2015-01-06 Eric Botcazou <ebotcazou@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch6.adb
blobfcca80b3878c555411e71c86a26a83b49a44ceb4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch10; use Sem_Ch10;
64 with Sem_Ch12; use Sem_Ch12;
65 with Sem_Ch13; use Sem_Ch13;
66 with Sem_Dim; use Sem_Dim;
67 with Sem_Disp; use Sem_Disp;
68 with Sem_Dist; use Sem_Dist;
69 with Sem_Elim; use Sem_Elim;
70 with Sem_Eval; use Sem_Eval;
71 with Sem_Mech; use Sem_Mech;
72 with Sem_Prag; use Sem_Prag;
73 with Sem_Res; use Sem_Res;
74 with Sem_Util; use Sem_Util;
75 with Sem_Type; use Sem_Type;
76 with Sem_Warn; use Sem_Warn;
77 with Sinput; use Sinput;
78 with Stand; use Stand;
79 with Sinfo; use Sinfo;
80 with Sinfo.CN; use Sinfo.CN;
81 with Snames; use Snames;
82 with Stringt; use Stringt;
83 with Style;
84 with Stylesw; use Stylesw;
85 with Targparm; use Targparm;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
91 package body Sem_Ch6 is
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
106 procedure Analyze_Null_Procedure
107 (N : Node_Id;
108 Is_Completion : out Boolean);
109 -- A null procedure can be a declaration or (Ada 2012) a completion
111 procedure Analyze_Return_Statement (N : Node_Id);
112 -- Common processing for simple and extended return statements
114 procedure Analyze_Function_Return (N : Node_Id);
115 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
116 -- applies to a [generic] function.
118 procedure Analyze_Return_Type (N : Node_Id);
119 -- Subsidiary to Process_Formals: analyze subtype mark in function
120 -- specification in a context where the formals are visible and hide
121 -- outer homographs.
123 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
124 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
125 -- that we can use RETURN but not skip the debug output at the end.
127 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
128 -- Analyze a generic subprogram body. N is the body to be analyzed, and
129 -- Gen_Id is the defining entity Id for the corresponding spec.
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
155 procedure Check_Subprogram_Order (N : Node_Id);
156 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
157 -- the alpha ordering rule for N if this ordering requirement applicable.
159 procedure Check_Returns
160 (HSS : Node_Id;
161 Mode : Character;
162 Err : out Boolean;
163 Proc : Entity_Id := Empty);
164 -- Called to check for missing return statements in a function body, or for
165 -- returns present in a procedure body which has No_Return set. HSS is the
166 -- handled statement sequence for the subprogram body. This procedure
167 -- checks all flow paths to make sure they either have return (Mode = 'F',
168 -- used for functions) or do not have a return (Mode = 'P', used for
169 -- No_Return procedures). The flag Err is set if there are any control
170 -- paths not explicitly terminated by a return in the function case, and is
171 -- True otherwise. Proc is the entity for the procedure case and is used
172 -- in posting the warning message.
174 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
175 -- In Ada 2012, a primitive equality operator on an untagged record type
176 -- must appear before the type is frozen, and have the same visibility as
177 -- that of the type. This procedure checks that this rule is met, and
178 -- otherwise emits an error on the subprogram declaration and a warning
179 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
180 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
181 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
182 -- is set, otherwise the call has no effect.
184 procedure Enter_Overloaded_Entity (S : Entity_Id);
185 -- This procedure makes S, a new overloaded entity, into the first visible
186 -- entity with that name.
188 function Is_Non_Overriding_Operation
189 (Prev_E : Entity_Id;
190 New_E : Entity_Id) return Boolean;
191 -- Enforce the rule given in 12.3(18): a private operation in an instance
192 -- overrides an inherited operation only if the corresponding operation
193 -- was overriding in the generic. This needs to be checked for primitive
194 -- operations of types derived (in the generic unit) from formal private
195 -- or formal derived types.
197 procedure Make_Inequality_Operator (S : Entity_Id);
198 -- Create the declaration for an inequality operator that is implicitly
199 -- created by a user-defined equality operator that yields a boolean.
201 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
202 -- Formal_Id is an formal parameter entity. This procedure deals with
203 -- setting the proper validity status for this entity, which depends on
204 -- the kind of parameter and the validity checking mode.
206 ---------------------------------------------
207 -- Analyze_Abstract_Subprogram_Declaration --
208 ---------------------------------------------
210 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
211 Designator : constant Entity_Id :=
212 Analyze_Subprogram_Specification (Specification (N));
213 Scop : constant Entity_Id := Current_Scope;
215 begin
216 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
218 Generate_Definition (Designator);
219 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
220 Set_Is_Abstract_Subprogram (Designator);
221 New_Overloaded_Entity (Designator);
222 Check_Delayed_Subprogram (Designator);
224 Set_Categorization_From_Scope (Designator, Scop);
226 -- An abstract subprogram declared within a Ghost scope is automatically
227 -- Ghost (SPARK RM 6.9(2)).
229 if Comes_From_Source (Designator) and then Within_Ghost_Scope then
230 Set_Is_Ghost_Entity (Designator);
231 end if;
233 if Ekind (Scope (Designator)) = E_Protected_Type then
234 Error_Msg_N
235 ("abstract subprogram not allowed in protected type", N);
237 -- Issue a warning if the abstract subprogram is neither a dispatching
238 -- operation nor an operation that overrides an inherited subprogram or
239 -- predefined operator, since this most likely indicates a mistake.
241 elsif Warn_On_Redundant_Constructs
242 and then not Is_Dispatching_Operation (Designator)
243 and then not Present (Overridden_Operation (Designator))
244 and then (not Is_Operator_Symbol_Name (Chars (Designator))
245 or else Scop /= Scope (Etype (First_Formal (Designator))))
246 then
247 Error_Msg_N
248 ("abstract subprogram is not dispatching or overriding?r?", N);
249 end if;
251 Generate_Reference_To_Formals (Designator);
252 Check_Eliminated (Designator);
254 if Has_Aspects (N) then
255 Analyze_Aspect_Specifications (N, Designator);
256 end if;
257 end Analyze_Abstract_Subprogram_Declaration;
259 ---------------------------------
260 -- Analyze_Expression_Function --
261 ---------------------------------
263 procedure Analyze_Expression_Function (N : Node_Id) is
264 Loc : constant Source_Ptr := Sloc (N);
265 LocX : constant Source_Ptr := Sloc (Expression (N));
266 Expr : constant Node_Id := Expression (N);
267 Spec : constant Node_Id := Specification (N);
269 Def_Id : Entity_Id;
271 Prev : Entity_Id;
272 -- If the expression is a completion, Prev is the entity whose
273 -- declaration is completed. Def_Id is needed to analyze the spec.
275 New_Body : Node_Id;
276 New_Spec : Node_Id;
277 Ret : Node_Id;
279 begin
280 -- This is one of the occasions on which we transform the tree during
281 -- semantic analysis. If this is a completion, transform the expression
282 -- function into an equivalent subprogram body, and analyze it.
284 -- Expression functions are inlined unconditionally. The back-end will
285 -- determine whether this is possible.
287 Inline_Processing_Required := True;
289 -- Create a specification for the generated body. Types and defauts in
290 -- the profile are copies of the spec, but new entities must be created
291 -- for the unit name and the formals.
293 New_Spec := New_Copy_Tree (Spec);
294 Set_Defining_Unit_Name (New_Spec,
295 Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
296 Chars (Defining_Unit_Name (Spec))));
298 if Present (Parameter_Specifications (New_Spec)) then
299 declare
300 Formal_Spec : Node_Id;
301 Def : Entity_Id;
303 begin
304 Formal_Spec := First (Parameter_Specifications (New_Spec));
306 -- Create a new formal parameter at the same source position
308 while Present (Formal_Spec) loop
309 Def := Defining_Identifier (Formal_Spec);
310 Set_Defining_Identifier (Formal_Spec,
311 Make_Defining_Identifier (Sloc (Def),
312 Chars => Chars (Def)));
313 Next (Formal_Spec);
314 end loop;
315 end;
316 end if;
318 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
320 -- If there are previous overloadable entities with the same name,
321 -- check whether any of them is completed by the expression function.
322 -- In a generic context a formal subprogram has no completion.
324 if Present (Prev)
325 and then Is_Overloadable (Prev)
326 and then not Is_Formal_Subprogram (Prev)
327 then
328 Def_Id := Analyze_Subprogram_Specification (Spec);
329 Prev := Find_Corresponding_Spec (N);
331 -- The previous entity may be an expression function as well, in
332 -- which case the redeclaration is illegal.
334 if Present (Prev)
335 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
336 N_Expression_Function
337 then
338 Error_Msg_Sloc := Sloc (Prev);
339 Error_Msg_N ("& conflicts with declaration#", Def_Id);
340 return;
341 end if;
342 end if;
344 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
346 New_Body :=
347 Make_Subprogram_Body (Loc,
348 Specification => New_Spec,
349 Declarations => Empty_List,
350 Handled_Statement_Sequence =>
351 Make_Handled_Sequence_Of_Statements (LocX,
352 Statements => New_List (Ret)));
354 -- If the expression completes a generic subprogram, we must create a
355 -- separate node for the body, because at instantiation the original
356 -- node of the generic copy must be a generic subprogram body, and
357 -- cannot be a expression function. Otherwise we just rewrite the
358 -- expression with the non-generic body.
360 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
361 Insert_After (N, New_Body);
363 -- Propagate any aspects or pragmas that apply to the expression
364 -- function to the proper body when the expression function acts
365 -- as a completion.
367 if Has_Aspects (N) then
368 Move_Aspects (N, To => New_Body);
369 end if;
371 Relocate_Pragmas_To_Body (New_Body);
373 Rewrite (N, Make_Null_Statement (Loc));
374 Set_Has_Completion (Prev, False);
375 Analyze (N);
376 Analyze (New_Body);
377 Set_Is_Inlined (Prev);
379 -- If the expression function is a completion, the previous declaration
380 -- must come from source. We know already that appears in the current
381 -- scope. The entity itself may be internally created if within a body
382 -- to be inlined.
384 elsif Present (Prev)
385 and then Comes_From_Source (Parent (Prev))
386 and then not Is_Formal_Subprogram (Prev)
387 then
388 Set_Has_Completion (Prev, False);
390 -- An expression function that is a completion freezes the
391 -- expression. This means freezing the return type, and if it is
392 -- an access type, freezing its designated type as well.
394 -- Note that we cannot defer this freezing to the analysis of the
395 -- expression itself, because a freeze node might appear in a nested
396 -- scope, leading to an elaboration order issue in gigi.
398 Freeze_Before (N, Etype (Prev));
400 if Is_Access_Type (Etype (Prev)) then
401 Freeze_Before (N, Designated_Type (Etype (Prev)));
402 end if;
404 -- For navigation purposes, indicate that the function is a body
406 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
407 Rewrite (N, New_Body);
409 -- Correct the parent pointer of the aspect specification list to
410 -- reference the rewritten node.
412 if Has_Aspects (N) then
413 Set_Parent (Aspect_Specifications (N), N);
414 end if;
416 -- Propagate any pragmas that apply to the expression function to the
417 -- proper body when the expression function acts as a completion.
418 -- Aspects are automatically transfered because of node rewriting.
420 Relocate_Pragmas_To_Body (N);
421 Analyze (N);
423 -- Prev is the previous entity with the same name, but it is can
424 -- be an unrelated spec that is not completed by the expression
425 -- function. In that case the relevant entity is the one in the body.
426 -- Not clear that the backend can inline it in this case ???
428 if Has_Completion (Prev) then
429 Set_Is_Inlined (Prev);
431 -- The formals of the expression function are body formals,
432 -- and do not appear in the ali file, which will only contain
433 -- references to the formals of the original subprogram spec.
435 declare
436 F1 : Entity_Id;
437 F2 : Entity_Id;
439 begin
440 F1 := First_Formal (Def_Id);
441 F2 := First_Formal (Prev);
443 while Present (F1) loop
444 Set_Spec_Entity (F1, F2);
445 Next_Formal (F1);
446 Next_Formal (F2);
447 end loop;
448 end;
450 else
451 Set_Is_Inlined (Defining_Entity (New_Body));
452 end if;
454 -- If this is not a completion, create both a declaration and a body, so
455 -- that the expression can be inlined whenever possible.
457 else
458 -- An expression function that is not a completion is not a
459 -- subprogram declaration, and thus cannot appear in a protected
460 -- definition.
462 if Nkind (Parent (N)) = N_Protected_Definition then
463 Error_Msg_N
464 ("an expression function is not a legal protected operation", N);
465 end if;
467 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
469 -- Correct the parent pointer of the aspect specification list to
470 -- reference the rewritten node.
472 if Has_Aspects (N) then
473 Set_Parent (Aspect_Specifications (N), N);
474 end if;
476 Analyze (N);
478 -- Within a generic pre-analyze the original expression for name
479 -- capture. The body is also generated but plays no role in
480 -- this because it is not part of the original source.
482 if Inside_A_Generic then
483 declare
484 Id : constant Entity_Id := Defining_Entity (N);
486 begin
487 Set_Has_Completion (Id);
488 Push_Scope (Id);
489 Install_Formals (Id);
490 Preanalyze_Spec_Expression (Expr, Etype (Id));
491 End_Scope;
492 end;
493 end if;
495 Set_Is_Inlined (Defining_Entity (N));
497 -- Establish the linkages between the spec and the body. These are
498 -- used when the expression function acts as the prefix of attribute
499 -- 'Access in order to freeze the original expression which has been
500 -- moved to the generated body.
502 Set_Corresponding_Body (N, Defining_Entity (New_Body));
503 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
505 -- To prevent premature freeze action, insert the new body at the end
506 -- of the current declarations, or at the end of the package spec.
507 -- However, resolve usage names now, to prevent spurious visibility
508 -- on later entities. Note that the function can now be called in
509 -- the current declarative part, which will appear to be prior to
510 -- the presence of the body in the code. There are nevertheless no
511 -- order of elaboration issues because all name resolution has taken
512 -- place at the point of declaration.
514 declare
515 Decls : List_Id := List_Containing (N);
516 Par : constant Node_Id := Parent (Decls);
517 Id : constant Entity_Id := Defining_Entity (N);
519 begin
520 -- If this is a wrapper created for in an instance for a formal
521 -- subprogram, insert body after declaration, to be analyzed when
522 -- the enclosing instance is analyzed.
524 if GNATprove_Mode
525 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
526 then
527 Insert_After (N, New_Body);
529 else
530 if Nkind (Par) = N_Package_Specification
531 and then Decls = Visible_Declarations (Par)
532 and then Present (Private_Declarations (Par))
533 and then not Is_Empty_List (Private_Declarations (Par))
534 then
535 Decls := Private_Declarations (Par);
536 end if;
538 Insert_After (Last (Decls), New_Body);
539 Push_Scope (Id);
540 Install_Formals (Id);
542 -- Preanalyze the expression for name capture, except in an
543 -- instance, where this has been done during generic analysis,
544 -- and will be redone when analyzing the body.
546 declare
547 Expr : constant Node_Id := Expression (Ret);
549 begin
550 Set_Parent (Expr, Ret);
552 if not In_Instance then
553 Preanalyze_Spec_Expression (Expr, Etype (Id));
554 end if;
555 end;
557 End_Scope;
558 end if;
559 end;
560 end if;
562 -- If the return expression is a static constant, we suppress warning
563 -- messages on unused formals, which in most cases will be noise.
565 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
566 Is_OK_Static_Expression (Expr));
567 end Analyze_Expression_Function;
569 ----------------------------------------
570 -- Analyze_Extended_Return_Statement --
571 ----------------------------------------
573 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
574 begin
575 Check_Compiler_Unit ("extended return statement", N);
576 Analyze_Return_Statement (N);
577 end Analyze_Extended_Return_Statement;
579 ----------------------------
580 -- Analyze_Function_Call --
581 ----------------------------
583 procedure Analyze_Function_Call (N : Node_Id) is
584 Actuals : constant List_Id := Parameter_Associations (N);
585 Func_Nam : constant Node_Id := Name (N);
586 Actual : Node_Id;
588 begin
589 Analyze (Func_Nam);
591 -- A call of the form A.B (X) may be an Ada 2005 call, which is
592 -- rewritten as B (A, X). If the rewriting is successful, the call
593 -- has been analyzed and we just return.
595 if Nkind (Func_Nam) = N_Selected_Component
596 and then Name (N) /= Func_Nam
597 and then Is_Rewrite_Substitution (N)
598 and then Present (Etype (N))
599 then
600 return;
601 end if;
603 -- If error analyzing name, then set Any_Type as result type and return
605 if Etype (Func_Nam) = Any_Type then
606 Set_Etype (N, Any_Type);
607 return;
608 end if;
610 -- Otherwise analyze the parameters
612 if Present (Actuals) then
613 Actual := First (Actuals);
614 while Present (Actual) loop
615 Analyze (Actual);
616 Check_Parameterless_Call (Actual);
617 Next (Actual);
618 end loop;
619 end if;
621 Analyze_Call (N);
622 end Analyze_Function_Call;
624 -----------------------------
625 -- Analyze_Function_Return --
626 -----------------------------
628 procedure Analyze_Function_Return (N : Node_Id) is
629 Loc : constant Source_Ptr := Sloc (N);
630 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
631 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
633 R_Type : constant Entity_Id := Etype (Scope_Id);
634 -- Function result subtype
636 procedure Check_Limited_Return (Expr : Node_Id);
637 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
638 -- limited types. Used only for simple return statements.
639 -- Expr is the expression returned.
641 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
642 -- Check that the return_subtype_indication properly matches the result
643 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
645 --------------------------
646 -- Check_Limited_Return --
647 --------------------------
649 procedure Check_Limited_Return (Expr : Node_Id) is
650 begin
651 -- Ada 2005 (AI-318-02): Return-by-reference types have been
652 -- removed and replaced by anonymous access results. This is an
653 -- incompatibility with Ada 95. Not clear whether this should be
654 -- enforced yet or perhaps controllable with special switch. ???
656 -- A limited interface that is not immutably limited is OK.
658 if Is_Limited_Interface (R_Type)
659 and then
660 not (Is_Task_Interface (R_Type)
661 or else Is_Protected_Interface (R_Type)
662 or else Is_Synchronized_Interface (R_Type))
663 then
664 null;
666 elsif Is_Limited_Type (R_Type)
667 and then not Is_Interface (R_Type)
668 and then Comes_From_Source (N)
669 and then not In_Instance_Body
670 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
671 then
672 -- Error in Ada 2005
674 if Ada_Version >= Ada_2005
675 and then not Debug_Flag_Dot_L
676 and then not GNAT_Mode
677 then
678 Error_Msg_N
679 ("(Ada 2005) cannot copy object of a limited type "
680 & "(RM-2005 6.5(5.5/2))", Expr);
682 if Is_Limited_View (R_Type) then
683 Error_Msg_N
684 ("\return by reference not permitted in Ada 2005", Expr);
685 end if;
687 -- Warn in Ada 95 mode, to give folks a heads up about this
688 -- incompatibility.
690 -- In GNAT mode, this is just a warning, to allow it to be
691 -- evilly turned off. Otherwise it is a real error.
693 -- In a generic context, simplify the warning because it makes
694 -- no sense to discuss pass-by-reference or copy.
696 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
697 if Inside_A_Generic then
698 Error_Msg_N
699 ("return of limited object not permitted in Ada 2005 "
700 & "(RM-2005 6.5(5.5/2))?y?", Expr);
702 elsif Is_Limited_View (R_Type) then
703 Error_Msg_N
704 ("return by reference not permitted in Ada 2005 "
705 & "(RM-2005 6.5(5.5/2))?y?", Expr);
706 else
707 Error_Msg_N
708 ("cannot copy object of a limited type in Ada 2005 "
709 & "(RM-2005 6.5(5.5/2))?y?", Expr);
710 end if;
712 -- Ada 95 mode, compatibility warnings disabled
714 else
715 return; -- skip continuation messages below
716 end if;
718 if not Inside_A_Generic then
719 Error_Msg_N
720 ("\consider switching to return of access type", Expr);
721 Explain_Limited_Type (R_Type, Expr);
722 end if;
723 end if;
724 end Check_Limited_Return;
726 -------------------------------------
727 -- Check_Return_Subtype_Indication --
728 -------------------------------------
730 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
731 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
733 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
734 -- Subtype given in the extended return statement (must match R_Type)
736 Subtype_Ind : constant Node_Id :=
737 Object_Definition (Original_Node (Obj_Decl));
739 R_Type_Is_Anon_Access : constant Boolean :=
740 Ekind_In (R_Type,
741 E_Anonymous_Access_Subprogram_Type,
742 E_Anonymous_Access_Protected_Subprogram_Type,
743 E_Anonymous_Access_Type);
744 -- True if return type of the function is an anonymous access type
745 -- Can't we make Is_Anonymous_Access_Type in einfo ???
747 R_Stm_Type_Is_Anon_Access : constant Boolean :=
748 Ekind_In (R_Stm_Type,
749 E_Anonymous_Access_Subprogram_Type,
750 E_Anonymous_Access_Protected_Subprogram_Type,
751 E_Anonymous_Access_Type);
752 -- True if type of the return object is an anonymous access type
754 procedure Error_No_Match (N : Node_Id);
755 -- Output error messages for case where types do not statically
756 -- match. N is the location for the messages.
758 --------------------
759 -- Error_No_Match --
760 --------------------
762 procedure Error_No_Match (N : Node_Id) is
763 begin
764 Error_Msg_N
765 ("subtype must statically match function result subtype", N);
767 if not Predicates_Match (R_Stm_Type, R_Type) then
768 Error_Msg_Node_2 := R_Type;
769 Error_Msg_NE
770 ("\predicate of& does not match predicate of&",
771 N, R_Stm_Type);
772 end if;
773 end Error_No_Match;
775 -- Start of processing for Check_Return_Subtype_Indication
777 begin
778 -- First, avoid cascaded errors
780 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
781 return;
782 end if;
784 -- "return access T" case; check that the return statement also has
785 -- "access T", and that the subtypes statically match:
786 -- if this is an access to subprogram the signatures must match.
788 if R_Type_Is_Anon_Access then
789 if R_Stm_Type_Is_Anon_Access then
791 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
792 then
793 if Base_Type (Designated_Type (R_Stm_Type)) /=
794 Base_Type (Designated_Type (R_Type))
795 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
796 then
797 Error_No_Match (Subtype_Mark (Subtype_Ind));
798 end if;
800 else
801 -- For two anonymous access to subprogram types, the
802 -- types themselves must be type conformant.
804 if not Conforming_Types
805 (R_Stm_Type, R_Type, Fully_Conformant)
806 then
807 Error_No_Match (Subtype_Ind);
808 end if;
809 end if;
811 else
812 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
813 end if;
815 -- If the return object is of an anonymous access type, then report
816 -- an error if the function's result type is not also anonymous.
818 elsif R_Stm_Type_Is_Anon_Access
819 and then not R_Type_Is_Anon_Access
820 then
821 Error_Msg_N ("anonymous access not allowed for function with "
822 & "named access result", Subtype_Ind);
824 -- Subtype indication case: check that the return object's type is
825 -- covered by the result type, and that the subtypes statically match
826 -- when the result subtype is constrained. Also handle record types
827 -- with unknown discriminants for which we have built the underlying
828 -- record view. Coverage is needed to allow specific-type return
829 -- objects when the result type is class-wide (see AI05-32).
831 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
832 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
833 and then
834 Covers
835 (Base_Type (R_Type),
836 Underlying_Record_View (Base_Type (R_Stm_Type))))
837 then
838 -- A null exclusion may be present on the return type, on the
839 -- function specification, on the object declaration or on the
840 -- subtype itself.
842 if Is_Access_Type (R_Type)
843 and then
844 (Can_Never_Be_Null (R_Type)
845 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
846 Can_Never_Be_Null (R_Stm_Type)
847 then
848 Error_No_Match (Subtype_Ind);
849 end if;
851 -- AI05-103: for elementary types, subtypes must statically match
853 if Is_Constrained (R_Type)
854 or else Is_Access_Type (R_Type)
855 then
856 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
857 Error_No_Match (Subtype_Ind);
858 end if;
859 end if;
861 -- All remaining cases are illegal
863 -- Note: previous versions of this subprogram allowed the return
864 -- value to be the ancestor of the return type if the return type
865 -- was a null extension. This was plainly incorrect.
867 else
868 Error_Msg_N
869 ("wrong type for return_subtype_indication", Subtype_Ind);
870 end if;
871 end Check_Return_Subtype_Indication;
873 ---------------------
874 -- Local Variables --
875 ---------------------
877 Expr : Node_Id;
879 -- Start of processing for Analyze_Function_Return
881 begin
882 Set_Return_Present (Scope_Id);
884 if Nkind (N) = N_Simple_Return_Statement then
885 Expr := Expression (N);
887 -- Guard against a malformed expression. The parser may have tried to
888 -- recover but the node is not analyzable.
890 if Nkind (Expr) = N_Error then
891 Set_Etype (Expr, Any_Type);
892 Expander_Mode_Save_And_Set (False);
893 return;
895 else
896 -- The resolution of a controlled [extension] aggregate associated
897 -- with a return statement creates a temporary which needs to be
898 -- finalized on function exit. Wrap the return statement inside a
899 -- block so that the finalization machinery can detect this case.
900 -- This early expansion is done only when the return statement is
901 -- not part of a handled sequence of statements.
903 if Nkind_In (Expr, N_Aggregate,
904 N_Extension_Aggregate)
905 and then Needs_Finalization (R_Type)
906 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
907 then
908 Rewrite (N,
909 Make_Block_Statement (Loc,
910 Handled_Statement_Sequence =>
911 Make_Handled_Sequence_Of_Statements (Loc,
912 Statements => New_List (Relocate_Node (N)))));
914 Analyze (N);
915 return;
916 end if;
918 Analyze (Expr);
920 -- Ada 2005 (AI-251): If the type of the returned object is
921 -- an access to an interface type then we add an implicit type
922 -- conversion to force the displacement of the "this" pointer to
923 -- reference the secondary dispatch table. We cannot delay the
924 -- generation of this implicit conversion until the expansion
925 -- because in this case the type resolution changes the decoration
926 -- of the expression node to match R_Type; by contrast, if the
927 -- returned object is a class-wide interface type then it is too
928 -- early to generate here the implicit conversion since the return
929 -- statement may be rewritten by the expander into an extended
930 -- return statement whose expansion takes care of adding the
931 -- implicit type conversion to displace the pointer to the object.
933 if Expander_Active
934 and then Serious_Errors_Detected = 0
935 and then Is_Access_Type (R_Type)
936 and then Nkind (Expr) /= N_Null
937 and then Is_Interface (Designated_Type (R_Type))
938 and then Is_Progenitor (Designated_Type (R_Type),
939 Designated_Type (Etype (Expr)))
940 then
941 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
942 Analyze (Expr);
943 end if;
945 Resolve (Expr, R_Type);
946 Check_Limited_Return (Expr);
947 end if;
949 -- RETURN only allowed in SPARK as the last statement in function
951 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
952 and then
953 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
954 or else Present (Next (N)))
955 then
956 Check_SPARK_05_Restriction
957 ("RETURN should be the last statement in function", N);
958 end if;
960 else
961 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
963 -- Analyze parts specific to extended_return_statement:
965 declare
966 Obj_Decl : constant Node_Id :=
967 Last (Return_Object_Declarations (N));
968 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
969 HSS : constant Node_Id := Handled_Statement_Sequence (N);
971 begin
972 Expr := Expression (Obj_Decl);
974 -- Note: The check for OK_For_Limited_Init will happen in
975 -- Analyze_Object_Declaration; we treat it as a normal
976 -- object declaration.
978 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
979 Analyze (Obj_Decl);
981 Check_Return_Subtype_Indication (Obj_Decl);
983 if Present (HSS) then
984 Analyze (HSS);
986 if Present (Exception_Handlers (HSS)) then
988 -- ???Has_Nested_Block_With_Handler needs to be set.
989 -- Probably by creating an actual N_Block_Statement.
990 -- Probably in Expand.
992 null;
993 end if;
994 end if;
996 -- Mark the return object as referenced, since the return is an
997 -- implicit reference of the object.
999 Set_Referenced (Defining_Identifier (Obj_Decl));
1001 Check_References (Stm_Entity);
1003 -- Check RM 6.5 (5.9/3)
1005 if Has_Aliased then
1006 if Ada_Version < Ada_2012 then
1008 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1009 -- Can it really happen (extended return???)
1011 Error_Msg_N
1012 ("aliased only allowed for limited return objects "
1013 & "in Ada 2012??", N);
1015 elsif not Is_Limited_View (R_Type) then
1016 Error_Msg_N
1017 ("aliased only allowed for limited return objects", N);
1018 end if;
1019 end if;
1020 end;
1021 end if;
1023 -- Case of Expr present
1025 if Present (Expr)
1027 -- Defend against previous errors
1029 and then Nkind (Expr) /= N_Empty
1030 and then Present (Etype (Expr))
1031 then
1032 -- Apply constraint check. Note that this is done before the implicit
1033 -- conversion of the expression done for anonymous access types to
1034 -- ensure correct generation of the null-excluding check associated
1035 -- with null-excluding expressions found in return statements.
1037 Apply_Constraint_Check (Expr, R_Type);
1039 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1040 -- type, apply an implicit conversion of the expression to that type
1041 -- to force appropriate static and run-time accessibility checks.
1043 if Ada_Version >= Ada_2005
1044 and then Ekind (R_Type) = E_Anonymous_Access_Type
1045 then
1046 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1047 Analyze_And_Resolve (Expr, R_Type);
1049 -- If this is a local anonymous access to subprogram, the
1050 -- accessibility check can be applied statically. The return is
1051 -- illegal if the access type of the return expression is declared
1052 -- inside of the subprogram (except if it is the subtype indication
1053 -- of an extended return statement).
1055 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1056 if not Comes_From_Source (Current_Scope)
1057 or else Ekind (Current_Scope) = E_Return_Statement
1058 then
1059 null;
1061 elsif
1062 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1063 then
1064 Error_Msg_N ("cannot return local access to subprogram", N);
1065 end if;
1067 -- The expression cannot be of a formal incomplete type
1069 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1070 and then Is_Generic_Type (Etype (Expr))
1071 then
1072 Error_Msg_N
1073 ("cannot return expression of a formal incomplete type", N);
1074 end if;
1076 -- If the result type is class-wide, then check that the return
1077 -- expression's type is not declared at a deeper level than the
1078 -- function (RM05-6.5(5.6/2)).
1080 if Ada_Version >= Ada_2005
1081 and then Is_Class_Wide_Type (R_Type)
1082 then
1083 if Type_Access_Level (Etype (Expr)) >
1084 Subprogram_Access_Level (Scope_Id)
1085 then
1086 Error_Msg_N
1087 ("level of return expression type is deeper than "
1088 & "class-wide function!", Expr);
1089 end if;
1090 end if;
1092 -- Check incorrect use of dynamically tagged expression
1094 if Is_Tagged_Type (R_Type) then
1095 Check_Dynamically_Tagged_Expression
1096 (Expr => Expr,
1097 Typ => R_Type,
1098 Related_Nod => N);
1099 end if;
1101 -- ??? A real run-time accessibility check is needed in cases
1102 -- involving dereferences of access parameters. For now we just
1103 -- check the static cases.
1105 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1106 and then Is_Limited_View (Etype (Scope_Id))
1107 and then Object_Access_Level (Expr) >
1108 Subprogram_Access_Level (Scope_Id)
1109 then
1110 -- Suppress the message in a generic, where the rewriting
1111 -- is irrelevant.
1113 if Inside_A_Generic then
1114 null;
1116 else
1117 Rewrite (N,
1118 Make_Raise_Program_Error (Loc,
1119 Reason => PE_Accessibility_Check_Failed));
1120 Analyze (N);
1122 Error_Msg_Warn := SPARK_Mode /= On;
1123 Error_Msg_N ("cannot return a local value by reference<<", N);
1124 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1125 end if;
1126 end if;
1128 if Known_Null (Expr)
1129 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1130 and then Null_Exclusion_Present (Parent (Scope_Id))
1131 then
1132 Apply_Compile_Time_Constraint_Error
1133 (N => Expr,
1134 Msg => "(Ada 2005) null not allowed for "
1135 & "null-excluding return??",
1136 Reason => CE_Null_Not_Allowed);
1137 end if;
1138 end if;
1139 end Analyze_Function_Return;
1141 -------------------------------------
1142 -- Analyze_Generic_Subprogram_Body --
1143 -------------------------------------
1145 procedure Analyze_Generic_Subprogram_Body
1146 (N : Node_Id;
1147 Gen_Id : Entity_Id)
1149 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1150 Kind : constant Entity_Kind := Ekind (Gen_Id);
1151 Body_Id : Entity_Id;
1152 New_N : Node_Id;
1153 Spec : Node_Id;
1155 begin
1156 -- Copy body and disable expansion while analyzing the generic For a
1157 -- stub, do not copy the stub (which would load the proper body), this
1158 -- will be done when the proper body is analyzed.
1160 if Nkind (N) /= N_Subprogram_Body_Stub then
1161 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1162 Rewrite (N, New_N);
1163 Start_Generic;
1164 end if;
1166 Spec := Specification (N);
1168 -- Within the body of the generic, the subprogram is callable, and
1169 -- behaves like the corresponding non-generic unit.
1171 Body_Id := Defining_Entity (Spec);
1173 if Kind = E_Generic_Procedure
1174 and then Nkind (Spec) /= N_Procedure_Specification
1175 then
1176 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1177 return;
1179 elsif Kind = E_Generic_Function
1180 and then Nkind (Spec) /= N_Function_Specification
1181 then
1182 Error_Msg_N ("invalid body for generic function ", Body_Id);
1183 return;
1184 end if;
1186 Set_Corresponding_Body (Gen_Decl, Body_Id);
1188 if Has_Completion (Gen_Id)
1189 and then Nkind (Parent (N)) /= N_Subunit
1190 then
1191 Error_Msg_N ("duplicate generic body", N);
1192 return;
1193 else
1194 Set_Has_Completion (Gen_Id);
1195 end if;
1197 if Nkind (N) = N_Subprogram_Body_Stub then
1198 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1199 else
1200 Set_Corresponding_Spec (N, Gen_Id);
1201 end if;
1203 if Nkind (Parent (N)) = N_Compilation_Unit then
1204 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1205 end if;
1207 -- Make generic parameters immediately visible in the body. They are
1208 -- needed to process the formals declarations. Then make the formals
1209 -- visible in a separate step.
1211 Push_Scope (Gen_Id);
1213 declare
1214 E : Entity_Id;
1215 First_Ent : Entity_Id;
1217 begin
1218 First_Ent := First_Entity (Gen_Id);
1220 E := First_Ent;
1221 while Present (E) and then not Is_Formal (E) loop
1222 Install_Entity (E);
1223 Next_Entity (E);
1224 end loop;
1226 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1228 -- Now generic formals are visible, and the specification can be
1229 -- analyzed, for subsequent conformance check.
1231 Body_Id := Analyze_Subprogram_Specification (Spec);
1233 -- Make formal parameters visible
1235 if Present (E) then
1237 -- E is the first formal parameter, we loop through the formals
1238 -- installing them so that they will be visible.
1240 Set_First_Entity (Gen_Id, E);
1241 while Present (E) loop
1242 Install_Entity (E);
1243 Next_Formal (E);
1244 end loop;
1245 end if;
1247 -- Visible generic entity is callable within its own body
1249 Set_Ekind (Gen_Id, Ekind (Body_Id));
1250 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
1251 Set_Ekind (Body_Id, E_Subprogram_Body);
1252 Set_Convention (Body_Id, Convention (Gen_Id));
1253 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1254 Set_Scope (Body_Id, Scope (Gen_Id));
1256 -- Inherit the "ghostness" of the generic spec. Note that this
1257 -- property is not directly inherited as the body may be subject
1258 -- to a different Ghost assertion policy.
1260 if Is_Ghost_Entity (Gen_Id) or else Within_Ghost_Scope then
1261 Set_Is_Ghost_Entity (Body_Id);
1263 -- The Ghost policy in effect at the point of declaration and at
1264 -- the point of completion must match (SPARK RM 6.9(15)).
1266 Check_Ghost_Completion (Gen_Id, Body_Id);
1267 end if;
1269 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1271 if Nkind (N) = N_Subprogram_Body_Stub then
1273 -- No body to analyze, so restore state of generic unit
1275 Set_Ekind (Gen_Id, Kind);
1276 Set_Ekind (Body_Id, Kind);
1278 if Present (First_Ent) then
1279 Set_First_Entity (Gen_Id, First_Ent);
1280 end if;
1282 End_Scope;
1283 return;
1284 end if;
1286 -- If this is a compilation unit, it must be made visible explicitly,
1287 -- because the compilation of the declaration, unlike other library
1288 -- unit declarations, does not. If it is not a unit, the following
1289 -- is redundant but harmless.
1291 Set_Is_Immediately_Visible (Gen_Id);
1292 Reference_Body_Formals (Gen_Id, Body_Id);
1294 if Is_Child_Unit (Gen_Id) then
1295 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1296 end if;
1298 Set_Actual_Subtypes (N, Current_Scope);
1300 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1301 -- invariants and predicates associated with the body and its spec.
1302 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1303 -- prepares the contract assertions for generic subprograms or for
1304 -- ASIS. Do not generate contract checks in SPARK mode.
1306 if not GNATprove_Mode then
1307 Expand_Subprogram_Contract (N, Gen_Id, Body_Id);
1308 end if;
1310 -- If the generic unit carries pre- or post-conditions, copy them
1311 -- to the original generic tree, so that they are properly added
1312 -- to any instantiation.
1314 declare
1315 Orig : constant Node_Id := Original_Node (N);
1316 Cond : Node_Id;
1318 begin
1319 Cond := First (Declarations (N));
1320 while Present (Cond) loop
1321 if Nkind (Cond) = N_Pragma
1322 and then Pragma_Name (Cond) = Name_Check
1323 then
1324 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1326 elsif Nkind (Cond) = N_Pragma
1327 and then Pragma_Name (Cond) = Name_Postcondition
1328 then
1329 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
1330 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1331 else
1332 exit;
1333 end if;
1335 Next (Cond);
1336 end loop;
1337 end;
1339 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1340 Set_SPARK_Pragma_Inherited (Body_Id, True);
1342 Analyze_Declarations (Declarations (N));
1343 Check_Completion;
1344 Analyze (Handled_Statement_Sequence (N));
1346 Save_Global_References (Original_Node (N));
1348 -- Prior to exiting the scope, include generic formals again (if any
1349 -- are present) in the set of local entities.
1351 if Present (First_Ent) then
1352 Set_First_Entity (Gen_Id, First_Ent);
1353 end if;
1355 Check_References (Gen_Id);
1356 end;
1358 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1359 End_Scope;
1360 Check_Subprogram_Order (N);
1362 -- Outside of its body, unit is generic again
1364 Set_Ekind (Gen_Id, Kind);
1365 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1367 if Style_Check then
1368 Style.Check_Identifier (Body_Id, Gen_Id);
1369 end if;
1371 End_Generic;
1372 end Analyze_Generic_Subprogram_Body;
1374 ----------------------------
1375 -- Analyze_Null_Procedure --
1376 ----------------------------
1378 procedure Analyze_Null_Procedure
1379 (N : Node_Id;
1380 Is_Completion : out Boolean)
1382 Loc : constant Source_Ptr := Sloc (N);
1383 Spec : constant Node_Id := Specification (N);
1384 Designator : Entity_Id;
1385 Form : Node_Id;
1386 Null_Body : Node_Id := Empty;
1387 Prev : Entity_Id;
1389 begin
1390 -- Capture the profile of the null procedure before analysis, for
1391 -- expansion at the freeze point and at each point of call. The body is
1392 -- used if the procedure has preconditions, or if it is a completion. In
1393 -- the first case the body is analyzed at the freeze point, in the other
1394 -- it replaces the null procedure declaration.
1396 Null_Body :=
1397 Make_Subprogram_Body (Loc,
1398 Specification => New_Copy_Tree (Spec),
1399 Declarations => New_List,
1400 Handled_Statement_Sequence =>
1401 Make_Handled_Sequence_Of_Statements (Loc,
1402 Statements => New_List (Make_Null_Statement (Loc))));
1404 -- Create new entities for body and formals
1406 Set_Defining_Unit_Name (Specification (Null_Body),
1407 Make_Defining_Identifier
1408 (Sloc (Defining_Entity (N)),
1409 Chars (Defining_Entity (N))));
1411 Form := First (Parameter_Specifications (Specification (Null_Body)));
1412 while Present (Form) loop
1413 Set_Defining_Identifier (Form,
1414 Make_Defining_Identifier
1415 (Sloc (Defining_Identifier (Form)),
1416 Chars (Defining_Identifier (Form))));
1417 Next (Form);
1418 end loop;
1420 -- Determine whether the null procedure may be a completion of a generic
1421 -- suprogram, in which case we use the new null body as the completion
1422 -- and set minimal semantic information on the original declaration,
1423 -- which is rewritten as a null statement.
1425 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1427 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1428 Insert_Before (N, Null_Body);
1429 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1430 Set_Contract (Defining_Entity (N), Make_Contract (Loc));
1432 Rewrite (N, Make_Null_Statement (Loc));
1433 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1434 Is_Completion := True;
1435 return;
1437 else
1438 -- Resolve the types of the formals now, because the freeze point
1439 -- may appear in a different context, e.g. an instantiation.
1441 Form := First (Parameter_Specifications (Specification (Null_Body)));
1442 while Present (Form) loop
1443 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1444 Find_Type (Parameter_Type (Form));
1446 elsif
1447 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1448 then
1449 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1451 else
1452 -- The case of a null procedure with a formal that is an
1453 -- access_to_subprogram type, and that is used as an actual
1454 -- in an instantiation is left to the enthusiastic reader.
1456 null;
1457 end if;
1459 Next (Form);
1460 end loop;
1461 end if;
1463 -- If there are previous overloadable entities with the same name,
1464 -- check whether any of them is completed by the null procedure.
1466 if Present (Prev) and then Is_Overloadable (Prev) then
1467 Designator := Analyze_Subprogram_Specification (Spec);
1468 Prev := Find_Corresponding_Spec (N);
1469 end if;
1471 if No (Prev) or else not Comes_From_Source (Prev) then
1472 Designator := Analyze_Subprogram_Specification (Spec);
1473 Set_Has_Completion (Designator);
1475 -- Signal to caller that this is a procedure declaration
1477 Is_Completion := False;
1479 -- Null procedures are always inlined, but generic formal subprograms
1480 -- which appear as such in the internal instance of formal packages,
1481 -- need no completion and are not marked Inline.
1483 if Expander_Active
1484 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1485 then
1486 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1487 Set_Body_To_Inline (N, Null_Body);
1488 Set_Is_Inlined (Designator);
1489 end if;
1491 else
1492 -- The null procedure is a completion. We unconditionally rewrite
1493 -- this as a null body (even if expansion is not active), because
1494 -- there are various error checks that are applied on this body
1495 -- when it is analyzed (e.g. correct aspect placement).
1497 if Has_Completion (Prev) then
1498 Error_Msg_Sloc := Sloc (Prev);
1499 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1500 end if;
1502 Is_Completion := True;
1503 Rewrite (N, Null_Body);
1504 Analyze (N);
1505 end if;
1506 end Analyze_Null_Procedure;
1508 -----------------------------
1509 -- Analyze_Operator_Symbol --
1510 -----------------------------
1512 -- An operator symbol such as "+" or "and" may appear in context where the
1513 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1514 -- is just a string, as in (conjunction = "or"). In these cases the parser
1515 -- generates this node, and the semantics does the disambiguation. Other
1516 -- such case are actuals in an instantiation, the generic unit in an
1517 -- instantiation, and pragma arguments.
1519 procedure Analyze_Operator_Symbol (N : Node_Id) is
1520 Par : constant Node_Id := Parent (N);
1522 begin
1523 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1524 or else Nkind (Par) = N_Function_Instantiation
1525 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1526 or else (Nkind (Par) = N_Pragma_Argument_Association
1527 and then not Is_Pragma_String_Literal (Par))
1528 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1529 or else (Nkind (Par) = N_Attribute_Reference
1530 and then Attribute_Name (Par) /= Name_Value)
1531 then
1532 Find_Direct_Name (N);
1534 else
1535 Change_Operator_Symbol_To_String_Literal (N);
1536 Analyze (N);
1537 end if;
1538 end Analyze_Operator_Symbol;
1540 -----------------------------------
1541 -- Analyze_Parameter_Association --
1542 -----------------------------------
1544 procedure Analyze_Parameter_Association (N : Node_Id) is
1545 begin
1546 Analyze (Explicit_Actual_Parameter (N));
1547 end Analyze_Parameter_Association;
1549 ----------------------------
1550 -- Analyze_Procedure_Call --
1551 ----------------------------
1553 procedure Analyze_Procedure_Call (N : Node_Id) is
1554 Loc : constant Source_Ptr := Sloc (N);
1555 P : constant Node_Id := Name (N);
1556 Actuals : constant List_Id := Parameter_Associations (N);
1557 Actual : Node_Id;
1558 New_N : Node_Id;
1560 procedure Analyze_Call_And_Resolve;
1561 -- Do Analyze and Resolve calls for procedure call
1562 -- At end, check illegal order dependence.
1564 ------------------------------
1565 -- Analyze_Call_And_Resolve --
1566 ------------------------------
1568 procedure Analyze_Call_And_Resolve is
1569 begin
1570 if Nkind (N) = N_Procedure_Call_Statement then
1571 Analyze_Call (N);
1572 Resolve (N, Standard_Void_Type);
1573 else
1574 Analyze (N);
1575 end if;
1576 end Analyze_Call_And_Resolve;
1578 -- Start of processing for Analyze_Procedure_Call
1580 begin
1581 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1582 -- a procedure call or an entry call. The prefix may denote an access
1583 -- to subprogram type, in which case an implicit dereference applies.
1584 -- If the prefix is an indexed component (without implicit dereference)
1585 -- then the construct denotes a call to a member of an entire family.
1586 -- If the prefix is a simple name, it may still denote a call to a
1587 -- parameterless member of an entry family. Resolution of these various
1588 -- interpretations is delicate.
1590 Analyze (P);
1592 -- If this is a call of the form Obj.Op, the call may have been
1593 -- analyzed and possibly rewritten into a block, in which case
1594 -- we are done.
1596 if Analyzed (N) then
1597 return;
1598 end if;
1600 -- If there is an error analyzing the name (which may have been
1601 -- rewritten if the original call was in prefix notation) then error
1602 -- has been emitted already, mark node and return.
1604 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1605 Set_Etype (N, Any_Type);
1606 return;
1607 end if;
1609 -- Otherwise analyze the parameters
1611 if Present (Actuals) then
1612 Actual := First (Actuals);
1614 while Present (Actual) loop
1615 Analyze (Actual);
1616 Check_Parameterless_Call (Actual);
1617 Next (Actual);
1618 end loop;
1619 end if;
1621 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1623 if Nkind (P) = N_Attribute_Reference
1624 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1625 Name_Elab_Body,
1626 Name_Elab_Subp_Body)
1627 then
1628 if Present (Actuals) then
1629 Error_Msg_N
1630 ("no parameters allowed for this call", First (Actuals));
1631 return;
1632 end if;
1634 Set_Etype (N, Standard_Void_Type);
1635 Set_Analyzed (N);
1637 elsif Is_Entity_Name (P)
1638 and then Is_Record_Type (Etype (Entity (P)))
1639 and then Remote_AST_I_Dereference (P)
1640 then
1641 return;
1643 elsif Is_Entity_Name (P)
1644 and then Ekind (Entity (P)) /= E_Entry_Family
1645 then
1646 if Is_Access_Type (Etype (P))
1647 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1648 and then No (Actuals)
1649 and then Comes_From_Source (N)
1650 then
1651 Error_Msg_N ("missing explicit dereference in call", N);
1652 end if;
1654 Analyze_Call_And_Resolve;
1656 -- If the prefix is the simple name of an entry family, this is
1657 -- a parameterless call from within the task body itself.
1659 elsif Is_Entity_Name (P)
1660 and then Nkind (P) = N_Identifier
1661 and then Ekind (Entity (P)) = E_Entry_Family
1662 and then Present (Actuals)
1663 and then No (Next (First (Actuals)))
1664 then
1665 -- Can be call to parameterless entry family. What appears to be the
1666 -- sole argument is in fact the entry index. Rewrite prefix of node
1667 -- accordingly. Source representation is unchanged by this
1668 -- transformation.
1670 New_N :=
1671 Make_Indexed_Component (Loc,
1672 Prefix =>
1673 Make_Selected_Component (Loc,
1674 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1675 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1676 Expressions => Actuals);
1677 Set_Name (N, New_N);
1678 Set_Etype (New_N, Standard_Void_Type);
1679 Set_Parameter_Associations (N, No_List);
1680 Analyze_Call_And_Resolve;
1682 elsif Nkind (P) = N_Explicit_Dereference then
1683 if Ekind (Etype (P)) = E_Subprogram_Type then
1684 Analyze_Call_And_Resolve;
1685 else
1686 Error_Msg_N ("expect access to procedure in call", P);
1687 end if;
1689 -- The name can be a selected component or an indexed component that
1690 -- yields an access to subprogram. Such a prefix is legal if the call
1691 -- has parameter associations.
1693 elsif Is_Access_Type (Etype (P))
1694 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1695 then
1696 if Present (Actuals) then
1697 Analyze_Call_And_Resolve;
1698 else
1699 Error_Msg_N ("missing explicit dereference in call ", N);
1700 end if;
1702 -- If not an access to subprogram, then the prefix must resolve to the
1703 -- name of an entry, entry family, or protected operation.
1705 -- For the case of a simple entry call, P is a selected component where
1706 -- the prefix is the task and the selector name is the entry. A call to
1707 -- a protected procedure will have the same syntax. If the protected
1708 -- object contains overloaded operations, the entity may appear as a
1709 -- function, the context will select the operation whose type is Void.
1711 elsif Nkind (P) = N_Selected_Component
1712 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1713 E_Procedure,
1714 E_Function)
1715 then
1716 Analyze_Call_And_Resolve;
1718 elsif Nkind (P) = N_Selected_Component
1719 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1720 and then Present (Actuals)
1721 and then No (Next (First (Actuals)))
1722 then
1723 -- Can be call to parameterless entry family. What appears to be the
1724 -- sole argument is in fact the entry index. Rewrite prefix of node
1725 -- accordingly. Source representation is unchanged by this
1726 -- transformation.
1728 New_N :=
1729 Make_Indexed_Component (Loc,
1730 Prefix => New_Copy (P),
1731 Expressions => Actuals);
1732 Set_Name (N, New_N);
1733 Set_Etype (New_N, Standard_Void_Type);
1734 Set_Parameter_Associations (N, No_List);
1735 Analyze_Call_And_Resolve;
1737 -- For the case of a reference to an element of an entry family, P is
1738 -- an indexed component whose prefix is a selected component (task and
1739 -- entry family), and whose index is the entry family index.
1741 elsif Nkind (P) = N_Indexed_Component
1742 and then Nkind (Prefix (P)) = N_Selected_Component
1743 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1744 then
1745 Analyze_Call_And_Resolve;
1747 -- If the prefix is the name of an entry family, it is a call from
1748 -- within the task body itself.
1750 elsif Nkind (P) = N_Indexed_Component
1751 and then Nkind (Prefix (P)) = N_Identifier
1752 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1753 then
1754 New_N :=
1755 Make_Selected_Component (Loc,
1756 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1757 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1758 Rewrite (Prefix (P), New_N);
1759 Analyze (P);
1760 Analyze_Call_And_Resolve;
1762 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1763 -- procedure name, so the construct can only be a qualified expression.
1765 elsif Nkind (P) = N_Qualified_Expression
1766 and then Ada_Version >= Ada_2012
1767 then
1768 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1769 Analyze (N);
1771 -- Anything else is an error
1773 else
1774 Error_Msg_N ("invalid procedure or entry call", N);
1775 end if;
1776 end Analyze_Procedure_Call;
1778 ------------------------------
1779 -- Analyze_Return_Statement --
1780 ------------------------------
1782 procedure Analyze_Return_Statement (N : Node_Id) is
1784 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1785 N_Extended_Return_Statement));
1787 Returns_Object : constant Boolean :=
1788 Nkind (N) = N_Extended_Return_Statement
1789 or else
1790 (Nkind (N) = N_Simple_Return_Statement
1791 and then Present (Expression (N)));
1792 -- True if we're returning something; that is, "return <expression>;"
1793 -- or "return Result : T [:= ...]". False for "return;". Used for error
1794 -- checking: If Returns_Object is True, N should apply to a function
1795 -- body; otherwise N should apply to a procedure body, entry body,
1796 -- accept statement, or extended return statement.
1798 function Find_What_It_Applies_To return Entity_Id;
1799 -- Find the entity representing the innermost enclosing body, accept
1800 -- statement, or extended return statement. If the result is a callable
1801 -- construct or extended return statement, then this will be the value
1802 -- of the Return_Applies_To attribute. Otherwise, the program is
1803 -- illegal. See RM-6.5(4/2).
1805 -----------------------------
1806 -- Find_What_It_Applies_To --
1807 -----------------------------
1809 function Find_What_It_Applies_To return Entity_Id is
1810 Result : Entity_Id := Empty;
1812 begin
1813 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1814 -- and postconditions.
1816 for J in reverse 0 .. Scope_Stack.Last loop
1817 Result := Scope_Stack.Table (J).Entity;
1818 exit when not Ekind_In (Result, E_Block, E_Loop)
1819 and then Chars (Result) /= Name_uPostconditions;
1820 end loop;
1822 pragma Assert (Present (Result));
1823 return Result;
1824 end Find_What_It_Applies_To;
1826 -- Local declarations
1828 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1829 Kind : constant Entity_Kind := Ekind (Scope_Id);
1830 Loc : constant Source_Ptr := Sloc (N);
1831 Stm_Entity : constant Entity_Id :=
1832 New_Internal_Entity
1833 (E_Return_Statement, Current_Scope, Loc, 'R');
1835 -- Start of processing for Analyze_Return_Statement
1837 begin
1838 Set_Return_Statement_Entity (N, Stm_Entity);
1840 Set_Etype (Stm_Entity, Standard_Void_Type);
1841 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1843 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1844 -- (4/2): an inner return statement will apply to this extended return.
1846 if Nkind (N) = N_Extended_Return_Statement then
1847 Push_Scope (Stm_Entity);
1848 end if;
1850 -- Check that pragma No_Return is obeyed. Don't complain about the
1851 -- implicitly-generated return that is placed at the end.
1853 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1854 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1855 end if;
1857 -- Warn on any unassigned OUT parameters if in procedure
1859 if Ekind (Scope_Id) = E_Procedure then
1860 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1861 end if;
1863 -- Check that functions return objects, and other things do not
1865 if Kind = E_Function or else Kind = E_Generic_Function then
1866 if not Returns_Object then
1867 Error_Msg_N ("missing expression in return from function", N);
1868 end if;
1870 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1871 if Returns_Object then
1872 Error_Msg_N ("procedure cannot return value (use function)", N);
1873 end if;
1875 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1876 if Returns_Object then
1877 if Is_Protected_Type (Scope (Scope_Id)) then
1878 Error_Msg_N ("entry body cannot return value", N);
1879 else
1880 Error_Msg_N ("accept statement cannot return value", N);
1881 end if;
1882 end if;
1884 elsif Kind = E_Return_Statement then
1886 -- We are nested within another return statement, which must be an
1887 -- extended_return_statement.
1889 if Returns_Object then
1890 if Nkind (N) = N_Extended_Return_Statement then
1891 Error_Msg_N
1892 ("extended return statement cannot be nested (use `RETURN;`)",
1895 -- Case of a simple return statement with a value inside extended
1896 -- return statement.
1898 else
1899 Error_Msg_N
1900 ("return nested in extended return statement cannot return "
1901 & "value (use `RETURN;`)", N);
1902 end if;
1903 end if;
1905 else
1906 Error_Msg_N ("illegal context for return statement", N);
1907 end if;
1909 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1910 Analyze_Function_Return (N);
1912 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1913 Set_Return_Present (Scope_Id);
1914 end if;
1916 if Nkind (N) = N_Extended_Return_Statement then
1917 End_Scope;
1918 end if;
1920 Kill_Current_Values (Last_Assignment_Only => True);
1921 Check_Unreachable_Code (N);
1923 Analyze_Dimension (N);
1924 end Analyze_Return_Statement;
1926 -------------------------------------
1927 -- Analyze_Simple_Return_Statement --
1928 -------------------------------------
1930 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1931 begin
1932 if Present (Expression (N)) then
1933 Mark_Coextensions (N, Expression (N));
1934 end if;
1936 Analyze_Return_Statement (N);
1937 end Analyze_Simple_Return_Statement;
1939 -------------------------
1940 -- Analyze_Return_Type --
1941 -------------------------
1943 procedure Analyze_Return_Type (N : Node_Id) is
1944 Designator : constant Entity_Id := Defining_Entity (N);
1945 Typ : Entity_Id := Empty;
1947 begin
1948 -- Normal case where result definition does not indicate an error
1950 if Result_Definition (N) /= Error then
1951 if Nkind (Result_Definition (N)) = N_Access_Definition then
1952 Check_SPARK_05_Restriction
1953 ("access result is not allowed", Result_Definition (N));
1955 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1957 declare
1958 AD : constant Node_Id :=
1959 Access_To_Subprogram_Definition (Result_Definition (N));
1960 begin
1961 if Present (AD) and then Protected_Present (AD) then
1962 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1963 else
1964 Typ := Access_Definition (N, Result_Definition (N));
1965 end if;
1966 end;
1968 Set_Parent (Typ, Result_Definition (N));
1969 Set_Is_Local_Anonymous_Access (Typ);
1970 Set_Etype (Designator, Typ);
1972 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1974 Null_Exclusion_Static_Checks (N);
1976 -- Subtype_Mark case
1978 else
1979 Find_Type (Result_Definition (N));
1980 Typ := Entity (Result_Definition (N));
1981 Set_Etype (Designator, Typ);
1983 -- Unconstrained array as result is not allowed in SPARK
1985 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1986 Check_SPARK_05_Restriction
1987 ("returning an unconstrained array is not allowed",
1988 Result_Definition (N));
1989 end if;
1991 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1993 Null_Exclusion_Static_Checks (N);
1995 -- If a null exclusion is imposed on the result type, then create
1996 -- a null-excluding itype (an access subtype) and use it as the
1997 -- function's Etype. Note that the null exclusion checks are done
1998 -- right before this, because they don't get applied to types that
1999 -- do not come from source.
2001 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2002 Set_Etype (Designator,
2003 Create_Null_Excluding_Itype
2004 (T => Typ,
2005 Related_Nod => N,
2006 Scope_Id => Scope (Current_Scope)));
2008 -- The new subtype must be elaborated before use because
2009 -- it is visible outside of the function. However its base
2010 -- type may not be frozen yet, so the reference that will
2011 -- force elaboration must be attached to the freezing of
2012 -- the base type.
2014 -- If the return specification appears on a proper body,
2015 -- the subtype will have been created already on the spec.
2017 if Is_Frozen (Typ) then
2018 if Nkind (Parent (N)) = N_Subprogram_Body
2019 and then Nkind (Parent (Parent (N))) = N_Subunit
2020 then
2021 null;
2022 else
2023 Build_Itype_Reference (Etype (Designator), Parent (N));
2024 end if;
2026 else
2027 Ensure_Freeze_Node (Typ);
2029 declare
2030 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2031 begin
2032 Set_Itype (IR, Etype (Designator));
2033 Append_Freeze_Actions (Typ, New_List (IR));
2034 end;
2035 end if;
2037 else
2038 Set_Etype (Designator, Typ);
2039 end if;
2041 if Ekind (Typ) = E_Incomplete_Type
2042 and then Is_Value_Type (Typ)
2043 then
2044 null;
2046 elsif Ekind (Typ) = E_Incomplete_Type
2047 or else (Is_Class_Wide_Type (Typ)
2048 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2049 then
2050 -- AI05-0151: Tagged incomplete types are allowed in all formal
2051 -- parts. Untagged incomplete types are not allowed in bodies.
2052 -- As a consequence, limited views cannot appear in a basic
2053 -- declaration that is itself within a body, because there is
2054 -- no point at which the non-limited view will become visible.
2056 if Ada_Version >= Ada_2012 then
2057 if From_Limited_With (Typ) and then In_Package_Body then
2058 Error_Msg_NE
2059 ("invalid use of incomplete type&",
2060 Result_Definition (N), Typ);
2062 -- The return type of a subprogram body cannot be of a
2063 -- formal incomplete type.
2065 elsif Is_Generic_Type (Typ)
2066 and then Nkind (Parent (N)) = N_Subprogram_Body
2067 then
2068 Error_Msg_N
2069 ("return type cannot be a formal incomplete type",
2070 Result_Definition (N));
2072 elsif Is_Class_Wide_Type (Typ)
2073 and then Is_Generic_Type (Root_Type (Typ))
2074 and then Nkind (Parent (N)) = N_Subprogram_Body
2075 then
2076 Error_Msg_N
2077 ("return type cannot be a formal incomplete type",
2078 Result_Definition (N));
2080 elsif Is_Tagged_Type (Typ) then
2081 null;
2083 elsif Nkind (Parent (N)) = N_Subprogram_Body
2084 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2085 N_Entry_Body)
2086 then
2087 Error_Msg_NE
2088 ("invalid use of untagged incomplete type&",
2089 Designator, Typ);
2090 end if;
2092 -- The type must be completed in the current package. This
2093 -- is checked at the end of the package declaration when
2094 -- Taft-amendment types are identified. If the return type
2095 -- is class-wide, there is no required check, the type can
2096 -- be a bona fide TAT.
2098 if Ekind (Scope (Current_Scope)) = E_Package
2099 and then In_Private_Part (Scope (Current_Scope))
2100 and then not Is_Class_Wide_Type (Typ)
2101 then
2102 Append_Elmt (Designator, Private_Dependents (Typ));
2103 end if;
2105 else
2106 Error_Msg_NE
2107 ("invalid use of incomplete type&", Designator, Typ);
2108 end if;
2109 end if;
2110 end if;
2112 -- Case where result definition does indicate an error
2114 else
2115 Set_Etype (Designator, Any_Type);
2116 end if;
2117 end Analyze_Return_Type;
2119 -----------------------------
2120 -- Analyze_Subprogram_Body --
2121 -----------------------------
2123 procedure Analyze_Subprogram_Body (N : Node_Id) is
2124 Loc : constant Source_Ptr := Sloc (N);
2125 Body_Spec : constant Node_Id := Specification (N);
2126 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2128 begin
2129 if Debug_Flag_C then
2130 Write_Str ("==> subprogram body ");
2131 Write_Name (Chars (Body_Id));
2132 Write_Str (" from ");
2133 Write_Location (Loc);
2134 Write_Eol;
2135 Indent;
2136 end if;
2138 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2140 -- The real work is split out into the helper, so it can do "return;"
2141 -- without skipping the debug output:
2143 Analyze_Subprogram_Body_Helper (N);
2145 if Debug_Flag_C then
2146 Outdent;
2147 Write_Str ("<== subprogram body ");
2148 Write_Name (Chars (Body_Id));
2149 Write_Str (" from ");
2150 Write_Location (Loc);
2151 Write_Eol;
2152 end if;
2153 end Analyze_Subprogram_Body;
2155 --------------------------------------
2156 -- Analyze_Subprogram_Body_Contract --
2157 --------------------------------------
2159 procedure Analyze_Subprogram_Body_Contract (Body_Id : Entity_Id) is
2160 Body_Decl : constant Node_Id := Parent (Parent (Body_Id));
2161 Mode : SPARK_Mode_Type;
2162 Prag : Node_Id;
2163 Ref_Depends : Node_Id := Empty;
2164 Ref_Global : Node_Id := Empty;
2165 Spec_Id : Entity_Id;
2167 begin
2168 -- Due to the timing of contract analysis, delayed pragmas may be
2169 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2170 -- context. To remedy this, restore the original SPARK_Mode of the
2171 -- related subprogram body.
2173 Save_SPARK_Mode_And_Set (Body_Id, Mode);
2175 -- When a subprogram body declaration is illegal, its defining entity is
2176 -- left unanalyzed. There is nothing left to do in this case because the
2177 -- body lacks a contract, or even a proper Ekind.
2179 if Ekind (Body_Id) = E_Void then
2180 return;
2181 end if;
2183 if Nkind (Body_Decl) = N_Subprogram_Body_Stub then
2184 Spec_Id := Corresponding_Spec_Of_Stub (Body_Decl);
2185 else
2186 Spec_Id := Corresponding_Spec (Body_Decl);
2187 end if;
2189 -- Locate and store pragmas Refined_Depends and Refined_Global since
2190 -- their order of analysis matters.
2192 Prag := Classifications (Contract (Body_Id));
2193 while Present (Prag) loop
2194 if Pragma_Name (Prag) = Name_Refined_Depends then
2195 Ref_Depends := Prag;
2196 elsif Pragma_Name (Prag) = Name_Refined_Global then
2197 Ref_Global := Prag;
2198 end if;
2200 Prag := Next_Pragma (Prag);
2201 end loop;
2203 -- Analyze Refined_Global first as Refined_Depends may mention items
2204 -- classified in the global refinement.
2206 if Present (Ref_Global) then
2207 Analyze_Refined_Global_In_Decl_Part (Ref_Global);
2209 -- When the corresponding Global aspect/pragma references a state with
2210 -- visible refinement, the body requires Refined_Global. Refinement is
2211 -- not required when SPARK checks are suppressed.
2213 elsif Present (Spec_Id) then
2214 Prag := Get_Pragma (Spec_Id, Pragma_Global);
2216 if SPARK_Mode /= Off
2217 and then Present (Prag)
2218 and then Contains_Refined_State (Prag)
2219 then
2220 Error_Msg_NE
2221 ("body of subprogram& requires global refinement",
2222 Body_Decl, Spec_Id);
2223 end if;
2224 end if;
2226 -- Refined_Depends must be analyzed after Refined_Global in order to see
2227 -- the modes of all global refinements.
2229 if Present (Ref_Depends) then
2230 Analyze_Refined_Depends_In_Decl_Part (Ref_Depends);
2232 -- When the corresponding Depends aspect/pragma references a state with
2233 -- visible refinement, the body requires Refined_Depends. Refinement is
2234 -- not required when SPARK checks are suppressed.
2236 elsif Present (Spec_Id) then
2237 Prag := Get_Pragma (Spec_Id, Pragma_Depends);
2239 if SPARK_Mode /= Off
2240 and then Present (Prag)
2241 and then Contains_Refined_State (Prag)
2242 then
2243 Error_Msg_NE
2244 ("body of subprogram& requires dependance refinement",
2245 Body_Decl, Spec_Id);
2246 end if;
2247 end if;
2249 -- Restore the SPARK_Mode of the enclosing context after all delayed
2250 -- pragmas have been analyzed.
2252 Restore_SPARK_Mode (Mode);
2253 end Analyze_Subprogram_Body_Contract;
2255 ------------------------------------
2256 -- Analyze_Subprogram_Body_Helper --
2257 ------------------------------------
2259 -- This procedure is called for regular subprogram bodies, generic bodies,
2260 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2261 -- specification matters, and is used to create a proper declaration for
2262 -- the subprogram, or to perform conformance checks.
2264 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2265 Loc : constant Source_Ptr := Sloc (N);
2266 Body_Spec : constant Node_Id := Specification (N);
2267 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2268 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2269 Conformant : Boolean;
2270 HSS : Node_Id;
2271 Prot_Typ : Entity_Id := Empty;
2272 Spec_Id : Entity_Id;
2273 Spec_Decl : Node_Id := Empty;
2275 Last_Real_Spec_Entity : Entity_Id := Empty;
2276 -- When we analyze a separate spec, the entity chain ends up containing
2277 -- the formals, as well as any itypes generated during analysis of the
2278 -- default expressions for parameters, or the arguments of associated
2279 -- precondition/postcondition pragmas (which are analyzed in the context
2280 -- of the spec since they have visibility on formals).
2282 -- These entities belong with the spec and not the body. However we do
2283 -- the analysis of the body in the context of the spec (again to obtain
2284 -- visibility to the formals), and all the entities generated during
2285 -- this analysis end up also chained to the entity chain of the spec.
2286 -- But they really belong to the body, and there is circuitry to move
2287 -- them from the spec to the body.
2289 -- However, when we do this move, we don't want to move the real spec
2290 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2291 -- variable points to the last real spec entity, so we only move those
2292 -- chained beyond that point. It is initialized to Empty to deal with
2293 -- the case where there is no separate spec.
2295 procedure Analyze_Aspects_On_Body_Or_Stub;
2296 -- Analyze the aspect specifications of a subprogram body [stub]. It is
2297 -- assumed that N has aspects.
2299 function Body_Has_Contract return Boolean;
2300 -- Check whether unanalyzed body has an aspect or pragma that may
2301 -- generate a SPARK contract.
2303 procedure Check_Anonymous_Return;
2304 -- Ada 2005: if a function returns an access type that denotes a task,
2305 -- or a type that contains tasks, we must create a master entity for
2306 -- the anonymous type, which typically will be used in an allocator
2307 -- in the body of the function.
2309 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2310 -- Look ahead to recognize a pragma that may appear after the body.
2311 -- If there is a previous spec, check that it appears in the same
2312 -- declarative part. If the pragma is Inline_Always, perform inlining
2313 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2314 -- If the body acts as a spec, and inlining is required, we create a
2315 -- subprogram declaration for it, in order to attach the body to inline.
2316 -- If pragma does not appear after the body, check whether there is
2317 -- an inline pragma before any local declarations.
2319 procedure Check_Missing_Return;
2320 -- Checks for a function with a no return statements, and also performs
2321 -- the warning checks implemented by Check_Returns. In formal mode, also
2322 -- verify that a function ends with a RETURN and that a procedure does
2323 -- not contain any RETURN.
2325 function Disambiguate_Spec return Entity_Id;
2326 -- When a primitive is declared between the private view and the full
2327 -- view of a concurrent type which implements an interface, a special
2328 -- mechanism is used to find the corresponding spec of the primitive
2329 -- body.
2331 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2332 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2333 -- incomplete types coming from a limited context and swap their limited
2334 -- views with the non-limited ones.
2336 function Is_Private_Concurrent_Primitive
2337 (Subp_Id : Entity_Id) return Boolean;
2338 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2339 -- type that implements an interface and has a private view.
2341 procedure Set_Trivial_Subprogram (N : Node_Id);
2342 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2343 -- subprogram whose body is being analyzed. N is the statement node
2344 -- causing the flag to be set, if the following statement is a return
2345 -- of an entity, we mark the entity as set in source to suppress any
2346 -- warning on the stylized use of function stubs with a dummy return.
2348 procedure Verify_Overriding_Indicator;
2349 -- If there was a previous spec, the entity has been entered in the
2350 -- current scope previously. If the body itself carries an overriding
2351 -- indicator, check that it is consistent with the known status of the
2352 -- entity.
2354 -------------------------------------
2355 -- Analyze_Aspects_On_Body_Or_Stub --
2356 -------------------------------------
2358 procedure Analyze_Aspects_On_Body_Or_Stub is
2359 procedure Diagnose_Misplaced_Aspects;
2360 -- Subprogram body [stub] N has aspects, but they are not properly
2361 -- placed. Provide precise diagnostics depending on the aspects
2362 -- involved.
2364 --------------------------------
2365 -- Diagnose_Misplaced_Aspects --
2366 --------------------------------
2368 procedure Diagnose_Misplaced_Aspects is
2369 Asp : Node_Id;
2370 Asp_Nam : Name_Id;
2371 Asp_Id : Aspect_Id;
2372 -- The current aspect along with its name and id
2374 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id);
2375 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is
2376 -- the name of the refined version of the aspect.
2378 ------------------------
2379 -- SPARK_Aspect_Error --
2380 ------------------------
2382 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id) is
2383 begin
2384 -- The corresponding spec already contains the aspect in
2385 -- question and the one appearing on the body must be the
2386 -- refined form:
2388 -- procedure P with Global ...;
2389 -- procedure P with Global ... is ... end P;
2390 -- ^
2391 -- Refined_Global
2393 if Has_Aspect (Spec_Id, Asp_Id) then
2394 Error_Msg_Name_1 := Asp_Nam;
2396 -- Subunits cannot carry aspects that apply to a subprogram
2397 -- declaration.
2399 if Nkind (Parent (N)) = N_Subunit then
2400 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
2402 else
2403 Error_Msg_Name_2 := Ref_Nam;
2404 Error_Msg_N ("aspect % should be %", Asp);
2405 end if;
2407 -- Otherwise the aspect must appear in the spec, not in the
2408 -- body:
2410 -- procedure P;
2411 -- procedure P with Global ... is ... end P;
2413 else
2414 Error_Msg_N
2415 ("aspect specification must appear in subprogram "
2416 & "declaration", Asp);
2417 end if;
2418 end SPARK_Aspect_Error;
2420 -- Start of processing for Diagnose_Misplaced_Aspects
2422 begin
2423 -- Iterate over the aspect specifications and emit specific errors
2424 -- where applicable.
2426 Asp := First (Aspect_Specifications (N));
2427 while Present (Asp) loop
2428 Asp_Nam := Chars (Identifier (Asp));
2429 Asp_Id := Get_Aspect_Id (Asp_Nam);
2431 -- Do not emit errors on aspects that can appear on a
2432 -- subprogram body. This scenario occurs when the aspect
2433 -- specification list contains both misplaced and properly
2434 -- placed aspects.
2436 if Aspect_On_Body_Or_Stub_OK (Asp_Id) then
2437 null;
2439 -- Special diagnostics for SPARK aspects
2441 elsif Asp_Nam = Name_Depends then
2442 SPARK_Aspect_Error (Name_Refined_Depends);
2444 elsif Asp_Nam = Name_Global then
2445 SPARK_Aspect_Error (Name_Refined_Global);
2447 elsif Asp_Nam = Name_Post then
2448 SPARK_Aspect_Error (Name_Refined_Post);
2450 else
2451 Error_Msg_N
2452 ("aspect specification must appear in subprogram "
2453 & "declaration", Asp);
2454 end if;
2456 Next (Asp);
2457 end loop;
2458 end Diagnose_Misplaced_Aspects;
2460 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
2462 begin
2463 -- Language-defined aspects cannot be associated with a subprogram
2464 -- body [stub] if the subprogram has a spec. Certain implementation
2465 -- defined aspects are allowed to break this rule (for list, see
2466 -- table Aspect_On_Body_Or_Stub_OK).
2468 if Present (Spec_Id) and then not Aspects_On_Body_Or_Stub_OK (N) then
2469 Diagnose_Misplaced_Aspects;
2470 else
2471 Analyze_Aspect_Specifications (N, Body_Id);
2472 end if;
2473 end Analyze_Aspects_On_Body_Or_Stub;
2475 -----------------------
2476 -- Body_Has_Contract --
2477 -----------------------
2479 function Body_Has_Contract return Boolean is
2480 Decls : constant List_Id := Declarations (N);
2481 A_Spec : Node_Id;
2482 A : Aspect_Id;
2483 Decl : Node_Id;
2484 P_Id : Pragma_Id;
2486 begin
2487 -- Check for unanalyzed aspects in the body that will
2488 -- generate a contract.
2490 if Present (Aspect_Specifications (N)) then
2491 A_Spec := First (Aspect_Specifications (N));
2492 while Present (A_Spec) loop
2493 A := Get_Aspect_Id (Chars (Identifier (A_Spec)));
2495 if A = Aspect_Contract_Cases or else
2496 A = Aspect_Depends or else
2497 A = Aspect_Global or else
2498 A = Aspect_Pre or else
2499 A = Aspect_Precondition or else
2500 A = Aspect_Post or else
2501 A = Aspect_Postcondition
2502 then
2503 return True;
2504 end if;
2506 Next (A_Spec);
2507 end loop;
2508 end if;
2510 -- Check for pragmas that may generate a contract
2512 if Present (Decls) then
2513 Decl := First (Decls);
2514 while Present (Decl) loop
2515 if Nkind (Decl) = N_Pragma then
2516 P_Id := Get_Pragma_Id (Pragma_Name (Decl));
2518 if P_Id = Pragma_Contract_Cases or else
2519 P_Id = Pragma_Depends or else
2520 P_Id = Pragma_Global or else
2521 P_Id = Pragma_Pre or else
2522 P_Id = Pragma_Precondition or else
2523 P_Id = Pragma_Post or else
2524 P_Id = Pragma_Postcondition
2525 then
2526 return True;
2527 end if;
2528 end if;
2530 Next (Decl);
2531 end loop;
2532 end if;
2534 return False;
2535 end Body_Has_Contract;
2537 ----------------------------
2538 -- Check_Anonymous_Return --
2539 ----------------------------
2541 procedure Check_Anonymous_Return is
2542 Decl : Node_Id;
2543 Par : Node_Id;
2544 Scop : Entity_Id;
2546 begin
2547 if Present (Spec_Id) then
2548 Scop := Spec_Id;
2549 else
2550 Scop := Body_Id;
2551 end if;
2553 if Ekind (Scop) = E_Function
2554 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2555 and then not Is_Thunk (Scop)
2557 -- Skip internally built functions which handle the case of
2558 -- a null access (see Expand_Interface_Conversion)
2560 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2561 and then not Comes_From_Source (Parent (Scop)))
2563 and then (Has_Task (Designated_Type (Etype (Scop)))
2564 or else
2565 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2566 and then
2567 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2568 and then Expander_Active
2570 -- Avoid cases with no tasking support
2572 and then RTE_Available (RE_Current_Master)
2573 and then not Restriction_Active (No_Task_Hierarchy)
2574 then
2575 Decl :=
2576 Make_Object_Declaration (Loc,
2577 Defining_Identifier =>
2578 Make_Defining_Identifier (Loc, Name_uMaster),
2579 Constant_Present => True,
2580 Object_Definition =>
2581 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2582 Expression =>
2583 Make_Explicit_Dereference (Loc,
2584 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2586 if Present (Declarations (N)) then
2587 Prepend (Decl, Declarations (N));
2588 else
2589 Set_Declarations (N, New_List (Decl));
2590 end if;
2592 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2593 Set_Has_Master_Entity (Scop);
2595 -- Now mark the containing scope as a task master
2597 Par := N;
2598 while Nkind (Par) /= N_Compilation_Unit loop
2599 Par := Parent (Par);
2600 pragma Assert (Present (Par));
2602 -- If we fall off the top, we are at the outer level, and
2603 -- the environment task is our effective master, so nothing
2604 -- to mark.
2606 if Nkind_In
2607 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2608 then
2609 Set_Is_Task_Master (Par, True);
2610 exit;
2611 end if;
2612 end loop;
2613 end if;
2614 end Check_Anonymous_Return;
2616 -------------------------
2617 -- Check_Inline_Pragma --
2618 -------------------------
2620 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2621 Prag : Node_Id;
2622 Plist : List_Id;
2624 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2625 -- True when N is a pragma Inline or Inline_Always that applies
2626 -- to this subprogram.
2628 -----------------------
2629 -- Is_Inline_Pragma --
2630 -----------------------
2632 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2633 begin
2634 return
2635 Nkind (N) = N_Pragma
2636 and then
2637 (Pragma_Name (N) = Name_Inline_Always
2638 or else (Front_End_Inlining
2639 and then Pragma_Name (N) = Name_Inline))
2640 and then
2641 Chars
2642 (Expression (First (Pragma_Argument_Associations (N)))) =
2643 Chars (Body_Id);
2644 end Is_Inline_Pragma;
2646 -- Start of processing for Check_Inline_Pragma
2648 begin
2649 if not Expander_Active then
2650 return;
2651 end if;
2653 if Is_List_Member (N)
2654 and then Present (Next (N))
2655 and then Is_Inline_Pragma (Next (N))
2656 then
2657 Prag := Next (N);
2659 elsif Nkind (N) /= N_Subprogram_Body_Stub
2660 and then Present (Declarations (N))
2661 and then Is_Inline_Pragma (First (Declarations (N)))
2662 then
2663 Prag := First (Declarations (N));
2665 else
2666 Prag := Empty;
2667 end if;
2669 if Present (Prag) then
2670 if Present (Spec_Id) then
2671 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
2672 Analyze (Prag);
2673 end if;
2675 else
2676 -- Create a subprogram declaration, to make treatment uniform
2678 declare
2679 Subp : constant Entity_Id :=
2680 Make_Defining_Identifier (Loc, Chars (Body_Id));
2681 Decl : constant Node_Id :=
2682 Make_Subprogram_Declaration (Loc,
2683 Specification =>
2684 New_Copy_Tree (Specification (N)));
2686 begin
2687 Set_Defining_Unit_Name (Specification (Decl), Subp);
2689 if Present (First_Formal (Body_Id)) then
2690 Plist := Copy_Parameter_List (Body_Id);
2691 Set_Parameter_Specifications
2692 (Specification (Decl), Plist);
2693 end if;
2695 Insert_Before (N, Decl);
2696 Analyze (Decl);
2697 Analyze (Prag);
2698 Set_Has_Pragma_Inline (Subp);
2700 if Pragma_Name (Prag) = Name_Inline_Always then
2701 Set_Is_Inlined (Subp);
2702 Set_Has_Pragma_Inline_Always (Subp);
2703 end if;
2705 -- Prior to copying the subprogram body to create a template
2706 -- for it for subsequent inlining, remove the pragma from
2707 -- the current body so that the copy that will produce the
2708 -- new body will start from a completely unanalyzed tree.
2710 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2711 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2712 end if;
2714 Spec := Subp;
2715 end;
2716 end if;
2717 end if;
2718 end Check_Inline_Pragma;
2720 --------------------------
2721 -- Check_Missing_Return --
2722 --------------------------
2724 procedure Check_Missing_Return is
2725 Id : Entity_Id;
2726 Missing_Ret : Boolean;
2728 begin
2729 if Nkind (Body_Spec) = N_Function_Specification then
2730 if Present (Spec_Id) then
2731 Id := Spec_Id;
2732 else
2733 Id := Body_Id;
2734 end if;
2736 if Return_Present (Id) then
2737 Check_Returns (HSS, 'F', Missing_Ret);
2739 if Missing_Ret then
2740 Set_Has_Missing_Return (Id);
2741 end if;
2743 elsif Is_Generic_Subprogram (Id)
2744 or else not Is_Machine_Code_Subprogram (Id)
2745 then
2746 Error_Msg_N ("missing RETURN statement in function body", N);
2747 end if;
2749 -- If procedure with No_Return, check returns
2751 elsif Nkind (Body_Spec) = N_Procedure_Specification
2752 and then Present (Spec_Id)
2753 and then No_Return (Spec_Id)
2754 then
2755 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2756 end if;
2758 -- Special checks in SPARK mode
2760 if Nkind (Body_Spec) = N_Function_Specification then
2762 -- In SPARK mode, last statement of a function should be a return
2764 declare
2765 Stat : constant Node_Id := Last_Source_Statement (HSS);
2766 begin
2767 if Present (Stat)
2768 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2769 N_Extended_Return_Statement)
2770 then
2771 Check_SPARK_05_Restriction
2772 ("last statement in function should be RETURN", Stat);
2773 end if;
2774 end;
2776 -- In SPARK mode, verify that a procedure has no return
2778 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2779 if Present (Spec_Id) then
2780 Id := Spec_Id;
2781 else
2782 Id := Body_Id;
2783 end if;
2785 -- Would be nice to point to return statement here, can we
2786 -- borrow the Check_Returns procedure here ???
2788 if Return_Present (Id) then
2789 Check_SPARK_05_Restriction
2790 ("procedure should not have RETURN", N);
2791 end if;
2792 end if;
2793 end Check_Missing_Return;
2795 -----------------------
2796 -- Disambiguate_Spec --
2797 -----------------------
2799 function Disambiguate_Spec return Entity_Id is
2800 Priv_Spec : Entity_Id;
2801 Spec_N : Entity_Id;
2803 procedure Replace_Types (To_Corresponding : Boolean);
2804 -- Depending on the flag, replace the type of formal parameters of
2805 -- Body_Id if it is a concurrent type implementing interfaces with
2806 -- the corresponding record type or the other way around.
2808 procedure Replace_Types (To_Corresponding : Boolean) is
2809 Formal : Entity_Id;
2810 Formal_Typ : Entity_Id;
2812 begin
2813 Formal := First_Formal (Body_Id);
2814 while Present (Formal) loop
2815 Formal_Typ := Etype (Formal);
2817 if Is_Class_Wide_Type (Formal_Typ) then
2818 Formal_Typ := Root_Type (Formal_Typ);
2819 end if;
2821 -- From concurrent type to corresponding record
2823 if To_Corresponding then
2824 if Is_Concurrent_Type (Formal_Typ)
2825 and then Present (Corresponding_Record_Type (Formal_Typ))
2826 and then
2827 Present (Interfaces
2828 (Corresponding_Record_Type (Formal_Typ)))
2829 then
2830 Set_Etype (Formal,
2831 Corresponding_Record_Type (Formal_Typ));
2832 end if;
2834 -- From corresponding record to concurrent type
2836 else
2837 if Is_Concurrent_Record_Type (Formal_Typ)
2838 and then Present (Interfaces (Formal_Typ))
2839 then
2840 Set_Etype (Formal,
2841 Corresponding_Concurrent_Type (Formal_Typ));
2842 end if;
2843 end if;
2845 Next_Formal (Formal);
2846 end loop;
2847 end Replace_Types;
2849 -- Start of processing for Disambiguate_Spec
2851 begin
2852 -- Try to retrieve the specification of the body as is. All error
2853 -- messages are suppressed because the body may not have a spec in
2854 -- its current state.
2856 Spec_N := Find_Corresponding_Spec (N, False);
2858 -- It is possible that this is the body of a primitive declared
2859 -- between a private and a full view of a concurrent type. The
2860 -- controlling parameter of the spec carries the concurrent type,
2861 -- not the corresponding record type as transformed by Analyze_
2862 -- Subprogram_Specification. In such cases, we undo the change
2863 -- made by the analysis of the specification and try to find the
2864 -- spec again.
2866 -- Note that wrappers already have their corresponding specs and
2867 -- bodies set during their creation, so if the candidate spec is
2868 -- a wrapper, then we definitely need to swap all types to their
2869 -- original concurrent status.
2871 if No (Spec_N)
2872 or else Is_Primitive_Wrapper (Spec_N)
2873 then
2874 -- Restore all references of corresponding record types to the
2875 -- original concurrent types.
2877 Replace_Types (To_Corresponding => False);
2878 Priv_Spec := Find_Corresponding_Spec (N, False);
2880 -- The current body truly belongs to a primitive declared between
2881 -- a private and a full view. We leave the modified body as is,
2882 -- and return the true spec.
2884 if Present (Priv_Spec)
2885 and then Is_Private_Primitive (Priv_Spec)
2886 then
2887 return Priv_Spec;
2888 end if;
2890 -- In case that this is some sort of error, restore the original
2891 -- state of the body.
2893 Replace_Types (To_Corresponding => True);
2894 end if;
2896 return Spec_N;
2897 end Disambiguate_Spec;
2899 ----------------------------
2900 -- Exchange_Limited_Views --
2901 ----------------------------
2903 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2904 procedure Detect_And_Exchange (Id : Entity_Id);
2905 -- Determine whether Id's type denotes an incomplete type associated
2906 -- with a limited with clause and exchange the limited view with the
2907 -- non-limited one.
2909 -------------------------
2910 -- Detect_And_Exchange --
2911 -------------------------
2913 procedure Detect_And_Exchange (Id : Entity_Id) is
2914 Typ : constant Entity_Id := Etype (Id);
2916 begin
2917 if Ekind (Typ) = E_Incomplete_Type
2918 and then From_Limited_With (Typ)
2919 and then Present (Non_Limited_View (Typ))
2920 then
2921 Set_Etype (Id, Non_Limited_View (Typ));
2922 end if;
2923 end Detect_And_Exchange;
2925 -- Local variables
2927 Formal : Entity_Id;
2929 -- Start of processing for Exchange_Limited_Views
2931 begin
2932 if No (Subp_Id) then
2933 return;
2935 -- Do not process subprogram bodies as they already use the non-
2936 -- limited view of types.
2938 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2939 return;
2940 end if;
2942 -- Examine all formals and swap views when applicable
2944 Formal := First_Formal (Subp_Id);
2945 while Present (Formal) loop
2946 Detect_And_Exchange (Formal);
2948 Next_Formal (Formal);
2949 end loop;
2951 -- Process the return type of a function
2953 if Ekind (Subp_Id) = E_Function then
2954 Detect_And_Exchange (Subp_Id);
2955 end if;
2956 end Exchange_Limited_Views;
2958 -------------------------------------
2959 -- Is_Private_Concurrent_Primitive --
2960 -------------------------------------
2962 function Is_Private_Concurrent_Primitive
2963 (Subp_Id : Entity_Id) return Boolean
2965 Formal_Typ : Entity_Id;
2967 begin
2968 if Present (First_Formal (Subp_Id)) then
2969 Formal_Typ := Etype (First_Formal (Subp_Id));
2971 if Is_Concurrent_Record_Type (Formal_Typ) then
2972 if Is_Class_Wide_Type (Formal_Typ) then
2973 Formal_Typ := Root_Type (Formal_Typ);
2974 end if;
2976 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2977 end if;
2979 -- The type of the first formal is a concurrent tagged type with
2980 -- a private view.
2982 return
2983 Is_Concurrent_Type (Formal_Typ)
2984 and then Is_Tagged_Type (Formal_Typ)
2985 and then Has_Private_Declaration (Formal_Typ);
2986 end if;
2988 return False;
2989 end Is_Private_Concurrent_Primitive;
2991 ----------------------------
2992 -- Set_Trivial_Subprogram --
2993 ----------------------------
2995 procedure Set_Trivial_Subprogram (N : Node_Id) is
2996 Nxt : constant Node_Id := Next (N);
2998 begin
2999 Set_Is_Trivial_Subprogram (Body_Id);
3001 if Present (Spec_Id) then
3002 Set_Is_Trivial_Subprogram (Spec_Id);
3003 end if;
3005 if Present (Nxt)
3006 and then Nkind (Nxt) = N_Simple_Return_Statement
3007 and then No (Next (Nxt))
3008 and then Present (Expression (Nxt))
3009 and then Is_Entity_Name (Expression (Nxt))
3010 then
3011 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3012 end if;
3013 end Set_Trivial_Subprogram;
3015 ---------------------------------
3016 -- Verify_Overriding_Indicator --
3017 ---------------------------------
3019 procedure Verify_Overriding_Indicator is
3020 begin
3021 if Must_Override (Body_Spec) then
3022 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3023 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3024 then
3025 null;
3027 elsif not Present (Overridden_Operation (Spec_Id)) then
3028 Error_Msg_NE
3029 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3031 -- Overriding indicators aren't allowed for protected subprogram
3032 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3033 -- this to a warning if -gnatd.E is enabled.
3035 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3036 Error_Msg_Warn := Error_To_Warning;
3037 Error_Msg_N
3038 ("<<overriding indicator not allowed for protected "
3039 & "subprogram body", Body_Spec);
3040 end if;
3042 elsif Must_Not_Override (Body_Spec) then
3043 if Present (Overridden_Operation (Spec_Id)) then
3044 Error_Msg_NE
3045 ("subprogram& overrides inherited operation",
3046 Body_Spec, Spec_Id);
3048 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3049 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3050 then
3051 Error_Msg_NE
3052 ("subprogram& overrides predefined operator ",
3053 Body_Spec, Spec_Id);
3055 -- Overriding indicators aren't allowed for protected subprogram
3056 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3057 -- this to a warning if -gnatd.E is enabled.
3059 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3060 Error_Msg_Warn := Error_To_Warning;
3062 Error_Msg_N
3063 ("<<overriding indicator not allowed "
3064 & "for protected subprogram body", Body_Spec);
3066 -- If this is not a primitive operation, then the overriding
3067 -- indicator is altogether illegal.
3069 elsif not Is_Primitive (Spec_Id) then
3070 Error_Msg_N
3071 ("overriding indicator only allowed "
3072 & "if subprogram is primitive", Body_Spec);
3073 end if;
3075 -- If checking the style rule and the operation overrides, then
3076 -- issue a warning about a missing overriding_indicator. Protected
3077 -- subprogram bodies are excluded from this style checking, since
3078 -- they aren't primitives (even though their declarations can
3079 -- override) and aren't allowed to have an overriding_indicator.
3081 elsif Style_Check
3082 and then Present (Overridden_Operation (Spec_Id))
3083 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3084 then
3085 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3086 Style.Missing_Overriding (N, Body_Id);
3088 elsif Style_Check
3089 and then Can_Override_Operator (Spec_Id)
3090 and then not Is_Predefined_File_Name
3091 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3092 then
3093 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3094 Style.Missing_Overriding (N, Body_Id);
3095 end if;
3096 end Verify_Overriding_Indicator;
3098 -- Start of processing for Analyze_Subprogram_Body_Helper
3100 begin
3101 -- Generic subprograms are handled separately. They always have a
3102 -- generic specification. Determine whether current scope has a
3103 -- previous declaration.
3105 -- If the subprogram body is defined within an instance of the same
3106 -- name, the instance appears as a package renaming, and will be hidden
3107 -- within the subprogram.
3109 if Present (Prev_Id)
3110 and then not Is_Overloadable (Prev_Id)
3111 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3112 or else Comes_From_Source (Prev_Id))
3113 then
3114 if Is_Generic_Subprogram (Prev_Id) then
3115 Spec_Id := Prev_Id;
3116 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3117 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3119 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3121 if Nkind (N) = N_Subprogram_Body then
3122 HSS := Handled_Statement_Sequence (N);
3123 Check_Missing_Return;
3124 end if;
3126 return;
3128 else
3129 -- Previous entity conflicts with subprogram name. Attempting to
3130 -- enter name will post error.
3132 Enter_Name (Body_Id);
3133 return;
3134 end if;
3136 -- Non-generic case, find the subprogram declaration, if one was seen,
3137 -- or enter new overloaded entity in the current scope. If the
3138 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3139 -- part of the context of one of its subunits. No need to redo the
3140 -- analysis.
3142 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3143 return;
3145 else
3146 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3148 if Nkind (N) = N_Subprogram_Body_Stub
3149 or else No (Corresponding_Spec (N))
3150 then
3151 if Is_Private_Concurrent_Primitive (Body_Id) then
3152 Spec_Id := Disambiguate_Spec;
3153 else
3154 Spec_Id := Find_Corresponding_Spec (N);
3156 -- In GNATprove mode, if the body has no previous spec, create
3157 -- one so that the inlining machinery can operate properly.
3158 -- Transfer aspects, if any, to the new spec, so that they
3159 -- are legal and can be processed ahead of the body.
3160 -- We make two copies of the given spec, one for the new
3161 -- declaration, and one for the body.
3163 if No (Spec_Id)
3164 and then GNATprove_Mode
3166 -- Inlining does not apply during pre-analysis of code
3168 and then Full_Analysis
3170 -- Inlining only applies to full bodies, not stubs
3172 and then Nkind (N) /= N_Subprogram_Body_Stub
3174 -- Inlining only applies to bodies in the source code, not to
3175 -- those generated by the compiler. In particular, expression
3176 -- functions, whose body is generated by the compiler, are
3177 -- treated specially by GNATprove.
3179 and then Comes_From_Source (Body_Id)
3181 -- This cannot be done for a compilation unit, which is not
3182 -- in a context where we can insert a new spec.
3184 and then Is_List_Member (N)
3186 -- Inlining only applies to subprograms without contracts,
3187 -- as a contract is a sign that GNATprove should perform a
3188 -- modular analysis of the subprogram instead of a contextual
3189 -- analysis at each call site. The same test is performed in
3190 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3191 -- here in another form (because the contract has not
3192 -- been attached to the body) to avoid frontend errors in
3193 -- case pragmas are used instead of aspects, because the
3194 -- corresponding pragmas in the body would not be transferred
3195 -- to the spec, leading to legality errors.
3197 and then not Body_Has_Contract
3198 then
3199 declare
3200 Body_Spec : constant Node_Id :=
3201 Copy_Separate_Tree (Specification (N));
3202 New_Decl : constant Node_Id :=
3203 Make_Subprogram_Declaration (Loc,
3204 Copy_Separate_Tree (Specification (N)));
3206 SPARK_Mode_Aspect : Node_Id;
3207 Aspects : List_Id;
3208 Prag, Aspect : Node_Id;
3210 begin
3211 Insert_Before (N, New_Decl);
3212 Move_Aspects (From => N, To => New_Decl);
3214 -- Mark the newly moved aspects as not analyzed, so that
3215 -- their effect on New_Decl is properly analyzed.
3217 Aspect := First (Aspect_Specifications (New_Decl));
3218 while Present (Aspect) loop
3219 Set_Analyzed (Aspect, False);
3220 Next (Aspect);
3221 end loop;
3223 Analyze (New_Decl);
3225 -- The analysis of the generated subprogram declaration
3226 -- may have introduced pragmas that need to be analyzed.
3228 Prag := Next (New_Decl);
3229 while Prag /= N loop
3230 Analyze (Prag);
3231 Next (Prag);
3232 end loop;
3234 Spec_Id := Defining_Entity (New_Decl);
3236 -- As Body_Id originally comes from source, mark the new
3237 -- Spec_Id as such, which is required so that calls to
3238 -- this subprogram are registered in the local effects
3239 -- stored in ALI files for GNATprove.
3241 Set_Comes_From_Source (Spec_Id, True);
3243 -- If aspect SPARK_Mode was specified on the body, it
3244 -- needs to be repeated on the generated decl and the
3245 -- body. Since the original aspect was moved to the
3246 -- generated decl, copy it for the body.
3248 if Has_Aspect (Spec_Id, Aspect_SPARK_Mode) then
3249 SPARK_Mode_Aspect :=
3250 New_Copy (Find_Aspect (Spec_Id, Aspect_SPARK_Mode));
3251 Set_Analyzed (SPARK_Mode_Aspect, False);
3252 Aspects := New_List (SPARK_Mode_Aspect);
3253 Set_Aspect_Specifications (N, Aspects);
3254 end if;
3256 Set_Specification (N, Body_Spec);
3257 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3258 Set_Corresponding_Spec (N, Spec_Id);
3259 end;
3260 end if;
3261 end if;
3263 -- If this is a duplicate body, no point in analyzing it
3265 if Error_Posted (N) then
3266 return;
3267 end if;
3269 -- A subprogram body should cause freezing of its own declaration,
3270 -- but if there was no previous explicit declaration, then the
3271 -- subprogram will get frozen too late (there may be code within
3272 -- the body that depends on the subprogram having been frozen,
3273 -- such as uses of extra formals), so we force it to be frozen
3274 -- here. Same holds if the body and spec are compilation units.
3275 -- Finally, if the return type is an anonymous access to protected
3276 -- subprogram, it must be frozen before the body because its
3277 -- expansion has generated an equivalent type that is used when
3278 -- elaborating the body.
3280 -- An exception in the case of Ada 2012, AI05-177: The bodies
3281 -- created for expression functions do not freeze.
3283 if No (Spec_Id)
3284 and then Nkind (Original_Node (N)) /= N_Expression_Function
3285 then
3286 Freeze_Before (N, Body_Id);
3288 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3289 Freeze_Before (N, Spec_Id);
3291 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3292 Freeze_Before (N, Etype (Body_Id));
3293 end if;
3295 else
3296 Spec_Id := Corresponding_Spec (N);
3297 end if;
3298 end if;
3300 -- Previously we scanned the body to look for nested subprograms, and
3301 -- rejected an inline directive if nested subprograms were present,
3302 -- because the back-end would generate conflicting symbols for the
3303 -- nested bodies. This is now unnecessary.
3305 -- Look ahead to recognize a pragma Inline that appears after the body
3307 Check_Inline_Pragma (Spec_Id);
3309 -- Deal with special case of a fully private operation in the body of
3310 -- the protected type. We must create a declaration for the subprogram,
3311 -- in order to attach the protected subprogram that will be used in
3312 -- internal calls. We exclude compiler generated bodies from the
3313 -- expander since the issue does not arise for those cases.
3315 if No (Spec_Id)
3316 and then Comes_From_Source (N)
3317 and then Is_Protected_Type (Current_Scope)
3318 then
3319 Spec_Id := Build_Private_Protected_Declaration (N);
3320 end if;
3322 -- If a separate spec is present, then deal with freezing issues
3324 if Present (Spec_Id) then
3325 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3326 Verify_Overriding_Indicator;
3328 -- In general, the spec will be frozen when we start analyzing the
3329 -- body. However, for internally generated operations, such as
3330 -- wrapper functions for inherited operations with controlling
3331 -- results, the spec may not have been frozen by the time we expand
3332 -- the freeze actions that include the bodies. In particular, extra
3333 -- formals for accessibility or for return-in-place may need to be
3334 -- generated. Freeze nodes, if any, are inserted before the current
3335 -- body. These freeze actions are also needed in ASIS mode to enable
3336 -- the proper back-annotations.
3338 if not Is_Frozen (Spec_Id)
3339 and then (Expander_Active or ASIS_Mode)
3340 then
3341 -- Force the generation of its freezing node to ensure proper
3342 -- management of access types in the backend.
3344 -- This is definitely needed for some cases, but it is not clear
3345 -- why, to be investigated further???
3347 Set_Has_Delayed_Freeze (Spec_Id);
3348 Freeze_Before (N, Spec_Id);
3349 end if;
3350 end if;
3352 -- Mark presence of postcondition procedure in current scope and mark
3353 -- the procedure itself as needing debug info. The latter is important
3354 -- when analyzing decision coverage (for example, for MC/DC coverage).
3356 if Chars (Body_Id) = Name_uPostconditions then
3357 Set_Has_Postconditions (Current_Scope);
3358 Set_Debug_Info_Needed (Body_Id);
3359 end if;
3361 -- Place subprogram on scope stack, and make formals visible. If there
3362 -- is a spec, the visible entity remains that of the spec.
3364 if Present (Spec_Id) then
3365 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3367 if Is_Child_Unit (Spec_Id) then
3368 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3369 end if;
3371 if Style_Check then
3372 Style.Check_Identifier (Body_Id, Spec_Id);
3373 end if;
3375 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3376 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3378 if Is_Abstract_Subprogram (Spec_Id) then
3379 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3380 return;
3382 else
3383 Set_Convention (Body_Id, Convention (Spec_Id));
3384 Set_Has_Completion (Spec_Id);
3386 -- Inherit the "ghostness" of the subprogram spec. Note that this
3387 -- property is not directly inherited as the body may be subject
3388 -- to a different Ghost assertion policy.
3390 if Is_Ghost_Entity (Spec_Id) or else Within_Ghost_Scope then
3391 Set_Is_Ghost_Entity (Body_Id);
3393 -- The Ghost policy in effect at the point of declaration and
3394 -- at the point of completion must match (SPARK RM 6.9(15)).
3396 Check_Ghost_Completion (Spec_Id, Body_Id);
3397 end if;
3399 if Is_Protected_Type (Scope (Spec_Id)) then
3400 Prot_Typ := Scope (Spec_Id);
3401 end if;
3403 -- If this is a body generated for a renaming, do not check for
3404 -- full conformance. The check is redundant, because the spec of
3405 -- the body is a copy of the spec in the renaming declaration,
3406 -- and the test can lead to spurious errors on nested defaults.
3408 if Present (Spec_Decl)
3409 and then not Comes_From_Source (N)
3410 and then
3411 (Nkind (Original_Node (Spec_Decl)) =
3412 N_Subprogram_Renaming_Declaration
3413 or else (Present (Corresponding_Body (Spec_Decl))
3414 and then
3415 Nkind (Unit_Declaration_Node
3416 (Corresponding_Body (Spec_Decl))) =
3417 N_Subprogram_Renaming_Declaration))
3418 then
3419 Conformant := True;
3421 -- Conversely, the spec may have been generated for specless body
3422 -- with an inline pragma.
3424 elsif Comes_From_Source (N)
3425 and then not Comes_From_Source (Spec_Id)
3426 and then Has_Pragma_Inline (Spec_Id)
3427 then
3428 Conformant := True;
3430 else
3431 Check_Conformance
3432 (Body_Id, Spec_Id,
3433 Fully_Conformant, True, Conformant, Body_Id);
3434 end if;
3436 -- If the body is not fully conformant, we have to decide if we
3437 -- should analyze it or not. If it has a really messed up profile
3438 -- then we probably should not analyze it, since we will get too
3439 -- many bogus messages.
3441 -- Our decision is to go ahead in the non-fully conformant case
3442 -- only if it is at least mode conformant with the spec. Note
3443 -- that the call to Check_Fully_Conformant has issued the proper
3444 -- error messages to complain about the lack of conformance.
3446 if not Conformant
3447 and then not Mode_Conformant (Body_Id, Spec_Id)
3448 then
3449 return;
3450 end if;
3451 end if;
3453 if Spec_Id /= Body_Id then
3454 Reference_Body_Formals (Spec_Id, Body_Id);
3455 end if;
3457 Set_Ekind (Body_Id, E_Subprogram_Body);
3459 if Nkind (N) = N_Subprogram_Body_Stub then
3460 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3462 -- Regular body
3464 else
3465 Set_Corresponding_Spec (N, Spec_Id);
3467 -- Ada 2005 (AI-345): If the operation is a primitive operation
3468 -- of a concurrent type, the type of the first parameter has been
3469 -- replaced with the corresponding record, which is the proper
3470 -- run-time structure to use. However, within the body there may
3471 -- be uses of the formals that depend on primitive operations
3472 -- of the type (in particular calls in prefixed form) for which
3473 -- we need the original concurrent type. The operation may have
3474 -- several controlling formals, so the replacement must be done
3475 -- for all of them.
3477 if Comes_From_Source (Spec_Id)
3478 and then Present (First_Entity (Spec_Id))
3479 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3480 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3481 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3482 and then Present (Corresponding_Concurrent_Type
3483 (Etype (First_Entity (Spec_Id))))
3484 then
3485 declare
3486 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3487 Form : Entity_Id;
3489 begin
3490 Form := First_Formal (Spec_Id);
3491 while Present (Form) loop
3492 if Etype (Form) = Typ then
3493 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3494 end if;
3496 Next_Formal (Form);
3497 end loop;
3498 end;
3499 end if;
3501 -- Make the formals visible, and place subprogram on scope stack.
3502 -- This is also the point at which we set Last_Real_Spec_Entity
3503 -- to mark the entities which will not be moved to the body.
3505 Install_Formals (Spec_Id);
3506 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3508 -- Within an instance, add local renaming declarations so that
3509 -- gdb can retrieve the values of actuals more easily. This is
3510 -- only relevant if generating code (and indeed we definitely
3511 -- do not want these definitions -gnatc mode, because that would
3512 -- confuse ASIS).
3514 if Is_Generic_Instance (Spec_Id)
3515 and then Is_Wrapper_Package (Current_Scope)
3516 and then Expander_Active
3517 then
3518 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3519 end if;
3521 Push_Scope (Spec_Id);
3523 -- Make sure that the subprogram is immediately visible. For
3524 -- child units that have no separate spec this is indispensable.
3525 -- Otherwise it is safe albeit redundant.
3527 Set_Is_Immediately_Visible (Spec_Id);
3528 end if;
3530 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3531 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3532 Set_Scope (Body_Id, Scope (Spec_Id));
3533 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3535 -- Case of subprogram body with no previous spec
3537 else
3538 -- Check for style warning required
3540 if Style_Check
3542 -- Only apply check for source level subprograms for which checks
3543 -- have not been suppressed.
3545 and then Comes_From_Source (Body_Id)
3546 and then not Suppress_Style_Checks (Body_Id)
3548 -- No warnings within an instance
3550 and then not In_Instance
3552 -- No warnings for expression functions
3554 and then Nkind (Original_Node (N)) /= N_Expression_Function
3555 then
3556 Style.Body_With_No_Spec (N);
3557 end if;
3559 New_Overloaded_Entity (Body_Id);
3561 if Nkind (N) /= N_Subprogram_Body_Stub then
3562 Set_Acts_As_Spec (N);
3563 Generate_Definition (Body_Id);
3564 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3565 Generate_Reference
3566 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3567 Install_Formals (Body_Id);
3569 Push_Scope (Body_Id);
3570 end if;
3572 -- For stubs and bodies with no previous spec, generate references to
3573 -- formals.
3575 Generate_Reference_To_Formals (Body_Id);
3576 end if;
3578 -- Set SPARK_Mode from context
3580 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3581 Set_SPARK_Pragma_Inherited (Body_Id, True);
3583 -- If the return type is an anonymous access type whose designated type
3584 -- is the limited view of a class-wide type and the non-limited view is
3585 -- available, update the return type accordingly.
3587 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
3588 declare
3589 Etyp : Entity_Id;
3590 Rtyp : Entity_Id;
3592 begin
3593 Rtyp := Etype (Current_Scope);
3595 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3596 Etyp := Directly_Designated_Type (Rtyp);
3598 if Is_Class_Wide_Type (Etyp)
3599 and then From_Limited_With (Etyp)
3600 then
3601 Set_Directly_Designated_Type
3602 (Etype (Current_Scope), Available_View (Etyp));
3603 end if;
3604 end if;
3605 end;
3606 end if;
3608 -- If this is the proper body of a stub, we must verify that the stub
3609 -- conforms to the body, and to the previous spec if one was present.
3610 -- We know already that the body conforms to that spec. This test is
3611 -- only required for subprograms that come from source.
3613 if Nkind (Parent (N)) = N_Subunit
3614 and then Comes_From_Source (N)
3615 and then not Error_Posted (Body_Id)
3616 and then Nkind (Corresponding_Stub (Parent (N))) =
3617 N_Subprogram_Body_Stub
3618 then
3619 declare
3620 Old_Id : constant Entity_Id :=
3621 Defining_Entity
3622 (Specification (Corresponding_Stub (Parent (N))));
3624 Conformant : Boolean := False;
3626 begin
3627 if No (Spec_Id) then
3628 Check_Fully_Conformant (Body_Id, Old_Id);
3630 else
3631 Check_Conformance
3632 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3634 if not Conformant then
3636 -- The stub was taken to be a new declaration. Indicate that
3637 -- it lacks a body.
3639 Set_Has_Completion (Old_Id, False);
3640 end if;
3641 end if;
3642 end;
3643 end if;
3645 Set_Has_Completion (Body_Id);
3646 Check_Eliminated (Body_Id);
3648 if Nkind (N) = N_Subprogram_Body_Stub then
3650 -- Analyze any aspect specifications that appear on the subprogram
3651 -- body stub.
3653 if Has_Aspects (N) then
3654 Analyze_Aspects_On_Body_Or_Stub;
3655 end if;
3657 -- Stop the analysis now as the stub cannot be inlined, plus it does
3658 -- not have declarative or statement lists.
3660 return;
3661 end if;
3663 -- Handle frontend inlining
3665 -- Note: Normally we don't do any inlining if expansion is off, since
3666 -- we won't generate code in any case. An exception arises in GNATprove
3667 -- mode where we want to expand some calls in place, even with expansion
3668 -- disabled, since the inlining eases formal verification.
3670 if not GNATprove_Mode
3671 and then Expander_Active
3672 and then Serious_Errors_Detected = 0
3673 and then Present (Spec_Id)
3674 and then Has_Pragma_Inline (Spec_Id)
3675 then
3676 -- Legacy implementation (relying on frontend inlining)
3678 if not Back_End_Inlining then
3679 if Has_Pragma_Inline_Always (Spec_Id)
3680 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining)
3681 then
3682 Build_Body_To_Inline (N, Spec_Id);
3683 end if;
3685 -- New implementation (relying on backend inlining)
3687 else
3688 if Has_Pragma_Inline_Always (Spec_Id)
3689 or else Optimization_Level > 0
3690 then
3691 -- Handle function returning an unconstrained type
3693 if Comes_From_Source (Body_Id)
3694 and then Ekind (Spec_Id) = E_Function
3695 and then Returns_Unconstrained_Type (Spec_Id)
3697 -- If function builds in place, i.e. returns a limited type,
3698 -- inlining cannot be done.
3700 and then not Is_Limited_Type (Etype (Spec_Id))
3701 then
3702 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
3704 else
3705 declare
3706 Subp_Body : constant Node_Id :=
3707 Unit_Declaration_Node (Body_Id);
3708 Subp_Decl : constant List_Id := Declarations (Subp_Body);
3710 begin
3711 -- Do not pass inlining to the backend if the subprogram
3712 -- has declarations or statements which cannot be inlined
3713 -- by the backend. This check is done here to emit an
3714 -- error instead of the generic warning message reported
3715 -- by the GCC backend (ie. "function might not be
3716 -- inlinable").
3718 if Present (Subp_Decl)
3719 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3720 then
3721 null;
3723 elsif Has_Excluded_Statement
3724 (Spec_Id,
3725 Statements
3726 (Handled_Statement_Sequence (Subp_Body)))
3727 then
3728 null;
3730 -- If the backend inlining is available then at this
3731 -- stage we only have to mark the subprogram as inlined.
3732 -- The expander will take care of registering it in the
3733 -- table of subprograms inlined by the backend a part of
3734 -- processing calls to it (cf. Expand_Call)
3736 else
3737 Set_Is_Inlined (Spec_Id);
3738 end if;
3739 end;
3740 end if;
3741 end if;
3742 end if;
3744 -- In GNATprove mode, inline only when there is a separate subprogram
3745 -- declaration for now, as inlining of subprogram bodies acting as
3746 -- declarations, or subprogram stubs, are not supported by frontend
3747 -- inlining. This inlining should occur after analysis of the body, so
3748 -- that it is known whether the value of SPARK_Mode applicable to the
3749 -- body, which can be defined by a pragma inside the body.
3751 elsif GNATprove_Mode
3752 and then Full_Analysis
3753 and then not Inside_A_Generic
3754 and then Present (Spec_Id)
3755 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3756 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
3757 and then not Body_Has_Contract
3758 then
3759 Build_Body_To_Inline (N, Spec_Id);
3760 end if;
3762 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3763 -- of the specification we have to install the private withed units.
3764 -- This holds for child units as well.
3766 if Is_Compilation_Unit (Body_Id)
3767 or else Nkind (Parent (N)) = N_Compilation_Unit
3768 then
3769 Install_Private_With_Clauses (Body_Id);
3770 end if;
3772 Check_Anonymous_Return;
3774 -- Set the Protected_Formal field of each extra formal of the protected
3775 -- subprogram to reference the corresponding extra formal of the
3776 -- subprogram that implements it. For regular formals this occurs when
3777 -- the protected subprogram's declaration is expanded, but the extra
3778 -- formals don't get created until the subprogram is frozen. We need to
3779 -- do this before analyzing the protected subprogram's body so that any
3780 -- references to the original subprogram's extra formals will be changed
3781 -- refer to the implementing subprogram's formals (see Expand_Formal).
3783 if Present (Spec_Id)
3784 and then Is_Protected_Type (Scope (Spec_Id))
3785 and then Present (Protected_Body_Subprogram (Spec_Id))
3786 then
3787 declare
3788 Impl_Subp : constant Entity_Id :=
3789 Protected_Body_Subprogram (Spec_Id);
3790 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3791 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3792 begin
3793 while Present (Prot_Ext_Formal) loop
3794 pragma Assert (Present (Impl_Ext_Formal));
3795 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3796 Next_Formal_With_Extras (Prot_Ext_Formal);
3797 Next_Formal_With_Extras (Impl_Ext_Formal);
3798 end loop;
3799 end;
3800 end if;
3802 -- Now we can go on to analyze the body
3804 HSS := Handled_Statement_Sequence (N);
3805 Set_Actual_Subtypes (N, Current_Scope);
3807 -- Add a declaration for the Protection object, renaming declarations
3808 -- for discriminals and privals and finally a declaration for the entry
3809 -- family index (if applicable). This form of early expansion is done
3810 -- when the Expander is active because Install_Private_Data_Declarations
3811 -- references entities which were created during regular expansion. The
3812 -- subprogram entity must come from source, and not be an internally
3813 -- generated subprogram.
3815 if Expander_Active
3816 and then Present (Prot_Typ)
3817 and then Present (Spec_Id)
3818 and then Comes_From_Source (Spec_Id)
3819 and then not Is_Eliminated (Spec_Id)
3820 then
3821 Install_Private_Data_Declarations
3822 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3823 end if;
3825 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3826 -- may now appear in parameter and result profiles. Since the analysis
3827 -- of a subprogram body may use the parameter and result profile of the
3828 -- spec, swap any limited views with their non-limited counterpart.
3830 if Ada_Version >= Ada_2012 then
3831 Exchange_Limited_Views (Spec_Id);
3832 end if;
3834 -- Analyze any aspect specifications that appear on the subprogram body
3836 if Has_Aspects (N) then
3837 Analyze_Aspects_On_Body_Or_Stub;
3838 end if;
3840 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3841 -- invariants and predicates associated with the body and its spec.
3842 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3843 -- prepares the contract assertions for generic subprograms or for ASIS.
3844 -- Do not generate contract checks in SPARK mode.
3846 if not GNATprove_Mode then
3847 Expand_Subprogram_Contract (N, Spec_Id, Body_Id);
3848 end if;
3850 -- Analyze the declarations (this call will analyze the precondition
3851 -- Check pragmas we prepended to the list, as well as the declaration
3852 -- of the _Postconditions procedure).
3854 Analyze_Declarations (Declarations (N));
3856 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3858 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
3859 if Present (SPARK_Pragma (Spec_Id)) then
3860 if Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) = Off
3861 and then
3862 Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Body_Id)) = On
3863 then
3864 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3865 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3866 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3867 Error_Msg_NE
3868 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
3869 end if;
3871 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3872 null;
3874 else
3875 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3876 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
3877 Error_Msg_Sloc := Sloc (Spec_Id);
3878 Error_Msg_NE
3879 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
3880 end if;
3881 end if;
3883 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3884 -- subprogram in GNATprove mode, as its body should not be analyzed.
3886 if SPARK_Mode /= On
3887 and then GNATprove_Mode
3888 and then Present (Spec_Id)
3889 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3890 then
3891 Set_Body_To_Inline (Parent (Parent (Spec_Id)), Empty);
3892 Set_Is_Inlined_Always (Spec_Id, False);
3893 end if;
3895 -- Check completion, and analyze the statements
3897 Check_Completion;
3898 Inspect_Deferred_Constant_Completion (Declarations (N));
3899 Analyze (HSS);
3901 -- Deal with end of scope processing for the body
3903 Process_End_Label (HSS, 't', Current_Scope);
3904 End_Scope;
3905 Check_Subprogram_Order (N);
3906 Set_Analyzed (Body_Id);
3908 -- If we have a separate spec, then the analysis of the declarations
3909 -- caused the entities in the body to be chained to the spec id, but
3910 -- we want them chained to the body id. Only the formal parameters
3911 -- end up chained to the spec id in this case.
3913 if Present (Spec_Id) then
3915 -- We must conform to the categorization of our spec
3917 Validate_Categorization_Dependency (N, Spec_Id);
3919 -- And if this is a child unit, the parent units must conform
3921 if Is_Child_Unit (Spec_Id) then
3922 Validate_Categorization_Dependency
3923 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3924 end if;
3926 -- Here is where we move entities from the spec to the body
3928 -- Case where there are entities that stay with the spec
3930 if Present (Last_Real_Spec_Entity) then
3932 -- No body entities (happens when the only real spec entities come
3933 -- from precondition and postcondition pragmas).
3935 if No (Last_Entity (Body_Id)) then
3936 Set_First_Entity
3937 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3939 -- Body entities present (formals), so chain stuff past them
3941 else
3942 Set_Next_Entity
3943 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3944 end if;
3946 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3947 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3948 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3950 -- Case where there are no spec entities, in this case there can be
3951 -- no body entities either, so just move everything.
3953 -- If the body is generated for an expression function, it may have
3954 -- been preanalyzed already, if 'access was applied to it.
3956 else
3957 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
3958 N_Expression_Function
3959 then
3960 pragma Assert (No (Last_Entity (Body_Id)));
3961 null;
3962 end if;
3964 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3965 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3966 Set_First_Entity (Spec_Id, Empty);
3967 Set_Last_Entity (Spec_Id, Empty);
3968 end if;
3969 end if;
3971 Check_Missing_Return;
3973 -- Now we are going to check for variables that are never modified in
3974 -- the body of the procedure. But first we deal with a special case
3975 -- where we want to modify this check. If the body of the subprogram
3976 -- starts with a raise statement or its equivalent, or if the body
3977 -- consists entirely of a null statement, then it is pretty obvious that
3978 -- it is OK to not reference the parameters. For example, this might be
3979 -- the following common idiom for a stubbed function: statement of the
3980 -- procedure raises an exception. In particular this deals with the
3981 -- common idiom of a stubbed function, which appears something like:
3983 -- function F (A : Integer) return Some_Type;
3984 -- X : Some_Type;
3985 -- begin
3986 -- raise Program_Error;
3987 -- return X;
3988 -- end F;
3990 -- Here the purpose of X is simply to satisfy the annoying requirement
3991 -- in Ada that there be at least one return, and we certainly do not
3992 -- want to go posting warnings on X that it is not initialized. On
3993 -- the other hand, if X is entirely unreferenced that should still
3994 -- get a warning.
3996 -- What we do is to detect these cases, and if we find them, flag the
3997 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3998 -- suppress unwanted warnings. For the case of the function stub above
3999 -- we have a special test to set X as apparently assigned to suppress
4000 -- the warning.
4002 declare
4003 Stm : Node_Id;
4005 begin
4006 -- Skip initial labels (for one thing this occurs when we are in
4007 -- front end ZCX mode, but in any case it is irrelevant), and also
4008 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
4010 Stm := First (Statements (HSS));
4011 while Nkind (Stm) = N_Label
4012 or else Nkind (Stm) in N_Push_xxx_Label
4013 loop
4014 Next (Stm);
4015 end loop;
4017 -- Do the test on the original statement before expansion
4019 declare
4020 Ostm : constant Node_Id := Original_Node (Stm);
4022 begin
4023 -- If explicit raise statement, turn on flag
4025 if Nkind (Ostm) = N_Raise_Statement then
4026 Set_Trivial_Subprogram (Stm);
4028 -- If null statement, and no following statements, turn on flag
4030 elsif Nkind (Stm) = N_Null_Statement
4031 and then Comes_From_Source (Stm)
4032 and then No (Next (Stm))
4033 then
4034 Set_Trivial_Subprogram (Stm);
4036 -- Check for explicit call cases which likely raise an exception
4038 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4039 if Is_Entity_Name (Name (Ostm)) then
4040 declare
4041 Ent : constant Entity_Id := Entity (Name (Ostm));
4043 begin
4044 -- If the procedure is marked No_Return, then likely it
4045 -- raises an exception, but in any case it is not coming
4046 -- back here, so turn on the flag.
4048 if Present (Ent)
4049 and then Ekind (Ent) = E_Procedure
4050 and then No_Return (Ent)
4051 then
4052 Set_Trivial_Subprogram (Stm);
4053 end if;
4054 end;
4055 end if;
4056 end if;
4057 end;
4058 end;
4060 -- Check for variables that are never modified
4062 declare
4063 E1, E2 : Entity_Id;
4065 begin
4066 -- If there is a separate spec, then transfer Never_Set_In_Source
4067 -- flags from out parameters to the corresponding entities in the
4068 -- body. The reason we do that is we want to post error flags on
4069 -- the body entities, not the spec entities.
4071 if Present (Spec_Id) then
4072 E1 := First_Entity (Spec_Id);
4073 while Present (E1) loop
4074 if Ekind (E1) = E_Out_Parameter then
4075 E2 := First_Entity (Body_Id);
4076 while Present (E2) loop
4077 exit when Chars (E1) = Chars (E2);
4078 Next_Entity (E2);
4079 end loop;
4081 if Present (E2) then
4082 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4083 end if;
4084 end if;
4086 Next_Entity (E1);
4087 end loop;
4088 end if;
4090 -- Check references in body
4092 Check_References (Body_Id);
4093 end;
4094 end Analyze_Subprogram_Body_Helper;
4096 ---------------------------------
4097 -- Analyze_Subprogram_Contract --
4098 ---------------------------------
4100 procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
4101 Items : constant Node_Id := Contract (Subp);
4102 Case_Prag : Node_Id := Empty;
4103 Depends : Node_Id := Empty;
4104 Global : Node_Id := Empty;
4105 Mode : SPARK_Mode_Type;
4106 Nam : Name_Id;
4107 Post_Prag : Node_Id := Empty;
4108 Prag : Node_Id;
4109 Seen_In_Case : Boolean := False;
4110 Seen_In_Post : Boolean := False;
4112 begin
4113 -- Due to the timing of contract analysis, delayed pragmas may be
4114 -- subject to the wrong SPARK_Mode, usually that of the enclosing
4115 -- context. To remedy this, restore the original SPARK_Mode of the
4116 -- related subprogram body.
4118 Save_SPARK_Mode_And_Set (Subp, Mode);
4120 if Present (Items) then
4122 -- Analyze pre- and postconditions
4124 Prag := Pre_Post_Conditions (Items);
4125 while Present (Prag) loop
4126 Analyze_Pre_Post_Condition_In_Decl_Part (Prag, Subp);
4128 -- Verify whether a postcondition mentions attribute 'Result and
4129 -- its expression introduces a post-state.
4131 if Warn_On_Suspicious_Contract
4132 and then Pragma_Name (Prag) = Name_Postcondition
4133 then
4134 Post_Prag := Prag;
4135 Check_Result_And_Post_State (Prag, Seen_In_Post);
4136 end if;
4138 Prag := Next_Pragma (Prag);
4139 end loop;
4141 -- Analyze contract-cases and test-cases
4143 Prag := Contract_Test_Cases (Items);
4144 while Present (Prag) loop
4145 Nam := Pragma_Name (Prag);
4147 if Nam = Name_Contract_Cases then
4148 Analyze_Contract_Cases_In_Decl_Part (Prag);
4150 -- Verify whether contract-cases mention attribute 'Result and
4151 -- its expression introduces a post-state. Perform the check
4152 -- only when the pragma is legal.
4154 if Warn_On_Suspicious_Contract
4155 and then not Error_Posted (Prag)
4156 then
4157 Case_Prag := Prag;
4158 Check_Result_And_Post_State (Prag, Seen_In_Case);
4159 end if;
4161 else
4162 pragma Assert (Nam = Name_Test_Case);
4163 Analyze_Test_Case_In_Decl_Part (Prag, Subp);
4164 end if;
4166 Prag := Next_Pragma (Prag);
4167 end loop;
4169 -- Analyze classification pragmas
4171 Prag := Classifications (Items);
4172 while Present (Prag) loop
4173 Nam := Pragma_Name (Prag);
4175 if Nam = Name_Depends then
4176 Depends := Prag;
4178 elsif Nam = Name_Global then
4179 Global := Prag;
4181 -- Note that pragma Extensions_Visible has already been analyzed
4183 end if;
4185 Prag := Next_Pragma (Prag);
4186 end loop;
4188 -- Analyze Global first as Depends may mention items classified in
4189 -- the global categorization.
4191 if Present (Global) then
4192 Analyze_Global_In_Decl_Part (Global);
4193 end if;
4195 -- Depends must be analyzed after Global in order to see the modes of
4196 -- all global items.
4198 if Present (Depends) then
4199 Analyze_Depends_In_Decl_Part (Depends);
4200 end if;
4201 end if;
4203 -- Emit an error when neither the postconditions nor the contract-cases
4204 -- mention attribute 'Result in the context of a function.
4206 if Warn_On_Suspicious_Contract
4207 and then Ekind_In (Subp, E_Function, E_Generic_Function)
4208 then
4209 if Present (Case_Prag)
4210 and then not Seen_In_Case
4211 and then Present (Post_Prag)
4212 and then not Seen_In_Post
4213 then
4214 Error_Msg_N
4215 ("neither function postcondition nor contract cases mention "
4216 & "result?T?", Post_Prag);
4218 elsif Present (Case_Prag) and then not Seen_In_Case then
4219 Error_Msg_N
4220 ("contract cases do not mention result?T?", Case_Prag);
4222 -- OK if we have at least one IN OUT parameter
4224 elsif Present (Post_Prag) and then not Seen_In_Post then
4225 declare
4226 F : Entity_Id;
4227 begin
4228 F := First_Formal (Subp);
4229 while Present (F) loop
4230 if Ekind (F) = E_In_Out_Parameter then
4231 return;
4232 else
4233 Next_Formal (F);
4234 end if;
4235 end loop;
4236 end;
4238 -- If no in-out parameters and no mention of Result, the contract
4239 -- is certainly suspicious.
4241 Error_Msg_N
4242 ("function postcondition does not mention result?T?", Post_Prag);
4243 end if;
4244 end if;
4246 -- Restore the SPARK_Mode of the enclosing context after all delayed
4247 -- pragmas have been analyzed.
4249 Restore_SPARK_Mode (Mode);
4250 end Analyze_Subprogram_Contract;
4252 ------------------------------------
4253 -- Analyze_Subprogram_Declaration --
4254 ------------------------------------
4256 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4257 Scop : constant Entity_Id := Current_Scope;
4258 Designator : Entity_Id;
4260 Is_Completion : Boolean;
4261 -- Indicates whether a null procedure declaration is a completion
4263 begin
4264 -- Null procedures are not allowed in SPARK
4266 if Nkind (Specification (N)) = N_Procedure_Specification
4267 and then Null_Present (Specification (N))
4268 then
4269 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4271 if Is_Protected_Type (Current_Scope) then
4272 Error_Msg_N ("protected operation cannot be a null procedure", N);
4273 end if;
4275 Analyze_Null_Procedure (N, Is_Completion);
4277 if Is_Completion then
4279 -- The null procedure acts as a body, nothing further is needed.
4281 return;
4282 end if;
4283 end if;
4285 Designator := Analyze_Subprogram_Specification (Specification (N));
4287 -- A reference may already have been generated for the unit name, in
4288 -- which case the following call is redundant. However it is needed for
4289 -- declarations that are the rewriting of an expression function.
4291 Generate_Definition (Designator);
4293 -- Set SPARK mode from current context (may be overwritten later with
4294 -- explicit pragma).
4296 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4297 Set_SPARK_Pragma_Inherited (Designator, True);
4299 -- A subprogram declared within a Ghost scope is automatically Ghost
4300 -- (SPARK RM 6.9(2)).
4302 if Comes_From_Source (Designator) and then Within_Ghost_Scope then
4303 Set_Is_Ghost_Entity (Designator);
4304 end if;
4306 if Debug_Flag_C then
4307 Write_Str ("==> subprogram spec ");
4308 Write_Name (Chars (Designator));
4309 Write_Str (" from ");
4310 Write_Location (Sloc (N));
4311 Write_Eol;
4312 Indent;
4313 end if;
4315 Validate_RCI_Subprogram_Declaration (N);
4316 New_Overloaded_Entity (Designator);
4317 Check_Delayed_Subprogram (Designator);
4319 -- If the type of the first formal of the current subprogram is a non-
4320 -- generic tagged private type, mark the subprogram as being a private
4321 -- primitive. Ditto if this is a function with controlling result, and
4322 -- the return type is currently private. In both cases, the type of the
4323 -- controlling argument or result must be in the current scope for the
4324 -- operation to be primitive.
4326 if Has_Controlling_Result (Designator)
4327 and then Is_Private_Type (Etype (Designator))
4328 and then Scope (Etype (Designator)) = Current_Scope
4329 and then not Is_Generic_Actual_Type (Etype (Designator))
4330 then
4331 Set_Is_Private_Primitive (Designator);
4333 elsif Present (First_Formal (Designator)) then
4334 declare
4335 Formal_Typ : constant Entity_Id :=
4336 Etype (First_Formal (Designator));
4337 begin
4338 Set_Is_Private_Primitive (Designator,
4339 Is_Tagged_Type (Formal_Typ)
4340 and then Scope (Formal_Typ) = Current_Scope
4341 and then Is_Private_Type (Formal_Typ)
4342 and then not Is_Generic_Actual_Type (Formal_Typ));
4343 end;
4344 end if;
4346 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4347 -- or null.
4349 if Ada_Version >= Ada_2005
4350 and then Comes_From_Source (N)
4351 and then Is_Dispatching_Operation (Designator)
4352 then
4353 declare
4354 E : Entity_Id;
4355 Etyp : Entity_Id;
4357 begin
4358 if Has_Controlling_Result (Designator) then
4359 Etyp := Etype (Designator);
4361 else
4362 E := First_Entity (Designator);
4363 while Present (E)
4364 and then Is_Formal (E)
4365 and then not Is_Controlling_Formal (E)
4366 loop
4367 Next_Entity (E);
4368 end loop;
4370 Etyp := Etype (E);
4371 end if;
4373 if Is_Access_Type (Etyp) then
4374 Etyp := Directly_Designated_Type (Etyp);
4375 end if;
4377 if Is_Interface (Etyp)
4378 and then not Is_Abstract_Subprogram (Designator)
4379 and then not (Ekind (Designator) = E_Procedure
4380 and then Null_Present (Specification (N)))
4381 then
4382 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4384 -- Specialize error message based on procedures vs. functions,
4385 -- since functions can't be null subprograms.
4387 if Ekind (Designator) = E_Procedure then
4388 Error_Msg_N
4389 ("interface procedure % must be abstract or null", N);
4390 else
4391 Error_Msg_N
4392 ("interface function % must be abstract", N);
4393 end if;
4394 end if;
4395 end;
4396 end if;
4398 -- What is the following code for, it used to be
4400 -- ??? Set_Suppress_Elaboration_Checks
4401 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4403 -- The following seems equivalent, but a bit dubious
4405 if Elaboration_Checks_Suppressed (Designator) then
4406 Set_Kill_Elaboration_Checks (Designator);
4407 end if;
4409 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4410 Set_Categorization_From_Scope (Designator, Scop);
4412 else
4413 -- For a compilation unit, check for library-unit pragmas
4415 Push_Scope (Designator);
4416 Set_Categorization_From_Pragmas (N);
4417 Validate_Categorization_Dependency (N, Designator);
4418 Pop_Scope;
4419 end if;
4421 -- For a compilation unit, set body required. This flag will only be
4422 -- reset if a valid Import or Interface pragma is processed later on.
4424 if Nkind (Parent (N)) = N_Compilation_Unit then
4425 Set_Body_Required (Parent (N), True);
4427 if Ada_Version >= Ada_2005
4428 and then Nkind (Specification (N)) = N_Procedure_Specification
4429 and then Null_Present (Specification (N))
4430 then
4431 Error_Msg_N
4432 ("null procedure cannot be declared at library level", N);
4433 end if;
4434 end if;
4436 Generate_Reference_To_Formals (Designator);
4437 Check_Eliminated (Designator);
4439 if Debug_Flag_C then
4440 Outdent;
4441 Write_Str ("<== subprogram spec ");
4442 Write_Name (Chars (Designator));
4443 Write_Str (" from ");
4444 Write_Location (Sloc (N));
4445 Write_Eol;
4446 end if;
4448 if Is_Protected_Type (Current_Scope) then
4450 -- Indicate that this is a protected operation, because it may be
4451 -- used in subsequent declarations within the protected type.
4453 Set_Convention (Designator, Convention_Protected);
4454 end if;
4456 List_Inherited_Pre_Post_Aspects (Designator);
4458 if Has_Aspects (N) then
4459 Analyze_Aspect_Specifications (N, Designator);
4460 end if;
4461 end Analyze_Subprogram_Declaration;
4463 --------------------------------------
4464 -- Analyze_Subprogram_Specification --
4465 --------------------------------------
4467 -- Reminder: N here really is a subprogram specification (not a subprogram
4468 -- declaration). This procedure is called to analyze the specification in
4469 -- both subprogram bodies and subprogram declarations (specs).
4471 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4472 Designator : constant Entity_Id := Defining_Entity (N);
4473 Formals : constant List_Id := Parameter_Specifications (N);
4475 -- Start of processing for Analyze_Subprogram_Specification
4477 begin
4478 -- User-defined operator is not allowed in SPARK, except as a renaming
4480 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4481 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4482 then
4483 Check_SPARK_05_Restriction
4484 ("user-defined operator is not allowed", N);
4485 end if;
4487 -- Proceed with analysis. Do not emit a cross-reference entry if the
4488 -- specification comes from an expression function, because it may be
4489 -- the completion of a previous declaration. It is is not, the cross-
4490 -- reference entry will be emitted for the new subprogram declaration.
4492 if Nkind (Parent (N)) /= N_Expression_Function then
4493 Generate_Definition (Designator);
4494 end if;
4496 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
4498 if Nkind (N) = N_Function_Specification then
4499 Set_Ekind (Designator, E_Function);
4500 Set_Mechanism (Designator, Default_Mechanism);
4501 else
4502 Set_Ekind (Designator, E_Procedure);
4503 Set_Etype (Designator, Standard_Void_Type);
4504 end if;
4506 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4507 -- those subprograms which could be inlined in GNATprove mode (because
4508 -- Body_To_Inline is non-Empty) but cannot be inlined.
4510 if GNATprove_Mode then
4511 Set_Is_Inlined_Always (Designator);
4512 end if;
4514 -- Introduce new scope for analysis of the formals and the return type
4516 Set_Scope (Designator, Current_Scope);
4518 if Present (Formals) then
4519 Push_Scope (Designator);
4520 Process_Formals (Formals, N);
4522 -- Check dimensions in N for formals with default expression
4524 Analyze_Dimension_Formals (N, Formals);
4526 -- Ada 2005 (AI-345): If this is an overriding operation of an
4527 -- inherited interface operation, and the controlling type is
4528 -- a synchronized type, replace the type with its corresponding
4529 -- record, to match the proper signature of an overriding operation.
4530 -- Same processing for an access parameter whose designated type is
4531 -- derived from a synchronized interface.
4533 if Ada_Version >= Ada_2005 then
4534 declare
4535 Formal : Entity_Id;
4536 Formal_Typ : Entity_Id;
4537 Rec_Typ : Entity_Id;
4538 Desig_Typ : Entity_Id;
4540 begin
4541 Formal := First_Formal (Designator);
4542 while Present (Formal) loop
4543 Formal_Typ := Etype (Formal);
4545 if Is_Concurrent_Type (Formal_Typ)
4546 and then Present (Corresponding_Record_Type (Formal_Typ))
4547 then
4548 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4550 if Present (Interfaces (Rec_Typ)) then
4551 Set_Etype (Formal, Rec_Typ);
4552 end if;
4554 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4555 Desig_Typ := Designated_Type (Formal_Typ);
4557 if Is_Concurrent_Type (Desig_Typ)
4558 and then Present (Corresponding_Record_Type (Desig_Typ))
4559 then
4560 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4562 if Present (Interfaces (Rec_Typ)) then
4563 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4564 end if;
4565 end if;
4566 end if;
4568 Next_Formal (Formal);
4569 end loop;
4570 end;
4571 end if;
4573 End_Scope;
4575 -- The subprogram scope is pushed and popped around the processing of
4576 -- the return type for consistency with call above to Process_Formals
4577 -- (which itself can call Analyze_Return_Type), and to ensure that any
4578 -- itype created for the return type will be associated with the proper
4579 -- scope.
4581 elsif Nkind (N) = N_Function_Specification then
4582 Push_Scope (Designator);
4583 Analyze_Return_Type (N);
4584 End_Scope;
4585 end if;
4587 -- Function case
4589 if Nkind (N) = N_Function_Specification then
4591 -- Deal with operator symbol case
4593 if Nkind (Designator) = N_Defining_Operator_Symbol then
4594 Valid_Operator_Definition (Designator);
4595 end if;
4597 May_Need_Actuals (Designator);
4599 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4600 -- the subprogram is abstract also. This does not apply to renaming
4601 -- declarations, where abstractness is inherited, and to subprogram
4602 -- bodies generated for stream operations, which become renamings as
4603 -- bodies.
4605 -- In case of primitives associated with abstract interface types
4606 -- the check is applied later (see Analyze_Subprogram_Declaration).
4608 if not Nkind_In (Original_Node (Parent (N)),
4609 N_Subprogram_Renaming_Declaration,
4610 N_Abstract_Subprogram_Declaration,
4611 N_Formal_Abstract_Subprogram_Declaration)
4612 then
4613 if Is_Abstract_Type (Etype (Designator))
4614 and then not Is_Interface (Etype (Designator))
4615 then
4616 Error_Msg_N
4617 ("function that returns abstract type must be abstract", N);
4619 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4620 -- access result whose designated type is abstract.
4622 elsif Nkind (Result_Definition (N)) = N_Access_Definition
4623 and then
4624 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4625 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4626 and then Ada_Version >= Ada_2012
4627 then
4628 Error_Msg_N ("function whose access result designates "
4629 & "abstract type must be abstract", N);
4630 end if;
4631 end if;
4632 end if;
4634 return Designator;
4635 end Analyze_Subprogram_Specification;
4637 -----------------------
4638 -- Check_Conformance --
4639 -----------------------
4641 procedure Check_Conformance
4642 (New_Id : Entity_Id;
4643 Old_Id : Entity_Id;
4644 Ctype : Conformance_Type;
4645 Errmsg : Boolean;
4646 Conforms : out Boolean;
4647 Err_Loc : Node_Id := Empty;
4648 Get_Inst : Boolean := False;
4649 Skip_Controlling_Formals : Boolean := False)
4651 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4652 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4653 -- If Errmsg is True, then processing continues to post an error message
4654 -- for conformance error on given node. Two messages are output. The
4655 -- first message points to the previous declaration with a general "no
4656 -- conformance" message. The second is the detailed reason, supplied as
4657 -- Msg. The parameter N provide information for a possible & insertion
4658 -- in the message, and also provides the location for posting the
4659 -- message in the absence of a specified Err_Loc location.
4661 -----------------------
4662 -- Conformance_Error --
4663 -----------------------
4665 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4666 Enode : Node_Id;
4668 begin
4669 Conforms := False;
4671 if Errmsg then
4672 if No (Err_Loc) then
4673 Enode := N;
4674 else
4675 Enode := Err_Loc;
4676 end if;
4678 Error_Msg_Sloc := Sloc (Old_Id);
4680 case Ctype is
4681 when Type_Conformant =>
4682 Error_Msg_N -- CODEFIX
4683 ("not type conformant with declaration#!", Enode);
4685 when Mode_Conformant =>
4686 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4687 Error_Msg_N
4688 ("not mode conformant with operation inherited#!",
4689 Enode);
4690 else
4691 Error_Msg_N
4692 ("not mode conformant with declaration#!", Enode);
4693 end if;
4695 when Subtype_Conformant =>
4696 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4697 Error_Msg_N
4698 ("not subtype conformant with operation inherited#!",
4699 Enode);
4700 else
4701 Error_Msg_N
4702 ("not subtype conformant with declaration#!", Enode);
4703 end if;
4705 when Fully_Conformant =>
4706 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4707 Error_Msg_N -- CODEFIX
4708 ("not fully conformant with operation inherited#!",
4709 Enode);
4710 else
4711 Error_Msg_N -- CODEFIX
4712 ("not fully conformant with declaration#!", Enode);
4713 end if;
4714 end case;
4716 Error_Msg_NE (Msg, Enode, N);
4717 end if;
4718 end Conformance_Error;
4720 -- Local Variables
4722 Old_Type : constant Entity_Id := Etype (Old_Id);
4723 New_Type : constant Entity_Id := Etype (New_Id);
4724 Old_Formal : Entity_Id;
4725 New_Formal : Entity_Id;
4726 Access_Types_Match : Boolean;
4727 Old_Formal_Base : Entity_Id;
4728 New_Formal_Base : Entity_Id;
4730 -- Start of processing for Check_Conformance
4732 begin
4733 Conforms := True;
4735 -- We need a special case for operators, since they don't appear
4736 -- explicitly.
4738 if Ctype = Type_Conformant then
4739 if Ekind (New_Id) = E_Operator
4740 and then Operator_Matches_Spec (New_Id, Old_Id)
4741 then
4742 return;
4743 end if;
4744 end if;
4746 -- If both are functions/operators, check return types conform
4748 if Old_Type /= Standard_Void_Type
4749 and then
4750 New_Type /= Standard_Void_Type
4751 then
4752 -- If we are checking interface conformance we omit controlling
4753 -- arguments and result, because we are only checking the conformance
4754 -- of the remaining parameters.
4756 if Has_Controlling_Result (Old_Id)
4757 and then Has_Controlling_Result (New_Id)
4758 and then Skip_Controlling_Formals
4759 then
4760 null;
4762 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
4763 if Ctype >= Subtype_Conformant
4764 and then not Predicates_Match (Old_Type, New_Type)
4765 then
4766 Conformance_Error
4767 ("\predicate of return type does not match!", New_Id);
4768 else
4769 Conformance_Error
4770 ("\return type does not match!", New_Id);
4771 end if;
4773 return;
4774 end if;
4776 -- Ada 2005 (AI-231): In case of anonymous access types check the
4777 -- null-exclusion and access-to-constant attributes match.
4779 if Ada_Version >= Ada_2005
4780 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4781 and then
4782 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
4783 or else Is_Access_Constant (Etype (Old_Type)) /=
4784 Is_Access_Constant (Etype (New_Type)))
4785 then
4786 Conformance_Error ("\return type does not match!", New_Id);
4787 return;
4788 end if;
4790 -- If either is a function/operator and the other isn't, error
4792 elsif Old_Type /= Standard_Void_Type
4793 or else New_Type /= Standard_Void_Type
4794 then
4795 Conformance_Error ("\functions can only match functions!", New_Id);
4796 return;
4797 end if;
4799 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4800 -- If this is a renaming as body, refine error message to indicate that
4801 -- the conflict is with the original declaration. If the entity is not
4802 -- frozen, the conventions don't have to match, the one of the renamed
4803 -- entity is inherited.
4805 if Ctype >= Subtype_Conformant then
4806 if Convention (Old_Id) /= Convention (New_Id) then
4807 if not Is_Frozen (New_Id) then
4808 null;
4810 elsif Present (Err_Loc)
4811 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4812 and then Present (Corresponding_Spec (Err_Loc))
4813 then
4814 Error_Msg_Name_1 := Chars (New_Id);
4815 Error_Msg_Name_2 :=
4816 Name_Ada + Convention_Id'Pos (Convention (New_Id));
4817 Conformance_Error ("\prior declaration for% has convention %!");
4819 else
4820 Conformance_Error ("\calling conventions do not match!");
4821 end if;
4823 return;
4825 elsif Is_Formal_Subprogram (Old_Id)
4826 or else Is_Formal_Subprogram (New_Id)
4827 then
4828 Conformance_Error ("\formal subprograms not allowed!");
4829 return;
4831 -- Pragma Ghost behaves as a convention in the context of subtype
4832 -- conformance (SPARK RM 6.9(5)). Do not check internally generated
4833 -- subprograms as their spec may reside in a Ghost region and their
4834 -- body not, or vice versa.
4836 elsif Comes_From_Source (Old_Id)
4837 and then Comes_From_Source (New_Id)
4838 and then Is_Ghost_Entity (Old_Id) /= Is_Ghost_Entity (New_Id)
4839 then
4840 Conformance_Error ("\ghost modes do not match!");
4841 return;
4842 end if;
4843 end if;
4845 -- Deal with parameters
4847 -- Note: we use the entity information, rather than going directly
4848 -- to the specification in the tree. This is not only simpler, but
4849 -- absolutely necessary for some cases of conformance tests between
4850 -- operators, where the declaration tree simply does not exist.
4852 Old_Formal := First_Formal (Old_Id);
4853 New_Formal := First_Formal (New_Id);
4854 while Present (Old_Formal) and then Present (New_Formal) loop
4855 if Is_Controlling_Formal (Old_Formal)
4856 and then Is_Controlling_Formal (New_Formal)
4857 and then Skip_Controlling_Formals
4858 then
4859 -- The controlling formals will have different types when
4860 -- comparing an interface operation with its match, but both
4861 -- or neither must be access parameters.
4863 if Is_Access_Type (Etype (Old_Formal))
4865 Is_Access_Type (Etype (New_Formal))
4866 then
4867 goto Skip_Controlling_Formal;
4868 else
4869 Conformance_Error
4870 ("\access parameter does not match!", New_Formal);
4871 end if;
4872 end if;
4874 -- Ada 2012: Mode conformance also requires that formal parameters
4875 -- be both aliased, or neither.
4877 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
4878 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
4879 Conformance_Error
4880 ("\aliased parameter mismatch!", New_Formal);
4881 end if;
4882 end if;
4884 if Ctype = Fully_Conformant then
4886 -- Names must match. Error message is more accurate if we do
4887 -- this before checking that the types of the formals match.
4889 if Chars (Old_Formal) /= Chars (New_Formal) then
4890 Conformance_Error ("\name& does not match!", New_Formal);
4892 -- Set error posted flag on new formal as well to stop
4893 -- junk cascaded messages in some cases.
4895 Set_Error_Posted (New_Formal);
4896 return;
4897 end if;
4899 -- Null exclusion must match
4901 if Null_Exclusion_Present (Parent (Old_Formal))
4903 Null_Exclusion_Present (Parent (New_Formal))
4904 then
4905 -- Only give error if both come from source. This should be
4906 -- investigated some time, since it should not be needed ???
4908 if Comes_From_Source (Old_Formal)
4909 and then
4910 Comes_From_Source (New_Formal)
4911 then
4912 Conformance_Error
4913 ("\null exclusion for& does not match", New_Formal);
4915 -- Mark error posted on the new formal to avoid duplicated
4916 -- complaint about types not matching.
4918 Set_Error_Posted (New_Formal);
4919 end if;
4920 end if;
4921 end if;
4923 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4924 -- case occurs whenever a subprogram is being renamed and one of its
4925 -- parameters imposes a null exclusion. For example:
4927 -- type T is null record;
4928 -- type Acc_T is access T;
4929 -- subtype Acc_T_Sub is Acc_T;
4931 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4932 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4933 -- renames P;
4935 Old_Formal_Base := Etype (Old_Formal);
4936 New_Formal_Base := Etype (New_Formal);
4938 if Get_Inst then
4939 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4940 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4941 end if;
4943 Access_Types_Match := Ada_Version >= Ada_2005
4945 -- Ensure that this rule is only applied when New_Id is a
4946 -- renaming of Old_Id.
4948 and then Nkind (Parent (Parent (New_Id))) =
4949 N_Subprogram_Renaming_Declaration
4950 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4951 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4952 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4954 -- Now handle the allowed access-type case
4956 and then Is_Access_Type (Old_Formal_Base)
4957 and then Is_Access_Type (New_Formal_Base)
4959 -- The type kinds must match. The only exception occurs with
4960 -- multiple generics of the form:
4962 -- generic generic
4963 -- type F is private; type A is private;
4964 -- type F_Ptr is access F; type A_Ptr is access A;
4965 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4966 -- package F_Pack is ... package A_Pack is
4967 -- package F_Inst is
4968 -- new F_Pack (A, A_Ptr, A_P);
4970 -- When checking for conformance between the parameters of A_P
4971 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4972 -- because the compiler has transformed A_Ptr into a subtype of
4973 -- F_Ptr. We catch this case in the code below.
4975 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4976 or else
4977 (Is_Generic_Type (Old_Formal_Base)
4978 and then Is_Generic_Type (New_Formal_Base)
4979 and then Is_Internal (New_Formal_Base)
4980 and then Etype (Etype (New_Formal_Base)) =
4981 Old_Formal_Base))
4982 and then Directly_Designated_Type (Old_Formal_Base) =
4983 Directly_Designated_Type (New_Formal_Base)
4984 and then ((Is_Itype (Old_Formal_Base)
4985 and then Can_Never_Be_Null (Old_Formal_Base))
4986 or else
4987 (Is_Itype (New_Formal_Base)
4988 and then Can_Never_Be_Null (New_Formal_Base)));
4990 -- Types must always match. In the visible part of an instance,
4991 -- usual overloading rules for dispatching operations apply, and
4992 -- we check base types (not the actual subtypes).
4994 if In_Instance_Visible_Part
4995 and then Is_Dispatching_Operation (New_Id)
4996 then
4997 if not Conforming_Types
4998 (T1 => Base_Type (Etype (Old_Formal)),
4999 T2 => Base_Type (Etype (New_Formal)),
5000 Ctype => Ctype,
5001 Get_Inst => Get_Inst)
5002 and then not Access_Types_Match
5003 then
5004 Conformance_Error ("\type of & does not match!", New_Formal);
5005 return;
5006 end if;
5008 elsif not Conforming_Types
5009 (T1 => Old_Formal_Base,
5010 T2 => New_Formal_Base,
5011 Ctype => Ctype,
5012 Get_Inst => Get_Inst)
5013 and then not Access_Types_Match
5014 then
5015 -- Don't give error message if old type is Any_Type. This test
5016 -- avoids some cascaded errors, e.g. in case of a bad spec.
5018 if Errmsg and then Old_Formal_Base = Any_Type then
5019 Conforms := False;
5020 else
5021 if Ctype >= Subtype_Conformant
5022 and then
5023 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5024 then
5025 Conformance_Error
5026 ("\predicate of & does not match!", New_Formal);
5027 else
5028 Conformance_Error
5029 ("\type of & does not match!", New_Formal);
5030 end if;
5031 end if;
5033 return;
5034 end if;
5036 -- For mode conformance, mode must match
5038 if Ctype >= Mode_Conformant then
5039 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5040 if not Ekind_In (New_Id, E_Function, E_Procedure)
5041 or else not Is_Primitive_Wrapper (New_Id)
5042 then
5043 Conformance_Error ("\mode of & does not match!", New_Formal);
5045 else
5046 declare
5047 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5048 begin
5049 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5050 then
5051 Error_Msg_PT (T, New_Id);
5052 else
5053 Conformance_Error
5054 ("\mode of & does not match!", New_Formal);
5055 end if;
5056 end;
5057 end if;
5059 return;
5061 -- Part of mode conformance for access types is having the same
5062 -- constant modifier.
5064 elsif Access_Types_Match
5065 and then Is_Access_Constant (Old_Formal_Base) /=
5066 Is_Access_Constant (New_Formal_Base)
5067 then
5068 Conformance_Error
5069 ("\constant modifier does not match!", New_Formal);
5070 return;
5071 end if;
5072 end if;
5074 if Ctype >= Subtype_Conformant then
5076 -- Ada 2005 (AI-231): In case of anonymous access types check
5077 -- the null-exclusion and access-to-constant attributes must
5078 -- match. For null exclusion, we test the types rather than the
5079 -- formals themselves, since the attribute is only set reliably
5080 -- on the formals in the Ada 95 case, and we exclude the case
5081 -- where Old_Formal is marked as controlling, to avoid errors
5082 -- when matching completing bodies with dispatching declarations
5083 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5085 if Ada_Version >= Ada_2005
5086 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5087 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5088 and then
5089 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5090 Can_Never_Be_Null (Etype (New_Formal))
5091 and then
5092 not Is_Controlling_Formal (Old_Formal))
5093 or else
5094 Is_Access_Constant (Etype (Old_Formal)) /=
5095 Is_Access_Constant (Etype (New_Formal)))
5097 -- Do not complain if error already posted on New_Formal. This
5098 -- avoids some redundant error messages.
5100 and then not Error_Posted (New_Formal)
5101 then
5102 -- It is allowed to omit the null-exclusion in case of stream
5103 -- attribute subprograms. We recognize stream subprograms
5104 -- through their TSS-generated suffix.
5106 declare
5107 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5109 begin
5110 if TSS_Name /= TSS_Stream_Read
5111 and then TSS_Name /= TSS_Stream_Write
5112 and then TSS_Name /= TSS_Stream_Input
5113 and then TSS_Name /= TSS_Stream_Output
5114 then
5115 -- Here we have a definite conformance error. It is worth
5116 -- special casing the error message for the case of a
5117 -- controlling formal (which excludes null).
5119 if Is_Controlling_Formal (New_Formal) then
5120 Error_Msg_Node_2 := Scope (New_Formal);
5121 Conformance_Error
5122 ("\controlling formal & of & excludes null, "
5123 & "declaration must exclude null as well",
5124 New_Formal);
5126 -- Normal case (couldn't we give more detail here???)
5128 else
5129 Conformance_Error
5130 ("\type of & does not match!", New_Formal);
5131 end if;
5133 return;
5134 end if;
5135 end;
5136 end if;
5137 end if;
5139 -- Full conformance checks
5141 if Ctype = Fully_Conformant then
5143 -- We have checked already that names match
5145 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5147 -- Check default expressions for in parameters
5149 declare
5150 NewD : constant Boolean :=
5151 Present (Default_Value (New_Formal));
5152 OldD : constant Boolean :=
5153 Present (Default_Value (Old_Formal));
5154 begin
5155 if NewD or OldD then
5157 -- The old default value has been analyzed because the
5158 -- current full declaration will have frozen everything
5159 -- before. The new default value has not been analyzed,
5160 -- so analyze it now before we check for conformance.
5162 if NewD then
5163 Push_Scope (New_Id);
5164 Preanalyze_Spec_Expression
5165 (Default_Value (New_Formal), Etype (New_Formal));
5166 End_Scope;
5167 end if;
5169 if not (NewD and OldD)
5170 or else not Fully_Conformant_Expressions
5171 (Default_Value (Old_Formal),
5172 Default_Value (New_Formal))
5173 then
5174 Conformance_Error
5175 ("\default expression for & does not match!",
5176 New_Formal);
5177 return;
5178 end if;
5179 end if;
5180 end;
5181 end if;
5182 end if;
5184 -- A couple of special checks for Ada 83 mode. These checks are
5185 -- skipped if either entity is an operator in package Standard,
5186 -- or if either old or new instance is not from the source program.
5188 if Ada_Version = Ada_83
5189 and then Sloc (Old_Id) > Standard_Location
5190 and then Sloc (New_Id) > Standard_Location
5191 and then Comes_From_Source (Old_Id)
5192 and then Comes_From_Source (New_Id)
5193 then
5194 declare
5195 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5196 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5198 begin
5199 -- Explicit IN must be present or absent in both cases. This
5200 -- test is required only in the full conformance case.
5202 if In_Present (Old_Param) /= In_Present (New_Param)
5203 and then Ctype = Fully_Conformant
5204 then
5205 Conformance_Error
5206 ("\(Ada 83) IN must appear in both declarations",
5207 New_Formal);
5208 return;
5209 end if;
5211 -- Grouping (use of comma in param lists) must be the same
5212 -- This is where we catch a misconformance like:
5214 -- A, B : Integer
5215 -- A : Integer; B : Integer
5217 -- which are represented identically in the tree except
5218 -- for the setting of the flags More_Ids and Prev_Ids.
5220 if More_Ids (Old_Param) /= More_Ids (New_Param)
5221 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5222 then
5223 Conformance_Error
5224 ("\grouping of & does not match!", New_Formal);
5225 return;
5226 end if;
5227 end;
5228 end if;
5230 -- This label is required when skipping controlling formals
5232 <<Skip_Controlling_Formal>>
5234 Next_Formal (Old_Formal);
5235 Next_Formal (New_Formal);
5236 end loop;
5238 if Present (Old_Formal) then
5239 Conformance_Error ("\too few parameters!");
5240 return;
5242 elsif Present (New_Formal) then
5243 Conformance_Error ("\too many parameters!", New_Formal);
5244 return;
5245 end if;
5246 end Check_Conformance;
5248 -----------------------
5249 -- Check_Conventions --
5250 -----------------------
5252 procedure Check_Conventions (Typ : Entity_Id) is
5253 Ifaces_List : Elist_Id;
5255 procedure Check_Convention (Op : Entity_Id);
5256 -- Verify that the convention of inherited dispatching operation Op is
5257 -- consistent among all subprograms it overrides. In order to minimize
5258 -- the search, Search_From is utilized to designate a specific point in
5259 -- the list rather than iterating over the whole list once more.
5261 ----------------------
5262 -- Check_Convention --
5263 ----------------------
5265 procedure Check_Convention (Op : Entity_Id) is
5266 Op_Conv : constant Convention_Id := Convention (Op);
5267 Iface_Conv : Convention_Id;
5268 Iface_Elmt : Elmt_Id;
5269 Iface_Prim_Elmt : Elmt_Id;
5270 Iface_Prim : Entity_Id;
5272 begin
5273 Iface_Elmt := First_Elmt (Ifaces_List);
5274 while Present (Iface_Elmt) loop
5275 Iface_Prim_Elmt :=
5276 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5277 while Present (Iface_Prim_Elmt) loop
5278 Iface_Prim := Node (Iface_Prim_Elmt);
5279 Iface_Conv := Convention (Iface_Prim);
5281 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5282 and then Iface_Conv /= Op_Conv
5283 then
5284 Error_Msg_N
5285 ("inconsistent conventions in primitive operations", Typ);
5287 Error_Msg_Name_1 := Chars (Op);
5288 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5289 Error_Msg_Sloc := Sloc (Op);
5291 if Comes_From_Source (Op) or else No (Alias (Op)) then
5292 if not Present (Overridden_Operation (Op)) then
5293 Error_Msg_N ("\\primitive % defined #", Typ);
5294 else
5295 Error_Msg_N
5296 ("\\overriding operation % with "
5297 & "convention % defined #", Typ);
5298 end if;
5300 else pragma Assert (Present (Alias (Op)));
5301 Error_Msg_Sloc := Sloc (Alias (Op));
5302 Error_Msg_N ("\\inherited operation % with "
5303 & "convention % defined #", Typ);
5304 end if;
5306 Error_Msg_Name_1 := Chars (Op);
5307 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5308 Error_Msg_Sloc := Sloc (Iface_Prim);
5309 Error_Msg_N ("\\overridden operation % with "
5310 & "convention % defined #", Typ);
5312 -- Avoid cascading errors
5314 return;
5315 end if;
5317 Next_Elmt (Iface_Prim_Elmt);
5318 end loop;
5320 Next_Elmt (Iface_Elmt);
5321 end loop;
5322 end Check_Convention;
5324 -- Local variables
5326 Prim_Op : Entity_Id;
5327 Prim_Op_Elmt : Elmt_Id;
5329 -- Start of processing for Check_Conventions
5331 begin
5332 if not Has_Interfaces (Typ) then
5333 return;
5334 end if;
5336 Collect_Interfaces (Typ, Ifaces_List);
5338 -- The algorithm checks every overriding dispatching operation against
5339 -- all the corresponding overridden dispatching operations, detecting
5340 -- differences in conventions.
5342 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5343 while Present (Prim_Op_Elmt) loop
5344 Prim_Op := Node (Prim_Op_Elmt);
5346 -- A small optimization: skip the predefined dispatching operations
5347 -- since they always have the same convention.
5349 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5350 Check_Convention (Prim_Op);
5351 end if;
5353 Next_Elmt (Prim_Op_Elmt);
5354 end loop;
5355 end Check_Conventions;
5357 ------------------------------
5358 -- Check_Delayed_Subprogram --
5359 ------------------------------
5361 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5362 F : Entity_Id;
5364 procedure Possible_Freeze (T : Entity_Id);
5365 -- T is the type of either a formal parameter or of the return type.
5366 -- If T is not yet frozen and needs a delayed freeze, then the
5367 -- subprogram itself must be delayed. If T is the limited view of an
5368 -- incomplete type the subprogram must be frozen as well, because
5369 -- T may depend on local types that have not been frozen yet.
5371 ---------------------
5372 -- Possible_Freeze --
5373 ---------------------
5375 procedure Possible_Freeze (T : Entity_Id) is
5376 begin
5377 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5378 Set_Has_Delayed_Freeze (Designator);
5380 elsif Is_Access_Type (T)
5381 and then Has_Delayed_Freeze (Designated_Type (T))
5382 and then not Is_Frozen (Designated_Type (T))
5383 then
5384 Set_Has_Delayed_Freeze (Designator);
5386 elsif Ekind (T) = E_Incomplete_Type
5387 and then From_Limited_With (T)
5388 then
5389 Set_Has_Delayed_Freeze (Designator);
5391 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5392 -- of a subprogram or entry declaration.
5394 elsif Ekind (T) = E_Incomplete_Type
5395 and then Ada_Version >= Ada_2012
5396 then
5397 Set_Has_Delayed_Freeze (Designator);
5398 end if;
5400 end Possible_Freeze;
5402 -- Start of processing for Check_Delayed_Subprogram
5404 begin
5405 -- All subprograms, including abstract subprograms, may need a freeze
5406 -- node if some formal type or the return type needs one.
5408 Possible_Freeze (Etype (Designator));
5409 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5411 -- Need delayed freeze if any of the formal types themselves need
5412 -- a delayed freeze and are not yet frozen.
5414 F := First_Formal (Designator);
5415 while Present (F) loop
5416 Possible_Freeze (Etype (F));
5417 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5418 Next_Formal (F);
5419 end loop;
5421 -- Mark functions that return by reference. Note that it cannot be
5422 -- done for delayed_freeze subprograms because the underlying
5423 -- returned type may not be known yet (for private types)
5425 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5426 declare
5427 Typ : constant Entity_Id := Etype (Designator);
5428 Utyp : constant Entity_Id := Underlying_Type (Typ);
5429 begin
5430 if Is_Limited_View (Typ) then
5431 Set_Returns_By_Ref (Designator);
5432 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5433 Set_Returns_By_Ref (Designator);
5434 end if;
5435 end;
5436 end if;
5437 end Check_Delayed_Subprogram;
5439 ------------------------------------
5440 -- Check_Discriminant_Conformance --
5441 ------------------------------------
5443 procedure Check_Discriminant_Conformance
5444 (N : Node_Id;
5445 Prev : Entity_Id;
5446 Prev_Loc : Node_Id)
5448 Old_Discr : Entity_Id := First_Discriminant (Prev);
5449 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5450 New_Discr_Id : Entity_Id;
5451 New_Discr_Type : Entity_Id;
5453 procedure Conformance_Error (Msg : String; N : Node_Id);
5454 -- Post error message for conformance error on given node. Two messages
5455 -- are output. The first points to the previous declaration with a
5456 -- general "no conformance" message. The second is the detailed reason,
5457 -- supplied as Msg. The parameter N provide information for a possible
5458 -- & insertion in the message.
5460 -----------------------
5461 -- Conformance_Error --
5462 -----------------------
5464 procedure Conformance_Error (Msg : String; N : Node_Id) is
5465 begin
5466 Error_Msg_Sloc := Sloc (Prev_Loc);
5467 Error_Msg_N -- CODEFIX
5468 ("not fully conformant with declaration#!", N);
5469 Error_Msg_NE (Msg, N, N);
5470 end Conformance_Error;
5472 -- Start of processing for Check_Discriminant_Conformance
5474 begin
5475 while Present (Old_Discr) and then Present (New_Discr) loop
5476 New_Discr_Id := Defining_Identifier (New_Discr);
5478 -- The subtype mark of the discriminant on the full type has not
5479 -- been analyzed so we do it here. For an access discriminant a new
5480 -- type is created.
5482 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5483 New_Discr_Type :=
5484 Access_Definition (N, Discriminant_Type (New_Discr));
5486 else
5487 Analyze (Discriminant_Type (New_Discr));
5488 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5490 -- Ada 2005: if the discriminant definition carries a null
5491 -- exclusion, create an itype to check properly for consistency
5492 -- with partial declaration.
5494 if Is_Access_Type (New_Discr_Type)
5495 and then Null_Exclusion_Present (New_Discr)
5496 then
5497 New_Discr_Type :=
5498 Create_Null_Excluding_Itype
5499 (T => New_Discr_Type,
5500 Related_Nod => New_Discr,
5501 Scope_Id => Current_Scope);
5502 end if;
5503 end if;
5505 if not Conforming_Types
5506 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5507 then
5508 Conformance_Error ("type of & does not match!", New_Discr_Id);
5509 return;
5510 else
5511 -- Treat the new discriminant as an occurrence of the old one,
5512 -- for navigation purposes, and fill in some semantic
5513 -- information, for completeness.
5515 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5516 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5517 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5518 end if;
5520 -- Names must match
5522 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5523 Conformance_Error ("name & does not match!", New_Discr_Id);
5524 return;
5525 end if;
5527 -- Default expressions must match
5529 declare
5530 NewD : constant Boolean :=
5531 Present (Expression (New_Discr));
5532 OldD : constant Boolean :=
5533 Present (Expression (Parent (Old_Discr)));
5535 begin
5536 if NewD or OldD then
5538 -- The old default value has been analyzed and expanded,
5539 -- because the current full declaration will have frozen
5540 -- everything before. The new default values have not been
5541 -- expanded, so expand now to check conformance.
5543 if NewD then
5544 Preanalyze_Spec_Expression
5545 (Expression (New_Discr), New_Discr_Type);
5546 end if;
5548 if not (NewD and OldD)
5549 or else not Fully_Conformant_Expressions
5550 (Expression (Parent (Old_Discr)),
5551 Expression (New_Discr))
5553 then
5554 Conformance_Error
5555 ("default expression for & does not match!",
5556 New_Discr_Id);
5557 return;
5558 end if;
5559 end if;
5560 end;
5562 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5564 if Ada_Version = Ada_83 then
5565 declare
5566 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5568 begin
5569 -- Grouping (use of comma in param lists) must be the same
5570 -- This is where we catch a misconformance like:
5572 -- A, B : Integer
5573 -- A : Integer; B : Integer
5575 -- which are represented identically in the tree except
5576 -- for the setting of the flags More_Ids and Prev_Ids.
5578 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5579 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5580 then
5581 Conformance_Error
5582 ("grouping of & does not match!", New_Discr_Id);
5583 return;
5584 end if;
5585 end;
5586 end if;
5588 Next_Discriminant (Old_Discr);
5589 Next (New_Discr);
5590 end loop;
5592 if Present (Old_Discr) then
5593 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5594 return;
5596 elsif Present (New_Discr) then
5597 Conformance_Error
5598 ("too many discriminants!", Defining_Identifier (New_Discr));
5599 return;
5600 end if;
5601 end Check_Discriminant_Conformance;
5603 ----------------------------
5604 -- Check_Fully_Conformant --
5605 ----------------------------
5607 procedure Check_Fully_Conformant
5608 (New_Id : Entity_Id;
5609 Old_Id : Entity_Id;
5610 Err_Loc : Node_Id := Empty)
5612 Result : Boolean;
5613 pragma Warnings (Off, Result);
5614 begin
5615 Check_Conformance
5616 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5617 end Check_Fully_Conformant;
5619 ---------------------------
5620 -- Check_Mode_Conformant --
5621 ---------------------------
5623 procedure Check_Mode_Conformant
5624 (New_Id : Entity_Id;
5625 Old_Id : Entity_Id;
5626 Err_Loc : Node_Id := Empty;
5627 Get_Inst : Boolean := False)
5629 Result : Boolean;
5630 pragma Warnings (Off, Result);
5631 begin
5632 Check_Conformance
5633 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5634 end Check_Mode_Conformant;
5636 --------------------------------
5637 -- Check_Overriding_Indicator --
5638 --------------------------------
5640 procedure Check_Overriding_Indicator
5641 (Subp : Entity_Id;
5642 Overridden_Subp : Entity_Id;
5643 Is_Primitive : Boolean)
5645 Decl : Node_Id;
5646 Spec : Node_Id;
5648 begin
5649 -- No overriding indicator for literals
5651 if Ekind (Subp) = E_Enumeration_Literal then
5652 return;
5654 elsif Ekind (Subp) = E_Entry then
5655 Decl := Parent (Subp);
5657 -- No point in analyzing a malformed operator
5659 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5660 and then Error_Posted (Subp)
5661 then
5662 return;
5664 else
5665 Decl := Unit_Declaration_Node (Subp);
5666 end if;
5668 if Nkind_In (Decl, N_Subprogram_Body,
5669 N_Subprogram_Body_Stub,
5670 N_Subprogram_Declaration,
5671 N_Abstract_Subprogram_Declaration,
5672 N_Subprogram_Renaming_Declaration)
5673 then
5674 Spec := Specification (Decl);
5676 elsif Nkind (Decl) = N_Entry_Declaration then
5677 Spec := Decl;
5679 else
5680 return;
5681 end if;
5683 -- The overriding operation is type conformant with the overridden one,
5684 -- but the names of the formals are not required to match. If the names
5685 -- appear permuted in the overriding operation, this is a possible
5686 -- source of confusion that is worth diagnosing. Controlling formals
5687 -- often carry names that reflect the type, and it is not worthwhile
5688 -- requiring that their names match.
5690 if Present (Overridden_Subp)
5691 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5692 then
5693 declare
5694 Form1 : Entity_Id;
5695 Form2 : Entity_Id;
5697 begin
5698 Form1 := First_Formal (Subp);
5699 Form2 := First_Formal (Overridden_Subp);
5701 -- If the overriding operation is a synchronized operation, skip
5702 -- the first parameter of the overridden operation, which is
5703 -- implicit in the new one. If the operation is declared in the
5704 -- body it is not primitive and all formals must match.
5706 if Is_Concurrent_Type (Scope (Subp))
5707 and then Is_Tagged_Type (Scope (Subp))
5708 and then not Has_Completion (Scope (Subp))
5709 then
5710 Form2 := Next_Formal (Form2);
5711 end if;
5713 if Present (Form1) then
5714 Form1 := Next_Formal (Form1);
5715 Form2 := Next_Formal (Form2);
5716 end if;
5718 while Present (Form1) loop
5719 if not Is_Controlling_Formal (Form1)
5720 and then Present (Next_Formal (Form2))
5721 and then Chars (Form1) = Chars (Next_Formal (Form2))
5722 then
5723 Error_Msg_Node_2 := Alias (Overridden_Subp);
5724 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
5725 Error_Msg_NE
5726 ("& does not match corresponding formal of&#",
5727 Form1, Form1);
5728 exit;
5729 end if;
5731 Next_Formal (Form1);
5732 Next_Formal (Form2);
5733 end loop;
5734 end;
5735 end if;
5737 -- If there is an overridden subprogram, then check that there is no
5738 -- "not overriding" indicator, and mark the subprogram as overriding.
5739 -- This is not done if the overridden subprogram is marked as hidden,
5740 -- which can occur for the case of inherited controlled operations
5741 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5742 -- subprogram is not itself hidden. (Note: This condition could probably
5743 -- be simplified, leaving out the testing for the specific controlled
5744 -- cases, but it seems safer and clearer this way, and echoes similar
5745 -- special-case tests of this kind in other places.)
5747 if Present (Overridden_Subp)
5748 and then (not Is_Hidden (Overridden_Subp)
5749 or else
5750 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
5751 Name_Adjust,
5752 Name_Finalize)
5753 and then Present (Alias (Overridden_Subp))
5754 and then not Is_Hidden (Alias (Overridden_Subp))))
5755 then
5756 if Must_Not_Override (Spec) then
5757 Error_Msg_Sloc := Sloc (Overridden_Subp);
5759 if Ekind (Subp) = E_Entry then
5760 Error_Msg_NE
5761 ("entry & overrides inherited operation #", Spec, Subp);
5762 else
5763 Error_Msg_NE
5764 ("subprogram & overrides inherited operation #", Spec, Subp);
5765 end if;
5767 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5768 -- as an extension of Root_Controlled, and thus has a useless Adjust
5769 -- operation. This operation should not be inherited by other limited
5770 -- controlled types. An explicit Adjust for them is not overriding.
5772 elsif Must_Override (Spec)
5773 and then Chars (Overridden_Subp) = Name_Adjust
5774 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5775 and then Present (Alias (Overridden_Subp))
5776 and then
5777 Is_Predefined_File_Name
5778 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
5779 then
5780 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5782 elsif Is_Subprogram (Subp) then
5783 if Is_Init_Proc (Subp) then
5784 null;
5786 elsif No (Overridden_Operation (Subp)) then
5788 -- For entities generated by Derive_Subprograms the overridden
5789 -- operation is the inherited primitive (which is available
5790 -- through the attribute alias)
5792 if (Is_Dispatching_Operation (Subp)
5793 or else Is_Dispatching_Operation (Overridden_Subp))
5794 and then not Comes_From_Source (Overridden_Subp)
5795 and then Find_Dispatching_Type (Overridden_Subp) =
5796 Find_Dispatching_Type (Subp)
5797 and then Present (Alias (Overridden_Subp))
5798 and then Comes_From_Source (Alias (Overridden_Subp))
5799 then
5800 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5801 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
5803 else
5804 Set_Overridden_Operation (Subp, Overridden_Subp);
5805 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
5806 end if;
5807 end if;
5808 end if;
5810 -- If primitive flag is set or this is a protected operation, then
5811 -- the operation is overriding at the point of its declaration, so
5812 -- warn if necessary. Otherwise it may have been declared before the
5813 -- operation it overrides and no check is required.
5815 if Style_Check
5816 and then not Must_Override (Spec)
5817 and then (Is_Primitive
5818 or else Ekind (Scope (Subp)) = E_Protected_Type)
5819 then
5820 Style.Missing_Overriding (Decl, Subp);
5821 end if;
5823 -- If Subp is an operator, it may override a predefined operation, if
5824 -- it is defined in the same scope as the type to which it applies.
5825 -- In that case Overridden_Subp is empty because of our implicit
5826 -- representation for predefined operators. We have to check whether the
5827 -- signature of Subp matches that of a predefined operator. Note that
5828 -- first argument provides the name of the operator, and the second
5829 -- argument the signature that may match that of a standard operation.
5830 -- If the indicator is overriding, then the operator must match a
5831 -- predefined signature, because we know already that there is no
5832 -- explicit overridden operation.
5834 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
5835 if Must_Not_Override (Spec) then
5837 -- If this is not a primitive or a protected subprogram, then
5838 -- "not overriding" is illegal.
5840 if not Is_Primitive
5841 and then Ekind (Scope (Subp)) /= E_Protected_Type
5842 then
5843 Error_Msg_N ("overriding indicator only allowed "
5844 & "if subprogram is primitive", Subp);
5846 elsif Can_Override_Operator (Subp) then
5847 Error_Msg_NE
5848 ("subprogram& overrides predefined operator ", Spec, Subp);
5849 end if;
5851 elsif Must_Override (Spec) then
5852 if No (Overridden_Operation (Subp))
5853 and then not Can_Override_Operator (Subp)
5854 then
5855 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5856 end if;
5858 elsif not Error_Posted (Subp)
5859 and then Style_Check
5860 and then Can_Override_Operator (Subp)
5861 and then
5862 not Is_Predefined_File_Name
5863 (Unit_File_Name (Get_Source_Unit (Subp)))
5864 then
5865 -- If style checks are enabled, indicate that the indicator is
5866 -- missing. However, at the point of declaration, the type of
5867 -- which this is a primitive operation may be private, in which
5868 -- case the indicator would be premature.
5870 if Has_Private_Declaration (Etype (Subp))
5871 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
5872 then
5873 null;
5874 else
5875 Style.Missing_Overriding (Decl, Subp);
5876 end if;
5877 end if;
5879 elsif Must_Override (Spec) then
5880 if Ekind (Subp) = E_Entry then
5881 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5882 else
5883 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5884 end if;
5886 -- If the operation is marked "not overriding" and it's not primitive
5887 -- then an error is issued, unless this is an operation of a task or
5888 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5889 -- has been specified have already been checked above.
5891 elsif Must_Not_Override (Spec)
5892 and then not Is_Primitive
5893 and then Ekind (Subp) /= E_Entry
5894 and then Ekind (Scope (Subp)) /= E_Protected_Type
5895 then
5896 Error_Msg_N
5897 ("overriding indicator only allowed if subprogram is primitive",
5898 Subp);
5899 return;
5900 end if;
5901 end Check_Overriding_Indicator;
5903 -------------------
5904 -- Check_Returns --
5905 -------------------
5907 -- Note: this procedure needs to know far too much about how the expander
5908 -- messes with exceptions. The use of the flag Exception_Junk and the
5909 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5910 -- works, but is not very clean. It would be better if the expansion
5911 -- routines would leave Original_Node working nicely, and we could use
5912 -- Original_Node here to ignore all the peculiar expander messing ???
5914 procedure Check_Returns
5915 (HSS : Node_Id;
5916 Mode : Character;
5917 Err : out Boolean;
5918 Proc : Entity_Id := Empty)
5920 Handler : Node_Id;
5922 procedure Check_Statement_Sequence (L : List_Id);
5923 -- Internal recursive procedure to check a list of statements for proper
5924 -- termination by a return statement (or a transfer of control or a
5925 -- compound statement that is itself internally properly terminated).
5927 ------------------------------
5928 -- Check_Statement_Sequence --
5929 ------------------------------
5931 procedure Check_Statement_Sequence (L : List_Id) is
5932 Last_Stm : Node_Id;
5933 Stm : Node_Id;
5934 Kind : Node_Kind;
5936 function Assert_False return Boolean;
5937 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5938 -- rewritten as a null statement when assertions are off. The assert
5939 -- is not active, but it is still enough to kill the warning.
5941 ------------------
5942 -- Assert_False --
5943 ------------------
5945 function Assert_False return Boolean is
5946 Orig : constant Node_Id := Original_Node (Last_Stm);
5948 begin
5949 if Nkind (Orig) = N_Pragma
5950 and then Pragma_Name (Orig) = Name_Assert
5951 and then not Error_Posted (Orig)
5952 then
5953 declare
5954 Arg : constant Node_Id :=
5955 First (Pragma_Argument_Associations (Orig));
5956 Exp : constant Node_Id := Expression (Arg);
5957 begin
5958 return Nkind (Exp) = N_Identifier
5959 and then Chars (Exp) = Name_False;
5960 end;
5962 else
5963 return False;
5964 end if;
5965 end Assert_False;
5967 -- Local variables
5969 Raise_Exception_Call : Boolean;
5970 -- Set True if statement sequence terminated by Raise_Exception call
5971 -- or a Reraise_Occurrence call.
5973 -- Start of processing for Check_Statement_Sequence
5975 begin
5976 Raise_Exception_Call := False;
5978 -- Get last real statement
5980 Last_Stm := Last (L);
5982 -- Deal with digging out exception handler statement sequences that
5983 -- have been transformed by the local raise to goto optimization.
5984 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5985 -- optimization has occurred, we are looking at something like:
5987 -- begin
5988 -- original stmts in block
5990 -- exception \
5991 -- when excep1 => |
5992 -- goto L1; | omitted if No_Exception_Propagation
5993 -- when excep2 => |
5994 -- goto L2; /
5995 -- end;
5997 -- goto L3; -- skip handler when exception not raised
5999 -- <<L1>> -- target label for local exception
6000 -- begin
6001 -- estmts1
6002 -- end;
6004 -- goto L3;
6006 -- <<L2>>
6007 -- begin
6008 -- estmts2
6009 -- end;
6011 -- <<L3>>
6013 -- and what we have to do is to dig out the estmts1 and estmts2
6014 -- sequences (which were the original sequences of statements in
6015 -- the exception handlers) and check them.
6017 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6018 Stm := Last_Stm;
6019 loop
6020 Prev (Stm);
6021 exit when No (Stm);
6022 exit when Nkind (Stm) /= N_Block_Statement;
6023 exit when not Exception_Junk (Stm);
6024 Prev (Stm);
6025 exit when No (Stm);
6026 exit when Nkind (Stm) /= N_Label;
6027 exit when not Exception_Junk (Stm);
6028 Check_Statement_Sequence
6029 (Statements (Handled_Statement_Sequence (Next (Stm))));
6031 Prev (Stm);
6032 Last_Stm := Stm;
6033 exit when No (Stm);
6034 exit when Nkind (Stm) /= N_Goto_Statement;
6035 exit when not Exception_Junk (Stm);
6036 end loop;
6037 end if;
6039 -- Don't count pragmas
6041 while Nkind (Last_Stm) = N_Pragma
6043 -- Don't count call to SS_Release (can happen after Raise_Exception)
6045 or else
6046 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6047 and then
6048 Nkind (Name (Last_Stm)) = N_Identifier
6049 and then
6050 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6052 -- Don't count exception junk
6054 or else
6055 (Nkind_In (Last_Stm, N_Goto_Statement,
6056 N_Label,
6057 N_Object_Declaration)
6058 and then Exception_Junk (Last_Stm))
6059 or else Nkind (Last_Stm) in N_Push_xxx_Label
6060 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6062 -- Inserted code, such as finalization calls, is irrelevant: we only
6063 -- need to check original source.
6065 or else Is_Rewrite_Insertion (Last_Stm)
6066 loop
6067 Prev (Last_Stm);
6068 end loop;
6070 -- Here we have the "real" last statement
6072 Kind := Nkind (Last_Stm);
6074 -- Transfer of control, OK. Note that in the No_Return procedure
6075 -- case, we already diagnosed any explicit return statements, so
6076 -- we can treat them as OK in this context.
6078 if Is_Transfer (Last_Stm) then
6079 return;
6081 -- Check cases of explicit non-indirect procedure calls
6083 elsif Kind = N_Procedure_Call_Statement
6084 and then Is_Entity_Name (Name (Last_Stm))
6085 then
6086 -- Check call to Raise_Exception procedure which is treated
6087 -- specially, as is a call to Reraise_Occurrence.
6089 -- We suppress the warning in these cases since it is likely that
6090 -- the programmer really does not expect to deal with the case
6091 -- of Null_Occurrence, and thus would find a warning about a
6092 -- missing return curious, and raising Program_Error does not
6093 -- seem such a bad behavior if this does occur.
6095 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6096 -- behavior will be to raise Constraint_Error (see AI-329).
6098 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6099 or else
6100 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6101 then
6102 Raise_Exception_Call := True;
6104 -- For Raise_Exception call, test first argument, if it is
6105 -- an attribute reference for a 'Identity call, then we know
6106 -- that the call cannot possibly return.
6108 declare
6109 Arg : constant Node_Id :=
6110 Original_Node (First_Actual (Last_Stm));
6111 begin
6112 if Nkind (Arg) = N_Attribute_Reference
6113 and then Attribute_Name (Arg) = Name_Identity
6114 then
6115 return;
6116 end if;
6117 end;
6118 end if;
6120 -- If statement, need to look inside if there is an else and check
6121 -- each constituent statement sequence for proper termination.
6123 elsif Kind = N_If_Statement
6124 and then Present (Else_Statements (Last_Stm))
6125 then
6126 Check_Statement_Sequence (Then_Statements (Last_Stm));
6127 Check_Statement_Sequence (Else_Statements (Last_Stm));
6129 if Present (Elsif_Parts (Last_Stm)) then
6130 declare
6131 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6133 begin
6134 while Present (Elsif_Part) loop
6135 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6136 Next (Elsif_Part);
6137 end loop;
6138 end;
6139 end if;
6141 return;
6143 -- Case statement, check each case for proper termination
6145 elsif Kind = N_Case_Statement then
6146 declare
6147 Case_Alt : Node_Id;
6148 begin
6149 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6150 while Present (Case_Alt) loop
6151 Check_Statement_Sequence (Statements (Case_Alt));
6152 Next_Non_Pragma (Case_Alt);
6153 end loop;
6154 end;
6156 return;
6158 -- Block statement, check its handled sequence of statements
6160 elsif Kind = N_Block_Statement then
6161 declare
6162 Err1 : Boolean;
6164 begin
6165 Check_Returns
6166 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6168 if Err1 then
6169 Err := True;
6170 end if;
6172 return;
6173 end;
6175 -- Loop statement. If there is an iteration scheme, we can definitely
6176 -- fall out of the loop. Similarly if there is an exit statement, we
6177 -- can fall out. In either case we need a following return.
6179 elsif Kind = N_Loop_Statement then
6180 if Present (Iteration_Scheme (Last_Stm))
6181 or else Has_Exit (Entity (Identifier (Last_Stm)))
6182 then
6183 null;
6185 -- A loop with no exit statement or iteration scheme is either
6186 -- an infinite loop, or it has some other exit (raise/return).
6187 -- In either case, no warning is required.
6189 else
6190 return;
6191 end if;
6193 -- Timed entry call, check entry call and delay alternatives
6195 -- Note: in expanded code, the timed entry call has been converted
6196 -- to a set of expanded statements on which the check will work
6197 -- correctly in any case.
6199 elsif Kind = N_Timed_Entry_Call then
6200 declare
6201 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6202 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6204 begin
6205 -- If statement sequence of entry call alternative is missing,
6206 -- then we can definitely fall through, and we post the error
6207 -- message on the entry call alternative itself.
6209 if No (Statements (ECA)) then
6210 Last_Stm := ECA;
6212 -- If statement sequence of delay alternative is missing, then
6213 -- we can definitely fall through, and we post the error
6214 -- message on the delay alternative itself.
6216 -- Note: if both ECA and DCA are missing the return, then we
6217 -- post only one message, should be enough to fix the bugs.
6218 -- If not we will get a message next time on the DCA when the
6219 -- ECA is fixed.
6221 elsif No (Statements (DCA)) then
6222 Last_Stm := DCA;
6224 -- Else check both statement sequences
6226 else
6227 Check_Statement_Sequence (Statements (ECA));
6228 Check_Statement_Sequence (Statements (DCA));
6229 return;
6230 end if;
6231 end;
6233 -- Conditional entry call, check entry call and else part
6235 -- Note: in expanded code, the conditional entry call has been
6236 -- converted to a set of expanded statements on which the check
6237 -- will work correctly in any case.
6239 elsif Kind = N_Conditional_Entry_Call then
6240 declare
6241 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6243 begin
6244 -- If statement sequence of entry call alternative is missing,
6245 -- then we can definitely fall through, and we post the error
6246 -- message on the entry call alternative itself.
6248 if No (Statements (ECA)) then
6249 Last_Stm := ECA;
6251 -- Else check statement sequence and else part
6253 else
6254 Check_Statement_Sequence (Statements (ECA));
6255 Check_Statement_Sequence (Else_Statements (Last_Stm));
6256 return;
6257 end if;
6258 end;
6259 end if;
6261 -- If we fall through, issue appropriate message
6263 if Mode = 'F' then
6265 -- Kill warning if last statement is a raise exception call,
6266 -- or a pragma Assert (False). Note that with assertions enabled,
6267 -- such a pragma has been converted into a raise exception call
6268 -- already, so the Assert_False is for the assertions off case.
6270 if not Raise_Exception_Call and then not Assert_False then
6272 -- In GNATprove mode, it is an error to have a missing return
6274 Error_Msg_Warn := SPARK_Mode /= On;
6276 -- Issue error message or warning
6278 Error_Msg_N
6279 ("RETURN statement missing following this statement<<!",
6280 Last_Stm);
6281 Error_Msg_N
6282 ("\Program_Error ]<<!", Last_Stm);
6283 end if;
6285 -- Note: we set Err even though we have not issued a warning
6286 -- because we still have a case of a missing return. This is
6287 -- an extremely marginal case, probably will never be noticed
6288 -- but we might as well get it right.
6290 Err := True;
6292 -- Otherwise we have the case of a procedure marked No_Return
6294 else
6295 if not Raise_Exception_Call then
6296 if GNATprove_Mode then
6297 Error_Msg_N
6298 ("implied return after this statement "
6299 & "would have raised Program_Error", Last_Stm);
6300 else
6301 Error_Msg_N
6302 ("implied return after this statement "
6303 & "will raise Program_Error??", Last_Stm);
6304 end if;
6306 Error_Msg_Warn := SPARK_Mode /= On;
6307 Error_Msg_NE
6308 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6309 end if;
6311 declare
6312 RE : constant Node_Id :=
6313 Make_Raise_Program_Error (Sloc (Last_Stm),
6314 Reason => PE_Implicit_Return);
6315 begin
6316 Insert_After (Last_Stm, RE);
6317 Analyze (RE);
6318 end;
6319 end if;
6320 end Check_Statement_Sequence;
6322 -- Start of processing for Check_Returns
6324 begin
6325 Err := False;
6326 Check_Statement_Sequence (Statements (HSS));
6328 if Present (Exception_Handlers (HSS)) then
6329 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6330 while Present (Handler) loop
6331 Check_Statement_Sequence (Statements (Handler));
6332 Next_Non_Pragma (Handler);
6333 end loop;
6334 end if;
6335 end Check_Returns;
6337 ----------------------------
6338 -- Check_Subprogram_Order --
6339 ----------------------------
6341 procedure Check_Subprogram_Order (N : Node_Id) is
6343 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6344 -- This is used to check if S1 > S2 in the sense required by this test,
6345 -- for example nameab < namec, but name2 < name10.
6347 -----------------------------
6348 -- Subprogram_Name_Greater --
6349 -----------------------------
6351 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6352 L1, L2 : Positive;
6353 N1, N2 : Natural;
6355 begin
6356 -- Deal with special case where names are identical except for a
6357 -- numerical suffix. These are handled specially, taking the numeric
6358 -- ordering from the suffix into account.
6360 L1 := S1'Last;
6361 while S1 (L1) in '0' .. '9' loop
6362 L1 := L1 - 1;
6363 end loop;
6365 L2 := S2'Last;
6366 while S2 (L2) in '0' .. '9' loop
6367 L2 := L2 - 1;
6368 end loop;
6370 -- If non-numeric parts non-equal, do straight compare
6372 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6373 return S1 > S2;
6375 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6376 -- that a missing suffix is treated as numeric zero in this test.
6378 else
6379 N1 := 0;
6380 while L1 < S1'Last loop
6381 L1 := L1 + 1;
6382 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6383 end loop;
6385 N2 := 0;
6386 while L2 < S2'Last loop
6387 L2 := L2 + 1;
6388 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6389 end loop;
6391 return N1 > N2;
6392 end if;
6393 end Subprogram_Name_Greater;
6395 -- Start of processing for Check_Subprogram_Order
6397 begin
6398 -- Check body in alpha order if this is option
6400 if Style_Check
6401 and then Style_Check_Order_Subprograms
6402 and then Nkind (N) = N_Subprogram_Body
6403 and then Comes_From_Source (N)
6404 and then In_Extended_Main_Source_Unit (N)
6405 then
6406 declare
6407 LSN : String_Ptr
6408 renames Scope_Stack.Table
6409 (Scope_Stack.Last).Last_Subprogram_Name;
6411 Body_Id : constant Entity_Id :=
6412 Defining_Entity (Specification (N));
6414 begin
6415 Get_Decoded_Name_String (Chars (Body_Id));
6417 if LSN /= null then
6418 if Subprogram_Name_Greater
6419 (LSN.all, Name_Buffer (1 .. Name_Len))
6420 then
6421 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6422 end if;
6424 Free (LSN);
6425 end if;
6427 LSN := new String'(Name_Buffer (1 .. Name_Len));
6428 end;
6429 end if;
6430 end Check_Subprogram_Order;
6432 ------------------------------
6433 -- Check_Subtype_Conformant --
6434 ------------------------------
6436 procedure Check_Subtype_Conformant
6437 (New_Id : Entity_Id;
6438 Old_Id : Entity_Id;
6439 Err_Loc : Node_Id := Empty;
6440 Skip_Controlling_Formals : Boolean := False;
6441 Get_Inst : Boolean := False)
6443 Result : Boolean;
6444 pragma Warnings (Off, Result);
6445 begin
6446 Check_Conformance
6447 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6448 Skip_Controlling_Formals => Skip_Controlling_Formals,
6449 Get_Inst => Get_Inst);
6450 end Check_Subtype_Conformant;
6452 ---------------------------
6453 -- Check_Type_Conformant --
6454 ---------------------------
6456 procedure Check_Type_Conformant
6457 (New_Id : Entity_Id;
6458 Old_Id : Entity_Id;
6459 Err_Loc : Node_Id := Empty)
6461 Result : Boolean;
6462 pragma Warnings (Off, Result);
6463 begin
6464 Check_Conformance
6465 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6466 end Check_Type_Conformant;
6468 ---------------------------
6469 -- Can_Override_Operator --
6470 ---------------------------
6472 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6473 Typ : Entity_Id;
6475 begin
6476 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6477 return False;
6479 else
6480 Typ := Base_Type (Etype (First_Formal (Subp)));
6482 -- Check explicitly that the operation is a primitive of the type
6484 return Operator_Matches_Spec (Subp, Subp)
6485 and then not Is_Generic_Type (Typ)
6486 and then Scope (Subp) = Scope (Typ)
6487 and then not Is_Class_Wide_Type (Typ);
6488 end if;
6489 end Can_Override_Operator;
6491 ----------------------
6492 -- Conforming_Types --
6493 ----------------------
6495 function Conforming_Types
6496 (T1 : Entity_Id;
6497 T2 : Entity_Id;
6498 Ctype : Conformance_Type;
6499 Get_Inst : Boolean := False) return Boolean
6501 Type_1 : Entity_Id := T1;
6502 Type_2 : Entity_Id := T2;
6503 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6505 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6506 -- If neither T1 nor T2 are generic actual types, or if they are in
6507 -- different scopes (e.g. parent and child instances), then verify that
6508 -- the base types are equal. Otherwise T1 and T2 must be on the same
6509 -- subtype chain. The whole purpose of this procedure is to prevent
6510 -- spurious ambiguities in an instantiation that may arise if two
6511 -- distinct generic types are instantiated with the same actual.
6513 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6514 -- An access parameter can designate an incomplete type. If the
6515 -- incomplete type is the limited view of a type from a limited_
6516 -- with_clause, check whether the non-limited view is available. If
6517 -- it is a (non-limited) incomplete type, get the full view.
6519 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6520 -- Returns True if and only if either T1 denotes a limited view of T2
6521 -- or T2 denotes a limited view of T1. This can arise when the limited
6522 -- with view of a type is used in a subprogram declaration and the
6523 -- subprogram body is in the scope of a regular with clause for the
6524 -- same unit. In such a case, the two type entities can be considered
6525 -- identical for purposes of conformance checking.
6527 ----------------------
6528 -- Base_Types_Match --
6529 ----------------------
6531 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6532 BT1 : constant Entity_Id := Base_Type (T1);
6533 BT2 : constant Entity_Id := Base_Type (T2);
6535 begin
6536 if T1 = T2 then
6537 return True;
6539 elsif BT1 = BT2 then
6541 -- The following is too permissive. A more precise test should
6542 -- check that the generic actual is an ancestor subtype of the
6543 -- other ???.
6545 -- See code in Find_Corresponding_Spec that applies an additional
6546 -- filter to handle accidental amiguities in instances.
6548 return not Is_Generic_Actual_Type (T1)
6549 or else not Is_Generic_Actual_Type (T2)
6550 or else Scope (T1) /= Scope (T2);
6552 -- If T2 is a generic actual type it is declared as the subtype of
6553 -- the actual. If that actual is itself a subtype we need to use its
6554 -- own base type to check for compatibility.
6556 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6557 return True;
6559 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6560 return True;
6562 else
6563 return False;
6564 end if;
6565 end Base_Types_Match;
6567 --------------------------
6568 -- Find_Designated_Type --
6569 --------------------------
6571 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6572 Desig : Entity_Id;
6574 begin
6575 Desig := Directly_Designated_Type (T);
6577 if Ekind (Desig) = E_Incomplete_Type then
6579 -- If regular incomplete type, get full view if available
6581 if Present (Full_View (Desig)) then
6582 Desig := Full_View (Desig);
6584 -- If limited view of a type, get non-limited view if available,
6585 -- and check again for a regular incomplete type.
6587 elsif Present (Non_Limited_View (Desig)) then
6588 Desig := Get_Full_View (Non_Limited_View (Desig));
6589 end if;
6590 end if;
6592 return Desig;
6593 end Find_Designated_Type;
6595 -------------------------------
6596 -- Matches_Limited_With_View --
6597 -------------------------------
6599 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6600 begin
6601 -- In some cases a type imported through a limited_with clause, and
6602 -- its nonlimited view are both visible, for example in an anonymous
6603 -- access-to-class-wide type in a formal, or when building the body
6604 -- for a subprogram renaming after the subprogram has been frozen.
6605 -- In these cases Both entities designate the same type. In addition,
6606 -- if one of them is an actual in an instance, it may be a subtype of
6607 -- the non-limited view of the other.
6609 if From_Limited_With (T1)
6610 and then (T2 = Available_View (T1)
6611 or else Is_Subtype_Of (T2, Available_View (T1)))
6612 then
6613 return True;
6615 elsif From_Limited_With (T2)
6616 and then (T1 = Available_View (T2)
6617 or else Is_Subtype_Of (T1, Available_View (T2)))
6618 then
6619 return True;
6621 elsif From_Limited_With (T1)
6622 and then From_Limited_With (T2)
6623 and then Available_View (T1) = Available_View (T2)
6624 then
6625 return True;
6627 else
6628 return False;
6629 end if;
6630 end Matches_Limited_With_View;
6632 -- Start of processing for Conforming_Types
6634 begin
6635 -- The context is an instance association for a formal access-to-
6636 -- subprogram type; the formal parameter types require mapping because
6637 -- they may denote other formal parameters of the generic unit.
6639 if Get_Inst then
6640 Type_1 := Get_Instance_Of (T1);
6641 Type_2 := Get_Instance_Of (T2);
6642 end if;
6644 -- If one of the types is a view of the other introduced by a limited
6645 -- with clause, treat these as conforming for all purposes.
6647 if Matches_Limited_With_View (T1, T2) then
6648 return True;
6650 elsif Base_Types_Match (Type_1, Type_2) then
6651 return Ctype <= Mode_Conformant
6652 or else Subtypes_Statically_Match (Type_1, Type_2);
6654 elsif Is_Incomplete_Or_Private_Type (Type_1)
6655 and then Present (Full_View (Type_1))
6656 and then Base_Types_Match (Full_View (Type_1), Type_2)
6657 then
6658 return Ctype <= Mode_Conformant
6659 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6661 elsif Ekind (Type_2) = E_Incomplete_Type
6662 and then Present (Full_View (Type_2))
6663 and then Base_Types_Match (Type_1, Full_View (Type_2))
6664 then
6665 return Ctype <= Mode_Conformant
6666 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6668 elsif Is_Private_Type (Type_2)
6669 and then In_Instance
6670 and then Present (Full_View (Type_2))
6671 and then Base_Types_Match (Type_1, Full_View (Type_2))
6672 then
6673 return Ctype <= Mode_Conformant
6674 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6675 end if;
6677 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6678 -- treated recursively because they carry a signature. As far as
6679 -- conformance is concerned, convention plays no role, and either
6680 -- or both could be access to protected subprograms.
6682 Are_Anonymous_Access_To_Subprogram_Types :=
6683 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6684 E_Anonymous_Access_Protected_Subprogram_Type)
6685 and then
6686 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6687 E_Anonymous_Access_Protected_Subprogram_Type);
6689 -- Test anonymous access type case. For this case, static subtype
6690 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6691 -- the base types because we may have built internal subtype entities
6692 -- to handle null-excluding types (see Process_Formals).
6694 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6695 and then
6696 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6698 -- Ada 2005 (AI-254)
6700 or else Are_Anonymous_Access_To_Subprogram_Types
6701 then
6702 declare
6703 Desig_1 : Entity_Id;
6704 Desig_2 : Entity_Id;
6706 begin
6707 -- In Ada 2005, access constant indicators must match for
6708 -- subtype conformance.
6710 if Ada_Version >= Ada_2005
6711 and then Ctype >= Subtype_Conformant
6712 and then
6713 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6714 then
6715 return False;
6716 end if;
6718 Desig_1 := Find_Designated_Type (Type_1);
6719 Desig_2 := Find_Designated_Type (Type_2);
6721 -- If the context is an instance association for a formal
6722 -- access-to-subprogram type; formal access parameter designated
6723 -- types require mapping because they may denote other formal
6724 -- parameters of the generic unit.
6726 if Get_Inst then
6727 Desig_1 := Get_Instance_Of (Desig_1);
6728 Desig_2 := Get_Instance_Of (Desig_2);
6729 end if;
6731 -- It is possible for a Class_Wide_Type to be introduced for an
6732 -- incomplete type, in which case there is a separate class_ wide
6733 -- type for the full view. The types conform if their Etypes
6734 -- conform, i.e. one may be the full view of the other. This can
6735 -- only happen in the context of an access parameter, other uses
6736 -- of an incomplete Class_Wide_Type are illegal.
6738 if Is_Class_Wide_Type (Desig_1)
6739 and then
6740 Is_Class_Wide_Type (Desig_2)
6741 then
6742 return
6743 Conforming_Types
6744 (Etype (Base_Type (Desig_1)),
6745 Etype (Base_Type (Desig_2)), Ctype);
6747 elsif Are_Anonymous_Access_To_Subprogram_Types then
6748 if Ada_Version < Ada_2005 then
6749 return Ctype = Type_Conformant
6750 or else
6751 Subtypes_Statically_Match (Desig_1, Desig_2);
6753 -- We must check the conformance of the signatures themselves
6755 else
6756 declare
6757 Conformant : Boolean;
6758 begin
6759 Check_Conformance
6760 (Desig_1, Desig_2, Ctype, False, Conformant);
6761 return Conformant;
6762 end;
6763 end if;
6765 else
6766 return Base_Type (Desig_1) = Base_Type (Desig_2)
6767 and then (Ctype = Type_Conformant
6768 or else
6769 Subtypes_Statically_Match (Desig_1, Desig_2));
6770 end if;
6771 end;
6773 -- Otherwise definitely no match
6775 else
6776 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6777 and then Is_Access_Type (Type_2))
6778 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6779 and then Is_Access_Type (Type_1)))
6780 and then
6781 Conforming_Types
6782 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6783 then
6784 May_Hide_Profile := True;
6785 end if;
6787 return False;
6788 end if;
6789 end Conforming_Types;
6791 --------------------------
6792 -- Create_Extra_Formals --
6793 --------------------------
6795 procedure Create_Extra_Formals (E : Entity_Id) is
6796 Formal : Entity_Id;
6797 First_Extra : Entity_Id := Empty;
6798 Last_Extra : Entity_Id;
6799 Formal_Type : Entity_Id;
6800 P_Formal : Entity_Id := Empty;
6802 function Add_Extra_Formal
6803 (Assoc_Entity : Entity_Id;
6804 Typ : Entity_Id;
6805 Scope : Entity_Id;
6806 Suffix : String) return Entity_Id;
6807 -- Add an extra formal to the current list of formals and extra formals.
6808 -- The extra formal is added to the end of the list of extra formals,
6809 -- and also returned as the result. These formals are always of mode IN.
6810 -- The new formal has the type Typ, is declared in Scope, and its name
6811 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6812 -- The following suffixes are currently used. They should not be changed
6813 -- without coordinating with CodePeer, which makes use of these to
6814 -- provide better messages.
6816 -- O denotes the Constrained bit.
6817 -- L denotes the accessibility level.
6818 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6819 -- the full list in exp_ch6.BIP_Formal_Kind.
6821 ----------------------
6822 -- Add_Extra_Formal --
6823 ----------------------
6825 function Add_Extra_Formal
6826 (Assoc_Entity : Entity_Id;
6827 Typ : Entity_Id;
6828 Scope : Entity_Id;
6829 Suffix : String) return Entity_Id
6831 EF : constant Entity_Id :=
6832 Make_Defining_Identifier (Sloc (Assoc_Entity),
6833 Chars => New_External_Name (Chars (Assoc_Entity),
6834 Suffix => Suffix));
6836 begin
6837 -- A little optimization. Never generate an extra formal for the
6838 -- _init operand of an initialization procedure, since it could
6839 -- never be used.
6841 if Chars (Formal) = Name_uInit then
6842 return Empty;
6843 end if;
6845 Set_Ekind (EF, E_In_Parameter);
6846 Set_Actual_Subtype (EF, Typ);
6847 Set_Etype (EF, Typ);
6848 Set_Scope (EF, Scope);
6849 Set_Mechanism (EF, Default_Mechanism);
6850 Set_Formal_Validity (EF);
6852 if No (First_Extra) then
6853 First_Extra := EF;
6854 Set_Extra_Formals (Scope, First_Extra);
6855 end if;
6857 if Present (Last_Extra) then
6858 Set_Extra_Formal (Last_Extra, EF);
6859 end if;
6861 Last_Extra := EF;
6863 return EF;
6864 end Add_Extra_Formal;
6866 -- Start of processing for Create_Extra_Formals
6868 begin
6869 -- We never generate extra formals if expansion is not active because we
6870 -- don't need them unless we are generating code.
6872 if not Expander_Active then
6873 return;
6874 end if;
6876 -- No need to generate extra formals in interface thunks whose target
6877 -- primitive has no extra formals.
6879 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6880 return;
6881 end if;
6883 -- If this is a derived subprogram then the subtypes of the parent
6884 -- subprogram's formal parameters will be used to determine the need
6885 -- for extra formals.
6887 if Is_Overloadable (E) and then Present (Alias (E)) then
6888 P_Formal := First_Formal (Alias (E));
6889 end if;
6891 Last_Extra := Empty;
6892 Formal := First_Formal (E);
6893 while Present (Formal) loop
6894 Last_Extra := Formal;
6895 Next_Formal (Formal);
6896 end loop;
6898 -- If Extra_formals were already created, don't do it again. This
6899 -- situation may arise for subprogram types created as part of
6900 -- dispatching calls (see Expand_Dispatching_Call)
6902 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6903 return;
6904 end if;
6906 -- If the subprogram is a predefined dispatching subprogram then don't
6907 -- generate any extra constrained or accessibility level formals. In
6908 -- general we suppress these for internal subprograms (by not calling
6909 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6910 -- generated stream attributes do get passed through because extra
6911 -- build-in-place formals are needed in some cases (limited 'Input).
6913 if Is_Predefined_Internal_Operation (E) then
6914 goto Test_For_Func_Result_Extras;
6915 end if;
6917 Formal := First_Formal (E);
6918 while Present (Formal) loop
6920 -- Create extra formal for supporting the attribute 'Constrained.
6921 -- The case of a private type view without discriminants also
6922 -- requires the extra formal if the underlying type has defaulted
6923 -- discriminants.
6925 if Ekind (Formal) /= E_In_Parameter then
6926 if Present (P_Formal) then
6927 Formal_Type := Etype (P_Formal);
6928 else
6929 Formal_Type := Etype (Formal);
6930 end if;
6932 -- Do not produce extra formals for Unchecked_Union parameters.
6933 -- Jump directly to the end of the loop.
6935 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6936 goto Skip_Extra_Formal_Generation;
6937 end if;
6939 if not Has_Discriminants (Formal_Type)
6940 and then Ekind (Formal_Type) in Private_Kind
6941 and then Present (Underlying_Type (Formal_Type))
6942 then
6943 Formal_Type := Underlying_Type (Formal_Type);
6944 end if;
6946 -- Suppress the extra formal if formal's subtype is constrained or
6947 -- indefinite, or we're compiling for Ada 2012 and the underlying
6948 -- type is tagged and limited. In Ada 2012, a limited tagged type
6949 -- can have defaulted discriminants, but 'Constrained is required
6950 -- to return True, so the formal is never needed (see AI05-0214).
6951 -- Note that this ensures consistency of calling sequences for
6952 -- dispatching operations when some types in a class have defaults
6953 -- on discriminants and others do not (and requiring the extra
6954 -- formal would introduce distributed overhead).
6956 -- If the type does not have a completion yet, treat as prior to
6957 -- Ada 2012 for consistency.
6959 if Has_Discriminants (Formal_Type)
6960 and then not Is_Constrained (Formal_Type)
6961 and then not Is_Indefinite_Subtype (Formal_Type)
6962 and then (Ada_Version < Ada_2012
6963 or else No (Underlying_Type (Formal_Type))
6964 or else not
6965 (Is_Limited_Type (Formal_Type)
6966 and then
6967 (Is_Tagged_Type
6968 (Underlying_Type (Formal_Type)))))
6969 then
6970 Set_Extra_Constrained
6971 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
6972 end if;
6973 end if;
6975 -- Create extra formal for supporting accessibility checking. This
6976 -- is done for both anonymous access formals and formals of named
6977 -- access types that are marked as controlling formals. The latter
6978 -- case can occur when Expand_Dispatching_Call creates a subprogram
6979 -- type and substitutes the types of access-to-class-wide actuals
6980 -- for the anonymous access-to-specific-type of controlling formals.
6981 -- Base_Type is applied because in cases where there is a null
6982 -- exclusion the formal may have an access subtype.
6984 -- This is suppressed if we specifically suppress accessibility
6985 -- checks at the package level for either the subprogram, or the
6986 -- package in which it resides. However, we do not suppress it
6987 -- simply if the scope has accessibility checks suppressed, since
6988 -- this could cause trouble when clients are compiled with a
6989 -- different suppression setting. The explicit checks at the
6990 -- package level are safe from this point of view.
6992 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
6993 or else (Is_Controlling_Formal (Formal)
6994 and then Is_Access_Type (Base_Type (Etype (Formal)))))
6995 and then not
6996 (Explicit_Suppress (E, Accessibility_Check)
6997 or else
6998 Explicit_Suppress (Scope (E), Accessibility_Check))
6999 and then
7000 (No (P_Formal)
7001 or else Present (Extra_Accessibility (P_Formal)))
7002 then
7003 Set_Extra_Accessibility
7004 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
7005 end if;
7007 -- This label is required when skipping extra formal generation for
7008 -- Unchecked_Union parameters.
7010 <<Skip_Extra_Formal_Generation>>
7012 if Present (P_Formal) then
7013 Next_Formal (P_Formal);
7014 end if;
7016 Next_Formal (Formal);
7017 end loop;
7019 <<Test_For_Func_Result_Extras>>
7021 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
7022 -- function call is ... determined by the point of call ...".
7024 if Needs_Result_Accessibility_Level (E) then
7025 Set_Extra_Accessibility_Of_Result
7026 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
7027 end if;
7029 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
7030 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
7032 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
7033 declare
7034 Result_Subt : constant Entity_Id := Etype (E);
7035 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
7036 Formal_Typ : Entity_Id;
7038 Discard : Entity_Id;
7039 pragma Warnings (Off, Discard);
7041 begin
7042 -- In the case of functions with unconstrained result subtypes,
7043 -- add a 4-state formal indicating whether the return object is
7044 -- allocated by the caller (1), or should be allocated by the
7045 -- callee on the secondary stack (2), in the global heap (3), or
7046 -- in a user-defined storage pool (4). For the moment we just use
7047 -- Natural for the type of this formal. Note that this formal
7048 -- isn't usually needed in the case where the result subtype is
7049 -- constrained, but it is needed when the function has a tagged
7050 -- result, because generally such functions can be called in a
7051 -- dispatching context and such calls must be handled like calls
7052 -- to a class-wide function.
7054 if Needs_BIP_Alloc_Form (E) then
7055 Discard :=
7056 Add_Extra_Formal
7057 (E, Standard_Natural,
7058 E, BIP_Formal_Suffix (BIP_Alloc_Form));
7060 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
7061 -- use a user-defined pool. This formal is not added on
7062 -- .NET/JVM/ZFP as those targets do not support pools.
7064 if VM_Target = No_VM
7065 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
7066 then
7067 Discard :=
7068 Add_Extra_Formal
7069 (E, RTE (RE_Root_Storage_Pool_Ptr),
7070 E, BIP_Formal_Suffix (BIP_Storage_Pool));
7071 end if;
7072 end if;
7074 -- In the case of functions whose result type needs finalization,
7075 -- add an extra formal which represents the finalization master.
7077 if Needs_BIP_Finalization_Master (E) then
7078 Discard :=
7079 Add_Extra_Formal
7080 (E, RTE (RE_Finalization_Master_Ptr),
7081 E, BIP_Formal_Suffix (BIP_Finalization_Master));
7082 end if;
7084 -- When the result type contains tasks, add two extra formals: the
7085 -- master of the tasks to be created, and the caller's activation
7086 -- chain.
7088 if Has_Task (Full_Subt) then
7089 Discard :=
7090 Add_Extra_Formal
7091 (E, RTE (RE_Master_Id),
7092 E, BIP_Formal_Suffix (BIP_Task_Master));
7093 Discard :=
7094 Add_Extra_Formal
7095 (E, RTE (RE_Activation_Chain_Access),
7096 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7097 end if;
7099 -- All build-in-place functions get an extra formal that will be
7100 -- passed the address of the return object within the caller.
7102 Formal_Typ :=
7103 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
7105 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7106 Set_Etype (Formal_Typ, Formal_Typ);
7107 Set_Depends_On_Private
7108 (Formal_Typ, Has_Private_Component (Formal_Typ));
7109 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7110 Set_Is_Access_Constant (Formal_Typ, False);
7112 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7113 -- the designated type comes from the limited view (for back-end
7114 -- purposes).
7116 Set_From_Limited_With
7117 (Formal_Typ, From_Limited_With (Result_Subt));
7119 Layout_Type (Formal_Typ);
7121 Discard :=
7122 Add_Extra_Formal
7123 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
7124 end;
7125 end if;
7126 end Create_Extra_Formals;
7128 -----------------------------
7129 -- Enter_Overloaded_Entity --
7130 -----------------------------
7132 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7133 E : Entity_Id := Current_Entity_In_Scope (S);
7134 C_E : Entity_Id := Current_Entity (S);
7136 begin
7137 if Present (E) then
7138 Set_Has_Homonym (E);
7139 Set_Has_Homonym (S);
7140 end if;
7142 Set_Is_Immediately_Visible (S);
7143 Set_Scope (S, Current_Scope);
7145 -- Chain new entity if front of homonym in current scope, so that
7146 -- homonyms are contiguous.
7148 if Present (E) and then E /= C_E then
7149 while Homonym (C_E) /= E loop
7150 C_E := Homonym (C_E);
7151 end loop;
7153 Set_Homonym (C_E, S);
7155 else
7156 E := C_E;
7157 Set_Current_Entity (S);
7158 end if;
7160 Set_Homonym (S, E);
7162 if Is_Inherited_Operation (S) then
7163 Append_Inherited_Subprogram (S);
7164 else
7165 Append_Entity (S, Current_Scope);
7166 end if;
7168 Set_Public_Status (S);
7170 if Debug_Flag_E then
7171 Write_Str ("New overloaded entity chain: ");
7172 Write_Name (Chars (S));
7174 E := S;
7175 while Present (E) loop
7176 Write_Str (" "); Write_Int (Int (E));
7177 E := Homonym (E);
7178 end loop;
7180 Write_Eol;
7181 end if;
7183 -- Generate warning for hiding
7185 if Warn_On_Hiding
7186 and then Comes_From_Source (S)
7187 and then In_Extended_Main_Source_Unit (S)
7188 then
7189 E := S;
7190 loop
7191 E := Homonym (E);
7192 exit when No (E);
7194 -- Warn unless genuine overloading. Do not emit warning on
7195 -- hiding predefined operators in Standard (these are either an
7196 -- (artifact of our implicit declarations, or simple noise) but
7197 -- keep warning on a operator defined on a local subtype, because
7198 -- of the real danger that different operators may be applied in
7199 -- various parts of the program.
7201 -- Note that if E and S have the same scope, there is never any
7202 -- hiding. Either the two conflict, and the program is illegal,
7203 -- or S is overriding an implicit inherited subprogram.
7205 if Scope (E) /= Scope (S)
7206 and then (not Is_Overloadable (E)
7207 or else Subtype_Conformant (E, S))
7208 and then (Is_Immediately_Visible (E)
7209 or else
7210 Is_Potentially_Use_Visible (S))
7211 then
7212 if Scope (E) /= Standard_Standard then
7213 Error_Msg_Sloc := Sloc (E);
7214 Error_Msg_N ("declaration of & hides one #?h?", S);
7216 elsif Nkind (S) = N_Defining_Operator_Symbol
7217 and then
7218 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
7219 then
7220 Error_Msg_N
7221 ("declaration of & hides predefined operator?h?", S);
7222 end if;
7223 end if;
7224 end loop;
7225 end if;
7226 end Enter_Overloaded_Entity;
7228 -----------------------------
7229 -- Check_Untagged_Equality --
7230 -----------------------------
7232 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7233 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7234 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7235 Obj_Decl : Node_Id;
7237 begin
7238 -- This check applies only if we have a subprogram declaration with an
7239 -- untagged record type.
7241 if Nkind (Decl) /= N_Subprogram_Declaration
7242 or else not Is_Record_Type (Typ)
7243 or else Is_Tagged_Type (Typ)
7244 then
7245 return;
7246 end if;
7248 -- In Ada 2012 case, we will output errors or warnings depending on
7249 -- the setting of debug flag -gnatd.E.
7251 if Ada_Version >= Ada_2012 then
7252 Error_Msg_Warn := Debug_Flag_Dot_EE;
7254 -- In earlier versions of Ada, nothing to do unless we are warning on
7255 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7257 else
7258 if not Warn_On_Ada_2012_Compatibility then
7259 return;
7260 end if;
7261 end if;
7263 -- Cases where the type has already been frozen
7265 if Is_Frozen (Typ) then
7267 -- If the type is not declared in a package, or if we are in the body
7268 -- of the package or in some other scope, the new operation is not
7269 -- primitive, and therefore legal, though suspicious. Should we
7270 -- generate a warning in this case ???
7272 if Ekind (Scope (Typ)) /= E_Package
7273 or else Scope (Typ) /= Current_Scope
7274 then
7275 return;
7277 -- If the type is a generic actual (sub)type, the operation is not
7278 -- primitive either because the base type is declared elsewhere.
7280 elsif Is_Generic_Actual_Type (Typ) then
7281 return;
7283 -- Here we have a definite error of declaration after freezing
7285 else
7286 if Ada_Version >= Ada_2012 then
7287 Error_Msg_NE
7288 ("equality operator must be declared before type & is "
7289 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
7291 -- In Ada 2012 mode with error turned to warning, output one
7292 -- more warning to warn that the equality operation may not
7293 -- compose. This is the consequence of ignoring the error.
7295 if Error_Msg_Warn then
7296 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
7297 end if;
7299 else
7300 Error_Msg_NE
7301 ("equality operator must be declared before type& is "
7302 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
7303 end if;
7305 -- If we are in the package body, we could just move the
7306 -- declaration to the package spec, so add a message saying that.
7308 if In_Package_Body (Scope (Typ)) then
7309 if Ada_Version >= Ada_2012 then
7310 Error_Msg_N
7311 ("\move declaration to package spec<<", Eq_Op);
7312 else
7313 Error_Msg_N
7314 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
7315 end if;
7317 -- Otherwise try to find the freezing point
7319 else
7320 Obj_Decl := Next (Parent (Typ));
7321 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
7322 if Nkind (Obj_Decl) = N_Object_Declaration
7323 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
7324 then
7325 -- Freezing point, output warnings
7327 if Ada_Version >= Ada_2012 then
7328 Error_Msg_NE
7329 ("type& is frozen by declaration??", Obj_Decl, Typ);
7330 Error_Msg_N
7331 ("\an equality operator cannot be declared after "
7332 & "this point??",
7333 Obj_Decl);
7334 else
7335 Error_Msg_NE
7336 ("type& is frozen by declaration (Ada 2012)?y?",
7337 Obj_Decl, Typ);
7338 Error_Msg_N
7339 ("\an equality operator cannot be declared after "
7340 & "this point (Ada 2012)?y?",
7341 Obj_Decl);
7342 end if;
7344 exit;
7345 end if;
7347 Next (Obj_Decl);
7348 end loop;
7349 end if;
7350 end if;
7352 -- Here if type is not frozen yet. It is illegal to have a primitive
7353 -- equality declared in the private part if the type is visible.
7355 elsif not In_Same_List (Parent (Typ), Decl)
7356 and then not Is_Limited_Type (Typ)
7357 then
7358 -- Shouldn't we give an RM reference here???
7360 if Ada_Version >= Ada_2012 then
7361 Error_Msg_N
7362 ("equality operator appears too late<<", Eq_Op);
7363 else
7364 Error_Msg_N
7365 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
7366 end if;
7368 -- No error detected
7370 else
7371 return;
7372 end if;
7373 end Check_Untagged_Equality;
7375 -----------------------------
7376 -- Find_Corresponding_Spec --
7377 -----------------------------
7379 function Find_Corresponding_Spec
7380 (N : Node_Id;
7381 Post_Error : Boolean := True) return Entity_Id
7383 Spec : constant Node_Id := Specification (N);
7384 Designator : constant Entity_Id := Defining_Entity (Spec);
7386 E : Entity_Id;
7388 function Different_Generic_Profile (E : Entity_Id) return Boolean;
7389 -- Even if fully conformant, a body may depend on a generic actual when
7390 -- the spec does not, or vice versa, in which case they were distinct
7391 -- entities in the generic.
7393 -------------------------------
7394 -- Different_Generic_Profile --
7395 -------------------------------
7397 function Different_Generic_Profile (E : Entity_Id) return Boolean is
7398 F1, F2 : Entity_Id;
7400 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
7401 -- Check that the types of corresponding formals have the same
7402 -- generic actual if any. We have to account for subtypes of a
7403 -- generic formal, declared between a spec and a body, which may
7404 -- appear distinct in an instance but matched in the generic, and
7405 -- the subtype may be used either in the spec or the body of the
7406 -- subprogram being checked.
7408 -------------------------
7409 -- Same_Generic_Actual --
7410 -------------------------
7412 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
7414 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
7415 -- Predicate to check whether S1 is a subtype of S2 in the source
7416 -- of the instance.
7418 -------------------------
7419 -- Is_Declared_Subtype --
7420 -------------------------
7422 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
7423 begin
7424 return Comes_From_Source (Parent (S1))
7425 and then Nkind (Parent (S1)) = N_Subtype_Declaration
7426 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
7427 and then Entity (Subtype_Indication (Parent (S1))) = S2;
7428 end Is_Declared_Subtype;
7430 -- Start of processing for Same_Generic_Actual
7432 begin
7433 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
7434 or else Is_Declared_Subtype (T1, T2)
7435 or else Is_Declared_Subtype (T2, T1);
7436 end Same_Generic_Actual;
7438 -- Start of processing for Different_Generic_Profile
7440 begin
7441 if not In_Instance then
7442 return False;
7444 elsif Ekind (E) = E_Function
7445 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
7446 then
7447 return True;
7448 end if;
7450 F1 := First_Formal (Designator);
7451 F2 := First_Formal (E);
7452 while Present (F1) loop
7453 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
7454 return True;
7455 end if;
7457 Next_Formal (F1);
7458 Next_Formal (F2);
7459 end loop;
7461 return False;
7462 end Different_Generic_Profile;
7464 -- Start of processing for Find_Corresponding_Spec
7466 begin
7467 E := Current_Entity (Designator);
7468 while Present (E) loop
7470 -- We are looking for a matching spec. It must have the same scope,
7471 -- and the same name, and either be type conformant, or be the case
7472 -- of a library procedure spec and its body (which belong to one
7473 -- another regardless of whether they are type conformant or not).
7475 if Scope (E) = Current_Scope then
7476 if Current_Scope = Standard_Standard
7477 or else (Ekind (E) = Ekind (Designator)
7478 and then Type_Conformant (E, Designator))
7479 then
7480 -- Within an instantiation, we know that spec and body are
7481 -- subtype conformant, because they were subtype conformant in
7482 -- the generic. We choose the subtype-conformant entity here as
7483 -- well, to resolve spurious ambiguities in the instance that
7484 -- were not present in the generic (i.e. when two different
7485 -- types are given the same actual). If we are looking for a
7486 -- spec to match a body, full conformance is expected.
7488 if In_Instance then
7490 -- Inherit the convention and "ghostness" of the matching
7491 -- spec to ensure proper full and subtype conformance.
7493 Set_Convention (Designator, Convention (E));
7495 if Is_Ghost_Entity (E) then
7496 Set_Is_Ghost_Entity (Designator);
7497 end if;
7499 -- Skip past subprogram bodies and subprogram renamings that
7500 -- may appear to have a matching spec, but that aren't fully
7501 -- conformant with it. That can occur in cases where an
7502 -- actual type causes unrelated homographs in the instance.
7504 if Nkind_In (N, N_Subprogram_Body,
7505 N_Subprogram_Renaming_Declaration)
7506 and then Present (Homonym (E))
7507 and then not Fully_Conformant (Designator, E)
7508 then
7509 goto Next_Entity;
7511 elsif not Subtype_Conformant (Designator, E) then
7512 goto Next_Entity;
7514 elsif Different_Generic_Profile (E) then
7515 goto Next_Entity;
7516 end if;
7517 end if;
7519 -- Ada 2012 (AI05-0165): For internally generated bodies of
7520 -- null procedures locate the internally generated spec. We
7521 -- enforce mode conformance since a tagged type may inherit
7522 -- from interfaces several null primitives which differ only
7523 -- in the mode of the formals.
7525 if not (Comes_From_Source (E))
7526 and then Is_Null_Procedure (E)
7527 and then not Mode_Conformant (Designator, E)
7528 then
7529 null;
7531 -- For null procedures coming from source that are completions,
7532 -- analysis of the generated body will establish the link.
7534 elsif Comes_From_Source (E)
7535 and then Nkind (Spec) = N_Procedure_Specification
7536 and then Null_Present (Spec)
7537 then
7538 return E;
7540 elsif not Has_Completion (E) then
7541 if Nkind (N) /= N_Subprogram_Body_Stub then
7542 Set_Corresponding_Spec (N, E);
7543 end if;
7545 Set_Has_Completion (E);
7546 return E;
7548 elsif Nkind (Parent (N)) = N_Subunit then
7550 -- If this is the proper body of a subunit, the completion
7551 -- flag is set when analyzing the stub.
7553 return E;
7555 -- If E is an internal function with a controlling result that
7556 -- was created for an operation inherited by a null extension,
7557 -- it may be overridden by a body without a previous spec (one
7558 -- more reason why these should be shunned). In that case we
7559 -- remove the generated body if present, because the current
7560 -- one is the explicit overriding.
7562 elsif Ekind (E) = E_Function
7563 and then Ada_Version >= Ada_2005
7564 and then not Comes_From_Source (E)
7565 and then Has_Controlling_Result (E)
7566 and then Is_Null_Extension (Etype (E))
7567 and then Comes_From_Source (Spec)
7568 then
7569 Set_Has_Completion (E, False);
7571 if Expander_Active
7572 and then Nkind (Parent (E)) = N_Function_Specification
7573 then
7574 Remove
7575 (Unit_Declaration_Node
7576 (Corresponding_Body (Unit_Declaration_Node (E))));
7578 return E;
7580 -- If expansion is disabled, or if the wrapper function has
7581 -- not been generated yet, this a late body overriding an
7582 -- inherited operation, or it is an overriding by some other
7583 -- declaration before the controlling result is frozen. In
7584 -- either case this is a declaration of a new entity.
7586 else
7587 return Empty;
7588 end if;
7590 -- If the body already exists, then this is an error unless
7591 -- the previous declaration is the implicit declaration of a
7592 -- derived subprogram. It is also legal for an instance to
7593 -- contain type conformant overloadable declarations (but the
7594 -- generic declaration may not), per 8.3(26/2).
7596 elsif No (Alias (E))
7597 and then not Is_Intrinsic_Subprogram (E)
7598 and then not In_Instance
7599 and then Post_Error
7600 then
7601 Error_Msg_Sloc := Sloc (E);
7603 if Is_Imported (E) then
7604 Error_Msg_NE
7605 ("body not allowed for imported subprogram & declared#",
7606 N, E);
7607 else
7608 Error_Msg_NE ("duplicate body for & declared#", N, E);
7609 end if;
7610 end if;
7612 -- Child units cannot be overloaded, so a conformance mismatch
7613 -- between body and a previous spec is an error.
7615 elsif Is_Child_Unit (E)
7616 and then
7617 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
7618 and then
7619 Nkind (Parent (Unit_Declaration_Node (Designator))) =
7620 N_Compilation_Unit
7621 and then Post_Error
7622 then
7623 Error_Msg_N
7624 ("body of child unit does not match previous declaration", N);
7625 end if;
7626 end if;
7628 <<Next_Entity>>
7629 E := Homonym (E);
7630 end loop;
7632 -- On exit, we know that no previous declaration of subprogram exists
7634 return Empty;
7635 end Find_Corresponding_Spec;
7637 ----------------------
7638 -- Fully_Conformant --
7639 ----------------------
7641 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7642 Result : Boolean;
7643 begin
7644 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7645 return Result;
7646 end Fully_Conformant;
7648 ----------------------------------
7649 -- Fully_Conformant_Expressions --
7650 ----------------------------------
7652 function Fully_Conformant_Expressions
7653 (Given_E1 : Node_Id;
7654 Given_E2 : Node_Id) return Boolean
7656 E1 : constant Node_Id := Original_Node (Given_E1);
7657 E2 : constant Node_Id := Original_Node (Given_E2);
7658 -- We always test conformance on original nodes, since it is possible
7659 -- for analysis and/or expansion to make things look as though they
7660 -- conform when they do not, e.g. by converting 1+2 into 3.
7662 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7663 renames Fully_Conformant_Expressions;
7665 function FCL (L1, L2 : List_Id) return Boolean;
7666 -- Compare elements of two lists for conformance. Elements have to be
7667 -- conformant, and actuals inserted as default parameters do not match
7668 -- explicit actuals with the same value.
7670 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
7671 -- Compare an operator node with a function call
7673 ---------
7674 -- FCL --
7675 ---------
7677 function FCL (L1, L2 : List_Id) return Boolean is
7678 N1, N2 : Node_Id;
7680 begin
7681 if L1 = No_List then
7682 N1 := Empty;
7683 else
7684 N1 := First (L1);
7685 end if;
7687 if L2 = No_List then
7688 N2 := Empty;
7689 else
7690 N2 := First (L2);
7691 end if;
7693 -- Compare two lists, skipping rewrite insertions (we want to compare
7694 -- the original trees, not the expanded versions).
7696 loop
7697 if Is_Rewrite_Insertion (N1) then
7698 Next (N1);
7699 elsif Is_Rewrite_Insertion (N2) then
7700 Next (N2);
7701 elsif No (N1) then
7702 return No (N2);
7703 elsif No (N2) then
7704 return False;
7705 elsif not FCE (N1, N2) then
7706 return False;
7707 else
7708 Next (N1);
7709 Next (N2);
7710 end if;
7711 end loop;
7712 end FCL;
7714 ---------
7715 -- FCO --
7716 ---------
7718 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7719 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7720 Act : Node_Id;
7722 begin
7723 if No (Actuals)
7724 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7725 then
7726 return False;
7728 else
7729 Act := First (Actuals);
7731 if Nkind (Op_Node) in N_Binary_Op then
7732 if not FCE (Left_Opnd (Op_Node), Act) then
7733 return False;
7734 end if;
7736 Next (Act);
7737 end if;
7739 return Present (Act)
7740 and then FCE (Right_Opnd (Op_Node), Act)
7741 and then No (Next (Act));
7742 end if;
7743 end FCO;
7745 -- Start of processing for Fully_Conformant_Expressions
7747 begin
7748 -- Non-conformant if paren count does not match. Note: if some idiot
7749 -- complains that we don't do this right for more than 3 levels of
7750 -- parentheses, they will be treated with the respect they deserve.
7752 if Paren_Count (E1) /= Paren_Count (E2) then
7753 return False;
7755 -- If same entities are referenced, then they are conformant even if
7756 -- they have different forms (RM 8.3.1(19-20)).
7758 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7759 if Present (Entity (E1)) then
7760 return Entity (E1) = Entity (E2)
7761 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7762 and then Ekind (Entity (E1)) = E_Discriminant
7763 and then Ekind (Entity (E2)) = E_In_Parameter);
7765 elsif Nkind (E1) = N_Expanded_Name
7766 and then Nkind (E2) = N_Expanded_Name
7767 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7768 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7769 then
7770 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7772 else
7773 -- Identifiers in component associations don't always have
7774 -- entities, but their names must conform.
7776 return Nkind (E1) = N_Identifier
7777 and then Nkind (E2) = N_Identifier
7778 and then Chars (E1) = Chars (E2);
7779 end if;
7781 elsif Nkind (E1) = N_Character_Literal
7782 and then Nkind (E2) = N_Expanded_Name
7783 then
7784 return Nkind (Selector_Name (E2)) = N_Character_Literal
7785 and then Chars (E1) = Chars (Selector_Name (E2));
7787 elsif Nkind (E2) = N_Character_Literal
7788 and then Nkind (E1) = N_Expanded_Name
7789 then
7790 return Nkind (Selector_Name (E1)) = N_Character_Literal
7791 and then Chars (E2) = Chars (Selector_Name (E1));
7793 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
7794 return FCO (E1, E2);
7796 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
7797 return FCO (E2, E1);
7799 -- Otherwise we must have the same syntactic entity
7801 elsif Nkind (E1) /= Nkind (E2) then
7802 return False;
7804 -- At this point, we specialize by node type
7806 else
7807 case Nkind (E1) is
7809 when N_Aggregate =>
7810 return
7811 FCL (Expressions (E1), Expressions (E2))
7812 and then
7813 FCL (Component_Associations (E1),
7814 Component_Associations (E2));
7816 when N_Allocator =>
7817 if Nkind (Expression (E1)) = N_Qualified_Expression
7818 or else
7819 Nkind (Expression (E2)) = N_Qualified_Expression
7820 then
7821 return FCE (Expression (E1), Expression (E2));
7823 -- Check that the subtype marks and any constraints
7824 -- are conformant
7826 else
7827 declare
7828 Indic1 : constant Node_Id := Expression (E1);
7829 Indic2 : constant Node_Id := Expression (E2);
7830 Elt1 : Node_Id;
7831 Elt2 : Node_Id;
7833 begin
7834 if Nkind (Indic1) /= N_Subtype_Indication then
7835 return
7836 Nkind (Indic2) /= N_Subtype_Indication
7837 and then Entity (Indic1) = Entity (Indic2);
7839 elsif Nkind (Indic2) /= N_Subtype_Indication then
7840 return
7841 Nkind (Indic1) /= N_Subtype_Indication
7842 and then Entity (Indic1) = Entity (Indic2);
7844 else
7845 if Entity (Subtype_Mark (Indic1)) /=
7846 Entity (Subtype_Mark (Indic2))
7847 then
7848 return False;
7849 end if;
7851 Elt1 := First (Constraints (Constraint (Indic1)));
7852 Elt2 := First (Constraints (Constraint (Indic2)));
7853 while Present (Elt1) and then Present (Elt2) loop
7854 if not FCE (Elt1, Elt2) then
7855 return False;
7856 end if;
7858 Next (Elt1);
7859 Next (Elt2);
7860 end loop;
7862 return True;
7863 end if;
7864 end;
7865 end if;
7867 when N_Attribute_Reference =>
7868 return
7869 Attribute_Name (E1) = Attribute_Name (E2)
7870 and then FCL (Expressions (E1), Expressions (E2));
7872 when N_Binary_Op =>
7873 return
7874 Entity (E1) = Entity (E2)
7875 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
7876 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7878 when N_Short_Circuit | N_Membership_Test =>
7879 return
7880 FCE (Left_Opnd (E1), Left_Opnd (E2))
7881 and then
7882 FCE (Right_Opnd (E1), Right_Opnd (E2));
7884 when N_Case_Expression =>
7885 declare
7886 Alt1 : Node_Id;
7887 Alt2 : Node_Id;
7889 begin
7890 if not FCE (Expression (E1), Expression (E2)) then
7891 return False;
7893 else
7894 Alt1 := First (Alternatives (E1));
7895 Alt2 := First (Alternatives (E2));
7896 loop
7897 if Present (Alt1) /= Present (Alt2) then
7898 return False;
7899 elsif No (Alt1) then
7900 return True;
7901 end if;
7903 if not FCE (Expression (Alt1), Expression (Alt2))
7904 or else not FCL (Discrete_Choices (Alt1),
7905 Discrete_Choices (Alt2))
7906 then
7907 return False;
7908 end if;
7910 Next (Alt1);
7911 Next (Alt2);
7912 end loop;
7913 end if;
7914 end;
7916 when N_Character_Literal =>
7917 return
7918 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7920 when N_Component_Association =>
7921 return
7922 FCL (Choices (E1), Choices (E2))
7923 and then
7924 FCE (Expression (E1), Expression (E2));
7926 when N_Explicit_Dereference =>
7927 return
7928 FCE (Prefix (E1), Prefix (E2));
7930 when N_Extension_Aggregate =>
7931 return
7932 FCL (Expressions (E1), Expressions (E2))
7933 and then Null_Record_Present (E1) =
7934 Null_Record_Present (E2)
7935 and then FCL (Component_Associations (E1),
7936 Component_Associations (E2));
7938 when N_Function_Call =>
7939 return
7940 FCE (Name (E1), Name (E2))
7941 and then
7942 FCL (Parameter_Associations (E1),
7943 Parameter_Associations (E2));
7945 when N_If_Expression =>
7946 return
7947 FCL (Expressions (E1), Expressions (E2));
7949 when N_Indexed_Component =>
7950 return
7951 FCE (Prefix (E1), Prefix (E2))
7952 and then
7953 FCL (Expressions (E1), Expressions (E2));
7955 when N_Integer_Literal =>
7956 return (Intval (E1) = Intval (E2));
7958 when N_Null =>
7959 return True;
7961 when N_Operator_Symbol =>
7962 return
7963 Chars (E1) = Chars (E2);
7965 when N_Others_Choice =>
7966 return True;
7968 when N_Parameter_Association =>
7969 return
7970 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
7971 and then FCE (Explicit_Actual_Parameter (E1),
7972 Explicit_Actual_Parameter (E2));
7974 when N_Qualified_Expression =>
7975 return
7976 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7977 and then
7978 FCE (Expression (E1), Expression (E2));
7980 when N_Quantified_Expression =>
7981 if not FCE (Condition (E1), Condition (E2)) then
7982 return False;
7983 end if;
7985 if Present (Loop_Parameter_Specification (E1))
7986 and then Present (Loop_Parameter_Specification (E2))
7987 then
7988 declare
7989 L1 : constant Node_Id :=
7990 Loop_Parameter_Specification (E1);
7991 L2 : constant Node_Id :=
7992 Loop_Parameter_Specification (E2);
7994 begin
7995 return
7996 Reverse_Present (L1) = Reverse_Present (L2)
7997 and then
7998 FCE (Defining_Identifier (L1),
7999 Defining_Identifier (L2))
8000 and then
8001 FCE (Discrete_Subtype_Definition (L1),
8002 Discrete_Subtype_Definition (L2));
8003 end;
8005 elsif Present (Iterator_Specification (E1))
8006 and then Present (Iterator_Specification (E2))
8007 then
8008 declare
8009 I1 : constant Node_Id := Iterator_Specification (E1);
8010 I2 : constant Node_Id := Iterator_Specification (E2);
8012 begin
8013 return
8014 FCE (Defining_Identifier (I1),
8015 Defining_Identifier (I2))
8016 and then
8017 Of_Present (I1) = Of_Present (I2)
8018 and then
8019 Reverse_Present (I1) = Reverse_Present (I2)
8020 and then FCE (Name (I1), Name (I2))
8021 and then FCE (Subtype_Indication (I1),
8022 Subtype_Indication (I2));
8023 end;
8025 -- The quantified expressions used different specifications to
8026 -- walk their respective ranges.
8028 else
8029 return False;
8030 end if;
8032 when N_Range =>
8033 return
8034 FCE (Low_Bound (E1), Low_Bound (E2))
8035 and then
8036 FCE (High_Bound (E1), High_Bound (E2));
8038 when N_Real_Literal =>
8039 return (Realval (E1) = Realval (E2));
8041 when N_Selected_Component =>
8042 return
8043 FCE (Prefix (E1), Prefix (E2))
8044 and then
8045 FCE (Selector_Name (E1), Selector_Name (E2));
8047 when N_Slice =>
8048 return
8049 FCE (Prefix (E1), Prefix (E2))
8050 and then
8051 FCE (Discrete_Range (E1), Discrete_Range (E2));
8053 when N_String_Literal =>
8054 declare
8055 S1 : constant String_Id := Strval (E1);
8056 S2 : constant String_Id := Strval (E2);
8057 L1 : constant Nat := String_Length (S1);
8058 L2 : constant Nat := String_Length (S2);
8060 begin
8061 if L1 /= L2 then
8062 return False;
8064 else
8065 for J in 1 .. L1 loop
8066 if Get_String_Char (S1, J) /=
8067 Get_String_Char (S2, J)
8068 then
8069 return False;
8070 end if;
8071 end loop;
8073 return True;
8074 end if;
8075 end;
8077 when N_Type_Conversion =>
8078 return
8079 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8080 and then
8081 FCE (Expression (E1), Expression (E2));
8083 when N_Unary_Op =>
8084 return
8085 Entity (E1) = Entity (E2)
8086 and then
8087 FCE (Right_Opnd (E1), Right_Opnd (E2));
8089 when N_Unchecked_Type_Conversion =>
8090 return
8091 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8092 and then
8093 FCE (Expression (E1), Expression (E2));
8095 -- All other node types cannot appear in this context. Strictly
8096 -- we should raise a fatal internal error. Instead we just ignore
8097 -- the nodes. This means that if anyone makes a mistake in the
8098 -- expander and mucks an expression tree irretrievably, the result
8099 -- will be a failure to detect a (probably very obscure) case
8100 -- of non-conformance, which is better than bombing on some
8101 -- case where two expressions do in fact conform.
8103 when others =>
8104 return True;
8106 end case;
8107 end if;
8108 end Fully_Conformant_Expressions;
8110 ----------------------------------------
8111 -- Fully_Conformant_Discrete_Subtypes --
8112 ----------------------------------------
8114 function Fully_Conformant_Discrete_Subtypes
8115 (Given_S1 : Node_Id;
8116 Given_S2 : Node_Id) return Boolean
8118 S1 : constant Node_Id := Original_Node (Given_S1);
8119 S2 : constant Node_Id := Original_Node (Given_S2);
8121 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
8122 -- Special-case for a bound given by a discriminant, which in the body
8123 -- is replaced with the discriminal of the enclosing type.
8125 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
8126 -- Check both bounds
8128 -----------------------
8129 -- Conforming_Bounds --
8130 -----------------------
8132 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
8133 begin
8134 if Is_Entity_Name (B1)
8135 and then Is_Entity_Name (B2)
8136 and then Ekind (Entity (B1)) = E_Discriminant
8137 then
8138 return Chars (B1) = Chars (B2);
8140 else
8141 return Fully_Conformant_Expressions (B1, B2);
8142 end if;
8143 end Conforming_Bounds;
8145 -----------------------
8146 -- Conforming_Ranges --
8147 -----------------------
8149 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
8150 begin
8151 return
8152 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
8153 and then
8154 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
8155 end Conforming_Ranges;
8157 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8159 begin
8160 if Nkind (S1) /= Nkind (S2) then
8161 return False;
8163 elsif Is_Entity_Name (S1) then
8164 return Entity (S1) = Entity (S2);
8166 elsif Nkind (S1) = N_Range then
8167 return Conforming_Ranges (S1, S2);
8169 elsif Nkind (S1) = N_Subtype_Indication then
8170 return
8171 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
8172 and then
8173 Conforming_Ranges
8174 (Range_Expression (Constraint (S1)),
8175 Range_Expression (Constraint (S2)));
8176 else
8177 return True;
8178 end if;
8179 end Fully_Conformant_Discrete_Subtypes;
8181 --------------------
8182 -- Install_Entity --
8183 --------------------
8185 procedure Install_Entity (E : Entity_Id) is
8186 Prev : constant Entity_Id := Current_Entity (E);
8187 begin
8188 Set_Is_Immediately_Visible (E);
8189 Set_Current_Entity (E);
8190 Set_Homonym (E, Prev);
8191 end Install_Entity;
8193 ---------------------
8194 -- Install_Formals --
8195 ---------------------
8197 procedure Install_Formals (Id : Entity_Id) is
8198 F : Entity_Id;
8199 begin
8200 F := First_Formal (Id);
8201 while Present (F) loop
8202 Install_Entity (F);
8203 Next_Formal (F);
8204 end loop;
8205 end Install_Formals;
8207 -----------------------------
8208 -- Is_Interface_Conformant --
8209 -----------------------------
8211 function Is_Interface_Conformant
8212 (Tagged_Type : Entity_Id;
8213 Iface_Prim : Entity_Id;
8214 Prim : Entity_Id) return Boolean
8216 -- The operation may in fact be an inherited (implicit) operation
8217 -- rather than the original interface primitive, so retrieve the
8218 -- ultimate ancestor.
8220 Iface : constant Entity_Id :=
8221 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
8222 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
8224 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
8225 -- Return the controlling formal of Prim
8227 ------------------------
8228 -- Controlling_Formal --
8229 ------------------------
8231 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
8232 E : Entity_Id;
8234 begin
8235 E := First_Entity (Prim);
8236 while Present (E) loop
8237 if Is_Formal (E) and then Is_Controlling_Formal (E) then
8238 return E;
8239 end if;
8241 Next_Entity (E);
8242 end loop;
8244 return Empty;
8245 end Controlling_Formal;
8247 -- Local variables
8249 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
8250 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
8252 -- Start of processing for Is_Interface_Conformant
8254 begin
8255 pragma Assert (Is_Subprogram (Iface_Prim)
8256 and then Is_Subprogram (Prim)
8257 and then Is_Dispatching_Operation (Iface_Prim)
8258 and then Is_Dispatching_Operation (Prim));
8260 pragma Assert (Is_Interface (Iface)
8261 or else (Present (Alias (Iface_Prim))
8262 and then
8263 Is_Interface
8264 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
8266 if Prim = Iface_Prim
8267 or else not Is_Subprogram (Prim)
8268 or else Ekind (Prim) /= Ekind (Iface_Prim)
8269 or else not Is_Dispatching_Operation (Prim)
8270 or else Scope (Prim) /= Scope (Tagged_Type)
8271 or else No (Typ)
8272 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
8273 or else not Primitive_Names_Match (Iface_Prim, Prim)
8274 then
8275 return False;
8277 -- The mode of the controlling formals must match
8279 elsif Present (Iface_Ctrl_F)
8280 and then Present (Prim_Ctrl_F)
8281 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
8282 then
8283 return False;
8285 -- Case of a procedure, or a function whose result type matches the
8286 -- result type of the interface primitive, or a function that has no
8287 -- controlling result (I or access I).
8289 elsif Ekind (Iface_Prim) = E_Procedure
8290 or else Etype (Prim) = Etype (Iface_Prim)
8291 or else not Has_Controlling_Result (Prim)
8292 then
8293 return Type_Conformant
8294 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
8296 -- Case of a function returning an interface, or an access to one. Check
8297 -- that the return types correspond.
8299 elsif Implements_Interface (Typ, Iface) then
8300 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
8302 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
8303 then
8304 return False;
8305 else
8306 return
8307 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
8308 Skip_Controlling_Formals => True);
8309 end if;
8311 else
8312 return False;
8313 end if;
8314 end Is_Interface_Conformant;
8316 ---------------------------------
8317 -- Is_Non_Overriding_Operation --
8318 ---------------------------------
8320 function Is_Non_Overriding_Operation
8321 (Prev_E : Entity_Id;
8322 New_E : Entity_Id) return Boolean
8324 Formal : Entity_Id;
8325 F_Typ : Entity_Id;
8326 G_Typ : Entity_Id := Empty;
8328 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
8329 -- If F_Type is a derived type associated with a generic actual subtype,
8330 -- then return its Generic_Parent_Type attribute, else return Empty.
8332 function Types_Correspond
8333 (P_Type : Entity_Id;
8334 N_Type : Entity_Id) return Boolean;
8335 -- Returns true if and only if the types (or designated types in the
8336 -- case of anonymous access types) are the same or N_Type is derived
8337 -- directly or indirectly from P_Type.
8339 -----------------------------
8340 -- Get_Generic_Parent_Type --
8341 -----------------------------
8343 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
8344 G_Typ : Entity_Id;
8345 Defn : Node_Id;
8346 Indic : Node_Id;
8348 begin
8349 if Is_Derived_Type (F_Typ)
8350 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
8351 then
8352 -- The tree must be traversed to determine the parent subtype in
8353 -- the generic unit, which unfortunately isn't always available
8354 -- via semantic attributes. ??? (Note: The use of Original_Node
8355 -- is needed for cases where a full derived type has been
8356 -- rewritten.)
8358 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
8359 if Nkind (Defn) = N_Derived_Type_Definition then
8360 Indic := Subtype_Indication (Defn);
8362 if Nkind (Indic) = N_Subtype_Indication then
8363 G_Typ := Entity (Subtype_Mark (Indic));
8364 else
8365 G_Typ := Entity (Indic);
8366 end if;
8368 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
8369 and then Present (Generic_Parent_Type (Parent (G_Typ)))
8370 then
8371 return Generic_Parent_Type (Parent (G_Typ));
8372 end if;
8373 end if;
8374 end if;
8376 return Empty;
8377 end Get_Generic_Parent_Type;
8379 ----------------------
8380 -- Types_Correspond --
8381 ----------------------
8383 function Types_Correspond
8384 (P_Type : Entity_Id;
8385 N_Type : Entity_Id) return Boolean
8387 Prev_Type : Entity_Id := Base_Type (P_Type);
8388 New_Type : Entity_Id := Base_Type (N_Type);
8390 begin
8391 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
8392 Prev_Type := Designated_Type (Prev_Type);
8393 end if;
8395 if Ekind (New_Type) = E_Anonymous_Access_Type then
8396 New_Type := Designated_Type (New_Type);
8397 end if;
8399 if Prev_Type = New_Type then
8400 return True;
8402 elsif not Is_Class_Wide_Type (New_Type) then
8403 while Etype (New_Type) /= New_Type loop
8404 New_Type := Etype (New_Type);
8405 if New_Type = Prev_Type then
8406 return True;
8407 end if;
8408 end loop;
8409 end if;
8410 return False;
8411 end Types_Correspond;
8413 -- Start of processing for Is_Non_Overriding_Operation
8415 begin
8416 -- In the case where both operations are implicit derived subprograms
8417 -- then neither overrides the other. This can only occur in certain
8418 -- obscure cases (e.g., derivation from homographs created in a generic
8419 -- instantiation).
8421 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
8422 return True;
8424 elsif Ekind (Current_Scope) = E_Package
8425 and then Is_Generic_Instance (Current_Scope)
8426 and then In_Private_Part (Current_Scope)
8427 and then Comes_From_Source (New_E)
8428 then
8429 -- We examine the formals and result type of the inherited operation,
8430 -- to determine whether their type is derived from (the instance of)
8431 -- a generic type. The first such formal or result type is the one
8432 -- tested.
8434 Formal := First_Formal (Prev_E);
8435 while Present (Formal) loop
8436 F_Typ := Base_Type (Etype (Formal));
8438 if Ekind (F_Typ) = E_Anonymous_Access_Type then
8439 F_Typ := Designated_Type (F_Typ);
8440 end if;
8442 G_Typ := Get_Generic_Parent_Type (F_Typ);
8443 exit when Present (G_Typ);
8445 Next_Formal (Formal);
8446 end loop;
8448 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
8449 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
8450 end if;
8452 if No (G_Typ) then
8453 return False;
8454 end if;
8456 -- If the generic type is a private type, then the original operation
8457 -- was not overriding in the generic, because there was no primitive
8458 -- operation to override.
8460 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
8461 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8462 N_Formal_Private_Type_Definition
8463 then
8464 return True;
8466 -- The generic parent type is the ancestor of a formal derived
8467 -- type declaration. We need to check whether it has a primitive
8468 -- operation that should be overridden by New_E in the generic.
8470 else
8471 declare
8472 P_Formal : Entity_Id;
8473 N_Formal : Entity_Id;
8474 P_Typ : Entity_Id;
8475 N_Typ : Entity_Id;
8476 P_Prim : Entity_Id;
8477 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
8479 begin
8480 while Present (Prim_Elt) loop
8481 P_Prim := Node (Prim_Elt);
8483 if Chars (P_Prim) = Chars (New_E)
8484 and then Ekind (P_Prim) = Ekind (New_E)
8485 then
8486 P_Formal := First_Formal (P_Prim);
8487 N_Formal := First_Formal (New_E);
8488 while Present (P_Formal) and then Present (N_Formal) loop
8489 P_Typ := Etype (P_Formal);
8490 N_Typ := Etype (N_Formal);
8492 if not Types_Correspond (P_Typ, N_Typ) then
8493 exit;
8494 end if;
8496 Next_Entity (P_Formal);
8497 Next_Entity (N_Formal);
8498 end loop;
8500 -- Found a matching primitive operation belonging to the
8501 -- formal ancestor type, so the new subprogram is
8502 -- overriding.
8504 if No (P_Formal)
8505 and then No (N_Formal)
8506 and then (Ekind (New_E) /= E_Function
8507 or else
8508 Types_Correspond
8509 (Etype (P_Prim), Etype (New_E)))
8510 then
8511 return False;
8512 end if;
8513 end if;
8515 Next_Elmt (Prim_Elt);
8516 end loop;
8518 -- If no match found, then the new subprogram does not override
8519 -- in the generic (nor in the instance).
8521 -- If the type in question is not abstract, and the subprogram
8522 -- is, this will be an error if the new operation is in the
8523 -- private part of the instance. Emit a warning now, which will
8524 -- make the subsequent error message easier to understand.
8526 if not Is_Abstract_Type (F_Typ)
8527 and then Is_Abstract_Subprogram (Prev_E)
8528 and then In_Private_Part (Current_Scope)
8529 then
8530 Error_Msg_Node_2 := F_Typ;
8531 Error_Msg_NE
8532 ("private operation& in generic unit does not override "
8533 & "any primitive operation of& (RM 12.3 (18))??",
8534 New_E, New_E);
8535 end if;
8537 return True;
8538 end;
8539 end if;
8540 else
8541 return False;
8542 end if;
8543 end Is_Non_Overriding_Operation;
8545 -------------------------------------
8546 -- List_Inherited_Pre_Post_Aspects --
8547 -------------------------------------
8549 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
8550 begin
8551 if Opt.List_Inherited_Aspects
8552 and then Is_Subprogram_Or_Generic_Subprogram (E)
8553 then
8554 declare
8555 Inherited : constant Subprogram_List := Inherited_Subprograms (E);
8556 P : Node_Id;
8558 begin
8559 for J in Inherited'Range loop
8560 P := Pre_Post_Conditions (Contract (Inherited (J)));
8561 while Present (P) loop
8562 Error_Msg_Sloc := Sloc (P);
8564 if Class_Present (P) and then not Split_PPC (P) then
8565 if Pragma_Name (P) = Name_Precondition then
8566 Error_Msg_N ("info: & inherits `Pre''Class` aspect "
8567 & "from #?L?", E);
8568 else
8569 Error_Msg_N ("info: & inherits `Post''Class` aspect "
8570 & "from #?L?", E);
8571 end if;
8572 end if;
8574 P := Next_Pragma (P);
8575 end loop;
8576 end loop;
8577 end;
8578 end if;
8579 end List_Inherited_Pre_Post_Aspects;
8581 ------------------------------
8582 -- Make_Inequality_Operator --
8583 ------------------------------
8585 -- S is the defining identifier of an equality operator. We build a
8586 -- subprogram declaration with the right signature. This operation is
8587 -- intrinsic, because it is always expanded as the negation of the
8588 -- call to the equality function.
8590 procedure Make_Inequality_Operator (S : Entity_Id) is
8591 Loc : constant Source_Ptr := Sloc (S);
8592 Decl : Node_Id;
8593 Formals : List_Id;
8594 Op_Name : Entity_Id;
8596 FF : constant Entity_Id := First_Formal (S);
8597 NF : constant Entity_Id := Next_Formal (FF);
8599 begin
8600 -- Check that equality was properly defined, ignore call if not
8602 if No (NF) then
8603 return;
8604 end if;
8606 declare
8607 A : constant Entity_Id :=
8608 Make_Defining_Identifier (Sloc (FF),
8609 Chars => Chars (FF));
8611 B : constant Entity_Id :=
8612 Make_Defining_Identifier (Sloc (NF),
8613 Chars => Chars (NF));
8615 begin
8616 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
8618 Formals := New_List (
8619 Make_Parameter_Specification (Loc,
8620 Defining_Identifier => A,
8621 Parameter_Type =>
8622 New_Occurrence_Of (Etype (First_Formal (S)),
8623 Sloc (Etype (First_Formal (S))))),
8625 Make_Parameter_Specification (Loc,
8626 Defining_Identifier => B,
8627 Parameter_Type =>
8628 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
8629 Sloc (Etype (Next_Formal (First_Formal (S)))))));
8631 Decl :=
8632 Make_Subprogram_Declaration (Loc,
8633 Specification =>
8634 Make_Function_Specification (Loc,
8635 Defining_Unit_Name => Op_Name,
8636 Parameter_Specifications => Formals,
8637 Result_Definition =>
8638 New_Occurrence_Of (Standard_Boolean, Loc)));
8640 -- Insert inequality right after equality if it is explicit or after
8641 -- the derived type when implicit. These entities are created only
8642 -- for visibility purposes, and eventually replaced in the course
8643 -- of expansion, so they do not need to be attached to the tree and
8644 -- seen by the back-end. Keeping them internal also avoids spurious
8645 -- freezing problems. The declaration is inserted in the tree for
8646 -- analysis, and removed afterwards. If the equality operator comes
8647 -- from an explicit declaration, attach the inequality immediately
8648 -- after. Else the equality is inherited from a derived type
8649 -- declaration, so insert inequality after that declaration.
8651 if No (Alias (S)) then
8652 Insert_After (Unit_Declaration_Node (S), Decl);
8653 elsif Is_List_Member (Parent (S)) then
8654 Insert_After (Parent (S), Decl);
8655 else
8656 Insert_After (Parent (Etype (First_Formal (S))), Decl);
8657 end if;
8659 Mark_Rewrite_Insertion (Decl);
8660 Set_Is_Intrinsic_Subprogram (Op_Name);
8661 Analyze (Decl);
8662 Remove (Decl);
8663 Set_Has_Completion (Op_Name);
8664 Set_Corresponding_Equality (Op_Name, S);
8665 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
8666 end;
8667 end Make_Inequality_Operator;
8669 ----------------------
8670 -- May_Need_Actuals --
8671 ----------------------
8673 procedure May_Need_Actuals (Fun : Entity_Id) is
8674 F : Entity_Id;
8675 B : Boolean;
8677 begin
8678 F := First_Formal (Fun);
8679 B := True;
8680 while Present (F) loop
8681 if No (Default_Value (F)) then
8682 B := False;
8683 exit;
8684 end if;
8686 Next_Formal (F);
8687 end loop;
8689 Set_Needs_No_Actuals (Fun, B);
8690 end May_Need_Actuals;
8692 ---------------------
8693 -- Mode_Conformant --
8694 ---------------------
8696 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8697 Result : Boolean;
8698 begin
8699 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8700 return Result;
8701 end Mode_Conformant;
8703 ---------------------------
8704 -- New_Overloaded_Entity --
8705 ---------------------------
8707 procedure New_Overloaded_Entity
8708 (S : Entity_Id;
8709 Derived_Type : Entity_Id := Empty)
8711 Overridden_Subp : Entity_Id := Empty;
8712 -- Set if the current scope has an operation that is type-conformant
8713 -- with S, and becomes hidden by S.
8715 Is_Primitive_Subp : Boolean;
8716 -- Set to True if the new subprogram is primitive
8718 E : Entity_Id;
8719 -- Entity that S overrides
8721 Prev_Vis : Entity_Id := Empty;
8722 -- Predecessor of E in Homonym chain
8724 procedure Check_For_Primitive_Subprogram
8725 (Is_Primitive : out Boolean;
8726 Is_Overriding : Boolean := False);
8727 -- If the subprogram being analyzed is a primitive operation of the type
8728 -- of a formal or result, set the Has_Primitive_Operations flag on the
8729 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8730 -- corresponding flag on the entity itself for later use.
8732 procedure Check_Synchronized_Overriding
8733 (Def_Id : Entity_Id;
8734 Overridden_Subp : out Entity_Id);
8735 -- First determine if Def_Id is an entry or a subprogram either defined
8736 -- in the scope of a task or protected type, or is a primitive of such
8737 -- a type. Check whether Def_Id overrides a subprogram of an interface
8738 -- implemented by the synchronized type, return the overridden entity
8739 -- or Empty.
8741 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8742 -- Check that E is declared in the private part of the current package,
8743 -- or in the package body, where it may hide a previous declaration.
8744 -- We can't use In_Private_Part by itself because this flag is also
8745 -- set when freezing entities, so we must examine the place of the
8746 -- declaration in the tree, and recognize wrapper packages as well.
8748 function Is_Overriding_Alias
8749 (Old_E : Entity_Id;
8750 New_E : Entity_Id) return Boolean;
8751 -- Check whether new subprogram and old subprogram are both inherited
8752 -- from subprograms that have distinct dispatch table entries. This can
8753 -- occur with derivations from instances with accidental homonyms. The
8754 -- function is conservative given that the converse is only true within
8755 -- instances that contain accidental overloadings.
8757 ------------------------------------
8758 -- Check_For_Primitive_Subprogram --
8759 ------------------------------------
8761 procedure Check_For_Primitive_Subprogram
8762 (Is_Primitive : out Boolean;
8763 Is_Overriding : Boolean := False)
8765 Formal : Entity_Id;
8766 F_Typ : Entity_Id;
8767 B_Typ : Entity_Id;
8769 function Visible_Part_Type (T : Entity_Id) return Boolean;
8770 -- Returns true if T is declared in the visible part of the current
8771 -- package scope; otherwise returns false. Assumes that T is declared
8772 -- in a package.
8774 procedure Check_Private_Overriding (T : Entity_Id);
8775 -- Checks that if a primitive abstract subprogram of a visible
8776 -- abstract type is declared in a private part, then it must override
8777 -- an abstract subprogram declared in the visible part. Also checks
8778 -- that if a primitive function with a controlling result is declared
8779 -- in a private part, then it must override a function declared in
8780 -- the visible part.
8782 ------------------------------
8783 -- Check_Private_Overriding --
8784 ------------------------------
8786 procedure Check_Private_Overriding (T : Entity_Id) is
8787 begin
8788 if Is_Package_Or_Generic_Package (Current_Scope)
8789 and then In_Private_Part (Current_Scope)
8790 and then Visible_Part_Type (T)
8791 and then not In_Instance
8792 then
8793 if Is_Abstract_Type (T)
8794 and then Is_Abstract_Subprogram (S)
8795 and then (not Is_Overriding
8796 or else not Is_Abstract_Subprogram (E))
8797 then
8798 Error_Msg_N ("abstract subprograms must be visible "
8799 & "(RM 3.9.3(10))!", S);
8801 elsif Ekind (S) = E_Function and then not Is_Overriding then
8802 if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
8803 Error_Msg_N ("private function with tagged result must"
8804 & " override visible-part function", S);
8805 Error_Msg_N ("\move subprogram to the visible part"
8806 & " (RM 3.9.3(10))", S);
8808 -- AI05-0073: extend this test to the case of a function
8809 -- with a controlling access result.
8811 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8812 and then Is_Tagged_Type (Designated_Type (Etype (S)))
8813 and then
8814 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
8815 and then Ada_Version >= Ada_2012
8816 then
8817 Error_Msg_N
8818 ("private function with controlling access result "
8819 & "must override visible-part function", S);
8820 Error_Msg_N
8821 ("\move subprogram to the visible part"
8822 & " (RM 3.9.3(10))", S);
8823 end if;
8824 end if;
8825 end if;
8826 end Check_Private_Overriding;
8828 -----------------------
8829 -- Visible_Part_Type --
8830 -----------------------
8832 function Visible_Part_Type (T : Entity_Id) return Boolean is
8833 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8834 N : Node_Id;
8836 begin
8837 -- If the entity is a private type, then it must be declared in a
8838 -- visible part.
8840 if Ekind (T) in Private_Kind then
8841 return True;
8842 end if;
8844 -- Otherwise, we traverse the visible part looking for its
8845 -- corresponding declaration. We cannot use the declaration
8846 -- node directly because in the private part the entity of a
8847 -- private type is the one in the full view, which does not
8848 -- indicate that it is the completion of something visible.
8850 N := First (Visible_Declarations (Specification (P)));
8851 while Present (N) loop
8852 if Nkind (N) = N_Full_Type_Declaration
8853 and then Present (Defining_Identifier (N))
8854 and then T = Defining_Identifier (N)
8855 then
8856 return True;
8858 elsif Nkind_In (N, N_Private_Type_Declaration,
8859 N_Private_Extension_Declaration)
8860 and then Present (Defining_Identifier (N))
8861 and then T = Full_View (Defining_Identifier (N))
8862 then
8863 return True;
8864 end if;
8866 Next (N);
8867 end loop;
8869 return False;
8870 end Visible_Part_Type;
8872 -- Start of processing for Check_For_Primitive_Subprogram
8874 begin
8875 Is_Primitive := False;
8877 if not Comes_From_Source (S) then
8878 null;
8880 -- If subprogram is at library level, it is not primitive operation
8882 elsif Current_Scope = Standard_Standard then
8883 null;
8885 elsif (Is_Package_Or_Generic_Package (Current_Scope)
8886 and then not In_Package_Body (Current_Scope))
8887 or else Is_Overriding
8888 then
8889 -- For function, check return type
8891 if Ekind (S) = E_Function then
8892 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
8893 F_Typ := Designated_Type (Etype (S));
8894 else
8895 F_Typ := Etype (S);
8896 end if;
8898 B_Typ := Base_Type (F_Typ);
8900 if Scope (B_Typ) = Current_Scope
8901 and then not Is_Class_Wide_Type (B_Typ)
8902 and then not Is_Generic_Type (B_Typ)
8903 then
8904 Is_Primitive := True;
8905 Set_Has_Primitive_Operations (B_Typ);
8906 Set_Is_Primitive (S);
8907 Check_Private_Overriding (B_Typ);
8908 end if;
8909 end if;
8911 -- For all subprograms, check formals
8913 Formal := First_Formal (S);
8914 while Present (Formal) loop
8915 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
8916 F_Typ := Designated_Type (Etype (Formal));
8917 else
8918 F_Typ := Etype (Formal);
8919 end if;
8921 B_Typ := Base_Type (F_Typ);
8923 if Ekind (B_Typ) = E_Access_Subtype then
8924 B_Typ := Base_Type (B_Typ);
8925 end if;
8927 if Scope (B_Typ) = Current_Scope
8928 and then not Is_Class_Wide_Type (B_Typ)
8929 and then not Is_Generic_Type (B_Typ)
8930 then
8931 Is_Primitive := True;
8932 Set_Is_Primitive (S);
8933 Set_Has_Primitive_Operations (B_Typ);
8934 Check_Private_Overriding (B_Typ);
8935 end if;
8937 Next_Formal (Formal);
8938 end loop;
8940 -- Special case: An equality function can be redefined for a type
8941 -- occurring in a declarative part, and won't otherwise be treated as
8942 -- a primitive because it doesn't occur in a package spec and doesn't
8943 -- override an inherited subprogram. It's important that we mark it
8944 -- primitive so it can be returned by Collect_Primitive_Operations
8945 -- and be used in composing the equality operation of later types
8946 -- that have a component of the type.
8948 elsif Chars (S) = Name_Op_Eq
8949 and then Etype (S) = Standard_Boolean
8950 then
8951 B_Typ := Base_Type (Etype (First_Formal (S)));
8953 if Scope (B_Typ) = Current_Scope
8954 and then
8955 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
8956 and then not Is_Limited_Type (B_Typ)
8957 then
8958 Is_Primitive := True;
8959 Set_Is_Primitive (S);
8960 Set_Has_Primitive_Operations (B_Typ);
8961 Check_Private_Overriding (B_Typ);
8962 end if;
8963 end if;
8964 end Check_For_Primitive_Subprogram;
8966 -----------------------------------
8967 -- Check_Synchronized_Overriding --
8968 -----------------------------------
8970 procedure Check_Synchronized_Overriding
8971 (Def_Id : Entity_Id;
8972 Overridden_Subp : out Entity_Id)
8974 Ifaces_List : Elist_Id;
8975 In_Scope : Boolean;
8976 Typ : Entity_Id;
8978 function Matches_Prefixed_View_Profile
8979 (Prim_Params : List_Id;
8980 Iface_Params : List_Id) return Boolean;
8981 -- Determine whether a subprogram's parameter profile Prim_Params
8982 -- matches that of a potentially overridden interface subprogram
8983 -- Iface_Params. Also determine if the type of first parameter of
8984 -- Iface_Params is an implemented interface.
8986 -----------------------------------
8987 -- Matches_Prefixed_View_Profile --
8988 -----------------------------------
8990 function Matches_Prefixed_View_Profile
8991 (Prim_Params : List_Id;
8992 Iface_Params : List_Id) return Boolean
8994 Iface_Id : Entity_Id;
8995 Iface_Param : Node_Id;
8996 Iface_Typ : Entity_Id;
8997 Prim_Id : Entity_Id;
8998 Prim_Param : Node_Id;
8999 Prim_Typ : Entity_Id;
9001 function Is_Implemented
9002 (Ifaces_List : Elist_Id;
9003 Iface : Entity_Id) return Boolean;
9004 -- Determine if Iface is implemented by the current task or
9005 -- protected type.
9007 --------------------
9008 -- Is_Implemented --
9009 --------------------
9011 function Is_Implemented
9012 (Ifaces_List : Elist_Id;
9013 Iface : Entity_Id) return Boolean
9015 Iface_Elmt : Elmt_Id;
9017 begin
9018 Iface_Elmt := First_Elmt (Ifaces_List);
9019 while Present (Iface_Elmt) loop
9020 if Node (Iface_Elmt) = Iface then
9021 return True;
9022 end if;
9024 Next_Elmt (Iface_Elmt);
9025 end loop;
9027 return False;
9028 end Is_Implemented;
9030 -- Start of processing for Matches_Prefixed_View_Profile
9032 begin
9033 Iface_Param := First (Iface_Params);
9034 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
9036 if Is_Access_Type (Iface_Typ) then
9037 Iface_Typ := Designated_Type (Iface_Typ);
9038 end if;
9040 Prim_Param := First (Prim_Params);
9042 -- The first parameter of the potentially overridden subprogram
9043 -- must be an interface implemented by Prim.
9045 if not Is_Interface (Iface_Typ)
9046 or else not Is_Implemented (Ifaces_List, Iface_Typ)
9047 then
9048 return False;
9049 end if;
9051 -- The checks on the object parameters are done, move onto the
9052 -- rest of the parameters.
9054 if not In_Scope then
9055 Prim_Param := Next (Prim_Param);
9056 end if;
9058 Iface_Param := Next (Iface_Param);
9059 while Present (Iface_Param) and then Present (Prim_Param) loop
9060 Iface_Id := Defining_Identifier (Iface_Param);
9061 Iface_Typ := Find_Parameter_Type (Iface_Param);
9063 Prim_Id := Defining_Identifier (Prim_Param);
9064 Prim_Typ := Find_Parameter_Type (Prim_Param);
9066 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
9067 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
9068 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
9069 then
9070 Iface_Typ := Designated_Type (Iface_Typ);
9071 Prim_Typ := Designated_Type (Prim_Typ);
9072 end if;
9074 -- Case of multiple interface types inside a parameter profile
9076 -- (Obj_Param : in out Iface; ...; Param : Iface)
9078 -- If the interface type is implemented, then the matching type
9079 -- in the primitive should be the implementing record type.
9081 if Ekind (Iface_Typ) = E_Record_Type
9082 and then Is_Interface (Iface_Typ)
9083 and then Is_Implemented (Ifaces_List, Iface_Typ)
9084 then
9085 if Prim_Typ /= Typ then
9086 return False;
9087 end if;
9089 -- The two parameters must be both mode and subtype conformant
9091 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9092 or else not
9093 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9094 then
9095 return False;
9096 end if;
9098 Next (Iface_Param);
9099 Next (Prim_Param);
9100 end loop;
9102 -- One of the two lists contains more parameters than the other
9104 if Present (Iface_Param) or else Present (Prim_Param) then
9105 return False;
9106 end if;
9108 return True;
9109 end Matches_Prefixed_View_Profile;
9111 -- Start of processing for Check_Synchronized_Overriding
9113 begin
9114 Overridden_Subp := Empty;
9116 -- Def_Id must be an entry or a subprogram. We should skip predefined
9117 -- primitives internally generated by the frontend; however at this
9118 -- stage predefined primitives are still not fully decorated. As a
9119 -- minor optimization we skip here internally generated subprograms.
9121 if (Ekind (Def_Id) /= E_Entry
9122 and then Ekind (Def_Id) /= E_Function
9123 and then Ekind (Def_Id) /= E_Procedure)
9124 or else not Comes_From_Source (Def_Id)
9125 then
9126 return;
9127 end if;
9129 -- Search for the concurrent declaration since it contains the list
9130 -- of all implemented interfaces. In this case, the subprogram is
9131 -- declared within the scope of a protected or a task type.
9133 if Present (Scope (Def_Id))
9134 and then Is_Concurrent_Type (Scope (Def_Id))
9135 and then not Is_Generic_Actual_Type (Scope (Def_Id))
9136 then
9137 Typ := Scope (Def_Id);
9138 In_Scope := True;
9140 -- The enclosing scope is not a synchronized type and the subprogram
9141 -- has no formals.
9143 elsif No (First_Formal (Def_Id)) then
9144 return;
9146 -- The subprogram has formals and hence it may be a primitive of a
9147 -- concurrent type.
9149 else
9150 Typ := Etype (First_Formal (Def_Id));
9152 if Is_Access_Type (Typ) then
9153 Typ := Directly_Designated_Type (Typ);
9154 end if;
9156 if Is_Concurrent_Type (Typ)
9157 and then not Is_Generic_Actual_Type (Typ)
9158 then
9159 In_Scope := False;
9161 -- This case occurs when the concurrent type is declared within
9162 -- a generic unit. As a result the corresponding record has been
9163 -- built and used as the type of the first formal, we just have
9164 -- to retrieve the corresponding concurrent type.
9166 elsif Is_Concurrent_Record_Type (Typ)
9167 and then not Is_Class_Wide_Type (Typ)
9168 and then Present (Corresponding_Concurrent_Type (Typ))
9169 then
9170 Typ := Corresponding_Concurrent_Type (Typ);
9171 In_Scope := False;
9173 else
9174 return;
9175 end if;
9176 end if;
9178 -- There is no overriding to check if is an inherited operation in a
9179 -- type derivation on for a generic actual.
9181 Collect_Interfaces (Typ, Ifaces_List);
9183 if Is_Empty_Elmt_List (Ifaces_List) then
9184 return;
9185 end if;
9187 -- Determine whether entry or subprogram Def_Id overrides a primitive
9188 -- operation that belongs to one of the interfaces in Ifaces_List.
9190 declare
9191 Candidate : Entity_Id := Empty;
9192 Hom : Entity_Id := Empty;
9193 Iface_Typ : Entity_Id;
9194 Subp : Entity_Id := Empty;
9196 begin
9197 -- Traverse the homonym chain, looking for a potentially
9198 -- overridden subprogram that belongs to an implemented
9199 -- interface.
9201 Hom := Current_Entity_In_Scope (Def_Id);
9202 while Present (Hom) loop
9203 Subp := Hom;
9205 if Subp = Def_Id
9206 or else not Is_Overloadable (Subp)
9207 or else not Is_Primitive (Subp)
9208 or else not Is_Dispatching_Operation (Subp)
9209 or else not Present (Find_Dispatching_Type (Subp))
9210 or else not Is_Interface (Find_Dispatching_Type (Subp))
9211 then
9212 null;
9214 -- Entries and procedures can override abstract or null
9215 -- interface procedures.
9217 elsif (Ekind (Def_Id) = E_Procedure
9218 or else Ekind (Def_Id) = E_Entry)
9219 and then Ekind (Subp) = E_Procedure
9220 and then Matches_Prefixed_View_Profile
9221 (Parameter_Specifications (Parent (Def_Id)),
9222 Parameter_Specifications (Parent (Subp)))
9223 then
9224 Candidate := Subp;
9226 -- For an overridden subprogram Subp, check whether the mode
9227 -- of its first parameter is correct depending on the kind
9228 -- of synchronized type.
9230 declare
9231 Formal : constant Node_Id := First_Formal (Candidate);
9233 begin
9234 -- In order for an entry or a protected procedure to
9235 -- override, the first parameter of the overridden
9236 -- routine must be of mode "out", "in out" or
9237 -- access-to-variable.
9239 if Ekind_In (Candidate, E_Entry, E_Procedure)
9240 and then Is_Protected_Type (Typ)
9241 and then Ekind (Formal) /= E_In_Out_Parameter
9242 and then Ekind (Formal) /= E_Out_Parameter
9243 and then Nkind (Parameter_Type (Parent (Formal))) /=
9244 N_Access_Definition
9245 then
9246 null;
9248 -- All other cases are OK since a task entry or routine
9249 -- does not have a restriction on the mode of the first
9250 -- parameter of the overridden interface routine.
9252 else
9253 Overridden_Subp := Candidate;
9254 return;
9255 end if;
9256 end;
9258 -- Functions can override abstract interface functions
9260 elsif Ekind (Def_Id) = E_Function
9261 and then Ekind (Subp) = E_Function
9262 and then Matches_Prefixed_View_Profile
9263 (Parameter_Specifications (Parent (Def_Id)),
9264 Parameter_Specifications (Parent (Subp)))
9265 and then Etype (Result_Definition (Parent (Def_Id))) =
9266 Etype (Result_Definition (Parent (Subp)))
9267 then
9268 Overridden_Subp := Subp;
9269 return;
9270 end if;
9272 Hom := Homonym (Hom);
9273 end loop;
9275 -- After examining all candidates for overriding, we are left with
9276 -- the best match which is a mode incompatible interface routine.
9277 -- Do not emit an error if the Expander is active since this error
9278 -- will be detected later on after all concurrent types are
9279 -- expanded and all wrappers are built. This check is meant for
9280 -- spec-only compilations.
9282 if Present (Candidate) and then not Expander_Active then
9283 Iface_Typ :=
9284 Find_Parameter_Type (Parent (First_Formal (Candidate)));
9286 -- Def_Id is primitive of a protected type, declared inside the
9287 -- type, and the candidate is primitive of a limited or
9288 -- synchronized interface.
9290 if In_Scope
9291 and then Is_Protected_Type (Typ)
9292 and then
9293 (Is_Limited_Interface (Iface_Typ)
9294 or else Is_Protected_Interface (Iface_Typ)
9295 or else Is_Synchronized_Interface (Iface_Typ)
9296 or else Is_Task_Interface (Iface_Typ))
9297 then
9298 Error_Msg_PT (Parent (Typ), Candidate);
9299 end if;
9300 end if;
9302 Overridden_Subp := Candidate;
9303 return;
9304 end;
9305 end Check_Synchronized_Overriding;
9307 ----------------------------
9308 -- Is_Private_Declaration --
9309 ----------------------------
9311 function Is_Private_Declaration (E : Entity_Id) return Boolean is
9312 Priv_Decls : List_Id;
9313 Decl : constant Node_Id := Unit_Declaration_Node (E);
9315 begin
9316 if Is_Package_Or_Generic_Package (Current_Scope)
9317 and then In_Private_Part (Current_Scope)
9318 then
9319 Priv_Decls :=
9320 Private_Declarations (Package_Specification (Current_Scope));
9322 return In_Package_Body (Current_Scope)
9323 or else
9324 (Is_List_Member (Decl)
9325 and then List_Containing (Decl) = Priv_Decls)
9326 or else (Nkind (Parent (Decl)) = N_Package_Specification
9327 and then not
9328 Is_Compilation_Unit
9329 (Defining_Entity (Parent (Decl)))
9330 and then List_Containing (Parent (Parent (Decl))) =
9331 Priv_Decls);
9332 else
9333 return False;
9334 end if;
9335 end Is_Private_Declaration;
9337 --------------------------
9338 -- Is_Overriding_Alias --
9339 --------------------------
9341 function Is_Overriding_Alias
9342 (Old_E : Entity_Id;
9343 New_E : Entity_Id) return Boolean
9345 AO : constant Entity_Id := Alias (Old_E);
9346 AN : constant Entity_Id := Alias (New_E);
9347 begin
9348 return Scope (AO) /= Scope (AN)
9349 or else No (DTC_Entity (AO))
9350 or else No (DTC_Entity (AN))
9351 or else DT_Position (AO) = DT_Position (AN);
9352 end Is_Overriding_Alias;
9354 -- Start of processing for New_Overloaded_Entity
9356 begin
9357 -- We need to look for an entity that S may override. This must be a
9358 -- homonym in the current scope, so we look for the first homonym of
9359 -- S in the current scope as the starting point for the search.
9361 E := Current_Entity_In_Scope (S);
9363 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9364 -- They are directly added to the list of primitive operations of
9365 -- Derived_Type, unless this is a rederivation in the private part
9366 -- of an operation that was already derived in the visible part of
9367 -- the current package.
9369 if Ada_Version >= Ada_2005
9370 and then Present (Derived_Type)
9371 and then Present (Alias (S))
9372 and then Is_Dispatching_Operation (Alias (S))
9373 and then Present (Find_Dispatching_Type (Alias (S)))
9374 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
9375 then
9376 -- For private types, when the full-view is processed we propagate to
9377 -- the full view the non-overridden entities whose attribute "alias"
9378 -- references an interface primitive. These entities were added by
9379 -- Derive_Subprograms to ensure that interface primitives are
9380 -- covered.
9382 -- Inside_Freeze_Actions is non zero when S corresponds with an
9383 -- internal entity that links an interface primitive with its
9384 -- covering primitive through attribute Interface_Alias (see
9385 -- Add_Internal_Interface_Entities).
9387 if Inside_Freezing_Actions = 0
9388 and then Is_Package_Or_Generic_Package (Current_Scope)
9389 and then In_Private_Part (Current_Scope)
9390 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
9391 and then Nkind (Parent (S)) = N_Full_Type_Declaration
9392 and then Full_View (Defining_Identifier (Parent (E)))
9393 = Defining_Identifier (Parent (S))
9394 and then Alias (E) = Alias (S)
9395 then
9396 Check_Operation_From_Private_View (S, E);
9397 Set_Is_Dispatching_Operation (S);
9399 -- Common case
9401 else
9402 Enter_Overloaded_Entity (S);
9403 Check_Dispatching_Operation (S, Empty);
9404 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9405 end if;
9407 return;
9408 end if;
9410 -- If there is no homonym then this is definitely not overriding
9412 if No (E) then
9413 Enter_Overloaded_Entity (S);
9414 Check_Dispatching_Operation (S, Empty);
9415 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9417 -- If subprogram has an explicit declaration, check whether it has an
9418 -- overriding indicator.
9420 if Comes_From_Source (S) then
9421 Check_Synchronized_Overriding (S, Overridden_Subp);
9423 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9424 -- it may have overridden some hidden inherited primitive. Update
9425 -- Overridden_Subp to avoid spurious errors when checking the
9426 -- overriding indicator.
9428 if Ada_Version >= Ada_2012
9429 and then No (Overridden_Subp)
9430 and then Is_Dispatching_Operation (S)
9431 and then Present (Overridden_Operation (S))
9432 then
9433 Overridden_Subp := Overridden_Operation (S);
9434 end if;
9436 Check_Overriding_Indicator
9437 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9438 end if;
9440 -- If there is a homonym that is not overloadable, then we have an
9441 -- error, except for the special cases checked explicitly below.
9443 elsif not Is_Overloadable (E) then
9445 -- Check for spurious conflict produced by a subprogram that has the
9446 -- same name as that of the enclosing generic package. The conflict
9447 -- occurs within an instance, between the subprogram and the renaming
9448 -- declaration for the package. After the subprogram, the package
9449 -- renaming declaration becomes hidden.
9451 if Ekind (E) = E_Package
9452 and then Present (Renamed_Object (E))
9453 and then Renamed_Object (E) = Current_Scope
9454 and then Nkind (Parent (Renamed_Object (E))) =
9455 N_Package_Specification
9456 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
9457 then
9458 Set_Is_Hidden (E);
9459 Set_Is_Immediately_Visible (E, False);
9460 Enter_Overloaded_Entity (S);
9461 Set_Homonym (S, Homonym (E));
9462 Check_Dispatching_Operation (S, Empty);
9463 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
9465 -- If the subprogram is implicit it is hidden by the previous
9466 -- declaration. However if it is dispatching, it must appear in the
9467 -- dispatch table anyway, because it can be dispatched to even if it
9468 -- cannot be called directly.
9470 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
9471 Set_Scope (S, Current_Scope);
9473 if Is_Dispatching_Operation (Alias (S)) then
9474 Check_Dispatching_Operation (S, Empty);
9475 end if;
9477 return;
9479 else
9480 Error_Msg_Sloc := Sloc (E);
9482 -- Generate message, with useful additional warning if in generic
9484 if Is_Generic_Unit (E) then
9485 Error_Msg_N ("previous generic unit cannot be overloaded", S);
9486 Error_Msg_N ("\& conflicts with declaration#", S);
9487 else
9488 Error_Msg_N ("& conflicts with declaration#", S);
9489 end if;
9491 return;
9492 end if;
9494 -- E exists and is overloadable
9496 else
9497 Check_Synchronized_Overriding (S, Overridden_Subp);
9499 -- Loop through E and its homonyms to determine if any of them is
9500 -- the candidate for overriding by S.
9502 while Present (E) loop
9504 -- Definitely not interesting if not in the current scope
9506 if Scope (E) /= Current_Scope then
9507 null;
9509 -- A function can overload the name of an abstract state. The
9510 -- state can be viewed as a function with a profile that cannot
9511 -- be matched by anything.
9513 elsif Ekind (S) = E_Function
9514 and then Ekind (E) = E_Abstract_State
9515 then
9516 Enter_Overloaded_Entity (S);
9517 return;
9519 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9520 -- procedures locate the internally generated spec. We enforce
9521 -- mode conformance since a tagged type may inherit from
9522 -- interfaces several null primitives which differ only in
9523 -- the mode of the formals.
9525 elsif not Comes_From_Source (S)
9526 and then Is_Null_Procedure (S)
9527 and then not Mode_Conformant (E, S)
9528 then
9529 null;
9531 -- Check if we have type conformance
9533 elsif Type_Conformant (E, S) then
9535 -- If the old and new entities have the same profile and one
9536 -- is not the body of the other, then this is an error, unless
9537 -- one of them is implicitly declared.
9539 -- There are some cases when both can be implicit, for example
9540 -- when both a literal and a function that overrides it are
9541 -- inherited in a derivation, or when an inherited operation
9542 -- of a tagged full type overrides the inherited operation of
9543 -- a private extension. Ada 83 had a special rule for the
9544 -- literal case. In Ada 95, the later implicit operation hides
9545 -- the former, and the literal is always the former. In the
9546 -- odd case where both are derived operations declared at the
9547 -- same point, both operations should be declared, and in that
9548 -- case we bypass the following test and proceed to the next
9549 -- part. This can only occur for certain obscure cases in
9550 -- instances, when an operation on a type derived from a formal
9551 -- private type does not override a homograph inherited from
9552 -- the actual. In subsequent derivations of such a type, the
9553 -- DT positions of these operations remain distinct, if they
9554 -- have been set.
9556 if Present (Alias (S))
9557 and then (No (Alias (E))
9558 or else Comes_From_Source (E)
9559 or else Is_Abstract_Subprogram (S)
9560 or else
9561 (Is_Dispatching_Operation (E)
9562 and then Is_Overriding_Alias (E, S)))
9563 and then Ekind (E) /= E_Enumeration_Literal
9564 then
9565 -- When an derived operation is overloaded it may be due to
9566 -- the fact that the full view of a private extension
9567 -- re-inherits. It has to be dealt with.
9569 if Is_Package_Or_Generic_Package (Current_Scope)
9570 and then In_Private_Part (Current_Scope)
9571 then
9572 Check_Operation_From_Private_View (S, E);
9573 end if;
9575 -- In any case the implicit operation remains hidden by the
9576 -- existing declaration, which is overriding. Indicate that
9577 -- E overrides the operation from which S is inherited.
9579 if Present (Alias (S)) then
9580 Set_Overridden_Operation (E, Alias (S));
9581 Inherit_Subprogram_Contract (E, Alias (S));
9583 else
9584 Set_Overridden_Operation (E, S);
9585 Inherit_Subprogram_Contract (E, S);
9586 end if;
9588 if Comes_From_Source (E) then
9589 Check_Overriding_Indicator (E, S, Is_Primitive => False);
9590 end if;
9592 return;
9594 -- Within an instance, the renaming declarations for actual
9595 -- subprograms may become ambiguous, but they do not hide each
9596 -- other.
9598 elsif Ekind (E) /= E_Entry
9599 and then not Comes_From_Source (E)
9600 and then not Is_Generic_Instance (E)
9601 and then (Present (Alias (E))
9602 or else Is_Intrinsic_Subprogram (E))
9603 and then (not In_Instance
9604 or else No (Parent (E))
9605 or else Nkind (Unit_Declaration_Node (E)) /=
9606 N_Subprogram_Renaming_Declaration)
9607 then
9608 -- A subprogram child unit is not allowed to override an
9609 -- inherited subprogram (10.1.1(20)).
9611 if Is_Child_Unit (S) then
9612 Error_Msg_N
9613 ("child unit overrides inherited subprogram in parent",
9615 return;
9616 end if;
9618 if Is_Non_Overriding_Operation (E, S) then
9619 Enter_Overloaded_Entity (S);
9621 if No (Derived_Type)
9622 or else Is_Tagged_Type (Derived_Type)
9623 then
9624 Check_Dispatching_Operation (S, Empty);
9625 end if;
9627 return;
9628 end if;
9630 -- E is a derived operation or an internal operator which
9631 -- is being overridden. Remove E from further visibility.
9632 -- Furthermore, if E is a dispatching operation, it must be
9633 -- replaced in the list of primitive operations of its type
9634 -- (see Override_Dispatching_Operation).
9636 Overridden_Subp := E;
9638 declare
9639 Prev : Entity_Id;
9641 begin
9642 Prev := First_Entity (Current_Scope);
9643 while Present (Prev) and then Next_Entity (Prev) /= E loop
9644 Next_Entity (Prev);
9645 end loop;
9647 -- It is possible for E to be in the current scope and
9648 -- yet not in the entity chain. This can only occur in a
9649 -- generic context where E is an implicit concatenation
9650 -- in the formal part, because in a generic body the
9651 -- entity chain starts with the formals.
9653 -- In GNATprove mode, a wrapper for an operation with
9654 -- axiomatization may be a homonym of another declaration
9655 -- for an actual subprogram (needs refinement ???).
9657 if No (Prev) then
9658 if In_Instance
9659 and then GNATprove_Mode
9660 and then
9661 Nkind (Original_Node (Unit_Declaration_Node (S))) =
9662 N_Subprogram_Renaming_Declaration
9663 then
9664 return;
9665 else
9666 pragma Assert (Chars (E) = Name_Op_Concat);
9667 null;
9668 end if;
9669 end if;
9671 -- E must be removed both from the entity_list of the
9672 -- current scope, and from the visibility chain.
9674 if Debug_Flag_E then
9675 Write_Str ("Override implicit operation ");
9676 Write_Int (Int (E));
9677 Write_Eol;
9678 end if;
9680 -- If E is a predefined concatenation, it stands for four
9681 -- different operations. As a result, a single explicit
9682 -- declaration does not hide it. In a possible ambiguous
9683 -- situation, Disambiguate chooses the user-defined op,
9684 -- so it is correct to retain the previous internal one.
9686 if Chars (E) /= Name_Op_Concat
9687 or else Ekind (E) /= E_Operator
9688 then
9689 -- For nondispatching derived operations that are
9690 -- overridden by a subprogram declared in the private
9691 -- part of a package, we retain the derived subprogram
9692 -- but mark it as not immediately visible. If the
9693 -- derived operation was declared in the visible part
9694 -- then this ensures that it will still be visible
9695 -- outside the package with the proper signature
9696 -- (calls from outside must also be directed to this
9697 -- version rather than the overriding one, unlike the
9698 -- dispatching case). Calls from inside the package
9699 -- will still resolve to the overriding subprogram
9700 -- since the derived one is marked as not visible
9701 -- within the package.
9703 -- If the private operation is dispatching, we achieve
9704 -- the overriding by keeping the implicit operation
9705 -- but setting its alias to be the overriding one. In
9706 -- this fashion the proper body is executed in all
9707 -- cases, but the original signature is used outside
9708 -- of the package.
9710 -- If the overriding is not in the private part, we
9711 -- remove the implicit operation altogether.
9713 if Is_Private_Declaration (S) then
9714 if not Is_Dispatching_Operation (E) then
9715 Set_Is_Immediately_Visible (E, False);
9716 else
9717 -- Work done in Override_Dispatching_Operation,
9718 -- so nothing else needs to be done here.
9720 null;
9721 end if;
9723 else
9724 -- Find predecessor of E in Homonym chain
9726 if E = Current_Entity (E) then
9727 Prev_Vis := Empty;
9728 else
9729 Prev_Vis := Current_Entity (E);
9730 while Homonym (Prev_Vis) /= E loop
9731 Prev_Vis := Homonym (Prev_Vis);
9732 end loop;
9733 end if;
9735 if Prev_Vis /= Empty then
9737 -- Skip E in the visibility chain
9739 Set_Homonym (Prev_Vis, Homonym (E));
9741 else
9742 Set_Name_Entity_Id (Chars (E), Homonym (E));
9743 end if;
9745 Set_Next_Entity (Prev, Next_Entity (E));
9747 if No (Next_Entity (Prev)) then
9748 Set_Last_Entity (Current_Scope, Prev);
9749 end if;
9750 end if;
9751 end if;
9753 Enter_Overloaded_Entity (S);
9755 -- For entities generated by Derive_Subprograms the
9756 -- overridden operation is the inherited primitive
9757 -- (which is available through the attribute alias).
9759 if not (Comes_From_Source (E))
9760 and then Is_Dispatching_Operation (E)
9761 and then Find_Dispatching_Type (E) =
9762 Find_Dispatching_Type (S)
9763 and then Present (Alias (E))
9764 and then Comes_From_Source (Alias (E))
9765 then
9766 Set_Overridden_Operation (S, Alias (E));
9767 Inherit_Subprogram_Contract (S, Alias (E));
9769 -- Normal case of setting entity as overridden
9771 -- Note: Static_Initialization and Overridden_Operation
9772 -- attributes use the same field in subprogram entities.
9773 -- Static_Initialization is only defined for internal
9774 -- initialization procedures, where Overridden_Operation
9775 -- is irrelevant. Therefore the setting of this attribute
9776 -- must check whether the target is an init_proc.
9778 elsif not Is_Init_Proc (S) then
9779 Set_Overridden_Operation (S, E);
9780 Inherit_Subprogram_Contract (S, E);
9781 end if;
9783 Check_Overriding_Indicator (S, E, Is_Primitive => True);
9785 -- If S is a user-defined subprogram or a null procedure
9786 -- expanded to override an inherited null procedure, or a
9787 -- predefined dispatching primitive then indicate that E
9788 -- overrides the operation from which S is inherited.
9790 if Comes_From_Source (S)
9791 or else
9792 (Present (Parent (S))
9793 and then
9794 Nkind (Parent (S)) = N_Procedure_Specification
9795 and then
9796 Null_Present (Parent (S)))
9797 or else
9798 (Present (Alias (E))
9799 and then
9800 Is_Predefined_Dispatching_Operation (Alias (E)))
9801 then
9802 if Present (Alias (E)) then
9803 Set_Overridden_Operation (S, Alias (E));
9804 Inherit_Subprogram_Contract (S, Alias (E));
9805 end if;
9806 end if;
9808 if Is_Dispatching_Operation (E) then
9810 -- An overriding dispatching subprogram inherits the
9811 -- convention of the overridden subprogram (AI-117).
9813 Set_Convention (S, Convention (E));
9814 Check_Dispatching_Operation (S, E);
9816 else
9817 Check_Dispatching_Operation (S, Empty);
9818 end if;
9820 Check_For_Primitive_Subprogram
9821 (Is_Primitive_Subp, Is_Overriding => True);
9822 goto Check_Inequality;
9823 end;
9825 -- Apparent redeclarations in instances can occur when two
9826 -- formal types get the same actual type. The subprograms in
9827 -- in the instance are legal, even if not callable from the
9828 -- outside. Calls from within are disambiguated elsewhere.
9829 -- For dispatching operations in the visible part, the usual
9830 -- rules apply, and operations with the same profile are not
9831 -- legal (B830001).
9833 elsif (In_Instance_Visible_Part
9834 and then not Is_Dispatching_Operation (E))
9835 or else In_Instance_Not_Visible
9836 then
9837 null;
9839 -- Here we have a real error (identical profile)
9841 else
9842 Error_Msg_Sloc := Sloc (E);
9844 -- Avoid cascaded errors if the entity appears in
9845 -- subsequent calls.
9847 Set_Scope (S, Current_Scope);
9849 -- Generate error, with extra useful warning for the case
9850 -- of a generic instance with no completion.
9852 if Is_Generic_Instance (S)
9853 and then not Has_Completion (E)
9854 then
9855 Error_Msg_N
9856 ("instantiation cannot provide body for&", S);
9857 Error_Msg_N ("\& conflicts with declaration#", S);
9858 else
9859 Error_Msg_N ("& conflicts with declaration#", S);
9860 end if;
9862 return;
9863 end if;
9865 else
9866 -- If one subprogram has an access parameter and the other
9867 -- a parameter of an access type, calls to either might be
9868 -- ambiguous. Verify that parameters match except for the
9869 -- access parameter.
9871 if May_Hide_Profile then
9872 declare
9873 F1 : Entity_Id;
9874 F2 : Entity_Id;
9876 begin
9877 F1 := First_Formal (S);
9878 F2 := First_Formal (E);
9879 while Present (F1) and then Present (F2) loop
9880 if Is_Access_Type (Etype (F1)) then
9881 if not Is_Access_Type (Etype (F2))
9882 or else not Conforming_Types
9883 (Designated_Type (Etype (F1)),
9884 Designated_Type (Etype (F2)),
9885 Type_Conformant)
9886 then
9887 May_Hide_Profile := False;
9888 end if;
9890 elsif
9891 not Conforming_Types
9892 (Etype (F1), Etype (F2), Type_Conformant)
9893 then
9894 May_Hide_Profile := False;
9895 end if;
9897 Next_Formal (F1);
9898 Next_Formal (F2);
9899 end loop;
9901 if May_Hide_Profile
9902 and then No (F1)
9903 and then No (F2)
9904 then
9905 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
9906 end if;
9907 end;
9908 end if;
9909 end if;
9911 E := Homonym (E);
9912 end loop;
9914 -- On exit, we know that S is a new entity
9916 Enter_Overloaded_Entity (S);
9917 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9918 Check_Overriding_Indicator
9919 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9921 -- Overloading is not allowed in SPARK, except for operators
9923 if Nkind (S) /= N_Defining_Operator_Symbol then
9924 Error_Msg_Sloc := Sloc (Homonym (S));
9925 Check_SPARK_05_Restriction
9926 ("overloading not allowed with entity#", S);
9927 end if;
9929 -- If S is a derived operation for an untagged type then by
9930 -- definition it's not a dispatching operation (even if the parent
9931 -- operation was dispatching), so Check_Dispatching_Operation is not
9932 -- called in that case.
9934 if No (Derived_Type)
9935 or else Is_Tagged_Type (Derived_Type)
9936 then
9937 Check_Dispatching_Operation (S, Empty);
9938 end if;
9939 end if;
9941 -- If this is a user-defined equality operator that is not a derived
9942 -- subprogram, create the corresponding inequality. If the operation is
9943 -- dispatching, the expansion is done elsewhere, and we do not create
9944 -- an explicit inequality operation.
9946 <<Check_Inequality>>
9947 if Chars (S) = Name_Op_Eq
9948 and then Etype (S) = Standard_Boolean
9949 and then Present (Parent (S))
9950 and then not Is_Dispatching_Operation (S)
9951 then
9952 Make_Inequality_Operator (S);
9953 Check_Untagged_Equality (S);
9954 end if;
9955 end New_Overloaded_Entity;
9957 ---------------------
9958 -- Process_Formals --
9959 ---------------------
9961 procedure Process_Formals
9962 (T : List_Id;
9963 Related_Nod : Node_Id)
9965 Param_Spec : Node_Id;
9966 Formal : Entity_Id;
9967 Formal_Type : Entity_Id;
9968 Default : Node_Id;
9969 Ptype : Entity_Id;
9971 Num_Out_Params : Nat := 0;
9972 First_Out_Param : Entity_Id := Empty;
9973 -- Used for setting Is_Only_Out_Parameter
9975 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
9976 -- Determine whether an access type designates a type coming from a
9977 -- limited view.
9979 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
9980 -- Check whether the default has a class-wide type. After analysis the
9981 -- default has the type of the formal, so we must also check explicitly
9982 -- for an access attribute.
9984 ----------------------------------
9985 -- Designates_From_Limited_With --
9986 ----------------------------------
9988 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
9989 Desig : Entity_Id := Typ;
9991 begin
9992 if Is_Access_Type (Desig) then
9993 Desig := Directly_Designated_Type (Desig);
9994 end if;
9996 if Is_Class_Wide_Type (Desig) then
9997 Desig := Root_Type (Desig);
9998 end if;
10000 return
10001 Ekind (Desig) = E_Incomplete_Type
10002 and then From_Limited_With (Desig);
10003 end Designates_From_Limited_With;
10005 ---------------------------
10006 -- Is_Class_Wide_Default --
10007 ---------------------------
10009 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
10010 begin
10011 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
10012 or else (Nkind (D) = N_Attribute_Reference
10013 and then Attribute_Name (D) = Name_Access
10014 and then Is_Class_Wide_Type (Etype (Prefix (D))));
10015 end Is_Class_Wide_Default;
10017 -- Start of processing for Process_Formals
10019 begin
10020 -- In order to prevent premature use of the formals in the same formal
10021 -- part, the Ekind is left undefined until all default expressions are
10022 -- analyzed. The Ekind is established in a separate loop at the end.
10024 Param_Spec := First (T);
10025 while Present (Param_Spec) loop
10026 Formal := Defining_Identifier (Param_Spec);
10027 Set_Never_Set_In_Source (Formal, True);
10028 Enter_Name (Formal);
10030 -- Case of ordinary parameters
10032 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
10033 Find_Type (Parameter_Type (Param_Spec));
10034 Ptype := Parameter_Type (Param_Spec);
10036 if Ptype = Error then
10037 goto Continue;
10038 end if;
10040 Formal_Type := Entity (Ptype);
10042 if Is_Incomplete_Type (Formal_Type)
10043 or else
10044 (Is_Class_Wide_Type (Formal_Type)
10045 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
10046 then
10047 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
10048 -- primitive operations, as long as their completion is
10049 -- in the same declarative part. If in the private part
10050 -- this means that the type cannot be a Taft-amendment type.
10051 -- Check is done on package exit. For access to subprograms,
10052 -- the use is legal for Taft-amendment types.
10054 -- Ada 2012: tagged incomplete types are allowed as generic
10055 -- formal types. They do not introduce dependencies and the
10056 -- corresponding generic subprogram does not have a delayed
10057 -- freeze, because it does not need a freeze node. However,
10058 -- it is still the case that untagged incomplete types cannot
10059 -- be Taft-amendment types and must be completed in private
10060 -- part, so the subprogram must appear in the list of private
10061 -- dependents of the type.
10063 if Is_Tagged_Type (Formal_Type)
10064 or else (Ada_Version >= Ada_2012
10065 and then not From_Limited_With (Formal_Type)
10066 and then not Is_Generic_Type (Formal_Type))
10067 then
10068 if Ekind (Scope (Current_Scope)) = E_Package
10069 and then not Is_Generic_Type (Formal_Type)
10070 and then not Is_Class_Wide_Type (Formal_Type)
10071 then
10072 if not Nkind_In
10073 (Parent (T), N_Access_Function_Definition,
10074 N_Access_Procedure_Definition)
10075 then
10076 Append_Elmt
10077 (Current_Scope,
10078 To => Private_Dependents (Base_Type (Formal_Type)));
10080 -- Freezing is delayed to ensure that Register_Prim
10081 -- will get called for this operation, which is needed
10082 -- in cases where static dispatch tables aren't built.
10083 -- (Note that the same is done for controlling access
10084 -- parameter cases in function Access_Definition.)
10086 if not Is_Thunk (Current_Scope) then
10087 Set_Has_Delayed_Freeze (Current_Scope);
10088 end if;
10089 end if;
10090 end if;
10092 -- Special handling of Value_Type for CIL case
10094 elsif Is_Value_Type (Formal_Type) then
10095 null;
10097 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
10098 N_Access_Procedure_Definition)
10099 then
10100 -- AI05-0151: Tagged incomplete types are allowed in all
10101 -- formal parts. Untagged incomplete types are not allowed
10102 -- in bodies. Limited views of either kind are not allowed
10103 -- if there is no place at which the non-limited view can
10104 -- become available.
10106 -- Incomplete formal untagged types are not allowed in
10107 -- subprogram bodies (but are legal in their declarations).
10109 if Is_Generic_Type (Formal_Type)
10110 and then not Is_Tagged_Type (Formal_Type)
10111 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
10112 then
10113 Error_Msg_N
10114 ("invalid use of formal incomplete type", Param_Spec);
10116 elsif Ada_Version >= Ada_2012 then
10117 if Is_Tagged_Type (Formal_Type)
10118 and then (not From_Limited_With (Formal_Type)
10119 or else not In_Package_Body)
10120 then
10121 null;
10123 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
10124 N_Accept_Alternative,
10125 N_Entry_Body,
10126 N_Subprogram_Body)
10127 then
10128 Error_Msg_NE
10129 ("invalid use of untagged incomplete type&",
10130 Ptype, Formal_Type);
10131 end if;
10133 else
10134 Error_Msg_NE
10135 ("invalid use of incomplete type&",
10136 Param_Spec, Formal_Type);
10138 -- Further checks on the legality of incomplete types
10139 -- in formal parts are delayed until the freeze point
10140 -- of the enclosing subprogram or access to subprogram.
10141 end if;
10142 end if;
10144 elsif Ekind (Formal_Type) = E_Void then
10145 Error_Msg_NE
10146 ("premature use of&",
10147 Parameter_Type (Param_Spec), Formal_Type);
10148 end if;
10150 -- Ada 2012 (AI-142): Handle aliased parameters
10152 if Ada_Version >= Ada_2012
10153 and then Aliased_Present (Param_Spec)
10154 then
10155 Set_Is_Aliased (Formal);
10156 end if;
10158 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10159 -- declaration corresponding to the null-excluding type of the
10160 -- formal in the enclosing scope. Finally, replace the parameter
10161 -- type of the formal with the internal subtype.
10163 if Ada_Version >= Ada_2005
10164 and then Null_Exclusion_Present (Param_Spec)
10165 then
10166 if not Is_Access_Type (Formal_Type) then
10167 Error_Msg_N
10168 ("`NOT NULL` allowed only for an access type", Param_Spec);
10170 else
10171 if Can_Never_Be_Null (Formal_Type)
10172 and then Comes_From_Source (Related_Nod)
10173 then
10174 Error_Msg_NE
10175 ("`NOT NULL` not allowed (& already excludes null)",
10176 Param_Spec, Formal_Type);
10177 end if;
10179 Formal_Type :=
10180 Create_Null_Excluding_Itype
10181 (T => Formal_Type,
10182 Related_Nod => Related_Nod,
10183 Scope_Id => Scope (Current_Scope));
10185 -- If the designated type of the itype is an itype that is
10186 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10187 -- on the access subtype, to prevent order-of-elaboration
10188 -- issues in the backend.
10190 -- Example:
10191 -- type T is access procedure;
10192 -- procedure Op (O : not null T);
10194 if Is_Itype (Directly_Designated_Type (Formal_Type))
10195 and then
10196 not Is_Frozen (Directly_Designated_Type (Formal_Type))
10197 then
10198 Set_Has_Delayed_Freeze (Formal_Type);
10199 end if;
10200 end if;
10201 end if;
10203 -- An access formal type
10205 else
10206 Formal_Type :=
10207 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
10209 -- No need to continue if we already notified errors
10211 if not Present (Formal_Type) then
10212 return;
10213 end if;
10215 -- Ada 2005 (AI-254)
10217 declare
10218 AD : constant Node_Id :=
10219 Access_To_Subprogram_Definition
10220 (Parameter_Type (Param_Spec));
10221 begin
10222 if Present (AD) and then Protected_Present (AD) then
10223 Formal_Type :=
10224 Replace_Anonymous_Access_To_Protected_Subprogram
10225 (Param_Spec);
10226 end if;
10227 end;
10228 end if;
10230 Set_Etype (Formal, Formal_Type);
10232 -- Deal with default expression if present
10234 Default := Expression (Param_Spec);
10236 if Present (Default) then
10237 Check_SPARK_05_Restriction
10238 ("default expression is not allowed", Default);
10240 if Out_Present (Param_Spec) then
10241 Error_Msg_N
10242 ("default initialization only allowed for IN parameters",
10243 Param_Spec);
10244 end if;
10246 -- Do the special preanalysis of the expression (see section on
10247 -- "Handling of Default Expressions" in the spec of package Sem).
10249 Preanalyze_Spec_Expression (Default, Formal_Type);
10251 -- An access to constant cannot be the default for
10252 -- an access parameter that is an access to variable.
10254 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10255 and then not Is_Access_Constant (Formal_Type)
10256 and then Is_Access_Type (Etype (Default))
10257 and then Is_Access_Constant (Etype (Default))
10258 then
10259 Error_Msg_N
10260 ("formal that is access to variable cannot be initialized "
10261 & "with an access-to-constant expression", Default);
10262 end if;
10264 -- Check that the designated type of an access parameter's default
10265 -- is not a class-wide type unless the parameter's designated type
10266 -- is also class-wide.
10268 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10269 and then not Designates_From_Limited_With (Formal_Type)
10270 and then Is_Class_Wide_Default (Default)
10271 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
10272 then
10273 Error_Msg_N
10274 ("access to class-wide expression not allowed here", Default);
10275 end if;
10277 -- Check incorrect use of dynamically tagged expressions
10279 if Is_Tagged_Type (Formal_Type) then
10280 Check_Dynamically_Tagged_Expression
10281 (Expr => Default,
10282 Typ => Formal_Type,
10283 Related_Nod => Default);
10284 end if;
10285 end if;
10287 -- Ada 2005 (AI-231): Static checks
10289 if Ada_Version >= Ada_2005
10290 and then Is_Access_Type (Etype (Formal))
10291 and then Can_Never_Be_Null (Etype (Formal))
10292 then
10293 Null_Exclusion_Static_Checks (Param_Spec);
10294 end if;
10296 -- The following checks are relevant when SPARK_Mode is on as these
10297 -- are not standard Ada legality rules.
10299 if SPARK_Mode = On then
10300 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
10302 -- A function cannot have a parameter of mode IN OUT or OUT
10303 -- (SPARK RM 6.1).
10305 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
10306 Error_Msg_N
10307 ("function cannot have parameter of mode `OUT` or "
10308 & "`IN OUT`", Formal);
10310 -- A function cannot have an effectively volatile formal
10311 -- parameter (SPARK RM 7.1.3(10)).
10313 elsif Is_Effectively_Volatile (Formal) then
10314 Error_Msg_N
10315 ("function cannot have a volatile formal parameter",
10316 Formal);
10317 end if;
10319 -- A procedure cannot have an effectively volatile formal
10320 -- parameter of mode IN because it behaves as a constant
10321 -- (SPARK RM 7.1.3(6)).
10323 elsif Ekind (Scope (Formal)) = E_Procedure
10324 and then Ekind (Formal) = E_In_Parameter
10325 and then Is_Effectively_Volatile (Formal)
10326 then
10327 Error_Msg_N
10328 ("formal parameter of mode `IN` cannot be volatile", Formal);
10329 end if;
10330 end if;
10332 <<Continue>>
10333 Next (Param_Spec);
10334 end loop;
10336 -- If this is the formal part of a function specification, analyze the
10337 -- subtype mark in the context where the formals are visible but not
10338 -- yet usable, and may hide outer homographs.
10340 if Nkind (Related_Nod) = N_Function_Specification then
10341 Analyze_Return_Type (Related_Nod);
10342 end if;
10344 -- Now set the kind (mode) of each formal
10346 Param_Spec := First (T);
10347 while Present (Param_Spec) loop
10348 Formal := Defining_Identifier (Param_Spec);
10349 Set_Formal_Mode (Formal);
10351 if Ekind (Formal) = E_In_Parameter then
10352 Set_Default_Value (Formal, Expression (Param_Spec));
10354 if Present (Expression (Param_Spec)) then
10355 Default := Expression (Param_Spec);
10357 if Is_Scalar_Type (Etype (Default)) then
10358 if Nkind (Parameter_Type (Param_Spec)) /=
10359 N_Access_Definition
10360 then
10361 Formal_Type := Entity (Parameter_Type (Param_Spec));
10362 else
10363 Formal_Type :=
10364 Access_Definition
10365 (Related_Nod, Parameter_Type (Param_Spec));
10366 end if;
10368 Apply_Scalar_Range_Check (Default, Formal_Type);
10369 end if;
10370 end if;
10372 elsif Ekind (Formal) = E_Out_Parameter then
10373 Num_Out_Params := Num_Out_Params + 1;
10375 if Num_Out_Params = 1 then
10376 First_Out_Param := Formal;
10377 end if;
10379 elsif Ekind (Formal) = E_In_Out_Parameter then
10380 Num_Out_Params := Num_Out_Params + 1;
10381 end if;
10383 -- Skip remaining processing if formal type was in error
10385 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
10386 goto Next_Parameter;
10387 end if;
10389 -- Force call by reference if aliased
10391 if Is_Aliased (Formal) then
10392 Set_Mechanism (Formal, By_Reference);
10394 -- Warn if user asked this to be passed by copy
10396 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10397 Error_Msg_N
10398 ("cannot pass aliased parameter & by copy??", Formal);
10399 end if;
10401 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10403 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10404 Set_Mechanism (Formal, By_Copy);
10406 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
10407 Set_Mechanism (Formal, By_Reference);
10408 end if;
10410 <<Next_Parameter>>
10411 Next (Param_Spec);
10412 end loop;
10414 if Present (First_Out_Param) and then Num_Out_Params = 1 then
10415 Set_Is_Only_Out_Parameter (First_Out_Param);
10416 end if;
10417 end Process_Formals;
10419 ----------------------------
10420 -- Reference_Body_Formals --
10421 ----------------------------
10423 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10424 Fs : Entity_Id;
10425 Fb : Entity_Id;
10427 begin
10428 if Error_Posted (Spec) then
10429 return;
10430 end if;
10432 -- Iterate over both lists. They may be of different lengths if the two
10433 -- specs are not conformant.
10435 Fs := First_Formal (Spec);
10436 Fb := First_Formal (Bod);
10437 while Present (Fs) and then Present (Fb) loop
10438 Generate_Reference (Fs, Fb, 'b');
10440 if Style_Check then
10441 Style.Check_Identifier (Fb, Fs);
10442 end if;
10444 Set_Spec_Entity (Fb, Fs);
10445 Set_Referenced (Fs, False);
10446 Next_Formal (Fs);
10447 Next_Formal (Fb);
10448 end loop;
10449 end Reference_Body_Formals;
10451 -------------------------
10452 -- Set_Actual_Subtypes --
10453 -------------------------
10455 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
10456 Decl : Node_Id;
10457 Formal : Entity_Id;
10458 T : Entity_Id;
10459 First_Stmt : Node_Id := Empty;
10460 AS_Needed : Boolean;
10462 begin
10463 -- If this is an empty initialization procedure, no need to create
10464 -- actual subtypes (small optimization).
10466 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
10467 return;
10468 end if;
10470 Formal := First_Formal (Subp);
10471 while Present (Formal) loop
10472 T := Etype (Formal);
10474 -- We never need an actual subtype for a constrained formal
10476 if Is_Constrained (T) then
10477 AS_Needed := False;
10479 -- If we have unknown discriminants, then we do not need an actual
10480 -- subtype, or more accurately we cannot figure it out. Note that
10481 -- all class-wide types have unknown discriminants.
10483 elsif Has_Unknown_Discriminants (T) then
10484 AS_Needed := False;
10486 -- At this stage we have an unconstrained type that may need an
10487 -- actual subtype. For sure the actual subtype is needed if we have
10488 -- an unconstrained array type.
10490 elsif Is_Array_Type (T) then
10491 AS_Needed := True;
10493 -- The only other case needing an actual subtype is an unconstrained
10494 -- record type which is an IN parameter (we cannot generate actual
10495 -- subtypes for the OUT or IN OUT case, since an assignment can
10496 -- change the discriminant values. However we exclude the case of
10497 -- initialization procedures, since discriminants are handled very
10498 -- specially in this context, see the section entitled "Handling of
10499 -- Discriminants" in Einfo.
10501 -- We also exclude the case of Discrim_SO_Functions (functions used
10502 -- in front end layout mode for size/offset values), since in such
10503 -- functions only discriminants are referenced, and not only are such
10504 -- subtypes not needed, but they cannot always be generated, because
10505 -- of order of elaboration issues.
10507 elsif Is_Record_Type (T)
10508 and then Ekind (Formal) = E_In_Parameter
10509 and then Chars (Formal) /= Name_uInit
10510 and then not Is_Unchecked_Union (T)
10511 and then not Is_Discrim_SO_Function (Subp)
10512 then
10513 AS_Needed := True;
10515 -- All other cases do not need an actual subtype
10517 else
10518 AS_Needed := False;
10519 end if;
10521 -- Generate actual subtypes for unconstrained arrays and
10522 -- unconstrained discriminated records.
10524 if AS_Needed then
10525 if Nkind (N) = N_Accept_Statement then
10527 -- If expansion is active, the formal is replaced by a local
10528 -- variable that renames the corresponding entry of the
10529 -- parameter block, and it is this local variable that may
10530 -- require an actual subtype.
10532 if Expander_Active then
10533 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10534 else
10535 Decl := Build_Actual_Subtype (T, Formal);
10536 end if;
10538 if Present (Handled_Statement_Sequence (N)) then
10539 First_Stmt :=
10540 First (Statements (Handled_Statement_Sequence (N)));
10541 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10542 Mark_Rewrite_Insertion (Decl);
10543 else
10544 -- If the accept statement has no body, there will be no
10545 -- reference to the actuals, so no need to compute actual
10546 -- subtypes.
10548 return;
10549 end if;
10551 else
10552 Decl := Build_Actual_Subtype (T, Formal);
10553 Prepend (Decl, Declarations (N));
10554 Mark_Rewrite_Insertion (Decl);
10555 end if;
10557 -- The declaration uses the bounds of an existing object, and
10558 -- therefore needs no constraint checks.
10560 Analyze (Decl, Suppress => All_Checks);
10562 -- We need to freeze manually the generated type when it is
10563 -- inserted anywhere else than in a declarative part.
10565 if Present (First_Stmt) then
10566 Insert_List_Before_And_Analyze (First_Stmt,
10567 Freeze_Entity (Defining_Identifier (Decl), N));
10569 -- Ditto if the type has a dynamic predicate, because the
10570 -- generated function will mention the actual subtype.
10572 elsif Has_Dynamic_Predicate_Aspect (T) then
10573 Insert_List_Before_And_Analyze (Decl,
10574 Freeze_Entity (Defining_Identifier (Decl), N));
10575 end if;
10577 if Nkind (N) = N_Accept_Statement
10578 and then Expander_Active
10579 then
10580 Set_Actual_Subtype (Renamed_Object (Formal),
10581 Defining_Identifier (Decl));
10582 else
10583 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10584 end if;
10585 end if;
10587 Next_Formal (Formal);
10588 end loop;
10589 end Set_Actual_Subtypes;
10591 ---------------------
10592 -- Set_Formal_Mode --
10593 ---------------------
10595 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10596 Spec : constant Node_Id := Parent (Formal_Id);
10598 begin
10599 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10600 -- since we ensure that corresponding actuals are always valid at the
10601 -- point of the call.
10603 if Out_Present (Spec) then
10604 if Ekind_In (Scope (Formal_Id), E_Function, E_Generic_Function) then
10606 -- [IN] OUT parameters allowed for functions in Ada 2012
10608 if Ada_Version >= Ada_2012 then
10610 -- Even in Ada 2012 operators can only have IN parameters
10612 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
10613 Error_Msg_N ("operators can only have IN parameters", Spec);
10614 end if;
10616 if In_Present (Spec) then
10617 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10618 else
10619 Set_Ekind (Formal_Id, E_Out_Parameter);
10620 end if;
10622 Set_Has_Out_Or_In_Out_Parameter (Scope (Formal_Id), True);
10624 -- But not in earlier versions of Ada
10626 else
10627 Error_Msg_N ("functions can only have IN parameters", Spec);
10628 Set_Ekind (Formal_Id, E_In_Parameter);
10629 end if;
10631 elsif In_Present (Spec) then
10632 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10634 else
10635 Set_Ekind (Formal_Id, E_Out_Parameter);
10636 Set_Never_Set_In_Source (Formal_Id, True);
10637 Set_Is_True_Constant (Formal_Id, False);
10638 Set_Current_Value (Formal_Id, Empty);
10639 end if;
10641 else
10642 Set_Ekind (Formal_Id, E_In_Parameter);
10643 end if;
10645 -- Set Is_Known_Non_Null for access parameters since the language
10646 -- guarantees that access parameters are always non-null. We also set
10647 -- Can_Never_Be_Null, since there is no way to change the value.
10649 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
10651 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10652 -- null; In Ada 2005, only if then null_exclusion is explicit.
10654 if Ada_Version < Ada_2005
10655 or else Can_Never_Be_Null (Etype (Formal_Id))
10656 then
10657 Set_Is_Known_Non_Null (Formal_Id);
10658 Set_Can_Never_Be_Null (Formal_Id);
10659 end if;
10661 -- Ada 2005 (AI-231): Null-exclusion access subtype
10663 elsif Is_Access_Type (Etype (Formal_Id))
10664 and then Can_Never_Be_Null (Etype (Formal_Id))
10665 then
10666 Set_Is_Known_Non_Null (Formal_Id);
10668 -- We can also set Can_Never_Be_Null (thus preventing some junk
10669 -- access checks) for the case of an IN parameter, which cannot
10670 -- be changed, or for an IN OUT parameter, which can be changed but
10671 -- not to a null value. But for an OUT parameter, the initial value
10672 -- passed in can be null, so we can't set this flag in that case.
10674 if Ekind (Formal_Id) /= E_Out_Parameter then
10675 Set_Can_Never_Be_Null (Formal_Id);
10676 end if;
10677 end if;
10679 Set_Mechanism (Formal_Id, Default_Mechanism);
10680 Set_Formal_Validity (Formal_Id);
10681 end Set_Formal_Mode;
10683 -------------------------
10684 -- Set_Formal_Validity --
10685 -------------------------
10687 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10688 begin
10689 -- If no validity checking, then we cannot assume anything about the
10690 -- validity of parameters, since we do not know there is any checking
10691 -- of the validity on the call side.
10693 if not Validity_Checks_On then
10694 return;
10696 -- If validity checking for parameters is enabled, this means we are
10697 -- not supposed to make any assumptions about argument values.
10699 elsif Validity_Check_Parameters then
10700 return;
10702 -- If we are checking in parameters, we will assume that the caller is
10703 -- also checking parameters, so we can assume the parameter is valid.
10705 elsif Ekind (Formal_Id) = E_In_Parameter
10706 and then Validity_Check_In_Params
10707 then
10708 Set_Is_Known_Valid (Formal_Id, True);
10710 -- Similar treatment for IN OUT parameters
10712 elsif Ekind (Formal_Id) = E_In_Out_Parameter
10713 and then Validity_Check_In_Out_Params
10714 then
10715 Set_Is_Known_Valid (Formal_Id, True);
10716 end if;
10717 end Set_Formal_Validity;
10719 ------------------------
10720 -- Subtype_Conformant --
10721 ------------------------
10723 function Subtype_Conformant
10724 (New_Id : Entity_Id;
10725 Old_Id : Entity_Id;
10726 Skip_Controlling_Formals : Boolean := False) return Boolean
10728 Result : Boolean;
10729 begin
10730 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10731 Skip_Controlling_Formals => Skip_Controlling_Formals);
10732 return Result;
10733 end Subtype_Conformant;
10735 ---------------------
10736 -- Type_Conformant --
10737 ---------------------
10739 function Type_Conformant
10740 (New_Id : Entity_Id;
10741 Old_Id : Entity_Id;
10742 Skip_Controlling_Formals : Boolean := False) return Boolean
10744 Result : Boolean;
10745 begin
10746 May_Hide_Profile := False;
10747 Check_Conformance
10748 (New_Id, Old_Id, Type_Conformant, False, Result,
10749 Skip_Controlling_Formals => Skip_Controlling_Formals);
10750 return Result;
10751 end Type_Conformant;
10753 -------------------------------
10754 -- Valid_Operator_Definition --
10755 -------------------------------
10757 procedure Valid_Operator_Definition (Designator : Entity_Id) is
10758 N : Integer := 0;
10759 F : Entity_Id;
10760 Id : constant Name_Id := Chars (Designator);
10761 N_OK : Boolean;
10763 begin
10764 F := First_Formal (Designator);
10765 while Present (F) loop
10766 N := N + 1;
10768 if Present (Default_Value (F)) then
10769 Error_Msg_N
10770 ("default values not allowed for operator parameters",
10771 Parent (F));
10773 -- For function instantiations that are operators, we must check
10774 -- separately that the corresponding generic only has in-parameters.
10775 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10776 -- an error could not arise in earlier versions of the language.
10778 elsif Ekind (F) /= E_In_Parameter then
10779 Error_Msg_N ("operators can only have IN parameters", F);
10780 end if;
10782 Next_Formal (F);
10783 end loop;
10785 -- Verify that user-defined operators have proper number of arguments
10786 -- First case of operators which can only be unary
10788 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
10789 N_OK := (N = 1);
10791 -- Case of operators which can be unary or binary
10793 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
10794 N_OK := (N in 1 .. 2);
10796 -- All other operators can only be binary
10798 else
10799 N_OK := (N = 2);
10800 end if;
10802 if not N_OK then
10803 Error_Msg_N
10804 ("incorrect number of arguments for operator", Designator);
10805 end if;
10807 if Id = Name_Op_Ne
10808 and then Base_Type (Etype (Designator)) = Standard_Boolean
10809 and then not Is_Intrinsic_Subprogram (Designator)
10810 then
10811 Error_Msg_N
10812 ("explicit definition of inequality not allowed", Designator);
10813 end if;
10814 end Valid_Operator_Definition;
10816 end Sem_Ch6;