1 /* Detect paths through the CFG which can never be executed in a conforming
2 program and isolate them.
4 Copyright (C) 2013-2017 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "tree-pass.h"
31 #include "diagnostic-core.h"
32 #include "fold-const.h"
33 #include "gimple-iterator.h"
34 #include "gimple-walk.h"
42 static bool cfg_altered
;
44 /* Callback for walk_stmt_load_store_ops.
46 Return TRUE if OP will dereference the tree stored in DATA, FALSE
49 This routine only makes a superficial check for a dereference. Thus,
50 it must only be used if it is safe to return a false negative. */
52 check_loadstore (gimple
*stmt
, tree op
, tree
, void *data
)
54 if ((TREE_CODE (op
) == MEM_REF
|| TREE_CODE (op
) == TARGET_MEM_REF
)
55 && operand_equal_p (TREE_OPERAND (op
, 0), (tree
)data
, 0))
57 TREE_THIS_VOLATILE (op
) = 1;
58 TREE_SIDE_EFFECTS (op
) = 1;
65 /* Insert a trap after SI and split the block after the trap. */
68 insert_trap (gimple_stmt_iterator
*si_p
, tree op
)
70 /* We want the NULL pointer dereference to actually occur so that
71 code that wishes to catch the signal can do so.
73 If the dereference is a load, then there's nothing to do as the
74 LHS will be a throw-away SSA_NAME and the RHS is the NULL dereference.
76 If the dereference is a store and we can easily transform the RHS,
77 then simplify the RHS to enable more DCE. Note that we require the
78 statement to be a GIMPLE_ASSIGN which filters out calls on the RHS. */
79 gimple
*stmt
= gsi_stmt (*si_p
);
80 if (walk_stmt_load_store_ops (stmt
, (void *)op
, NULL
, check_loadstore
)
81 && is_gimple_assign (stmt
)
82 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt
))))
84 /* We just need to turn the RHS into zero converted to the proper
86 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
87 gimple_assign_set_rhs_code (stmt
, INTEGER_CST
);
88 gimple_assign_set_rhs1 (stmt
, fold_convert (type
, integer_zero_node
));
93 = gimple_build_call (builtin_decl_explicit (BUILT_IN_TRAP
), 0);
94 gimple_seq seq
= NULL
;
95 gimple_seq_add_stmt (&seq
, new_stmt
);
97 /* If we had a NULL pointer dereference, then we want to insert the
98 __builtin_trap after the statement, for the other cases we want
99 to insert before the statement. */
100 if (walk_stmt_load_store_ops (stmt
, (void *)op
,
104 gsi_insert_after (si_p
, seq
, GSI_NEW_STMT
);
105 if (stmt_ends_bb_p (stmt
))
107 split_block (gimple_bb (stmt
), stmt
);
112 gsi_insert_before (si_p
, seq
, GSI_NEW_STMT
);
114 split_block (gimple_bb (new_stmt
), new_stmt
);
115 *si_p
= gsi_for_stmt (stmt
);
118 /* BB when reached via incoming edge E will exhibit undefined behavior
119 at STMT. Isolate and optimize the path which exhibits undefined
122 Isolation is simple. Duplicate BB and redirect E to BB'.
124 Optimization is simple as well. Replace STMT in BB' with an
125 unconditional trap and remove all outgoing edges from BB'.
127 If RET_ZERO, do not trap, only return NULL.
129 DUPLICATE is a pre-existing duplicate, use it as BB' if it exists.
134 isolate_path (basic_block bb
, basic_block duplicate
,
135 edge e
, gimple
*stmt
, tree op
, bool ret_zero
)
137 gimple_stmt_iterator si
, si2
;
141 /* First duplicate BB if we have not done so already and remove all
142 the duplicate's outgoing edges as duplicate is going to unconditionally
143 trap. Removing the outgoing edges is both an optimization and ensures
144 we don't need to do any PHI node updates. */
147 duplicate
= duplicate_block (bb
, NULL
, NULL
);
149 for (ei
= ei_start (duplicate
->succs
); (e2
= ei_safe_edge (ei
)); )
153 /* Complete the isolation step by redirecting E to reach DUPLICATE. */
154 e2
= redirect_edge_and_branch (e
, duplicate
);
156 flush_pending_stmts (e2
);
159 /* There may be more than one statement in DUPLICATE which exhibits
160 undefined behavior. Ultimately we want the first such statement in
161 DUPLCIATE so that we're able to delete as much code as possible.
163 So each time we discover undefined behavior in DUPLICATE, search for
164 the statement which triggers undefined behavior. If found, then
165 transform the statement into a trap and delete everything after the
166 statement. If not found, then this particular instance was subsumed by
167 an earlier instance of undefined behavior and there's nothing to do.
169 This is made more complicated by the fact that we have STMT, which is in
170 BB rather than in DUPLICATE. So we set up two iterators, one for each
171 block and walk forward looking for STMT in BB, advancing each iterator at
174 When we find STMT the second iterator should point to STMT's equivalent in
175 duplicate. If DUPLICATE ends before STMT is found in BB, then there's
178 Ignore labels and debug statements. */
179 si
= gsi_start_nondebug_after_labels_bb (bb
);
180 si2
= gsi_start_nondebug_after_labels_bb (duplicate
);
181 while (!gsi_end_p (si
) && !gsi_end_p (si2
) && gsi_stmt (si
) != stmt
)
183 gsi_next_nondebug (&si
);
184 gsi_next_nondebug (&si2
);
187 /* This would be an indicator that we never found STMT in BB, which should
189 gcc_assert (!gsi_end_p (si
));
191 /* If we did not run to the end of DUPLICATE, then SI points to STMT and
192 SI2 points to the duplicate of STMT in DUPLICATE. Insert a trap
193 before SI2 and remove SI2 and all trailing statements. */
194 if (!gsi_end_p (si2
))
198 greturn
*ret
= as_a
<greturn
*> (gsi_stmt (si2
));
199 tree zero
= build_zero_cst (TREE_TYPE (gimple_return_retval (ret
)));
200 gimple_return_set_retval (ret
, zero
);
204 insert_trap (&si2
, op
);
210 /* Return TRUE if STMT is a div/mod operation using DIVISOR as the divisor.
214 is_divmod_with_given_divisor (gimple
*stmt
, tree divisor
)
216 /* Only assignments matter. */
217 if (!is_gimple_assign (stmt
))
220 /* Check for every DIV/MOD expression. */
221 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
222 if (rhs_code
== TRUNC_DIV_EXPR
223 || rhs_code
== FLOOR_DIV_EXPR
224 || rhs_code
== CEIL_DIV_EXPR
225 || rhs_code
== EXACT_DIV_EXPR
226 || rhs_code
== ROUND_DIV_EXPR
227 || rhs_code
== TRUNC_MOD_EXPR
228 || rhs_code
== FLOOR_MOD_EXPR
229 || rhs_code
== CEIL_MOD_EXPR
230 || rhs_code
== ROUND_MOD_EXPR
)
232 /* Pointer equality is fine when DIVISOR is an SSA_NAME, but
233 not sufficient for constants which may have different types. */
234 if (operand_equal_p (gimple_assign_rhs2 (stmt
), divisor
, 0))
240 /* NAME is an SSA_NAME that we have already determined has the value 0 or NULL.
242 Return TRUE if USE_STMT uses NAME in a way where a 0 or NULL value results
243 in undefined behavior, FALSE otherwise
245 LOC is used for issuing diagnostics. This case represents potential
246 undefined behavior exposed by path splitting and that's reflected in
250 stmt_uses_name_in_undefined_way (gimple
*use_stmt
, tree name
, location_t loc
)
252 /* If we are working with a non pointer type, then see
253 if this use is a DIV/MOD operation using NAME as the
255 if (!POINTER_TYPE_P (TREE_TYPE (name
)))
257 if (!flag_non_call_exceptions
)
258 return is_divmod_with_given_divisor (use_stmt
, name
);
262 /* NAME is a pointer, so see if it's used in a context where it must
265 = infer_nonnull_range_by_dereference (use_stmt
, name
);
268 || infer_nonnull_range_by_attribute (use_stmt
, name
))
273 warning_at (loc
, OPT_Wnull_dereference
,
274 "potential null pointer dereference");
275 if (!flag_isolate_erroneous_paths_dereference
)
280 if (!flag_isolate_erroneous_paths_attribute
)
288 /* Return TRUE if USE_STMT uses 0 or NULL in a context which results in
289 undefined behavior, FALSE otherwise.
291 These cases are explicit in the IL. */
294 stmt_uses_0_or_null_in_undefined_way (gimple
*stmt
)
296 if (!flag_non_call_exceptions
297 && is_divmod_with_given_divisor (stmt
, integer_zero_node
))
300 /* By passing null_pointer_node, we can use the
301 infer_nonnull_range functions to detect explicit NULL
302 pointer dereferences and other uses where a non-NULL
303 value is required. */
306 = infer_nonnull_range_by_dereference (stmt
, null_pointer_node
);
308 || infer_nonnull_range_by_attribute (stmt
, null_pointer_node
))
312 location_t loc
= gimple_location (stmt
);
313 warning_at (loc
, OPT_Wnull_dereference
,
314 "null pointer dereference");
315 if (!flag_isolate_erroneous_paths_dereference
)
320 if (!flag_isolate_erroneous_paths_attribute
)
328 /* Look for PHI nodes which feed statements in the same block where
329 the value of the PHI node implies the statement is erroneous.
331 For example, a NULL PHI arg value which then feeds a pointer
334 When found isolate and optimize the path associated with the PHI
335 argument feeding the erroneous statement. */
337 find_implicit_erroneous_behavior (void)
341 FOR_EACH_BB_FN (bb
, cfun
)
345 /* Out of an abundance of caution, do not isolate paths to a
346 block where the block has any abnormal outgoing edges.
348 We might be able to relax this in the future. We have to detect
349 when we have to split the block with the NULL dereference and
350 the trap we insert. We have to preserve abnormal edges out
351 of the isolated block which in turn means updating PHIs at
352 the targets of those abnormal outgoing edges. */
353 if (has_abnormal_or_eh_outgoing_edge_p (bb
))
357 /* If BB has an edge to itself, then duplication of BB below
358 could result in reallocation of BB's PHI nodes. If that happens
359 then the loop below over the PHIs would use the old PHI and
360 thus invalid information. We don't have a good way to know
361 if a PHI has been reallocated, so just avoid isolation in
363 if (find_edge (bb
, bb
))
366 /* First look for a PHI which sets a pointer to NULL and which
367 is then dereferenced within BB. This is somewhat overly
368 conservative, but probably catches most of the interesting
370 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
372 gphi
*phi
= si
.phi ();
373 tree lhs
= gimple_phi_result (phi
);
375 /* PHI produces a pointer result. See if any of the PHI's
378 When we remove an edge, we want to reprocess the current
379 index, hence the ugly way we update I for each iteration. */
380 basic_block duplicate
= NULL
;
381 for (unsigned i
= 0, next_i
= 0;
382 i
< gimple_phi_num_args (phi
);
385 tree op
= gimple_phi_arg_def (phi
, i
);
386 edge e
= gimple_phi_arg_edge (phi
, i
);
387 imm_use_iterator iter
;
392 if (TREE_CODE (op
) == ADDR_EXPR
)
394 tree valbase
= get_base_address (TREE_OPERAND (op
, 0));
395 if ((VAR_P (valbase
) && !is_global_var (valbase
))
396 || TREE_CODE (valbase
) == PARM_DECL
)
398 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
401 = dyn_cast
<greturn
*> (use_stmt
);
405 if (gimple_return_retval (return_stmt
) != lhs
)
408 if (warning_at (gimple_location (use_stmt
),
409 OPT_Wreturn_local_addr
,
410 "function may return address "
411 "of local variable"))
412 inform (DECL_SOURCE_LOCATION(valbase
),
415 if (gimple_bb (use_stmt
) == bb
)
417 duplicate
= isolate_path (bb
, duplicate
, e
,
418 use_stmt
, lhs
, true);
420 /* When we remove an incoming edge, we need to
421 reprocess the Ith element. */
429 if (!integer_zerop (op
))
432 /* We've got a NULL PHI argument. Now see if the
433 PHI's result is dereferenced within BB. */
434 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
436 /* We only care about uses in BB. Catching cases in
437 in other blocks would require more complex path
439 if (gimple_bb (use_stmt
) != bb
)
442 location_t loc
= gimple_location (use_stmt
)
443 ? gimple_location (use_stmt
)
444 : gimple_phi_arg_location (phi
, i
);
446 if (stmt_uses_name_in_undefined_way (use_stmt
, lhs
, loc
))
448 duplicate
= isolate_path (bb
, duplicate
, e
,
449 use_stmt
, lhs
, false);
451 /* When we remove an incoming edge, we need to
452 reprocess the Ith element. */
462 /* Look for statements which exhibit erroneous behavior. For example
463 a NULL pointer dereference.
465 When found, optimize the block containing the erroneous behavior. */
467 find_explicit_erroneous_behavior (void)
471 FOR_EACH_BB_FN (bb
, cfun
)
473 gimple_stmt_iterator si
;
475 /* Out of an abundance of caution, do not isolate paths to a
476 block where the block has any abnormal outgoing edges.
478 We might be able to relax this in the future. We have to detect
479 when we have to split the block with the NULL dereference and
480 the trap we insert. We have to preserve abnormal edges out
481 of the isolated block which in turn means updating PHIs at
482 the targets of those abnormal outgoing edges. */
483 if (has_abnormal_or_eh_outgoing_edge_p (bb
))
486 /* Now look at the statements in the block and see if any of
487 them explicitly dereference a NULL pointer. This happens
488 because of jump threading and constant propagation. */
489 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
491 gimple
*stmt
= gsi_stmt (si
);
493 if (stmt_uses_0_or_null_in_undefined_way (stmt
))
495 insert_trap (&si
, null_pointer_node
);
496 bb
= gimple_bb (gsi_stmt (si
));
498 /* Ignore any more operands on this statement and
499 continue the statement iterator (which should
500 terminate its loop immediately. */
505 /* Detect returning the address of a local variable. This only
506 becomes undefined behavior if the result is used, so we do not
507 insert a trap and only return NULL instead. */
508 if (greturn
*return_stmt
= dyn_cast
<greturn
*> (stmt
))
510 tree val
= gimple_return_retval (return_stmt
);
511 if (val
&& TREE_CODE (val
) == ADDR_EXPR
)
513 tree valbase
= get_base_address (TREE_OPERAND (val
, 0));
514 if ((VAR_P (valbase
) && !is_global_var (valbase
))
515 || TREE_CODE (valbase
) == PARM_DECL
)
517 /* We only need it for this particular case. */
518 calculate_dominance_info (CDI_POST_DOMINATORS
);
520 bool always_executed
= dominated_by_p
521 (CDI_POST_DOMINATORS
,
522 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)), bb
);
524 msg
= N_("function returns address of local variable");
526 msg
= N_("function may return address of "
529 if (warning_at (gimple_location (stmt
),
530 OPT_Wreturn_local_addr
, msg
))
531 inform (DECL_SOURCE_LOCATION(valbase
), "declared here");
532 tree zero
= build_zero_cst (TREE_TYPE (val
));
533 gimple_return_set_retval (return_stmt
, zero
);
542 /* Search the function for statements which, if executed, would cause
543 the program to fault such as a dereference of a NULL pointer.
545 Such a program can't be valid if such a statement was to execute
546 according to ISO standards.
548 We detect explicit NULL pointer dereferences as well as those implied
549 by a PHI argument having a NULL value which unconditionally flows into
550 a dereference in the same block as the PHI.
552 In the former case we replace the offending statement with an
553 unconditional trap and eliminate the outgoing edges from the statement's
554 basic block. This may expose secondary optimization opportunities.
556 In the latter case, we isolate the path(s) with the NULL PHI
557 feeding the dereference. We can then replace the offending statement
558 and eliminate the outgoing edges in the duplicate. Again, this may
559 expose secondary optimization opportunities.
561 A warning for both cases may be advisable as well.
563 Other statically detectable violations of the ISO standard could be
564 handled in a similar way, such as out-of-bounds array indexing. */
567 gimple_ssa_isolate_erroneous_paths (void)
569 initialize_original_copy_tables ();
571 /* Search all the blocks for edges which, if traversed, will
572 result in undefined behavior. */
575 /* First handle cases where traversal of a particular edge
576 triggers undefined behavior. These cases require creating
577 duplicate blocks and thus new SSA_NAMEs.
579 We want that process complete prior to the phase where we start
580 removing edges from the CFG. Edge removal may ultimately result in
581 removal of PHI nodes and thus releasing SSA_NAMEs back to the
584 If the two processes run in parallel we could release an SSA_NAME
585 back to the manager but we could still have dangling references
586 to the released SSA_NAME in unreachable blocks.
587 that any released names not have dangling references in the IL. */
588 find_implicit_erroneous_behavior ();
589 find_explicit_erroneous_behavior ();
591 free_original_copy_tables ();
593 /* We scramble the CFG and loop structures a bit, clean up
594 appropriately. We really should incrementally update the
595 loop structures, in theory it shouldn't be that hard. */
596 free_dominance_info (CDI_POST_DOMINATORS
);
599 free_dominance_info (CDI_DOMINATORS
);
600 loops_state_set (LOOPS_NEED_FIXUP
);
601 return TODO_cleanup_cfg
| TODO_update_ssa
;
607 const pass_data pass_data_isolate_erroneous_paths
=
609 GIMPLE_PASS
, /* type */
610 "isolate-paths", /* name */
611 OPTGROUP_NONE
, /* optinfo_flags */
612 TV_ISOLATE_ERRONEOUS_PATHS
, /* tv_id */
613 ( PROP_cfg
| PROP_ssa
), /* properties_required */
614 0, /* properties_provided */
615 0, /* properties_destroyed */
616 0, /* todo_flags_start */
617 0, /* todo_flags_finish */
620 class pass_isolate_erroneous_paths
: public gimple_opt_pass
623 pass_isolate_erroneous_paths (gcc::context
*ctxt
)
624 : gimple_opt_pass (pass_data_isolate_erroneous_paths
, ctxt
)
627 /* opt_pass methods: */
628 opt_pass
* clone () { return new pass_isolate_erroneous_paths (m_ctxt
); }
629 virtual bool gate (function
*)
631 /* If we do not have a suitable builtin function for the trap statement,
632 then do not perform the optimization. */
633 return (flag_isolate_erroneous_paths_dereference
!= 0
634 || flag_isolate_erroneous_paths_attribute
!= 0
635 || warn_null_dereference
);
638 virtual unsigned int execute (function
*)
640 return gimple_ssa_isolate_erroneous_paths ();
643 }; // class pass_isolate_erroneous_paths
647 make_pass_isolate_erroneous_paths (gcc::context
*ctxt
)
649 return new pass_isolate_erroneous_paths (ctxt
);