1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
43 Global Optimization by Suppression of Partial Redundancies
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
115 Rice University Ph.D. thesis, Apr. 1996
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
125 Advanced Compiler Design and Implementation
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
148 #include "coretypes.h"
155 #include "hard-reg-set.h"
158 #include "insn-config.h"
160 #include "basic-block.h"
162 #include "function.h"
171 /* Propagate flow information through back edges and thus enable PRE's
172 moving loop invariant calculations out of loops.
174 Originally this tended to create worse overall code, but several
175 improvements during the development of PRE seem to have made following
176 back edges generally a win.
178 Note much of the loop invariant code motion done here would normally
179 be done by loop.c, which has more heuristics for when to move invariants
180 out of loops. At some point we might need to move some of those
181 heuristics into gcse.c. */
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by GCSE.
186 We perform the following steps:
188 1) Compute basic block information.
190 2) Compute table of places where registers are set.
192 3) Perform copy/constant propagation.
194 4) Perform global cse.
196 5) Perform another pass of copy/constant propagation.
198 Two passes of copy/constant propagation are done because the first one
199 enables more GCSE and the second one helps to clean up the copies that
200 GCSE creates. This is needed more for PRE than for Classic because Classic
201 GCSE will try to use an existing register containing the common
202 subexpression rather than create a new one. This is harder to do for PRE
203 because of the code motion (which Classic GCSE doesn't do).
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
212 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
213 assignment) based GVN (global value numbering). L. T. Simpson's paper
214 (Rice University) on value numbering is a useful reference for this.
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
232 PRE is quite expensive in complicated functions because the DFA can take
233 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
234 be modified if one wants to experiment.
236 **********************
238 The steps for PRE are:
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
242 2) Perform the data flow analysis for PRE.
244 3) Delete the redundant instructions
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
259 PRE GCSE depends heavily on the second CSE pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing register.
266 **********************
268 A fair bit of simplicity is created by creating small functions for simple
269 tasks, even when the function is only called in one place. This may
270 measurably slow things down [or may not] by creating more function call
271 overhead than is necessary. The source is laid out so that it's trivial
272 to make the affected functions inline so that one can measure what speed
273 up, if any, can be achieved, and maybe later when things settle things can
276 Help stamp out big monolithic functions! */
278 /* GCSE global vars. */
281 static FILE *gcse_file
;
283 /* Note whether or not we should run jump optimization after gcse. We
284 want to do this for two cases.
286 * If we changed any jumps via cprop.
288 * If we added any labels via edge splitting. */
290 static int run_jump_opt_after_gcse
;
292 /* Bitmaps are normally not included in debugging dumps.
293 However it's useful to be able to print them from GDB.
294 We could create special functions for this, but it's simpler to
295 just allow passing stderr to the dump_foo fns. Since stderr can
296 be a macro, we store a copy here. */
297 static FILE *debug_stderr
;
299 /* An obstack for our working variables. */
300 static struct obstack gcse_obstack
;
302 struct reg_use
{rtx reg_rtx
; };
304 /* Hash table of expressions. */
308 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
310 /* Index in the available expression bitmaps. */
312 /* Next entry with the same hash. */
313 struct expr
*next_same_hash
;
314 /* List of anticipatable occurrences in basic blocks in the function.
315 An "anticipatable occurrence" is one that is the first occurrence in the
316 basic block, the operands are not modified in the basic block prior
317 to the occurrence and the output is not used between the start of
318 the block and the occurrence. */
319 struct occr
*antic_occr
;
320 /* List of available occurrence in basic blocks in the function.
321 An "available occurrence" is one that is the last occurrence in the
322 basic block and the operands are not modified by following statements in
323 the basic block [including this insn]. */
324 struct occr
*avail_occr
;
325 /* Non-null if the computation is PRE redundant.
326 The value is the newly created pseudo-reg to record a copy of the
327 expression in all the places that reach the redundant copy. */
331 /* Occurrence of an expression.
332 There is one per basic block. If a pattern appears more than once the
333 last appearance is used [or first for anticipatable expressions]. */
337 /* Next occurrence of this expression. */
339 /* The insn that computes the expression. */
341 /* Nonzero if this [anticipatable] occurrence has been deleted. */
343 /* Nonzero if this [available] occurrence has been copied to
345 /* ??? This is mutually exclusive with deleted_p, so they could share
350 /* Expression and copy propagation hash tables.
351 Each hash table is an array of buckets.
352 ??? It is known that if it were an array of entries, structure elements
353 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
354 not clear whether in the final analysis a sufficient amount of memory would
355 be saved as the size of the available expression bitmaps would be larger
356 [one could build a mapping table without holes afterwards though].
357 Someday I'll perform the computation and figure it out. */
362 This is an array of `expr_hash_table_size' elements. */
365 /* Size of the hash table, in elements. */
368 /* Number of hash table elements. */
369 unsigned int n_elems
;
371 /* Whether the table is expression of copy propagation one. */
375 /* Expression hash table. */
376 static struct hash_table expr_hash_table
;
378 /* Copy propagation hash table. */
379 static struct hash_table set_hash_table
;
381 /* Mapping of uids to cuids.
382 Only real insns get cuids. */
383 static int *uid_cuid
;
385 /* Highest UID in UID_CUID. */
388 /* Get the cuid of an insn. */
389 #ifdef ENABLE_CHECKING
390 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
392 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
395 /* Number of cuids. */
398 /* Mapping of cuids to insns. */
399 static rtx
*cuid_insn
;
401 /* Get insn from cuid. */
402 #define CUID_INSN(CUID) (cuid_insn[CUID])
404 /* Maximum register number in function prior to doing gcse + 1.
405 Registers created during this pass have regno >= max_gcse_regno.
406 This is named with "gcse" to not collide with global of same name. */
407 static unsigned int max_gcse_regno
;
409 /* Table of registers that are modified.
411 For each register, each element is a list of places where the pseudo-reg
414 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
415 requires knowledge of which blocks kill which regs [and thus could use
416 a bitmap instead of the lists `reg_set_table' uses].
418 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
419 num-regs) [however perhaps it may be useful to keep the data as is]. One
420 advantage of recording things this way is that `reg_set_table' is fairly
421 sparse with respect to pseudo regs but for hard regs could be fairly dense
422 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
423 up functions like compute_transp since in the case of pseudo-regs we only
424 need to iterate over the number of times a pseudo-reg is set, not over the
425 number of basic blocks [clearly there is a bit of a slow down in the cases
426 where a pseudo is set more than once in a block, however it is believed
427 that the net effect is to speed things up]. This isn't done for hard-regs
428 because recording call-clobbered hard-regs in `reg_set_table' at each
429 function call can consume a fair bit of memory, and iterating over
430 hard-regs stored this way in compute_transp will be more expensive. */
432 typedef struct reg_set
434 /* The next setting of this register. */
435 struct reg_set
*next
;
436 /* The insn where it was set. */
440 static reg_set
**reg_set_table
;
442 /* Size of `reg_set_table'.
443 The table starts out at max_gcse_regno + slop, and is enlarged as
445 static int reg_set_table_size
;
447 /* Amount to grow `reg_set_table' by when it's full. */
448 #define REG_SET_TABLE_SLOP 100
450 /* This is a list of expressions which are MEMs and will be used by load
452 Load motion tracks MEMs which aren't killed by
453 anything except itself. (ie, loads and stores to a single location).
454 We can then allow movement of these MEM refs with a little special
455 allowance. (all stores copy the same value to the reaching reg used
456 for the loads). This means all values used to store into memory must have
457 no side effects so we can re-issue the setter value.
458 Store Motion uses this structure as an expression table to track stores
459 which look interesting, and might be moveable towards the exit block. */
463 struct expr
* expr
; /* Gcse expression reference for LM. */
464 rtx pattern
; /* Pattern of this mem. */
465 rtx pattern_regs
; /* List of registers mentioned by the mem. */
466 rtx loads
; /* INSN list of loads seen. */
467 rtx stores
; /* INSN list of stores seen. */
468 struct ls_expr
* next
; /* Next in the list. */
469 int invalid
; /* Invalid for some reason. */
470 int index
; /* If it maps to a bitmap index. */
471 int hash_index
; /* Index when in a hash table. */
472 rtx reaching_reg
; /* Register to use when re-writing. */
475 /* Array of implicit set patterns indexed by basic block index. */
476 static rtx
*implicit_sets
;
478 /* Head of the list of load/store memory refs. */
479 static struct ls_expr
* pre_ldst_mems
= NULL
;
481 /* Bitmap containing one bit for each register in the program.
482 Used when performing GCSE to track which registers have been set since
483 the start of the basic block. */
484 static regset reg_set_bitmap
;
486 /* For each block, a bitmap of registers set in the block.
487 This is used by expr_killed_p and compute_transp.
488 It is computed during hash table computation and not by compute_sets
489 as it includes registers added since the last pass (or between cprop and
490 gcse) and it's currently not easy to realloc sbitmap vectors. */
491 static sbitmap
*reg_set_in_block
;
493 /* Array, indexed by basic block number for a list of insns which modify
494 memory within that block. */
495 static rtx
* modify_mem_list
;
496 bitmap modify_mem_list_set
;
498 /* This array parallels modify_mem_list, but is kept canonicalized. */
499 static rtx
* canon_modify_mem_list
;
500 bitmap canon_modify_mem_list_set
;
501 /* Various variables for statistics gathering. */
503 /* Memory used in a pass.
504 This isn't intended to be absolutely precise. Its intent is only
505 to keep an eye on memory usage. */
506 static int bytes_used
;
508 /* GCSE substitutions made. */
509 static int gcse_subst_count
;
510 /* Number of copy instructions created. */
511 static int gcse_create_count
;
512 /* Number of constants propagated. */
513 static int const_prop_count
;
514 /* Number of copys propagated. */
515 static int copy_prop_count
;
517 /* These variables are used by classic GCSE.
518 Normally they'd be defined a bit later, but `rd_gen' needs to
519 be declared sooner. */
521 /* Each block has a bitmap of each type.
522 The length of each blocks bitmap is:
524 max_cuid - for reaching definitions
525 n_exprs - for available expressions
527 Thus we view the bitmaps as 2 dimensional arrays. i.e.
528 rd_kill[block_num][cuid_num]
529 ae_kill[block_num][expr_num] */
531 /* For reaching defs */
532 static sbitmap
*rd_kill
, *rd_gen
, *reaching_defs
, *rd_out
;
534 /* for available exprs */
535 static sbitmap
*ae_kill
, *ae_gen
, *ae_in
, *ae_out
;
537 /* Objects of this type are passed around by the null-pointer check
539 struct null_pointer_info
541 /* The basic block being processed. */
542 basic_block current_block
;
543 /* The first register to be handled in this pass. */
544 unsigned int min_reg
;
545 /* One greater than the last register to be handled in this pass. */
546 unsigned int max_reg
;
547 sbitmap
*nonnull_local
;
548 sbitmap
*nonnull_killed
;
551 static void compute_can_copy
PARAMS ((void));
552 static char *gmalloc
PARAMS ((unsigned int));
553 static char *grealloc
PARAMS ((char *, unsigned int));
554 static char *gcse_alloc
PARAMS ((unsigned long));
555 static void alloc_gcse_mem
PARAMS ((rtx
));
556 static void free_gcse_mem
PARAMS ((void));
557 static void alloc_reg_set_mem
PARAMS ((int));
558 static void free_reg_set_mem
PARAMS ((void));
559 static int get_bitmap_width
PARAMS ((int, int, int));
560 static void record_one_set
PARAMS ((int, rtx
));
561 static void record_set_info
PARAMS ((rtx
, rtx
, void *));
562 static void compute_sets
PARAMS ((rtx
));
563 static void hash_scan_insn
PARAMS ((rtx
, struct hash_table
*, int));
564 static void hash_scan_set
PARAMS ((rtx
, rtx
, struct hash_table
*));
565 static void hash_scan_clobber
PARAMS ((rtx
, rtx
, struct hash_table
*));
566 static void hash_scan_call
PARAMS ((rtx
, rtx
, struct hash_table
*));
567 static int want_to_gcse_p
PARAMS ((rtx
));
568 static bool gcse_constant_p
PARAMS ((rtx
));
569 static int oprs_unchanged_p
PARAMS ((rtx
, rtx
, int));
570 static int oprs_anticipatable_p
PARAMS ((rtx
, rtx
));
571 static int oprs_available_p
PARAMS ((rtx
, rtx
));
572 static void insert_expr_in_table
PARAMS ((rtx
, enum machine_mode
, rtx
,
573 int, int, struct hash_table
*));
574 static void insert_set_in_table
PARAMS ((rtx
, rtx
, struct hash_table
*));
575 static unsigned int hash_expr
PARAMS ((rtx
, enum machine_mode
, int *, int));
576 static unsigned int hash_expr_1
PARAMS ((rtx
, enum machine_mode
, int *));
577 static unsigned int hash_string_1
PARAMS ((const char *));
578 static unsigned int hash_set
PARAMS ((int, int));
579 static int expr_equiv_p
PARAMS ((rtx
, rtx
));
580 static void record_last_reg_set_info
PARAMS ((rtx
, int));
581 static void record_last_mem_set_info
PARAMS ((rtx
));
582 static void record_last_set_info
PARAMS ((rtx
, rtx
, void *));
583 static void compute_hash_table
PARAMS ((struct hash_table
*));
584 static void alloc_hash_table
PARAMS ((int, struct hash_table
*, int));
585 static void free_hash_table
PARAMS ((struct hash_table
*));
586 static void compute_hash_table_work
PARAMS ((struct hash_table
*));
587 static void dump_hash_table
PARAMS ((FILE *, const char *,
588 struct hash_table
*));
589 static struct expr
*lookup_expr
PARAMS ((rtx
, struct hash_table
*));
590 static struct expr
*lookup_set
PARAMS ((unsigned int, struct hash_table
*));
591 static struct expr
*next_set
PARAMS ((unsigned int, struct expr
*));
592 static void reset_opr_set_tables
PARAMS ((void));
593 static int oprs_not_set_p
PARAMS ((rtx
, rtx
));
594 static void mark_call
PARAMS ((rtx
));
595 static void mark_set
PARAMS ((rtx
, rtx
));
596 static void mark_clobber
PARAMS ((rtx
, rtx
));
597 static void mark_oprs_set
PARAMS ((rtx
));
598 static void alloc_cprop_mem
PARAMS ((int, int));
599 static void free_cprop_mem
PARAMS ((void));
600 static void compute_transp
PARAMS ((rtx
, int, sbitmap
*, int));
601 static void compute_transpout
PARAMS ((void));
602 static void compute_local_properties
PARAMS ((sbitmap
*, sbitmap
*, sbitmap
*,
603 struct hash_table
*));
604 static void compute_cprop_data
PARAMS ((void));
605 static void find_used_regs
PARAMS ((rtx
*, void *));
606 static int try_replace_reg
PARAMS ((rtx
, rtx
, rtx
));
607 static struct expr
*find_avail_set
PARAMS ((int, rtx
));
608 static int cprop_jump
PARAMS ((basic_block
, rtx
, rtx
, rtx
, rtx
));
609 static void mems_conflict_for_gcse_p
PARAMS ((rtx
, rtx
, void *));
610 static int load_killed_in_block_p
PARAMS ((basic_block
, int, rtx
, int));
611 static void canon_list_insert
PARAMS ((rtx
, rtx
, void *));
612 static int cprop_insn
PARAMS ((rtx
, int));
613 static int cprop
PARAMS ((int));
614 static rtx fis_get_condition
PARAMS ((rtx
));
615 static void find_implicit_sets
PARAMS ((void));
616 static int one_cprop_pass
PARAMS ((int, int, int));
617 static bool constprop_register
PARAMS ((rtx
, rtx
, rtx
, int));
618 static struct expr
*find_bypass_set
PARAMS ((int, int));
619 static bool reg_killed_on_edge
PARAMS ((rtx
, edge
));
620 static int bypass_block
PARAMS ((basic_block
, rtx
, rtx
));
621 static int bypass_conditional_jumps
PARAMS ((void));
622 static void alloc_pre_mem
PARAMS ((int, int));
623 static void free_pre_mem
PARAMS ((void));
624 static void compute_pre_data
PARAMS ((void));
625 static int pre_expr_reaches_here_p
PARAMS ((basic_block
, struct expr
*,
627 static void insert_insn_end_bb
PARAMS ((struct expr
*, basic_block
, int));
628 static void pre_insert_copy_insn
PARAMS ((struct expr
*, rtx
));
629 static void pre_insert_copies
PARAMS ((void));
630 static int pre_delete
PARAMS ((void));
631 static int pre_gcse
PARAMS ((void));
632 static int one_pre_gcse_pass
PARAMS ((int));
633 static void add_label_notes
PARAMS ((rtx
, rtx
));
634 static void alloc_code_hoist_mem
PARAMS ((int, int));
635 static void free_code_hoist_mem
PARAMS ((void));
636 static void compute_code_hoist_vbeinout
PARAMS ((void));
637 static void compute_code_hoist_data
PARAMS ((void));
638 static int hoist_expr_reaches_here_p
PARAMS ((basic_block
, int, basic_block
,
640 static void hoist_code
PARAMS ((void));
641 static int one_code_hoisting_pass
PARAMS ((void));
642 static void alloc_rd_mem
PARAMS ((int, int));
643 static void free_rd_mem
PARAMS ((void));
644 static void handle_rd_kill_set
PARAMS ((rtx
, int, basic_block
));
645 static void compute_kill_rd
PARAMS ((void));
646 static void compute_rd
PARAMS ((void));
647 static void alloc_avail_expr_mem
PARAMS ((int, int));
648 static void free_avail_expr_mem
PARAMS ((void));
649 static void compute_ae_gen
PARAMS ((struct hash_table
*));
650 static int expr_killed_p
PARAMS ((rtx
, basic_block
));
651 static void compute_ae_kill
PARAMS ((sbitmap
*, sbitmap
*, struct hash_table
*));
652 static int expr_reaches_here_p
PARAMS ((struct occr
*, struct expr
*,
654 static rtx computing_insn
PARAMS ((struct expr
*, rtx
));
655 static int def_reaches_here_p
PARAMS ((rtx
, rtx
));
656 static int can_disregard_other_sets
PARAMS ((struct reg_set
**, rtx
, int));
657 static int handle_avail_expr
PARAMS ((rtx
, struct expr
*));
658 static int classic_gcse
PARAMS ((void));
659 static int one_classic_gcse_pass
PARAMS ((int));
660 static void invalidate_nonnull_info
PARAMS ((rtx
, rtx
, void *));
661 static int delete_null_pointer_checks_1
PARAMS ((unsigned int *,
662 sbitmap
*, sbitmap
*,
663 struct null_pointer_info
*));
664 static rtx process_insert_insn
PARAMS ((struct expr
*));
665 static int pre_edge_insert
PARAMS ((struct edge_list
*, struct expr
**));
666 static int expr_reaches_here_p_work
PARAMS ((struct occr
*, struct expr
*,
667 basic_block
, int, char *));
668 static int pre_expr_reaches_here_p_work
PARAMS ((basic_block
, struct expr
*,
669 basic_block
, char *));
670 static struct ls_expr
* ldst_entry
PARAMS ((rtx
));
671 static void free_ldst_entry
PARAMS ((struct ls_expr
*));
672 static void free_ldst_mems
PARAMS ((void));
673 static void print_ldst_list
PARAMS ((FILE *));
674 static struct ls_expr
* find_rtx_in_ldst
PARAMS ((rtx
));
675 static int enumerate_ldsts
PARAMS ((void));
676 static inline struct ls_expr
* first_ls_expr
PARAMS ((void));
677 static inline struct ls_expr
* next_ls_expr
PARAMS ((struct ls_expr
*));
678 static int simple_mem
PARAMS ((rtx
));
679 static void invalidate_any_buried_refs
PARAMS ((rtx
));
680 static void compute_ld_motion_mems
PARAMS ((void));
681 static void trim_ld_motion_mems
PARAMS ((void));
682 static void update_ld_motion_stores
PARAMS ((struct expr
*));
683 static void reg_set_info
PARAMS ((rtx
, rtx
, void *));
684 static bool store_ops_ok
PARAMS ((rtx
, int *));
685 static rtx extract_mentioned_regs
PARAMS ((rtx
));
686 static rtx extract_mentioned_regs_helper
PARAMS ((rtx
, rtx
));
687 static void find_moveable_store
PARAMS ((rtx
, int *, int *));
688 static int compute_store_table
PARAMS ((void));
689 static bool load_kills_store
PARAMS ((rtx
, rtx
));
690 static bool find_loads
PARAMS ((rtx
, rtx
));
691 static bool store_killed_in_insn
PARAMS ((rtx
, rtx
, rtx
));
692 static bool store_killed_after
PARAMS ((rtx
, rtx
, rtx
, basic_block
,
694 static bool store_killed_before
PARAMS ((rtx
, rtx
, rtx
, basic_block
,
696 static void build_store_vectors
PARAMS ((void));
697 static void insert_insn_start_bb
PARAMS ((rtx
, basic_block
));
698 static int insert_store
PARAMS ((struct ls_expr
*, edge
));
699 static void replace_store_insn
PARAMS ((rtx
, rtx
, basic_block
));
700 static void delete_store
PARAMS ((struct ls_expr
*,
702 static void free_store_memory
PARAMS ((void));
703 static void store_motion
PARAMS ((void));
704 static void free_insn_expr_list_list
PARAMS ((rtx
*));
705 static void clear_modify_mem_tables
PARAMS ((void));
706 static void free_modify_mem_tables
PARAMS ((void));
707 static rtx gcse_emit_move_after
PARAMS ((rtx
, rtx
, rtx
));
708 static void local_cprop_find_used_regs
PARAMS ((rtx
*, void *));
709 static bool do_local_cprop
PARAMS ((rtx
, rtx
, int, rtx
*));
710 static bool adjust_libcall_notes
PARAMS ((rtx
, rtx
, rtx
, rtx
*));
711 static void local_cprop_pass
PARAMS ((int));
713 /* Entry point for global common subexpression elimination.
714 F is the first instruction in the function. */
722 /* Bytes used at start of pass. */
723 int initial_bytes_used
;
724 /* Maximum number of bytes used by a pass. */
726 /* Point to release obstack data from for each pass. */
727 char *gcse_obstack_bottom
;
729 /* We do not construct an accurate cfg in functions which call
730 setjmp, so just punt to be safe. */
731 if (current_function_calls_setjmp
)
734 /* Assume that we do not need to run jump optimizations after gcse. */
735 run_jump_opt_after_gcse
= 0;
737 /* For calling dump_foo fns from gdb. */
738 debug_stderr
= stderr
;
741 /* Identify the basic block information for this function, including
742 successors and predecessors. */
743 max_gcse_regno
= max_reg_num ();
746 dump_flow_info (file
);
748 /* Return if there's nothing to do. */
749 if (n_basic_blocks
<= 1)
752 /* Trying to perform global optimizations on flow graphs which have
753 a high connectivity will take a long time and is unlikely to be
756 In normal circumstances a cfg should have about twice as many edges
757 as blocks. But we do not want to punish small functions which have
758 a couple switch statements. So we require a relatively large number
759 of basic blocks and the ratio of edges to blocks to be high. */
760 if (n_basic_blocks
> 1000 && n_edges
/ n_basic_blocks
>= 20)
762 if (warn_disabled_optimization
)
763 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
764 n_basic_blocks
, n_edges
/ n_basic_blocks
);
768 /* If allocating memory for the cprop bitmap would take up too much
769 storage it's better just to disable the optimization. */
771 * SBITMAP_SET_SIZE (max_gcse_regno
)
772 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
774 if (warn_disabled_optimization
)
775 warning ("GCSE disabled: %d basic blocks and %d registers",
776 n_basic_blocks
, max_gcse_regno
);
781 gcc_obstack_init (&gcse_obstack
);
785 init_alias_analysis ();
786 /* Record where pseudo-registers are set. This data is kept accurate
787 during each pass. ??? We could also record hard-reg information here
788 [since it's unchanging], however it is currently done during hash table
791 It may be tempting to compute MEM set information here too, but MEM sets
792 will be subject to code motion one day and thus we need to compute
793 information about memory sets when we build the hash tables. */
795 alloc_reg_set_mem (max_gcse_regno
);
799 initial_bytes_used
= bytes_used
;
801 gcse_obstack_bottom
= gcse_alloc (1);
803 while (changed
&& pass
< MAX_GCSE_PASSES
)
807 fprintf (file
, "GCSE pass %d\n\n", pass
+ 1);
809 /* Initialize bytes_used to the space for the pred/succ lists,
810 and the reg_set_table data. */
811 bytes_used
= initial_bytes_used
;
813 /* Each pass may create new registers, so recalculate each time. */
814 max_gcse_regno
= max_reg_num ();
818 /* Don't allow constant propagation to modify jumps
820 changed
= one_cprop_pass (pass
+ 1, 0, 0);
823 changed
|= one_classic_gcse_pass (pass
+ 1);
826 changed
|= one_pre_gcse_pass (pass
+ 1);
827 /* We may have just created new basic blocks. Release and
828 recompute various things which are sized on the number of
832 free_modify_mem_tables ();
834 = (rtx
*) gmalloc (last_basic_block
* sizeof (rtx
));
835 canon_modify_mem_list
836 = (rtx
*) gmalloc (last_basic_block
* sizeof (rtx
));
837 memset ((char *) modify_mem_list
, 0, last_basic_block
* sizeof (rtx
));
838 memset ((char *) canon_modify_mem_list
, 0, last_basic_block
* sizeof (rtx
));
841 alloc_reg_set_mem (max_reg_num ());
843 run_jump_opt_after_gcse
= 1;
846 if (max_pass_bytes
< bytes_used
)
847 max_pass_bytes
= bytes_used
;
849 /* Free up memory, then reallocate for code hoisting. We can
850 not re-use the existing allocated memory because the tables
851 will not have info for the insns or registers created by
852 partial redundancy elimination. */
855 /* It does not make sense to run code hoisting unless we optimizing
856 for code size -- it rarely makes programs faster, and can make
857 them bigger if we did partial redundancy elimination (when optimizing
858 for space, we use a classic gcse algorithm instead of partial
859 redundancy algorithms). */
862 max_gcse_regno
= max_reg_num ();
864 changed
|= one_code_hoisting_pass ();
867 if (max_pass_bytes
< bytes_used
)
868 max_pass_bytes
= bytes_used
;
873 fprintf (file
, "\n");
877 obstack_free (&gcse_obstack
, gcse_obstack_bottom
);
881 /* Do one last pass of copy propagation, including cprop into
882 conditional jumps. */
884 max_gcse_regno
= max_reg_num ();
886 /* This time, go ahead and allow cprop to alter jumps. */
887 one_cprop_pass (pass
+ 1, 1, 0);
892 fprintf (file
, "GCSE of %s: %d basic blocks, ",
893 current_function_name
, n_basic_blocks
);
894 fprintf (file
, "%d pass%s, %d bytes\n\n",
895 pass
, pass
> 1 ? "es" : "", max_pass_bytes
);
898 obstack_free (&gcse_obstack
, NULL
);
900 /* We are finished with alias. */
901 end_alias_analysis ();
902 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
904 if (!optimize_size
&& flag_gcse_sm
)
907 /* Record where pseudo-registers are set. */
908 return run_jump_opt_after_gcse
;
911 /* Misc. utilities. */
913 /* Nonzero for each mode that supports (set (reg) (reg)).
914 This is trivially true for integer and floating point values.
915 It may or may not be true for condition codes. */
916 static char can_copy
[(int) NUM_MACHINE_MODES
];
918 /* Compute which modes support reg/reg copy operations. */
924 #ifndef AVOID_CCMODE_COPIES
927 memset (can_copy
, 0, NUM_MACHINE_MODES
);
930 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
931 if (GET_MODE_CLASS (i
) == MODE_CC
)
933 #ifdef AVOID_CCMODE_COPIES
936 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
937 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
938 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
948 /* Returns whether the mode supports reg/reg copy operations. */
952 enum machine_mode mode
;
954 static bool can_copy_init_p
= false;
956 if (! can_copy_init_p
)
959 can_copy_init_p
= true;
962 return can_copy
[mode
] != 0;
965 /* Cover function to xmalloc to record bytes allocated. */
972 return xmalloc (size
);
975 /* Cover function to xrealloc.
976 We don't record the additional size since we don't know it.
977 It won't affect memory usage stats much anyway. */
984 return xrealloc (ptr
, size
);
987 /* Cover function to obstack_alloc. */
994 return (char *) obstack_alloc (&gcse_obstack
, size
);
997 /* Allocate memory for the cuid mapping array,
998 and reg/memory set tracking tables.
1000 This is called at the start of each pass. */
1009 /* Find the largest UID and create a mapping from UIDs to CUIDs.
1010 CUIDs are like UIDs except they increase monotonically, have no gaps,
1011 and only apply to real insns. */
1013 max_uid
= get_max_uid ();
1014 n
= (max_uid
+ 1) * sizeof (int);
1015 uid_cuid
= (int *) gmalloc (n
);
1016 memset ((char *) uid_cuid
, 0, n
);
1017 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
1020 uid_cuid
[INSN_UID (insn
)] = i
++;
1022 uid_cuid
[INSN_UID (insn
)] = i
;
1025 /* Create a table mapping cuids to insns. */
1028 n
= (max_cuid
+ 1) * sizeof (rtx
);
1029 cuid_insn
= (rtx
*) gmalloc (n
);
1030 memset ((char *) cuid_insn
, 0, n
);
1031 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
1033 CUID_INSN (i
++) = insn
;
1035 /* Allocate vars to track sets of regs. */
1036 reg_set_bitmap
= BITMAP_XMALLOC ();
1038 /* Allocate vars to track sets of regs, memory per block. */
1039 reg_set_in_block
= (sbitmap
*) sbitmap_vector_alloc (last_basic_block
,
1041 /* Allocate array to keep a list of insns which modify memory in each
1043 modify_mem_list
= (rtx
*) gmalloc (last_basic_block
* sizeof (rtx
));
1044 canon_modify_mem_list
= (rtx
*) gmalloc (last_basic_block
* sizeof (rtx
));
1045 memset ((char *) modify_mem_list
, 0, last_basic_block
* sizeof (rtx
));
1046 memset ((char *) canon_modify_mem_list
, 0, last_basic_block
* sizeof (rtx
));
1047 modify_mem_list_set
= BITMAP_XMALLOC ();
1048 canon_modify_mem_list_set
= BITMAP_XMALLOC ();
1051 /* Free memory allocated by alloc_gcse_mem. */
1059 BITMAP_XFREE (reg_set_bitmap
);
1061 sbitmap_vector_free (reg_set_in_block
);
1062 free_modify_mem_tables ();
1063 BITMAP_XFREE (modify_mem_list_set
);
1064 BITMAP_XFREE (canon_modify_mem_list_set
);
1067 /* Many of the global optimization algorithms work by solving dataflow
1068 equations for various expressions. Initially, some local value is
1069 computed for each expression in each block. Then, the values across the
1070 various blocks are combined (by following flow graph edges) to arrive at
1071 global values. Conceptually, each set of equations is independent. We
1072 may therefore solve all the equations in parallel, solve them one at a
1073 time, or pick any intermediate approach.
1075 When you're going to need N two-dimensional bitmaps, each X (say, the
1076 number of blocks) by Y (say, the number of expressions), call this
1077 function. It's not important what X and Y represent; only that Y
1078 correspond to the things that can be done in parallel. This function will
1079 return an appropriate chunking factor C; you should solve C sets of
1080 equations in parallel. By going through this function, we can easily
1081 trade space against time; by solving fewer equations in parallel we use
1085 get_bitmap_width (n
, x
, y
)
1090 /* It's not really worth figuring out *exactly* how much memory will
1091 be used by a particular choice. The important thing is to get
1092 something approximately right. */
1093 size_t max_bitmap_memory
= 10 * 1024 * 1024;
1095 /* The number of bytes we'd use for a single column of minimum
1097 size_t column_size
= n
* x
* sizeof (SBITMAP_ELT_TYPE
);
1099 /* Often, it's reasonable just to solve all the equations in
1101 if (column_size
* SBITMAP_SET_SIZE (y
) <= max_bitmap_memory
)
1104 /* Otherwise, pick the largest width we can, without going over the
1106 return SBITMAP_ELT_BITS
* ((max_bitmap_memory
+ column_size
- 1)
1110 /* Compute the local properties of each recorded expression.
1112 Local properties are those that are defined by the block, irrespective of
1115 An expression is transparent in a block if its operands are not modified
1118 An expression is computed (locally available) in a block if it is computed
1119 at least once and expression would contain the same value if the
1120 computation was moved to the end of the block.
1122 An expression is locally anticipatable in a block if it is computed at
1123 least once and expression would contain the same value if the computation
1124 was moved to the beginning of the block.
1126 We call this routine for cprop, pre and code hoisting. They all compute
1127 basically the same information and thus can easily share this code.
1129 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1130 properties. If NULL, then it is not necessary to compute or record that
1131 particular property.
1133 TABLE controls which hash table to look at. If it is set hash table,
1134 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1138 compute_local_properties (transp
, comp
, antloc
, table
)
1142 struct hash_table
*table
;
1146 /* Initialize any bitmaps that were passed in. */
1150 sbitmap_vector_zero (transp
, last_basic_block
);
1152 sbitmap_vector_ones (transp
, last_basic_block
);
1156 sbitmap_vector_zero (comp
, last_basic_block
);
1158 sbitmap_vector_zero (antloc
, last_basic_block
);
1160 for (i
= 0; i
< table
->size
; i
++)
1164 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1166 int indx
= expr
->bitmap_index
;
1169 /* The expression is transparent in this block if it is not killed.
1170 We start by assuming all are transparent [none are killed], and
1171 then reset the bits for those that are. */
1173 compute_transp (expr
->expr
, indx
, transp
, table
->set_p
);
1175 /* The occurrences recorded in antic_occr are exactly those that
1176 we want to set to nonzero in ANTLOC. */
1178 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1180 SET_BIT (antloc
[BLOCK_NUM (occr
->insn
)], indx
);
1182 /* While we're scanning the table, this is a good place to
1184 occr
->deleted_p
= 0;
1187 /* The occurrences recorded in avail_occr are exactly those that
1188 we want to set to nonzero in COMP. */
1190 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1192 SET_BIT (comp
[BLOCK_NUM (occr
->insn
)], indx
);
1194 /* While we're scanning the table, this is a good place to
1199 /* While we're scanning the table, this is a good place to
1201 expr
->reaching_reg
= 0;
1206 /* Register set information.
1208 `reg_set_table' records where each register is set or otherwise
1211 static struct obstack reg_set_obstack
;
1214 alloc_reg_set_mem (n_regs
)
1219 reg_set_table_size
= n_regs
+ REG_SET_TABLE_SLOP
;
1220 n
= reg_set_table_size
* sizeof (struct reg_set
*);
1221 reg_set_table
= (struct reg_set
**) gmalloc (n
);
1222 memset ((char *) reg_set_table
, 0, n
);
1224 gcc_obstack_init (®_set_obstack
);
1230 free (reg_set_table
);
1231 obstack_free (®_set_obstack
, NULL
);
1234 /* Record REGNO in the reg_set table. */
1237 record_one_set (regno
, insn
)
1241 /* Allocate a new reg_set element and link it onto the list. */
1242 struct reg_set
*new_reg_info
;
1244 /* If the table isn't big enough, enlarge it. */
1245 if (regno
>= reg_set_table_size
)
1247 int new_size
= regno
+ REG_SET_TABLE_SLOP
;
1250 = (struct reg_set
**) grealloc ((char *) reg_set_table
,
1251 new_size
* sizeof (struct reg_set
*));
1252 memset ((char *) (reg_set_table
+ reg_set_table_size
), 0,
1253 (new_size
- reg_set_table_size
) * sizeof (struct reg_set
*));
1254 reg_set_table_size
= new_size
;
1257 new_reg_info
= (struct reg_set
*) obstack_alloc (®_set_obstack
,
1258 sizeof (struct reg_set
));
1259 bytes_used
+= sizeof (struct reg_set
);
1260 new_reg_info
->insn
= insn
;
1261 new_reg_info
->next
= reg_set_table
[regno
];
1262 reg_set_table
[regno
] = new_reg_info
;
1265 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1266 an insn. The DATA is really the instruction in which the SET is
1270 record_set_info (dest
, setter
, data
)
1271 rtx dest
, setter ATTRIBUTE_UNUSED
;
1274 rtx record_set_insn
= (rtx
) data
;
1276 if (GET_CODE (dest
) == REG
&& REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
1277 record_one_set (REGNO (dest
), record_set_insn
);
1280 /* Scan the function and record each set of each pseudo-register.
1282 This is called once, at the start of the gcse pass. See the comments for
1283 `reg_set_table' for further documentation. */
1291 for (insn
= f
; insn
!= 0; insn
= NEXT_INSN (insn
))
1293 note_stores (PATTERN (insn
), record_set_info
, insn
);
1296 /* Hash table support. */
1298 struct reg_avail_info
1300 basic_block last_bb
;
1305 static struct reg_avail_info
*reg_avail_info
;
1306 static basic_block current_bb
;
1309 /* See whether X, the source of a set, is something we want to consider for
1312 static GTY(()) rtx test_insn
;
1317 int num_clobbers
= 0;
1320 switch (GET_CODE (x
))
1328 case CONSTANT_P_RTX
:
1335 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1336 if (general_operand (x
, GET_MODE (x
)))
1338 else if (GET_MODE (x
) == VOIDmode
)
1341 /* Otherwise, check if we can make a valid insn from it. First initialize
1342 our test insn if we haven't already. */
1346 = make_insn_raw (gen_rtx_SET (VOIDmode
,
1347 gen_rtx_REG (word_mode
,
1348 FIRST_PSEUDO_REGISTER
* 2),
1350 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
1353 /* Now make an insn like the one we would make when GCSE'ing and see if
1355 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
1356 SET_SRC (PATTERN (test_insn
)) = x
;
1357 return ((icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
)) >= 0
1358 && (num_clobbers
== 0 || ! added_clobbers_hard_reg_p (icode
)));
1361 /* Return nonzero if the operands of expression X are unchanged from the
1362 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1363 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1366 oprs_unchanged_p (x
, insn
, avail_p
)
1377 code
= GET_CODE (x
);
1382 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
1384 if (info
->last_bb
!= current_bb
)
1387 return info
->last_set
< INSN_CUID (insn
);
1389 return info
->first_set
>= INSN_CUID (insn
);
1393 if (load_killed_in_block_p (current_bb
, INSN_CUID (insn
),
1397 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
1423 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1427 /* If we are about to do the last recursive call needed at this
1428 level, change it into iteration. This function is called enough
1431 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
1433 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
1436 else if (fmt
[i
] == 'E')
1437 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1438 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
1445 /* Used for communication between mems_conflict_for_gcse_p and
1446 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1447 conflict between two memory references. */
1448 static int gcse_mems_conflict_p
;
1450 /* Used for communication between mems_conflict_for_gcse_p and
1451 load_killed_in_block_p. A memory reference for a load instruction,
1452 mems_conflict_for_gcse_p will see if a memory store conflicts with
1453 this memory load. */
1454 static rtx gcse_mem_operand
;
1456 /* DEST is the output of an instruction. If it is a memory reference, and
1457 possibly conflicts with the load found in gcse_mem_operand, then set
1458 gcse_mems_conflict_p to a nonzero value. */
1461 mems_conflict_for_gcse_p (dest
, setter
, data
)
1462 rtx dest
, setter ATTRIBUTE_UNUSED
;
1463 void *data ATTRIBUTE_UNUSED
;
1465 while (GET_CODE (dest
) == SUBREG
1466 || GET_CODE (dest
) == ZERO_EXTRACT
1467 || GET_CODE (dest
) == SIGN_EXTRACT
1468 || GET_CODE (dest
) == STRICT_LOW_PART
)
1469 dest
= XEXP (dest
, 0);
1471 /* If DEST is not a MEM, then it will not conflict with the load. Note
1472 that function calls are assumed to clobber memory, but are handled
1474 if (GET_CODE (dest
) != MEM
)
1477 /* If we are setting a MEM in our list of specially recognized MEMs,
1478 don't mark as killed this time. */
1480 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
1482 if (!find_rtx_in_ldst (dest
))
1483 gcse_mems_conflict_p
= 1;
1487 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
1489 gcse_mems_conflict_p
= 1;
1492 /* Return nonzero if the expression in X (a memory reference) is killed
1493 in block BB before or after the insn with the CUID in UID_LIMIT.
1494 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1497 To check the entire block, set UID_LIMIT to max_uid + 1 and
1501 load_killed_in_block_p (bb
, uid_limit
, x
, avail_p
)
1507 rtx list_entry
= modify_mem_list
[bb
->index
];
1511 /* Ignore entries in the list that do not apply. */
1513 && INSN_CUID (XEXP (list_entry
, 0)) < uid_limit
)
1515 && INSN_CUID (XEXP (list_entry
, 0)) > uid_limit
))
1517 list_entry
= XEXP (list_entry
, 1);
1521 setter
= XEXP (list_entry
, 0);
1523 /* If SETTER is a call everything is clobbered. Note that calls
1524 to pure functions are never put on the list, so we need not
1525 worry about them. */
1526 if (GET_CODE (setter
) == CALL_INSN
)
1529 /* SETTER must be an INSN of some kind that sets memory. Call
1530 note_stores to examine each hunk of memory that is modified.
1532 The note_stores interface is pretty limited, so we have to
1533 communicate via global variables. Yuk. */
1534 gcse_mem_operand
= x
;
1535 gcse_mems_conflict_p
= 0;
1536 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1537 if (gcse_mems_conflict_p
)
1539 list_entry
= XEXP (list_entry
, 1);
1544 /* Return nonzero if the operands of expression X are unchanged from
1545 the start of INSN's basic block up to but not including INSN. */
1548 oprs_anticipatable_p (x
, insn
)
1551 return oprs_unchanged_p (x
, insn
, 0);
1554 /* Return nonzero if the operands of expression X are unchanged from
1555 INSN to the end of INSN's basic block. */
1558 oprs_available_p (x
, insn
)
1561 return oprs_unchanged_p (x
, insn
, 1);
1564 /* Hash expression X.
1566 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1567 indicating if a volatile operand is found or if the expression contains
1568 something we don't want to insert in the table.
1570 ??? One might want to merge this with canon_hash. Later. */
1573 hash_expr (x
, mode
, do_not_record_p
, hash_table_size
)
1575 enum machine_mode mode
;
1576 int *do_not_record_p
;
1577 int hash_table_size
;
1581 *do_not_record_p
= 0;
1583 hash
= hash_expr_1 (x
, mode
, do_not_record_p
);
1584 return hash
% hash_table_size
;
1587 /* Hash a string. Just add its bytes up. */
1589 static inline unsigned
1594 const unsigned char *p
= (const unsigned char *) ps
;
1603 /* Subroutine of hash_expr to do the actual work. */
1606 hash_expr_1 (x
, mode
, do_not_record_p
)
1608 enum machine_mode mode
;
1609 int *do_not_record_p
;
1616 /* Used to turn recursion into iteration. We can't rely on GCC's
1617 tail-recursion elimination since we need to keep accumulating values
1624 code
= GET_CODE (x
);
1628 hash
+= ((unsigned int) REG
<< 7) + REGNO (x
);
1632 hash
+= (((unsigned int) CONST_INT
<< 7) + (unsigned int) mode
1633 + (unsigned int) INTVAL (x
));
1637 /* This is like the general case, except that it only counts
1638 the integers representing the constant. */
1639 hash
+= (unsigned int) code
+ (unsigned int) GET_MODE (x
);
1640 if (GET_MODE (x
) != VOIDmode
)
1641 for (i
= 2; i
< GET_RTX_LENGTH (CONST_DOUBLE
); i
++)
1642 hash
+= (unsigned int) XWINT (x
, i
);
1644 hash
+= ((unsigned int) CONST_DOUBLE_LOW (x
)
1645 + (unsigned int) CONST_DOUBLE_HIGH (x
));
1653 units
= CONST_VECTOR_NUNITS (x
);
1655 for (i
= 0; i
< units
; ++i
)
1657 elt
= CONST_VECTOR_ELT (x
, i
);
1658 hash
+= hash_expr_1 (elt
, GET_MODE (elt
), do_not_record_p
);
1664 /* Assume there is only one rtx object for any given label. */
1666 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1667 differences and differences between each stage's debugging dumps. */
1668 hash
+= (((unsigned int) LABEL_REF
<< 7)
1669 + CODE_LABEL_NUMBER (XEXP (x
, 0)));
1674 /* Don't hash on the symbol's address to avoid bootstrap differences.
1675 Different hash values may cause expressions to be recorded in
1676 different orders and thus different registers to be used in the
1677 final assembler. This also avoids differences in the dump files
1678 between various stages. */
1680 const unsigned char *p
= (const unsigned char *) XSTR (x
, 0);
1683 h
+= (h
<< 7) + *p
++; /* ??? revisit */
1685 hash
+= ((unsigned int) SYMBOL_REF
<< 7) + h
;
1690 if (MEM_VOLATILE_P (x
))
1692 *do_not_record_p
= 1;
1696 hash
+= (unsigned int) MEM
;
1697 /* We used alias set for hashing, but this is not good, since the alias
1698 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
1699 causing the profiles to fail to match. */
1710 case UNSPEC_VOLATILE
:
1711 *do_not_record_p
= 1;
1715 if (MEM_VOLATILE_P (x
))
1717 *do_not_record_p
= 1;
1722 /* We don't want to take the filename and line into account. */
1723 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
)
1724 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x
))
1725 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
))
1726 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x
);
1728 if (ASM_OPERANDS_INPUT_LENGTH (x
))
1730 for (i
= 1; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
1732 hash
+= (hash_expr_1 (ASM_OPERANDS_INPUT (x
, i
),
1733 GET_MODE (ASM_OPERANDS_INPUT (x
, i
)),
1735 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1739 hash
+= hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x
, 0));
1740 x
= ASM_OPERANDS_INPUT (x
, 0);
1741 mode
= GET_MODE (x
);
1751 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1752 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1756 /* If we are about to do the last recursive call
1757 needed at this level, change it into iteration.
1758 This function is called enough to be worth it. */
1765 hash
+= hash_expr_1 (XEXP (x
, i
), 0, do_not_record_p
);
1766 if (*do_not_record_p
)
1770 else if (fmt
[i
] == 'E')
1771 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1773 hash
+= hash_expr_1 (XVECEXP (x
, i
, j
), 0, do_not_record_p
);
1774 if (*do_not_record_p
)
1778 else if (fmt
[i
] == 's')
1779 hash
+= hash_string_1 (XSTR (x
, i
));
1780 else if (fmt
[i
] == 'i')
1781 hash
+= (unsigned int) XINT (x
, i
);
1789 /* Hash a set of register REGNO.
1791 Sets are hashed on the register that is set. This simplifies the PRE copy
1794 ??? May need to make things more elaborate. Later, as necessary. */
1797 hash_set (regno
, hash_table_size
)
1799 int hash_table_size
;
1804 return hash
% hash_table_size
;
1807 /* Return nonzero if exp1 is equivalent to exp2.
1808 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1821 if (x
== 0 || y
== 0)
1824 code
= GET_CODE (x
);
1825 if (code
!= GET_CODE (y
))
1828 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1829 if (GET_MODE (x
) != GET_MODE (y
))
1839 return INTVAL (x
) == INTVAL (y
);
1842 return XEXP (x
, 0) == XEXP (y
, 0);
1845 return XSTR (x
, 0) == XSTR (y
, 0);
1848 return REGNO (x
) == REGNO (y
);
1851 /* Can't merge two expressions in different alias sets, since we can
1852 decide that the expression is transparent in a block when it isn't,
1853 due to it being set with the different alias set. */
1854 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
1858 /* For commutative operations, check both orders. */
1866 return ((expr_equiv_p (XEXP (x
, 0), XEXP (y
, 0))
1867 && expr_equiv_p (XEXP (x
, 1), XEXP (y
, 1)))
1868 || (expr_equiv_p (XEXP (x
, 0), XEXP (y
, 1))
1869 && expr_equiv_p (XEXP (x
, 1), XEXP (y
, 0))));
1872 /* We don't use the generic code below because we want to
1873 disregard filename and line numbers. */
1875 /* A volatile asm isn't equivalent to any other. */
1876 if (MEM_VOLATILE_P (x
) || MEM_VOLATILE_P (y
))
1879 if (GET_MODE (x
) != GET_MODE (y
)
1880 || strcmp (ASM_OPERANDS_TEMPLATE (x
), ASM_OPERANDS_TEMPLATE (y
))
1881 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
),
1882 ASM_OPERANDS_OUTPUT_CONSTRAINT (y
))
1883 || ASM_OPERANDS_OUTPUT_IDX (x
) != ASM_OPERANDS_OUTPUT_IDX (y
)
1884 || ASM_OPERANDS_INPUT_LENGTH (x
) != ASM_OPERANDS_INPUT_LENGTH (y
))
1887 if (ASM_OPERANDS_INPUT_LENGTH (x
))
1889 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
1890 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x
, i
),
1891 ASM_OPERANDS_INPUT (y
, i
))
1892 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x
, i
),
1893 ASM_OPERANDS_INPUT_CONSTRAINT (y
, i
)))
1903 /* Compare the elements. If any pair of corresponding elements
1904 fail to match, return 0 for the whole thing. */
1906 fmt
= GET_RTX_FORMAT (code
);
1907 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1912 if (! expr_equiv_p (XEXP (x
, i
), XEXP (y
, i
)))
1917 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1919 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1920 if (! expr_equiv_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1925 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1930 if (XINT (x
, i
) != XINT (y
, i
))
1935 if (XWINT (x
, i
) != XWINT (y
, i
))
1950 /* Insert expression X in INSN in the hash TABLE.
1951 If it is already present, record it as the last occurrence in INSN's
1954 MODE is the mode of the value X is being stored into.
1955 It is only used if X is a CONST_INT.
1957 ANTIC_P is nonzero if X is an anticipatable expression.
1958 AVAIL_P is nonzero if X is an available expression. */
1961 insert_expr_in_table (x
, mode
, insn
, antic_p
, avail_p
, table
)
1963 enum machine_mode mode
;
1965 int antic_p
, avail_p
;
1966 struct hash_table
*table
;
1968 int found
, do_not_record_p
;
1970 struct expr
*cur_expr
, *last_expr
= NULL
;
1971 struct occr
*antic_occr
, *avail_occr
;
1972 struct occr
*last_occr
= NULL
;
1974 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1976 /* Do not insert expression in table if it contains volatile operands,
1977 or if hash_expr determines the expression is something we don't want
1978 to or can't handle. */
1979 if (do_not_record_p
)
1982 cur_expr
= table
->table
[hash
];
1985 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1987 /* If the expression isn't found, save a pointer to the end of
1989 last_expr
= cur_expr
;
1990 cur_expr
= cur_expr
->next_same_hash
;
1995 cur_expr
= (struct expr
*) gcse_alloc (sizeof (struct expr
));
1996 bytes_used
+= sizeof (struct expr
);
1997 if (table
->table
[hash
] == NULL
)
1998 /* This is the first pattern that hashed to this index. */
1999 table
->table
[hash
] = cur_expr
;
2001 /* Add EXPR to end of this hash chain. */
2002 last_expr
->next_same_hash
= cur_expr
;
2004 /* Set the fields of the expr element. */
2006 cur_expr
->bitmap_index
= table
->n_elems
++;
2007 cur_expr
->next_same_hash
= NULL
;
2008 cur_expr
->antic_occr
= NULL
;
2009 cur_expr
->avail_occr
= NULL
;
2012 /* Now record the occurrence(s). */
2015 antic_occr
= cur_expr
->antic_occr
;
2017 /* Search for another occurrence in the same basic block. */
2018 while (antic_occr
&& BLOCK_NUM (antic_occr
->insn
) != BLOCK_NUM (insn
))
2020 /* If an occurrence isn't found, save a pointer to the end of
2022 last_occr
= antic_occr
;
2023 antic_occr
= antic_occr
->next
;
2027 /* Found another instance of the expression in the same basic block.
2028 Prefer the currently recorded one. We want the first one in the
2029 block and the block is scanned from start to end. */
2030 ; /* nothing to do */
2033 /* First occurrence of this expression in this basic block. */
2034 antic_occr
= (struct occr
*) gcse_alloc (sizeof (struct occr
));
2035 bytes_used
+= sizeof (struct occr
);
2036 /* First occurrence of this expression in any block? */
2037 if (cur_expr
->antic_occr
== NULL
)
2038 cur_expr
->antic_occr
= antic_occr
;
2040 last_occr
->next
= antic_occr
;
2042 antic_occr
->insn
= insn
;
2043 antic_occr
->next
= NULL
;
2049 avail_occr
= cur_expr
->avail_occr
;
2051 /* Search for another occurrence in the same basic block. */
2052 while (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) != BLOCK_NUM (insn
))
2054 /* If an occurrence isn't found, save a pointer to the end of
2056 last_occr
= avail_occr
;
2057 avail_occr
= avail_occr
->next
;
2061 /* Found another instance of the expression in the same basic block.
2062 Prefer this occurrence to the currently recorded one. We want
2063 the last one in the block and the block is scanned from start
2065 avail_occr
->insn
= insn
;
2068 /* First occurrence of this expression in this basic block. */
2069 avail_occr
= (struct occr
*) gcse_alloc (sizeof (struct occr
));
2070 bytes_used
+= sizeof (struct occr
);
2072 /* First occurrence of this expression in any block? */
2073 if (cur_expr
->avail_occr
== NULL
)
2074 cur_expr
->avail_occr
= avail_occr
;
2076 last_occr
->next
= avail_occr
;
2078 avail_occr
->insn
= insn
;
2079 avail_occr
->next
= NULL
;
2084 /* Insert pattern X in INSN in the hash table.
2085 X is a SET of a reg to either another reg or a constant.
2086 If it is already present, record it as the last occurrence in INSN's
2090 insert_set_in_table (x
, insn
, table
)
2093 struct hash_table
*table
;
2097 struct expr
*cur_expr
, *last_expr
= NULL
;
2098 struct occr
*cur_occr
, *last_occr
= NULL
;
2100 if (GET_CODE (x
) != SET
2101 || GET_CODE (SET_DEST (x
)) != REG
)
2104 hash
= hash_set (REGNO (SET_DEST (x
)), table
->size
);
2106 cur_expr
= table
->table
[hash
];
2109 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
2111 /* If the expression isn't found, save a pointer to the end of
2113 last_expr
= cur_expr
;
2114 cur_expr
= cur_expr
->next_same_hash
;
2119 cur_expr
= (struct expr
*) gcse_alloc (sizeof (struct expr
));
2120 bytes_used
+= sizeof (struct expr
);
2121 if (table
->table
[hash
] == NULL
)
2122 /* This is the first pattern that hashed to this index. */
2123 table
->table
[hash
] = cur_expr
;
2125 /* Add EXPR to end of this hash chain. */
2126 last_expr
->next_same_hash
= cur_expr
;
2128 /* Set the fields of the expr element.
2129 We must copy X because it can be modified when copy propagation is
2130 performed on its operands. */
2131 cur_expr
->expr
= copy_rtx (x
);
2132 cur_expr
->bitmap_index
= table
->n_elems
++;
2133 cur_expr
->next_same_hash
= NULL
;
2134 cur_expr
->antic_occr
= NULL
;
2135 cur_expr
->avail_occr
= NULL
;
2138 /* Now record the occurrence. */
2139 cur_occr
= cur_expr
->avail_occr
;
2141 /* Search for another occurrence in the same basic block. */
2142 while (cur_occr
&& BLOCK_NUM (cur_occr
->insn
) != BLOCK_NUM (insn
))
2144 /* If an occurrence isn't found, save a pointer to the end of
2146 last_occr
= cur_occr
;
2147 cur_occr
= cur_occr
->next
;
2151 /* Found another instance of the expression in the same basic block.
2152 Prefer this occurrence to the currently recorded one. We want the
2153 last one in the block and the block is scanned from start to end. */
2154 cur_occr
->insn
= insn
;
2157 /* First occurrence of this expression in this basic block. */
2158 cur_occr
= (struct occr
*) gcse_alloc (sizeof (struct occr
));
2159 bytes_used
+= sizeof (struct occr
);
2161 /* First occurrence of this expression in any block? */
2162 if (cur_expr
->avail_occr
== NULL
)
2163 cur_expr
->avail_occr
= cur_occr
;
2165 last_occr
->next
= cur_occr
;
2167 cur_occr
->insn
= insn
;
2168 cur_occr
->next
= NULL
;
2172 /* Determine whether the rtx X should be treated as a constant for
2173 the purposes of GCSE's constant propagation. */
2179 /* Consider a COMPARE of two integers constant. */
2180 if (GET_CODE (x
) == COMPARE
2181 && GET_CODE (XEXP (x
, 0)) == CONST_INT
2182 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
2185 if (GET_CODE (x
) == CONSTANT_P_RTX
)
2188 return CONSTANT_P (x
);
2191 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
2195 hash_scan_set (pat
, insn
, table
)
2197 struct hash_table
*table
;
2199 rtx src
= SET_SRC (pat
);
2200 rtx dest
= SET_DEST (pat
);
2203 if (GET_CODE (src
) == CALL
)
2204 hash_scan_call (src
, insn
, table
);
2206 else if (GET_CODE (dest
) == REG
)
2208 unsigned int regno
= REGNO (dest
);
2211 /* If this is a single set and we are doing constant propagation,
2212 see if a REG_NOTE shows this equivalent to a constant. */
2213 if (table
->set_p
&& (note
= find_reg_equal_equiv_note (insn
)) != 0
2214 && gcse_constant_p (XEXP (note
, 0)))
2215 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
2217 /* Only record sets of pseudo-regs in the hash table. */
2219 && regno
>= FIRST_PSEUDO_REGISTER
2220 /* Don't GCSE something if we can't do a reg/reg copy. */
2221 && can_copy_p (GET_MODE (dest
))
2222 /* GCSE commonly inserts instruction after the insn. We can't
2223 do that easily for EH_REGION notes so disable GCSE on these
2225 && !find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
2226 /* Is SET_SRC something we want to gcse? */
2227 && want_to_gcse_p (src
)
2228 /* Don't CSE a nop. */
2229 && ! set_noop_p (pat
)
2230 /* Don't GCSE if it has attached REG_EQUIV note.
2231 At this point this only function parameters should have
2232 REG_EQUIV notes and if the argument slot is used somewhere
2233 explicitly, it means address of parameter has been taken,
2234 so we should not extend the lifetime of the pseudo. */
2235 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
2236 || GET_CODE (XEXP (note
, 0)) != MEM
))
2238 /* An expression is not anticipatable if its operands are
2239 modified before this insn or if this is not the only SET in
2241 int antic_p
= oprs_anticipatable_p (src
, insn
) && single_set (insn
);
2242 /* An expression is not available if its operands are
2243 subsequently modified, including this insn. It's also not
2244 available if this is a branch, because we can't insert
2245 a set after the branch. */
2246 int avail_p
= (oprs_available_p (src
, insn
)
2247 && ! JUMP_P (insn
));
2249 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
, table
);
2252 /* Record sets for constant/copy propagation. */
2253 else if (table
->set_p
2254 && regno
>= FIRST_PSEUDO_REGISTER
2255 && ((GET_CODE (src
) == REG
2256 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2257 && can_copy_p (GET_MODE (dest
))
2258 && REGNO (src
) != regno
)
2259 || gcse_constant_p (src
))
2260 /* A copy is not available if its src or dest is subsequently
2261 modified. Here we want to search from INSN+1 on, but
2262 oprs_available_p searches from INSN on. */
2263 && (insn
== BLOCK_END (BLOCK_NUM (insn
))
2264 || ((tmp
= next_nonnote_insn (insn
)) != NULL_RTX
2265 && oprs_available_p (pat
, tmp
))))
2266 insert_set_in_table (pat
, insn
, table
);
2271 hash_scan_clobber (x
, insn
, table
)
2272 rtx x ATTRIBUTE_UNUSED
, insn ATTRIBUTE_UNUSED
;
2273 struct hash_table
*table ATTRIBUTE_UNUSED
;
2275 /* Currently nothing to do. */
2279 hash_scan_call (x
, insn
, table
)
2280 rtx x ATTRIBUTE_UNUSED
, insn ATTRIBUTE_UNUSED
;
2281 struct hash_table
*table ATTRIBUTE_UNUSED
;
2283 /* Currently nothing to do. */
2286 /* Process INSN and add hash table entries as appropriate.
2288 Only available expressions that set a single pseudo-reg are recorded.
2290 Single sets in a PARALLEL could be handled, but it's an extra complication
2291 that isn't dealt with right now. The trick is handling the CLOBBERs that
2292 are also in the PARALLEL. Later.
2294 If SET_P is nonzero, this is for the assignment hash table,
2295 otherwise it is for the expression hash table.
2296 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2297 not record any expressions. */
2300 hash_scan_insn (insn
, table
, in_libcall_block
)
2302 struct hash_table
*table
;
2303 int in_libcall_block
;
2305 rtx pat
= PATTERN (insn
);
2308 if (in_libcall_block
)
2311 /* Pick out the sets of INSN and for other forms of instructions record
2312 what's been modified. */
2314 if (GET_CODE (pat
) == SET
)
2315 hash_scan_set (pat
, insn
, table
);
2316 else if (GET_CODE (pat
) == PARALLEL
)
2317 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2319 rtx x
= XVECEXP (pat
, 0, i
);
2321 if (GET_CODE (x
) == SET
)
2322 hash_scan_set (x
, insn
, table
);
2323 else if (GET_CODE (x
) == CLOBBER
)
2324 hash_scan_clobber (x
, insn
, table
);
2325 else if (GET_CODE (x
) == CALL
)
2326 hash_scan_call (x
, insn
, table
);
2329 else if (GET_CODE (pat
) == CLOBBER
)
2330 hash_scan_clobber (pat
, insn
, table
);
2331 else if (GET_CODE (pat
) == CALL
)
2332 hash_scan_call (pat
, insn
, table
);
2336 dump_hash_table (file
, name
, table
)
2339 struct hash_table
*table
;
2342 /* Flattened out table, so it's printed in proper order. */
2343 struct expr
**flat_table
;
2344 unsigned int *hash_val
;
2348 = (struct expr
**) xcalloc (table
->n_elems
, sizeof (struct expr
*));
2349 hash_val
= (unsigned int *) xmalloc (table
->n_elems
* sizeof (unsigned int));
2351 for (i
= 0; i
< (int) table
->size
; i
++)
2352 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
2354 flat_table
[expr
->bitmap_index
] = expr
;
2355 hash_val
[expr
->bitmap_index
] = i
;
2358 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
2359 name
, table
->size
, table
->n_elems
);
2361 for (i
= 0; i
< (int) table
->n_elems
; i
++)
2362 if (flat_table
[i
] != 0)
2364 expr
= flat_table
[i
];
2365 fprintf (file
, "Index %d (hash value %d)\n ",
2366 expr
->bitmap_index
, hash_val
[i
]);
2367 print_rtl (file
, expr
->expr
);
2368 fprintf (file
, "\n");
2371 fprintf (file
, "\n");
2377 /* Record register first/last/block set information for REGNO in INSN.
2379 first_set records the first place in the block where the register
2380 is set and is used to compute "anticipatability".
2382 last_set records the last place in the block where the register
2383 is set and is used to compute "availability".
2385 last_bb records the block for which first_set and last_set are
2386 valid, as a quick test to invalidate them.
2388 reg_set_in_block records whether the register is set in the block
2389 and is used to compute "transparency". */
2392 record_last_reg_set_info (insn
, regno
)
2396 struct reg_avail_info
*info
= ®_avail_info
[regno
];
2397 int cuid
= INSN_CUID (insn
);
2399 info
->last_set
= cuid
;
2400 if (info
->last_bb
!= current_bb
)
2402 info
->last_bb
= current_bb
;
2403 info
->first_set
= cuid
;
2404 SET_BIT (reg_set_in_block
[current_bb
->index
], regno
);
2409 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2410 Note we store a pair of elements in the list, so they have to be
2411 taken off pairwise. */
2414 canon_list_insert (dest
, unused1
, v_insn
)
2415 rtx dest ATTRIBUTE_UNUSED
;
2416 rtx unused1 ATTRIBUTE_UNUSED
;
2419 rtx dest_addr
, insn
;
2422 while (GET_CODE (dest
) == SUBREG
2423 || GET_CODE (dest
) == ZERO_EXTRACT
2424 || GET_CODE (dest
) == SIGN_EXTRACT
2425 || GET_CODE (dest
) == STRICT_LOW_PART
)
2426 dest
= XEXP (dest
, 0);
2428 /* If DEST is not a MEM, then it will not conflict with a load. Note
2429 that function calls are assumed to clobber memory, but are handled
2432 if (GET_CODE (dest
) != MEM
)
2435 dest_addr
= get_addr (XEXP (dest
, 0));
2436 dest_addr
= canon_rtx (dest_addr
);
2437 insn
= (rtx
) v_insn
;
2438 bb
= BLOCK_NUM (insn
);
2440 canon_modify_mem_list
[bb
] =
2441 alloc_EXPR_LIST (VOIDmode
, dest_addr
, canon_modify_mem_list
[bb
]);
2442 canon_modify_mem_list
[bb
] =
2443 alloc_EXPR_LIST (VOIDmode
, dest
, canon_modify_mem_list
[bb
]);
2444 bitmap_set_bit (canon_modify_mem_list_set
, bb
);
2447 /* Record memory modification information for INSN. We do not actually care
2448 about the memory location(s) that are set, or even how they are set (consider
2449 a CALL_INSN). We merely need to record which insns modify memory. */
2452 record_last_mem_set_info (insn
)
2455 int bb
= BLOCK_NUM (insn
);
2457 /* load_killed_in_block_p will handle the case of calls clobbering
2459 modify_mem_list
[bb
] = alloc_INSN_LIST (insn
, modify_mem_list
[bb
]);
2460 bitmap_set_bit (modify_mem_list_set
, bb
);
2462 if (GET_CODE (insn
) == CALL_INSN
)
2464 /* Note that traversals of this loop (other than for free-ing)
2465 will break after encountering a CALL_INSN. So, there's no
2466 need to insert a pair of items, as canon_list_insert does. */
2467 canon_modify_mem_list
[bb
] =
2468 alloc_INSN_LIST (insn
, canon_modify_mem_list
[bb
]);
2469 bitmap_set_bit (canon_modify_mem_list_set
, bb
);
2472 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
2475 /* Called from compute_hash_table via note_stores to handle one
2476 SET or CLOBBER in an insn. DATA is really the instruction in which
2477 the SET is taking place. */
2480 record_last_set_info (dest
, setter
, data
)
2481 rtx dest
, setter ATTRIBUTE_UNUSED
;
2484 rtx last_set_insn
= (rtx
) data
;
2486 if (GET_CODE (dest
) == SUBREG
)
2487 dest
= SUBREG_REG (dest
);
2489 if (GET_CODE (dest
) == REG
)
2490 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
2491 else if (GET_CODE (dest
) == MEM
2492 /* Ignore pushes, they clobber nothing. */
2493 && ! push_operand (dest
, GET_MODE (dest
)))
2494 record_last_mem_set_info (last_set_insn
);
2497 /* Top level function to create an expression or assignment hash table.
2499 Expression entries are placed in the hash table if
2500 - they are of the form (set (pseudo-reg) src),
2501 - src is something we want to perform GCSE on,
2502 - none of the operands are subsequently modified in the block
2504 Assignment entries are placed in the hash table if
2505 - they are of the form (set (pseudo-reg) src),
2506 - src is something we want to perform const/copy propagation on,
2507 - none of the operands or target are subsequently modified in the block
2509 Currently src must be a pseudo-reg or a const_int.
2511 TABLE is the table computed. */
2514 compute_hash_table_work (table
)
2515 struct hash_table
*table
;
2519 /* While we compute the hash table we also compute a bit array of which
2520 registers are set in which blocks.
2521 ??? This isn't needed during const/copy propagation, but it's cheap to
2523 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
2525 /* re-Cache any INSN_LIST nodes we have allocated. */
2526 clear_modify_mem_tables ();
2527 /* Some working arrays used to track first and last set in each block. */
2528 reg_avail_info
= (struct reg_avail_info
*)
2529 gmalloc (max_gcse_regno
* sizeof (struct reg_avail_info
));
2531 for (i
= 0; i
< max_gcse_regno
; ++i
)
2532 reg_avail_info
[i
].last_bb
= NULL
;
2534 FOR_EACH_BB (current_bb
)
2538 int in_libcall_block
;
2540 /* First pass over the instructions records information used to
2541 determine when registers and memory are first and last set.
2542 ??? hard-reg reg_set_in_block computation
2543 could be moved to compute_sets since they currently don't change. */
2545 for (insn
= current_bb
->head
;
2546 insn
&& insn
!= NEXT_INSN (current_bb
->end
);
2547 insn
= NEXT_INSN (insn
))
2549 if (! INSN_P (insn
))
2552 if (GET_CODE (insn
) == CALL_INSN
)
2554 bool clobbers_all
= false;
2555 #ifdef NON_SAVING_SETJMP
2556 if (NON_SAVING_SETJMP
2557 && find_reg_note (insn
, REG_SETJMP
, NULL_RTX
))
2558 clobbers_all
= true;
2561 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2563 || TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2564 record_last_reg_set_info (insn
, regno
);
2569 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
2572 /* Insert implicit sets in the hash table. */
2574 && implicit_sets
[current_bb
->index
] != NULL_RTX
)
2575 hash_scan_set (implicit_sets
[current_bb
->index
],
2576 current_bb
->head
, table
);
2578 /* The next pass builds the hash table. */
2580 for (insn
= current_bb
->head
, in_libcall_block
= 0;
2581 insn
&& insn
!= NEXT_INSN (current_bb
->end
);
2582 insn
= NEXT_INSN (insn
))
2585 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
2586 in_libcall_block
= 1;
2587 else if (table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2588 in_libcall_block
= 0;
2589 hash_scan_insn (insn
, table
, in_libcall_block
);
2590 if (!table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2591 in_libcall_block
= 0;
2595 free (reg_avail_info
);
2596 reg_avail_info
= NULL
;
2599 /* Allocate space for the set/expr hash TABLE.
2600 N_INSNS is the number of instructions in the function.
2601 It is used to determine the number of buckets to use.
2602 SET_P determines whether set or expression table will
2606 alloc_hash_table (n_insns
, table
, set_p
)
2608 struct hash_table
*table
;
2613 table
->size
= n_insns
/ 4;
2614 if (table
->size
< 11)
2617 /* Attempt to maintain efficient use of hash table.
2618 Making it an odd number is simplest for now.
2619 ??? Later take some measurements. */
2621 n
= table
->size
* sizeof (struct expr
*);
2622 table
->table
= (struct expr
**) gmalloc (n
);
2623 table
->set_p
= set_p
;
2626 /* Free things allocated by alloc_hash_table. */
2629 free_hash_table (table
)
2630 struct hash_table
*table
;
2632 free (table
->table
);
2635 /* Compute the hash TABLE for doing copy/const propagation or
2636 expression hash table. */
2639 compute_hash_table (table
)
2640 struct hash_table
*table
;
2642 /* Initialize count of number of entries in hash table. */
2644 memset ((char *) table
->table
, 0,
2645 table
->size
* sizeof (struct expr
*));
2647 compute_hash_table_work (table
);
2650 /* Expression tracking support. */
2652 /* Lookup pattern PAT in the expression TABLE.
2653 The result is a pointer to the table entry, or NULL if not found. */
2655 static struct expr
*
2656 lookup_expr (pat
, table
)
2658 struct hash_table
*table
;
2660 int do_not_record_p
;
2661 unsigned int hash
= hash_expr (pat
, GET_MODE (pat
), &do_not_record_p
,
2665 if (do_not_record_p
)
2668 expr
= table
->table
[hash
];
2670 while (expr
&& ! expr_equiv_p (expr
->expr
, pat
))
2671 expr
= expr
->next_same_hash
;
2676 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2677 table entry, or NULL if not found. */
2679 static struct expr
*
2680 lookup_set (regno
, table
)
2682 struct hash_table
*table
;
2684 unsigned int hash
= hash_set (regno
, table
->size
);
2687 expr
= table
->table
[hash
];
2689 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
2690 expr
= expr
->next_same_hash
;
2695 /* Return the next entry for REGNO in list EXPR. */
2697 static struct expr
*
2698 next_set (regno
, expr
)
2703 expr
= expr
->next_same_hash
;
2704 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
2709 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2710 types may be mixed. */
2713 free_insn_expr_list_list (listp
)
2718 for (list
= *listp
; list
; list
= next
)
2720 next
= XEXP (list
, 1);
2721 if (GET_CODE (list
) == EXPR_LIST
)
2722 free_EXPR_LIST_node (list
);
2724 free_INSN_LIST_node (list
);
2730 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2732 clear_modify_mem_tables ()
2736 EXECUTE_IF_SET_IN_BITMAP
2737 (modify_mem_list_set
, 0, i
, free_INSN_LIST_list (modify_mem_list
+ i
));
2738 bitmap_clear (modify_mem_list_set
);
2740 EXECUTE_IF_SET_IN_BITMAP
2741 (canon_modify_mem_list_set
, 0, i
,
2742 free_insn_expr_list_list (canon_modify_mem_list
+ i
));
2743 bitmap_clear (canon_modify_mem_list_set
);
2746 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2749 free_modify_mem_tables ()
2751 clear_modify_mem_tables ();
2752 free (modify_mem_list
);
2753 free (canon_modify_mem_list
);
2754 modify_mem_list
= 0;
2755 canon_modify_mem_list
= 0;
2758 /* Reset tables used to keep track of what's still available [since the
2759 start of the block]. */
2762 reset_opr_set_tables ()
2764 /* Maintain a bitmap of which regs have been set since beginning of
2766 CLEAR_REG_SET (reg_set_bitmap
);
2768 /* Also keep a record of the last instruction to modify memory.
2769 For now this is very trivial, we only record whether any memory
2770 location has been modified. */
2771 clear_modify_mem_tables ();
2774 /* Return nonzero if the operands of X are not set before INSN in
2775 INSN's basic block. */
2778 oprs_not_set_p (x
, insn
)
2788 code
= GET_CODE (x
);
2804 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
2805 INSN_CUID (insn
), x
, 0))
2808 return oprs_not_set_p (XEXP (x
, 0), insn
);
2811 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
2817 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2821 /* If we are about to do the last recursive call
2822 needed at this level, change it into iteration.
2823 This function is called enough to be worth it. */
2825 return oprs_not_set_p (XEXP (x
, i
), insn
);
2827 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
2830 else if (fmt
[i
] == 'E')
2831 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2832 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
2839 /* Mark things set by a CALL. */
2845 if (! CONST_OR_PURE_CALL_P (insn
))
2846 record_last_mem_set_info (insn
);
2849 /* Mark things set by a SET. */
2852 mark_set (pat
, insn
)
2855 rtx dest
= SET_DEST (pat
);
2857 while (GET_CODE (dest
) == SUBREG
2858 || GET_CODE (dest
) == ZERO_EXTRACT
2859 || GET_CODE (dest
) == SIGN_EXTRACT
2860 || GET_CODE (dest
) == STRICT_LOW_PART
)
2861 dest
= XEXP (dest
, 0);
2863 if (GET_CODE (dest
) == REG
)
2864 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (dest
));
2865 else if (GET_CODE (dest
) == MEM
)
2866 record_last_mem_set_info (insn
);
2868 if (GET_CODE (SET_SRC (pat
)) == CALL
)
2872 /* Record things set by a CLOBBER. */
2875 mark_clobber (pat
, insn
)
2878 rtx clob
= XEXP (pat
, 0);
2880 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
2881 clob
= XEXP (clob
, 0);
2883 if (GET_CODE (clob
) == REG
)
2884 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (clob
));
2886 record_last_mem_set_info (insn
);
2889 /* Record things set by INSN.
2890 This data is used by oprs_not_set_p. */
2893 mark_oprs_set (insn
)
2896 rtx pat
= PATTERN (insn
);
2899 if (GET_CODE (pat
) == SET
)
2900 mark_set (pat
, insn
);
2901 else if (GET_CODE (pat
) == PARALLEL
)
2902 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2904 rtx x
= XVECEXP (pat
, 0, i
);
2906 if (GET_CODE (x
) == SET
)
2908 else if (GET_CODE (x
) == CLOBBER
)
2909 mark_clobber (x
, insn
);
2910 else if (GET_CODE (x
) == CALL
)
2914 else if (GET_CODE (pat
) == CLOBBER
)
2915 mark_clobber (pat
, insn
);
2916 else if (GET_CODE (pat
) == CALL
)
2921 /* Classic GCSE reaching definition support. */
2923 /* Allocate reaching def variables. */
2926 alloc_rd_mem (n_blocks
, n_insns
)
2927 int n_blocks
, n_insns
;
2929 rd_kill
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_insns
);
2930 sbitmap_vector_zero (rd_kill
, n_blocks
);
2932 rd_gen
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_insns
);
2933 sbitmap_vector_zero (rd_gen
, n_blocks
);
2935 reaching_defs
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_insns
);
2936 sbitmap_vector_zero (reaching_defs
, n_blocks
);
2938 rd_out
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_insns
);
2939 sbitmap_vector_zero (rd_out
, n_blocks
);
2942 /* Free reaching def variables. */
2947 sbitmap_vector_free (rd_kill
);
2948 sbitmap_vector_free (rd_gen
);
2949 sbitmap_vector_free (reaching_defs
);
2950 sbitmap_vector_free (rd_out
);
2953 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2956 handle_rd_kill_set (insn
, regno
, bb
)
2961 struct reg_set
*this_reg
;
2963 for (this_reg
= reg_set_table
[regno
]; this_reg
; this_reg
= this_reg
->next
)
2964 if (BLOCK_NUM (this_reg
->insn
) != BLOCK_NUM (insn
))
2965 SET_BIT (rd_kill
[bb
->index
], INSN_CUID (this_reg
->insn
));
2968 /* Compute the set of kill's for reaching definitions. */
2979 For each set bit in `gen' of the block (i.e each insn which
2980 generates a definition in the block)
2981 Call the reg set by the insn corresponding to that bit regx
2982 Look at the linked list starting at reg_set_table[regx]
2983 For each setting of regx in the linked list, which is not in
2985 Set the bit in `kill' corresponding to that insn. */
2987 for (cuid
= 0; cuid
< max_cuid
; cuid
++)
2988 if (TEST_BIT (rd_gen
[bb
->index
], cuid
))
2990 rtx insn
= CUID_INSN (cuid
);
2991 rtx pat
= PATTERN (insn
);
2993 if (GET_CODE (insn
) == CALL_INSN
)
2995 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2996 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2997 handle_rd_kill_set (insn
, regno
, bb
);
3000 if (GET_CODE (pat
) == PARALLEL
)
3002 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
3004 enum rtx_code code
= GET_CODE (XVECEXP (pat
, 0, i
));
3006 if ((code
== SET
|| code
== CLOBBER
)
3007 && GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0)) == REG
)
3008 handle_rd_kill_set (insn
,
3009 REGNO (XEXP (XVECEXP (pat
, 0, i
), 0)),
3013 else if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == REG
)
3014 /* Each setting of this register outside of this block
3015 must be marked in the set of kills in this block. */
3016 handle_rd_kill_set (insn
, REGNO (SET_DEST (pat
)), bb
);
3020 /* Compute the reaching definitions as in
3021 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
3022 Chapter 10. It is the same algorithm as used for computing available
3023 expressions but applied to the gens and kills of reaching definitions. */
3028 int changed
, passes
;
3032 sbitmap_copy (rd_out
[bb
->index
] /*dst*/, rd_gen
[bb
->index
] /*src*/);
3041 sbitmap_union_of_preds (reaching_defs
[bb
->index
], rd_out
, bb
->index
);
3042 changed
|= sbitmap_union_of_diff_cg (rd_out
[bb
->index
], rd_gen
[bb
->index
],
3043 reaching_defs
[bb
->index
], rd_kill
[bb
->index
]);
3049 fprintf (gcse_file
, "reaching def computation: %d passes\n", passes
);
3052 /* Classic GCSE available expression support. */
3054 /* Allocate memory for available expression computation. */
3057 alloc_avail_expr_mem (n_blocks
, n_exprs
)
3058 int n_blocks
, n_exprs
;
3060 ae_kill
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_exprs
);
3061 sbitmap_vector_zero (ae_kill
, n_blocks
);
3063 ae_gen
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_exprs
);
3064 sbitmap_vector_zero (ae_gen
, n_blocks
);
3066 ae_in
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_exprs
);
3067 sbitmap_vector_zero (ae_in
, n_blocks
);
3069 ae_out
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_exprs
);
3070 sbitmap_vector_zero (ae_out
, n_blocks
);
3074 free_avail_expr_mem ()
3076 sbitmap_vector_free (ae_kill
);
3077 sbitmap_vector_free (ae_gen
);
3078 sbitmap_vector_free (ae_in
);
3079 sbitmap_vector_free (ae_out
);
3082 /* Compute the set of available expressions generated in each basic block. */
3085 compute_ae_gen (expr_hash_table
)
3086 struct hash_table
*expr_hash_table
;
3092 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3093 This is all we have to do because an expression is not recorded if it
3094 is not available, and the only expressions we want to work with are the
3095 ones that are recorded. */
3096 for (i
= 0; i
< expr_hash_table
->size
; i
++)
3097 for (expr
= expr_hash_table
->table
[i
]; expr
!= 0; expr
= expr
->next_same_hash
)
3098 for (occr
= expr
->avail_occr
; occr
!= 0; occr
= occr
->next
)
3099 SET_BIT (ae_gen
[BLOCK_NUM (occr
->insn
)], expr
->bitmap_index
);
3102 /* Return nonzero if expression X is killed in BB. */
3105 expr_killed_p (x
, bb
)
3116 code
= GET_CODE (x
);
3120 return TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
));
3123 if (load_killed_in_block_p (bb
, get_max_uid () + 1, x
, 0))
3126 return expr_killed_p (XEXP (x
, 0), bb
);
3144 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
3148 /* If we are about to do the last recursive call
3149 needed at this level, change it into iteration.
3150 This function is called enough to be worth it. */
3152 return expr_killed_p (XEXP (x
, i
), bb
);
3153 else if (expr_killed_p (XEXP (x
, i
), bb
))
3156 else if (fmt
[i
] == 'E')
3157 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3158 if (expr_killed_p (XVECEXP (x
, i
, j
), bb
))
3165 /* Compute the set of available expressions killed in each basic block. */
3168 compute_ae_kill (ae_gen
, ae_kill
, expr_hash_table
)
3169 sbitmap
*ae_gen
, *ae_kill
;
3170 struct hash_table
*expr_hash_table
;
3177 for (i
= 0; i
< expr_hash_table
->size
; i
++)
3178 for (expr
= expr_hash_table
->table
[i
]; expr
; expr
= expr
->next_same_hash
)
3180 /* Skip EXPR if generated in this block. */
3181 if (TEST_BIT (ae_gen
[bb
->index
], expr
->bitmap_index
))
3184 if (expr_killed_p (expr
->expr
, bb
))
3185 SET_BIT (ae_kill
[bb
->index
], expr
->bitmap_index
);
3189 /* Actually perform the Classic GCSE optimizations. */
3191 /* Return nonzero if occurrence OCCR of expression EXPR reaches block BB.
3193 CHECK_SELF_LOOP is nonzero if we should consider a block reaching itself
3194 as a positive reach. We want to do this when there are two computations
3195 of the expression in the block.
3197 VISITED is a pointer to a working buffer for tracking which BB's have
3198 been visited. It is NULL for the top-level call.
3200 We treat reaching expressions that go through blocks containing the same
3201 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3202 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3203 2 as not reaching. The intent is to improve the probability of finding
3204 only one reaching expression and to reduce register lifetimes by picking
3205 the closest such expression. */
3208 expr_reaches_here_p_work (occr
, expr
, bb
, check_self_loop
, visited
)
3212 int check_self_loop
;
3217 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
3219 basic_block pred_bb
= pred
->src
;
3221 if (visited
[pred_bb
->index
])
3222 /* This predecessor has already been visited. Nothing to do. */
3224 else if (pred_bb
== bb
)
3226 /* BB loops on itself. */
3228 && TEST_BIT (ae_gen
[pred_bb
->index
], expr
->bitmap_index
)
3229 && BLOCK_NUM (occr
->insn
) == pred_bb
->index
)
3232 visited
[pred_bb
->index
] = 1;
3235 /* Ignore this predecessor if it kills the expression. */
3236 else if (TEST_BIT (ae_kill
[pred_bb
->index
], expr
->bitmap_index
))
3237 visited
[pred_bb
->index
] = 1;
3239 /* Does this predecessor generate this expression? */
3240 else if (TEST_BIT (ae_gen
[pred_bb
->index
], expr
->bitmap_index
))
3242 /* Is this the occurrence we're looking for?
3243 Note that there's only one generating occurrence per block
3244 so we just need to check the block number. */
3245 if (BLOCK_NUM (occr
->insn
) == pred_bb
->index
)
3248 visited
[pred_bb
->index
] = 1;
3251 /* Neither gen nor kill. */
3254 visited
[pred_bb
->index
] = 1;
3255 if (expr_reaches_here_p_work (occr
, expr
, pred_bb
, check_self_loop
,
3262 /* All paths have been checked. */
3266 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3267 memory allocated for that function is returned. */
3270 expr_reaches_here_p (occr
, expr
, bb
, check_self_loop
)
3274 int check_self_loop
;
3277 char *visited
= (char *) xcalloc (last_basic_block
, 1);
3279 rval
= expr_reaches_here_p_work (occr
, expr
, bb
, check_self_loop
, visited
);
3285 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3286 If there is more than one such instruction, return NULL.
3288 Called only by handle_avail_expr. */
3291 computing_insn (expr
, insn
)
3295 basic_block bb
= BLOCK_FOR_INSN (insn
);
3297 if (expr
->avail_occr
->next
== NULL
)
3299 if (BLOCK_FOR_INSN (expr
->avail_occr
->insn
) == bb
)
3300 /* The available expression is actually itself
3301 (i.e. a loop in the flow graph) so do nothing. */
3304 /* (FIXME) Case that we found a pattern that was created by
3305 a substitution that took place. */
3306 return expr
->avail_occr
->insn
;
3310 /* Pattern is computed more than once.
3311 Search backwards from this insn to see how many of these
3312 computations actually reach this insn. */
3314 rtx insn_computes_expr
= NULL
;
3317 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
3319 if (BLOCK_FOR_INSN (occr
->insn
) == bb
)
3321 /* The expression is generated in this block.
3322 The only time we care about this is when the expression
3323 is generated later in the block [and thus there's a loop].
3324 We let the normal cse pass handle the other cases. */
3325 if (INSN_CUID (insn
) < INSN_CUID (occr
->insn
)
3326 && expr_reaches_here_p (occr
, expr
, bb
, 1))
3332 insn_computes_expr
= occr
->insn
;
3335 else if (expr_reaches_here_p (occr
, expr
, bb
, 0))
3341 insn_computes_expr
= occr
->insn
;
3345 if (insn_computes_expr
== NULL
)
3348 return insn_computes_expr
;
3352 /* Return nonzero if the definition in DEF_INSN can reach INSN.
3353 Only called by can_disregard_other_sets. */
3356 def_reaches_here_p (insn
, def_insn
)
3361 if (TEST_BIT (reaching_defs
[BLOCK_NUM (insn
)], INSN_CUID (def_insn
)))
3364 if (BLOCK_NUM (insn
) == BLOCK_NUM (def_insn
))
3366 if (INSN_CUID (def_insn
) < INSN_CUID (insn
))
3368 if (GET_CODE (PATTERN (def_insn
)) == PARALLEL
)
3370 else if (GET_CODE (PATTERN (def_insn
)) == CLOBBER
)
3371 reg
= XEXP (PATTERN (def_insn
), 0);
3372 else if (GET_CODE (PATTERN (def_insn
)) == SET
)
3373 reg
= SET_DEST (PATTERN (def_insn
));
3377 return ! reg_set_between_p (reg
, NEXT_INSN (def_insn
), insn
);
3386 /* Return nonzero if *ADDR_THIS_REG can only have one value at INSN. The
3387 value returned is the number of definitions that reach INSN. Returning a
3388 value of zero means that [maybe] more than one definition reaches INSN and
3389 the caller can't perform whatever optimization it is trying. i.e. it is
3390 always safe to return zero. */
3393 can_disregard_other_sets (addr_this_reg
, insn
, for_combine
)
3394 struct reg_set
**addr_this_reg
;
3398 int number_of_reaching_defs
= 0;
3399 struct reg_set
*this_reg
;
3401 for (this_reg
= *addr_this_reg
; this_reg
!= 0; this_reg
= this_reg
->next
)
3402 if (def_reaches_here_p (insn
, this_reg
->insn
))
3404 number_of_reaching_defs
++;
3405 /* Ignore parallels for now. */
3406 if (GET_CODE (PATTERN (this_reg
->insn
)) == PARALLEL
)
3410 && (GET_CODE (PATTERN (this_reg
->insn
)) == CLOBBER
3411 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg
->insn
)),
3412 SET_SRC (PATTERN (insn
)))))
3413 /* A setting of the reg to a different value reaches INSN. */
3416 if (number_of_reaching_defs
> 1)
3418 /* If in this setting the value the register is being set to is
3419 equal to the previous value the register was set to and this
3420 setting reaches the insn we are trying to do the substitution
3421 on then we are ok. */
3422 if (GET_CODE (PATTERN (this_reg
->insn
)) == CLOBBER
)
3424 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg
->insn
)),
3425 SET_SRC (PATTERN (insn
))))
3429 *addr_this_reg
= this_reg
;
3432 return number_of_reaching_defs
;
3435 /* Expression computed by insn is available and the substitution is legal,
3436 so try to perform the substitution.
3438 The result is nonzero if any changes were made. */
3441 handle_avail_expr (insn
, expr
)
3445 rtx pat
, insn_computes_expr
, expr_set
;
3447 struct reg_set
*this_reg
;
3448 int found_setting
, use_src
;
3451 /* We only handle the case where one computation of the expression
3452 reaches this instruction. */
3453 insn_computes_expr
= computing_insn (expr
, insn
);
3454 if (insn_computes_expr
== NULL
)
3456 expr_set
= single_set (insn_computes_expr
);
3463 /* At this point we know only one computation of EXPR outside of this
3464 block reaches this insn. Now try to find a register that the
3465 expression is computed into. */
3466 if (GET_CODE (SET_SRC (expr_set
)) == REG
)
3468 /* This is the case when the available expression that reaches
3469 here has already been handled as an available expression. */
3470 unsigned int regnum_for_replacing
3471 = REGNO (SET_SRC (expr_set
));
3473 /* If the register was created by GCSE we can't use `reg_set_table',
3474 however we know it's set only once. */
3475 if (regnum_for_replacing
>= max_gcse_regno
3476 /* If the register the expression is computed into is set only once,
3477 or only one set reaches this insn, we can use it. */
3478 || (((this_reg
= reg_set_table
[regnum_for_replacing
]),
3479 this_reg
->next
== NULL
)
3480 || can_disregard_other_sets (&this_reg
, insn
, 0)))
3489 unsigned int regnum_for_replacing
3490 = REGNO (SET_DEST (expr_set
));
3492 /* This shouldn't happen. */
3493 if (regnum_for_replacing
>= max_gcse_regno
)
3496 this_reg
= reg_set_table
[regnum_for_replacing
];
3498 /* If the register the expression is computed into is set only once,
3499 or only one set reaches this insn, use it. */
3500 if (this_reg
->next
== NULL
3501 || can_disregard_other_sets (&this_reg
, insn
, 0))
3507 pat
= PATTERN (insn
);
3509 to
= SET_SRC (expr_set
);
3511 to
= SET_DEST (expr_set
);
3512 changed
= validate_change (insn
, &SET_SRC (pat
), to
, 0);
3514 /* We should be able to ignore the return code from validate_change but
3515 to play it safe we check. */
3519 if (gcse_file
!= NULL
)
3521 fprintf (gcse_file
, "GCSE: Replacing the source in insn %d with",
3523 fprintf (gcse_file
, " reg %d %s insn %d\n",
3524 REGNO (to
), use_src
? "from" : "set in",
3525 INSN_UID (insn_computes_expr
));
3530 /* The register that the expr is computed into is set more than once. */
3531 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3533 /* Insert an insn after insnx that copies the reg set in insnx
3534 into a new pseudo register call this new register REGN.
3535 From insnb until end of basic block or until REGB is set
3536 replace all uses of REGB with REGN. */
3539 to
= gen_reg_rtx (GET_MODE (SET_DEST (expr_set
)));
3541 /* Generate the new insn. */
3542 /* ??? If the change fails, we return 0, even though we created
3543 an insn. I think this is ok. */
3545 = emit_insn_after (gen_rtx_SET (VOIDmode
, to
,
3546 SET_DEST (expr_set
)),
3547 insn_computes_expr
);
3549 /* Keep register set table up to date. */
3550 record_one_set (REGNO (to
), new_insn
);
3552 gcse_create_count
++;
3553 if (gcse_file
!= NULL
)
3555 fprintf (gcse_file
, "GCSE: Creating insn %d to copy value of reg %d",
3556 INSN_UID (NEXT_INSN (insn_computes_expr
)),
3557 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr
)))));
3558 fprintf (gcse_file
, ", computed in insn %d,\n",
3559 INSN_UID (insn_computes_expr
));
3560 fprintf (gcse_file
, " into newly allocated reg %d\n",
3564 pat
= PATTERN (insn
);
3566 /* Do register replacement for INSN. */
3567 changed
= validate_change (insn
, &SET_SRC (pat
),
3569 (NEXT_INSN (insn_computes_expr
))),
3572 /* We should be able to ignore the return code from validate_change but
3573 to play it safe we check. */
3577 if (gcse_file
!= NULL
)
3580 "GCSE: Replacing the source in insn %d with reg %d ",
3582 REGNO (SET_DEST (PATTERN (NEXT_INSN
3583 (insn_computes_expr
)))));
3584 fprintf (gcse_file
, "set in insn %d\n",
3585 INSN_UID (insn_computes_expr
));
3593 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3594 the dataflow analysis has been done.
3596 The result is nonzero if a change was made. */
3605 /* Note we start at block 1. */
3607 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3611 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
3613 /* Reset tables used to keep track of what's still valid [since the
3614 start of the block]. */
3615 reset_opr_set_tables ();
3617 for (insn
= bb
->head
;
3618 insn
!= NULL
&& insn
!= NEXT_INSN (bb
->end
);
3619 insn
= NEXT_INSN (insn
))
3621 /* Is insn of form (set (pseudo-reg) ...)? */
3622 if (GET_CODE (insn
) == INSN
3623 && GET_CODE (PATTERN (insn
)) == SET
3624 && GET_CODE (SET_DEST (PATTERN (insn
))) == REG
3625 && REGNO (SET_DEST (PATTERN (insn
))) >= FIRST_PSEUDO_REGISTER
)
3627 rtx pat
= PATTERN (insn
);
3628 rtx src
= SET_SRC (pat
);
3631 if (want_to_gcse_p (src
)
3632 /* Is the expression recorded? */
3633 && ((expr
= lookup_expr (src
, &expr_hash_table
)) != NULL
)
3634 /* Is the expression available [at the start of the
3636 && TEST_BIT (ae_in
[bb
->index
], expr
->bitmap_index
)
3637 /* Are the operands unchanged since the start of the
3639 && oprs_not_set_p (src
, insn
))
3640 changed
|= handle_avail_expr (insn
, expr
);
3643 /* Keep track of everything modified by this insn. */
3644 /* ??? Need to be careful w.r.t. mods done to INSN. */
3646 mark_oprs_set (insn
);
3653 /* Top level routine to perform one classic GCSE pass.
3655 Return nonzero if a change was made. */
3658 one_classic_gcse_pass (pass
)
3663 gcse_subst_count
= 0;
3664 gcse_create_count
= 0;
3666 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
3667 alloc_rd_mem (last_basic_block
, max_cuid
);
3668 compute_hash_table (&expr_hash_table
);
3670 dump_hash_table (gcse_file
, "Expression", &expr_hash_table
);
3672 if (expr_hash_table
.n_elems
> 0)
3676 alloc_avail_expr_mem (last_basic_block
, expr_hash_table
.n_elems
);
3677 compute_ae_gen (&expr_hash_table
);
3678 compute_ae_kill (ae_gen
, ae_kill
, &expr_hash_table
);
3679 compute_available (ae_gen
, ae_kill
, ae_out
, ae_in
);
3680 changed
= classic_gcse ();
3681 free_avail_expr_mem ();
3685 free_hash_table (&expr_hash_table
);
3689 fprintf (gcse_file
, "\n");
3690 fprintf (gcse_file
, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3691 current_function_name
, pass
, bytes_used
, gcse_subst_count
);
3692 fprintf (gcse_file
, "%d insns created\n", gcse_create_count
);
3698 /* Compute copy/constant propagation working variables. */
3700 /* Local properties of assignments. */
3701 static sbitmap
*cprop_pavloc
;
3702 static sbitmap
*cprop_absaltered
;
3704 /* Global properties of assignments (computed from the local properties). */
3705 static sbitmap
*cprop_avin
;
3706 static sbitmap
*cprop_avout
;
3708 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3709 basic blocks. N_SETS is the number of sets. */
3712 alloc_cprop_mem (n_blocks
, n_sets
)
3713 int n_blocks
, n_sets
;
3715 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3716 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3718 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3719 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3722 /* Free vars used by copy/const propagation. */
3727 sbitmap_vector_free (cprop_pavloc
);
3728 sbitmap_vector_free (cprop_absaltered
);
3729 sbitmap_vector_free (cprop_avin
);
3730 sbitmap_vector_free (cprop_avout
);
3733 /* For each block, compute whether X is transparent. X is either an
3734 expression or an assignment [though we don't care which, for this context
3735 an assignment is treated as an expression]. For each block where an
3736 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3740 compute_transp (x
, indx
, bmap
, set_p
)
3752 /* repeat is used to turn tail-recursion into iteration since GCC
3753 can't do it when there's no return value. */
3759 code
= GET_CODE (x
);
3765 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3768 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
3769 SET_BIT (bmap
[bb
->index
], indx
);
3773 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
3774 SET_BIT (bmap
[BLOCK_NUM (r
->insn
)], indx
);
3779 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3782 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
3783 RESET_BIT (bmap
[bb
->index
], indx
);
3787 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
3788 RESET_BIT (bmap
[BLOCK_NUM (r
->insn
)], indx
);
3797 rtx list_entry
= canon_modify_mem_list
[bb
->index
];
3801 rtx dest
, dest_addr
;
3803 if (GET_CODE (XEXP (list_entry
, 0)) == CALL_INSN
)
3806 SET_BIT (bmap
[bb
->index
], indx
);
3808 RESET_BIT (bmap
[bb
->index
], indx
);
3811 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3812 Examine each hunk of memory that is modified. */
3814 dest
= XEXP (list_entry
, 0);
3815 list_entry
= XEXP (list_entry
, 1);
3816 dest_addr
= XEXP (list_entry
, 0);
3818 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
3819 x
, rtx_addr_varies_p
))
3822 SET_BIT (bmap
[bb
->index
], indx
);
3824 RESET_BIT (bmap
[bb
->index
], indx
);
3827 list_entry
= XEXP (list_entry
, 1);
3850 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
3854 /* If we are about to do the last recursive call
3855 needed at this level, change it into iteration.
3856 This function is called enough to be worth it. */
3863 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
3865 else if (fmt
[i
] == 'E')
3866 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3867 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
3871 /* Top level routine to do the dataflow analysis needed by copy/const
3875 compute_cprop_data ()
3877 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, &set_hash_table
);
3878 compute_available (cprop_pavloc
, cprop_absaltered
,
3879 cprop_avout
, cprop_avin
);
3882 /* Copy/constant propagation. */
3884 /* Maximum number of register uses in an insn that we handle. */
3887 /* Table of uses found in an insn.
3888 Allocated statically to avoid alloc/free complexity and overhead. */
3889 static struct reg_use reg_use_table
[MAX_USES
];
3891 /* Index into `reg_use_table' while building it. */
3892 static int reg_use_count
;
3894 /* Set up a list of register numbers used in INSN. The found uses are stored
3895 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3896 and contains the number of uses in the table upon exit.
3898 ??? If a register appears multiple times we will record it multiple times.
3899 This doesn't hurt anything but it will slow things down. */
3902 find_used_regs (xptr
, data
)
3904 void *data ATTRIBUTE_UNUSED
;
3911 /* repeat is used to turn tail-recursion into iteration since GCC
3912 can't do it when there's no return value. */
3917 code
= GET_CODE (x
);
3920 if (reg_use_count
== MAX_USES
)
3923 reg_use_table
[reg_use_count
].reg_rtx
= x
;
3927 /* Recursively scan the operands of this expression. */
3929 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
3933 /* If we are about to do the last recursive call
3934 needed at this level, change it into iteration.
3935 This function is called enough to be worth it. */
3942 find_used_regs (&XEXP (x
, i
), data
);
3944 else if (fmt
[i
] == 'E')
3945 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3946 find_used_regs (&XVECEXP (x
, i
, j
), data
);
3950 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3951 Returns nonzero is successful. */
3954 try_replace_reg (from
, to
, insn
)
3957 rtx note
= find_reg_equal_equiv_note (insn
);
3960 rtx set
= single_set (insn
);
3962 validate_replace_src_group (from
, to
, insn
);
3963 if (num_changes_pending () && apply_change_group ())
3966 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
3968 /* If above failed and this is a single set, try to simplify the source of
3969 the set given our substitution. We could perhaps try this for multiple
3970 SETs, but it probably won't buy us anything. */
3971 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
3973 if (!rtx_equal_p (src
, SET_SRC (set
))
3974 && validate_change (insn
, &SET_SRC (set
), src
, 0))
3977 /* If we've failed to do replacement, have a single SET, and don't already
3978 have a note, add a REG_EQUAL note to not lose information. */
3979 if (!success
&& note
== 0 && set
!= 0)
3980 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
3983 /* If there is already a NOTE, update the expression in it with our
3986 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), from
, to
);
3988 /* REG_EQUAL may get simplified into register.
3989 We don't allow that. Remove that note. This code ought
3990 not to happen, because previous code ought to synthesize
3991 reg-reg move, but be on the safe side. */
3992 if (note
&& REG_P (XEXP (note
, 0)))
3993 remove_note (insn
, note
);
3998 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3999 NULL no such set is found. */
4001 static struct expr
*
4002 find_avail_set (regno
, insn
)
4006 /* SET1 contains the last set found that can be returned to the caller for
4007 use in a substitution. */
4008 struct expr
*set1
= 0;
4010 /* Loops are not possible here. To get a loop we would need two sets
4011 available at the start of the block containing INSN. ie we would
4012 need two sets like this available at the start of the block:
4014 (set (reg X) (reg Y))
4015 (set (reg Y) (reg X))
4017 This can not happen since the set of (reg Y) would have killed the
4018 set of (reg X) making it unavailable at the start of this block. */
4022 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
4024 /* Find a set that is available at the start of the block
4025 which contains INSN. */
4028 if (TEST_BIT (cprop_avin
[BLOCK_NUM (insn
)], set
->bitmap_index
))
4030 set
= next_set (regno
, set
);
4033 /* If no available set was found we've reached the end of the
4034 (possibly empty) copy chain. */
4038 if (GET_CODE (set
->expr
) != SET
)
4041 src
= SET_SRC (set
->expr
);
4043 /* We know the set is available.
4044 Now check that SRC is ANTLOC (i.e. none of the source operands
4045 have changed since the start of the block).
4047 If the source operand changed, we may still use it for the next
4048 iteration of this loop, but we may not use it for substitutions. */
4050 if (gcse_constant_p (src
) || oprs_not_set_p (src
, insn
))
4053 /* If the source of the set is anything except a register, then
4054 we have reached the end of the copy chain. */
4055 if (GET_CODE (src
) != REG
)
4058 /* Follow the copy chain, ie start another iteration of the loop
4059 and see if we have an available copy into SRC. */
4060 regno
= REGNO (src
);
4063 /* SET1 holds the last set that was available and anticipatable at
4068 /* Subroutine of cprop_insn that tries to propagate constants into
4069 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
4070 it is the instruction that immediately precedes JUMP, and must be a
4071 single SET of a register. FROM is what we will try to replace,
4072 SRC is the constant we will try to substitute for it. Returns nonzero
4073 if a change was made. */
4076 cprop_jump (bb
, setcc
, jump
, from
, src
)
4084 rtx set
= pc_set (jump
);
4086 /* First substitute in the INSN condition as the SET_SRC of the JUMP,
4087 then substitute that given values in this expanded JUMP. */
4089 && !modified_between_p (from
, setcc
, jump
)
4090 && !modified_between_p (src
, setcc
, jump
))
4092 rtx setcc_set
= single_set (setcc
);
4093 new_set
= simplify_replace_rtx (SET_SRC (set
),
4094 SET_DEST (setcc_set
),
4095 SET_SRC (setcc_set
));
4100 new = simplify_replace_rtx (new_set
, from
, src
);
4102 /* If no simplification can be made, then try the next
4104 if (rtx_equal_p (new, new_set
) || rtx_equal_p (new, SET_SRC (set
)))
4107 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4112 /* Ensure the value computed inside the jump insn to be equivalent
4113 to one computed by setcc. */
4115 && modified_in_p (new, setcc
))
4117 if (! validate_change (jump
, &SET_SRC (set
), new, 0))
4120 /* If this has turned into an unconditional jump,
4121 then put a barrier after it so that the unreachable
4122 code will be deleted. */
4123 if (GET_CODE (SET_SRC (set
)) == LABEL_REF
)
4124 emit_barrier_after (jump
);
4128 /* Delete the cc0 setter. */
4129 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
4130 delete_insn (setcc
);
4133 run_jump_opt_after_gcse
= 1;
4136 if (gcse_file
!= NULL
)
4139 "CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
4140 REGNO (from
), INSN_UID (jump
));
4141 print_rtl (gcse_file
, src
);
4142 fprintf (gcse_file
, "\n");
4144 purge_dead_edges (bb
);
4150 constprop_register (insn
, from
, to
, alter_jumps
)
4158 /* Check for reg or cc0 setting instructions followed by
4159 conditional branch instructions first. */
4161 && (sset
= single_set (insn
)) != NULL
4163 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
4165 rtx dest
= SET_DEST (sset
);
4166 if ((REG_P (dest
) || CC0_P (dest
))
4167 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
), from
, to
))
4171 /* Handle normal insns next. */
4172 if (GET_CODE (insn
) == INSN
4173 && try_replace_reg (from
, to
, insn
))
4176 /* Try to propagate a CONST_INT into a conditional jump.
4177 We're pretty specific about what we will handle in this
4178 code, we can extend this as necessary over time.
4180 Right now the insn in question must look like
4181 (set (pc) (if_then_else ...)) */
4182 else if (alter_jumps
&& any_condjump_p (insn
) && onlyjump_p (insn
))
4183 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, to
);
4187 /* Perform constant and copy propagation on INSN.
4188 The result is nonzero if a change was made. */
4191 cprop_insn (insn
, alter_jumps
)
4195 struct reg_use
*reg_used
;
4203 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
4205 note
= find_reg_equal_equiv_note (insn
);
4207 /* We may win even when propagating constants into notes. */
4209 find_used_regs (&XEXP (note
, 0), NULL
);
4211 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
4212 reg_used
++, reg_use_count
--)
4214 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
4218 /* Ignore registers created by GCSE.
4219 We do this because ... */
4220 if (regno
>= max_gcse_regno
)
4223 /* If the register has already been set in this block, there's
4224 nothing we can do. */
4225 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
4228 /* Find an assignment that sets reg_used and is available
4229 at the start of the block. */
4230 set
= find_avail_set (regno
, insn
);
4235 /* ??? We might be able to handle PARALLELs. Later. */
4236 if (GET_CODE (pat
) != SET
)
4239 src
= SET_SRC (pat
);
4241 /* Constant propagation. */
4242 if (gcse_constant_p (src
))
4244 if (constprop_register (insn
, reg_used
->reg_rtx
, src
, alter_jumps
))
4248 if (gcse_file
!= NULL
)
4250 fprintf (gcse_file
, "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
4251 fprintf (gcse_file
, "insn %d with constant ", INSN_UID (insn
));
4252 print_rtl (gcse_file
, src
);
4253 fprintf (gcse_file
, "\n");
4257 else if (GET_CODE (src
) == REG
4258 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
4259 && REGNO (src
) != regno
)
4261 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
4265 if (gcse_file
!= NULL
)
4267 fprintf (gcse_file
, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
4268 regno
, INSN_UID (insn
));
4269 fprintf (gcse_file
, " with reg %d\n", REGNO (src
));
4272 /* The original insn setting reg_used may or may not now be
4273 deletable. We leave the deletion to flow. */
4274 /* FIXME: If it turns out that the insn isn't deletable,
4275 then we may have unnecessarily extended register lifetimes
4276 and made things worse. */
4284 /* Like find_used_regs, but avoid recording uses that appear in
4285 input-output contexts such as zero_extract or pre_dec. This
4286 restricts the cases we consider to those for which local cprop
4287 can legitimately make replacements. */
4290 local_cprop_find_used_regs (xptr
, data
)
4299 switch (GET_CODE (x
))
4303 case STRICT_LOW_PART
:
4312 /* Can only legitimately appear this early in the context of
4313 stack pushes for function arguments, but handle all of the
4314 codes nonetheless. */
4318 /* Setting a subreg of a register larger than word_mode leaves
4319 the non-written words unchanged. */
4320 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
4328 find_used_regs (xptr
, data
);
4331 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4332 their REG_EQUAL notes need updating. */
4335 do_local_cprop (x
, insn
, alter_jumps
, libcall_sp
)
4341 rtx newreg
= NULL
, newcnst
= NULL
;
4343 /* Rule out USE instructions and ASM statements as we don't want to
4344 change the hard registers mentioned. */
4345 if (GET_CODE (x
) == REG
4346 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
4347 || (GET_CODE (PATTERN (insn
)) != USE
4348 && asm_noperands (PATTERN (insn
)) < 0)))
4350 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0);
4351 struct elt_loc_list
*l
;
4355 for (l
= val
->locs
; l
; l
= l
->next
)
4357 rtx this_rtx
= l
->loc
;
4363 if (gcse_constant_p (this_rtx
))
4365 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
4366 /* Don't copy propagate if it has attached REG_EQUIV note.
4367 At this point this only function parameters should have
4368 REG_EQUIV notes and if the argument slot is used somewhere
4369 explicitly, it means address of parameter has been taken,
4370 so we should not extend the lifetime of the pseudo. */
4371 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
4372 || GET_CODE (XEXP (note
, 0)) != MEM
))
4375 if (newcnst
&& constprop_register (insn
, x
, newcnst
, alter_jumps
))
4377 /* If we find a case where we can't fix the retval REG_EQUAL notes
4378 match the new register, we either have to abandon this replacement
4379 or fix delete_trivially_dead_insns to preserve the setting insn,
4380 or make it delete the REG_EUAQL note, and fix up all passes that
4381 require the REG_EQUAL note there. */
4382 if (!adjust_libcall_notes (x
, newcnst
, insn
, libcall_sp
))
4384 if (gcse_file
!= NULL
)
4386 fprintf (gcse_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
4388 fprintf (gcse_file
, "insn %d with constant ",
4390 print_rtl (gcse_file
, newcnst
);
4391 fprintf (gcse_file
, "\n");
4396 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
4398 adjust_libcall_notes (x
, newreg
, insn
, libcall_sp
);
4399 if (gcse_file
!= NULL
)
4402 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
4403 REGNO (x
), INSN_UID (insn
));
4404 fprintf (gcse_file
, " with reg %d\n", REGNO (newreg
));
4413 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4414 their REG_EQUAL notes need updating to reflect that OLDREG has been
4415 replaced with NEWVAL in INSN. Return true if all substitutions could
4418 adjust_libcall_notes (oldreg
, newval
, insn
, libcall_sp
)
4419 rtx oldreg
, newval
, insn
, *libcall_sp
;
4423 while ((end
= *libcall_sp
++))
4425 rtx note
= find_reg_equal_equiv_note (end
);
4432 if (reg_set_between_p (newval
, PREV_INSN (insn
), end
))
4436 note
= find_reg_equal_equiv_note (end
);
4439 if (reg_mentioned_p (newval
, XEXP (note
, 0)))
4442 while ((end
= *libcall_sp
++));
4446 XEXP (note
, 0) = replace_rtx (XEXP (note
, 0), oldreg
, newval
);
4452 #define MAX_NESTED_LIBCALLS 9
4455 local_cprop_pass (alter_jumps
)
4459 struct reg_use
*reg_used
;
4460 rtx libcall_stack
[MAX_NESTED_LIBCALLS
+ 1], *libcall_sp
;
4461 bool changed
= false;
4464 libcall_sp
= &libcall_stack
[MAX_NESTED_LIBCALLS
];
4466 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4470 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
4474 if (libcall_sp
== libcall_stack
)
4476 *--libcall_sp
= XEXP (note
, 0);
4478 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
4481 note
= find_reg_equal_equiv_note (insn
);
4485 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
, NULL
);
4487 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
4489 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
4490 reg_used
++, reg_use_count
--)
4491 if (do_local_cprop (reg_used
->reg_rtx
, insn
, alter_jumps
,
4498 while (reg_use_count
);
4500 cselib_process_insn (insn
);
4503 /* Global analysis may get into infinite loops for unreachable blocks. */
4504 if (changed
&& alter_jumps
)
4506 delete_unreachable_blocks ();
4507 free_reg_set_mem ();
4508 alloc_reg_set_mem (max_reg_num ());
4509 compute_sets (get_insns ());
4513 /* Forward propagate copies. This includes copies and constants. Return
4514 nonzero if a change was made. */
4524 /* Note we start at block 1. */
4525 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
4527 if (gcse_file
!= NULL
)
4528 fprintf (gcse_file
, "\n");
4533 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
4535 /* Reset tables used to keep track of what's still valid [since the
4536 start of the block]. */
4537 reset_opr_set_tables ();
4539 for (insn
= bb
->head
;
4540 insn
!= NULL
&& insn
!= NEXT_INSN (bb
->end
);
4541 insn
= NEXT_INSN (insn
))
4544 changed
|= cprop_insn (insn
, alter_jumps
);
4546 /* Keep track of everything modified by this insn. */
4547 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4548 call mark_oprs_set if we turned the insn into a NOTE. */
4549 if (GET_CODE (insn
) != NOTE
)
4550 mark_oprs_set (insn
);
4554 if (gcse_file
!= NULL
)
4555 fprintf (gcse_file
, "\n");
4560 /* Similar to get_condition, only the resulting condition must be
4561 valid at JUMP, instead of at EARLIEST.
4563 This differs from noce_get_condition in ifcvt.c in that we prefer not to
4564 settle for the condition variable in the jump instruction being integral.
4565 We prefer to be able to record the value of a user variable, rather than
4566 the value of a temporary used in a condition. This could be solved by
4567 recording the value of *every* register scaned by canonicalize_condition,
4568 but this would require some code reorganization. */
4571 fis_get_condition (jump
)
4574 rtx cond
, set
, tmp
, insn
, earliest
;
4577 if (! any_condjump_p (jump
))
4580 set
= pc_set (jump
);
4581 cond
= XEXP (SET_SRC (set
), 0);
4583 /* If this branches to JUMP_LABEL when the condition is false,
4584 reverse the condition. */
4585 reverse
= (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
4586 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
));
4588 /* Use canonicalize_condition to do the dirty work of manipulating
4589 MODE_CC values and COMPARE rtx codes. */
4590 tmp
= canonicalize_condition (jump
, cond
, reverse
, &earliest
, NULL_RTX
);
4594 /* Verify that the given condition is valid at JUMP by virtue of not
4595 having been modified since EARLIEST. */
4596 for (insn
= earliest
; insn
!= jump
; insn
= NEXT_INSN (insn
))
4597 if (INSN_P (insn
) && modified_in_p (tmp
, insn
))
4602 /* The condition was modified. See if we can get a partial result
4603 that doesn't follow all the reversals. Perhaps combine can fold
4604 them together later. */
4605 tmp
= XEXP (tmp
, 0);
4606 if (!REG_P (tmp
) || GET_MODE_CLASS (GET_MODE (tmp
)) != MODE_INT
)
4608 tmp
= canonicalize_condition (jump
, cond
, reverse
, &earliest
, tmp
);
4612 /* For sanity's sake, re-validate the new result. */
4613 for (insn
= earliest
; insn
!= jump
; insn
= NEXT_INSN (insn
))
4614 if (INSN_P (insn
) && modified_in_p (tmp
, insn
))
4620 /* Find the implicit sets of a function. An "implicit set" is a constraint
4621 on the value of a variable, implied by a conditional jump. For example,
4622 following "if (x == 2)", the then branch may be optimized as though the
4623 conditional performed an "explicit set", in this example, "x = 2". This
4624 function records the set patterns that are implicit at the start of each
4628 find_implicit_sets ()
4630 basic_block bb
, dest
;
4636 /* Check for more than one sucessor. */
4637 if (bb
->succ
&& bb
->succ
->succ_next
)
4639 cond
= fis_get_condition (bb
->end
);
4642 && (GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
4643 && GET_CODE (XEXP (cond
, 0)) == REG
4644 && REGNO (XEXP (cond
, 0)) >= FIRST_PSEUDO_REGISTER
4645 && gcse_constant_p (XEXP (cond
, 1)))
4647 dest
= GET_CODE (cond
) == EQ
? BRANCH_EDGE (bb
)->dest
4648 : FALLTHRU_EDGE (bb
)->dest
;
4650 if (dest
&& ! dest
->pred
->pred_next
4651 && dest
!= EXIT_BLOCK_PTR
)
4653 new = gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
4655 implicit_sets
[dest
->index
] = new;
4658 fprintf(gcse_file
, "Implicit set of reg %d in ",
4659 REGNO (XEXP (cond
, 0)));
4660 fprintf(gcse_file
, "basic block %d\n", dest
->index
);
4668 fprintf (gcse_file
, "Found %d implicit sets\n", count
);
4671 /* Perform one copy/constant propagation pass.
4672 PASS is the pass count. If CPROP_JUMPS is true, perform constant
4673 propagation into conditional jumps. If BYPASS_JUMPS is true,
4674 perform conditional jump bypassing optimizations. */
4677 one_cprop_pass (pass
, cprop_jumps
, bypass_jumps
)
4684 const_prop_count
= 0;
4685 copy_prop_count
= 0;
4687 local_cprop_pass (cprop_jumps
);
4689 /* Determine implicit sets. */
4690 implicit_sets
= (rtx
*) xcalloc (last_basic_block
, sizeof (rtx
));
4691 find_implicit_sets ();
4693 alloc_hash_table (max_cuid
, &set_hash_table
, 1);
4694 compute_hash_table (&set_hash_table
);
4696 /* Free implicit_sets before peak usage. */
4697 free (implicit_sets
);
4698 implicit_sets
= NULL
;
4701 dump_hash_table (gcse_file
, "SET", &set_hash_table
);
4702 if (set_hash_table
.n_elems
> 0)
4704 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
4705 compute_cprop_data ();
4706 changed
= cprop (cprop_jumps
);
4708 changed
|= bypass_conditional_jumps ();
4712 free_hash_table (&set_hash_table
);
4716 fprintf (gcse_file
, "CPROP of %s, pass %d: %d bytes needed, ",
4717 current_function_name
, pass
, bytes_used
);
4718 fprintf (gcse_file
, "%d const props, %d copy props\n\n",
4719 const_prop_count
, copy_prop_count
);
4721 /* Global analysis may get into infinite loops for unreachable blocks. */
4722 if (changed
&& cprop_jumps
)
4723 delete_unreachable_blocks ();
4728 /* Bypass conditional jumps. */
4730 /* The value of last_basic_block at the beginning of the jump_bypass
4731 pass. The use of redirect_edge_and_branch_force may introduce new
4732 basic blocks, but the data flow analysis is only valid for basic
4733 block indices less than bypass_last_basic_block. */
4735 static int bypass_last_basic_block
;
4737 /* Find a set of REGNO to a constant that is available at the end of basic
4738 block BB. Returns NULL if no such set is found. Based heavily upon
4741 static struct expr
*
4742 find_bypass_set (regno
, bb
)
4746 struct expr
*result
= 0;
4751 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
4755 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
4757 set
= next_set (regno
, set
);
4763 if (GET_CODE (set
->expr
) != SET
)
4766 src
= SET_SRC (set
->expr
);
4767 if (gcse_constant_p (src
))
4770 if (GET_CODE (src
) != REG
)
4773 regno
= REGNO (src
);
4779 /* Subroutine of bypass_block that checks whether a pseudo is killed by
4780 any of the instructions inserted on an edge. Jump bypassing places
4781 condition code setters on CFG edges using insert_insn_on_edge. This
4782 function is required to check that our data flow analysis is still
4783 valid prior to commit_edge_insertions. */
4786 reg_killed_on_edge (reg
, e
)
4792 for (insn
= e
->insns
; insn
; insn
= NEXT_INSN (insn
))
4793 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
4799 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
4800 basic block BB which has more than one predecessor. If not NULL, SETCC
4801 is the first instruction of BB, which is immediately followed by JUMP_INSN
4802 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
4803 Returns nonzero if a change was made.
4805 During the jump bypassing pass, we may place copies of SETCC instuctions
4806 on CFG edges. The following routine must be careful to pay attention to
4807 these inserted insns when performing its transformations. */
4810 bypass_block (bb
, setcc
, jump
)
4815 edge e
, enext
, edest
;
4817 int may_be_loop_header
;
4819 insn
= (setcc
!= NULL
) ? setcc
: jump
;
4821 /* Determine set of register uses in INSN. */
4823 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
4824 note
= find_reg_equal_equiv_note (insn
);
4826 find_used_regs (&XEXP (note
, 0), NULL
);
4828 may_be_loop_header
= false;
4829 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
4830 if (e
->flags
& EDGE_DFS_BACK
)
4832 may_be_loop_header
= true;
4837 for (e
= bb
->pred
; e
; e
= enext
)
4839 enext
= e
->pred_next
;
4840 if (e
->flags
& EDGE_COMPLEX
)
4843 /* We can't redirect edges from new basic blocks. */
4844 if (e
->src
->index
>= bypass_last_basic_block
)
4847 /* The irreducible loops created by redirecting of edges entering the
4848 loop from outside would decrease effectivity of some of the following
4849 optimalizations, so prevent this. */
4850 if (may_be_loop_header
4851 && !(e
->flags
& EDGE_DFS_BACK
))
4854 for (i
= 0; i
< reg_use_count
; i
++)
4856 struct reg_use
*reg_used
= ®_use_table
[i
];
4857 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
4858 basic_block dest
, old_dest
;
4862 if (regno
>= max_gcse_regno
)
4865 set
= find_bypass_set (regno
, e
->src
->index
);
4870 /* Check the data flow is valid after edge insertions. */
4871 if (e
->insns
&& reg_killed_on_edge (reg_used
->reg_rtx
, e
))
4874 src
= SET_SRC (pc_set (jump
));
4877 src
= simplify_replace_rtx (src
,
4878 SET_DEST (PATTERN (setcc
)),
4879 SET_SRC (PATTERN (setcc
)));
4881 new = simplify_replace_rtx (src
, reg_used
->reg_rtx
,
4882 SET_SRC (set
->expr
));
4884 /* Jump bypassing may have already placed instructions on
4885 edges of the CFG. We can't bypass an outgoing edge that
4886 has instructions associated with it, as these insns won't
4887 get executed if the incoming edge is redirected. */
4891 edest
= FALLTHRU_EDGE (bb
);
4892 dest
= edest
->insns
? NULL
: edest
->dest
;
4894 else if (GET_CODE (new) == LABEL_REF
)
4896 dest
= BLOCK_FOR_INSN (XEXP (new, 0));
4897 /* Don't bypass edges containing instructions. */
4898 for (edest
= bb
->succ
; edest
; edest
= edest
->succ_next
)
4899 if (edest
->dest
== dest
&& edest
->insns
)
4911 && dest
!= EXIT_BLOCK_PTR
)
4913 redirect_edge_and_branch_force (e
, dest
);
4915 /* Copy the register setter to the redirected edge.
4916 Don't copy CC0 setters, as CC0 is dead after jump. */
4919 rtx pat
= PATTERN (setcc
);
4920 if (!CC0_P (SET_DEST (pat
)))
4921 insert_insn_on_edge (copy_insn (pat
), e
);
4924 if (gcse_file
!= NULL
)
4926 fprintf (gcse_file
, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
4927 regno
, INSN_UID (jump
));
4928 print_rtl (gcse_file
, SET_SRC (set
->expr
));
4929 fprintf (gcse_file
, "\nBypass edge from %d->%d to %d\n",
4930 e
->src
->index
, old_dest
->index
, dest
->index
);
4940 /* Find basic blocks with more than one predecessor that only contain a
4941 single conditional jump. If the result of the comparison is known at
4942 compile-time from any incoming edge, redirect that edge to the
4943 appropriate target. Returns nonzero if a change was made.
4945 This function is now mis-named, because we also handle indirect jumps. */
4948 bypass_conditional_jumps ()
4956 /* Note we start at block 1. */
4957 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
4960 bypass_last_basic_block
= last_basic_block
;
4961 mark_dfs_back_edges ();
4964 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
4965 EXIT_BLOCK_PTR
, next_bb
)
4967 /* Check for more than one predecessor. */
4968 if (bb
->pred
&& bb
->pred
->pred_next
)
4971 for (insn
= bb
->head
;
4972 insn
!= NULL
&& insn
!= NEXT_INSN (bb
->end
);
4973 insn
= NEXT_INSN (insn
))
4974 if (GET_CODE (insn
) == INSN
)
4978 if (GET_CODE (PATTERN (insn
)) != SET
)
4981 dest
= SET_DEST (PATTERN (insn
));
4982 if (REG_P (dest
) || CC0_P (dest
))
4987 else if (GET_CODE (insn
) == JUMP_INSN
)
4989 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
4990 && onlyjump_p (insn
))
4991 changed
|= bypass_block (bb
, setcc
, insn
);
4994 else if (INSN_P (insn
))
4999 /* If we bypassed any register setting insns, we inserted a
5000 copy on the redirected edge. These need to be committed. */
5002 commit_edge_insertions();
5007 /* Compute PRE+LCM working variables. */
5009 /* Local properties of expressions. */
5010 /* Nonzero for expressions that are transparent in the block. */
5011 static sbitmap
*transp
;
5013 /* Nonzero for expressions that are transparent at the end of the block.
5014 This is only zero for expressions killed by abnormal critical edge
5015 created by a calls. */
5016 static sbitmap
*transpout
;
5018 /* Nonzero for expressions that are computed (available) in the block. */
5019 static sbitmap
*comp
;
5021 /* Nonzero for expressions that are locally anticipatable in the block. */
5022 static sbitmap
*antloc
;
5024 /* Nonzero for expressions where this block is an optimal computation
5026 static sbitmap
*pre_optimal
;
5028 /* Nonzero for expressions which are redundant in a particular block. */
5029 static sbitmap
*pre_redundant
;
5031 /* Nonzero for expressions which should be inserted on a specific edge. */
5032 static sbitmap
*pre_insert_map
;
5034 /* Nonzero for expressions which should be deleted in a specific block. */
5035 static sbitmap
*pre_delete_map
;
5037 /* Contains the edge_list returned by pre_edge_lcm. */
5038 static struct edge_list
*edge_list
;
5040 /* Redundant insns. */
5041 static sbitmap pre_redundant_insns
;
5043 /* Allocate vars used for PRE analysis. */
5046 alloc_pre_mem (n_blocks
, n_exprs
)
5047 int n_blocks
, n_exprs
;
5049 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5050 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5051 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5054 pre_redundant
= NULL
;
5055 pre_insert_map
= NULL
;
5056 pre_delete_map
= NULL
;
5059 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5061 /* pre_insert and pre_delete are allocated later. */
5064 /* Free vars used for PRE analysis. */
5069 sbitmap_vector_free (transp
);
5070 sbitmap_vector_free (comp
);
5072 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
5075 sbitmap_vector_free (pre_optimal
);
5077 sbitmap_vector_free (pre_redundant
);
5079 sbitmap_vector_free (pre_insert_map
);
5081 sbitmap_vector_free (pre_delete_map
);
5083 sbitmap_vector_free (ae_in
);
5085 sbitmap_vector_free (ae_out
);
5087 transp
= comp
= NULL
;
5088 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
5089 ae_in
= ae_out
= NULL
;
5092 /* Top level routine to do the dataflow analysis needed by PRE. */
5097 sbitmap trapping_expr
;
5101 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
5102 sbitmap_vector_zero (ae_kill
, last_basic_block
);
5104 /* Collect expressions which might trap. */
5105 trapping_expr
= sbitmap_alloc (expr_hash_table
.n_elems
);
5106 sbitmap_zero (trapping_expr
);
5107 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
5110 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
5111 if (may_trap_p (e
->expr
))
5112 SET_BIT (trapping_expr
, e
->bitmap_index
);
5115 /* Compute ae_kill for each basic block using:
5119 This is significantly faster than compute_ae_kill. */
5125 /* If the current block is the destination of an abnormal edge, we
5126 kill all trapping expressions because we won't be able to properly
5127 place the instruction on the edge. So make them neither
5128 anticipatable nor transparent. This is fairly conservative. */
5129 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
5130 if (e
->flags
& EDGE_ABNORMAL
)
5132 sbitmap_difference (antloc
[bb
->index
], antloc
[bb
->index
], trapping_expr
);
5133 sbitmap_difference (transp
[bb
->index
], transp
[bb
->index
], trapping_expr
);
5137 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
5138 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
5141 edge_list
= pre_edge_lcm (gcse_file
, expr_hash_table
.n_elems
, transp
, comp
, antloc
,
5142 ae_kill
, &pre_insert_map
, &pre_delete_map
);
5143 sbitmap_vector_free (antloc
);
5145 sbitmap_vector_free (ae_kill
);
5147 sbitmap_free (trapping_expr
);
5152 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
5155 VISITED is a pointer to a working buffer for tracking which BB's have
5156 been visited. It is NULL for the top-level call.
5158 We treat reaching expressions that go through blocks containing the same
5159 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
5160 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
5161 2 as not reaching. The intent is to improve the probability of finding
5162 only one reaching expression and to reduce register lifetimes by picking
5163 the closest such expression. */
5166 pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
)
5167 basic_block occr_bb
;
5174 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
5176 basic_block pred_bb
= pred
->src
;
5178 if (pred
->src
== ENTRY_BLOCK_PTR
5179 /* Has predecessor has already been visited? */
5180 || visited
[pred_bb
->index
])
5181 ;/* Nothing to do. */
5183 /* Does this predecessor generate this expression? */
5184 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
5186 /* Is this the occurrence we're looking for?
5187 Note that there's only one generating occurrence per block
5188 so we just need to check the block number. */
5189 if (occr_bb
== pred_bb
)
5192 visited
[pred_bb
->index
] = 1;
5194 /* Ignore this predecessor if it kills the expression. */
5195 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
5196 visited
[pred_bb
->index
] = 1;
5198 /* Neither gen nor kill. */
5201 visited
[pred_bb
->index
] = 1;
5202 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
5207 /* All paths have been checked. */
5211 /* The wrapper for pre_expr_reaches_here_work that ensures that any
5212 memory allocated for that function is returned. */
5215 pre_expr_reaches_here_p (occr_bb
, expr
, bb
)
5216 basic_block occr_bb
;
5221 char *visited
= (char *) xcalloc (last_basic_block
, 1);
5223 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
5230 /* Given an expr, generate RTL which we can insert at the end of a BB,
5231 or on an edge. Set the block number of any insns generated to
5235 process_insert_insn (expr
)
5238 rtx reg
= expr
->reaching_reg
;
5239 rtx exp
= copy_rtx (expr
->expr
);
5244 /* If the expression is something that's an operand, like a constant,
5245 just copy it to a register. */
5246 if (general_operand (exp
, GET_MODE (reg
)))
5247 emit_move_insn (reg
, exp
);
5249 /* Otherwise, make a new insn to compute this expression and make sure the
5250 insn will be recognized (this also adds any needed CLOBBERs). Copy the
5251 expression to make sure we don't have any sharing issues. */
5252 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
))))
5261 /* Add EXPR to the end of basic block BB.
5263 This is used by both the PRE and code hoisting.
5265 For PRE, we want to verify that the expr is either transparent
5266 or locally anticipatable in the target block. This check makes
5267 no sense for code hoisting. */
5270 insert_insn_end_bb (expr
, bb
, pre
)
5277 rtx reg
= expr
->reaching_reg
;
5278 int regno
= REGNO (reg
);
5281 pat
= process_insert_insn (expr
);
5282 if (pat
== NULL_RTX
|| ! INSN_P (pat
))
5286 while (NEXT_INSN (pat_end
) != NULL_RTX
)
5287 pat_end
= NEXT_INSN (pat_end
);
5289 /* If the last insn is a jump, insert EXPR in front [taking care to
5290 handle cc0, etc. properly]. Similary we need to care trapping
5291 instructions in presence of non-call exceptions. */
5293 if (GET_CODE (insn
) == JUMP_INSN
5294 || (GET_CODE (insn
) == INSN
5295 && (bb
->succ
->succ_next
|| (bb
->succ
->flags
& EDGE_ABNORMAL
))))
5300 /* It should always be the case that we can put these instructions
5301 anywhere in the basic block with performing PRE optimizations.
5303 if (GET_CODE (insn
) == INSN
&& pre
5304 && !TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
5305 && !TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
))
5308 /* If this is a jump table, then we can't insert stuff here. Since
5309 we know the previous real insn must be the tablejump, we insert
5310 the new instruction just before the tablejump. */
5311 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
5312 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
5313 insn
= prev_real_insn (insn
);
5316 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
5317 if cc0 isn't set. */
5318 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
5320 insn
= XEXP (note
, 0);
5323 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
5324 if (maybe_cc0_setter
5325 && INSN_P (maybe_cc0_setter
)
5326 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
5327 insn
= maybe_cc0_setter
;
5330 /* FIXME: What if something in cc0/jump uses value set in new insn? */
5331 new_insn
= emit_insn_before (pat
, insn
);
5334 /* Likewise if the last insn is a call, as will happen in the presence
5335 of exception handling. */
5336 else if (GET_CODE (insn
) == CALL_INSN
5337 && (bb
->succ
->succ_next
|| (bb
->succ
->flags
& EDGE_ABNORMAL
)))
5339 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
5340 we search backward and place the instructions before the first
5341 parameter is loaded. Do this for everyone for consistency and a
5342 presumption that we'll get better code elsewhere as well.
5344 It should always be the case that we can put these instructions
5345 anywhere in the basic block with performing PRE optimizations.
5349 && !TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
5350 && !TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
))
5353 /* Since different machines initialize their parameter registers
5354 in different orders, assume nothing. Collect the set of all
5355 parameter registers. */
5356 insn
= find_first_parameter_load (insn
, bb
->head
);
5358 /* If we found all the parameter loads, then we want to insert
5359 before the first parameter load.
5361 If we did not find all the parameter loads, then we might have
5362 stopped on the head of the block, which could be a CODE_LABEL.
5363 If we inserted before the CODE_LABEL, then we would be putting
5364 the insn in the wrong basic block. In that case, put the insn
5365 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
5366 while (GET_CODE (insn
) == CODE_LABEL
5367 || NOTE_INSN_BASIC_BLOCK_P (insn
))
5368 insn
= NEXT_INSN (insn
);
5370 new_insn
= emit_insn_before (pat
, insn
);
5373 new_insn
= emit_insn_after (pat
, insn
);
5379 add_label_notes (PATTERN (pat
), new_insn
);
5380 note_stores (PATTERN (pat
), record_set_info
, pat
);
5384 pat
= NEXT_INSN (pat
);
5387 gcse_create_count
++;
5391 fprintf (gcse_file
, "PRE/HOIST: end of bb %d, insn %d, ",
5392 bb
->index
, INSN_UID (new_insn
));
5393 fprintf (gcse_file
, "copying expression %d to reg %d\n",
5394 expr
->bitmap_index
, regno
);
5398 /* Insert partially redundant expressions on edges in the CFG to make
5399 the expressions fully redundant. */
5402 pre_edge_insert (edge_list
, index_map
)
5403 struct edge_list
*edge_list
;
5404 struct expr
**index_map
;
5406 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
5409 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
5410 if it reaches any of the deleted expressions. */
5412 set_size
= pre_insert_map
[0]->size
;
5413 num_edges
= NUM_EDGES (edge_list
);
5414 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
5415 sbitmap_vector_zero (inserted
, num_edges
);
5417 for (e
= 0; e
< num_edges
; e
++)
5420 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
5422 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
5424 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
5426 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
5427 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
5429 struct expr
*expr
= index_map
[j
];
5432 /* Now look at each deleted occurrence of this expression. */
5433 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
5435 if (! occr
->deleted_p
)
5438 /* Insert this expression on this edge if if it would
5439 reach the deleted occurrence in BB. */
5440 if (!TEST_BIT (inserted
[e
], j
))
5443 edge eg
= INDEX_EDGE (edge_list
, e
);
5445 /* We can't insert anything on an abnormal and
5446 critical edge, so we insert the insn at the end of
5447 the previous block. There are several alternatives
5448 detailed in Morgans book P277 (sec 10.5) for
5449 handling this situation. This one is easiest for
5452 if ((eg
->flags
& EDGE_ABNORMAL
) == EDGE_ABNORMAL
)
5453 insert_insn_end_bb (index_map
[j
], bb
, 0);
5456 insn
= process_insert_insn (index_map
[j
]);
5457 insert_insn_on_edge (insn
, eg
);
5462 fprintf (gcse_file
, "PRE/HOIST: edge (%d,%d), ",
5464 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
5465 fprintf (gcse_file
, "copy expression %d\n",
5466 expr
->bitmap_index
);
5469 update_ld_motion_stores (expr
);
5470 SET_BIT (inserted
[e
], j
);
5472 gcse_create_count
++;
5479 sbitmap_vector_free (inserted
);
5483 /* Copy the result of INSN to REG. INDX is the expression number. */
5486 pre_insert_copy_insn (expr
, insn
)
5490 rtx reg
= expr
->reaching_reg
;
5491 int regno
= REGNO (reg
);
5492 int indx
= expr
->bitmap_index
;
5493 rtx set
= single_set (insn
);
5499 new_insn
= emit_insn_after (gen_move_insn (reg
, copy_rtx (SET_DEST (set
))), insn
);
5501 /* Keep register set table up to date. */
5502 record_one_set (regno
, new_insn
);
5504 gcse_create_count
++;
5508 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
5509 BLOCK_NUM (insn
), INSN_UID (new_insn
), indx
,
5510 INSN_UID (insn
), regno
);
5511 update_ld_motion_stores (expr
);
5514 /* Copy available expressions that reach the redundant expression
5515 to `reaching_reg'. */
5518 pre_insert_copies ()
5525 /* For each available expression in the table, copy the result to
5526 `reaching_reg' if the expression reaches a deleted one.
5528 ??? The current algorithm is rather brute force.
5529 Need to do some profiling. */
5531 for (i
= 0; i
< expr_hash_table
.size
; i
++)
5532 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
5534 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
5535 we don't want to insert a copy here because the expression may not
5536 really be redundant. So only insert an insn if the expression was
5537 deleted. This test also avoids further processing if the
5538 expression wasn't deleted anywhere. */
5539 if (expr
->reaching_reg
== NULL
)
5542 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
5544 if (! occr
->deleted_p
)
5547 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
5549 rtx insn
= avail
->insn
;
5551 /* No need to handle this one if handled already. */
5552 if (avail
->copied_p
)
5555 /* Don't handle this one if it's a redundant one. */
5556 if (TEST_BIT (pre_redundant_insns
, INSN_CUID (insn
)))
5559 /* Or if the expression doesn't reach the deleted one. */
5560 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
5562 BLOCK_FOR_INSN (occr
->insn
)))
5565 /* Copy the result of avail to reaching_reg. */
5566 pre_insert_copy_insn (expr
, insn
);
5567 avail
->copied_p
= 1;
5573 /* Emit move from SRC to DEST noting the equivalence with expression computed
5576 gcse_emit_move_after (src
, dest
, insn
)
5577 rtx src
, dest
, insn
;
5580 rtx set
= single_set (insn
), set2
;
5584 /* This should never fail since we're creating a reg->reg copy
5585 we've verified to be valid. */
5587 new = emit_insn_after (gen_move_insn (dest
, src
), insn
);
5589 /* Note the equivalence for local CSE pass. */
5590 set2
= single_set (new);
5591 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
5593 if ((note
= find_reg_equal_equiv_note (insn
)))
5594 eqv
= XEXP (note
, 0);
5596 eqv
= SET_SRC (set
);
5598 set_unique_reg_note (new, REG_EQUAL
, copy_insn_1 (eqv
));
5603 /* Delete redundant computations.
5604 Deletion is done by changing the insn to copy the `reaching_reg' of
5605 the expression into the result of the SET. It is left to later passes
5606 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5608 Returns nonzero if a change is made. */
5619 for (i
= 0; i
< expr_hash_table
.size
; i
++)
5620 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
5622 int indx
= expr
->bitmap_index
;
5624 /* We only need to search antic_occr since we require
5627 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
5629 rtx insn
= occr
->insn
;
5631 basic_block bb
= BLOCK_FOR_INSN (insn
);
5633 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
))
5635 set
= single_set (insn
);
5639 /* Create a pseudo-reg to store the result of reaching
5640 expressions into. Get the mode for the new pseudo from
5641 the mode of the original destination pseudo. */
5642 if (expr
->reaching_reg
== NULL
)
5644 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
5646 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
5648 occr
->deleted_p
= 1;
5649 SET_BIT (pre_redundant_insns
, INSN_CUID (insn
));
5656 "PRE: redundant insn %d (expression %d) in ",
5657 INSN_UID (insn
), indx
);
5658 fprintf (gcse_file
, "bb %d, reaching reg is %d\n",
5659 bb
->index
, REGNO (expr
->reaching_reg
));
5668 /* Perform GCSE optimizations using PRE.
5669 This is called by one_pre_gcse_pass after all the dataflow analysis
5672 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5673 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5674 Compiler Design and Implementation.
5676 ??? A new pseudo reg is created to hold the reaching expression. The nice
5677 thing about the classical approach is that it would try to use an existing
5678 reg. If the register can't be adequately optimized [i.e. we introduce
5679 reload problems], one could add a pass here to propagate the new register
5682 ??? We don't handle single sets in PARALLELs because we're [currently] not
5683 able to copy the rest of the parallel when we insert copies to create full
5684 redundancies from partial redundancies. However, there's no reason why we
5685 can't handle PARALLELs in the cases where there are no partial
5692 int did_insert
, changed
;
5693 struct expr
**index_map
;
5696 /* Compute a mapping from expression number (`bitmap_index') to
5697 hash table entry. */
5699 index_map
= (struct expr
**) xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
5700 for (i
= 0; i
< expr_hash_table
.size
; i
++)
5701 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
5702 index_map
[expr
->bitmap_index
] = expr
;
5704 /* Reset bitmap used to track which insns are redundant. */
5705 pre_redundant_insns
= sbitmap_alloc (max_cuid
);
5706 sbitmap_zero (pre_redundant_insns
);
5708 /* Delete the redundant insns first so that
5709 - we know what register to use for the new insns and for the other
5710 ones with reaching expressions
5711 - we know which insns are redundant when we go to create copies */
5713 changed
= pre_delete ();
5715 did_insert
= pre_edge_insert (edge_list
, index_map
);
5717 /* In other places with reaching expressions, copy the expression to the
5718 specially allocated pseudo-reg that reaches the redundant expr. */
5719 pre_insert_copies ();
5722 commit_edge_insertions ();
5727 sbitmap_free (pre_redundant_insns
);
5731 /* Top level routine to perform one PRE GCSE pass.
5733 Return nonzero if a change was made. */
5736 one_pre_gcse_pass (pass
)
5741 gcse_subst_count
= 0;
5742 gcse_create_count
= 0;
5744 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
5745 add_noreturn_fake_exit_edges ();
5747 compute_ld_motion_mems ();
5749 compute_hash_table (&expr_hash_table
);
5750 trim_ld_motion_mems ();
5752 dump_hash_table (gcse_file
, "Expression", &expr_hash_table
);
5754 if (expr_hash_table
.n_elems
> 0)
5756 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
5757 compute_pre_data ();
5758 changed
|= pre_gcse ();
5759 free_edge_list (edge_list
);
5764 remove_fake_edges ();
5765 free_hash_table (&expr_hash_table
);
5769 fprintf (gcse_file
, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5770 current_function_name
, pass
, bytes_used
);
5771 fprintf (gcse_file
, "%d substs, %d insns created\n",
5772 gcse_subst_count
, gcse_create_count
);
5778 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5779 If notes are added to an insn which references a CODE_LABEL, the
5780 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5781 because the following loop optimization pass requires them. */
5783 /* ??? This is very similar to the loop.c add_label_notes function. We
5784 could probably share code here. */
5786 /* ??? If there was a jump optimization pass after gcse and before loop,
5787 then we would not need to do this here, because jump would add the
5788 necessary REG_LABEL notes. */
5791 add_label_notes (x
, insn
)
5795 enum rtx_code code
= GET_CODE (x
);
5799 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
5801 /* This code used to ignore labels that referred to dispatch tables to
5802 avoid flow generating (slighly) worse code.
5804 We no longer ignore such label references (see LABEL_REF handling in
5805 mark_jump_label for additional information). */
5807 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, XEXP (x
, 0),
5809 if (LABEL_P (XEXP (x
, 0)))
5810 LABEL_NUSES (XEXP (x
, 0))++;
5814 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
5817 add_label_notes (XEXP (x
, i
), insn
);
5818 else if (fmt
[i
] == 'E')
5819 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5820 add_label_notes (XVECEXP (x
, i
, j
), insn
);
5824 /* Compute transparent outgoing information for each block.
5826 An expression is transparent to an edge unless it is killed by
5827 the edge itself. This can only happen with abnormal control flow,
5828 when the edge is traversed through a call. This happens with
5829 non-local labels and exceptions.
5831 This would not be necessary if we split the edge. While this is
5832 normally impossible for abnormal critical edges, with some effort
5833 it should be possible with exception handling, since we still have
5834 control over which handler should be invoked. But due to increased
5835 EH table sizes, this may not be worthwhile. */
5838 compute_transpout ()
5844 sbitmap_vector_ones (transpout
, last_basic_block
);
5848 /* Note that flow inserted a nop a the end of basic blocks that
5849 end in call instructions for reasons other than abnormal
5851 if (GET_CODE (bb
->end
) != CALL_INSN
)
5854 for (i
= 0; i
< expr_hash_table
.size
; i
++)
5855 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
5856 if (GET_CODE (expr
->expr
) == MEM
)
5858 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
5859 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
5862 /* ??? Optimally, we would use interprocedural alias
5863 analysis to determine if this mem is actually killed
5865 RESET_BIT (transpout
[bb
->index
], expr
->bitmap_index
);
5870 /* Removal of useless null pointer checks */
5872 /* Called via note_stores. X is set by SETTER. If X is a register we must
5873 invalidate nonnull_local and set nonnull_killed. DATA is really a
5874 `null_pointer_info *'.
5876 We ignore hard registers. */
5879 invalidate_nonnull_info (x
, setter
, data
)
5881 rtx setter ATTRIBUTE_UNUSED
;
5885 struct null_pointer_info
*npi
= (struct null_pointer_info
*) data
;
5887 while (GET_CODE (x
) == SUBREG
)
5890 /* Ignore anything that is not a register or is a hard register. */
5891 if (GET_CODE (x
) != REG
5892 || REGNO (x
) < npi
->min_reg
5893 || REGNO (x
) >= npi
->max_reg
)
5896 regno
= REGNO (x
) - npi
->min_reg
;
5898 RESET_BIT (npi
->nonnull_local
[npi
->current_block
->index
], regno
);
5899 SET_BIT (npi
->nonnull_killed
[npi
->current_block
->index
], regno
);
5902 /* Do null-pointer check elimination for the registers indicated in
5903 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5904 they are not our responsibility to free. */
5907 delete_null_pointer_checks_1 (block_reg
, nonnull_avin
,
5909 unsigned int *block_reg
;
5910 sbitmap
*nonnull_avin
;
5911 sbitmap
*nonnull_avout
;
5912 struct null_pointer_info
*npi
;
5914 basic_block bb
, current_block
;
5915 sbitmap
*nonnull_local
= npi
->nonnull_local
;
5916 sbitmap
*nonnull_killed
= npi
->nonnull_killed
;
5917 int something_changed
= 0;
5919 /* Compute local properties, nonnull and killed. A register will have
5920 the nonnull property if at the end of the current block its value is
5921 known to be nonnull. The killed property indicates that somewhere in
5922 the block any information we had about the register is killed.
5924 Note that a register can have both properties in a single block. That
5925 indicates that it's killed, then later in the block a new value is
5927 sbitmap_vector_zero (nonnull_local
, last_basic_block
);
5928 sbitmap_vector_zero (nonnull_killed
, last_basic_block
);
5930 FOR_EACH_BB (current_block
)
5932 rtx insn
, stop_insn
;
5934 /* Set the current block for invalidate_nonnull_info. */
5935 npi
->current_block
= current_block
;
5937 /* Scan each insn in the basic block looking for memory references and
5939 stop_insn
= NEXT_INSN (current_block
->end
);
5940 for (insn
= current_block
->head
;
5942 insn
= NEXT_INSN (insn
))
5947 /* Ignore anything that is not a normal insn. */
5948 if (! INSN_P (insn
))
5951 /* Basically ignore anything that is not a simple SET. We do have
5952 to make sure to invalidate nonnull_local and set nonnull_killed
5953 for such insns though. */
5954 set
= single_set (insn
);
5957 note_stores (PATTERN (insn
), invalidate_nonnull_info
, npi
);
5961 /* See if we've got a usable memory load. We handle it first
5962 in case it uses its address register as a dest (which kills
5963 the nonnull property). */
5964 if (GET_CODE (SET_SRC (set
)) == MEM
5965 && GET_CODE ((reg
= XEXP (SET_SRC (set
), 0))) == REG
5966 && REGNO (reg
) >= npi
->min_reg
5967 && REGNO (reg
) < npi
->max_reg
)
5968 SET_BIT (nonnull_local
[current_block
->index
],
5969 REGNO (reg
) - npi
->min_reg
);
5971 /* Now invalidate stuff clobbered by this insn. */
5972 note_stores (PATTERN (insn
), invalidate_nonnull_info
, npi
);
5974 /* And handle stores, we do these last since any sets in INSN can
5975 not kill the nonnull property if it is derived from a MEM
5976 appearing in a SET_DEST. */
5977 if (GET_CODE (SET_DEST (set
)) == MEM
5978 && GET_CODE ((reg
= XEXP (SET_DEST (set
), 0))) == REG
5979 && REGNO (reg
) >= npi
->min_reg
5980 && REGNO (reg
) < npi
->max_reg
)
5981 SET_BIT (nonnull_local
[current_block
->index
],
5982 REGNO (reg
) - npi
->min_reg
);
5986 /* Now compute global properties based on the local properties. This
5987 is a classic global availability algorithm. */
5988 compute_available (nonnull_local
, nonnull_killed
,
5989 nonnull_avout
, nonnull_avin
);
5991 /* Now look at each bb and see if it ends with a compare of a value
5995 rtx last_insn
= bb
->end
;
5996 rtx condition
, earliest
;
5997 int compare_and_branch
;
5999 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
6000 since BLOCK_REG[BB] is zero if this block did not end with a
6001 comparison against zero, this condition works. */
6002 if (block_reg
[bb
->index
] < npi
->min_reg
6003 || block_reg
[bb
->index
] >= npi
->max_reg
)
6006 /* LAST_INSN is a conditional jump. Get its condition. */
6007 condition
= get_condition (last_insn
, &earliest
);
6009 /* If we can't determine the condition then skip. */
6013 /* Is the register known to have a nonzero value? */
6014 if (!TEST_BIT (nonnull_avout
[bb
->index
], block_reg
[bb
->index
] - npi
->min_reg
))
6017 /* Try to compute whether the compare/branch at the loop end is one or
6018 two instructions. */
6019 if (earliest
== last_insn
)
6020 compare_and_branch
= 1;
6021 else if (earliest
== prev_nonnote_insn (last_insn
))
6022 compare_and_branch
= 2;
6026 /* We know the register in this comparison is nonnull at exit from
6027 this block. We can optimize this comparison. */
6028 if (GET_CODE (condition
) == NE
)
6032 new_jump
= emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn
)),
6034 JUMP_LABEL (new_jump
) = JUMP_LABEL (last_insn
);
6035 LABEL_NUSES (JUMP_LABEL (new_jump
))++;
6036 emit_barrier_after (new_jump
);
6039 something_changed
= 1;
6040 delete_insn (last_insn
);
6041 if (compare_and_branch
== 2)
6042 delete_insn (earliest
);
6043 purge_dead_edges (bb
);
6045 /* Don't check this block again. (Note that BLOCK_END is
6046 invalid here; we deleted the last instruction in the
6048 block_reg
[bb
->index
] = 0;
6051 return something_changed
;
6054 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
6057 This is conceptually similar to global constant/copy propagation and
6058 classic global CSE (it even uses the same dataflow equations as cprop).
6060 If a register is used as memory address with the form (mem (reg)), then we
6061 know that REG can not be zero at that point in the program. Any instruction
6062 which sets REG "kills" this property.
6064 So, if every path leading to a conditional branch has an available memory
6065 reference of that form, then we know the register can not have the value
6066 zero at the conditional branch.
6068 So we merely need to compute the local properties and propagate that data
6069 around the cfg, then optimize where possible.
6071 We run this pass two times. Once before CSE, then again after CSE. This
6072 has proven to be the most profitable approach. It is rare for new
6073 optimization opportunities of this nature to appear after the first CSE
6076 This could probably be integrated with global cprop with a little work. */
6079 delete_null_pointer_checks (f
)
6080 rtx f ATTRIBUTE_UNUSED
;
6082 sbitmap
*nonnull_avin
, *nonnull_avout
;
6083 unsigned int *block_reg
;
6088 struct null_pointer_info npi
;
6089 int something_changed
= 0;
6091 /* If we have only a single block, then there's nothing to do. */
6092 if (n_basic_blocks
<= 1)
6095 /* Trying to perform global optimizations on flow graphs which have
6096 a high connectivity will take a long time and is unlikely to be
6097 particularly useful.
6099 In normal circumstances a cfg should have about twice as many edges
6100 as blocks. But we do not want to punish small functions which have
6101 a couple switch statements. So we require a relatively large number
6102 of basic blocks and the ratio of edges to blocks to be high. */
6103 if (n_basic_blocks
> 1000 && n_edges
/ n_basic_blocks
>= 20)
6106 /* We need four bitmaps, each with a bit for each register in each
6108 max_reg
= max_reg_num ();
6109 regs_per_pass
= get_bitmap_width (4, last_basic_block
, max_reg
);
6111 /* Allocate bitmaps to hold local and global properties. */
6112 npi
.nonnull_local
= sbitmap_vector_alloc (last_basic_block
, regs_per_pass
);
6113 npi
.nonnull_killed
= sbitmap_vector_alloc (last_basic_block
, regs_per_pass
);
6114 nonnull_avin
= sbitmap_vector_alloc (last_basic_block
, regs_per_pass
);
6115 nonnull_avout
= sbitmap_vector_alloc (last_basic_block
, regs_per_pass
);
6117 /* Go through the basic blocks, seeing whether or not each block
6118 ends with a conditional branch whose condition is a comparison
6119 against zero. Record the register compared in BLOCK_REG. */
6120 block_reg
= (unsigned int *) xcalloc (last_basic_block
, sizeof (int));
6123 rtx last_insn
= bb
->end
;
6124 rtx condition
, earliest
, reg
;
6126 /* We only want conditional branches. */
6127 if (GET_CODE (last_insn
) != JUMP_INSN
6128 || !any_condjump_p (last_insn
)
6129 || !onlyjump_p (last_insn
))
6132 /* LAST_INSN is a conditional jump. Get its condition. */
6133 condition
= get_condition (last_insn
, &earliest
);
6135 /* If we were unable to get the condition, or it is not an equality
6136 comparison against zero then there's nothing we can do. */
6138 || (GET_CODE (condition
) != NE
&& GET_CODE (condition
) != EQ
)
6139 || GET_CODE (XEXP (condition
, 1)) != CONST_INT
6140 || (XEXP (condition
, 1)
6141 != CONST0_RTX (GET_MODE (XEXP (condition
, 0)))))
6144 /* We must be checking a register against zero. */
6145 reg
= XEXP (condition
, 0);
6146 if (GET_CODE (reg
) != REG
)
6149 block_reg
[bb
->index
] = REGNO (reg
);
6152 /* Go through the algorithm for each block of registers. */
6153 for (reg
= FIRST_PSEUDO_REGISTER
; reg
< max_reg
; reg
+= regs_per_pass
)
6156 npi
.max_reg
= MIN (reg
+ regs_per_pass
, max_reg
);
6157 something_changed
|= delete_null_pointer_checks_1 (block_reg
,
6163 /* Free the table of registers compared at the end of every block. */
6167 sbitmap_vector_free (npi
.nonnull_local
);
6168 sbitmap_vector_free (npi
.nonnull_killed
);
6169 sbitmap_vector_free (nonnull_avin
);
6170 sbitmap_vector_free (nonnull_avout
);
6172 return something_changed
;
6175 /* Code Hoisting variables and subroutines. */
6177 /* Very busy expressions. */
6178 static sbitmap
*hoist_vbein
;
6179 static sbitmap
*hoist_vbeout
;
6181 /* Hoistable expressions. */
6182 static sbitmap
*hoist_exprs
;
6184 /* Dominator bitmaps. */
6185 dominance_info dominators
;
6187 /* ??? We could compute post dominators and run this algorithm in
6188 reverse to perform tail merging, doing so would probably be
6189 more effective than the tail merging code in jump.c.
6191 It's unclear if tail merging could be run in parallel with
6192 code hoisting. It would be nice. */
6194 /* Allocate vars used for code hoisting analysis. */
6197 alloc_code_hoist_mem (n_blocks
, n_exprs
)
6198 int n_blocks
, n_exprs
;
6200 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6201 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6202 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6204 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6205 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6206 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6207 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6210 /* Free vars used for code hoisting analysis. */
6213 free_code_hoist_mem ()
6215 sbitmap_vector_free (antloc
);
6216 sbitmap_vector_free (transp
);
6217 sbitmap_vector_free (comp
);
6219 sbitmap_vector_free (hoist_vbein
);
6220 sbitmap_vector_free (hoist_vbeout
);
6221 sbitmap_vector_free (hoist_exprs
);
6222 sbitmap_vector_free (transpout
);
6224 free_dominance_info (dominators
);
6227 /* Compute the very busy expressions at entry/exit from each block.
6229 An expression is very busy if all paths from a given point
6230 compute the expression. */
6233 compute_code_hoist_vbeinout ()
6235 int changed
, passes
;
6238 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
6239 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
6248 /* We scan the blocks in the reverse order to speed up
6250 FOR_EACH_BB_REVERSE (bb
)
6252 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
], antloc
[bb
->index
],
6253 hoist_vbeout
[bb
->index
], transp
[bb
->index
]);
6254 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
6255 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
], hoist_vbein
, bb
->index
);
6262 fprintf (gcse_file
, "hoisting vbeinout computation: %d passes\n", passes
);
6265 /* Top level routine to do the dataflow analysis needed by code hoisting. */
6268 compute_code_hoist_data ()
6270 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
6271 compute_transpout ();
6272 compute_code_hoist_vbeinout ();
6273 dominators
= calculate_dominance_info (CDI_DOMINATORS
);
6275 fprintf (gcse_file
, "\n");
6278 /* Determine if the expression identified by EXPR_INDEX would
6279 reach BB unimpared if it was placed at the end of EXPR_BB.
6281 It's unclear exactly what Muchnick meant by "unimpared". It seems
6282 to me that the expression must either be computed or transparent in
6283 *every* block in the path(s) from EXPR_BB to BB. Any other definition
6284 would allow the expression to be hoisted out of loops, even if
6285 the expression wasn't a loop invariant.
6287 Contrast this to reachability for PRE where an expression is
6288 considered reachable if *any* path reaches instead of *all*
6292 hoist_expr_reaches_here_p (expr_bb
, expr_index
, bb
, visited
)
6293 basic_block expr_bb
;
6299 int visited_allocated_locally
= 0;
6302 if (visited
== NULL
)
6304 visited_allocated_locally
= 1;
6305 visited
= xcalloc (last_basic_block
, 1);
6308 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
6310 basic_block pred_bb
= pred
->src
;
6312 if (pred
->src
== ENTRY_BLOCK_PTR
)
6314 else if (pred_bb
== expr_bb
)
6316 else if (visited
[pred_bb
->index
])
6319 /* Does this predecessor generate this expression? */
6320 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
6322 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
6328 visited
[pred_bb
->index
] = 1;
6329 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
6334 if (visited_allocated_locally
)
6337 return (pred
== NULL
);
6340 /* Actually perform code hoisting. */
6345 basic_block bb
, dominated
;
6347 unsigned int domby_len
;
6349 struct expr
**index_map
;
6352 sbitmap_vector_zero (hoist_exprs
, last_basic_block
);
6354 /* Compute a mapping from expression number (`bitmap_index') to
6355 hash table entry. */
6357 index_map
= (struct expr
**) xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
6358 for (i
= 0; i
< expr_hash_table
.size
; i
++)
6359 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
6360 index_map
[expr
->bitmap_index
] = expr
;
6362 /* Walk over each basic block looking for potentially hoistable
6363 expressions, nothing gets hoisted from the entry block. */
6367 int insn_inserted_p
;
6369 domby_len
= get_dominated_by (dominators
, bb
, &domby
);
6370 /* Examine each expression that is very busy at the exit of this
6371 block. These are the potentially hoistable expressions. */
6372 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
6376 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
)
6377 && TEST_BIT (transpout
[bb
->index
], i
))
6379 /* We've found a potentially hoistable expression, now
6380 we look at every block BB dominates to see if it
6381 computes the expression. */
6382 for (j
= 0; j
< domby_len
; j
++)
6384 dominated
= domby
[j
];
6385 /* Ignore self dominance. */
6386 if (bb
== dominated
)
6388 /* We've found a dominated block, now see if it computes
6389 the busy expression and whether or not moving that
6390 expression to the "beginning" of that block is safe. */
6391 if (!TEST_BIT (antloc
[dominated
->index
], i
))
6394 /* Note if the expression would reach the dominated block
6395 unimpared if it was placed at the end of BB.
6397 Keep track of how many times this expression is hoistable
6398 from a dominated block into BB. */
6399 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
6403 /* If we found more than one hoistable occurrence of this
6404 expression, then note it in the bitmap of expressions to
6405 hoist. It makes no sense to hoist things which are computed
6406 in only one BB, and doing so tends to pessimize register
6407 allocation. One could increase this value to try harder
6408 to avoid any possible code expansion due to register
6409 allocation issues; however experiments have shown that
6410 the vast majority of hoistable expressions are only movable
6411 from two successors, so raising this threshhold is likely
6412 to nullify any benefit we get from code hoisting. */
6415 SET_BIT (hoist_exprs
[bb
->index
], i
);
6420 /* If we found nothing to hoist, then quit now. */
6427 /* Loop over all the hoistable expressions. */
6428 for (i
= 0; i
< hoist_exprs
[bb
->index
]->n_bits
; i
++)
6430 /* We want to insert the expression into BB only once, so
6431 note when we've inserted it. */
6432 insn_inserted_p
= 0;
6434 /* These tests should be the same as the tests above. */
6435 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
))
6437 /* We've found a potentially hoistable expression, now
6438 we look at every block BB dominates to see if it
6439 computes the expression. */
6440 for (j
= 0; j
< domby_len
; j
++)
6442 dominated
= domby
[j
];
6443 /* Ignore self dominance. */
6444 if (bb
== dominated
)
6447 /* We've found a dominated block, now see if it computes
6448 the busy expression and whether or not moving that
6449 expression to the "beginning" of that block is safe. */
6450 if (!TEST_BIT (antloc
[dominated
->index
], i
))
6453 /* The expression is computed in the dominated block and
6454 it would be safe to compute it at the start of the
6455 dominated block. Now we have to determine if the
6456 expression would reach the dominated block if it was
6457 placed at the end of BB. */
6458 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
6460 struct expr
*expr
= index_map
[i
];
6461 struct occr
*occr
= expr
->antic_occr
;
6465 /* Find the right occurrence of this expression. */
6466 while (BLOCK_FOR_INSN (occr
->insn
) != dominated
&& occr
)
6469 /* Should never happen. */
6475 set
= single_set (insn
);
6479 /* Create a pseudo-reg to store the result of reaching
6480 expressions into. Get the mode for the new pseudo
6481 from the mode of the original destination pseudo. */
6482 if (expr
->reaching_reg
== NULL
)
6484 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
6486 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
6488 occr
->deleted_p
= 1;
6489 if (!insn_inserted_p
)
6491 insert_insn_end_bb (index_map
[i
], bb
, 0);
6492 insn_inserted_p
= 1;
6504 /* Top level routine to perform one code hoisting (aka unification) pass
6506 Return nonzero if a change was made. */
6509 one_code_hoisting_pass ()
6513 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
6514 compute_hash_table (&expr_hash_table
);
6516 dump_hash_table (gcse_file
, "Code Hosting Expressions", &expr_hash_table
);
6518 if (expr_hash_table
.n_elems
> 0)
6520 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
6521 compute_code_hoist_data ();
6523 free_code_hoist_mem ();
6526 free_hash_table (&expr_hash_table
);
6531 /* Here we provide the things required to do store motion towards
6532 the exit. In order for this to be effective, gcse also needed to
6533 be taught how to move a load when it is kill only by a store to itself.
6538 void foo(float scale)
6540 for (i=0; i<10; i++)
6544 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
6545 the load out since its live around the loop, and stored at the bottom
6548 The 'Load Motion' referred to and implemented in this file is
6549 an enhancement to gcse which when using edge based lcm, recognizes
6550 this situation and allows gcse to move the load out of the loop.
6552 Once gcse has hoisted the load, store motion can then push this
6553 load towards the exit, and we end up with no loads or stores of 'i'
6556 /* This will search the ldst list for a matching expression. If it
6557 doesn't find one, we create one and initialize it. */
6559 static struct ls_expr
*
6563 struct ls_expr
* ptr
;
6565 for (ptr
= first_ls_expr(); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6566 if (expr_equiv_p (ptr
->pattern
, x
))
6571 ptr
= (struct ls_expr
*) xmalloc (sizeof (struct ls_expr
));
6573 ptr
->next
= pre_ldst_mems
;
6576 ptr
->pattern_regs
= NULL_RTX
;
6577 ptr
->loads
= NULL_RTX
;
6578 ptr
->stores
= NULL_RTX
;
6579 ptr
->reaching_reg
= NULL_RTX
;
6582 ptr
->hash_index
= 0;
6583 pre_ldst_mems
= ptr
;
6589 /* Free up an individual ldst entry. */
6592 free_ldst_entry (ptr
)
6593 struct ls_expr
* ptr
;
6595 free_INSN_LIST_list (& ptr
->loads
);
6596 free_INSN_LIST_list (& ptr
->stores
);
6601 /* Free up all memory associated with the ldst list. */
6606 while (pre_ldst_mems
)
6608 struct ls_expr
* tmp
= pre_ldst_mems
;
6610 pre_ldst_mems
= pre_ldst_mems
->next
;
6612 free_ldst_entry (tmp
);
6615 pre_ldst_mems
= NULL
;
6618 /* Dump debugging info about the ldst list. */
6621 print_ldst_list (file
)
6624 struct ls_expr
* ptr
;
6626 fprintf (file
, "LDST list: \n");
6628 for (ptr
= first_ls_expr(); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6630 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
6632 print_rtl (file
, ptr
->pattern
);
6634 fprintf (file
, "\n Loads : ");
6637 print_rtl (file
, ptr
->loads
);
6639 fprintf (file
, "(nil)");
6641 fprintf (file
, "\n Stores : ");
6644 print_rtl (file
, ptr
->stores
);
6646 fprintf (file
, "(nil)");
6648 fprintf (file
, "\n\n");
6651 fprintf (file
, "\n");
6654 /* Returns 1 if X is in the list of ldst only expressions. */
6656 static struct ls_expr
*
6657 find_rtx_in_ldst (x
)
6660 struct ls_expr
* ptr
;
6662 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
6663 if (expr_equiv_p (ptr
->pattern
, x
) && ! ptr
->invalid
)
6669 /* Assign each element of the list of mems a monotonically increasing value. */
6674 struct ls_expr
* ptr
;
6677 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
6683 /* Return first item in the list. */
6685 static inline struct ls_expr
*
6688 return pre_ldst_mems
;
6691 /* Return the next item in ther list after the specified one. */
6693 static inline struct ls_expr
*
6695 struct ls_expr
* ptr
;
6700 /* Load Motion for loads which only kill themselves. */
6702 /* Return true if x is a simple MEM operation, with no registers or
6703 side effects. These are the types of loads we consider for the
6704 ld_motion list, otherwise we let the usual aliasing take care of it. */
6710 if (GET_CODE (x
) != MEM
)
6713 if (MEM_VOLATILE_P (x
))
6716 if (GET_MODE (x
) == BLKmode
)
6719 /* If we are handling exceptions, we must be careful with memory references
6720 that may trap. If we are not, the behavior is undefined, so we may just
6722 if (flag_non_call_exceptions
&& may_trap_p (x
))
6725 if (side_effects_p (x
))
6728 /* Do not consider function arguments passed on stack. */
6729 if (reg_mentioned_p (stack_pointer_rtx
, x
))
6732 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
6738 /* Make sure there isn't a buried reference in this pattern anywhere.
6739 If there is, invalidate the entry for it since we're not capable
6740 of fixing it up just yet.. We have to be sure we know about ALL
6741 loads since the aliasing code will allow all entries in the
6742 ld_motion list to not-alias itself. If we miss a load, we will get
6743 the wrong value since gcse might common it and we won't know to
6747 invalidate_any_buried_refs (x
)
6752 struct ls_expr
* ptr
;
6754 /* Invalidate it in the list. */
6755 if (GET_CODE (x
) == MEM
&& simple_mem (x
))
6757 ptr
= ldst_entry (x
);
6761 /* Recursively process the insn. */
6762 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
6764 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
6767 invalidate_any_buried_refs (XEXP (x
, i
));
6768 else if (fmt
[i
] == 'E')
6769 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
6770 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
6774 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6775 being defined as MEM loads and stores to symbols, with no
6776 side effects and no registers in the expression. If there are any
6777 uses/defs which don't match this criteria, it is invalidated and
6778 trimmed out later. */
6781 compute_ld_motion_mems ()
6783 struct ls_expr
* ptr
;
6787 pre_ldst_mems
= NULL
;
6791 for (insn
= bb
->head
;
6792 insn
&& insn
!= NEXT_INSN (bb
->end
);
6793 insn
= NEXT_INSN (insn
))
6795 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
6797 if (GET_CODE (PATTERN (insn
)) == SET
)
6799 rtx src
= SET_SRC (PATTERN (insn
));
6800 rtx dest
= SET_DEST (PATTERN (insn
));
6802 /* Check for a simple LOAD... */
6803 if (GET_CODE (src
) == MEM
&& simple_mem (src
))
6805 ptr
= ldst_entry (src
);
6806 if (GET_CODE (dest
) == REG
)
6807 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
6813 /* Make sure there isn't a buried load somewhere. */
6814 invalidate_any_buried_refs (src
);
6817 /* Check for stores. Don't worry about aliased ones, they
6818 will block any movement we might do later. We only care
6819 about this exact pattern since those are the only
6820 circumstance that we will ignore the aliasing info. */
6821 if (GET_CODE (dest
) == MEM
&& simple_mem (dest
))
6823 ptr
= ldst_entry (dest
);
6825 if (GET_CODE (src
) != MEM
6826 && GET_CODE (src
) != ASM_OPERANDS
)
6827 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
6833 invalidate_any_buried_refs (PATTERN (insn
));
6839 /* Remove any references that have been either invalidated or are not in the
6840 expression list for pre gcse. */
6843 trim_ld_motion_mems ()
6845 struct ls_expr
* last
= NULL
;
6846 struct ls_expr
* ptr
= first_ls_expr ();
6850 int del
= ptr
->invalid
;
6851 struct expr
* expr
= NULL
;
6853 /* Delete if entry has been made invalid. */
6859 /* Delete if we cannot find this mem in the expression list. */
6860 for (i
= 0; i
< expr_hash_table
.size
&& del
; i
++)
6862 for (expr
= expr_hash_table
.table
[i
];
6864 expr
= expr
->next_same_hash
)
6865 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
6877 last
->next
= ptr
->next
;
6878 free_ldst_entry (ptr
);
6883 pre_ldst_mems
= pre_ldst_mems
->next
;
6884 free_ldst_entry (ptr
);
6885 ptr
= pre_ldst_mems
;
6890 /* Set the expression field if we are keeping it. */
6897 /* Show the world what we've found. */
6898 if (gcse_file
&& pre_ldst_mems
!= NULL
)
6899 print_ldst_list (gcse_file
);
6902 /* This routine will take an expression which we are replacing with
6903 a reaching register, and update any stores that are needed if
6904 that expression is in the ld_motion list. Stores are updated by
6905 copying their SRC to the reaching register, and then storeing
6906 the reaching register into the store location. These keeps the
6907 correct value in the reaching register for the loads. */
6910 update_ld_motion_stores (expr
)
6913 struct ls_expr
* mem_ptr
;
6915 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
6917 /* We can try to find just the REACHED stores, but is shouldn't
6918 matter to set the reaching reg everywhere... some might be
6919 dead and should be eliminated later. */
6921 /* We replace SET mem = expr with
6923 SET mem = reg , where reg is the
6924 reaching reg used in the load. */
6925 rtx list
= mem_ptr
->stores
;
6927 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
6929 rtx insn
= XEXP (list
, 0);
6930 rtx pat
= PATTERN (insn
);
6931 rtx src
= SET_SRC (pat
);
6932 rtx reg
= expr
->reaching_reg
;
6935 /* If we've already copied it, continue. */
6936 if (expr
->reaching_reg
== src
)
6941 fprintf (gcse_file
, "PRE: store updated with reaching reg ");
6942 print_rtl (gcse_file
, expr
->reaching_reg
);
6943 fprintf (gcse_file
, ":\n ");
6944 print_inline_rtx (gcse_file
, insn
, 8);
6945 fprintf (gcse_file
, "\n");
6948 copy
= gen_move_insn ( reg
, copy_rtx (SET_SRC (pat
)));
6949 new = emit_insn_before (copy
, insn
);
6950 record_one_set (REGNO (reg
), new);
6951 SET_SRC (pat
) = reg
;
6953 /* un-recognize this pattern since it's probably different now. */
6954 INSN_CODE (insn
) = -1;
6955 gcse_create_count
++;
6960 /* Store motion code. */
6962 #define ANTIC_STORE_LIST(x) ((x)->loads)
6963 #define AVAIL_STORE_LIST(x) ((x)->stores)
6964 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
6966 /* This is used to communicate the target bitvector we want to use in the
6967 reg_set_info routine when called via the note_stores mechanism. */
6968 static int * regvec
;
6970 /* And current insn, for the same routine. */
6971 static rtx compute_store_table_current_insn
;
6973 /* Used in computing the reverse edge graph bit vectors. */
6974 static sbitmap
* st_antloc
;
6976 /* Global holding the number of store expressions we are dealing with. */
6977 static int num_stores
;
6979 /* Checks to set if we need to mark a register set. Called from note_stores. */
6982 reg_set_info (dest
, setter
, data
)
6983 rtx dest
, setter ATTRIBUTE_UNUSED
;
6984 void * data ATTRIBUTE_UNUSED
;
6986 if (GET_CODE (dest
) == SUBREG
)
6987 dest
= SUBREG_REG (dest
);
6989 if (GET_CODE (dest
) == REG
)
6990 regvec
[REGNO (dest
)] = INSN_UID (compute_store_table_current_insn
);
6993 /* Return zero if some of the registers in list X are killed
6994 due to set of registers in bitmap REGS_SET. */
6997 store_ops_ok (x
, regs_set
)
7003 for (; x
; x
= XEXP (x
, 1))
7006 if (regs_set
[REGNO(reg
)])
7013 /* Returns a list of registers mentioned in X. */
7015 extract_mentioned_regs (x
)
7018 return extract_mentioned_regs_helper (x
, NULL_RTX
);
7021 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
7024 extract_mentioned_regs_helper (x
, accum
)
7032 /* Repeat is used to turn tail-recursion into iteration. */
7038 code
= GET_CODE (x
);
7042 return alloc_EXPR_LIST (0, x
, accum
);
7052 /* We do not run this function with arguments having side effects. */
7071 i
= GET_RTX_LENGTH (code
) - 1;
7072 fmt
= GET_RTX_FORMAT (code
);
7078 rtx tem
= XEXP (x
, i
);
7080 /* If we are about to do the last recursive call
7081 needed at this level, change it into iteration. */
7088 accum
= extract_mentioned_regs_helper (tem
, accum
);
7090 else if (fmt
[i
] == 'E')
7094 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
7095 accum
= extract_mentioned_regs_helper (XVECEXP (x
, i
, j
), accum
);
7102 /* Determine whether INSN is MEM store pattern that we will consider moving.
7103 REGS_SET_BEFORE is bitmap of registers set before (and including) the
7104 current insn, REGS_SET_AFTER is bitmap of registers set after (and
7105 including) the insn in this basic block. We must be passing through BB from
7106 head to end, as we are using this fact to speed things up.
7108 The results are stored this way:
7110 -- the first anticipatable expression is added into ANTIC_STORE_LIST
7111 -- if the processed expression is not anticipatable, NULL_RTX is added
7112 there instead, so that we can use it as indicator that no further
7113 expression of this type may be anticipatable
7114 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
7115 consequently, all of them but this head are dead and may be deleted.
7116 -- if the expression is not available, the insn due to that it fails to be
7117 available is stored in reaching_reg.
7119 The things are complicated a bit by fact that there already may be stores
7120 to the same MEM from other blocks; also caller must take care of the
7121 neccessary cleanup of the temporary markers after end of the basic block.
7125 find_moveable_store (insn
, regs_set_before
, regs_set_after
)
7127 int *regs_set_before
;
7128 int *regs_set_after
;
7130 struct ls_expr
* ptr
;
7132 int check_anticipatable
, check_available
;
7133 basic_block bb
= BLOCK_FOR_INSN (insn
);
7135 set
= single_set (insn
);
7139 dest
= SET_DEST (set
);
7141 if (GET_CODE (dest
) != MEM
|| MEM_VOLATILE_P (dest
)
7142 || GET_MODE (dest
) == BLKmode
)
7145 if (side_effects_p (dest
))
7148 /* If we are handling exceptions, we must be careful with memory references
7149 that may trap. If we are not, the behavior is undefined, so we may just
7151 if (flag_non_call_exceptions
&& may_trap_p (dest
))
7154 ptr
= ldst_entry (dest
);
7155 if (!ptr
->pattern_regs
)
7156 ptr
->pattern_regs
= extract_mentioned_regs (dest
);
7158 /* Do not check for anticipatability if we either found one anticipatable
7159 store already, or tested for one and found out that it was killed. */
7160 check_anticipatable
= 0;
7161 if (!ANTIC_STORE_LIST (ptr
))
7162 check_anticipatable
= 1;
7165 tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0);
7167 && BLOCK_FOR_INSN (tmp
) != bb
)
7168 check_anticipatable
= 1;
7170 if (check_anticipatable
)
7172 if (store_killed_before (dest
, ptr
->pattern_regs
, insn
, bb
, regs_set_before
))
7176 ANTIC_STORE_LIST (ptr
) = alloc_INSN_LIST (tmp
,
7177 ANTIC_STORE_LIST (ptr
));
7180 /* It is not neccessary to check whether store is available if we did
7181 it successfully before; if we failed before, do not bother to check
7182 until we reach the insn that caused us to fail. */
7183 check_available
= 0;
7184 if (!AVAIL_STORE_LIST (ptr
))
7185 check_available
= 1;
7188 tmp
= XEXP (AVAIL_STORE_LIST (ptr
), 0);
7189 if (BLOCK_FOR_INSN (tmp
) != bb
)
7190 check_available
= 1;
7192 if (check_available
)
7194 /* Check that we have already reached the insn at that the check
7195 failed last time. */
7196 if (LAST_AVAIL_CHECK_FAILURE (ptr
))
7199 tmp
!= insn
&& tmp
!= LAST_AVAIL_CHECK_FAILURE (ptr
);
7200 tmp
= PREV_INSN (tmp
))
7203 check_available
= 0;
7206 check_available
= store_killed_after (dest
, ptr
->pattern_regs
, insn
,
7208 &LAST_AVAIL_CHECK_FAILURE (ptr
));
7210 if (!check_available
)
7211 AVAIL_STORE_LIST (ptr
) = alloc_INSN_LIST (insn
, AVAIL_STORE_LIST (ptr
));
7214 /* Find available and anticipatable stores. */
7217 compute_store_table ()
7223 int *last_set_in
, *already_set
;
7224 struct ls_expr
* ptr
, **prev_next_ptr_ptr
;
7226 max_gcse_regno
= max_reg_num ();
7228 reg_set_in_block
= (sbitmap
*) sbitmap_vector_alloc (last_basic_block
,
7230 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
7232 last_set_in
= xmalloc (sizeof (int) * max_gcse_regno
);
7233 already_set
= xmalloc (sizeof (int) * max_gcse_regno
);
7235 /* Find all the stores we care about. */
7238 /* First compute the registers set in this block. */
7239 memset (last_set_in
, 0, sizeof (int) * max_gcse_regno
);
7240 regvec
= last_set_in
;
7242 for (insn
= bb
->head
;
7243 insn
!= NEXT_INSN (bb
->end
);
7244 insn
= NEXT_INSN (insn
))
7246 if (! INSN_P (insn
))
7249 if (GET_CODE (insn
) == CALL_INSN
)
7251 bool clobbers_all
= false;
7252 #ifdef NON_SAVING_SETJMP
7253 if (NON_SAVING_SETJMP
7254 && find_reg_note (insn
, REG_SETJMP
, NULL_RTX
))
7255 clobbers_all
= true;
7258 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
7260 || TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
7261 last_set_in
[regno
] = INSN_UID (insn
);
7264 pat
= PATTERN (insn
);
7265 compute_store_table_current_insn
= insn
;
7266 note_stores (pat
, reg_set_info
, NULL
);
7269 /* Record the set registers. */
7270 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
7271 if (last_set_in
[regno
])
7272 SET_BIT (reg_set_in_block
[bb
->index
], regno
);
7274 /* Now find the stores. */
7275 memset (already_set
, 0, sizeof (int) * max_gcse_regno
);
7276 regvec
= already_set
;
7277 for (insn
= bb
->head
;
7278 insn
!= NEXT_INSN (bb
->end
);
7279 insn
= NEXT_INSN (insn
))
7281 if (! INSN_P (insn
))
7284 if (GET_CODE (insn
) == CALL_INSN
)
7286 bool clobbers_all
= false;
7287 #ifdef NON_SAVING_SETJMP
7288 if (NON_SAVING_SETJMP
7289 && find_reg_note (insn
, REG_SETJMP
, NULL_RTX
))
7290 clobbers_all
= true;
7293 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
7295 || TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
7296 already_set
[regno
] = 1;
7299 pat
= PATTERN (insn
);
7300 note_stores (pat
, reg_set_info
, NULL
);
7302 /* Now that we've marked regs, look for stores. */
7303 find_moveable_store (insn
, already_set
, last_set_in
);
7305 /* Unmark regs that are no longer set. */
7306 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
7307 if (last_set_in
[regno
] == INSN_UID (insn
))
7308 last_set_in
[regno
] = 0;
7311 /* Clear temporary marks. */
7312 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
7314 LAST_AVAIL_CHECK_FAILURE(ptr
) = NULL_RTX
;
7315 if (ANTIC_STORE_LIST (ptr
)
7316 && (tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0)) == NULL_RTX
)
7317 ANTIC_STORE_LIST (ptr
) = XEXP (ANTIC_STORE_LIST (ptr
), 1);
7321 /* Remove the stores that are not available anywhere, as there will
7322 be no opportunity to optimize them. */
7323 for (ptr
= pre_ldst_mems
, prev_next_ptr_ptr
= &pre_ldst_mems
;
7325 ptr
= *prev_next_ptr_ptr
)
7327 if (!AVAIL_STORE_LIST (ptr
))
7329 *prev_next_ptr_ptr
= ptr
->next
;
7330 free_ldst_entry (ptr
);
7333 prev_next_ptr_ptr
= &ptr
->next
;
7336 ret
= enumerate_ldsts ();
7340 fprintf (gcse_file
, "ST_avail and ST_antic (shown under loads..)\n");
7341 print_ldst_list (gcse_file
);
7349 /* Check to see if the load X is aliased with STORE_PATTERN. */
7352 load_kills_store (x
, store_pattern
)
7353 rtx x
, store_pattern
;
7355 if (true_dependence (x
, GET_MODE (x
), store_pattern
, rtx_addr_varies_p
))
7360 /* Go through the entire insn X, looking for any loads which might alias
7361 STORE_PATTERN. Return true if found. */
7364 find_loads (x
, store_pattern
)
7365 rtx x
, store_pattern
;
7374 if (GET_CODE (x
) == SET
)
7377 if (GET_CODE (x
) == MEM
)
7379 if (load_kills_store (x
, store_pattern
))
7383 /* Recursively process the insn. */
7384 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
7386 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0 && !ret
; i
--)
7389 ret
|= find_loads (XEXP (x
, i
), store_pattern
);
7390 else if (fmt
[i
] == 'E')
7391 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7392 ret
|= find_loads (XVECEXP (x
, i
, j
), store_pattern
);
7397 /* Check if INSN kills the store pattern X (is aliased with it).
7398 Return true if it it does. */
7401 store_killed_in_insn (x
, x_regs
, insn
)
7402 rtx x
, x_regs
, insn
;
7406 if (GET_RTX_CLASS (GET_CODE (insn
)) != 'i')
7409 if (GET_CODE (insn
) == CALL_INSN
)
7411 /* A normal or pure call might read from pattern,
7412 but a const call will not. */
7413 if (! CONST_OR_PURE_CALL_P (insn
) || pure_call_p (insn
))
7416 /* But even a const call reads its parameters. Check whether the
7417 base of some of registers used in mem is stack pointer. */
7418 for (reg
= x_regs
; reg
; reg
= XEXP (reg
, 1))
7420 base
= find_base_term (reg
);
7422 || (GET_CODE (base
) == ADDRESS
7423 && GET_MODE (base
) == Pmode
7424 && XEXP (base
, 0) == stack_pointer_rtx
))
7431 if (GET_CODE (PATTERN (insn
)) == SET
)
7433 rtx pat
= PATTERN (insn
);
7434 /* Check for memory stores to aliased objects. */
7435 if (GET_CODE (SET_DEST (pat
)) == MEM
&& !expr_equiv_p (SET_DEST (pat
), x
))
7436 /* pretend its a load and check for aliasing. */
7437 if (find_loads (SET_DEST (pat
), x
))
7439 return find_loads (SET_SRC (pat
), x
);
7442 return find_loads (PATTERN (insn
), x
);
7445 /* Returns true if the expression X is loaded or clobbered on or after INSN
7446 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
7447 or after the insn. X_REGS is list of registers mentioned in X. If the store
7448 is killed, return the last insn in that it occurs in FAIL_INSN. */
7451 store_killed_after (x
, x_regs
, insn
, bb
, regs_set_after
, fail_insn
)
7452 rtx x
, x_regs
, insn
;
7454 int *regs_set_after
;
7457 rtx last
= bb
->end
, act
;
7459 if (!store_ops_ok (x_regs
, regs_set_after
))
7461 /* We do not know where it will happen. */
7463 *fail_insn
= NULL_RTX
;
7467 /* Scan from the end, so that fail_insn is determined correctly. */
7468 for (act
= last
; act
!= PREV_INSN (insn
); act
= PREV_INSN (act
))
7469 if (store_killed_in_insn (x
, x_regs
, act
))
7479 /* Returns true if the expression X is loaded or clobbered on or before INSN
7480 within basic block BB. X_REGS is list of registers mentioned in X.
7481 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
7483 store_killed_before (x
, x_regs
, insn
, bb
, regs_set_before
)
7484 rtx x
, x_regs
, insn
;
7486 int *regs_set_before
;
7488 rtx first
= bb
->head
;
7490 if (!store_ops_ok (x_regs
, regs_set_before
))
7493 for ( ; insn
!= PREV_INSN (first
); insn
= PREV_INSN (insn
))
7494 if (store_killed_in_insn (x
, x_regs
, insn
))
7500 /* Fill in available, anticipatable, transparent and kill vectors in
7501 STORE_DATA, based on lists of available and anticipatable stores. */
7503 build_store_vectors ()
7506 int *regs_set_in_block
;
7508 struct ls_expr
* ptr
;
7511 /* Build the gen_vector. This is any store in the table which is not killed
7512 by aliasing later in its block. */
7513 ae_gen
= (sbitmap
*) sbitmap_vector_alloc (last_basic_block
, num_stores
);
7514 sbitmap_vector_zero (ae_gen
, last_basic_block
);
7516 st_antloc
= (sbitmap
*) sbitmap_vector_alloc (last_basic_block
, num_stores
);
7517 sbitmap_vector_zero (st_antloc
, last_basic_block
);
7519 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
7521 for (st
= AVAIL_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
7523 insn
= XEXP (st
, 0);
7524 bb
= BLOCK_FOR_INSN (insn
);
7526 /* If we've already seen an available expression in this block,
7527 we can delete this one (It occurs earlier in the block). We'll
7528 copy the SRC expression to an unused register in case there
7529 are any side effects. */
7530 if (TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
7532 rtx r
= gen_reg_rtx (GET_MODE (ptr
->pattern
));
7534 fprintf (gcse_file
, "Removing redundant store:\n");
7535 replace_store_insn (r
, XEXP (st
, 0), bb
);
7538 SET_BIT (ae_gen
[bb
->index
], ptr
->index
);
7541 for (st
= ANTIC_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
7543 insn
= XEXP (st
, 0);
7544 bb
= BLOCK_FOR_INSN (insn
);
7545 SET_BIT (st_antloc
[bb
->index
], ptr
->index
);
7549 ae_kill
= (sbitmap
*) sbitmap_vector_alloc (last_basic_block
, num_stores
);
7550 sbitmap_vector_zero (ae_kill
, last_basic_block
);
7552 transp
= (sbitmap
*) sbitmap_vector_alloc (last_basic_block
, num_stores
);
7553 sbitmap_vector_zero (transp
, last_basic_block
);
7554 regs_set_in_block
= xmalloc (sizeof (int) * max_gcse_regno
);
7558 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
7559 regs_set_in_block
[regno
] = TEST_BIT (reg_set_in_block
[bb
->index
], regno
);
7561 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
7563 if (store_killed_after (ptr
->pattern
, ptr
->pattern_regs
, bb
->head
,
7564 bb
, regs_set_in_block
, NULL
))
7566 /* It should not be neccessary to consider the expression
7567 killed if it is both anticipatable and available. */
7568 if (!TEST_BIT (st_antloc
[bb
->index
], ptr
->index
)
7569 || !TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
7570 SET_BIT (ae_kill
[bb
->index
], ptr
->index
);
7573 SET_BIT (transp
[bb
->index
], ptr
->index
);
7577 free (regs_set_in_block
);
7581 dump_sbitmap_vector (gcse_file
, "st_antloc", "", st_antloc
, last_basic_block
);
7582 dump_sbitmap_vector (gcse_file
, "st_kill", "", ae_kill
, last_basic_block
);
7583 dump_sbitmap_vector (gcse_file
, "Transpt", "", transp
, last_basic_block
);
7584 dump_sbitmap_vector (gcse_file
, "st_avloc", "", ae_gen
, last_basic_block
);
7588 /* Insert an instruction at the beginning of a basic block, and update
7589 the BLOCK_HEAD if needed. */
7592 insert_insn_start_bb (insn
, bb
)
7596 /* Insert at start of successor block. */
7597 rtx prev
= PREV_INSN (bb
->head
);
7598 rtx before
= bb
->head
;
7601 if (GET_CODE (before
) != CODE_LABEL
7602 && (GET_CODE (before
) != NOTE
7603 || NOTE_LINE_NUMBER (before
) != NOTE_INSN_BASIC_BLOCK
))
7606 if (prev
== bb
->end
)
7608 before
= NEXT_INSN (before
);
7611 insn
= emit_insn_after (insn
, prev
);
7615 fprintf (gcse_file
, "STORE_MOTION insert store at start of BB %d:\n",
7617 print_inline_rtx (gcse_file
, insn
, 6);
7618 fprintf (gcse_file
, "\n");
7622 /* This routine will insert a store on an edge. EXPR is the ldst entry for
7623 the memory reference, and E is the edge to insert it on. Returns nonzero
7624 if an edge insertion was performed. */
7627 insert_store (expr
, e
)
7628 struct ls_expr
* expr
;
7635 /* We did all the deleted before this insert, so if we didn't delete a
7636 store, then we haven't set the reaching reg yet either. */
7637 if (expr
->reaching_reg
== NULL_RTX
)
7640 reg
= expr
->reaching_reg
;
7641 insn
= gen_move_insn (copy_rtx (expr
->pattern
), reg
);
7643 /* If we are inserting this expression on ALL predecessor edges of a BB,
7644 insert it at the start of the BB, and reset the insert bits on the other
7645 edges so we don't try to insert it on the other edges. */
7647 for (tmp
= e
->dest
->pred
; tmp
; tmp
= tmp
->pred_next
)
7649 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
7650 if (index
== EDGE_INDEX_NO_EDGE
)
7652 if (! TEST_BIT (pre_insert_map
[index
], expr
->index
))
7656 /* If tmp is NULL, we found an insertion on every edge, blank the
7657 insertion vector for these edges, and insert at the start of the BB. */
7658 if (!tmp
&& bb
!= EXIT_BLOCK_PTR
)
7660 for (tmp
= e
->dest
->pred
; tmp
; tmp
= tmp
->pred_next
)
7662 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
7663 RESET_BIT (pre_insert_map
[index
], expr
->index
);
7665 insert_insn_start_bb (insn
, bb
);
7669 /* We can't insert on this edge, so we'll insert at the head of the
7670 successors block. See Morgan, sec 10.5. */
7671 if ((e
->flags
& EDGE_ABNORMAL
) == EDGE_ABNORMAL
)
7673 insert_insn_start_bb (insn
, bb
);
7677 insert_insn_on_edge (insn
, e
);
7681 fprintf (gcse_file
, "STORE_MOTION insert insn on edge (%d, %d):\n",
7682 e
->src
->index
, e
->dest
->index
);
7683 print_inline_rtx (gcse_file
, insn
, 6);
7684 fprintf (gcse_file
, "\n");
7690 /* This routine will replace a store with a SET to a specified register. */
7693 replace_store_insn (reg
, del
, bb
)
7699 insn
= gen_move_insn (reg
, SET_SRC (single_set (del
)));
7700 insn
= emit_insn_after (insn
, del
);
7705 "STORE_MOTION delete insn in BB %d:\n ", bb
->index
);
7706 print_inline_rtx (gcse_file
, del
, 6);
7707 fprintf (gcse_file
, "\nSTORE MOTION replaced with insn:\n ");
7708 print_inline_rtx (gcse_file
, insn
, 6);
7709 fprintf (gcse_file
, "\n");
7716 /* Delete a store, but copy the value that would have been stored into
7717 the reaching_reg for later storing. */
7720 delete_store (expr
, bb
)
7721 struct ls_expr
* expr
;
7726 if (expr
->reaching_reg
== NULL_RTX
)
7727 expr
->reaching_reg
= gen_reg_rtx (GET_MODE (expr
->pattern
));
7729 reg
= expr
->reaching_reg
;
7731 for (i
= AVAIL_STORE_LIST (expr
); i
; i
= XEXP (i
, 1))
7734 if (BLOCK_FOR_INSN (del
) == bb
)
7736 /* We know there is only one since we deleted redundant
7737 ones during the available computation. */
7738 replace_store_insn (reg
, del
, bb
);
7744 /* Free memory used by store motion. */
7747 free_store_memory ()
7752 sbitmap_vector_free (ae_gen
);
7754 sbitmap_vector_free (ae_kill
);
7756 sbitmap_vector_free (transp
);
7758 sbitmap_vector_free (st_antloc
);
7760 sbitmap_vector_free (pre_insert_map
);
7762 sbitmap_vector_free (pre_delete_map
);
7763 if (reg_set_in_block
)
7764 sbitmap_vector_free (reg_set_in_block
);
7766 ae_gen
= ae_kill
= transp
= st_antloc
= NULL
;
7767 pre_insert_map
= pre_delete_map
= reg_set_in_block
= NULL
;
7770 /* Perform store motion. Much like gcse, except we move expressions the
7771 other way by looking at the flowgraph in reverse. */
7778 struct ls_expr
* ptr
;
7779 int update_flow
= 0;
7783 fprintf (gcse_file
, "before store motion\n");
7784 print_rtl (gcse_file
, get_insns ());
7788 init_alias_analysis ();
7790 /* Find all the available and anticipatable stores. */
7791 num_stores
= compute_store_table ();
7792 if (num_stores
== 0)
7794 sbitmap_vector_free (reg_set_in_block
);
7795 end_alias_analysis ();
7799 /* Now compute kill & transp vectors. */
7800 build_store_vectors ();
7801 add_noreturn_fake_exit_edges ();
7803 edge_list
= pre_edge_rev_lcm (gcse_file
, num_stores
, transp
, ae_gen
,
7804 st_antloc
, ae_kill
, &pre_insert_map
,
7807 /* Now we want to insert the new stores which are going to be needed. */
7808 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
7811 if (TEST_BIT (pre_delete_map
[bb
->index
], ptr
->index
))
7812 delete_store (ptr
, bb
);
7814 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
7815 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
))
7816 update_flow
|= insert_store (ptr
, INDEX_EDGE (edge_list
, x
));
7820 commit_edge_insertions ();
7822 free_store_memory ();
7823 free_edge_list (edge_list
);
7824 remove_fake_edges ();
7825 end_alias_analysis ();
7829 /* Entry point for jump bypassing optimization pass. */
7837 /* We do not construct an accurate cfg in functions which call
7838 setjmp, so just punt to be safe. */
7839 if (current_function_calls_setjmp
)
7842 /* For calling dump_foo fns from gdb. */
7843 debug_stderr
= stderr
;
7846 /* Identify the basic block information for this function, including
7847 successors and predecessors. */
7848 max_gcse_regno
= max_reg_num ();
7851 dump_flow_info (file
);
7853 /* Return if there's nothing to do. */
7854 if (n_basic_blocks
<= 1)
7857 /* Trying to perform global optimizations on flow graphs which have
7858 a high connectivity will take a long time and is unlikely to be
7859 particularly useful.
7861 In normal circumstances a cfg should have about twice as many edges
7862 as blocks. But we do not want to punish small functions which have
7863 a couple switch statements. So we require a relatively large number
7864 of basic blocks and the ratio of edges to blocks to be high. */
7865 if (n_basic_blocks
> 1000 && n_edges
/ n_basic_blocks
>= 20)
7867 if (warn_disabled_optimization
)
7868 warning ("BYPASS disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
7869 n_basic_blocks
, n_edges
/ n_basic_blocks
);
7873 /* If allocating memory for the cprop bitmap would take up too much
7874 storage it's better just to disable the optimization. */
7876 * SBITMAP_SET_SIZE (max_gcse_regno
)
7877 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
7879 if (warn_disabled_optimization
)
7880 warning ("GCSE disabled: %d basic blocks and %d registers",
7881 n_basic_blocks
, max_gcse_regno
);
7886 gcc_obstack_init (&gcse_obstack
);
7889 /* We need alias. */
7890 init_alias_analysis ();
7892 /* Record where pseudo-registers are set. This data is kept accurate
7893 during each pass. ??? We could also record hard-reg information here
7894 [since it's unchanging], however it is currently done during hash table
7897 It may be tempting to compute MEM set information here too, but MEM sets
7898 will be subject to code motion one day and thus we need to compute
7899 information about memory sets when we build the hash tables. */
7901 alloc_reg_set_mem (max_gcse_regno
);
7902 compute_sets (get_insns ());
7904 max_gcse_regno
= max_reg_num ();
7905 alloc_gcse_mem (get_insns ());
7906 changed
= one_cprop_pass (1, 1, 1);
7911 fprintf (file
, "BYPASS of %s: %d basic blocks, ",
7912 current_function_name
, n_basic_blocks
);
7913 fprintf (file
, "%d bytes\n\n", bytes_used
);
7916 obstack_free (&gcse_obstack
, NULL
);
7917 free_reg_set_mem ();
7919 /* We are finished with alias. */
7920 end_alias_analysis ();
7921 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
7926 #include "gt-gcse.h"