode = insn_data[icode].operand[2].mode;
3349 if (!VECTOR_MODE_P (optab_op2_mode))
3351 if (dump_enabled_p ())
3352 dump_printf_loc (MSG_NOTE, vect_location,
3353 "operand 1 using scalar mode.");
3354 vec_oprnd1 = op1;
3355 vec_oprnds1.create (slp_node ? slp_node->vec_stmts_size : 1);
3356 vec_oprnds1.quick_push (vec_oprnd1);
3357 if (slp_node)
3359 /* Store vec_oprnd1 for every vector stmt to be created
3360 for SLP_NODE. We check during the analysis that all
3361 the shift arguments are the same.
3362 TODO: Allow different constants for different vector
3363 stmts generated for an SLP instance. */
3364 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
3365 vec_oprnds1.quick_push (vec_oprnd1);
3370 /* vec_oprnd1 is available if operand 1 should be of a scalar-type
3371 (a special case for certain kind of vector shifts); otherwise,
3372 operand 1 should be of a vector type (the usual case). */
3373 if (vec_oprnd1)
3374 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
3375 slp_node, -1);
3376 else
3377 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
3378 slp_node, -1);
3380 else
3381 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
3383 /* Arguments are ready. Create the new vector stmt. */
3384 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
3386 vop1 = vec_oprnds1[i];
3387 new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
3388 new_temp = make_ssa_name (vec_dest, new_stmt);
3389 gimple_assign_set_lhs (new_stmt, new_temp);
3390 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3391 if (slp_node)
3392 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3395 if (slp_node)
3396 continue;
3398 if (j == 0)
3399 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3400 else
3401 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3402 prev_stmt_info = vinfo_for_stmt (new_stmt);
3405 vec_oprnds0.release ();
3406 vec_oprnds1.release ();
3408 return true;
3412 static tree permute_vec_elements (tree, tree, tree, gimple,
3413 gimple_stmt_iterator *);
3416 /* Function vectorizable_operation.
3418 Check if STMT performs a binary, unary or ternary operation that can
3419 be vectorized.
3420 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3421 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
3422 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3424 static bool
3425 vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
3426 gimple *vec_stmt, slp_tree slp_node)
3428 tree vec_dest;
3429 tree scalar_dest;
3430 tree op0, op1 = NULL_TREE, op2 = NULL_TREE;
3431 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3432 tree vectype;
3433 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3434 enum tree_code code;
3435 enum machine_mode vec_mode;
3436 tree new_temp;
3437 int op_type;
3438 optab optab;
3439 int icode;
3440 tree def;
3441 gimple def_stmt;
3442 enum vect_def_type dt[3]
3443 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
3444 gimple new_stmt = NULL;
3445 stmt_vec_info prev_stmt_info;
3446 int nunits_in;
3447 int nunits_out;
3448 tree vectype_out;
3449 int ncopies;
3450 int j, i;
3451 vec<tree> vec_oprnds0 = vNULL;
3452 vec<tree> vec_oprnds1 = vNULL;
3453 vec<tree> vec_oprnds2 = vNULL;
3454 tree vop0, vop1, vop2;
3455 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3456 int vf;
3458 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3459 return false;
3461 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
3462 return false;
3464 /* Is STMT a vectorizable binary/unary operation? */
3465 if (!is_gimple_assign (stmt))
3466 return false;
3468 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
3469 return false;
3471 code = gimple_assign_rhs_code (stmt);
3473 /* For pointer addition, we should use the normal plus for
3474 the vector addition. */
3475 if (code == POINTER_PLUS_EXPR)
3476 code = PLUS_EXPR;
3478 /* Support only unary or binary operations. */
3479 op_type = TREE_CODE_LENGTH (code);
3480 if (op_type != unary_op && op_type != binary_op && op_type != ternary_op)
3482 if (dump_enabled_p ())
3483 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3484 "num. args = %d (not unary/binary/ternary op).",
3485 op_type);
3486 return false;
3489 scalar_dest = gimple_assign_lhs (stmt);
3490 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
3492 /* Most operations cannot handle bit-precision types without extra
3493 truncations. */
3494 if ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
3495 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
3496 /* Exception are bitwise binary operations. */
3497 && code != BIT_IOR_EXPR
3498 && code != BIT_XOR_EXPR
3499 && code != BIT_AND_EXPR)
3501 if (dump_enabled_p ())
3502 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3503 "bit-precision arithmetic not supported.");
3504 return false;
3507 op0 = gimple_assign_rhs1 (stmt);
3508 if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
3509 &def_stmt, &def, &dt[0], &vectype))
3511 if (dump_enabled_p ())
3512 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3513 "use not simple.");
3514 return false;
3516 /* If op0 is an external or constant def use a vector type with
3517 the same size as the output vector type. */
3518 if (!vectype)
3519 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
3520 if (vec_stmt)
3521 gcc_assert (vectype);
3522 if (!vectype)
3524 if (dump_enabled_p ())
3526 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3527 "no vectype for scalar type ");
3528 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3529 TREE_TYPE (op0));
3532 return false;
3535 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
3536 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
3537 if (nunits_out != nunits_in)
3538 return false;
3540 if (op_type == binary_op || op_type == ternary_op)
3542 op1 = gimple_assign_rhs2 (stmt);
3543 if (!vect_is_simple_use (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
3544 &def, &dt[1]))
3546 if (dump_enabled_p ())
3547 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3548 "use not simple.");
3549 return false;
3552 if (op_type == ternary_op)
3554 op2 = gimple_assign_rhs3 (stmt);
3555 if (!vect_is_simple_use (op2, stmt, loop_vinfo, bb_vinfo, &def_stmt,
3556 &def, &dt[2]))
3558 if (dump_enabled_p ())
3559 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3560 "use not simple.");
3561 return false;
3565 if (loop_vinfo)
3566 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3567 else
3568 vf = 1;
3570 /* Multiple types in SLP are handled by creating the appropriate number of
3571 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
3572 case of SLP. */
3573 if (slp_node || PURE_SLP_STMT (stmt_info))
3574 ncopies = 1;
3575 else
3576 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
3578 gcc_assert (ncopies >= 1);
3580 /* Shifts are handled in vectorizable_shift (). */
3581 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
3582 || code == RROTATE_EXPR)
3583 return false;
3585 /* Supportable by target? */
3587 vec_mode = TYPE_MODE (vectype);
3588 if (code == MULT_HIGHPART_EXPR)
3590 if (can_mult_highpart_p (vec_mode, TYPE_UNSIGNED (vectype)))
3591 icode = LAST_INSN_CODE;
3592 else
3593 icode = CODE_FOR_nothing;
3595 else
3597 optab = optab_for_tree_code (code, vectype, optab_default);
3598 if (!optab)
3600 if (dump_enabled_p ())
3601 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3602 "no optab.");
3603 return false;
3605 icode = (int) optab_handler (optab, vec_mode);
3608 if (icode == CODE_FOR_nothing)
3610 if (dump_enabled_p ())
3611 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3612 "op not supported by target.");
3613 /* Check only during analysis. */
3614 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
3615 || (!vec_stmt && vf < vect_min_worthwhile_factor (code)))
3616 return false;
3617 if (dump_enabled_p ())
3618 dump_printf_loc (MSG_NOTE, vect_location, "proceeding using word mode.");
3621 /* Worthwhile without SIMD support? Check only during analysis. */
3622 if (!VECTOR_MODE_P (vec_mode)
3623 && !vec_stmt
3624 && vf < vect_min_worthwhile_factor (code))
3626 if (dump_enabled_p ())
3627 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3628 "not worthwhile without SIMD support.");
3629 return false;
3632 if (!vec_stmt) /* transformation not required. */
3634 STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
3635 if (dump_enabled_p ())
3636 dump_printf_loc (MSG_NOTE, vect_location,
3637 "=== vectorizable_operation ===");
3638 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
3639 return true;
3642 /** Transform. **/
3644 if (dump_enabled_p ())
3645 dump_printf_loc (MSG_NOTE, vect_location,
3646 "transform binary/unary operation.");
3648 /* Handle def. */
3649 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3651 /* In case the vectorization factor (VF) is bigger than the number
3652 of elements that we can fit in a vectype (nunits), we have to generate
3653 more than one vector stmt - i.e - we need to "unroll" the
3654 vector stmt by a factor VF/nunits. In doing so, we record a pointer
3655 from one copy of the vector stmt to the next, in the field
3656 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
3657 stages to find the correct vector defs to be used when vectorizing
3658 stmts that use the defs of the current stmt. The example below
3659 illustrates the vectorization process when VF=16 and nunits=4 (i.e.,
3660 we need to create 4 vectorized stmts):
3662 before vectorization:
3663 RELATED_STMT VEC_STMT
3664 S1: x = memref - -
3665 S2: z = x + 1 - -
3667 step 1: vectorize stmt S1 (done in vectorizable_load. See more details
3668 there):
3669 RELATED_STMT VEC_STMT
3670 VS1_0: vx0 = memref0 VS1_1 -
3671 VS1_1: vx1 = memref1 VS1_2 -
3672 VS1_2: vx2 = memref2 VS1_3 -
3673 VS1_3: vx3 = memref3 - -
3674 S1: x = load - VS1_0
3675 S2: z = x + 1 - -
3677 step2: vectorize stmt S2 (done here):
3678 To vectorize stmt S2 we first need to find the relevant vector
3679 def for the first operand 'x'. This is, as usual, obtained from
3680 the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
3681 that defines 'x' (S1). This way we find the stmt VS1_0, and the
3682 relevant vector def 'vx0'. Having found 'vx0' we can generate
3683 the vector stmt VS2_0, and as usual, record it in the
3684 STMT_VINFO_VEC_STMT of stmt S2.
3685 When creating the second copy (VS2_1), we obtain the relevant vector
3686 def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
3687 stmt VS1_0. This way we find the stmt VS1_1 and the relevant
3688 vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
3689 pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
3690 Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
3691 chain of stmts and pointers:
3692 RELATED_STMT VEC_STMT
3693 VS1_0: vx0 = memref0 VS1_1 -
3694 VS1_1: vx1 = memref1 VS1_2 -
3695 VS1_2: vx2 = memref2 VS1_3 -
3696 VS1_3: vx3 = memref3 - -
3697 S1: x = load - VS1_0
3698 VS2_0: vz0 = vx0 + v1 VS2_1 -
3699 VS2_1: vz1 = vx1 + v1 VS2_2 -
3700 VS2_2: vz2 = vx2 + v1 VS2_3 -
3701 VS2_3: vz3 = vx3 + v1 - -
3702 S2: z = x + 1 - VS2_0 */
3704 prev_stmt_info = NULL;
3705 for (j = 0; j < ncopies; j++)
3707 /* Handle uses. */
3708 if (j == 0)
3710 if (op_type == binary_op || op_type == ternary_op)
3711 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
3712 slp_node, -1);
3713 else
3714 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
3715 slp_node, -1);
3716 if (op_type == ternary_op)
3718 vec_oprnds2.create (1);
3719 vec_oprnds2.quick_push (vect_get_vec_def_for_operand (op2,
3720 stmt,
3721 NULL));
3724 else
3726 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
3727 if (op_type == ternary_op)
3729 tree vec_oprnd = vec_oprnds2.pop ();
3730 vec_oprnds2.quick_push (vect_get_vec_def_for_stmt_copy (dt[2],
3731 vec_oprnd));
3735 /* Arguments are ready. Create the new vector stmt. */
3736 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
3738 vop1 = ((op_type == binary_op || op_type == ternary_op)
3739 ? vec_oprnds1[i] : NULL_TREE);
3740 vop2 = ((op_type == ternary_op)
3741 ? vec_oprnds2[i] : NULL_TREE);
3742 new_stmt = gimple_build_assign_with_ops (code, vec_dest,
3743 vop0, vop1, vop2);
3744 new_temp = make_ssa_name (vec_dest, new_stmt);
3745 gimple_assign_set_lhs (new_stmt, new_temp);
3746 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3747 if (slp_node)
3748 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3751 if (slp_node)
3752 continue;
3754 if (j == 0)
3755 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3756 else
3757 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3758 prev_stmt_info = vinfo_for_stmt (new_stmt);
3761 vec_oprnds0.release ();
3762 vec_oprnds1.release ();
3763 vec_oprnds2.release ();
3765 return true;
3769 /* Function vectorizable_store.
3771 Check if STMT defines a non scalar data-ref (array/pointer/structure) that
3772 can be vectorized.
3773 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3774 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
3775 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3777 static bool
3778 vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
3779 slp_tree slp_node)
3781 tree scalar_dest;
3782 tree data_ref;
3783 tree op;
3784 tree vec_oprnd = NULL_TREE;
3785 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3786 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
3787 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3788 tree elem_type;
3789 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3790 struct loop *loop = NULL;
3791 enum machine_mode vec_mode;
3792 tree dummy;
3793 enum dr_alignment_support alignment_support_scheme;
3794 tree def;
3795 gimple def_stmt;
3796 enum vect_def_type dt;
3797 stmt_vec_info prev_stmt_info = NULL;
3798 tree dataref_ptr = NULL_TREE;
3799 gimple ptr_incr = NULL;
3800 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
3801 int ncopies;
3802 int j;
3803 gimple next_stmt, first_stmt = NULL;
3804 bool grouped_store = false;
3805 bool store_lanes_p = false;
3806 unsigned int group_size, i;
3807 vec<tree> dr_chain = vNULL;
3808 vec<tree> oprnds = vNULL;
3809 vec<tree> result_chain = vNULL;
3810 bool inv_p;
3811 vec<tree> vec_oprnds = vNULL;
3812 bool slp = (slp_node != NULL);
3813 unsigned int vec_num;
3814 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3815 tree aggr_type;
3817 if (loop_vinfo)
3818 loop = LOOP_VINFO_LOOP (loop_vinfo);
3820 /* Multiple types in SLP are handled by creating the appropriate number of
3821 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
3822 case of SLP. */
3823 if (slp || PURE_SLP_STMT (stmt_info))
3824 ncopies = 1;
3825 else
3826 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
3828 gcc_assert (ncopies >= 1);
3830 /* FORNOW. This restriction should be relaxed. */
3831 if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
3833 if (dump_enabled_p ())
3834 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3835 "multiple types in nested loop.");
3836 return false;
3839 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3840 return false;
3842 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
3843 return false;
3845 /* Is vectorizable store? */
3847 if (!is_gimple_assign (stmt))
3848 return false;
3850 scalar_dest = gimple_assign_lhs (stmt);
3851 if (TREE_CODE (scalar_dest) == VIEW_CONVERT_EXPR
3852 && is_pattern_stmt_p (stmt_info))
3853 scalar_dest = TREE_OPERAND (scalar_dest, 0);
3854 if (TREE_CODE (scalar_dest) != ARRAY_REF
3855 && TREE_CODE (scalar_dest) != INDIRECT_REF
3856 && TREE_CODE (scalar_dest) != COMPONENT_REF
3857 && TREE_CODE (scalar_dest) != IMAGPART_EXPR
3858 && TREE_CODE (scalar_dest) != REALPART_EXPR
3859 && TREE_CODE (scalar_dest) != MEM_REF)
3860 return false;
3862 gcc_assert (gimple_assign_single_p (stmt));
3863 op = gimple_assign_rhs1 (stmt);
3864 if (!vect_is_simple_use (op, stmt, loop_vinfo, bb_vinfo, &def_stmt,
3865 &def, &dt))
3867 if (dump_enabled_p ())
3868 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3869 "use not simple.");
3870 return false;
3873 elem_type = TREE_TYPE (vectype);
3874 vec_mode = TYPE_MODE (vectype);
3876 /* FORNOW. In some cases can vectorize even if data-type not supported
3877 (e.g. - array initialization with 0). */
3878 if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
3879 return false;
3881 if (!STMT_VINFO_DATA_REF (stmt_info))
3882 return false;
3884 if (tree_int_cst_compare (loop && nested_in_vect_loop_p (loop, stmt)
3885 ? STMT_VINFO_DR_STEP (stmt_info) : DR_STEP (dr),
3886 size_zero_node) < 0)
3888 if (dump_enabled_p ())
3889 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3890 "negative step for store.");
3891 return false;
3894 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
3896 grouped_store = true;
3897 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
3898 if (!slp && !PURE_SLP_STMT (stmt_info))
3900 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
3901 if (vect_store_lanes_supported (vectype, group_size))
3902 store_lanes_p = true;
3903 else if (!vect_grouped_store_supported (vectype, group_size))
3904 return false;
3907 if (first_stmt == stmt)
3909 /* STMT is the leader of the group. Check the operands of all the
3910 stmts of the group. */
3911 next_stmt = GROUP_NEXT_ELEMENT (stmt_info);
3912 while (next_stmt)
3914 gcc_assert (gimple_assign_single_p (next_stmt));
3915 op = gimple_assign_rhs1 (next_stmt);
3916 if (!vect_is_simple_use (op, next_stmt, loop_vinfo, bb_vinfo,
3917 &def_stmt, &def, &dt))
3919 if (dump_enabled_p ())
3920 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3921 "use not simple.");
3922 return false;
3924 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
3929 if (!vec_stmt) /* transformation not required. */
3931 STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
3932 vect_model_store_cost (stmt_info, ncopies, store_lanes_p, dt,
3933 NULL, NULL, NULL);
3934 return true;
3937 /** Transform. **/
3939 if (grouped_store)
3941 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
3942 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
3944 GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
3946 /* FORNOW */
3947 gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
3949 /* We vectorize all the stmts of the interleaving group when we
3950 reach the last stmt in the group. */
3951 if (GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
3952 < GROUP_SIZE (vinfo_for_stmt (first_stmt))
3953 && !slp)
3955 *vec_stmt = NULL;
3956 return true;
3959 if (slp)
3961 grouped_store = false;
3962 /* VEC_NUM is the number of vect stmts to be created for this
3963 group. */
3964 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
3965 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
3966 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
3967 op = gimple_assign_rhs1 (first_stmt);
3969 else
3970 /* VEC_NUM is the number of vect stmts to be created for this
3971 group. */
3972 vec_num = group_size;
3974 else
3976 first_stmt = stmt;
3977 first_dr = dr;
3978 group_size = vec_num = 1;
3981 if (dump_enabled_p ())
3982 dump_printf_loc (MSG_NOTE, vect_location,
3983 "transform store. ncopies = %d", ncopies);
3985 dr_chain.create (group_size);
3986 oprnds.create (group_size);
3988 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
3989 gcc_assert (alignment_support_scheme);
3990 /* Targets with store-lane instructions must not require explicit
3991 realignment. */
3992 gcc_assert (!store_lanes_p
3993 || alignment_support_scheme == dr_aligned
3994 || alignment_support_scheme == dr_unaligned_supported);
3996 if (store_lanes_p)
3997 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
3998 else
3999 aggr_type = vectype;
4001 /* In case the vectorization factor (VF) is bigger than the number
4002 of elements that we can fit in a vectype (nunits), we have to generate
4003 more than one vector stmt - i.e - we need to "unroll" the
4004 vector stmt by a factor VF/nunits. For more details see documentation in
4005 vect_get_vec_def_for_copy_stmt. */
4007 /* In case of interleaving (non-unit grouped access):
4009 S1: &base + 2 = x2
4010 S2: &base = x0
4011 S3: &base + 1 = x1
4012 S4: &base + 3 = x3
4014 We create vectorized stores starting from base address (the access of the
4015 first stmt in the chain (S2 in the above example), when the last store stmt
4016 of the chain (S4) is reached:
4018 VS1: &base = vx2
4019 VS2: &base + vec_size*1 = vx0
4020 VS3: &base + vec_size*2 = vx1
4021 VS4: &base + vec_size*3 = vx3
4023 Then permutation statements are generated:
4025 VS5: vx5 = VEC_PERM_EXPR < vx0, vx3, {0, 8, 1, 9, 2, 10, 3, 11} >
4026 VS6: vx6 = VEC_PERM_EXPR < vx0, vx3, {4, 12, 5, 13, 6, 14, 7, 15} >
4029 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
4030 (the order of the data-refs in the output of vect_permute_store_chain
4031 corresponds to the order of scalar stmts in the interleaving chain - see
4032 the documentation of vect_permute_store_chain()).
4034 In case of both multiple types and interleaving, above vector stores and
4035 permutation stmts are created for every copy. The result vector stmts are
4036 put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
4037 STMT_VINFO_RELATED_STMT for the next copies.
4040 prev_stmt_info = NULL;
4041 for (j = 0; j < ncopies; j++)
4043 gimple new_stmt;
4045 if (j == 0)
4047 if (slp)
4049 /* Get vectorized arguments for SLP_NODE. */
4050 vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds,
4051 NULL, slp_node, -1);
4053 vec_oprnd = vec_oprnds[0];
4055 else
4057 /* For interleaved stores we collect vectorized defs for all the
4058 stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
4059 used as an input to vect_permute_store_chain(), and OPRNDS as
4060 an input to vect_get_vec_def_for_stmt_copy() for the next copy.
4062 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
4063 OPRNDS are of size 1. */
4064 next_stmt = first_stmt;
4065 for (i = 0; i < group_size; i++)
4067 /* Since gaps are not supported for interleaved stores,
4068 GROUP_SIZE is the exact number of stmts in the chain.
4069 Therefore, NEXT_STMT can't be NULL_TREE. In case that
4070 there is no interleaving, GROUP_SIZE is 1, and only one
4071 iteration of the loop will be executed. */
4072 gcc_assert (next_stmt
4073 && gimple_assign_single_p (next_stmt));
4074 op = gimple_assign_rhs1 (next_stmt);
4076 vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt,
4077 NULL);
4078 dr_chain.quick_push (vec_oprnd);
4079 oprnds.quick_push (vec_oprnd);
4080 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
4084 /* We should have catched mismatched types earlier. */
4085 gcc_assert (useless_type_conversion_p (vectype,
4086 TREE_TYPE (vec_oprnd)));
4087 dataref_ptr = vect_create_data_ref_ptr (first_stmt, aggr_type, NULL,
4088 NULL_TREE, &dummy, gsi,
4089 &ptr_incr, false, &inv_p);
4090 gcc_assert (bb_vinfo || !inv_p);
4092 else
4094 /* For interleaved stores we created vectorized defs for all the
4095 defs stored in OPRNDS in the previous iteration (previous copy).
4096 DR_CHAIN is then used as an input to vect_permute_store_chain(),
4097 and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
4098 next copy.
4099 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
4100 OPRNDS are of size 1. */
4101 for (i = 0; i < group_size; i++)
4103 op = oprnds[i];
4104 vect_is_simple_use (op, NULL, loop_vinfo, bb_vinfo, &def_stmt,
4105 &def, &dt);
4106 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
4107 dr_chain[i] = vec_oprnd;
4108 oprnds[i] = vec_oprnd;
4110 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
4111 TYPE_SIZE_UNIT (aggr_type));
4114 if (store_lanes_p)
4116 tree vec_array;
4118 /* Combine all the vectors into an array. */
4119 vec_array = create_vector_array (vectype, vec_num);
4120 for (i = 0; i < vec_num; i++)
4122 vec_oprnd = dr_chain[i];
4123 write_vector_array (stmt, gsi, vec_oprnd, vec_array, i);
4126 /* Emit:
4127 MEM_REF[...all elements...] = STORE_LANES (VEC_ARRAY). */
4128 data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
4129 new_stmt = gimple_build_call_internal (IFN_STORE_LANES, 1, vec_array);
4130 gimple_call_set_lhs (new_stmt, data_ref);
4131 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4133 else
4135 new_stmt = NULL;
4136 if (grouped_store)
4138 if (j == 0)
4139 result_chain.create (group_size);
4140 /* Permute. */
4141 vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
4142 &result_chain);
4145 next_stmt = first_stmt;
4146 for (i = 0; i < vec_num; i++)
4148 unsigned align, misalign;
4150 if (i > 0)
4151 /* Bump the vector pointer. */
4152 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
4153 stmt, NULL_TREE);
4155 if (slp)
4156 vec_oprnd = vec_oprnds[i];
4157 else if (grouped_store)
4158 /* For grouped stores vectorized defs are interleaved in
4159 vect_permute_store_chain(). */
4160 vec_oprnd = result_chain[i];
4162 data_ref = build2 (MEM_REF, TREE_TYPE (vec_oprnd), dataref_ptr,
4163 build_int_cst (reference_alias_ptr_type
4164 (DR_REF (first_dr)), 0));
4165 align = TYPE_ALIGN_UNIT (vectype);
4166 if (aligned_access_p (first_dr))
4167 misalign = 0;
4168 else if (DR_MISALIGNMENT (first_dr) == -1)
4170 TREE_TYPE (data_ref)
4171 = build_aligned_type (TREE_TYPE (data_ref),
4172 TYPE_ALIGN (elem_type));
4173 align = TYPE_ALIGN_UNIT (elem_type);
4174 misalign = 0;
4176 else
4178 TREE_TYPE (data_ref)
4179 = build_aligned_type (TREE_TYPE (data_ref),
4180 TYPE_ALIGN (elem_type));
4181 misalign = DR_MISALIGNMENT (first_dr);
4183 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
4184 misalign);
4186 /* Arguments are ready. Create the new vector stmt. */
4187 new_stmt = gimple_build_assign (data_ref, vec_oprnd);
4188 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4190 if (slp)
4191 continue;
4193 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
4194 if (!next_stmt)
4195 break;
4198 if (!slp)
4200 if (j == 0)
4201 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4202 else
4203 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4204 prev_stmt_info = vinfo_for_stmt (new_stmt);
4208 dr_chain.release ();
4209 oprnds.release ();
4210 result_chain.release ();
4211 vec_oprnds.release ();
4213 return true;
4216 /* Given a vector type VECTYPE and permutation SEL returns
4217 the VECTOR_CST mask that implements the permutation of the
4218 vector elements. If that is impossible to do, returns NULL. */
4220 tree
4221 vect_gen_perm_mask (tree vectype, unsigned char *sel)
4223 tree mask_elt_type, mask_type, mask_vec, *mask_elts;
4224 int i, nunits;
4226 nunits = TYPE_VECTOR_SUBPARTS (vectype);
4228 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
4229 return NULL;
4231 mask_elt_type = lang_hooks.types.type_for_mode
4232 (int_mode_for_mode (TYPE_MODE (TREE_TYPE (vectype))), 1);
4233 mask_type = get_vectype_for_scalar_type (mask_elt_type);
4235 mask_elts = XALLOCAVEC (tree, nunits);
4236 for (i = nunits - 1; i >= 0; i--)
4237 mask_elts[i] = build_int_cst (mask_elt_type, sel[i]);
4238 mask_vec = build_vector (mask_type, mask_elts);
4240 return mask_vec;
4243 /* Given a vector type VECTYPE returns the VECTOR_CST mask that implements
4244 reversal of the vector elements. If that is impossible to do,
4245 returns NULL. */
4247 static tree
4248 perm_mask_for_reverse (tree vectype)
4250 int i, nunits;
4251 unsigned char *sel;
4253 nunits = TYPE_VECTOR_SUBPARTS (vectype);
4254 sel = XALLOCAVEC (unsigned char, nunits);
4256 for (i = 0; i < nunits; ++i)
4257 sel[i] = nunits - 1 - i;
4259 return vect_gen_perm_mask (vectype, sel);
4262 /* Given a vector variable X and Y, that was generated for the scalar
4263 STMT, generate instructions to permute the vector elements of X and Y
4264 using permutation mask MASK_VEC, insert them at *GSI and return the
4265 permuted vector variable. */
4267 static tree
4268 permute_vec_elements (tree x, tree y, tree mask_vec, gimple stmt,
4269 gimple_stmt_iterator *gsi)
4271 tree vectype = TREE_TYPE (x);
4272 tree perm_dest, data_ref;
4273 gimple perm_stmt;
4275 perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype);
4276 data_ref = make_ssa_name (perm_dest, NULL);
4278 /* Generate the permute statement. */
4279 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4280 x, y, mask_vec);
4281 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4283 return data_ref;
4286 /* vectorizable_load.
4288 Check if STMT reads a non scalar data-ref (array/pointer/structure) that
4289 can be vectorized.
4290 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4291 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4292 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4294 static bool
4295 vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
4296 slp_tree slp_node, slp_instance slp_node_instance)
4298 tree scalar_dest;
4299 tree vec_dest = NULL;
4300 tree data_ref = NULL;
4301 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4302 stmt_vec_info prev_stmt_info;
4303 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4304 struct loop *loop = NULL;
4305 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4306 bool nested_in_vect_loop = false;
4307 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
4308 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4309 tree elem_type;
4310 tree new_temp;
4311 enum machine_mode mode;
4312 gimple new_stmt = NULL;
4313 tree dummy;
4314 enum dr_alignment_support alignment_support_scheme;
4315 tree dataref_ptr = NULL_TREE;
4316 gimple ptr_incr = NULL;
4317 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4318 int ncopies;
4319 int i, j, group_size;
4320 tree msq = NULL_TREE, lsq;
4321 tree offset = NULL_TREE;
4322 tree realignment_token = NULL_TREE;
4323 gimple phi = NULL;
4324 vec<tree> dr_chain = vNULL;
4325 bool grouped_load = false;
4326 bool load_lanes_p = false;
4327 gimple first_stmt;
4328 bool inv_p;
4329 bool negative = false;
4330 bool compute_in_loop = false;
4331 struct loop *at_loop;
4332 int vec_num;
4333 bool slp = (slp_node != NULL);
4334 bool slp_perm = false;
4335 enum tree_code code;
4336 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4337 int vf;
4338 tree aggr_type;
4339 tree gather_base = NULL_TREE, gather_off = NULL_TREE;
4340 tree gather_off_vectype = NULL_TREE, gather_decl = NULL_TREE;
4341 int gather_scale = 1;
4342 enum vect_def_type gather_dt = vect_unknown_def_type;
4344 if (loop_vinfo)
4346 loop = LOOP_VINFO_LOOP (loop_vinfo);
4347 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4348 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4350 else
4351 vf = 1;
4353 /* Multiple types in SLP are handled by creating the appropriate number of
4354 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4355 case of SLP. */
4356 if (slp || PURE_SLP_STMT (stmt_info))
4357 ncopies = 1;
4358 else
4359 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4361 gcc_assert (ncopies >= 1);
4363 /* FORNOW. This restriction should be relaxed. */
4364 if (nested_in_vect_loop && ncopies > 1)
4366 if (dump_enabled_p ())
4367 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4368 "multiple types in nested loop.");
4369 return false;
4372 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4373 return false;
4375 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
4376 return false;
4378 /* Is vectorizable load? */
4379 if (!is_gimple_assign (stmt))
4380 return false;
4382 scalar_dest = gimple_assign_lhs (stmt);
4383 if (TREE_CODE (scalar_dest) != SSA_NAME)
4384 return false;
4386 code = gimple_assign_rhs_code (stmt);
4387 if (code != ARRAY_REF
4388 && code != INDIRECT_REF
4389 && code != COMPONENT_REF
4390 && code != IMAGPART_EXPR
4391 && code != REALPART_EXPR
4392 && code != MEM_REF
4393 && TREE_CODE_CLASS (code) != tcc_declaration)
4394 return false;
4396 if (!STMT_VINFO_DATA_REF (stmt_info))
4397 return false;
4399 elem_type = TREE_TYPE (vectype);
4400 mode = TYPE_MODE (vectype);
4402 /* FORNOW. In some cases can vectorize even if data-type not supported
4403 (e.g. - data copies). */
4404 if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
4406 if (dump_enabled_p ())
4407 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4408 "Aligned load, but unsupported type.");
4409 return false;
4412 /* Check if the load is a part of an interleaving chain. */
4413 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
4415 grouped_load = true;
4416 /* FORNOW */
4417 gcc_assert (! nested_in_vect_loop && !STMT_VINFO_GATHER_P (stmt_info));
4419 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
4420 if (!slp && !PURE_SLP_STMT (stmt_info))
4422 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
4423 if (vect_load_lanes_supported (vectype, group_size))
4424 load_lanes_p = true;
4425 else if (!vect_grouped_load_supported (vectype, group_size))
4426 return false;
4431 if (STMT_VINFO_GATHER_P (stmt_info))
4433 gimple def_stmt;
4434 tree def;
4435 gather_decl = vect_check_gather (stmt, loop_vinfo, &gather_base,
4436 &gather_off, &gather_scale);
4437 gcc_assert (gather_decl);
4438 if (!vect_is_simple_use_1 (gather_off, NULL, loop_vinfo, bb_vinfo,
4439 &def_stmt, &def, &gather_dt,
4440 &gather_off_vectype))
4442 if (dump_enabled_p ())
4443 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4444 "gather index use not simple.");
4445 return false;
4448 else if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
4450 else
4452 negative = tree_int_cst_compare (nested_in_vect_loop
4453 ? STMT_VINFO_DR_STEP (stmt_info)
4454 : DR_STEP (dr),
4455 size_zero_node) < 0;
4456 if (negative && ncopies > 1)
4458 if (dump_enabled_p ())
4459 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4460 "multiple types with negative step.");
4461 return false;
4464 if (negative)
4466 gcc_assert (!grouped_load);
4467 alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
4468 if (alignment_support_scheme != dr_aligned
4469 && alignment_support_scheme != dr_unaligned_supported)
4471 if (dump_enabled_p ())
4472 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4473 "negative step but alignment required.");
4474 return false;
4476 if (!perm_mask_for_reverse (vectype))
4478 if (dump_enabled_p ())
4479 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4480 "negative step and reversing not supported.");
4481 return false;
4486 if (!vec_stmt) /* transformation not required. */
4488 STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
4489 vect_model_load_cost (stmt_info, ncopies, load_lanes_p, NULL, NULL, NULL);
4490 return true;
4493 if (dump_enabled_p ())
4494 dump_printf_loc (MSG_NOTE, vect_location,
4495 "transform load. ncopies = %d", ncopies);
4497 /** Transform. **/
4499 if (STMT_VINFO_GATHER_P (stmt_info))
4501 tree vec_oprnd0 = NULL_TREE, op;
4502 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
4503 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
4504 tree ptr, mask, var, scale, perm_mask = NULL_TREE, prev_res = NULL_TREE;
4505 edge pe = loop_preheader_edge (loop);
4506 gimple_seq seq;
4507 basic_block new_bb;
4508 enum { NARROW, NONE, WIDEN } modifier;
4509 int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gather_off_vectype);
4511 if (nunits == gather_off_nunits)
4512 modifier = NONE;
4513 else if (nunits == gather_off_nunits / 2)
4515 unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
4516 modifier = WIDEN;
4518 for (i = 0; i < gather_off_nunits; ++i)
4519 sel[i] = i | nunits;
4521 perm_mask = vect_gen_perm_mask (gather_off_vectype, sel);
4522 gcc_assert (perm_mask != NULL_TREE);
4524 else if (nunits == gather_off_nunits * 2)
4526 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
4527 modifier = NARROW;
4529 for (i = 0; i < nunits; ++i)
4530 sel[i] = i < gather_off_nunits
4531 ? i : i + nunits - gather_off_nunits;
4533 perm_mask = vect_gen_perm_mask (vectype, sel);
4534 gcc_assert (perm_mask != NULL_TREE);
4535 ncopies *= 2;
4537 else
4538 gcc_unreachable ();
4540 rettype = TREE_TYPE (TREE_TYPE (gather_decl));
4541 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
4542 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
4543 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
4544 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
4545 scaletype = TREE_VALUE (arglist);
4546 gcc_checking_assert (types_compatible_p (srctype, rettype)
4547 && types_compatible_p (srctype, masktype));
4549 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4551 ptr = fold_convert (ptrtype, gather_base);
4552 if (!is_gimple_min_invariant (ptr))
4554 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
4555 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
4556 gcc_assert (!new_bb);
4559 /* Currently we support only unconditional gather loads,
4560 so mask should be all ones. */
4561 if (TREE_CODE (TREE_TYPE (masktype)) == INTEGER_TYPE)
4562 mask = build_int_cst (TREE_TYPE (masktype), -1);
4563 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (masktype)))
4565 REAL_VALUE_TYPE r;
4566 long tmp[6];
4567 for (j = 0; j < 6; ++j)
4568 tmp[j] = -1;
4569 real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (masktype)));
4570 mask = build_real (TREE_TYPE (masktype), r);
4572 else
4573 gcc_unreachable ();
4574 mask = build_vector_from_val (masktype, mask);
4575 mask = vect_init_vector (stmt, mask, masktype, NULL);
4577 scale = build_int_cst (scaletype, gather_scale);
4579 prev_stmt_info = NULL;
4580 for (j = 0; j < ncopies; ++j)
4582 if (modifier == WIDEN && (j & 1))
4583 op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
4584 perm_mask, stmt, gsi);
4585 else if (j == 0)
4586 op = vec_oprnd0
4587 = vect_get_vec_def_for_operand (gather_off, stmt, NULL);
4588 else
4589 op = vec_oprnd0
4590 = vect_get_vec_def_for_stmt_copy (gather_dt, vec_oprnd0);
4592 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
4594 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
4595 == TYPE_VECTOR_SUBPARTS (idxtype));
4596 var = vect_get_new_vect_var (idxtype, vect_simple_var, NULL);
4597 var = make_ssa_name (var, NULL);
4598 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
4599 new_stmt
4600 = gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var,
4601 op, NULL_TREE);
4602 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4603 op = var;
4606 new_stmt
4607 = gimple_build_call (gather_decl, 5, mask, ptr, op, mask, scale);
4609 if (!useless_type_conversion_p (vectype, rettype))
4611 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
4612 == TYPE_VECTOR_SUBPARTS (rettype));
4613 var = vect_get_new_vect_var (rettype, vect_simple_var, NULL);
4614 op = make_ssa_name (var, new_stmt);
4615 gimple_call_set_lhs (new_stmt, op);
4616 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4617 var = make_ssa_name (vec_dest, NULL);
4618 op = build1 (VIEW_CONVERT_EXPR, vectype, op);
4619 new_stmt
4620 = gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var, op,
4621 NULL_TREE);
4623 else
4625 var = make_ssa_name (vec_dest, new_stmt);
4626 gimple_call_set_lhs (new_stmt, var);
4629 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4631 if (modifier == NARROW)
4633 if ((j & 1) == 0)
4635 prev_res = var;
4636 continue;
4638 var = permute_vec_elements (prev_res, var,
4639 perm_mask, stmt, gsi);
4640 new_stmt = SSA_NAME_DEF_STMT (var);
4643 if (prev_stmt_info == NULL)
4644 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4645 else
4646 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4647 prev_stmt_info = vinfo_for_stmt (new_stmt);
4649 return true;
4651 else if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
4653 gimple_stmt_iterator incr_gsi;
4654 bool insert_after;
4655 gimple incr;
4656 tree offvar;
4657 tree ivstep;
4658 tree running_off;
4659 vec<constructor_elt, va_gc> *v = NULL;
4660 gimple_seq stmts = NULL;
4661 tree stride_base, stride_step, alias_off;
4663 gcc_assert (!nested_in_vect_loop);
4665 stride_base
4666 = fold_build_pointer_plus
4667 (unshare_expr (DR_BASE_ADDRESS (dr)),
4668 size_binop (PLUS_EXPR,
4669 convert_to_ptrofftype (unshare_expr (DR_OFFSET (dr))),
4670 convert_to_ptrofftype (DR_INIT(dr))));
4671 stride_step = fold_convert (sizetype, unshare_expr (DR_STEP (dr)));
4673 /* For a load with loop-invariant (but other than power-of-2)
4674 stride (i.e. not a grouped access) like so:
4676 for (i = 0; i < n; i += stride)
4677 ... = array[i];
4679 we generate a new induction variable and new accesses to
4680 form a new vector (or vectors, depending on ncopies):
4682 for (j = 0; ; j += VF*stride)
4683 tmp1 = array[j];
4684 tmp2 = array[j + stride];
4686 vectemp = {tmp1, tmp2, ...}
4689 ivstep = stride_step;
4690 ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (ivstep), ivstep,
4691 build_int_cst (TREE_TYPE (ivstep), vf));
4693 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4695 create_iv (stride_base, ivstep, NULL,
4696 loop, &incr_gsi, insert_after,
4697 &offvar, NULL);
4698 incr = gsi_stmt (incr_gsi);
4699 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4701 stride_step = force_gimple_operand (stride_step, &stmts, true, NULL_TREE);
4702 if (stmts)
4703 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4705 prev_stmt_info = NULL;
4706 running_off = offvar;
4707 alias_off = build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0);
4708 for (j = 0; j < ncopies; j++)
4710 tree vec_inv;
4712 vec_alloc (v, nunits);
4713 for (i = 0; i < nunits; i++)
4715 tree newref, newoff;
4716 gimple incr;
4717 newref = build2 (MEM_REF, TREE_TYPE (vectype),
4718 running_off, alias_off);
4720 newref = force_gimple_operand_gsi (gsi, newref, true,
4721 NULL_TREE, true,
4722 GSI_SAME_STMT);
4723 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, newref);
4724 newoff = copy_ssa_name (running_off, NULL);
4725 incr = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, newoff,
4726 running_off, stride_step);
4727 vect_finish_stmt_generation (stmt, incr, gsi);
4729 running_off = newoff;
4732 vec_inv = build_constructor (vectype, v);
4733 new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi);
4734 new_stmt = SSA_NAME_DEF_STMT (new_temp);
4736 if (j == 0)
4737 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4738 else
4739 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4740 prev_stmt_info = vinfo_for_stmt (new_stmt);
4742 return true;
4745 if (grouped_load)
4747 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
4748 if (slp
4749 && !SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance).exists ()
4750 && first_stmt != SLP_TREE_SCALAR_STMTS (slp_node)[0])
4751 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
4753 /* Check if the chain of loads is already vectorized. */
4754 if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt)))
4756 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4757 return true;
4759 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
4760 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
4762 /* VEC_NUM is the number of vect stmts to be created for this group. */
4763 if (slp)
4765 grouped_load = false;
4766 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4767 if (SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance).exists ())
4768 slp_perm = true;
4770 else
4771 vec_num = group_size;
4773 else
4775 first_stmt = stmt;
4776 first_dr = dr;
4777 group_size = vec_num = 1;
4780 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
4781 gcc_assert (alignment_support_scheme);
4782 /* Targets with load-lane instructions must not require explicit
4783 realignment. */
4784 gcc_assert (!load_lanes_p
4785 || alignment_support_scheme == dr_aligned
4786 || alignment_support_scheme == dr_unaligned_supported);
4788 /* In case the vectorization factor (VF) is bigger than the number
4789 of elements that we can fit in a vectype (nunits), we have to generate
4790 more than one vector stmt - i.e - we need to "unroll" the
4791 vector stmt by a factor VF/nunits. In doing so, we record a pointer
4792 from one copy of the vector stmt to the next, in the field
4793 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
4794 stages to find the correct vector defs to be used when vectorizing
4795 stmts that use the defs of the current stmt. The example below
4796 illustrates the vectorization process when VF=16 and nunits=4 (i.e., we
4797 need to create 4 vectorized stmts):
4799 before vectorization:
4800 RELATED_STMT VEC_STMT
4801 S1: x = memref - -
4802 S2: z = x + 1 - -
4804 step 1: vectorize stmt S1:
4805 We first create the vector stmt VS1_0, and, as usual, record a
4806 pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
4807 Next, we create the vector stmt VS1_1, and record a pointer to
4808 it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
4809 Similarly, for VS1_2 and VS1_3. This is the resulting chain of
4810 stmts and pointers:
4811 RELATED_STMT VEC_STMT
4812 VS1_0: vx0 = memref0 VS1_1 -
4813 VS1_1: vx1 = memref1 VS1_2 -
4814 VS1_2: vx2 = memref2 VS1_3 -
4815 VS1_3: vx3 = memref3 - -
4816 S1: x = load - VS1_0
4817 S2: z = x + 1 - -
4819 See in documentation in vect_get_vec_def_for_stmt_copy for how the
4820 information we recorded in RELATED_STMT field is used to vectorize
4821 stmt S2. */
4823 /* In case of interleaving (non-unit grouped access):
4825 S1: x2 = &base + 2
4826 S2: x0 = &base
4827 S3: x1 = &base + 1
4828 S4: x3 = &base + 3
4830 Vectorized loads are created in the order of memory accesses
4831 starting from the access of the first stmt of the chain:
4833 VS1: vx0 = &base
4834 VS2: vx1 = &base + vec_size*1
4835 VS3: vx3 = &base + vec_size*2
4836 VS4: vx4 = &base + vec_size*3
4838 Then permutation statements are generated:
4840 VS5: vx5 = VEC_PERM_EXPR < vx0, vx1, { 0, 2, ..., i*2 } >
4841 VS6: vx6 = VEC_PERM_EXPR < vx0, vx1, { 1, 3, ..., i*2+1 } >
4844 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
4845 (the order of the data-refs in the output of vect_permute_load_chain
4846 corresponds to the order of scalar stmts in the interleaving chain - see
4847 the documentation of vect_permute_load_chain()).
4848 The generation of permutation stmts and recording them in
4849 STMT_VINFO_VEC_STMT is done in vect_transform_grouped_load().
4851 In case of both multiple types and interleaving, the vector loads and
4852 permutation stmts above are created for every copy. The result vector
4853 stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the
4854 corresponding STMT_VINFO_RELATED_STMT for the next copies. */
4856 /* If the data reference is aligned (dr_aligned) or potentially unaligned
4857 on a target that supports unaligned accesses (dr_unaligned_supported)
4858 we generate the following code:
4859 p = initial_addr;
4860 indx = 0;
4861 loop {
4862 p = p + indx * vectype_size;
4863 vec_dest = *(p);
4864 indx = indx + 1;
4867 Otherwise, the data reference is potentially unaligned on a target that
4868 does not support unaligned accesses (dr_explicit_realign_optimized) -
4869 then generate the following code, in which the data in each iteration is
4870 obtained by two vector loads, one from the previous iteration, and one
4871 from the current iteration:
4872 p1 = initial_addr;
4873 msq_init = *(floor(p1))
4874 p2 = initial_addr + VS - 1;
4875 realignment_token = call target_builtin;
4876 indx = 0;
4877 loop {
4878 p2 = p2 + indx * vectype_size
4879 lsq = *(floor(p2))
4880 vec_dest = realign_load (msq, lsq, realignment_token)
4881 indx = indx + 1;
4882 msq = lsq;
4883 } */
4885 /* If the misalignment remains the same throughout the execution of the
4886 loop, we can create the init_addr and permutation mask at the loop
4887 preheader. Otherwise, it needs to be created inside the loop.
4888 This can only occur when vectorizing memory accesses in the inner-loop
4889 nested within an outer-loop that is being vectorized. */
4891 if (nested_in_vect_loop
4892 && (TREE_INT_CST_LOW (DR_STEP (dr))
4893 % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
4895 gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
4896 compute_in_loop = true;
4899 if ((alignment_support_scheme == dr_explicit_realign_optimized
4900 || alignment_support_scheme == dr_explicit_realign)
4901 && !compute_in_loop)
4903 msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
4904 alignment_support_scheme, NULL_TREE,
4905 &at_loop);
4906 if (alignment_support_scheme == dr_explicit_realign_optimized)
4908 phi = SSA_NAME_DEF_STMT (msq);
4909 offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
4912 else
4913 at_loop = loop;
4915 if (negative)
4916 offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
4918 if (load_lanes_p)
4919 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
4920 else
4921 aggr_type = vectype;
4923 prev_stmt_info = NULL;
4924 for (j = 0; j < ncopies; j++)
4926 /* 1. Create the vector or array pointer update chain. */
4927 if (j == 0)
4928 dataref_ptr = vect_create_data_ref_ptr (first_stmt, aggr_type, at_loop,
4929 offset, &dummy, gsi,
4930 &ptr_incr, false, &inv_p);
4931 else
4932 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
4933 TYPE_SIZE_UNIT (aggr_type));
4935 if (grouped_load || slp_perm)
4936 dr_chain.create (vec_num);
4938 if (load_lanes_p)
4940 tree vec_array;
4942 vec_array = create_vector_array (vectype, vec_num);
4944 /* Emit:
4945 VEC_ARRAY = LOAD_LANES (MEM_REF[...all elements...]). */
4946 data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
4947 new_stmt = gimple_build_call_internal (IFN_LOAD_LANES, 1, data_ref);
4948 gimple_call_set_lhs (new_stmt, vec_array);
4949 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4951 /* Extract each vector into an SSA_NAME. */
4952 for (i = 0; i < vec_num; i++)
4954 new_temp = read_vector_array (stmt, gsi, scalar_dest,
4955 vec_array, i);
4956 dr_chain.quick_push (new_temp);
4959 /* Record the mapping between SSA_NAMEs and statements. */
4960 vect_record_grouped_load_vectors (stmt, dr_chain);
4962 else
4964 for (i = 0; i < vec_num; i++)
4966 if (i > 0)
4967 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
4968 stmt, NULL_TREE);
4970 /* 2. Create the vector-load in the loop. */
4971 switch (alignment_support_scheme)
4973 case dr_aligned:
4974 case dr_unaligned_supported:
4976 unsigned int align, misalign;
4978 data_ref
4979 = build2 (MEM_REF, vectype, dataref_ptr,
4980 build_int_cst (reference_alias_ptr_type
4981 (DR_REF (first_dr)), 0));
4982 align = TYPE_ALIGN_UNIT (vectype);
4983 if (alignment_support_scheme == dr_aligned)
4985 gcc_assert (aligned_access_p (first_dr));
4986 misalign = 0;
4988 else if (DR_MISALIGNMENT (first_dr) == -1)
4990 TREE_TYPE (data_ref)
4991 = build_aligned_type (TREE_TYPE (data_ref),
4992 TYPE_ALIGN (elem_type));
4993 align = TYPE_ALIGN_UNIT (elem_type);
4994 misalign = 0;
4996 else
4998 TREE_TYPE (data_ref)
4999 = build_aligned_type (TREE_TYPE (data_ref),
5000 TYPE_ALIGN (elem_type));
5001 misalign = DR_MISALIGNMENT (first_dr);
5003 set_ptr_info_alignment (get_ptr_info (dataref_ptr),
5004 align, misalign);
5005 break;
5007 case dr_explicit_realign:
5009 tree ptr, bump;
5010 tree vs_minus_1;
5012 vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
5014 if (compute_in_loop)
5015 msq = vect_setup_realignment (first_stmt, gsi,
5016 &realignment_token,
5017 dr_explicit_realign,
5018 dataref_ptr, NULL);
5020 ptr = copy_ssa_name (dataref_ptr, NULL);
5021 new_stmt = gimple_build_assign_with_ops
5022 (BIT_AND_EXPR, ptr, dataref_ptr,
5023 build_int_cst
5024 (TREE_TYPE (dataref_ptr),
5025 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
5026 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5027 data_ref
5028 = build2 (MEM_REF, vectype, ptr,
5029 build_int_cst (reference_alias_ptr_type
5030 (DR_REF (first_dr)), 0));
5031 vec_dest = vect_create_destination_var (scalar_dest,
5032 vectype);
5033 new_stmt = gimple_build_assign (vec_dest, data_ref);
5034 new_temp = make_ssa_name (vec_dest, new_stmt);
5035 gimple_assign_set_lhs (new_stmt, new_temp);
5036 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
5037 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
5038 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5039 msq = new_temp;
5041 bump = size_binop (MULT_EXPR, vs_minus_1,
5042 TYPE_SIZE_UNIT (elem_type));
5043 ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
5044 new_stmt = gimple_build_assign_with_ops
5045 (BIT_AND_EXPR, NULL_TREE, ptr,
5046 build_int_cst
5047 (TREE_TYPE (ptr),
5048 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
5049 ptr = copy_ssa_name (dataref_ptr, new_stmt);
5050 gimple_assign_set_lhs (new_stmt, ptr);
5051 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5052 data_ref
5053 = build2 (MEM_REF, vectype, ptr,
5054 build_int_cst (reference_alias_ptr_type
5055 (DR_REF (first_dr)), 0));
5056 break;
5058 case dr_explicit_realign_optimized:
5059 new_temp = copy_ssa_name (dataref_ptr, NULL);
5060 new_stmt = gimple_build_assign_with_ops
5061 (BIT_AND_EXPR, new_temp, dataref_ptr,
5062 build_int_cst
5063 (TREE_TYPE (dataref_ptr),
5064 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
5065 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5066 data_ref
5067 = build2 (MEM_REF, vectype, new_temp,
5068 build_int_cst (reference_alias_ptr_type
5069 (DR_REF (first_dr)), 0));
5070 break;
5071 default:
5072 gcc_unreachable ();
5074 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5075 new_stmt = gimple_build_assign (vec_dest, data_ref);
5076 new_temp = make_ssa_name (vec_dest, new_stmt);
5077 gimple_assign_set_lhs (new_stmt, new_temp);
5078 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5080 /* 3. Handle explicit realignment if necessary/supported.
5081 Create in loop:
5082 vec_dest = realign_load (msq, lsq, realignment_token) */
5083 if (alignment_support_scheme == dr_explicit_realign_optimized
5084 || alignment_support_scheme == dr_explicit_realign)
5086 lsq = gimple_assign_lhs (new_stmt);
5087 if (!realignment_token)
5088 realignment_token = dataref_ptr;
5089 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5090 new_stmt
5091 = gimple_build_assign_with_ops (REALIGN_LOAD_EXPR,
5092 vec_dest, msq, lsq,
5093 realignment_token);
5094 new_temp = make_ssa_name (vec_dest, new_stmt);
5095 gimple_assign_set_lhs (new_stmt, new_temp);
5096 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5098 if (alignment_support_scheme == dr_explicit_realign_optimized)
5100 gcc_assert (phi);
5101 if (i == vec_num - 1 && j == ncopies - 1)
5102 add_phi_arg (phi, lsq,
5103 loop_latch_edge (containing_loop),
5104 UNKNOWN_LOCATION);
5105 msq = lsq;
5109 /* 4. Handle invariant-load. */
5110 if (inv_p && !bb_vinfo)
5112 gimple_stmt_iterator gsi2 = *gsi;
5113 gcc_assert (!grouped_load);
5114 gsi_next (&gsi2);
5115 new_temp = vect_init_vector (stmt, scalar_dest,
5116 vectype, &gsi2);
5117 new_stmt = SSA_NAME_DEF_STMT (new_temp);
5120 if (negative)
5122 tree perm_mask = perm_mask_for_reverse (vectype);
5123 new_temp = permute_vec_elements (new_temp, new_temp,
5124 perm_mask, stmt, gsi);
5125 new_stmt = SSA_NAME_DEF_STMT (new_temp);
5128 /* Collect vector loads and later create their permutation in
5129 vect_transform_grouped_load (). */
5130 if (grouped_load || slp_perm)
5131 dr_chain.quick_push (new_temp);
5133 /* Store vector loads in the corresponding SLP_NODE. */
5134 if (slp && !slp_perm)
5135 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5139 if (slp && !slp_perm)
5140 continue;
5142 if (slp_perm)
5144 if (!vect_transform_slp_perm_load (stmt, dr_chain, gsi, vf,
5145 slp_node_instance, false))
5147 dr_chain.release ();
5148 return false;
5151 else
5153 if (grouped_load)
5155 if (!load_lanes_p)
5156 vect_transform_grouped_load (stmt, dr_chain, group_size, gsi);
5157 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
5159 else
5161 if (j == 0)
5162 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5163 else
5164 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5165 prev_stmt_info = vinfo_for_stmt (new_stmt);
5168 dr_chain.release ();
5171 return true;
5174 /* Function vect_is_simple_cond.
5176 Input:
5177 LOOP - the loop that is being vectorized.
5178 COND - Condition that is checked for simple use.
5180 Output:
5181 *COMP_VECTYPE - the vector type for the comparison.
5183 Returns whether a COND can be vectorized. Checks whether
5184 condition operands are supportable using vec_is_simple_use. */
5186 static bool
5187 vect_is_simple_cond (tree cond, gimple stmt, loop_vec_info loop_vinfo,
5188 bb_vec_info bb_vinfo, tree *comp_vectype)
5190 tree lhs, rhs;
5191 tree def;
5192 enum vect_def_type dt;
5193 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
5195 if (!COMPARISON_CLASS_P (cond))
5196 return false;
5198 lhs = TREE_OPERAND (cond, 0);
5199 rhs = TREE_OPERAND (cond, 1);
5201 if (TREE_CODE (lhs) == SSA_NAME)
5203 gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
5204 if (!vect_is_simple_use_1 (lhs, stmt, loop_vinfo, bb_vinfo,
5205 &lhs_def_stmt, &def, &dt, &vectype1))
5206 return false;
5208 else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
5209 && TREE_CODE (lhs) != FIXED_CST)
5210 return false;
5212 if (TREE_CODE (rhs) == SSA_NAME)
5214 gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
5215 if (!vect_is_simple_use_1 (rhs, stmt, loop_vinfo, bb_vinfo,
5216 &rhs_def_stmt, &def, &dt, &vectype2))
5217 return false;
5219 else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
5220 && TREE_CODE (rhs) != FIXED_CST)
5221 return false;
5223 *comp_vectype = vectype1 ? vectype1 : vectype2;
5224 return true;
5227 /* vectorizable_condition.
5229 Check if STMT is conditional modify expression that can be vectorized.
5230 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5231 stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
5232 at GSI.
5234 When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
5235 to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
5236 else caluse if it is 2).
5238 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5240 bool
5241 vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
5242 gimple *vec_stmt, tree reduc_def, int reduc_index,
5243 slp_tree slp_node)
5245 tree scalar_dest = NULL_TREE;
5246 tree vec_dest = NULL_TREE;
5247 tree cond_expr, then_clause, else_clause;
5248 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5249 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5250 tree comp_vectype = NULL_TREE;
5251 tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE;
5252 tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE;
5253 tree vec_compare, vec_cond_expr;
5254 tree new_temp;
5255 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5256 tree def;
5257 enum vect_def_type dt, dts[4];
5258 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5259 int ncopies;
5260 enum tree_code code;
5261 stmt_vec_info prev_stmt_info = NULL;
5262 int i, j;
5263 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5264 vec<tree> vec_oprnds0 = vNULL;
5265 vec<tree> vec_oprnds1 = vNULL;
5266 vec<tree> vec_oprnds2 = vNULL;
5267 vec<tree> vec_oprnds3 = vNULL;
5268 tree vec_cmp_type = vectype;
5270 if (slp_node || PURE_SLP_STMT (stmt_info))
5271 ncopies = 1;
5272 else
5273 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5275 gcc_assert (ncopies >= 1);
5276 if (reduc_index && ncopies > 1)
5277 return false; /* FORNOW */
5279 if (reduc_index && STMT_SLP_TYPE (stmt_info))
5280 return false;
5282 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
5283 return false;
5285 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
5286 && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
5287 && reduc_def))
5288 return false;
5290 /* FORNOW: not yet supported. */
5291 if (STMT_VINFO_LIVE_P (stmt_info))
5293 if (dump_enabled_p ())
5294 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5295 "value used after loop.");
5296 return false;
5299 /* Is vectorizable conditional operation? */
5300 if (!is_gimple_assign (stmt))
5301 return false;
5303 code = gimple_assign_rhs_code (stmt);
5305 if (code != COND_EXPR)
5306 return false;
5308 cond_expr = gimple_assign_rhs1 (stmt);
5309 then_clause = gimple_assign_rhs2 (stmt);
5310 else_clause = gimple_assign_rhs3 (stmt);
5312 if (!vect_is_simple_cond (cond_expr, stmt, loop_vinfo, bb_vinfo,
5313 &comp_vectype)
5314 || !comp_vectype)
5315 return false;
5317 if (TREE_CODE (then_clause) == SSA_NAME)
5319 gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
5320 if (!vect_is_simple_use (then_clause, stmt, loop_vinfo, bb_vinfo,
5321 &then_def_stmt, &def, &dt))
5322 return false;
5324 else if (TREE_CODE (then_clause) != INTEGER_CST
5325 && TREE_CODE (then_clause) != REAL_CST
5326 && TREE_CODE (then_clause) != FIXED_CST)
5327 return false;
5329 if (TREE_CODE (else_clause) == SSA_NAME)
5331 gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
5332 if (!vect_is_simple_use (else_clause, stmt, loop_vinfo, bb_vinfo,
5333 &else_def_stmt, &def, &dt))
5334 return false;
5336 else if (TREE_CODE (else_clause) != INTEGER_CST
5337 && TREE_CODE (else_clause) != REAL_CST
5338 && TREE_CODE (else_clause) != FIXED_CST)
5339 return false;
5341 if (!INTEGRAL_TYPE_P (TREE_TYPE (vectype)))
5343 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (vectype)));
5344 tree cmp_type = build_nonstandard_integer_type (prec, 1);
5345 vec_cmp_type = get_same_sized_vectype (cmp_type, vectype);
5346 if (vec_cmp_type == NULL_TREE)
5347 return false;
5350 if (!vec_stmt)
5352 STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
5353 return expand_vec_cond_expr_p (vectype, comp_vectype);
5356 /* Transform. */
5358 if (!slp_node)
5360 vec_oprnds0.create (1);
5361 vec_oprnds1.create (1);
5362 vec_oprnds2.create (1);
5363 vec_oprnds3.create (1);
5366 /* Handle def. */
5367 scalar_dest = gimple_assign_lhs (stmt);
5368 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5370 /* Handle cond expr. */
5371 for (j = 0; j < ncopies; j++)
5373 gimple new_stmt = NULL;
5374 if (j == 0)
5376 if (slp_node)
5378 vec<tree> ops;
5379 ops.create (4);
5380 vec<vec<tree> > vec_defs;
5382 vec_defs.create (4);
5383 ops.safe_push (TREE_OPERAND (cond_expr, 0));
5384 ops.safe_push (TREE_OPERAND (cond_expr, 1));
5385 ops.safe_push (then_clause);
5386 ops.safe_push (else_clause);
5387 vect_get_slp_defs (ops, slp_node, &vec_defs, -1);
5388 vec_oprnds3 = vec_defs.pop ();
5389 vec_oprnds2 = vec_defs.pop ();
5390 vec_oprnds1 = vec_defs.pop ();
5391 vec_oprnds0 = vec_defs.pop ();
5393 ops.release ();
5394 vec_defs.release ();
5396 else
5398 gimple gtemp;
5399 vec_cond_lhs =
5400 vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0),
5401 stmt, NULL);
5402 vect_is_simple_use (TREE_OPERAND (cond_expr, 0), stmt,
5403 loop_vinfo, NULL, &gtemp, &def, &dts[0]);
5405 vec_cond_rhs =
5406 vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1),
5407 stmt, NULL);
5408 vect_is_simple_use (TREE_OPERAND (cond_expr, 1), stmt,
5409 loop_vinfo, NULL, &gtemp, &def, &dts[1]);
5410 if (reduc_index == 1)
5411 vec_then_clause = reduc_def;
5412 else
5414 vec_then_clause = vect_get_vec_def_for_operand (then_clause,
5415 stmt, NULL);
5416 vect_is_simple_use (then_clause, stmt, loop_vinfo,
5417 NULL, &gtemp, &def, &dts[2]);
5419 if (reduc_index == 2)
5420 vec_else_clause = reduc_def;
5421 else
5423 vec_else_clause = vect_get_vec_def_for_operand (else_clause,
5424 stmt, NULL);
5425 vect_is_simple_use (else_clause, stmt, loop_vinfo,
5426 NULL, &gtemp, &def, &dts[3]);
5430 else
5432 vec_cond_lhs = vect_get_vec_def_for_stmt_copy (dts[0],
5433 vec_oprnds0.pop ());
5434 vec_cond_rhs = vect_get_vec_def_for_stmt_copy (dts[1],
5435 vec_oprnds1.pop ());
5436 vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2],
5437 vec_oprnds2.pop ());
5438 vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3],
5439 vec_oprnds3.pop ());
5442 if (!slp_node)
5444 vec_oprnds0.quick_push (vec_cond_lhs);
5445 vec_oprnds1.quick_push (vec_cond_rhs);
5446 vec_oprnds2.quick_push (vec_then_clause);
5447 vec_oprnds3.quick_push (vec_else_clause);
5450 /* Arguments are ready. Create the new vector stmt. */
5451 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_cond_lhs)
5453 vec_cond_rhs = vec_oprnds1[i];
5454 vec_then_clause = vec_oprnds2[i];
5455 vec_else_clause = vec_oprnds3[i];
5457 vec_compare = build2 (TREE_CODE (cond_expr), vec_cmp_type,
5458 vec_cond_lhs, vec_cond_rhs);
5459 vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
5460 vec_compare, vec_then_clause, vec_else_clause);
5462 new_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
5463 new_temp = make_ssa_name (vec_dest, new_stmt);
5464 gimple_assign_set_lhs (new_stmt, new_temp);
5465 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5466 if (slp_node)
5467 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5470 if (slp_node)
5471 continue;
5473 if (j == 0)
5474 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5475 else
5476 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5478 prev_stmt_info = vinfo_for_stmt (new_stmt);
5481 vec_oprnds0.release ();
5482 vec_oprnds1.release ();
5483 vec_oprnds2.release ();
5484 vec_oprnds3.release ();
5486 return true;
5490 /* Make sure the statement is vectorizable. */
5492 bool
5493 vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node)
5495 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5496 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5497 enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
5498 bool ok;
5499 tree scalar_type, vectype;
5500 gimple pattern_stmt;
5501 gimple_seq pattern_def_seq;
5503 if (dump_enabled_p ())
5505 dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: ");
5506 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5509 if (gimple_has_volatile_ops (stmt))
5511 if (dump_enabled_p ())
5512 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5513 "not vectorized: stmt has volatile operands");
5515 return false;
5518 /* Skip stmts that do not need to be vectorized. In loops this is expected
5519 to include:
5520 - the COND_EXPR which is the loop exit condition
5521 - any LABEL_EXPRs in the loop
5522 - computations that are used only for array indexing or loop control.
5523 In basic blocks we only analyze statements that are a part of some SLP
5524 instance, therefore, all the statements are relevant.
5526 Pattern statement needs to be analyzed instead of the original statement
5527 if the original statement is not relevant. Otherwise, we analyze both
5528 statements. In basic blocks we are called from some SLP instance
5529 traversal, don't analyze pattern stmts instead, the pattern stmts
5530 already will be part of SLP instance. */
5532 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
5533 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5534 && !STMT_VINFO_LIVE_P (stmt_info))
5536 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5537 && pattern_stmt
5538 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5539 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5541 /* Analyze PATTERN_STMT instead of the original stmt. */
5542 stmt = pattern_stmt;
5543 stmt_info = vinfo_for_stmt (pattern_stmt);
5544 if (dump_enabled_p ())
5546 dump_printf_loc (MSG_NOTE, vect_location,
5547 "==> examining pattern statement: ");
5548 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5551 else
5553 if (dump_enabled_p ())
5554 dump_printf_loc (MSG_NOTE, vect_location, "irrelevant.");
5556 return true;
5559 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5560 && node == NULL
5561 && pattern_stmt
5562 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5563 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5565 /* Analyze PATTERN_STMT too. */
5566 if (dump_enabled_p ())
5568 dump_printf_loc (MSG_NOTE, vect_location,
5569 "==> examining pattern statement: ");
5570 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5573 if (!vect_analyze_stmt (pattern_stmt, need_to_vectorize, node))
5574 return false;
5577 if (is_pattern_stmt_p (stmt_info)
5578 && node == NULL
5579 && (pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info)))
5581 gimple_stmt_iterator si;
5583 for (si = gsi_start (pattern_def_seq); !gsi_end_p (si); gsi_next (&si))
5585 gimple pattern_def_stmt = gsi_stmt (si);
5586 if (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
5587 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt)))
5589 /* Analyze def stmt of STMT if it's a pattern stmt. */
5590 if (dump_enabled_p ())
5592 dump_printf_loc (MSG_NOTE, vect_location,
5593 "==> examining pattern def statement: ");
5594 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_def_stmt, 0);
5597 if (!vect_analyze_stmt (pattern_def_stmt,
5598 need_to_vectorize, node))
5599 return false;
5604 switch (STMT_VINFO_DEF_TYPE (stmt_info))
5606 case vect_internal_def:
5607 break;
5609 case vect_reduction_def:
5610 case vect_nested_cycle:
5611 gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer
5612 || relevance == vect_used_in_outer_by_reduction
5613 || relevance == vect_unused_in_scope));
5614 break;
5616 case vect_induction_def:
5617 case vect_constant_def:
5618 case vect_external_def:
5619 case vect_unknown_def_type:
5620 default:
5621 gcc_unreachable ();
5624 if (bb_vinfo)
5626 gcc_assert (PURE_SLP_STMT (stmt_info));
5628 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
5629 if (dump_enabled_p ())
5631 dump_printf_loc (MSG_NOTE, vect_location,
5632 "get vectype for scalar type: ");
5633 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
5636 vectype = get_vectype_for_scalar_type (scalar_type);
5637 if (!vectype)
5639 if (dump_enabled_p ())
5641 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5642 "not SLPed: unsupported data-type ");
5643 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
5644 scalar_type);
5646 return false;
5649 if (dump_enabled_p ())
5651 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
5652 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
5655 STMT_VINFO_VECTYPE (stmt_info) = vectype;
5658 if (STMT_VINFO_RELEVANT_P (stmt_info))
5660 gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
5661 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
5662 *need_to_vectorize = true;
5665 ok = true;
5666 if (!bb_vinfo
5667 && (STMT_VINFO_RELEVANT_P (stmt_info)
5668 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
5669 ok = (vectorizable_conversion (stmt, NULL, NULL, NULL)
5670 || vectorizable_shift (stmt, NULL, NULL, NULL)
5671 || vectorizable_operation (stmt, NULL, NULL, NULL)
5672 || vectorizable_assignment (stmt, NULL, NULL, NULL)
5673 || vectorizable_load (stmt, NULL, NULL, NULL, NULL)
5674 || vectorizable_call (stmt, NULL, NULL, NULL)
5675 || vectorizable_store (stmt, NULL, NULL, NULL)
5676 || vectorizable_reduction (stmt, NULL, NULL, NULL)
5677 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, NULL));
5678 else
5680 if (bb_vinfo)
5681 ok = (vectorizable_conversion (stmt, NULL, NULL, node)
5682 || vectorizable_shift (stmt, NULL, NULL, node)
5683 || vectorizable_operation (stmt, NULL, NULL, node)
5684 || vectorizable_assignment (stmt, NULL, NULL, node)
5685 || vectorizable_load (stmt, NULL, NULL, node, NULL)
5686 || vectorizable_call (stmt, NULL, NULL, node)
5687 || vectorizable_store (stmt, NULL, NULL, node)
5688 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node));
5691 if (!ok)
5693 if (dump_enabled_p ())
5695 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5696 "not vectorized: relevant stmt not ");
5697 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
5698 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
5701 return false;
5704 if (bb_vinfo)
5705 return true;
5707 /* Stmts that are (also) "live" (i.e. - that are used out of the loop)
5708 need extra handling, except for vectorizable reductions. */
5709 if (STMT_VINFO_LIVE_P (stmt_info)
5710 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
5711 ok = vectorizable_live_operation (stmt, NULL, NULL);
5713 if (!ok)
5715 if (dump_enabled_p ())
5717 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5718 "not vectorized: live stmt not ");
5719 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
5720 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
5723 return false;
5726 return true;
5730 /* Function vect_transform_stmt.
5732 Create a vectorized stmt to replace STMT, and insert it at BSI. */
5734 bool
5735 vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
5736 bool *grouped_store, slp_tree slp_node,
5737 slp_instance slp_node_instance)
5739 bool is_store = false;
5740 gimple vec_stmt = NULL;
5741 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5742 bool done;
5744 switch (STMT_VINFO_TYPE (stmt_info))
5746 case type_demotion_vec_info_type:
5747 case type_promotion_vec_info_type:
5748 case type_conversion_vec_info_type:
5749 done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
5750 gcc_assert (done);
5751 break;
5753 case induc_vec_info_type:
5754 gcc_assert (!slp_node);
5755 done = vectorizable_induction (stmt, gsi, &vec_stmt);
5756 gcc_assert (done);
5757 break;
5759 case shift_vec_info_type:
5760 done = vectorizable_shift (stmt, gsi, &vec_stmt, slp_node);
5761 gcc_assert (done);
5762 break;
5764 case op_vec_info_type:
5765 done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
5766 gcc_assert (done);
5767 break;
5769 case assignment_vec_info_type:
5770 done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
5771 gcc_assert (done);
5772 break;
5774 case load_vec_info_type:
5775 done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
5776 slp_node_instance);
5777 gcc_assert (done);
5778 break;
5780 case store_vec_info_type:
5781 done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
5782 gcc_assert (done);
5783 if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && !slp_node)
5785 /* In case of interleaving, the whole chain is vectorized when the
5786 last store in the chain is reached. Store stmts before the last
5787 one are skipped, and there vec_stmt_info shouldn't be freed
5788 meanwhile. */
5789 *grouped_store = true;
5790 if (STMT_VINFO_VEC_STMT (stmt_info))
5791 is_store = true;
5793 else
5794 is_store = true;
5795 break;
5797 case condition_vec_info_type:
5798 done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0, slp_node);
5799 gcc_assert (done);
5800 break;
5802 case call_vec_info_type:
5803 done = vectorizable_call (stmt, gsi, &vec_stmt, slp_node);
5804 stmt = gsi_stmt (*gsi);
5805 break;
5807 case reduc_vec_info_type:
5808 done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node);
5809 gcc_assert (done);
5810 break;
5812 default:
5813 if (!STMT_VINFO_LIVE_P (stmt_info))
5815 if (dump_enabled_p ())
5816 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5817 "stmt not supported.");
5818 gcc_unreachable ();
5822 /* Handle inner-loop stmts whose DEF is used in the loop-nest that
5823 is being vectorized, but outside the immediately enclosing loop. */
5824 if (vec_stmt
5825 && STMT_VINFO_LOOP_VINFO (stmt_info)
5826 && nested_in_vect_loop_p (LOOP_VINFO_LOOP (
5827 STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
5828 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
5829 && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
5830 || STMT_VINFO_RELEVANT (stmt_info) ==
5831 vect_used_in_outer_by_reduction))
5833 struct loop *innerloop = LOOP_VINFO_LOOP (
5834 STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
5835 imm_use_iterator imm_iter;
5836 use_operand_p use_p;
5837 tree scalar_dest;
5838 gimple exit_phi;
5840 if (dump_enabled_p ())
5841 dump_printf_loc (MSG_NOTE, vect_location,
5842 "Record the vdef for outer-loop vectorization.");
5844 /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
5845 (to be used when vectorizing outer-loop stmts that use the DEF of
5846 STMT). */
5847 if (gimple_code (stmt) == GIMPLE_PHI)
5848 scalar_dest = PHI_RESULT (stmt);
5849 else
5850 scalar_dest = gimple_assign_lhs (stmt);
5852 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5854 if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
5856 exit_phi = USE_STMT (use_p);
5857 STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
5862 /* Handle stmts whose DEF is used outside the loop-nest that is
5863 being vectorized. */
5864 if (STMT_VINFO_LIVE_P (stmt_info)
5865 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
5867 done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
5868 gcc_assert (done);
5871 if (vec_stmt)
5872 STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
5874 return is_store;
5878 /* Remove a group of stores (for SLP or interleaving), free their
5879 stmt_vec_info. */
5881 void
5882 vect_remove_stores (gimple first_stmt)
5884 gimple next = first_stmt;
5885 gimple tmp;
5886 gimple_stmt_iterator next_si;
5888 while (next)
5890 stmt_vec_info stmt_info = vinfo_for_stmt (next);
5892 tmp = GROUP_NEXT_ELEMENT (stmt_info);
5893 if (is_pattern_stmt_p (stmt_info))
5894 next = STMT_VINFO_RELATED_STMT (stmt_info);
5895 /* Free the attached stmt_vec_info and remove the stmt. */
5896 next_si = gsi_for_stmt (next);
5897 unlink_stmt_vdef (next);
5898 gsi_remove (&next_si, true);
5899 release_defs (next);
5900 free_stmt_vec_info (next);
5901 next = tmp;
5906 /* Function new_stmt_vec_info.
5908 Create and initialize a new stmt_vec_info struct for STMT. */
5910 stmt_vec_info
5911 new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo,
5912 bb_vec_info bb_vinfo)
5914 stmt_vec_info res;
5915 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
5917 STMT_VINFO_TYPE (res) = undef_vec_info_type;
5918 STMT_VINFO_STMT (res) = stmt;
5919 STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
5920 STMT_VINFO_BB_VINFO (res) = bb_vinfo;
5921 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
5922 STMT_VINFO_LIVE_P (res) = false;
5923 STMT_VINFO_VECTYPE (res) = NULL;
5924 STMT_VINFO_VEC_STMT (res) = NULL;
5925 STMT_VINFO_VECTORIZABLE (res) = true;
5926 STMT_VINFO_IN_PATTERN_P (res) = false;
5927 STMT_VINFO_RELATED_STMT (res) = NULL;
5928 STMT_VINFO_PATTERN_DEF_SEQ (res) = NULL;
5929 STMT_VINFO_DATA_REF (res) = NULL;
5931 STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
5932 STMT_VINFO_DR_OFFSET (res) = NULL;
5933 STMT_VINFO_DR_INIT (res) = NULL;
5934 STMT_VINFO_DR_STEP (res) = NULL;
5935 STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
5937 if (gimple_code (stmt) == GIMPLE_PHI
5938 && is_loop_header_bb_p (gimple_bb (stmt)))
5939 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
5940 else
5941 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
5943 STMT_VINFO_SAME_ALIGN_REFS (res).create (0);
5944 STMT_SLP_TYPE (res) = loop_vect;
5945 GROUP_FIRST_ELEMENT (res) = NULL;
5946 GROUP_NEXT_ELEMENT (res) = NULL;
5947 GROUP_SIZE (res) = 0;
5948 GROUP_STORE_COUNT (res) = 0;
5949 GROUP_GAP (res) = 0;
5950 GROUP_SAME_DR_STMT (res) = NULL;
5951 GROUP_READ_WRITE_DEPENDENCE (res) = false;
5953 return res;
5957 /* Create a hash table for stmt_vec_info. */
5959 void
5960 init_stmt_vec_info_vec (void)
5962 gcc_assert (!stmt_vec_info_vec.exists ());
5963 stmt_vec_info_vec.create (50);
5967 /* Free hash table for stmt_vec_info. */
5969 void
5970 free_stmt_vec_info_vec (void)
5972 unsigned int i;
5973 vec_void_p info;
5974 FOR_EACH_VEC_ELT (stmt_vec_info_vec, i, info)
5975 if (info != NULL)
5976 free_stmt_vec_info (STMT_VINFO_STMT ((stmt_vec_info) info));
5977 gcc_assert (stmt_vec_info_vec.exists ());
5978 stmt_vec_info_vec.release ();
5982 /* Free stmt vectorization related info. */
5984 void
5985 free_stmt_vec_info (gimple stmt)
5987 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5989 if (!stmt_info)
5990 return;
5992 /* Check if this statement has a related "pattern stmt"
5993 (introduced by the vectorizer during the pattern recognition
5994 pass). Free pattern's stmt_vec_info and def stmt's stmt_vec_info
5995 too. */
5996 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
5998 stmt_vec_info patt_info
5999 = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
6000 if (patt_info)
6002 gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (patt_info);
6003 if (seq)
6005 gimple_stmt_iterator si;
6006 for (si = gsi_start (seq); !gsi_end_p (si); gsi_next (&si))
6007 free_stmt_vec_info (gsi_stmt (si));
6009 free_stmt_vec_info (STMT_VINFO_RELATED_STMT (stmt_info));
6013 STMT_VINFO_SAME_ALIGN_REFS (stmt_info).release ();
6014 set_vinfo_for_stmt (stmt, NULL);
6015 free (stmt_info);
6019 /* Function get_vectype_for_scalar_type_and_size.
6021 Returns the vector type corresponding to SCALAR_TYPE and SIZE as supported
6022 by the target. */
6024 static tree
6025 get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
6027 enum machine_mode inner_mode = TYPE_MODE (scalar_type);
6028 enum machine_mode simd_mode;
6029 unsigned int nbytes = GET_MODE_SIZE (inner_mode);
6030 int nunits;
6031 tree vectype;
6033 if (nbytes == 0)
6034 return NULL_TREE;
6036 if (GET_MODE_CLASS (inner_mode) != MODE_INT
6037 && GET_MODE_CLASS (inner_mode) != MODE_FLOAT)
6038 return NULL_TREE;
6040 /* For vector types of elements whose mode precision doesn't
6041 match their types precision we use a element type of mode
6042 precision. The vectorization routines will have to make sure
6043 they support the proper result truncation/extension.
6044 We also make sure to build vector types with INTEGER_TYPE
6045 component type only. */
6046 if (INTEGRAL_TYPE_P (scalar_type)
6047 && (GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type)
6048 || TREE_CODE (scalar_type) != INTEGER_TYPE))
6049 scalar_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (inner_mode),
6050 TYPE_UNSIGNED (scalar_type));
6052 /* We shouldn't end up building VECTOR_TYPEs of non-scalar components.
6053 When the component mode passes the above test simply use a type
6054 corresponding to that mode. The theory is that any use that
6055 would cause problems with this will disable vectorization anyway. */
6056 else if (!SCALAR_FLOAT_TYPE_P (scalar_type)
6057 && !INTEGRAL_TYPE_P (scalar_type)
6058 && !POINTER_TYPE_P (scalar_type))
6059 scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
6061 /* We can't build a vector type of elements with alignment bigger than
6062 their size. */
6063 else if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
6064 scalar_type = lang_hooks.types.type_for_mode (inner_mode,
6065 TYPE_UNSIGNED (scalar_type));
6067 /* If we felt back to using the mode fail if there was
6068 no scalar type for it. */
6069 if (scalar_type == NULL_TREE)
6070 return NULL_TREE;
6072 /* If no size was supplied use the mode the target prefers. Otherwise
6073 lookup a vector mode of the specified size. */
6074 if (size == 0)
6075 simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode);
6076 else
6077 simd_mode = mode_for_vector (inner_mode, size / nbytes);
6078 nunits = GET_MODE_SIZE (simd_mode) / nbytes;
6079 if (nunits <= 1)
6080 return NULL_TREE;
6082 vectype = build_vector_type (scalar_type, nunits);
6083 if (dump_enabled_p ())
6085 dump_printf_loc (MSG_NOTE, vect_location,
6086 "get vectype with %d units of type ", nunits);
6087 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
6090 if (!vectype)
6091 return NULL_TREE;
6093 if (dump_enabled_p ())
6095 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
6096 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
6099 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
6100 && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
6102 if (dump_enabled_p ())
6103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6104 "mode not supported by target.");
6105 return NULL_TREE;
6108 return vectype;
6111 unsigned int current_vector_size;
6113 /* Function get_vectype_for_scalar_type.
6115 Returns the vector type corresponding to SCALAR_TYPE as supported
6116 by the target. */
6118 tree
6119 get_vectype_for_scalar_type (tree scalar_type)
6121 tree vectype;
6122 vectype = get_vectype_for_scalar_type_and_size (scalar_type,
6123 current_vector_size);
6124 if (vectype
6125 && current_vector_size == 0)
6126 current_vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
6127 return vectype;
6130 /* Function get_same_sized_vectype
6132 Returns a vector type corresponding to SCALAR_TYPE of size
6133 VECTOR_TYPE if supported by the target. */
6135 tree
6136 get_same_sized_vectype (tree scalar_type, tree vector_type)
6138 return get_vectype_for_scalar_type_and_size
6139 (scalar_type, GET_MODE_SIZE (TYPE_MODE (vector_type)));
6142 /* Function vect_is_simple_use.
6144 Input:
6145 LOOP_VINFO - the vect info of the loop that is being vectorized.
6146 BB_VINFO - the vect info of the basic block that is being vectorized.
6147 OPERAND - operand of STMT in the loop or bb.
6148 DEF - the defining stmt in case OPERAND is an SSA_NAME.
6150 Returns whether a stmt with OPERAND can be vectorized.
6151 For loops, supportable operands are constants, loop invariants, and operands
6152 that are defined by the current iteration of the loop. Unsupportable
6153 operands are those that are defined by a previous iteration of the loop (as
6154 is the case in reduction/induction computations).
6155 For basic blocks, supportable operands are constants and bb invariants.
6156 For now, operands defined outside the basic block are not supported. */
6158 bool
6159 vect_is_simple_use (tree operand, gimple stmt, loop_vec_info loop_vinfo,
6160 bb_vec_info bb_vinfo, gimple *def_stmt,
6161 tree *def, enum vect_def_type *dt)
6163 basic_block bb;
6164 stmt_vec_info stmt_vinfo;
6165 struct loop *loop = NULL;
6167 if (loop_vinfo)
6168 loop = LOOP_VINFO_LOOP (loop_vinfo);
6170 *def_stmt = NULL;
6171 *def = NULL_TREE;
6173 if (dump_enabled_p ())
6175 dump_printf_loc (MSG_NOTE, vect_location,
6176 "vect_is_simple_use: operand ");
6177 dump_generic_expr (MSG_NOTE, TDF_SLIM, operand);
6180 if (CONSTANT_CLASS_P (operand))
6182 *dt = vect_constant_def;
6183 return true;
6186 if (is_gimple_min_invariant (operand))
6188 *def = operand;
6189 *dt = vect_external_def;
6190 return true;
6193 if (TREE_CODE (operand) == PAREN_EXPR)
6195 if (dump_enabled_p ())
6196 dump_printf_loc (MSG_NOTE, vect_location, "non-associatable copy.");
6197 operand = TREE_OPERAND (operand, 0);
6200 if (TREE_CODE (operand) != SSA_NAME)
6202 if (dump_enabled_p ())
6203 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6204 "not ssa-name.");
6205 return false;
6208 *def_stmt = SSA_NAME_DEF_STMT (operand);
6209 if (*def_stmt == NULL)
6211 if (dump_enabled_p ())
6212 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6213 "no def_stmt.");
6214 return false;
6217 if (dump_enabled_p ())
6219 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt: ");
6220 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, *def_stmt, 0);
6223 /* Empty stmt is expected only in case of a function argument.
6224 (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
6225 if (gimple_nop_p (*def_stmt))
6227 *def = operand;
6228 *dt = vect_external_def;
6229 return true;
6232 bb = gimple_bb (*def_stmt);
6234 if ((loop && !flow_bb_inside_loop_p (loop, bb))
6235 || (!loop && bb != BB_VINFO_BB (bb_vinfo))
6236 || (!loop && gimple_code (*def_stmt) == GIMPLE_PHI))
6237 *dt = vect_external_def;
6238 else
6240 stmt_vinfo = vinfo_for_stmt (*def_stmt);
6241 *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
6244 if (*dt == vect_unknown_def_type
6245 || (stmt
6246 && *dt == vect_double_reduction_def
6247 && gimple_code (stmt) != GIMPLE_PHI))
6249 if (dump_enabled_p ())
6250 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6251 "Unsupported pattern.");
6252 return false;
6255 if (dump_enabled_p ())
6256 dump_printf_loc (MSG_NOTE, vect_location, "type of def: %d.", *dt);
6258 switch (gimple_code (*def_stmt))
6260 case GIMPLE_PHI:
6261 *def = gimple_phi_result (*def_stmt);
6262 break;
6264 case GIMPLE_ASSIGN:
6265 *def = gimple_assign_lhs (*def_stmt);
6266 break;
6268 case GIMPLE_CALL:
6269 *def = gimple_call_lhs (*def_stmt);
6270 if (*def != NULL)
6271 break;
6272 /* FALLTHRU */
6273 default:
6274 if (dump_enabled_p ())
6275 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6276 "unsupported defining stmt: ");
6277 return false;
6280 return true;
6283 /* Function vect_is_simple_use_1.
6285 Same as vect_is_simple_use_1 but also determines the vector operand
6286 type of OPERAND and stores it to *VECTYPE. If the definition of
6287 OPERAND is vect_uninitialized_def, vect_constant_def or
6288 vect_external_def *VECTYPE will be set to NULL_TREE and the caller
6289 is responsible to compute the best suited vector type for the
6290 scalar operand. */
6292 bool
6293 vect_is_simple_use_1 (tree operand, gimple stmt, loop_vec_info loop_vinfo,
6294 bb_vec_info bb_vinfo, gimple *def_stmt,
6295 tree *def, enum vect_def_type *dt, tree *vectype)
6297 if (!vect_is_simple_use (operand, stmt, loop_vinfo, bb_vinfo, def_stmt,
6298 def, dt))
6299 return false;
6301 /* Now get a vector type if the def is internal, otherwise supply
6302 NULL_TREE and leave it up to the caller to figure out a proper
6303 type for the use stmt. */
6304 if (*dt == vect_internal_def
6305 || *dt == vect_induction_def
6306 || *dt == vect_reduction_def
6307 || *dt == vect_double_reduction_def
6308 || *dt == vect_nested_cycle)
6310 stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
6312 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
6313 && !STMT_VINFO_RELEVANT (stmt_info)
6314 && !STMT_VINFO_LIVE_P (stmt_info))
6315 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
6317 *vectype = STMT_VINFO_VECTYPE (stmt_info);
6318 gcc_assert (*vectype != NULL_TREE);
6320 else if (*dt == vect_uninitialized_def
6321 || *dt == vect_constant_def
6322 || *dt == vect_external_def)
6323 *vectype = NULL_TREE;
6324 else
6325 gcc_unreachable ();
6327 return true;
6331 /* Function supportable_widening_operation
6333 Check whether an operation represented by the code CODE is a
6334 widening operation that is supported by the target platform in
6335 vector form (i.e., when operating on arguments of type VECTYPE_IN
6336 producing a result of type VECTYPE_OUT).
6338 Widening operations we currently support are NOP (CONVERT), FLOAT
6339 and WIDEN_MULT. This function checks if these operations are supported
6340 by the target platform either directly (via vector tree-codes), or via
6341 target builtins.
6343 Output:
6344 - CODE1 and CODE2 are codes of vector operations to be used when
6345 vectorizing the operation, if available.
6346 - MULTI_STEP_CVT determines the number of required intermediate steps in
6347 case of multi-step conversion (like char->short->int - in that case
6348 MULTI_STEP_CVT will be 1).
6349 - INTERM_TYPES contains the intermediate type required to perform the
6350 widening operation (short in the above example). */
6352 bool
6353 supportable_widening_operation (enum tree_code code, gimple stmt,
6354 tree vectype_out, tree vectype_in,
6355 enum tree_code *code1, enum tree_code *code2,
6356 int *multi_step_cvt,
6357 vec<tree> *interm_types)
6359 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6360 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
6361 struct loop *vect_loop = NULL;
6362 enum machine_mode vec_mode;
6363 enum insn_code icode1, icode2;
6364 optab optab1, optab2;
6365 tree vectype = vectype_in;
6366 tree wide_vectype = vectype_out;
6367 enum tree_code c1, c2;
6368 int i;
6369 tree prev_type, intermediate_type;
6370 enum machine_mode intermediate_mode, prev_mode;
6371 optab optab3, optab4;
6373 *multi_step_cvt = 0;
6374 if (loop_info)
6375 vect_loop = LOOP_VINFO_LOOP (loop_info);
6377 switch (code)
6379 case WIDEN_MULT_EXPR:
6380 /* The result of a vectorized widening operation usually requires
6381 two vectors (because the widened results do not fit into one vector).
6382 The generated vector results would normally be expected to be
6383 generated in the same order as in the original scalar computation,
6384 i.e. if 8 results are generated in each vector iteration, they are
6385 to be organized as follows:
6386 vect1: [res1,res2,res3,res4],
6387 vect2: [res5,res6,res7,res8].
6389 However, in the special case that the result of the widening
6390 operation is used in a reduction computation only, the order doesn't
6391 matter (because when vectorizing a reduction we change the order of
6392 the computation). Some targets can take advantage of this and
6393 generate more efficient code. For example, targets like Altivec,
6394 that support widen_mult using a sequence of {mult_even,mult_odd}
6395 generate the following vectors:
6396 vect1: [res1,res3,res5,res7],
6397 vect2: [res2,res4,res6,res8].
6399 When vectorizing outer-loops, we execute the inner-loop sequentially
6400 (each vectorized inner-loop iteration contributes to VF outer-loop
6401 iterations in parallel). We therefore don't allow to change the
6402 order of the computation in the inner-loop during outer-loop
6403 vectorization. */
6404 /* TODO: Another case in which order doesn't *really* matter is when we
6405 widen and then contract again, e.g. (short)((int)x * y >> 8).
6406 Normally, pack_trunc performs an even/odd permute, whereas the
6407 repack from an even/odd expansion would be an interleave, which
6408 would be significantly simpler for e.g. AVX2. */
6409 /* In any case, in order to avoid duplicating the code below, recurse
6410 on VEC_WIDEN_MULT_EVEN_EXPR. If it succeeds, all the return values
6411 are properly set up for the caller. If we fail, we'll continue with
6412 a VEC_WIDEN_MULT_LO/HI_EXPR check. */
6413 if (vect_loop
6414 && STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
6415 && !nested_in_vect_loop_p (vect_loop, stmt)
6416 && supportable_widening_operation (VEC_WIDEN_MULT_EVEN_EXPR,
6417 stmt, vectype_out, vectype_in,
6418 code1, code2, multi_step_cvt,
6419 interm_types))
6420 return true;
6421 c1 = VEC_WIDEN_MULT_LO_EXPR;
6422 c2 = VEC_WIDEN_MULT_HI_EXPR;
6423 break;
6425 case VEC_WIDEN_MULT_EVEN_EXPR:
6426 /* Support the recursion induced just above. */
6427 c1 = VEC_WIDEN_MULT_EVEN_EXPR;
6428 c2 = VEC_WIDEN_MULT_ODD_EXPR;
6429 break;
6431 case WIDEN_LSHIFT_EXPR:
6432 c1 = VEC_WIDEN_LSHIFT_LO_EXPR;
6433 c2 = VEC_WIDEN_LSHIFT_HI_EXPR;
6434 break;
6436 CASE_CONVERT:
6437 c1 = VEC_UNPACK_LO_EXPR;
6438 c2 = VEC_UNPACK_HI_EXPR;
6439 break;
6441 case FLOAT_EXPR:
6442 c1 = VEC_UNPACK_FLOAT_LO_EXPR;
6443 c2 = VEC_UNPACK_FLOAT_HI_EXPR;
6444 break;
6446 case FIX_TRUNC_EXPR:
6447 /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
6448 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
6449 computing the operation. */
6450 return false;
6452 default:
6453 gcc_unreachable ();
6456 if (BYTES_BIG_ENDIAN && c1 != VEC_WIDEN_MULT_EVEN_EXPR)
6458 enum tree_code ctmp = c1;
6459 c1 = c2;
6460 c2 = ctmp;
6463 if (code == FIX_TRUNC_EXPR)
6465 /* The signedness is determined from output operand. */
6466 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
6467 optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
6469 else
6471 optab1 = optab_for_tree_code (c1, vectype, optab_default);
6472 optab2 = optab_for_tree_code (c2, vectype, optab_default);
6475 if (!optab1 || !optab2)
6476 return false;
6478 vec_mode = TYPE_MODE (vectype);
6479 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
6480 || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
6481 return false;
6483 *code1 = c1;
6484 *code2 = c2;
6486 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
6487 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
6488 return true;
6490 /* Check if it's a multi-step conversion that can be done using intermediate
6491 types. */
6493 prev_type = vectype;
6494 prev_mode = vec_mode;
6496 if (!CONVERT_EXPR_CODE_P (code))
6497 return false;
6499 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
6500 intermediate steps in promotion sequence. We try
6501 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
6502 not. */
6503 interm_types->create (MAX_INTERM_CVT_STEPS);
6504 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
6506 intermediate_mode = insn_data[icode1].operand[0].mode;
6507 intermediate_type
6508 = lang_hooks.types.type_for_mode (intermediate_mode,
6509 TYPE_UNSIGNED (prev_type));
6510 optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
6511 optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
6513 if (!optab3 || !optab4
6514 || (icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing
6515 || insn_data[icode1].operand[0].mode != intermediate_mode
6516 || (icode2 = optab_handler (optab2, prev_mode)) == CODE_FOR_nothing
6517 || insn_data[icode2].operand[0].mode != intermediate_mode
6518 || ((icode1 = optab_handler (optab3, intermediate_mode))
6519 == CODE_FOR_nothing)
6520 || ((icode2 = optab_handler (optab4, intermediate_mode))
6521 == CODE_FOR_nothing))
6522 break;
6524 interm_types->quick_push (intermediate_type);
6525 (*multi_step_cvt)++;
6527 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
6528 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
6529 return true;
6531 prev_type = intermediate_type;
6532 prev_mode = intermediate_mode;
6535 interm_types->release ();
6536 return false;
6540 /* Function supportable_narrowing_operation
6542 Check whether an operation represented by the code CODE is a
6543 narrowing operation that is supported by the target platform in
6544 vector form (i.e., when operating on arguments of type VECTYPE_IN
6545 and producing a result of type VECTYPE_OUT).
6547 Narrowing operations we currently support are NOP (CONVERT) and
6548 FIX_TRUNC. This function checks if these operations are supported by
6549 the target platform directly via vector tree-codes.
6551 Output:
6552 - CODE1 is the code of a vector operation to be used when
6553 vectorizing the operation, if available.
6554 - MULTI_STEP_CVT determines the number of required intermediate steps in
6555 case of multi-step conversion (like int->short->char - in that case
6556 MULTI_STEP_CVT will be 1).
6557 - INTERM_TYPES contains the intermediate type required to perform the
6558 narrowing operation (short in the above example). */
6560 bool
6561 supportable_narrowing_operation (enum tree_code code,
6562 tree vectype_out, tree vectype_in,
6563 enum tree_code *code1, int *multi_step_cvt,
6564 vec<tree> *interm_types)
6566 enum machine_mode vec_mode;
6567 enum insn_code icode1;
6568 optab optab1, interm_optab;
6569 tree vectype = vectype_in;
6570 tree narrow_vectype = vectype_out;
6571 enum tree_code c1;
6572 tree intermediate_type;
6573 enum machine_mode intermediate_mode, prev_mode;
6574 int i;
6575 bool uns;
6577 *multi_step_cvt = 0;
6578 switch (code)
6580 CASE_CONVERT:
6581 c1 = VEC_PACK_TRUNC_EXPR;
6582 break;
6584 case FIX_TRUNC_EXPR:
6585 c1 = VEC_PACK_FIX_TRUNC_EXPR;
6586 break;
6588 case FLOAT_EXPR:
6589 /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
6590 tree code and optabs used for computing the operation. */
6591 return false;
6593 default:
6594 gcc_unreachable ();
6597 if (code == FIX_TRUNC_EXPR)
6598 /* The signedness is determined from output operand. */
6599 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
6600 else
6601 optab1 = optab_for_tree_code (c1, vectype, optab_default);
6603 if (!optab1)
6604 return false;
6606 vec_mode = TYPE_MODE (vectype);
6607 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
6608 return false;
6610 *code1 = c1;
6612 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
6613 return true;
6615 /* Check if it's a multi-step conversion that can be done using intermediate
6616 types. */
6617 prev_mode = vec_mode;
6618 if (code == FIX_TRUNC_EXPR)
6619 uns = TYPE_UNSIGNED (vectype_out);
6620 else
6621 uns = TYPE_UNSIGNED (vectype);
6623 /* For multi-step FIX_TRUNC_EXPR prefer signed floating to integer
6624 conversion over unsigned, as unsigned FIX_TRUNC_EXPR is often more
6625 costly than signed. */
6626 if (code == FIX_TRUNC_EXPR && uns)
6628 enum insn_code icode2;
6630 intermediate_type
6631 = lang_hooks.types.type_for_mode (TYPE_MODE (vectype_out), 0);
6632 interm_optab
6633 = optab_for_tree_code (c1, intermediate_type, optab_default);
6634 if (interm_optab != unknown_optab
6635 && (icode2 = optab_handler (optab1, vec_mode)) != CODE_FOR_nothing
6636 && insn_data[icode1].operand[0].mode
6637 == insn_data[icode2].operand[0].mode)
6639 uns = false;
6640 optab1 = interm_optab;
6641 icode1 = icode2;
6645 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
6646 intermediate steps in promotion sequence. We try
6647 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */
6648 interm_types->create (MAX_INTERM_CVT_STEPS);
6649 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
6651 intermediate_mode = insn_data[icode1].operand[0].mode;
6652 intermediate_type
6653 = lang_hooks.types.type_for_mode (intermediate_mode, uns);
6654 interm_optab
6655 = optab_for_tree_code (VEC_PACK_TRUNC_EXPR, intermediate_type,
6656 optab_default);
6657 if (!interm_optab
6658 || ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing)
6659 || insn_data[icode1].operand[0].mode != intermediate_mode
6660 || ((icode1 = optab_handler (interm_optab, intermediate_mode))
6661 == CODE_FOR_nothing))
6662 break;
6664 interm_types->quick_push (intermediate_type);
6665 (*multi_step_cvt)++;
6667 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
6668 return true;
6670 prev_mode = intermediate_mode;
6671 optab1 = interm_optab;
6674 interm_types->release ();
6675 return false;