2017-03-24 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / fwprop.c
blob285fb1ab78a26aa7b440cbb85bab015038484431
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
35 #include "sparseset.h"
36 #include "cfgrtl.h"
37 #include "cfgcleanup.h"
38 #include "cfgloop.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "rtl-iter.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes;
119 static vec<df_ref> use_def_ref;
120 static vec<df_ref> reg_defs;
121 static vec<df_ref> reg_defs_stack;
123 /* The MD bitmaps are trimmed to include only live registers to cut
124 memory usage on testcases like insn-recog.c. Track live registers
125 in the basic block and do not perform forward propagation if the
126 destination is a dead pseudo occurring in a note. */
127 static bitmap local_md;
128 static bitmap local_lr;
130 /* Return the only def in USE's use-def chain, or NULL if there is
131 more than one def in the chain. */
133 static inline df_ref
134 get_def_for_use (df_ref use)
136 return use_def_ref[DF_REF_ID (use)];
140 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
141 TOP_FLAG says which artificials uses should be used, when DEF_REC
142 is an artificial def vector. LOCAL_MD is modified as after a
143 df_md_simulate_* function; we do more or less the same processing
144 done there, so we do not use those functions. */
146 #define DF_MD_GEN_FLAGS \
147 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
149 static void
150 process_defs (df_ref def, int top_flag)
152 for (; def; def = DF_REF_NEXT_LOC (def))
154 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
155 unsigned int dregno;
157 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
158 continue;
160 dregno = DF_REF_REGNO (def);
161 if (curr_def)
162 reg_defs_stack.safe_push (curr_def);
163 else
165 /* Do not store anything if "transitioning" from NULL to NULL. But
166 otherwise, push a special entry on the stack to tell the
167 leave_block callback that the entry in reg_defs was NULL. */
168 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
170 else
171 reg_defs_stack.safe_push (def);
174 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
176 bitmap_set_bit (local_md, dregno);
177 reg_defs[dregno] = NULL;
179 else
181 bitmap_clear_bit (local_md, dregno);
182 reg_defs[dregno] = def;
188 /* Fill the use_def_ref vector with values for the uses in USE_REC,
189 taking reaching definitions info from LOCAL_MD and REG_DEFS.
190 TOP_FLAG says which artificials uses should be used, when USE_REC
191 is an artificial use vector. */
193 static void
194 process_uses (df_ref use, int top_flag)
196 for (; use; use = DF_REF_NEXT_LOC (use))
197 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
199 unsigned int uregno = DF_REF_REGNO (use);
200 if (reg_defs[uregno]
201 && !bitmap_bit_p (local_md, uregno)
202 && bitmap_bit_p (local_lr, uregno))
203 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
207 class single_def_use_dom_walker : public dom_walker
209 public:
210 single_def_use_dom_walker (cdi_direction direction)
211 : dom_walker (direction) {}
212 virtual edge before_dom_children (basic_block);
213 virtual void after_dom_children (basic_block);
216 edge
217 single_def_use_dom_walker::before_dom_children (basic_block bb)
219 int bb_index = bb->index;
220 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
221 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
222 rtx_insn *insn;
224 bitmap_copy (local_md, &md_bb_info->in);
225 bitmap_copy (local_lr, &lr_bb_info->in);
227 /* Push a marker for the leave_block callback. */
228 reg_defs_stack.safe_push (NULL);
230 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
231 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
233 /* We don't call df_simulate_initialize_forwards, as it may overestimate
234 the live registers if there are unused artificial defs. We prefer
235 liveness to be underestimated. */
237 FOR_BB_INSNS (bb, insn)
238 if (INSN_P (insn))
240 unsigned int uid = INSN_UID (insn);
241 process_uses (DF_INSN_UID_USES (uid), 0);
242 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
243 process_defs (DF_INSN_UID_DEFS (uid), 0);
244 df_simulate_one_insn_forwards (bb, insn, local_lr);
247 process_uses (df_get_artificial_uses (bb_index), 0);
248 process_defs (df_get_artificial_defs (bb_index), 0);
250 return NULL;
253 /* Pop the definitions created in this basic block when leaving its
254 dominated parts. */
256 void
257 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
259 df_ref saved_def;
260 while ((saved_def = reg_defs_stack.pop ()) != NULL)
262 unsigned int dregno = DF_REF_REGNO (saved_def);
264 /* See also process_defs. */
265 if (saved_def == reg_defs[dregno])
266 reg_defs[dregno] = NULL;
267 else
268 reg_defs[dregno] = saved_def;
273 /* Build a vector holding the reaching definitions of uses reached by a
274 single dominating definition. */
276 static void
277 build_single_def_use_links (void)
279 /* We use the multiple definitions problem to compute our restricted
280 use-def chains. */
281 df_set_flags (DF_EQ_NOTES);
282 df_md_add_problem ();
283 df_note_add_problem ();
284 df_analyze ();
285 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
287 use_def_ref.create (DF_USES_TABLE_SIZE ());
288 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
290 reg_defs.create (max_reg_num ());
291 reg_defs.safe_grow_cleared (max_reg_num ());
293 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
294 local_md = BITMAP_ALLOC (NULL);
295 local_lr = BITMAP_ALLOC (NULL);
297 /* Walk the dominator tree looking for single reaching definitions
298 dominating the uses. This is similar to how SSA form is built. */
299 single_def_use_dom_walker (CDI_DOMINATORS)
300 .walk (cfun->cfg->x_entry_block_ptr);
302 BITMAP_FREE (local_lr);
303 BITMAP_FREE (local_md);
304 reg_defs.release ();
305 reg_defs_stack.release ();
309 /* Do not try to replace constant addresses or addresses of local and
310 argument slots. These MEM expressions are made only once and inserted
311 in many instructions, as well as being used to control symbol table
312 output. It is not safe to clobber them.
314 There are some uncommon cases where the address is already in a register
315 for some reason, but we cannot take advantage of that because we have
316 no easy way to unshare the MEM. In addition, looking up all stack
317 addresses is costly. */
319 static bool
320 can_simplify_addr (rtx addr)
322 rtx reg;
324 if (CONSTANT_ADDRESS_P (addr))
325 return false;
327 if (GET_CODE (addr) == PLUS)
328 reg = XEXP (addr, 0);
329 else
330 reg = addr;
332 return (!REG_P (reg)
333 || (REGNO (reg) != FRAME_POINTER_REGNUM
334 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
335 && REGNO (reg) != ARG_POINTER_REGNUM));
338 /* Returns a canonical version of X for the address, from the point of view,
339 that all multiplications are represented as MULT instead of the multiply
340 by a power of 2 being represented as ASHIFT.
342 Every ASHIFT we find has been made by simplify_gen_binary and was not
343 there before, so it is not shared. So we can do this in place. */
345 static void
346 canonicalize_address (rtx x)
348 for (;;)
349 switch (GET_CODE (x))
351 case ASHIFT:
352 if (CONST_INT_P (XEXP (x, 1))
353 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
354 && INTVAL (XEXP (x, 1)) >= 0)
356 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
357 PUT_CODE (x, MULT);
358 XEXP (x, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift,
359 GET_MODE (x));
362 x = XEXP (x, 0);
363 break;
365 case PLUS:
366 if (GET_CODE (XEXP (x, 0)) == PLUS
367 || GET_CODE (XEXP (x, 0)) == ASHIFT
368 || GET_CODE (XEXP (x, 0)) == CONST)
369 canonicalize_address (XEXP (x, 0));
371 x = XEXP (x, 1);
372 break;
374 case CONST:
375 x = XEXP (x, 0);
376 break;
378 default:
379 return;
383 /* OLD is a memory address. Return whether it is good to use NEW instead,
384 for a memory access in the given MODE. */
386 static bool
387 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
388 addr_space_t as, bool speed)
390 int gain;
392 if (rtx_equal_p (old_rtx, new_rtx)
393 || !memory_address_addr_space_p (mode, new_rtx, as))
394 return false;
396 /* Copy propagation is always ok. */
397 if (REG_P (old_rtx) && REG_P (new_rtx))
398 return true;
400 /* Prefer the new address if it is less expensive. */
401 gain = (address_cost (old_rtx, mode, as, speed)
402 - address_cost (new_rtx, mode, as, speed));
404 /* If the addresses have equivalent cost, prefer the new address
405 if it has the highest `set_src_cost'. That has the potential of
406 eliminating the most insns without additional costs, and it
407 is the same that cse.c used to do. */
408 if (gain == 0)
409 gain = (set_src_cost (new_rtx, VOIDmode, speed)
410 - set_src_cost (old_rtx, VOIDmode, speed));
412 return (gain > 0);
416 /* Flags for the last parameter of propagate_rtx_1. */
418 enum {
419 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
420 if it is false, propagate_rtx_1 returns false if, for at least
421 one occurrence OLD, it failed to collapse the result to a constant.
422 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
423 collapse to zero if replacing (reg:M B) with (reg:M A).
425 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
426 propagate_rtx_1 just tries to make cheaper and valid memory
427 addresses. */
428 PR_CAN_APPEAR = 1,
430 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
431 outside memory addresses. This is needed because propagate_rtx_1 does
432 not do any analysis on memory; thus it is very conservative and in general
433 it will fail if non-read-only MEMs are found in the source expression.
435 PR_HANDLE_MEM is set when the source of the propagation was not
436 another MEM. Then, it is safe not to treat non-read-only MEMs as
437 ``opaque'' objects. */
438 PR_HANDLE_MEM = 2,
440 /* Set when costs should be optimized for speed. */
441 PR_OPTIMIZE_FOR_SPEED = 4
445 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
446 resulting expression. Replace *PX with a new RTL expression if an
447 occurrence of OLD was found.
449 This is only a wrapper around simplify-rtx.c: do not add any pattern
450 matching code here. (The sole exception is the handling of LO_SUM, but
451 that is because there is no simplify_gen_* function for LO_SUM). */
453 static bool
454 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
456 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
457 enum rtx_code code = GET_CODE (x);
458 machine_mode mode = GET_MODE (x);
459 machine_mode op_mode;
460 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
461 bool valid_ops = true;
463 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
465 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
466 they have side effects or not). */
467 *px = (side_effects_p (x)
468 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
469 : gen_rtx_SCRATCH (GET_MODE (x)));
470 return false;
473 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
474 address, and we are *not* inside one. */
475 if (x == old_rtx)
477 *px = new_rtx;
478 return can_appear;
481 /* If this is an expression, try recursive substitution. */
482 switch (GET_RTX_CLASS (code))
484 case RTX_UNARY:
485 op0 = XEXP (x, 0);
486 op_mode = GET_MODE (op0);
487 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
488 if (op0 == XEXP (x, 0))
489 return true;
490 tem = simplify_gen_unary (code, mode, op0, op_mode);
491 break;
493 case RTX_BIN_ARITH:
494 case RTX_COMM_ARITH:
495 op0 = XEXP (x, 0);
496 op1 = XEXP (x, 1);
497 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
498 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
499 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
500 return true;
501 tem = simplify_gen_binary (code, mode, op0, op1);
502 break;
504 case RTX_COMPARE:
505 case RTX_COMM_COMPARE:
506 op0 = XEXP (x, 0);
507 op1 = XEXP (x, 1);
508 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
509 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
510 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
511 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
512 return true;
513 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
514 break;
516 case RTX_TERNARY:
517 case RTX_BITFIELD_OPS:
518 op0 = XEXP (x, 0);
519 op1 = XEXP (x, 1);
520 op2 = XEXP (x, 2);
521 op_mode = GET_MODE (op0);
522 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
523 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
524 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
525 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
526 return true;
527 if (op_mode == VOIDmode)
528 op_mode = GET_MODE (op0);
529 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
530 break;
532 case RTX_EXTRA:
533 /* The only case we try to handle is a SUBREG. */
534 if (code == SUBREG)
536 op0 = XEXP (x, 0);
537 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
538 if (op0 == XEXP (x, 0))
539 return true;
540 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
541 SUBREG_BYTE (x));
543 break;
545 case RTX_OBJ:
546 if (code == MEM && x != new_rtx)
548 rtx new_op0;
549 op0 = XEXP (x, 0);
551 /* There are some addresses that we cannot work on. */
552 if (!can_simplify_addr (op0))
553 return true;
555 op0 = new_op0 = targetm.delegitimize_address (op0);
556 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
557 flags | PR_CAN_APPEAR);
559 /* Dismiss transformation that we do not want to carry on. */
560 if (!valid_ops
561 || new_op0 == op0
562 || !(GET_MODE (new_op0) == GET_MODE (op0)
563 || GET_MODE (new_op0) == VOIDmode))
564 return true;
566 canonicalize_address (new_op0);
568 /* Copy propagations are always ok. Otherwise check the costs. */
569 if (!(REG_P (old_rtx) && REG_P (new_rtx))
570 && !should_replace_address (op0, new_op0, GET_MODE (x),
571 MEM_ADDR_SPACE (x),
572 flags & PR_OPTIMIZE_FOR_SPEED))
573 return true;
575 tem = replace_equiv_address_nv (x, new_op0);
578 else if (code == LO_SUM)
580 op0 = XEXP (x, 0);
581 op1 = XEXP (x, 1);
583 /* The only simplification we do attempts to remove references to op0
584 or make it constant -- in both cases, op0's invalidity will not
585 make the result invalid. */
586 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
587 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
588 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
589 return true;
591 /* (lo_sum (high x) x) -> x */
592 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
593 tem = op1;
594 else
595 tem = gen_rtx_LO_SUM (mode, op0, op1);
597 /* OP1 is likely not a legitimate address, otherwise there would have
598 been no LO_SUM. We want it to disappear if it is invalid, return
599 false in that case. */
600 return memory_address_p (mode, tem);
603 else if (code == REG)
605 if (rtx_equal_p (x, old_rtx))
607 *px = new_rtx;
608 return can_appear;
611 break;
613 default:
614 break;
617 /* No change, no trouble. */
618 if (tem == NULL_RTX)
619 return true;
621 *px = tem;
623 /* Allow replacements that simplify operations on a vector or complex
624 value to a component. The most prominent case is
625 (subreg ([vec_]concat ...)). */
626 if (REG_P (tem) && !HARD_REGISTER_P (tem)
627 && (VECTOR_MODE_P (GET_MODE (new_rtx))
628 || COMPLEX_MODE_P (GET_MODE (new_rtx)))
629 && GET_MODE (tem) == GET_MODE_INNER (GET_MODE (new_rtx)))
630 return true;
632 /* The replacement we made so far is valid, if all of the recursive
633 replacements were valid, or we could simplify everything to
634 a constant. */
635 return valid_ops || can_appear || CONSTANT_P (tem);
639 /* Return true if X constains a non-constant mem. */
641 static bool
642 varying_mem_p (const_rtx x)
644 subrtx_iterator::array_type array;
645 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
646 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
647 return true;
648 return false;
652 /* Replace all occurrences of OLD in X with NEW and try to simplify the
653 resulting expression (in mode MODE). Return a new expression if it is
654 a constant, otherwise X.
656 Simplifications where occurrences of NEW collapse to a constant are always
657 accepted. All simplifications are accepted if NEW is a pseudo too.
658 Otherwise, we accept simplifications that have a lower or equal cost. */
660 static rtx
661 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
662 bool speed)
664 rtx tem;
665 bool collapsed;
666 int flags;
668 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
669 return NULL_RTX;
671 flags = 0;
672 if (REG_P (new_rtx)
673 || CONSTANT_P (new_rtx)
674 || (GET_CODE (new_rtx) == SUBREG
675 && REG_P (SUBREG_REG (new_rtx))
676 && (GET_MODE_SIZE (mode)
677 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
678 flags |= PR_CAN_APPEAR;
679 if (!varying_mem_p (new_rtx))
680 flags |= PR_HANDLE_MEM;
682 if (speed)
683 flags |= PR_OPTIMIZE_FOR_SPEED;
685 tem = x;
686 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
687 if (tem == x || !collapsed)
688 return NULL_RTX;
690 /* gen_lowpart_common will not be able to process VOIDmode entities other
691 than CONST_INTs. */
692 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
693 return NULL_RTX;
695 if (GET_MODE (tem) == VOIDmode)
696 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
697 else
698 gcc_assert (GET_MODE (tem) == mode);
700 return tem;
706 /* Return true if the register from reference REF is killed
707 between FROM to (but not including) TO. */
709 static bool
710 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
712 rtx_insn *insn;
714 for (insn = from; insn != to; insn = NEXT_INSN (insn))
716 df_ref def;
717 if (!INSN_P (insn))
718 continue;
720 FOR_EACH_INSN_DEF (def, insn)
721 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
722 return true;
724 return false;
728 /* Check if the given DEF is available in INSN. This would require full
729 computation of available expressions; we check only restricted conditions:
730 - if DEF is the sole definition of its register, go ahead;
731 - in the same basic block, we check for no definitions killing the
732 definition of DEF_INSN;
733 - if USE's basic block has DEF's basic block as the sole predecessor,
734 we check if the definition is killed after DEF_INSN or before
735 TARGET_INSN insn, in their respective basic blocks. */
736 static bool
737 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
739 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
740 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
741 int regno;
742 df_ref def;
744 /* We used to have a def reaching a use that is _before_ the def,
745 with the def not dominating the use even though the use and def
746 are in the same basic block, when a register may be used
747 uninitialized in a loop. This should not happen anymore since
748 we do not use reaching definitions, but still we test for such
749 cases and assume that DEF is not available. */
750 if (def_bb == target_bb
751 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
752 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
753 return true;
755 /* Check if the reg in USE has only one definition. We already
756 know that this definition reaches use, or we wouldn't be here.
757 However, this is invalid for hard registers because if they are
758 live at the beginning of the function it does not mean that we
759 have an uninitialized access. */
760 regno = DF_REF_REGNO (use);
761 def = DF_REG_DEF_CHAIN (regno);
762 if (def
763 && DF_REF_NEXT_REG (def) == NULL
764 && regno >= FIRST_PSEUDO_REGISTER)
765 return false;
767 /* Check locally if we are in the same basic block. */
768 if (def_bb == target_bb)
769 return local_ref_killed_between_p (use, def_insn, target_insn);
771 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
772 if (single_pred_p (target_bb)
773 && single_pred (target_bb) == def_bb)
775 df_ref x;
777 /* See if USE is killed between DEF_INSN and the last insn in the
778 basic block containing DEF_INSN. */
779 x = df_bb_regno_last_def_find (def_bb, regno);
780 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
781 return true;
783 /* See if USE is killed between TARGET_INSN and the first insn in the
784 basic block containing TARGET_INSN. */
785 x = df_bb_regno_first_def_find (target_bb, regno);
786 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
787 return true;
789 return false;
792 /* Otherwise assume the worst case. */
793 return true;
797 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
798 would require full computation of available expressions;
799 we check only restricted conditions, see use_killed_between. */
800 static bool
801 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
803 df_ref use;
804 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
805 rtx def_set = single_set (def_insn);
806 rtx_insn *next;
808 gcc_assert (def_set);
810 /* If target_insn comes right after def_insn, which is very common
811 for addresses, we can use a quicker test. Ignore debug insns
812 other than target insns for this. */
813 next = NEXT_INSN (def_insn);
814 while (next && next != target_insn && DEBUG_INSN_P (next))
815 next = NEXT_INSN (next);
816 if (next == target_insn && REG_P (SET_DEST (def_set)))
818 rtx def_reg = SET_DEST (def_set);
820 /* If the insn uses the reg that it defines, the substitution is
821 invalid. */
822 FOR_EACH_INSN_INFO_USE (use, insn_info)
823 if (rtx_equal_p (DF_REF_REG (use), def_reg))
824 return false;
825 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
826 if (rtx_equal_p (DF_REF_REG (use), def_reg))
827 return false;
829 else
831 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
833 /* Look at all the uses of DEF_INSN, and see if they are not
834 killed between DEF_INSN and TARGET_INSN. */
835 FOR_EACH_INSN_INFO_USE (use, insn_info)
837 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
838 return false;
839 if (use_killed_between (use, def_insn, target_insn))
840 return false;
842 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
844 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
845 return false;
846 if (use_killed_between (use, def_insn, target_insn))
847 return false;
851 return true;
855 static df_ref *active_defs;
856 static sparseset active_defs_check;
858 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
859 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
860 too, for checking purposes. */
862 static void
863 register_active_defs (df_ref use)
865 for (; use; use = DF_REF_NEXT_LOC (use))
867 df_ref def = get_def_for_use (use);
868 int regno = DF_REF_REGNO (use);
870 if (flag_checking)
871 sparseset_set_bit (active_defs_check, regno);
872 active_defs[regno] = def;
877 /* Build the use->def links that we use to update the dataflow info
878 for new uses. Note that building the links is very cheap and if
879 it were done earlier, they could be used to rule out invalid
880 propagations (in addition to what is done in all_uses_available_at).
881 I'm not doing this yet, though. */
883 static void
884 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
886 if (flag_checking)
887 sparseset_clear (active_defs_check);
888 register_active_defs (DF_INSN_USES (def_insn));
889 register_active_defs (DF_INSN_USES (insn));
890 register_active_defs (DF_INSN_EQ_USES (insn));
894 /* Update the USE_DEF_REF array for the given use, using the active definitions
895 in the ACTIVE_DEFS array to match pseudos to their def. */
897 static inline void
898 update_uses (df_ref use)
900 for (; use; use = DF_REF_NEXT_LOC (use))
902 int regno = DF_REF_REGNO (use);
904 /* Set up the use-def chain. */
905 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
906 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
908 if (flag_checking)
909 gcc_assert (sparseset_bit_p (active_defs_check, regno));
910 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
915 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
916 uses if NOTES_ONLY is true. */
918 static void
919 update_df (rtx_insn *insn, rtx note)
921 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
923 if (note)
925 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
926 df_notes_rescan (insn);
928 else
930 df_uses_create (&PATTERN (insn), insn, 0);
931 df_insn_rescan (insn);
932 update_uses (DF_INSN_INFO_USES (insn_info));
935 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
939 /* Try substituting NEW into LOC, which originated from forward propagation
940 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
941 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
942 new insn is not recognized. Return whether the substitution was
943 performed. */
945 static bool
946 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
947 bool set_reg_equal)
949 rtx_insn *insn = DF_REF_INSN (use);
950 rtx set = single_set (insn);
951 rtx note = NULL_RTX;
952 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
953 int old_cost = 0;
954 bool ok;
956 update_df_init (def_insn, insn);
958 /* forward_propagate_subreg may be operating on an instruction with
959 multiple sets. If so, assume the cost of the new instruction is
960 not greater than the old one. */
961 if (set)
962 old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
963 if (dump_file)
965 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
966 print_inline_rtx (dump_file, *loc, 2);
967 fprintf (dump_file, "\n with ");
968 print_inline_rtx (dump_file, new_rtx, 2);
969 fprintf (dump_file, "\n");
972 validate_unshare_change (insn, loc, new_rtx, true);
973 if (!verify_changes (0))
975 if (dump_file)
976 fprintf (dump_file, "Changes to insn %d not recognized\n",
977 INSN_UID (insn));
978 ok = false;
981 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
982 && set
983 && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
984 > old_cost))
986 if (dump_file)
987 fprintf (dump_file, "Changes to insn %d not profitable\n",
988 INSN_UID (insn));
989 ok = false;
992 else
994 if (dump_file)
995 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
996 ok = true;
999 if (ok)
1001 confirm_change_group ();
1002 num_changes++;
1004 else
1006 cancel_changes (0);
1008 /* Can also record a simplified value in a REG_EQUAL note,
1009 making a new one if one does not already exist. */
1010 if (set_reg_equal)
1012 /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note,
1013 because the bits in there can be anything and so might not
1014 match the REG_EQUAL note content. See PR70574. */
1015 subrtx_var_iterator::array_type array;
1016 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
1018 rtx x = *iter;
1019 if (SUBREG_P (x) && paradoxical_subreg_p (x))
1021 set_reg_equal = false;
1022 break;
1026 if (set_reg_equal)
1028 if (dump_file)
1029 fprintf (dump_file, " Setting REG_EQUAL note\n");
1031 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1036 if ((ok || note) && !CONSTANT_P (new_rtx))
1037 update_df (insn, note);
1039 return ok;
1042 /* For the given single_set INSN, containing SRC known to be a
1043 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1044 is redundant due to the register being set by a LOAD_EXTEND_OP
1045 load from memory. */
1047 static bool
1048 free_load_extend (rtx src, rtx_insn *insn)
1050 rtx reg;
1051 df_ref def, use;
1053 reg = XEXP (src, 0);
1054 if (load_extend_op (GET_MODE (reg)) != GET_CODE (src))
1055 return false;
1057 FOR_EACH_INSN_USE (use, insn)
1058 if (!DF_REF_IS_ARTIFICIAL (use)
1059 && DF_REF_TYPE (use) == DF_REF_REG_USE
1060 && DF_REF_REG (use) == reg)
1061 break;
1062 if (!use)
1063 return false;
1065 def = get_def_for_use (use);
1066 if (!def)
1067 return false;
1069 if (DF_REF_IS_ARTIFICIAL (def))
1070 return false;
1072 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1074 rtx patt = PATTERN (DF_REF_INSN (def));
1076 if (GET_CODE (patt) == SET
1077 && GET_CODE (SET_SRC (patt)) == MEM
1078 && rtx_equal_p (SET_DEST (patt), reg))
1079 return true;
1081 return false;
1084 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1086 static bool
1087 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1089 rtx use_reg = DF_REF_REG (use);
1090 rtx_insn *use_insn;
1091 rtx src;
1093 /* Only consider subregs... */
1094 machine_mode use_mode = GET_MODE (use_reg);
1095 if (GET_CODE (use_reg) != SUBREG
1096 || !REG_P (SET_DEST (def_set)))
1097 return false;
1099 /* If this is a paradoxical SUBREG... */
1100 if (GET_MODE_SIZE (use_mode)
1101 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1103 /* If this is a paradoxical SUBREG, we have no idea what value the
1104 extra bits would have. However, if the operand is equivalent to
1105 a SUBREG whose operand is the same as our mode, and all the modes
1106 are within a word, we can just use the inner operand because
1107 these SUBREGs just say how to treat the register. */
1108 use_insn = DF_REF_INSN (use);
1109 src = SET_SRC (def_set);
1110 if (GET_CODE (src) == SUBREG
1111 && REG_P (SUBREG_REG (src))
1112 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1113 && GET_MODE (SUBREG_REG (src)) == use_mode
1114 && subreg_lowpart_p (src)
1115 && all_uses_available_at (def_insn, use_insn))
1116 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1117 def_insn, false);
1120 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1121 is the low part of the reg being extended then just use the inner
1122 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1123 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1124 or due to the operation being a no-op when applied to registers.
1125 For example, if we have:
1127 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1128 B: (... (subreg:SI (reg:DI X)) ...)
1130 and mode_rep_extended says that Y is already sign-extended,
1131 the backend will typically allow A to be combined with the
1132 definition of Y or, failing that, allow A to be deleted after
1133 reload through register tying. Introducing more uses of Y
1134 prevents both optimisations. */
1135 else if (subreg_lowpart_p (use_reg))
1137 use_insn = DF_REF_INSN (use);
1138 src = SET_SRC (def_set);
1139 if ((GET_CODE (src) == ZERO_EXTEND
1140 || GET_CODE (src) == SIGN_EXTEND)
1141 && REG_P (XEXP (src, 0))
1142 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1143 && GET_MODE (XEXP (src, 0)) == use_mode
1144 && !free_load_extend (src, def_insn)
1145 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1146 != (int) GET_CODE (src))
1147 && all_uses_available_at (def_insn, use_insn))
1148 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1149 def_insn, false);
1152 return false;
1155 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1157 static bool
1158 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1160 rtx_insn *use_insn = DF_REF_INSN (use);
1161 rtx src, use_pat, asm_operands, new_rtx, *loc;
1162 int speed_p, i;
1163 df_ref uses;
1165 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1167 src = SET_SRC (def_set);
1168 use_pat = PATTERN (use_insn);
1170 /* In __asm don't replace if src might need more registers than
1171 reg, as that could increase register pressure on the __asm. */
1172 uses = DF_INSN_USES (def_insn);
1173 if (uses && DF_REF_NEXT_LOC (uses))
1174 return false;
1176 update_df_init (def_insn, use_insn);
1177 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1178 asm_operands = NULL_RTX;
1179 switch (GET_CODE (use_pat))
1181 case ASM_OPERANDS:
1182 asm_operands = use_pat;
1183 break;
1184 case SET:
1185 if (MEM_P (SET_DEST (use_pat)))
1187 loc = &SET_DEST (use_pat);
1188 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1189 if (new_rtx)
1190 validate_unshare_change (use_insn, loc, new_rtx, true);
1192 asm_operands = SET_SRC (use_pat);
1193 break;
1194 case PARALLEL:
1195 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1196 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1198 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1200 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1201 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1202 src, speed_p);
1203 if (new_rtx)
1204 validate_unshare_change (use_insn, loc, new_rtx, true);
1206 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1208 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1209 asm_operands = XVECEXP (use_pat, 0, i);
1210 break;
1211 default:
1212 gcc_unreachable ();
1215 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1216 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1218 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1219 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1220 if (new_rtx)
1221 validate_unshare_change (use_insn, loc, new_rtx, true);
1224 if (num_changes_pending () == 0 || !apply_change_group ())
1225 return false;
1227 update_df (use_insn, NULL);
1228 num_changes++;
1229 return true;
1232 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1233 result. */
1235 static bool
1236 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1238 rtx_insn *use_insn = DF_REF_INSN (use);
1239 rtx use_set = single_set (use_insn);
1240 rtx src, reg, new_rtx, *loc;
1241 bool set_reg_equal;
1242 machine_mode mode;
1243 int asm_use = -1;
1245 if (INSN_CODE (use_insn) < 0)
1246 asm_use = asm_noperands (PATTERN (use_insn));
1248 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1249 return false;
1251 /* Do not propagate into PC, CC0, etc. */
1252 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1253 return false;
1255 /* If def and use are subreg, check if they match. */
1256 reg = DF_REF_REG (use);
1257 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1259 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1260 return false;
1262 /* Check if the def had a subreg, but the use has the whole reg. */
1263 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1264 return false;
1265 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1266 previous case, the optimization is possible and often useful indeed. */
1267 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1268 reg = SUBREG_REG (reg);
1270 /* Make sure that we can treat REG as having the same mode as the
1271 source of DEF_SET. */
1272 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1273 return false;
1275 /* Check if the substitution is valid (last, because it's the most
1276 expensive check!). */
1277 src = SET_SRC (def_set);
1278 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1279 return false;
1281 /* Check if the def is loading something from the constant pool; in this
1282 case we would undo optimization such as compress_float_constant.
1283 Still, we can set a REG_EQUAL note. */
1284 if (MEM_P (src) && MEM_READONLY_P (src))
1286 rtx x = avoid_constant_pool_reference (src);
1287 if (x != src && use_set)
1289 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1290 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1291 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1292 if (old_rtx != new_rtx)
1293 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1295 return false;
1298 if (asm_use >= 0)
1299 return forward_propagate_asm (use, def_insn, def_set, reg);
1301 /* Else try simplifying. */
1303 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1305 loc = &SET_DEST (use_set);
1306 set_reg_equal = false;
1308 else if (!use_set)
1310 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1311 set_reg_equal = false;
1313 else
1315 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1316 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1317 loc = &XEXP (note, 0);
1318 else
1319 loc = &SET_SRC (use_set);
1321 /* Do not replace an existing REG_EQUAL note if the insn is not
1322 recognized. Either we're already replacing in the note, or we'll
1323 separately try plugging the definition in the note and simplifying.
1324 And only install a REQ_EQUAL note when the destination is a REG
1325 that isn't mentioned in USE_SET, as the note would be invalid
1326 otherwise. We also don't want to install a note if we are merely
1327 propagating a pseudo since verifying that this pseudo isn't dead
1328 is a pain; moreover such a note won't help anything.
1329 If the use is a paradoxical subreg, make sure we don't add a
1330 REG_EQUAL note for it, because it is not equivalent, it is one
1331 possible value for it, but we can't rely on it holding that value.
1332 See PR70574. */
1333 set_reg_equal = (note == NULL_RTX
1334 && REG_P (SET_DEST (use_set))
1335 && !REG_P (src)
1336 && !(GET_CODE (src) == SUBREG
1337 && REG_P (SUBREG_REG (src)))
1338 && !reg_mentioned_p (SET_DEST (use_set),
1339 SET_SRC (use_set))
1340 && !paradoxical_subreg_p (DF_REF_REG (use)));
1343 if (GET_MODE (*loc) == VOIDmode)
1344 mode = GET_MODE (SET_DEST (use_set));
1345 else
1346 mode = GET_MODE (*loc);
1348 new_rtx = propagate_rtx (*loc, mode, reg, src,
1349 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1351 if (!new_rtx)
1352 return false;
1354 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1358 /* Given a use USE of an insn, if it has a single reaching
1359 definition, try to forward propagate it into that insn.
1360 Return true if cfg cleanup will be needed. */
1362 static bool
1363 forward_propagate_into (df_ref use)
1365 df_ref def;
1366 rtx_insn *def_insn, *use_insn;
1367 rtx def_set;
1368 rtx parent;
1370 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1371 return false;
1372 if (DF_REF_IS_ARTIFICIAL (use))
1373 return false;
1375 /* Only consider uses that have a single definition. */
1376 def = get_def_for_use (use);
1377 if (!def)
1378 return false;
1379 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1380 return false;
1381 if (DF_REF_IS_ARTIFICIAL (def))
1382 return false;
1384 /* Do not propagate loop invariant definitions inside the loop. */
1385 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1386 return false;
1388 /* Check if the use is still present in the insn! */
1389 use_insn = DF_REF_INSN (use);
1390 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1391 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1392 else
1393 parent = PATTERN (use_insn);
1395 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1396 return false;
1398 def_insn = DF_REF_INSN (def);
1399 if (multiple_sets (def_insn))
1400 return false;
1401 def_set = single_set (def_insn);
1402 if (!def_set)
1403 return false;
1405 /* Only try one kind of propagation. If two are possible, we'll
1406 do it on the following iterations. */
1407 if (forward_propagate_and_simplify (use, def_insn, def_set)
1408 || forward_propagate_subreg (use, def_insn, def_set))
1410 if (cfun->can_throw_non_call_exceptions
1411 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1412 && purge_dead_edges (DF_REF_BB (use)))
1413 return true;
1415 return false;
1419 static void
1420 fwprop_init (void)
1422 num_changes = 0;
1423 calculate_dominance_info (CDI_DOMINATORS);
1425 /* We do not always want to propagate into loops, so we have to find
1426 loops and be careful about them. Avoid CFG modifications so that
1427 we don't have to update dominance information afterwards for
1428 build_single_def_use_links. */
1429 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1431 build_single_def_use_links ();
1432 df_set_flags (DF_DEFER_INSN_RESCAN);
1434 active_defs = XNEWVEC (df_ref, max_reg_num ());
1435 if (flag_checking)
1436 active_defs_check = sparseset_alloc (max_reg_num ());
1439 static void
1440 fwprop_done (void)
1442 loop_optimizer_finalize ();
1444 use_def_ref.release ();
1445 free (active_defs);
1446 if (flag_checking)
1447 sparseset_free (active_defs_check);
1449 free_dominance_info (CDI_DOMINATORS);
1450 cleanup_cfg (0);
1451 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1453 if (dump_file)
1454 fprintf (dump_file,
1455 "\nNumber of successful forward propagations: %d\n\n",
1456 num_changes);
1460 /* Main entry point. */
1462 static bool
1463 gate_fwprop (void)
1465 return optimize > 0 && flag_forward_propagate;
1468 static unsigned int
1469 fwprop (void)
1471 unsigned i;
1473 fwprop_init ();
1475 /* Go through all the uses. df_uses_create will create new ones at the
1476 end, and we'll go through them as well.
1478 Do not forward propagate addresses into loops until after unrolling.
1479 CSE did so because it was able to fix its own mess, but we are not. */
1481 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1483 df_ref use = DF_USES_GET (i);
1484 if (use)
1485 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1486 || DF_REF_BB (use)->loop_father == NULL
1487 /* The outer most loop is not really a loop. */
1488 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1489 forward_propagate_into (use);
1492 fwprop_done ();
1493 return 0;
1496 namespace {
1498 const pass_data pass_data_rtl_fwprop =
1500 RTL_PASS, /* type */
1501 "fwprop1", /* name */
1502 OPTGROUP_NONE, /* optinfo_flags */
1503 TV_FWPROP, /* tv_id */
1504 0, /* properties_required */
1505 0, /* properties_provided */
1506 0, /* properties_destroyed */
1507 0, /* todo_flags_start */
1508 TODO_df_finish, /* todo_flags_finish */
1511 class pass_rtl_fwprop : public rtl_opt_pass
1513 public:
1514 pass_rtl_fwprop (gcc::context *ctxt)
1515 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1518 /* opt_pass methods: */
1519 virtual bool gate (function *) { return gate_fwprop (); }
1520 virtual unsigned int execute (function *) { return fwprop (); }
1522 }; // class pass_rtl_fwprop
1524 } // anon namespace
1526 rtl_opt_pass *
1527 make_pass_rtl_fwprop (gcc::context *ctxt)
1529 return new pass_rtl_fwprop (ctxt);
1532 static unsigned int
1533 fwprop_addr (void)
1535 unsigned i;
1537 fwprop_init ();
1539 /* Go through all the uses. df_uses_create will create new ones at the
1540 end, and we'll go through them as well. */
1541 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1543 df_ref use = DF_USES_GET (i);
1544 if (use)
1545 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1546 && DF_REF_BB (use)->loop_father != NULL
1547 /* The outer most loop is not really a loop. */
1548 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1549 forward_propagate_into (use);
1552 fwprop_done ();
1553 return 0;
1556 namespace {
1558 const pass_data pass_data_rtl_fwprop_addr =
1560 RTL_PASS, /* type */
1561 "fwprop2", /* name */
1562 OPTGROUP_NONE, /* optinfo_flags */
1563 TV_FWPROP, /* tv_id */
1564 0, /* properties_required */
1565 0, /* properties_provided */
1566 0, /* properties_destroyed */
1567 0, /* todo_flags_start */
1568 TODO_df_finish, /* todo_flags_finish */
1571 class pass_rtl_fwprop_addr : public rtl_opt_pass
1573 public:
1574 pass_rtl_fwprop_addr (gcc::context *ctxt)
1575 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1578 /* opt_pass methods: */
1579 virtual bool gate (function *) { return gate_fwprop (); }
1580 virtual unsigned int execute (function *) { return fwprop_addr (); }
1582 }; // class pass_rtl_fwprop_addr
1584 } // anon namespace
1586 rtl_opt_pass *
1587 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1589 return new pass_rtl_fwprop_addr (ctxt);