1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
38 The inliner itself is split into two passes:
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
94 #include "coretypes.h"
100 #include "alloc-pool.h"
101 #include "tree-pass.h"
102 #include "gimple-ssa.h"
104 #include "lto-streamer.h"
105 #include "trans-mem.h"
107 #include "tree-inline.h"
110 #include "symbol-summary.h"
111 #include "tree-vrp.h"
112 #include "ipa-prop.h"
113 #include "ipa-inline.h"
114 #include "ipa-utils.h"
116 #include "auto-profile.h"
117 #include "builtins.h"
118 #include "fibonacci_heap.h"
120 typedef fibonacci_heap
<sreal
, cgraph_edge
> edge_heap_t
;
121 typedef fibonacci_node
<sreal
, cgraph_edge
> edge_heap_node_t
;
123 /* Statistics we collect about inlining algorithm. */
124 static int overall_size
;
125 static gcov_type max_count
;
126 static gcov_type spec_rem
;
128 /* Pre-computed constants 1/CGRAPH_FREQ_BASE and 1/100. */
129 static sreal cgraph_freq_base_rec
, percent_rec
;
131 /* Return false when inlining edge E would lead to violating
132 limits on function unit growth or stack usage growth.
134 The relative function body growth limit is present generally
135 to avoid problems with non-linear behavior of the compiler.
136 To allow inlining huge functions into tiny wrapper, the limit
137 is always based on the bigger of the two functions considered.
139 For stack growth limits we always base the growth in stack usage
140 of the callers. We want to prevent applications from segfaulting
141 on stack overflow when functions with huge stack frames gets
145 caller_growth_limits (struct cgraph_edge
*e
)
147 struct cgraph_node
*to
= e
->caller
;
148 struct cgraph_node
*what
= e
->callee
->ultimate_alias_target ();
151 HOST_WIDE_INT stack_size_limit
= 0, inlined_stack
;
152 inline_summary
*info
, *what_info
, *outer_info
= inline_summaries
->get (to
);
154 /* Look for function e->caller is inlined to. While doing
155 so work out the largest function body on the way. As
156 described above, we want to base our function growth
157 limits based on that. Not on the self size of the
158 outer function, not on the self size of inline code
159 we immediately inline to. This is the most relaxed
160 interpretation of the rule "do not grow large functions
161 too much in order to prevent compiler from exploding". */
164 info
= inline_summaries
->get (to
);
165 if (limit
< info
->self_size
)
166 limit
= info
->self_size
;
167 if (stack_size_limit
< info
->estimated_self_stack_size
)
168 stack_size_limit
= info
->estimated_self_stack_size
;
169 if (to
->global
.inlined_to
)
170 to
= to
->callers
->caller
;
175 what_info
= inline_summaries
->get (what
);
177 if (limit
< what_info
->self_size
)
178 limit
= what_info
->self_size
;
180 limit
+= limit
* PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH
) / 100;
182 /* Check the size after inlining against the function limits. But allow
183 the function to shrink if it went over the limits by forced inlining. */
184 newsize
= estimate_size_after_inlining (to
, e
);
185 if (newsize
>= info
->size
186 && newsize
> PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS
)
189 e
->inline_failed
= CIF_LARGE_FUNCTION_GROWTH_LIMIT
;
193 if (!what_info
->estimated_stack_size
)
196 /* FIXME: Stack size limit often prevents inlining in Fortran programs
197 due to large i/o datastructures used by the Fortran front-end.
198 We ought to ignore this limit when we know that the edge is executed
199 on every invocation of the caller (i.e. its call statement dominates
200 exit block). We do not track this information, yet. */
201 stack_size_limit
+= ((gcov_type
)stack_size_limit
202 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH
) / 100);
204 inlined_stack
= (outer_info
->stack_frame_offset
205 + outer_info
->estimated_self_stack_size
206 + what_info
->estimated_stack_size
);
207 /* Check new stack consumption with stack consumption at the place
209 if (inlined_stack
> stack_size_limit
210 /* If function already has large stack usage from sibling
211 inline call, we can inline, too.
212 This bit overoptimistically assume that we are good at stack
214 && inlined_stack
> info
->estimated_stack_size
215 && inlined_stack
> PARAM_VALUE (PARAM_LARGE_STACK_FRAME
))
217 e
->inline_failed
= CIF_LARGE_STACK_FRAME_GROWTH_LIMIT
;
223 /* Dump info about why inlining has failed. */
226 report_inline_failed_reason (struct cgraph_edge
*e
)
230 fprintf (dump_file
, " not inlinable: %s/%i -> %s/%i, %s\n",
231 xstrdup_for_dump (e
->caller
->name ()), e
->caller
->order
,
232 xstrdup_for_dump (e
->callee
->name ()), e
->callee
->order
,
233 cgraph_inline_failed_string (e
->inline_failed
));
234 if ((e
->inline_failed
== CIF_TARGET_OPTION_MISMATCH
235 || e
->inline_failed
== CIF_OPTIMIZATION_MISMATCH
)
236 && e
->caller
->lto_file_data
237 && e
->callee
->ultimate_alias_target ()->lto_file_data
)
239 fprintf (dump_file
, " LTO objects: %s, %s\n",
240 e
->caller
->lto_file_data
->file_name
,
241 e
->callee
->ultimate_alias_target ()->lto_file_data
->file_name
);
243 if (e
->inline_failed
== CIF_TARGET_OPTION_MISMATCH
)
244 cl_target_option_print_diff
245 (dump_file
, 2, target_opts_for_fn (e
->caller
->decl
),
246 target_opts_for_fn (e
->callee
->ultimate_alias_target ()->decl
));
247 if (e
->inline_failed
== CIF_OPTIMIZATION_MISMATCH
)
248 cl_optimization_print_diff
249 (dump_file
, 2, opts_for_fn (e
->caller
->decl
),
250 opts_for_fn (e
->callee
->ultimate_alias_target ()->decl
));
254 /* Decide whether sanitizer-related attributes allow inlining. */
257 sanitize_attrs_match_for_inline_p (const_tree caller
, const_tree callee
)
259 /* Don't care if sanitizer is disabled */
260 if (!(flag_sanitize
& SANITIZE_ADDRESS
))
263 if (!caller
|| !callee
)
266 return !!lookup_attribute ("no_sanitize_address",
267 DECL_ATTRIBUTES (caller
)) ==
268 !!lookup_attribute ("no_sanitize_address",
269 DECL_ATTRIBUTES (callee
));
272 /* Used for flags where it is safe to inline when caller's value is
273 grater than callee's. */
274 #define check_maybe_up(flag) \
275 (opts_for_fn (caller->decl)->x_##flag \
276 != opts_for_fn (callee->decl)->x_##flag \
278 || opts_for_fn (caller->decl)->x_##flag \
279 < opts_for_fn (callee->decl)->x_##flag))
280 /* Used for flags where it is safe to inline when caller's value is
281 smaller than callee's. */
282 #define check_maybe_down(flag) \
283 (opts_for_fn (caller->decl)->x_##flag \
284 != opts_for_fn (callee->decl)->x_##flag \
286 || opts_for_fn (caller->decl)->x_##flag \
287 > opts_for_fn (callee->decl)->x_##flag))
288 /* Used for flags where exact match is needed for correctness. */
289 #define check_match(flag) \
290 (opts_for_fn (caller->decl)->x_##flag \
291 != opts_for_fn (callee->decl)->x_##flag)
293 /* Decide if we can inline the edge and possibly update
294 inline_failed reason.
295 We check whether inlining is possible at all and whether
296 caller growth limits allow doing so.
298 if REPORT is true, output reason to the dump file.
300 if DISREGARD_LIMITS is true, ignore size limits.*/
303 can_inline_edge_p (struct cgraph_edge
*e
, bool report
,
304 bool disregard_limits
= false, bool early
= false)
306 gcc_checking_assert (e
->inline_failed
);
308 if (cgraph_inline_failed_type (e
->inline_failed
) == CIF_FINAL_ERROR
)
311 report_inline_failed_reason (e
);
315 bool inlinable
= true;
316 enum availability avail
;
317 cgraph_node
*caller
= e
->caller
->global
.inlined_to
318 ? e
->caller
->global
.inlined_to
: e
->caller
;
319 cgraph_node
*callee
= e
->callee
->ultimate_alias_target (&avail
, caller
);
320 tree caller_tree
= DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller
->decl
);
322 = callee
? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee
->decl
) : NULL
;
324 if (!callee
->definition
)
326 e
->inline_failed
= CIF_BODY_NOT_AVAILABLE
;
329 else if (callee
->calls_comdat_local
)
331 e
->inline_failed
= CIF_USES_COMDAT_LOCAL
;
334 else if (avail
<= AVAIL_INTERPOSABLE
)
336 e
->inline_failed
= CIF_OVERWRITABLE
;
339 /* All edges with call_stmt_cannot_inline_p should have inline_failed
340 initialized to one of FINAL_ERROR reasons. */
341 else if (e
->call_stmt_cannot_inline_p
)
343 /* Don't inline if the functions have different EH personalities. */
344 else if (DECL_FUNCTION_PERSONALITY (caller
->decl
)
345 && DECL_FUNCTION_PERSONALITY (callee
->decl
)
346 && (DECL_FUNCTION_PERSONALITY (caller
->decl
)
347 != DECL_FUNCTION_PERSONALITY (callee
->decl
)))
349 e
->inline_failed
= CIF_EH_PERSONALITY
;
352 /* TM pure functions should not be inlined into non-TM_pure
354 else if (is_tm_pure (callee
->decl
) && !is_tm_pure (caller
->decl
))
356 e
->inline_failed
= CIF_UNSPECIFIED
;
359 /* Check compatibility of target optimization options. */
360 else if (!targetm
.target_option
.can_inline_p (caller
->decl
,
363 e
->inline_failed
= CIF_TARGET_OPTION_MISMATCH
;
366 else if (!inline_summaries
->get (callee
)->inlinable
)
368 e
->inline_failed
= CIF_FUNCTION_NOT_INLINABLE
;
371 /* Don't inline a function with mismatched sanitization attributes. */
372 else if (!sanitize_attrs_match_for_inline_p (caller
->decl
, callee
->decl
))
374 e
->inline_failed
= CIF_ATTRIBUTE_MISMATCH
;
377 /* Check if caller growth allows the inlining. */
378 else if (!DECL_DISREGARD_INLINE_LIMITS (callee
->decl
)
380 && !lookup_attribute ("flatten",
381 DECL_ATTRIBUTES (caller
->decl
))
382 && !caller_growth_limits (e
))
384 /* Don't inline a function with a higher optimization level than the
385 caller. FIXME: this is really just tip of iceberg of handling
386 optimization attribute. */
387 else if (caller_tree
!= callee_tree
)
390 (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
)
391 && lookup_attribute ("always_inline",
392 DECL_ATTRIBUTES (callee
->decl
)));
393 inline_summary
*caller_info
= inline_summaries
->get (caller
);
394 inline_summary
*callee_info
= inline_summaries
->get (callee
);
396 /* Until GCC 4.9 we did not check the semantics alterning flags
397 bellow and inline across optimization boundry.
398 Enabling checks bellow breaks several packages by refusing
399 to inline library always_inline functions. See PR65873.
400 Disable the check for early inlining for now until better solution
402 if (always_inline
&& early
)
404 /* There are some options that change IL semantics which means
405 we cannot inline in these cases for correctness reason.
406 Not even for always_inline declared functions. */
407 /* Strictly speaking only when the callee contains signed integer
408 math where overflow is undefined. */
409 else if ((check_maybe_up (flag_strict_overflow
)
410 /* this flag is set by optimize. Allow inlining across
411 optimize boundary. */
412 && (!opt_for_fn (caller
->decl
, optimize
)
413 == !opt_for_fn (callee
->decl
, optimize
) || !always_inline
))
414 || check_match (flag_wrapv
)
415 || check_match (flag_trapv
)
416 /* When caller or callee does FP math, be sure FP codegen flags
418 || ((caller_info
->fp_expressions
&& callee_info
->fp_expressions
)
419 && (check_maybe_up (flag_rounding_math
)
420 || check_maybe_up (flag_trapping_math
)
421 || check_maybe_down (flag_unsafe_math_optimizations
)
422 || check_maybe_down (flag_finite_math_only
)
423 || check_maybe_up (flag_signaling_nans
)
424 || check_maybe_down (flag_cx_limited_range
)
425 || check_maybe_up (flag_signed_zeros
)
426 || check_maybe_down (flag_associative_math
)
427 || check_maybe_down (flag_reciprocal_math
)
428 || check_maybe_down (flag_fp_int_builtin_inexact
)
429 /* Strictly speaking only when the callee contains function
430 calls that may end up setting errno. */
431 || check_maybe_up (flag_errno_math
)))
432 /* We do not want to make code compiled with exceptions to be
433 brought into a non-EH function unless we know that the callee
435 This is tracked by DECL_FUNCTION_PERSONALITY. */
436 || (check_maybe_up (flag_non_call_exceptions
)
437 && DECL_FUNCTION_PERSONALITY (callee
->decl
))
438 || (check_maybe_up (flag_exceptions
)
439 && DECL_FUNCTION_PERSONALITY (callee
->decl
))
440 /* When devirtualization is diabled for callee, it is not safe
441 to inline it as we possibly mangled the type info.
442 Allow early inlining of always inlines. */
443 || (!early
&& check_maybe_down (flag_devirtualize
)))
445 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
448 /* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
449 else if (always_inline
)
451 /* When user added an attribute to the callee honor it. */
452 else if (lookup_attribute ("optimize", DECL_ATTRIBUTES (callee
->decl
))
453 && opts_for_fn (caller
->decl
) != opts_for_fn (callee
->decl
))
455 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
458 /* If explicit optimize attribute are not used, the mismatch is caused
459 by different command line options used to build different units.
460 Do not care about COMDAT functions - those are intended to be
461 optimized with the optimization flags of module they are used in.
462 Also do not care about mixing up size/speed optimization when
463 DECL_DISREGARD_INLINE_LIMITS is set. */
464 else if ((callee
->merged_comdat
465 && !lookup_attribute ("optimize",
466 DECL_ATTRIBUTES (caller
->decl
)))
467 || DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
469 /* If mismatch is caused by merging two LTO units with different
470 optimizationflags we want to be bit nicer. However never inline
471 if one of functions is not optimized at all. */
472 else if (!opt_for_fn (callee
->decl
, optimize
)
473 || !opt_for_fn (caller
->decl
, optimize
))
475 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
478 /* If callee is optimized for size and caller is not, allow inlining if
479 code shrinks or we are in MAX_INLINE_INSNS_SINGLE limit and callee
480 is inline (and thus likely an unified comdat). This will allow caller
482 else if (opt_for_fn (callee
->decl
, optimize_size
)
483 > opt_for_fn (caller
->decl
, optimize_size
))
485 int growth
= estimate_edge_growth (e
);
487 && (!DECL_DECLARED_INLINE_P (callee
->decl
)
488 && growth
>= MAX (MAX_INLINE_INSNS_SINGLE
,
489 MAX_INLINE_INSNS_AUTO
)))
491 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
495 /* If callee is more aggressively optimized for performance than caller,
496 we generally want to inline only cheap (runtime wise) functions. */
497 else if (opt_for_fn (callee
->decl
, optimize_size
)
498 < opt_for_fn (caller
->decl
, optimize_size
)
499 || (opt_for_fn (callee
->decl
, optimize
)
500 > opt_for_fn (caller
->decl
, optimize
)))
502 if (estimate_edge_time (e
)
503 >= 20 + inline_edge_summary (e
)->call_stmt_time
)
505 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
512 if (!inlinable
&& report
)
513 report_inline_failed_reason (e
);
518 /* Return true if the edge E is inlinable during early inlining. */
521 can_early_inline_edge_p (struct cgraph_edge
*e
)
523 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
524 /* Early inliner might get called at WPA stage when IPA pass adds new
525 function. In this case we can not really do any of early inlining
526 because function bodies are missing. */
527 if (cgraph_inline_failed_type (e
->inline_failed
) == CIF_FINAL_ERROR
)
529 if (!gimple_has_body_p (callee
->decl
))
531 e
->inline_failed
= CIF_BODY_NOT_AVAILABLE
;
534 /* In early inliner some of callees may not be in SSA form yet
535 (i.e. the callgraph is cyclic and we did not process
536 the callee by early inliner, yet). We don't have CIF code for this
537 case; later we will re-do the decision in the real inliner. */
538 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e
->caller
->decl
))
539 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee
->decl
)))
542 fprintf (dump_file
, " edge not inlinable: not in SSA form\n");
545 if (!can_inline_edge_p (e
, true, false, true))
551 /* Return number of calls in N. Ignore cheap builtins. */
554 num_calls (struct cgraph_node
*n
)
556 struct cgraph_edge
*e
;
559 for (e
= n
->callees
; e
; e
= e
->next_callee
)
560 if (!is_inexpensive_builtin (e
->callee
->decl
))
566 /* Return true if we are interested in inlining small function. */
569 want_early_inline_function_p (struct cgraph_edge
*e
)
571 bool want_inline
= true;
572 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
574 if (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
576 /* For AutoFDO, we need to make sure that before profile summary, all
577 hot paths' IR look exactly the same as profiled binary. As a result,
578 in einliner, we will disregard size limit and inline those callsites
580 * inlined in the profiled binary, and
581 * the cloned callee has enough samples to be considered "hot". */
582 else if (flag_auto_profile
&& afdo_callsite_hot_enough_for_early_inline (e
))
584 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
585 && !opt_for_fn (e
->caller
->decl
, flag_inline_small_functions
))
587 e
->inline_failed
= CIF_FUNCTION_NOT_INLINE_CANDIDATE
;
588 report_inline_failed_reason (e
);
593 int growth
= estimate_edge_growth (e
);
598 else if (!e
->maybe_hot_p ()
602 fprintf (dump_file
, " will not early inline: %s/%i->%s/%i, "
603 "call is cold and code would grow by %i\n",
604 xstrdup_for_dump (e
->caller
->name ()),
606 xstrdup_for_dump (callee
->name ()), callee
->order
,
610 else if (growth
> PARAM_VALUE (PARAM_EARLY_INLINING_INSNS
))
613 fprintf (dump_file
, " will not early inline: %s/%i->%s/%i, "
614 "growth %i exceeds --param early-inlining-insns\n",
615 xstrdup_for_dump (e
->caller
->name ()),
617 xstrdup_for_dump (callee
->name ()), callee
->order
,
621 else if ((n
= num_calls (callee
)) != 0
622 && growth
* (n
+ 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS
))
625 fprintf (dump_file
, " will not early inline: %s/%i->%s/%i, "
626 "growth %i exceeds --param early-inlining-insns "
627 "divided by number of calls\n",
628 xstrdup_for_dump (e
->caller
->name ()),
630 xstrdup_for_dump (callee
->name ()), callee
->order
,
638 /* Compute time of the edge->caller + edge->callee execution when inlining
642 compute_uninlined_call_time (struct inline_summary
*callee_info
,
643 struct cgraph_edge
*edge
)
645 sreal uninlined_call_time
= (sreal
)callee_info
->time
;
646 cgraph_node
*caller
= (edge
->caller
->global
.inlined_to
647 ? edge
->caller
->global
.inlined_to
650 if (edge
->count
&& caller
->count
)
651 uninlined_call_time
*= (sreal
)edge
->count
/ caller
->count
;
653 uninlined_call_time
*= cgraph_freq_base_rec
* edge
->frequency
;
655 uninlined_call_time
= uninlined_call_time
>> 11;
657 int caller_time
= inline_summaries
->get (caller
)->time
;
658 return uninlined_call_time
+ caller_time
;
661 /* Same as compute_uinlined_call_time but compute time when inlining
665 compute_inlined_call_time (struct cgraph_edge
*edge
,
668 cgraph_node
*caller
= (edge
->caller
->global
.inlined_to
669 ? edge
->caller
->global
.inlined_to
671 int caller_time
= inline_summaries
->get (caller
)->time
;
672 sreal time
= edge_time
;
674 if (edge
->count
&& caller
->count
)
675 time
*= (sreal
)edge
->count
/ caller
->count
;
677 time
*= cgraph_freq_base_rec
* edge
->frequency
;
681 /* This calculation should match one in ipa-inline-analysis.
682 FIXME: Once ipa-inline-analysis is converted to sreal this can be
684 time
-= (sreal
) ((gcov_type
) edge
->frequency
685 * inline_edge_summary (edge
)->call_stmt_time
686 * (INLINE_TIME_SCALE
/ CGRAPH_FREQ_BASE
)) / INLINE_TIME_SCALE
;
689 time
= ((sreal
) 1) >> 8;
690 gcc_checking_assert (time
>= 0);
694 /* Return true if the speedup for inlining E is bigger than
695 PARAM_MAX_INLINE_MIN_SPEEDUP. */
698 big_speedup_p (struct cgraph_edge
*e
)
700 sreal time
= compute_uninlined_call_time (inline_summaries
->get (e
->callee
),
702 sreal inlined_time
= compute_inlined_call_time (e
, estimate_edge_time (e
));
704 if (time
- inlined_time
705 > (sreal
) time
* PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP
)
711 /* Return true if we are interested in inlining small function.
712 When REPORT is true, report reason to dump file. */
715 want_inline_small_function_p (struct cgraph_edge
*e
, bool report
)
717 bool want_inline
= true;
718 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
720 if (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
722 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
723 && !opt_for_fn (e
->caller
->decl
, flag_inline_small_functions
))
725 e
->inline_failed
= CIF_FUNCTION_NOT_INLINE_CANDIDATE
;
728 /* Do fast and conservative check if the function can be good
729 inline candidate. At the moment we allow inline hints to
730 promote non-inline functions to inline and we increase
731 MAX_INLINE_INSNS_SINGLE 16-fold for inline functions. */
732 else if ((!DECL_DECLARED_INLINE_P (callee
->decl
)
733 && (!e
->count
|| !e
->maybe_hot_p ()))
734 && inline_summaries
->get (callee
)->min_size
735 - inline_edge_summary (e
)->call_stmt_size
736 > MAX (MAX_INLINE_INSNS_SINGLE
, MAX_INLINE_INSNS_AUTO
))
738 e
->inline_failed
= CIF_MAX_INLINE_INSNS_AUTO_LIMIT
;
741 else if ((DECL_DECLARED_INLINE_P (callee
->decl
) || e
->count
)
742 && inline_summaries
->get (callee
)->min_size
743 - inline_edge_summary (e
)->call_stmt_size
744 > 16 * MAX_INLINE_INSNS_SINGLE
)
746 e
->inline_failed
= (DECL_DECLARED_INLINE_P (callee
->decl
)
747 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
748 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT
);
753 int growth
= estimate_edge_growth (e
);
754 inline_hints hints
= estimate_edge_hints (e
);
755 bool big_speedup
= big_speedup_p (e
);
759 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
760 hints suggests that inlining given function is very profitable. */
761 else if (DECL_DECLARED_INLINE_P (callee
->decl
)
762 && growth
>= MAX_INLINE_INSNS_SINGLE
764 && !(hints
& (INLINE_HINT_indirect_call
765 | INLINE_HINT_known_hot
766 | INLINE_HINT_loop_iterations
767 | INLINE_HINT_array_index
768 | INLINE_HINT_loop_stride
)))
769 || growth
>= MAX_INLINE_INSNS_SINGLE
* 16))
771 e
->inline_failed
= CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
;
774 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
775 && !opt_for_fn (e
->caller
->decl
, flag_inline_functions
))
777 /* growth_likely_positive is expensive, always test it last. */
778 if (growth
>= MAX_INLINE_INSNS_SINGLE
779 || growth_likely_positive (callee
, growth
))
781 e
->inline_failed
= CIF_NOT_DECLARED_INLINED
;
785 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
786 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
787 inlining given function is very profitable. */
788 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
790 && !(hints
& INLINE_HINT_known_hot
)
791 && growth
>= ((hints
& (INLINE_HINT_indirect_call
792 | INLINE_HINT_loop_iterations
793 | INLINE_HINT_array_index
794 | INLINE_HINT_loop_stride
))
795 ? MAX (MAX_INLINE_INSNS_AUTO
,
796 MAX_INLINE_INSNS_SINGLE
)
797 : MAX_INLINE_INSNS_AUTO
))
799 /* growth_likely_positive is expensive, always test it last. */
800 if (growth
>= MAX_INLINE_INSNS_SINGLE
801 || growth_likely_positive (callee
, growth
))
803 e
->inline_failed
= CIF_MAX_INLINE_INSNS_AUTO_LIMIT
;
807 /* If call is cold, do not inline when function body would grow. */
808 else if (!e
->maybe_hot_p ()
809 && (growth
>= MAX_INLINE_INSNS_SINGLE
810 || growth_likely_positive (callee
, growth
)))
812 e
->inline_failed
= CIF_UNLIKELY_CALL
;
816 if (!want_inline
&& report
)
817 report_inline_failed_reason (e
);
821 /* EDGE is self recursive edge.
822 We hand two cases - when function A is inlining into itself
823 or when function A is being inlined into another inliner copy of function
826 In first case OUTER_NODE points to the toplevel copy of A, while
827 in the second case OUTER_NODE points to the outermost copy of A in B.
829 In both cases we want to be extra selective since
830 inlining the call will just introduce new recursive calls to appear. */
833 want_inline_self_recursive_call_p (struct cgraph_edge
*edge
,
834 struct cgraph_node
*outer_node
,
838 char const *reason
= NULL
;
839 bool want_inline
= true;
840 int caller_freq
= CGRAPH_FREQ_BASE
;
841 int max_depth
= PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO
);
843 if (DECL_DECLARED_INLINE_P (edge
->caller
->decl
))
844 max_depth
= PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH
);
846 if (!edge
->maybe_hot_p ())
848 reason
= "recursive call is cold";
851 else if (max_count
&& !outer_node
->count
)
853 reason
= "not executed in profile";
856 else if (depth
> max_depth
)
858 reason
= "--param max-inline-recursive-depth exceeded.";
862 if (outer_node
->global
.inlined_to
)
863 caller_freq
= outer_node
->callers
->frequency
;
867 reason
= "function is inlined and unlikely";
873 /* Inlining of self recursive function into copy of itself within other function
874 is transformation similar to loop peeling.
876 Peeling is profitable if we can inline enough copies to make probability
877 of actual call to the self recursive function very small. Be sure that
878 the probability of recursion is small.
880 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
881 This way the expected number of recision is at most max_depth. */
884 int max_prob
= CGRAPH_FREQ_BASE
- ((CGRAPH_FREQ_BASE
+ max_depth
- 1)
887 for (i
= 1; i
< depth
; i
++)
888 max_prob
= max_prob
* max_prob
/ CGRAPH_FREQ_BASE
;
890 && (edge
->count
* CGRAPH_FREQ_BASE
/ outer_node
->count
893 reason
= "profile of recursive call is too large";
897 && (edge
->frequency
* CGRAPH_FREQ_BASE
/ caller_freq
900 reason
= "frequency of recursive call is too large";
904 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
905 depth is large. We reduce function call overhead and increase chances that
906 things fit in hardware return predictor.
908 Recursive inlining might however increase cost of stack frame setup
909 actually slowing down functions whose recursion tree is wide rather than
912 Deciding reliably on when to do recursive inlining without profile feedback
913 is tricky. For now we disable recursive inlining when probability of self
916 Recursive inlining of self recursive call within loop also results in large loop
917 depths that generally optimize badly. We may want to throttle down inlining
918 in those cases. In particular this seems to happen in one of libstdc++ rb tree
923 && (edge
->count
* 100 / outer_node
->count
924 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY
)))
926 reason
= "profile of recursive call is too small";
930 && (edge
->frequency
* 100 / caller_freq
931 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY
)))
933 reason
= "frequency of recursive call is too small";
937 if (!want_inline
&& dump_file
)
938 fprintf (dump_file
, " not inlining recursively: %s\n", reason
);
942 /* Return true when NODE has uninlinable caller;
943 set HAS_HOT_CALL if it has hot call.
944 Worker for cgraph_for_node_and_aliases. */
947 check_callers (struct cgraph_node
*node
, void *has_hot_call
)
949 struct cgraph_edge
*e
;
950 for (e
= node
->callers
; e
; e
= e
->next_caller
)
952 if (!opt_for_fn (e
->caller
->decl
, flag_inline_functions_called_once
))
954 if (!can_inline_edge_p (e
, true))
956 if (e
->recursive_p ())
958 if (!(*(bool *)has_hot_call
) && e
->maybe_hot_p ())
959 *(bool *)has_hot_call
= true;
964 /* If NODE has a caller, return true. */
967 has_caller_p (struct cgraph_node
*node
, void *data ATTRIBUTE_UNUSED
)
974 /* Decide if inlining NODE would reduce unit size by eliminating
975 the offline copy of function.
976 When COLD is true the cold calls are considered, too. */
979 want_inline_function_to_all_callers_p (struct cgraph_node
*node
, bool cold
)
981 bool has_hot_call
= false;
983 /* Aliases gets inlined along with the function they alias. */
986 /* Already inlined? */
987 if (node
->global
.inlined_to
)
989 /* Does it have callers? */
990 if (!node
->call_for_symbol_and_aliases (has_caller_p
, NULL
, true))
992 /* Inlining into all callers would increase size? */
993 if (estimate_growth (node
) > 0)
995 /* All inlines must be possible. */
996 if (node
->call_for_symbol_and_aliases (check_callers
, &has_hot_call
,
999 if (!cold
&& !has_hot_call
)
1004 /* A cost model driving the inlining heuristics in a way so the edges with
1005 smallest badness are inlined first. After each inlining is performed
1006 the costs of all caller edges of nodes affected are recomputed so the
1007 metrics may accurately depend on values such as number of inlinable callers
1008 of the function or function body size. */
1011 edge_badness (struct cgraph_edge
*edge
, bool dump
)
1014 int growth
, edge_time
;
1015 struct cgraph_node
*callee
= edge
->callee
->ultimate_alias_target ();
1016 struct inline_summary
*callee_info
= inline_summaries
->get (callee
);
1018 cgraph_node
*caller
= (edge
->caller
->global
.inlined_to
1019 ? edge
->caller
->global
.inlined_to
1022 growth
= estimate_edge_growth (edge
);
1023 edge_time
= estimate_edge_time (edge
);
1024 hints
= estimate_edge_hints (edge
);
1025 gcc_checking_assert (edge_time
>= 0);
1026 gcc_checking_assert (edge_time
<= callee_info
->time
);
1027 gcc_checking_assert (growth
<= callee_info
->size
);
1031 fprintf (dump_file
, " Badness calculation for %s/%i -> %s/%i\n",
1032 xstrdup_for_dump (edge
->caller
->name ()),
1033 edge
->caller
->order
,
1034 xstrdup_for_dump (callee
->name ()),
1035 edge
->callee
->order
);
1036 fprintf (dump_file
, " size growth %i, time %i ",
1039 dump_inline_hints (dump_file
, hints
);
1040 if (big_speedup_p (edge
))
1041 fprintf (dump_file
, " big_speedup");
1042 fprintf (dump_file
, "\n");
1045 /* Always prefer inlining saving code size. */
1048 badness
= (sreal
) (-SREAL_MIN_SIG
+ growth
) << (SREAL_MAX_EXP
/ 256);
1050 fprintf (dump_file
, " %f: Growth %d <= 0\n", badness
.to_double (),
1053 /* Inlining into EXTERNAL functions is not going to change anything unless
1054 they are themselves inlined. */
1055 else if (DECL_EXTERNAL (caller
->decl
))
1058 fprintf (dump_file
, " max: function is external\n");
1059 return sreal::max ();
1061 /* When profile is available. Compute badness as:
1063 time_saved * caller_count
1064 goodness = -------------------------------------------------
1065 growth_of_caller * overall_growth * combined_size
1067 badness = - goodness
1069 Again use negative value to make calls with profile appear hotter
1072 else if (opt_for_fn (caller
->decl
, flag_guess_branch_prob
) || caller
->count
)
1074 sreal numerator
, denominator
;
1077 numerator
= (compute_uninlined_call_time (callee_info
, edge
)
1078 - compute_inlined_call_time (edge
, edge_time
));
1080 numerator
= ((sreal
) 1 >> 8);
1082 numerator
*= caller
->count
;
1083 else if (opt_for_fn (caller
->decl
, flag_branch_probabilities
))
1084 numerator
= numerator
>> 11;
1085 denominator
= growth
;
1087 overall_growth
= callee_info
->growth
;
1089 /* Look for inliner wrappers of the form:
1095 noninline_callee ();
1097 Withhout panilizing this case, we usually inline noninline_callee
1098 into the inline_caller because overall_growth is small preventing
1099 further inlining of inline_caller.
1101 Penalize only callgraph edges to functions with small overall
1104 if (growth
> overall_growth
1105 /* ... and having only one caller which is not inlined ... */
1106 && callee_info
->single_caller
1107 && !edge
->caller
->global
.inlined_to
1108 /* ... and edges executed only conditionally ... */
1109 && edge
->frequency
< CGRAPH_FREQ_BASE
1110 /* ... consider case where callee is not inline but caller is ... */
1111 && ((!DECL_DECLARED_INLINE_P (edge
->callee
->decl
)
1112 && DECL_DECLARED_INLINE_P (caller
->decl
))
1113 /* ... or when early optimizers decided to split and edge
1114 frequency still indicates splitting is a win ... */
1115 || (callee
->split_part
&& !caller
->split_part
1119 (PARAM_PARTIAL_INLINING_ENTRY_PROBABILITY
) / 100
1120 /* ... and do not overwrite user specified hints. */
1121 && (!DECL_DECLARED_INLINE_P (edge
->callee
->decl
)
1122 || DECL_DECLARED_INLINE_P (caller
->decl
)))))
1124 struct inline_summary
*caller_info
= inline_summaries
->get (caller
);
1125 int caller_growth
= caller_info
->growth
;
1127 /* Only apply the penalty when caller looks like inline candidate,
1128 and it is not called once and. */
1129 if (!caller_info
->single_caller
&& overall_growth
< caller_growth
1130 && caller_info
->inlinable
1131 && caller_info
->size
1132 < (DECL_DECLARED_INLINE_P (caller
->decl
)
1133 ? MAX_INLINE_INSNS_SINGLE
: MAX_INLINE_INSNS_AUTO
))
1137 " Wrapper penalty. Increasing growth %i to %i\n",
1138 overall_growth
, caller_growth
);
1139 overall_growth
= caller_growth
;
1142 if (overall_growth
> 0)
1144 /* Strongly preffer functions with few callers that can be inlined
1145 fully. The square root here leads to smaller binaries at average.
1146 Watch however for extreme cases and return to linear function
1147 when growth is large. */
1148 if (overall_growth
< 256)
1149 overall_growth
*= overall_growth
;
1151 overall_growth
+= 256 * 256 - 256;
1152 denominator
*= overall_growth
;
1154 denominator
*= inline_summaries
->get (caller
)->self_size
+ growth
;
1156 badness
= - numerator
/ denominator
;
1161 " %f: guessed profile. frequency %f, count %" PRId64
1162 " caller count %" PRId64
1163 " time w/o inlining %f, time w/ inlining %f"
1164 " overall growth %i (current) %i (original)"
1165 " %i (compensated)\n",
1166 badness
.to_double (),
1167 (double)edge
->frequency
/ CGRAPH_FREQ_BASE
,
1168 edge
->count
, caller
->count
,
1169 compute_uninlined_call_time (callee_info
, edge
).to_double (),
1170 compute_inlined_call_time (edge
, edge_time
).to_double (),
1171 estimate_growth (callee
),
1172 callee_info
->growth
, overall_growth
);
1175 /* When function local profile is not available or it does not give
1176 useful information (ie frequency is zero), base the cost on
1177 loop nest and overall size growth, so we optimize for overall number
1178 of functions fully inlined in program. */
1181 int nest
= MIN (inline_edge_summary (edge
)->loop_depth
, 8);
1184 /* Decrease badness if call is nested. */
1186 badness
= badness
>> nest
;
1188 badness
= badness
<< nest
;
1190 fprintf (dump_file
, " %f: no profile. nest %i\n",
1191 badness
.to_double (), nest
);
1193 gcc_checking_assert (badness
!= 0);
1195 if (edge
->recursive_p ())
1196 badness
= badness
.shift (badness
> 0 ? 4 : -4);
1197 if ((hints
& (INLINE_HINT_indirect_call
1198 | INLINE_HINT_loop_iterations
1199 | INLINE_HINT_array_index
1200 | INLINE_HINT_loop_stride
))
1201 || callee_info
->growth
<= 0)
1202 badness
= badness
.shift (badness
> 0 ? -2 : 2);
1203 if (hints
& (INLINE_HINT_same_scc
))
1204 badness
= badness
.shift (badness
> 0 ? 3 : -3);
1205 else if (hints
& (INLINE_HINT_in_scc
))
1206 badness
= badness
.shift (badness
> 0 ? 2 : -2);
1207 else if (hints
& (INLINE_HINT_cross_module
))
1208 badness
= badness
.shift (badness
> 0 ? 1 : -1);
1209 if (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
1210 badness
= badness
.shift (badness
> 0 ? -4 : 4);
1211 else if ((hints
& INLINE_HINT_declared_inline
))
1212 badness
= badness
.shift (badness
> 0 ? -3 : 3);
1214 fprintf (dump_file
, " Adjusted by hints %f\n", badness
.to_double ());
1218 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1220 update_edge_key (edge_heap_t
*heap
, struct cgraph_edge
*edge
)
1222 sreal badness
= edge_badness (edge
, false);
1225 edge_heap_node_t
*n
= (edge_heap_node_t
*) edge
->aux
;
1226 gcc_checking_assert (n
->get_data () == edge
);
1228 /* fibonacci_heap::replace_key does busy updating of the
1229 heap that is unnecesarily expensive.
1230 We do lazy increases: after extracting minimum if the key
1231 turns out to be out of date, it is re-inserted into heap
1232 with correct value. */
1233 if (badness
< n
->get_key ())
1235 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1238 " decreasing badness %s/%i -> %s/%i, %f"
1240 xstrdup_for_dump (edge
->caller
->name ()),
1241 edge
->caller
->order
,
1242 xstrdup_for_dump (edge
->callee
->name ()),
1243 edge
->callee
->order
,
1244 n
->get_key ().to_double (),
1245 badness
.to_double ());
1247 heap
->decrease_key (n
, badness
);
1252 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1255 " enqueuing call %s/%i -> %s/%i, badness %f\n",
1256 xstrdup_for_dump (edge
->caller
->name ()),
1257 edge
->caller
->order
,
1258 xstrdup_for_dump (edge
->callee
->name ()),
1259 edge
->callee
->order
,
1260 badness
.to_double ());
1262 edge
->aux
= heap
->insert (badness
, edge
);
1267 /* NODE was inlined.
1268 All caller edges needs to be resetted because
1269 size estimates change. Similarly callees needs reset
1270 because better context may be known. */
1273 reset_edge_caches (struct cgraph_node
*node
)
1275 struct cgraph_edge
*edge
;
1276 struct cgraph_edge
*e
= node
->callees
;
1277 struct cgraph_node
*where
= node
;
1278 struct ipa_ref
*ref
;
1280 if (where
->global
.inlined_to
)
1281 where
= where
->global
.inlined_to
;
1283 for (edge
= where
->callers
; edge
; edge
= edge
->next_caller
)
1284 if (edge
->inline_failed
)
1285 reset_edge_growth_cache (edge
);
1287 FOR_EACH_ALIAS (where
, ref
)
1288 reset_edge_caches (dyn_cast
<cgraph_node
*> (ref
->referring
));
1294 if (!e
->inline_failed
&& e
->callee
->callees
)
1295 e
= e
->callee
->callees
;
1298 if (e
->inline_failed
)
1299 reset_edge_growth_cache (e
);
1306 if (e
->caller
== node
)
1308 e
= e
->caller
->callers
;
1310 while (!e
->next_callee
);
1316 /* Recompute HEAP nodes for each of caller of NODE.
1317 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1318 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1319 it is inlinable. Otherwise check all edges. */
1322 update_caller_keys (edge_heap_t
*heap
, struct cgraph_node
*node
,
1323 bitmap updated_nodes
,
1324 struct cgraph_edge
*check_inlinablity_for
)
1326 struct cgraph_edge
*edge
;
1327 struct ipa_ref
*ref
;
1329 if ((!node
->alias
&& !inline_summaries
->get (node
)->inlinable
)
1330 || node
->global
.inlined_to
)
1332 if (!bitmap_set_bit (updated_nodes
, node
->uid
))
1335 FOR_EACH_ALIAS (node
, ref
)
1337 struct cgraph_node
*alias
= dyn_cast
<cgraph_node
*> (ref
->referring
);
1338 update_caller_keys (heap
, alias
, updated_nodes
, check_inlinablity_for
);
1341 for (edge
= node
->callers
; edge
; edge
= edge
->next_caller
)
1342 if (edge
->inline_failed
)
1344 if (!check_inlinablity_for
1345 || check_inlinablity_for
== edge
)
1347 if (can_inline_edge_p (edge
, false)
1348 && want_inline_small_function_p (edge
, false))
1349 update_edge_key (heap
, edge
);
1352 report_inline_failed_reason (edge
);
1353 heap
->delete_node ((edge_heap_node_t
*) edge
->aux
);
1358 update_edge_key (heap
, edge
);
1362 /* Recompute HEAP nodes for each uninlined call in NODE.
1363 This is used when we know that edge badnesses are going only to increase
1364 (we introduced new call site) and thus all we need is to insert newly
1365 created edges into heap. */
1368 update_callee_keys (edge_heap_t
*heap
, struct cgraph_node
*node
,
1369 bitmap updated_nodes
)
1371 struct cgraph_edge
*e
= node
->callees
;
1376 if (!e
->inline_failed
&& e
->callee
->callees
)
1377 e
= e
->callee
->callees
;
1380 enum availability avail
;
1381 struct cgraph_node
*callee
;
1382 /* We do not reset callee growth cache here. Since we added a new call,
1383 growth chould have just increased and consequentely badness metric
1384 don't need updating. */
1385 if (e
->inline_failed
1386 && (callee
= e
->callee
->ultimate_alias_target (&avail
, e
->caller
))
1387 && inline_summaries
->get (callee
)->inlinable
1388 && avail
>= AVAIL_AVAILABLE
1389 && !bitmap_bit_p (updated_nodes
, callee
->uid
))
1391 if (can_inline_edge_p (e
, false)
1392 && want_inline_small_function_p (e
, false))
1393 update_edge_key (heap
, e
);
1396 report_inline_failed_reason (e
);
1397 heap
->delete_node ((edge_heap_node_t
*) e
->aux
);
1407 if (e
->caller
== node
)
1409 e
= e
->caller
->callers
;
1411 while (!e
->next_callee
);
1417 /* Enqueue all recursive calls from NODE into priority queue depending on
1418 how likely we want to recursively inline the call. */
1421 lookup_recursive_calls (struct cgraph_node
*node
, struct cgraph_node
*where
,
1424 struct cgraph_edge
*e
;
1425 enum availability avail
;
1427 for (e
= where
->callees
; e
; e
= e
->next_callee
)
1428 if (e
->callee
== node
1429 || (e
->callee
->ultimate_alias_target (&avail
, e
->caller
) == node
1430 && avail
> AVAIL_INTERPOSABLE
))
1432 /* When profile feedback is available, prioritize by expected number
1434 heap
->insert (!max_count
? -e
->frequency
1435 : -(e
->count
/ ((max_count
+ (1<<24) - 1) / (1<<24))),
1438 for (e
= where
->callees
; e
; e
= e
->next_callee
)
1439 if (!e
->inline_failed
)
1440 lookup_recursive_calls (node
, e
->callee
, heap
);
1443 /* Decide on recursive inlining: in the case function has recursive calls,
1444 inline until body size reaches given argument. If any new indirect edges
1445 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1449 recursive_inlining (struct cgraph_edge
*edge
,
1450 vec
<cgraph_edge
*> *new_edges
)
1452 int limit
= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO
);
1453 edge_heap_t
heap (sreal::min ());
1454 struct cgraph_node
*node
;
1455 struct cgraph_edge
*e
;
1456 struct cgraph_node
*master_clone
= NULL
, *next
;
1460 node
= edge
->caller
;
1461 if (node
->global
.inlined_to
)
1462 node
= node
->global
.inlined_to
;
1464 if (DECL_DECLARED_INLINE_P (node
->decl
))
1465 limit
= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE
);
1467 /* Make sure that function is small enough to be considered for inlining. */
1468 if (estimate_size_after_inlining (node
, edge
) >= limit
)
1470 lookup_recursive_calls (node
, node
, &heap
);
1476 " Performing recursive inlining on %s\n",
1479 /* Do the inlining and update list of recursive call during process. */
1480 while (!heap
.empty ())
1482 struct cgraph_edge
*curr
= heap
.extract_min ();
1483 struct cgraph_node
*cnode
, *dest
= curr
->callee
;
1485 if (!can_inline_edge_p (curr
, true))
1488 /* MASTER_CLONE is produced in the case we already started modified
1489 the function. Be sure to redirect edge to the original body before
1490 estimating growths otherwise we will be seeing growths after inlining
1491 the already modified body. */
1494 curr
->redirect_callee (master_clone
);
1495 reset_edge_growth_cache (curr
);
1498 if (estimate_size_after_inlining (node
, curr
) > limit
)
1500 curr
->redirect_callee (dest
);
1501 reset_edge_growth_cache (curr
);
1506 for (cnode
= curr
->caller
;
1507 cnode
->global
.inlined_to
; cnode
= cnode
->callers
->caller
)
1509 == curr
->callee
->ultimate_alias_target ()->decl
)
1512 if (!want_inline_self_recursive_call_p (curr
, node
, false, depth
))
1514 curr
->redirect_callee (dest
);
1515 reset_edge_growth_cache (curr
);
1522 " Inlining call of depth %i", depth
);
1525 fprintf (dump_file
, " called approx. %.2f times per call",
1526 (double)curr
->count
/ node
->count
);
1528 fprintf (dump_file
, "\n");
1532 /* We need original clone to copy around. */
1533 master_clone
= node
->create_clone (node
->decl
, node
->count
,
1534 CGRAPH_FREQ_BASE
, false, vNULL
,
1536 for (e
= master_clone
->callees
; e
; e
= e
->next_callee
)
1537 if (!e
->inline_failed
)
1538 clone_inlined_nodes (e
, true, false, NULL
, CGRAPH_FREQ_BASE
);
1539 curr
->redirect_callee (master_clone
);
1540 reset_edge_growth_cache (curr
);
1543 inline_call (curr
, false, new_edges
, &overall_size
, true);
1544 lookup_recursive_calls (node
, curr
->callee
, &heap
);
1548 if (!heap
.empty () && dump_file
)
1549 fprintf (dump_file
, " Recursive inlining growth limit met.\n");
1556 "\n Inlined %i times, "
1557 "body grown from size %i to %i, time %i to %i\n", n
,
1558 inline_summaries
->get (master_clone
)->size
, inline_summaries
->get (node
)->size
,
1559 inline_summaries
->get (master_clone
)->time
, inline_summaries
->get (node
)->time
);
1561 /* Remove master clone we used for inlining. We rely that clones inlined
1562 into master clone gets queued just before master clone so we don't
1564 for (node
= symtab
->first_function (); node
!= master_clone
;
1567 next
= symtab
->next_function (node
);
1568 if (node
->global
.inlined_to
== master_clone
)
1571 master_clone
->remove ();
1576 /* Given whole compilation unit estimate of INSNS, compute how large we can
1577 allow the unit to grow. */
1580 compute_max_insns (int insns
)
1582 int max_insns
= insns
;
1583 if (max_insns
< PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
))
1584 max_insns
= PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
);
1586 return ((int64_t) max_insns
1587 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH
)) / 100);
1591 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1594 add_new_edges_to_heap (edge_heap_t
*heap
, vec
<cgraph_edge
*> new_edges
)
1596 while (new_edges
.length () > 0)
1598 struct cgraph_edge
*edge
= new_edges
.pop ();
1600 gcc_assert (!edge
->aux
);
1601 if (edge
->inline_failed
1602 && can_inline_edge_p (edge
, true)
1603 && want_inline_small_function_p (edge
, true))
1604 edge
->aux
= heap
->insert (edge_badness (edge
, false), edge
);
1608 /* Remove EDGE from the fibheap. */
1611 heap_edge_removal_hook (struct cgraph_edge
*e
, void *data
)
1615 ((edge_heap_t
*)data
)->delete_node ((edge_heap_node_t
*)e
->aux
);
1620 /* Return true if speculation of edge E seems useful.
1621 If ANTICIPATE_INLINING is true, be conservative and hope that E
1625 speculation_useful_p (struct cgraph_edge
*e
, bool anticipate_inlining
)
1627 enum availability avail
;
1628 struct cgraph_node
*target
= e
->callee
->ultimate_alias_target (&avail
,
1630 struct cgraph_edge
*direct
, *indirect
;
1631 struct ipa_ref
*ref
;
1633 gcc_assert (e
->speculative
&& !e
->indirect_unknown_callee
);
1635 if (!e
->maybe_hot_p ())
1638 /* See if IP optimizations found something potentially useful about the
1639 function. For now we look only for CONST/PURE flags. Almost everything
1640 else we propagate is useless. */
1641 if (avail
>= AVAIL_AVAILABLE
)
1643 int ecf_flags
= flags_from_decl_or_type (target
->decl
);
1644 if (ecf_flags
& ECF_CONST
)
1646 e
->speculative_call_info (direct
, indirect
, ref
);
1647 if (!(indirect
->indirect_info
->ecf_flags
& ECF_CONST
))
1650 else if (ecf_flags
& ECF_PURE
)
1652 e
->speculative_call_info (direct
, indirect
, ref
);
1653 if (!(indirect
->indirect_info
->ecf_flags
& ECF_PURE
))
1657 /* If we did not managed to inline the function nor redirect
1658 to an ipa-cp clone (that are seen by having local flag set),
1659 it is probably pointless to inline it unless hardware is missing
1660 indirect call predictor. */
1661 if (!anticipate_inlining
&& e
->inline_failed
&& !target
->local
.local
)
1663 /* For overwritable targets there is not much to do. */
1664 if (e
->inline_failed
&& !can_inline_edge_p (e
, false, true))
1666 /* OK, speculation seems interesting. */
1670 /* We know that EDGE is not going to be inlined.
1671 See if we can remove speculation. */
1674 resolve_noninline_speculation (edge_heap_t
*edge_heap
, struct cgraph_edge
*edge
)
1676 if (edge
->speculative
&& !speculation_useful_p (edge
, false))
1678 struct cgraph_node
*node
= edge
->caller
;
1679 struct cgraph_node
*where
= node
->global
.inlined_to
1680 ? node
->global
.inlined_to
: node
;
1681 bitmap updated_nodes
= BITMAP_ALLOC (NULL
);
1683 spec_rem
+= edge
->count
;
1684 edge
->resolve_speculation ();
1685 reset_edge_caches (where
);
1686 inline_update_overall_summary (where
);
1687 update_caller_keys (edge_heap
, where
,
1688 updated_nodes
, NULL
);
1689 update_callee_keys (edge_heap
, where
,
1691 BITMAP_FREE (updated_nodes
);
1695 /* Return true if NODE should be accounted for overall size estimate.
1696 Skip all nodes optimized for size so we can measure the growth of hot
1697 part of program no matter of the padding. */
1700 inline_account_function_p (struct cgraph_node
*node
)
1702 return (!DECL_EXTERNAL (node
->decl
)
1703 && !opt_for_fn (node
->decl
, optimize_size
)
1704 && node
->frequency
!= NODE_FREQUENCY_UNLIKELY_EXECUTED
);
1707 /* Count number of callers of NODE and store it into DATA (that
1708 points to int. Worker for cgraph_for_node_and_aliases. */
1711 sum_callers (struct cgraph_node
*node
, void *data
)
1713 struct cgraph_edge
*e
;
1714 int *num_calls
= (int *)data
;
1716 for (e
= node
->callers
; e
; e
= e
->next_caller
)
1721 /* We use greedy algorithm for inlining of small functions:
1722 All inline candidates are put into prioritized heap ordered in
1725 The inlining of small functions is bounded by unit growth parameters. */
1728 inline_small_functions (void)
1730 struct cgraph_node
*node
;
1731 struct cgraph_edge
*edge
;
1732 edge_heap_t
edge_heap (sreal::min ());
1733 bitmap updated_nodes
= BITMAP_ALLOC (NULL
);
1734 int min_size
, max_size
;
1735 auto_vec
<cgraph_edge
*> new_indirect_edges
;
1736 int initial_size
= 0;
1737 struct cgraph_node
**order
= XCNEWVEC (cgraph_node
*, symtab
->cgraph_count
);
1738 struct cgraph_edge_hook_list
*edge_removal_hook_holder
;
1739 new_indirect_edges
.create (8);
1741 edge_removal_hook_holder
1742 = symtab
->add_edge_removal_hook (&heap_edge_removal_hook
, &edge_heap
);
1744 /* Compute overall unit size and other global parameters used by badness
1748 ipa_reduced_postorder (order
, true, true, NULL
);
1751 FOR_EACH_DEFINED_FUNCTION (node
)
1752 if (!node
->global
.inlined_to
)
1754 if (!node
->alias
&& node
->analyzed
1755 && (node
->has_gimple_body_p () || node
->thunk
.thunk_p
))
1757 struct inline_summary
*info
= inline_summaries
->get (node
);
1758 struct ipa_dfs_info
*dfs
= (struct ipa_dfs_info
*) node
->aux
;
1760 /* Do not account external functions, they will be optimized out
1761 if not inlined. Also only count the non-cold portion of program. */
1762 if (inline_account_function_p (node
))
1763 initial_size
+= info
->size
;
1764 info
->growth
= estimate_growth (node
);
1767 node
->call_for_symbol_and_aliases (sum_callers
, &num_calls
,
1770 info
->single_caller
= true;
1771 if (dfs
&& dfs
->next_cycle
)
1773 struct cgraph_node
*n2
;
1774 int id
= dfs
->scc_no
+ 1;
1776 n2
= ((struct ipa_dfs_info
*) node
->aux
)->next_cycle
)
1778 struct inline_summary
*info2
= inline_summaries
->get (n2
);
1786 for (edge
= node
->callers
; edge
; edge
= edge
->next_caller
)
1787 if (max_count
< edge
->count
)
1788 max_count
= edge
->count
;
1790 ipa_free_postorder_info ();
1791 initialize_growth_caches ();
1795 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1798 overall_size
= initial_size
;
1799 max_size
= compute_max_insns (overall_size
);
1800 min_size
= overall_size
;
1802 /* Populate the heap with all edges we might inline. */
1804 FOR_EACH_DEFINED_FUNCTION (node
)
1806 bool update
= false;
1807 struct cgraph_edge
*next
= NULL
;
1808 bool has_speculative
= false;
1811 fprintf (dump_file
, "Enqueueing calls in %s/%i.\n",
1812 node
->name (), node
->order
);
1814 for (edge
= node
->callees
; edge
; edge
= next
)
1816 next
= edge
->next_callee
;
1817 if (edge
->inline_failed
1819 && can_inline_edge_p (edge
, true)
1820 && want_inline_small_function_p (edge
, true)
1821 && edge
->inline_failed
)
1823 gcc_assert (!edge
->aux
);
1824 update_edge_key (&edge_heap
, edge
);
1826 if (edge
->speculative
)
1827 has_speculative
= true;
1829 if (has_speculative
)
1830 for (edge
= node
->callees
; edge
; edge
= next
)
1831 if (edge
->speculative
&& !speculation_useful_p (edge
,
1834 edge
->resolve_speculation ();
1839 struct cgraph_node
*where
= node
->global
.inlined_to
1840 ? node
->global
.inlined_to
: node
;
1841 inline_update_overall_summary (where
);
1842 reset_edge_caches (where
);
1843 update_caller_keys (&edge_heap
, where
,
1844 updated_nodes
, NULL
);
1845 update_callee_keys (&edge_heap
, where
,
1847 bitmap_clear (updated_nodes
);
1851 gcc_assert (in_lto_p
1853 || (profile_info
&& flag_branch_probabilities
));
1855 while (!edge_heap
.empty ())
1857 int old_size
= overall_size
;
1858 struct cgraph_node
*where
, *callee
;
1859 sreal badness
= edge_heap
.min_key ();
1860 sreal current_badness
;
1863 edge
= edge_heap
.extract_min ();
1864 gcc_assert (edge
->aux
);
1866 if (!edge
->inline_failed
|| !edge
->callee
->analyzed
)
1870 /* Be sure that caches are maintained consistent. */
1871 sreal cached_badness
= edge_badness (edge
, false);
1873 int old_size_est
= estimate_edge_size (edge
);
1874 int old_time_est
= estimate_edge_time (edge
);
1875 int old_hints_est
= estimate_edge_hints (edge
);
1877 reset_edge_growth_cache (edge
);
1878 gcc_assert (old_size_est
== estimate_edge_size (edge
));
1879 gcc_assert (old_time_est
== estimate_edge_time (edge
));
1882 gcc_assert (old_hints_est == estimate_edge_hints (edge));
1884 fails with profile feedback because some hints depends on
1885 maybe_hot_edge_p predicate and because callee gets inlined to other
1886 calls, the edge may become cold.
1887 This ought to be fixed by computing relative probabilities
1888 for given invocation but that will be better done once whole
1889 code is converted to sreals. Disable for now and revert to "wrong"
1890 value so enable/disable checking paths agree. */
1891 edge_growth_cache
[edge
->uid
].hints
= old_hints_est
+ 1;
1893 /* When updating the edge costs, we only decrease badness in the keys.
1894 Increases of badness are handled lazilly; when we see key with out
1895 of date value on it, we re-insert it now. */
1896 current_badness
= edge_badness (edge
, false);
1897 /* Disable checking for profile because roundoff errors may cause slight
1898 deviations in the order. */
1899 gcc_assert (max_count
|| cached_badness
== current_badness
);
1900 gcc_assert (current_badness
>= badness
);
1902 current_badness
= edge_badness (edge
, false);
1904 if (current_badness
!= badness
)
1906 if (edge_heap
.min () && current_badness
> edge_heap
.min_key ())
1908 edge
->aux
= edge_heap
.insert (current_badness
, edge
);
1912 badness
= current_badness
;
1915 if (!can_inline_edge_p (edge
, true))
1917 resolve_noninline_speculation (&edge_heap
, edge
);
1921 callee
= edge
->callee
->ultimate_alias_target ();
1922 growth
= estimate_edge_growth (edge
);
1926 "\nConsidering %s/%i with %i size\n",
1927 callee
->name (), callee
->order
,
1928 inline_summaries
->get (callee
)->size
);
1930 " to be inlined into %s/%i in %s:%i\n"
1931 " Estimated badness is %f, frequency %.2f.\n",
1932 edge
->caller
->name (), edge
->caller
->order
,
1934 && (LOCATION_LOCUS (gimple_location ((const gimple
*)
1936 > BUILTINS_LOCATION
)
1937 ? gimple_filename ((const gimple
*) edge
->call_stmt
)
1940 ? gimple_lineno ((const gimple
*) edge
->call_stmt
)
1942 badness
.to_double (),
1943 edge
->frequency
/ (double)CGRAPH_FREQ_BASE
);
1945 fprintf (dump_file
," Called %" PRId64
"x\n",
1947 if (dump_flags
& TDF_DETAILS
)
1948 edge_badness (edge
, true);
1951 if (overall_size
+ growth
> max_size
1952 && !DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
1954 edge
->inline_failed
= CIF_INLINE_UNIT_GROWTH_LIMIT
;
1955 report_inline_failed_reason (edge
);
1956 resolve_noninline_speculation (&edge_heap
, edge
);
1960 if (!want_inline_small_function_p (edge
, true))
1962 resolve_noninline_speculation (&edge_heap
, edge
);
1966 /* Heuristics for inlining small functions work poorly for
1967 recursive calls where we do effects similar to loop unrolling.
1968 When inlining such edge seems profitable, leave decision on
1969 specific inliner. */
1970 if (edge
->recursive_p ())
1972 where
= edge
->caller
;
1973 if (where
->global
.inlined_to
)
1974 where
= where
->global
.inlined_to
;
1975 if (!recursive_inlining (edge
,
1976 opt_for_fn (edge
->caller
->decl
,
1977 flag_indirect_inlining
)
1978 ? &new_indirect_edges
: NULL
))
1980 edge
->inline_failed
= CIF_RECURSIVE_INLINING
;
1981 resolve_noninline_speculation (&edge_heap
, edge
);
1984 reset_edge_caches (where
);
1985 /* Recursive inliner inlines all recursive calls of the function
1986 at once. Consequently we need to update all callee keys. */
1987 if (opt_for_fn (edge
->caller
->decl
, flag_indirect_inlining
))
1988 add_new_edges_to_heap (&edge_heap
, new_indirect_edges
);
1989 update_callee_keys (&edge_heap
, where
, updated_nodes
);
1990 bitmap_clear (updated_nodes
);
1994 struct cgraph_node
*outer_node
= NULL
;
1997 /* Consider the case where self recursive function A is inlined
1998 into B. This is desired optimization in some cases, since it
1999 leads to effect similar of loop peeling and we might completely
2000 optimize out the recursive call. However we must be extra
2003 where
= edge
->caller
;
2004 while (where
->global
.inlined_to
)
2006 if (where
->decl
== callee
->decl
)
2007 outer_node
= where
, depth
++;
2008 where
= where
->callers
->caller
;
2011 && !want_inline_self_recursive_call_p (edge
, outer_node
,
2015 = (DECL_DISREGARD_INLINE_LIMITS (edge
->callee
->decl
)
2016 ? CIF_RECURSIVE_INLINING
: CIF_UNSPECIFIED
);
2017 resolve_noninline_speculation (&edge_heap
, edge
);
2020 else if (depth
&& dump_file
)
2021 fprintf (dump_file
, " Peeling recursion with depth %i\n", depth
);
2023 gcc_checking_assert (!callee
->global
.inlined_to
);
2024 inline_call (edge
, true, &new_indirect_edges
, &overall_size
, true);
2025 add_new_edges_to_heap (&edge_heap
, new_indirect_edges
);
2027 reset_edge_caches (edge
->callee
);
2029 update_callee_keys (&edge_heap
, where
, updated_nodes
);
2031 where
= edge
->caller
;
2032 if (where
->global
.inlined_to
)
2033 where
= where
->global
.inlined_to
;
2035 /* Our profitability metric can depend on local properties
2036 such as number of inlinable calls and size of the function body.
2037 After inlining these properties might change for the function we
2038 inlined into (since it's body size changed) and for the functions
2039 called by function we inlined (since number of it inlinable callers
2041 update_caller_keys (&edge_heap
, where
, updated_nodes
, NULL
);
2042 /* Offline copy count has possibly changed, recompute if profile is
2046 struct cgraph_node
*n
= cgraph_node::get (edge
->callee
->decl
);
2047 if (n
!= edge
->callee
&& n
->analyzed
)
2048 update_callee_keys (&edge_heap
, n
, updated_nodes
);
2050 bitmap_clear (updated_nodes
);
2055 " Inlined into %s which now has time %i and size %i, "
2056 "net change of %+i.\n",
2057 edge
->caller
->name (),
2058 inline_summaries
->get (edge
->caller
)->time
,
2059 inline_summaries
->get (edge
->caller
)->size
,
2060 overall_size
- old_size
);
2062 if (min_size
> overall_size
)
2064 min_size
= overall_size
;
2065 max_size
= compute_max_insns (min_size
);
2068 fprintf (dump_file
, "New minimal size reached: %i\n", min_size
);
2072 free_growth_caches ();
2075 "Unit growth for small function inlining: %i->%i (%i%%)\n",
2076 initial_size
, overall_size
,
2077 initial_size
? overall_size
* 100 / (initial_size
) - 100: 0);
2078 BITMAP_FREE (updated_nodes
);
2079 symtab
->remove_edge_removal_hook (edge_removal_hook_holder
);
2082 /* Flatten NODE. Performed both during early inlining and
2083 at IPA inlining time. */
2086 flatten_function (struct cgraph_node
*node
, bool early
)
2088 struct cgraph_edge
*e
;
2090 /* We shouldn't be called recursively when we are being processed. */
2091 gcc_assert (node
->aux
== NULL
);
2093 node
->aux
= (void *) node
;
2095 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2097 struct cgraph_node
*orig_callee
;
2098 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
2100 /* We've hit cycle? It is time to give up. */
2105 "Not inlining %s into %s to avoid cycle.\n",
2106 xstrdup_for_dump (callee
->name ()),
2107 xstrdup_for_dump (e
->caller
->name ()));
2108 e
->inline_failed
= CIF_RECURSIVE_INLINING
;
2112 /* When the edge is already inlined, we just need to recurse into
2113 it in order to fully flatten the leaves. */
2114 if (!e
->inline_failed
)
2116 flatten_function (callee
, early
);
2120 /* Flatten attribute needs to be processed during late inlining. For
2121 extra code quality we however do flattening during early optimization,
2124 ? !can_inline_edge_p (e
, true)
2125 : !can_early_inline_edge_p (e
))
2128 if (e
->recursive_p ())
2131 fprintf (dump_file
, "Not inlining: recursive call.\n");
2135 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node
->decl
))
2136 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee
->decl
)))
2139 fprintf (dump_file
, "Not inlining: SSA form does not match.\n");
2143 /* Inline the edge and flatten the inline clone. Avoid
2144 recursing through the original node if the node was cloned. */
2146 fprintf (dump_file
, " Inlining %s into %s.\n",
2147 xstrdup_for_dump (callee
->name ()),
2148 xstrdup_for_dump (e
->caller
->name ()));
2149 orig_callee
= callee
;
2150 inline_call (e
, true, NULL
, NULL
, false);
2151 if (e
->callee
!= orig_callee
)
2152 orig_callee
->aux
= (void *) node
;
2153 flatten_function (e
->callee
, early
);
2154 if (e
->callee
!= orig_callee
)
2155 orig_callee
->aux
= NULL
;
2159 if (!node
->global
.inlined_to
)
2160 inline_update_overall_summary (node
);
2163 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
2164 DATA points to number of calls originally found so we avoid infinite
2168 inline_to_all_callers_1 (struct cgraph_node
*node
, void *data
,
2169 hash_set
<cgraph_node
*> *callers
)
2171 int *num_calls
= (int *)data
;
2172 bool callee_removed
= false;
2174 while (node
->callers
&& !node
->global
.inlined_to
)
2176 struct cgraph_node
*caller
= node
->callers
->caller
;
2178 if (!can_inline_edge_p (node
->callers
, true)
2179 || node
->callers
->recursive_p ())
2182 fprintf (dump_file
, "Uninlinable call found; giving up.\n");
2190 "\nInlining %s size %i.\n",
2192 inline_summaries
->get (node
)->size
);
2194 " Called once from %s %i insns.\n",
2195 node
->callers
->caller
->name (),
2196 inline_summaries
->get (node
->callers
->caller
)->size
);
2199 /* Remember which callers we inlined to, delaying updating the
2201 callers
->add (node
->callers
->caller
);
2202 inline_call (node
->callers
, true, NULL
, NULL
, false, &callee_removed
);
2205 " Inlined into %s which now has %i size\n",
2207 inline_summaries
->get (caller
)->size
);
2208 if (!(*num_calls
)--)
2211 fprintf (dump_file
, "New calls found; giving up.\n");
2212 return callee_removed
;
2220 /* Wrapper around inline_to_all_callers_1 doing delayed overall summary
2224 inline_to_all_callers (struct cgraph_node
*node
, void *data
)
2226 hash_set
<cgraph_node
*> callers
;
2227 bool res
= inline_to_all_callers_1 (node
, data
, &callers
);
2228 /* Perform the delayed update of the overall summary of all callers
2229 processed. This avoids quadratic behavior in the cases where
2230 we have a lot of calls to the same function. */
2231 for (hash_set
<cgraph_node
*>::iterator i
= callers
.begin ();
2232 i
!= callers
.end (); ++i
)
2233 inline_update_overall_summary (*i
);
2237 /* Output overall time estimate. */
2239 dump_overall_stats (void)
2241 int64_t sum_weighted
= 0, sum
= 0;
2242 struct cgraph_node
*node
;
2244 FOR_EACH_DEFINED_FUNCTION (node
)
2245 if (!node
->global
.inlined_to
2248 int time
= inline_summaries
->get (node
)->time
;
2250 sum_weighted
+= time
* node
->count
;
2252 fprintf (dump_file
, "Overall time estimate: "
2253 "%" PRId64
" weighted by profile: "
2254 "%" PRId64
"\n", sum
, sum_weighted
);
2257 /* Output some useful stats about inlining. */
2260 dump_inline_stats (void)
2262 int64_t inlined_cnt
= 0, inlined_indir_cnt
= 0;
2263 int64_t inlined_virt_cnt
= 0, inlined_virt_indir_cnt
= 0;
2264 int64_t noninlined_cnt
= 0, noninlined_indir_cnt
= 0;
2265 int64_t noninlined_virt_cnt
= 0, noninlined_virt_indir_cnt
= 0;
2266 int64_t inlined_speculative
= 0, inlined_speculative_ply
= 0;
2267 int64_t indirect_poly_cnt
= 0, indirect_cnt
= 0;
2268 int64_t reason
[CIF_N_REASONS
][3];
2270 struct cgraph_node
*node
;
2272 memset (reason
, 0, sizeof (reason
));
2273 FOR_EACH_DEFINED_FUNCTION (node
)
2275 struct cgraph_edge
*e
;
2276 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2278 if (e
->inline_failed
)
2280 reason
[(int) e
->inline_failed
][0] += e
->count
;
2281 reason
[(int) e
->inline_failed
][1] += e
->frequency
;
2282 reason
[(int) e
->inline_failed
][2] ++;
2283 if (DECL_VIRTUAL_P (e
->callee
->decl
))
2285 if (e
->indirect_inlining_edge
)
2286 noninlined_virt_indir_cnt
+= e
->count
;
2288 noninlined_virt_cnt
+= e
->count
;
2292 if (e
->indirect_inlining_edge
)
2293 noninlined_indir_cnt
+= e
->count
;
2295 noninlined_cnt
+= e
->count
;
2302 if (DECL_VIRTUAL_P (e
->callee
->decl
))
2303 inlined_speculative_ply
+= e
->count
;
2305 inlined_speculative
+= e
->count
;
2307 else if (DECL_VIRTUAL_P (e
->callee
->decl
))
2309 if (e
->indirect_inlining_edge
)
2310 inlined_virt_indir_cnt
+= e
->count
;
2312 inlined_virt_cnt
+= e
->count
;
2316 if (e
->indirect_inlining_edge
)
2317 inlined_indir_cnt
+= e
->count
;
2319 inlined_cnt
+= e
->count
;
2323 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
2324 if (e
->indirect_info
->polymorphic
)
2325 indirect_poly_cnt
+= e
->count
;
2327 indirect_cnt
+= e
->count
;
2332 "Inlined %" PRId64
" + speculative "
2333 "%" PRId64
" + speculative polymorphic "
2334 "%" PRId64
" + previously indirect "
2335 "%" PRId64
" + virtual "
2336 "%" PRId64
" + virtual and previously indirect "
2337 "%" PRId64
"\n" "Not inlined "
2338 "%" PRId64
" + previously indirect "
2339 "%" PRId64
" + virtual "
2340 "%" PRId64
" + virtual and previously indirect "
2341 "%" PRId64
" + stil indirect "
2342 "%" PRId64
" + still indirect polymorphic "
2343 "%" PRId64
"\n", inlined_cnt
,
2344 inlined_speculative
, inlined_speculative_ply
,
2345 inlined_indir_cnt
, inlined_virt_cnt
, inlined_virt_indir_cnt
,
2346 noninlined_cnt
, noninlined_indir_cnt
, noninlined_virt_cnt
,
2347 noninlined_virt_indir_cnt
, indirect_cnt
, indirect_poly_cnt
);
2349 "Removed speculations %" PRId64
"\n",
2352 dump_overall_stats ();
2353 fprintf (dump_file
, "\nWhy inlining failed?\n");
2354 for (i
= 0; i
< CIF_N_REASONS
; i
++)
2356 fprintf (dump_file
, "%-50s: %8i calls, %8i freq, %" PRId64
" count\n",
2357 cgraph_inline_failed_string ((cgraph_inline_failed_t
) i
),
2358 (int) reason
[i
][2], (int) reason
[i
][1], reason
[i
][0]);
2361 /* Decide on the inlining. We do so in the topological order to avoid
2362 expenses on updating data structures. */
2367 struct cgraph_node
*node
;
2369 struct cgraph_node
**order
;
2372 bool remove_functions
= false;
2377 cgraph_freq_base_rec
= (sreal
) 1 / (sreal
) CGRAPH_FREQ_BASE
;
2378 percent_rec
= (sreal
) 1 / (sreal
) 100;
2380 order
= XCNEWVEC (struct cgraph_node
*, symtab
->cgraph_count
);
2382 if (in_lto_p
&& optimize
)
2383 ipa_update_after_lto_read ();
2386 dump_inline_summaries (dump_file
);
2388 nnodes
= ipa_reverse_postorder (order
);
2390 FOR_EACH_FUNCTION (node
)
2394 /* Recompute the default reasons for inlining because they may have
2395 changed during merging. */
2398 for (cgraph_edge
*e
= node
->callees
; e
; e
= e
->next_callee
)
2400 gcc_assert (e
->inline_failed
);
2401 initialize_inline_failed (e
);
2403 for (cgraph_edge
*e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
2404 initialize_inline_failed (e
);
2409 fprintf (dump_file
, "\nFlattening functions:\n");
2411 /* In the first pass handle functions to be flattened. Do this with
2412 a priority so none of our later choices will make this impossible. */
2413 for (i
= nnodes
- 1; i
>= 0; i
--)
2417 /* Handle nodes to be flattened.
2418 Ideally when processing callees we stop inlining at the
2419 entry of cycles, possibly cloning that entry point and
2420 try to flatten itself turning it into a self-recursive
2422 if (lookup_attribute ("flatten",
2423 DECL_ATTRIBUTES (node
->decl
)) != NULL
)
2427 "Flattening %s\n", node
->name ());
2428 flatten_function (node
, false);
2432 dump_overall_stats ();
2434 inline_small_functions ();
2436 gcc_assert (symtab
->state
== IPA_SSA
);
2437 symtab
->state
= IPA_SSA_AFTER_INLINING
;
2438 /* Do first after-inlining removal. We want to remove all "stale" extern
2439 inline functions and virtual functions so we really know what is called
2441 symtab
->remove_unreachable_nodes (dump_file
);
2444 /* Inline functions with a property that after inlining into all callers the
2445 code size will shrink because the out-of-line copy is eliminated.
2446 We do this regardless on the callee size as long as function growth limits
2450 "\nDeciding on functions to be inlined into all callers and "
2451 "removing useless speculations:\n");
2453 /* Inlining one function called once has good chance of preventing
2454 inlining other function into the same callee. Ideally we should
2455 work in priority order, but probably inlining hot functions first
2456 is good cut without the extra pain of maintaining the queue.
2458 ??? this is not really fitting the bill perfectly: inlining function
2459 into callee often leads to better optimization of callee due to
2460 increased context for optimization.
2461 For example if main() function calls a function that outputs help
2462 and then function that does the main optmization, we should inline
2463 the second with priority even if both calls are cold by themselves.
2465 We probably want to implement new predicate replacing our use of
2466 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2468 for (cold
= 0; cold
<= 1; cold
++)
2470 FOR_EACH_DEFINED_FUNCTION (node
)
2472 struct cgraph_edge
*edge
, *next
;
2475 for (edge
= node
->callees
; edge
; edge
= next
)
2477 next
= edge
->next_callee
;
2478 if (edge
->speculative
&& !speculation_useful_p (edge
, false))
2480 edge
->resolve_speculation ();
2481 spec_rem
+= edge
->count
;
2483 remove_functions
= true;
2488 struct cgraph_node
*where
= node
->global
.inlined_to
2489 ? node
->global
.inlined_to
: node
;
2490 reset_edge_caches (where
);
2491 inline_update_overall_summary (where
);
2493 if (want_inline_function_to_all_callers_p (node
, cold
))
2496 node
->call_for_symbol_and_aliases (sum_callers
, &num_calls
,
2498 while (node
->call_for_symbol_and_aliases
2499 (inline_to_all_callers
, &num_calls
, true))
2501 remove_functions
= true;
2506 /* Free ipa-prop structures if they are no longer needed. */
2508 ipa_free_all_structures_after_iinln ();
2513 "\nInlined %i calls, eliminated %i functions\n\n",
2514 ncalls_inlined
, nfunctions_inlined
);
2515 dump_inline_stats ();
2519 dump_inline_summaries (dump_file
);
2520 /* In WPA we use inline summaries for partitioning process. */
2522 inline_free_summary ();
2523 return remove_functions
? TODO_remove_functions
: 0;
2526 /* Inline always-inline function calls in NODE. */
2529 inline_always_inline_functions (struct cgraph_node
*node
)
2531 struct cgraph_edge
*e
;
2532 bool inlined
= false;
2534 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2536 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
2537 if (!DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
2540 if (e
->recursive_p ())
2543 fprintf (dump_file
, " Not inlining recursive call to %s.\n",
2544 e
->callee
->name ());
2545 e
->inline_failed
= CIF_RECURSIVE_INLINING
;
2549 if (!can_early_inline_edge_p (e
))
2551 /* Set inlined to true if the callee is marked "always_inline" but
2552 is not inlinable. This will allow flagging an error later in
2553 expand_call_inline in tree-inline.c. */
2554 if (lookup_attribute ("always_inline",
2555 DECL_ATTRIBUTES (callee
->decl
)) != NULL
)
2561 fprintf (dump_file
, " Inlining %s into %s (always_inline).\n",
2562 xstrdup_for_dump (e
->callee
->name ()),
2563 xstrdup_for_dump (e
->caller
->name ()));
2564 inline_call (e
, true, NULL
, NULL
, false);
2568 inline_update_overall_summary (node
);
2573 /* Decide on the inlining. We do so in the topological order to avoid
2574 expenses on updating data structures. */
2577 early_inline_small_functions (struct cgraph_node
*node
)
2579 struct cgraph_edge
*e
;
2580 bool inlined
= false;
2582 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2584 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
2585 if (!inline_summaries
->get (callee
)->inlinable
2586 || !e
->inline_failed
)
2589 /* Do not consider functions not declared inline. */
2590 if (!DECL_DECLARED_INLINE_P (callee
->decl
)
2591 && !opt_for_fn (node
->decl
, flag_inline_small_functions
)
2592 && !opt_for_fn (node
->decl
, flag_inline_functions
))
2596 fprintf (dump_file
, "Considering inline candidate %s.\n",
2599 if (!can_early_inline_edge_p (e
))
2602 if (e
->recursive_p ())
2605 fprintf (dump_file
, " Not inlining: recursive call.\n");
2609 if (!want_early_inline_function_p (e
))
2613 fprintf (dump_file
, " Inlining %s into %s.\n",
2614 xstrdup_for_dump (callee
->name ()),
2615 xstrdup_for_dump (e
->caller
->name ()));
2616 inline_call (e
, true, NULL
, NULL
, false);
2621 inline_update_overall_summary (node
);
2627 early_inliner (function
*fun
)
2629 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
2630 struct cgraph_edge
*edge
;
2631 unsigned int todo
= 0;
2633 bool inlined
= false;
2638 /* Do nothing if datastructures for ipa-inliner are already computed. This
2639 happens when some pass decides to construct new function and
2640 cgraph_add_new_function calls lowering passes and early optimization on
2641 it. This may confuse ourself when early inliner decide to inline call to
2642 function clone, because function clones don't have parameter list in
2643 ipa-prop matching their signature. */
2644 if (ipa_node_params_sum
)
2649 node
->remove_all_references ();
2651 /* Rebuild this reference because it dosn't depend on
2652 function's body and it's required to pass cgraph_node
2654 if (node
->instrumented_version
2655 && !node
->instrumentation_clone
)
2656 node
->create_reference (node
->instrumented_version
, IPA_REF_CHKP
, NULL
);
2658 /* Even when not optimizing or not inlining inline always-inline
2660 inlined
= inline_always_inline_functions (node
);
2664 || !flag_early_inlining
2665 /* Never inline regular functions into always-inline functions
2666 during incremental inlining. This sucks as functions calling
2667 always inline functions will get less optimized, but at the
2668 same time inlining of functions calling always inline
2669 function into an always inline function might introduce
2670 cycles of edges to be always inlined in the callgraph.
2672 We might want to be smarter and just avoid this type of inlining. */
2673 || (DECL_DISREGARD_INLINE_LIMITS (node
->decl
)
2674 && lookup_attribute ("always_inline",
2675 DECL_ATTRIBUTES (node
->decl
))))
2677 else if (lookup_attribute ("flatten",
2678 DECL_ATTRIBUTES (node
->decl
)) != NULL
)
2680 /* When the function is marked to be flattened, recursively inline
2684 "Flattening %s\n", node
->name ());
2685 flatten_function (node
, true);
2690 /* If some always_inline functions was inlined, apply the changes.
2691 This way we will not account always inline into growth limits and
2692 moreover we will inline calls from always inlines that we skipped
2693 previously because of conditional above. */
2696 timevar_push (TV_INTEGRATION
);
2697 todo
|= optimize_inline_calls (current_function_decl
);
2698 /* optimize_inline_calls call above might have introduced new
2699 statements that don't have inline parameters computed. */
2700 for (edge
= node
->callees
; edge
; edge
= edge
->next_callee
)
2702 if (inline_edge_summary_vec
.length () > (unsigned) edge
->uid
)
2704 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
2706 = estimate_num_insns (edge
->call_stmt
, &eni_size_weights
);
2708 = estimate_num_insns (edge
->call_stmt
, &eni_time_weights
);
2711 inline_update_overall_summary (node
);
2713 timevar_pop (TV_INTEGRATION
);
2715 /* We iterate incremental inlining to get trivial cases of indirect
2717 while (iterations
< PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS
)
2718 && early_inline_small_functions (node
))
2720 timevar_push (TV_INTEGRATION
);
2721 todo
|= optimize_inline_calls (current_function_decl
);
2723 /* Technically we ought to recompute inline parameters so the new
2724 iteration of early inliner works as expected. We however have
2725 values approximately right and thus we only need to update edge
2726 info that might be cleared out for newly discovered edges. */
2727 for (edge
= node
->callees
; edge
; edge
= edge
->next_callee
)
2729 /* We have no summary for new bound store calls yet. */
2730 if (inline_edge_summary_vec
.length () > (unsigned)edge
->uid
)
2732 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
2734 = estimate_num_insns (edge
->call_stmt
, &eni_size_weights
);
2736 = estimate_num_insns (edge
->call_stmt
, &eni_time_weights
);
2738 if (edge
->callee
->decl
2739 && !gimple_check_call_matching_types (
2740 edge
->call_stmt
, edge
->callee
->decl
, false))
2742 edge
->inline_failed
= CIF_MISMATCHED_ARGUMENTS
;
2743 edge
->call_stmt_cannot_inline_p
= true;
2746 if (iterations
< PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS
) - 1)
2747 inline_update_overall_summary (node
);
2748 timevar_pop (TV_INTEGRATION
);
2753 fprintf (dump_file
, "Iterations: %i\n", iterations
);
2758 timevar_push (TV_INTEGRATION
);
2759 todo
|= optimize_inline_calls (current_function_decl
);
2760 timevar_pop (TV_INTEGRATION
);
2763 fun
->always_inline_functions_inlined
= true;
2768 /* Do inlining of small functions. Doing so early helps profiling and other
2769 passes to be somewhat more effective and avoids some code duplication in
2770 later real inlining pass for testcases with very many function calls. */
2774 const pass_data pass_data_early_inline
=
2776 GIMPLE_PASS
, /* type */
2777 "einline", /* name */
2778 OPTGROUP_INLINE
, /* optinfo_flags */
2779 TV_EARLY_INLINING
, /* tv_id */
2780 PROP_ssa
, /* properties_required */
2781 0, /* properties_provided */
2782 0, /* properties_destroyed */
2783 0, /* todo_flags_start */
2784 0, /* todo_flags_finish */
2787 class pass_early_inline
: public gimple_opt_pass
2790 pass_early_inline (gcc::context
*ctxt
)
2791 : gimple_opt_pass (pass_data_early_inline
, ctxt
)
2794 /* opt_pass methods: */
2795 virtual unsigned int execute (function
*);
2797 }; // class pass_early_inline
2800 pass_early_inline::execute (function
*fun
)
2802 return early_inliner (fun
);
2808 make_pass_early_inline (gcc::context
*ctxt
)
2810 return new pass_early_inline (ctxt
);
2815 const pass_data pass_data_ipa_inline
=
2817 IPA_PASS
, /* type */
2818 "inline", /* name */
2819 OPTGROUP_INLINE
, /* optinfo_flags */
2820 TV_IPA_INLINING
, /* tv_id */
2821 0, /* properties_required */
2822 0, /* properties_provided */
2823 0, /* properties_destroyed */
2824 0, /* todo_flags_start */
2825 ( TODO_dump_symtab
), /* todo_flags_finish */
2828 class pass_ipa_inline
: public ipa_opt_pass_d
2831 pass_ipa_inline (gcc::context
*ctxt
)
2832 : ipa_opt_pass_d (pass_data_ipa_inline
, ctxt
,
2833 inline_generate_summary
, /* generate_summary */
2834 inline_write_summary
, /* write_summary */
2835 inline_read_summary
, /* read_summary */
2836 NULL
, /* write_optimization_summary */
2837 NULL
, /* read_optimization_summary */
2838 NULL
, /* stmt_fixup */
2839 0, /* function_transform_todo_flags_start */
2840 inline_transform
, /* function_transform */
2841 NULL
) /* variable_transform */
2844 /* opt_pass methods: */
2845 virtual unsigned int execute (function
*) { return ipa_inline (); }
2847 }; // class pass_ipa_inline
2852 make_pass_ipa_inline (gcc::context
*ctxt
)
2854 return new pass_ipa_inline (ctxt
);