1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Elists
; use Elists
;
31 with Einfo
; use Einfo
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Dist
; use Exp_Dist
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Exp_Util
; use Exp_Util
;
40 with Fname
; use Fname
;
41 with Freeze
; use Freeze
;
42 with Itypes
; use Itypes
;
43 with Layout
; use Layout
;
45 with Lib
.Xref
; use Lib
.Xref
;
46 with Namet
; use Namet
;
47 with Nmake
; use Nmake
;
49 with Restrict
; use Restrict
;
50 with Rident
; use Rident
;
51 with Rtsfind
; use Rtsfind
;
53 with Sem_Aux
; use Sem_Aux
;
54 with Sem_Case
; use Sem_Case
;
55 with Sem_Cat
; use Sem_Cat
;
56 with Sem_Ch6
; use Sem_Ch6
;
57 with Sem_Ch7
; use Sem_Ch7
;
58 with Sem_Ch8
; use Sem_Ch8
;
59 with Sem_Ch10
; use Sem_Ch10
;
60 with Sem_Ch13
; use Sem_Ch13
;
61 with Sem_Dim
; use Sem_Dim
;
62 with Sem_Disp
; use Sem_Disp
;
63 with Sem_Dist
; use Sem_Dist
;
64 with Sem_Elim
; use Sem_Elim
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Mech
; use Sem_Mech
;
67 with Sem_Prag
; use Sem_Prag
;
68 with Sem_Res
; use Sem_Res
;
69 with Sem_Smem
; use Sem_Smem
;
70 with Sem_Type
; use Sem_Type
;
71 with Sem_Util
; use Sem_Util
;
72 with Sem_Warn
; use Sem_Warn
;
73 with Stand
; use Stand
;
74 with Sinfo
; use Sinfo
;
75 with Sinput
; use Sinput
;
76 with Snames
; use Snames
;
77 with Targparm
; use Targparm
;
78 with Tbuild
; use Tbuild
;
79 with Ttypes
; use Ttypes
;
80 with Uintp
; use Uintp
;
81 with Urealp
; use Urealp
;
83 package body Sem_Ch3
is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
94 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
);
95 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The pragmas to be
104 procedure Build_Derived_Type
106 Parent_Type
: Entity_Id
;
107 Derived_Type
: Entity_Id
;
108 Is_Completion
: Boolean;
109 Derive_Subps
: Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
129 procedure Build_Derived_Access_Type
131 Parent_Type
: Entity_Id
;
132 Derived_Type
: Entity_Id
);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
137 procedure Build_Derived_Array_Type
139 Parent_Type
: Entity_Id
;
140 Derived_Type
: Entity_Id
);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
145 procedure Build_Derived_Concurrent_Type
147 Parent_Type
: Entity_Id
;
148 Derived_Type
: Entity_Id
);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
153 procedure Build_Derived_Enumeration_Type
155 Parent_Type
: Entity_Id
;
156 Derived_Type
: Entity_Id
);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
161 procedure Build_Derived_Numeric_Type
163 Parent_Type
: Entity_Id
;
164 Derived_Type
: Entity_Id
);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
168 procedure Build_Derived_Private_Type
170 Parent_Type
: Entity_Id
;
171 Derived_Type
: Entity_Id
;
172 Is_Completion
: Boolean;
173 Derive_Subps
: Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
178 procedure Build_Derived_Record_Type
180 Parent_Type
: Entity_Id
;
181 Derived_Type
: Entity_Id
;
182 Derive_Subps
: Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
193 procedure Build_Discriminal
(Discrim
: Entity_Id
);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
201 function Build_Discriminant_Constraints
204 Derived_Def
: Boolean := False) return Elist_Id
;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
215 procedure Build_Discriminated_Subtype
219 Related_Nod
: Node_Id
;
220 For_Access
: Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
238 function Build_Scalar_Bound
241 Der_T
: Entity_Id
) return Node_Id
;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
247 procedure Build_Underlying_Full_View
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
259 procedure Check_Access_Discriminant_Requires_Limited
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
266 procedure Check_Anonymous_Access_Components
270 Comp_List
: Node_Id
);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
280 procedure Check_Delta_Expression
(E
: Node_Id
);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
284 procedure Check_Digits_Expression
(E
: Node_Id
);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
288 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
292 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295 procedure Check_Or_Process_Discriminants
298 Prev
: Entity_Id
:= Empty
);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
305 procedure Check_Real_Bound
(Bound
: Node_Id
);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
309 procedure Constant_Redeclaration
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
317 function Contain_Interface
319 Ifaces
: Elist_Id
) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322 procedure Convert_Scalar_Bounds
324 Parent_Type
: Entity_Id
;
325 Derived_Type
: Entity_Id
;
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
335 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
339 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
343 procedure Create_Constrained_Components
347 Constraints
: Elist_Id
);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
357 function Constrain_Component_Type
359 Constrained_Typ
: Entity_Id
;
360 Related_Node
: Node_Id
;
362 Constraints
: Elist_Id
) return Entity_Id
;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
371 procedure Constrain_Access
372 (Def_Id
: in out Entity_Id
;
374 Related_Nod
: Node_Id
);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
379 procedure Constrain_Array
380 (Def_Id
: in out Entity_Id
;
382 Related_Nod
: Node_Id
;
383 Related_Id
: Entity_Id
;
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
396 procedure Constrain_Concurrent
397 (Def_Id
: in out Entity_Id
;
399 Related_Nod
: Node_Id
;
400 Related_Id
: Entity_Id
;
402 -- Apply list of discriminant constraints to an unconstrained concurrent
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
414 -- Related_Nod gives the place where this type has to be inserted
417 -- The last two arguments are used to create its external name if needed.
419 function Constrain_Corresponding_Record
420 (Prot_Subt
: Entity_Id
;
421 Corr_Rec
: Entity_Id
;
422 Related_Nod
: Node_Id
) return Entity_Id
;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
426 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430 procedure Constrain_Discriminated_Type
433 Related_Nod
: Node_Id
;
434 For_Access
: Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
442 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450 procedure Constrain_Index
453 Related_Nod
: Node_Id
;
454 Related_Id
: Entity_Id
;
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
463 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
464 -- Build subtype of a signed or modular integer type
466 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
475 procedure Decimal_Fixed_Point_Type_Declaration
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
481 procedure Complete_Private_Subtype
484 Full_Base
: Entity_Id
;
485 Related_Nod
: Node_Id
);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type
: Entity_Id
;
492 Tagged_Type
: Entity_Id
);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
501 procedure Derived_Standard_Character
503 Parent_Type
: Entity_Id
;
504 Derived_Type
: Entity_Id
);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
508 procedure Derived_Type_Declaration
511 Is_Completion
: Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
518 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
525 function Expand_To_Stored_Constraint
527 Constraint
: Elist_Id
) return Elist_Id
;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
532 function Find_Type_Of_Object
534 Related_Nod
: Node_Id
) return Entity_Id
;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
538 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
539 -- Create a new float and apply the constraint to obtain subtype of it
541 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
547 function Inherit_Components
549 Parent_Base
: Entity_Id
;
550 Derived_Base
: Entity_Id
;
552 Inherit_Discr
: Boolean;
553 Discs
: Elist_Id
) return Elist_Id
;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
559 -- N is the original derived type declaration
561 -- Is_Tagged is set if we are dealing with tagged types
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
573 -- which gets treated as
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
581 -- (Old_Component => New_Component),
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
589 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
593 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
594 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
595 -- Determine whether subprogram Subp is a procedure subject to pragma
596 -- Extensions_Visible with value False and has at least one controlling
597 -- parameter of mode OUT.
599 function Is_Valid_Constraint_Kind
601 Constraint_Kind
: Node_Kind
) return Boolean;
602 -- Returns True if it is legal to apply the given kind of constraint to the
603 -- given kind of type (index constraint to an array type, for example).
605 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
606 -- Create new modular type. Verify that modulus is in bounds
608 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
609 -- Create an abbreviated declaration for an operator in order to
610 -- materialize concatenation on array types.
612 procedure Ordinary_Fixed_Point_Type_Declaration
615 -- Create a new ordinary fixed point type, and apply the constraint to
616 -- obtain subtype of it.
618 procedure Prepare_Private_Subtype_Completion
620 Related_Nod
: Node_Id
);
621 -- Id is a subtype of some private type. Creates the full declaration
622 -- associated with Id whenever possible, i.e. when the full declaration
623 -- of the base type is already known. Records each subtype into
624 -- Private_Dependents of the base type.
626 procedure Process_Incomplete_Dependents
630 -- Process all entities that depend on an incomplete type. There include
631 -- subtypes, subprogram types that mention the incomplete type in their
632 -- profiles, and subprogram with access parameters that designate the
635 -- Inc_T is the defining identifier of an incomplete type declaration, its
636 -- Ekind is E_Incomplete_Type.
638 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
640 -- Full_T is N's defining identifier.
642 -- Subtypes of incomplete types with discriminants are completed when the
643 -- parent type is. This is simpler than private subtypes, because they can
644 -- only appear in the same scope, and there is no need to exchange views.
645 -- Similarly, access_to_subprogram types may have a parameter or a return
646 -- type that is an incomplete type, and that must be replaced with the
649 -- If the full type is tagged, subprogram with access parameters that
650 -- designated the incomplete may be primitive operations of the full type,
651 -- and have to be processed accordingly.
653 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
654 -- Given the type definition for a real type, this procedure processes and
655 -- checks the real range specification of this type definition if one is
656 -- present. If errors are found, error messages are posted, and the
657 -- Real_Range_Specification of Def is reset to Empty.
659 procedure Propagate_Default_Init_Cond_Attributes
660 (From_Typ
: Entity_Id
;
662 Parent_To_Derivation
: Boolean := False;
663 Private_To_Full_View
: Boolean := False);
664 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
665 -- all attributes related to pragma Default_Initial_Condition from From_Typ
666 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
667 -- the creation of a derived type. Flag Private_To_Full_View should be set
668 -- when processing both views of a private type.
670 procedure Record_Type_Declaration
674 -- Process a record type declaration (for both untagged and tagged
675 -- records). Parameters T and N are exactly like in procedure
676 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
677 -- for this routine. If this is the completion of an incomplete type
678 -- declaration, Prev is the entity of the incomplete declaration, used for
679 -- cross-referencing. Otherwise Prev = T.
681 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
682 -- This routine is used to process the actual record type definition (both
683 -- for untagged and tagged records). Def is a record type definition node.
684 -- This procedure analyzes the components in this record type definition.
685 -- Prev_T is the entity for the enclosing record type. It is provided so
686 -- that its Has_Task flag can be set if any of the component have Has_Task
687 -- set. If the declaration is the completion of an incomplete type
688 -- declaration, Prev_T is the original incomplete type, whose full view is
691 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
692 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
693 -- build a copy of the declaration tree of the parent, and we create
694 -- independently the list of components for the derived type. Semantic
695 -- information uses the component entities, but record representation
696 -- clauses are validated on the declaration tree. This procedure replaces
697 -- discriminants and components in the declaration with those that have
698 -- been created by Inherit_Components.
700 procedure Set_Fixed_Range
705 -- Build a range node with the given bounds and set it as the Scalar_Range
706 -- of the given fixed-point type entity. Loc is the source location used
707 -- for the constructed range. See body for further details.
709 procedure Set_Scalar_Range_For_Subtype
713 -- This routine is used to set the scalar range field for a subtype given
714 -- Def_Id, the entity for the subtype, and R, the range expression for the
715 -- scalar range. Subt provides the parent subtype to be used to analyze,
716 -- resolve, and check the given range.
718 procedure Set_Default_SSO
(T
: Entity_Id
);
719 -- T is the entity for an array or record being declared. This procedure
720 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
721 -- to the setting of Opt.Default_SSO.
723 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
724 -- Create a new signed integer entity, and apply the constraint to obtain
725 -- the required first named subtype of this type.
727 procedure Set_Stored_Constraint_From_Discriminant_Constraint
729 -- E is some record type. This routine computes E's Stored_Constraint
730 -- from its Discriminant_Constraint.
732 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
733 -- Check that an entity in a list of progenitors is an interface,
734 -- emit error otherwise.
736 -----------------------
737 -- Access_Definition --
738 -----------------------
740 function Access_Definition
741 (Related_Nod
: Node_Id
;
742 N
: Node_Id
) return Entity_Id
744 Anon_Type
: Entity_Id
;
745 Anon_Scope
: Entity_Id
;
746 Desig_Type
: Entity_Id
;
747 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
750 Check_SPARK_05_Restriction
("access type is not allowed", N
);
752 if Is_Entry
(Current_Scope
)
753 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
755 Error_Msg_N
("task entries cannot have access parameters", N
);
759 -- Ada 2005: For an object declaration the corresponding anonymous
760 -- type is declared in the current scope.
762 -- If the access definition is the return type of another access to
763 -- function, scope is the current one, because it is the one of the
764 -- current type declaration, except for the pathological case below.
766 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
767 N_Access_Function_Definition
)
769 Anon_Scope
:= Current_Scope
;
771 -- A pathological case: function returning access functions that
772 -- return access functions, etc. Each anonymous access type created
773 -- is in the enclosing scope of the outermost function.
780 while Nkind_In
(Par
, N_Access_Function_Definition
,
786 if Nkind
(Par
) = N_Function_Specification
then
787 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
791 -- For the anonymous function result case, retrieve the scope of the
792 -- function specification's associated entity rather than using the
793 -- current scope. The current scope will be the function itself if the
794 -- formal part is currently being analyzed, but will be the parent scope
795 -- in the case of a parameterless function, and we always want to use
796 -- the function's parent scope. Finally, if the function is a child
797 -- unit, we must traverse the tree to retrieve the proper entity.
799 elsif Nkind
(Related_Nod
) = N_Function_Specification
800 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
802 -- If the current scope is a protected type, the anonymous access
803 -- is associated with one of the protected operations, and must
804 -- be available in the scope that encloses the protected declaration.
805 -- Otherwise the type is in the scope enclosing the subprogram.
807 -- If the function has formals, The return type of a subprogram
808 -- declaration is analyzed in the scope of the subprogram (see
809 -- Process_Formals) and thus the protected type, if present, is
810 -- the scope of the current function scope.
812 if Ekind
(Current_Scope
) = E_Protected_Type
then
813 Enclosing_Prot_Type
:= Current_Scope
;
815 elsif Ekind
(Current_Scope
) = E_Function
816 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
818 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
821 if Present
(Enclosing_Prot_Type
) then
822 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
825 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
828 -- For an access type definition, if the current scope is a child
829 -- unit it is the scope of the type.
831 elsif Is_Compilation_Unit
(Current_Scope
) then
832 Anon_Scope
:= Current_Scope
;
834 -- For access formals, access components, and access discriminants, the
835 -- scope is that of the enclosing declaration,
838 Anon_Scope
:= Scope
(Current_Scope
);
843 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
846 and then Ada_Version
>= Ada_2005
848 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
851 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
852 -- the corresponding semantic routine
854 if Present
(Access_To_Subprogram_Definition
(N
)) then
856 -- Compiler runtime units are compiled in Ada 2005 mode when building
857 -- the runtime library but must also be compilable in Ada 95 mode
858 -- (when bootstrapping the compiler).
860 Check_Compiler_Unit
("anonymous access to subprogram", N
);
862 Access_Subprogram_Declaration
863 (T_Name
=> Anon_Type
,
864 T_Def
=> Access_To_Subprogram_Definition
(N
));
866 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
868 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
870 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
873 Set_Can_Use_Internal_Rep
874 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
876 -- If the anonymous access is associated with a protected operation,
877 -- create a reference to it after the enclosing protected definition
878 -- because the itype will be used in the subsequent bodies.
880 if Ekind
(Current_Scope
) = E_Protected_Type
then
881 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
887 Find_Type
(Subtype_Mark
(N
));
888 Desig_Type
:= Entity
(Subtype_Mark
(N
));
890 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
891 Set_Etype
(Anon_Type
, Anon_Type
);
893 -- Make sure the anonymous access type has size and alignment fields
894 -- set, as required by gigi. This is necessary in the case of the
895 -- Task_Body_Procedure.
897 if not Has_Private_Component
(Desig_Type
) then
898 Layout_Type
(Anon_Type
);
901 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
902 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
903 -- the null value is allowed. In Ada 95 the null value is never allowed.
905 if Ada_Version
>= Ada_2005
then
906 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
908 Set_Can_Never_Be_Null
(Anon_Type
, True);
911 -- The anonymous access type is as public as the discriminated type or
912 -- subprogram that defines it. It is imported (for back-end purposes)
913 -- if the designated type is.
915 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
917 -- Ada 2005 (AI-231): Propagate the access-constant attribute
919 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
921 -- The context is either a subprogram declaration, object declaration,
922 -- or an access discriminant, in a private or a full type declaration.
923 -- In the case of a subprogram, if the designated type is incomplete,
924 -- the operation will be a primitive operation of the full type, to be
925 -- updated subsequently. If the type is imported through a limited_with
926 -- clause, the subprogram is not a primitive operation of the type
927 -- (which is declared elsewhere in some other scope).
929 if Ekind
(Desig_Type
) = E_Incomplete_Type
930 and then not From_Limited_With
(Desig_Type
)
931 and then Is_Overloadable
(Current_Scope
)
933 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
934 Set_Has_Delayed_Freeze
(Current_Scope
);
937 -- Ada 2005: If the designated type is an interface that may contain
938 -- tasks, create a Master entity for the declaration. This must be done
939 -- before expansion of the full declaration, because the declaration may
940 -- include an expression that is an allocator, whose expansion needs the
941 -- proper Master for the created tasks.
943 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
945 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
947 Build_Class_Wide_Master
(Anon_Type
);
949 -- Similarly, if the type is an anonymous access that designates
950 -- tasks, create a master entity for it in the current context.
952 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
954 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
955 Build_Master_Renaming
(Anon_Type
);
959 -- For a private component of a protected type, it is imperative that
960 -- the back-end elaborate the type immediately after the protected
961 -- declaration, because this type will be used in the declarations
962 -- created for the component within each protected body, so we must
963 -- create an itype reference for it now.
965 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
966 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
968 -- Similarly, if the access definition is the return result of a
969 -- function, create an itype reference for it because it will be used
970 -- within the function body. For a regular function that is not a
971 -- compilation unit, insert reference after the declaration. For a
972 -- protected operation, insert it after the enclosing protected type
973 -- declaration. In either case, do not create a reference for a type
974 -- obtained through a limited_with clause, because this would introduce
975 -- semantic dependencies.
977 -- Similarly, do not create a reference if the designated type is a
978 -- generic formal, because no use of it will reach the backend.
980 elsif Nkind
(Related_Nod
) = N_Function_Specification
981 and then not From_Limited_With
(Desig_Type
)
982 and then not Is_Generic_Type
(Desig_Type
)
984 if Present
(Enclosing_Prot_Type
) then
985 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
987 elsif Is_List_Member
(Parent
(Related_Nod
))
988 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
990 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
993 -- Finally, create an itype reference for an object declaration of an
994 -- anonymous access type. This is strictly necessary only for deferred
995 -- constants, but in any case will avoid out-of-scope problems in the
998 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
999 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
1003 end Access_Definition
;
1005 -----------------------------------
1006 -- Access_Subprogram_Declaration --
1007 -----------------------------------
1009 procedure Access_Subprogram_Declaration
1010 (T_Name
: Entity_Id
;
1013 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
1014 -- Check that type T_Name is not used, directly or recursively, as a
1015 -- parameter or a return type in Def. Def is either a subtype, an
1016 -- access_definition, or an access_to_subprogram_definition.
1018 -------------------------------
1019 -- Check_For_Premature_Usage --
1020 -------------------------------
1022 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1026 -- Check for a subtype mark
1028 if Nkind
(Def
) in N_Has_Etype
then
1029 if Etype
(Def
) = T_Name
then
1031 ("type& cannot be used before end of its declaration", Def
);
1034 -- If this is not a subtype, then this is an access_definition
1036 elsif Nkind
(Def
) = N_Access_Definition
then
1037 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1038 Check_For_Premature_Usage
1039 (Access_To_Subprogram_Definition
(Def
));
1041 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1044 -- The only cases left are N_Access_Function_Definition and
1045 -- N_Access_Procedure_Definition.
1048 if Present
(Parameter_Specifications
(Def
)) then
1049 Param
:= First
(Parameter_Specifications
(Def
));
1050 while Present
(Param
) loop
1051 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1052 Param
:= Next
(Param
);
1056 if Nkind
(Def
) = N_Access_Function_Definition
then
1057 Check_For_Premature_Usage
(Result_Definition
(Def
));
1060 end Check_For_Premature_Usage
;
1064 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1067 Desig_Type
: constant Entity_Id
:=
1068 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1070 -- Start of processing for Access_Subprogram_Declaration
1073 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1075 -- Associate the Itype node with the inner full-type declaration or
1076 -- subprogram spec or entry body. This is required to handle nested
1077 -- anonymous declarations. For example:
1080 -- (X : access procedure
1081 -- (Y : access procedure
1084 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1085 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1086 N_Private_Type_Declaration
,
1087 N_Private_Extension_Declaration
,
1088 N_Procedure_Specification
,
1089 N_Function_Specification
,
1093 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1094 N_Object_Renaming_Declaration
,
1095 N_Formal_Object_Declaration
,
1096 N_Formal_Type_Declaration
,
1097 N_Task_Type_Declaration
,
1098 N_Protected_Type_Declaration
))
1100 D_Ityp
:= Parent
(D_Ityp
);
1101 pragma Assert
(D_Ityp
/= Empty
);
1104 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1106 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1107 N_Function_Specification
)
1109 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1111 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1112 N_Object_Declaration
,
1113 N_Object_Renaming_Declaration
,
1114 N_Formal_Type_Declaration
)
1116 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1119 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1120 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1122 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1125 if Present
(Access_To_Subprogram_Definition
(Acc
))
1127 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1131 Replace_Anonymous_Access_To_Protected_Subprogram
1137 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1142 Analyze
(Result_Definition
(T_Def
));
1145 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1148 -- If a null exclusion is imposed on the result type, then
1149 -- create a null-excluding itype (an access subtype) and use
1150 -- it as the function's Etype.
1152 if Is_Access_Type
(Typ
)
1153 and then Null_Exclusion_In_Return_Present
(T_Def
)
1155 Set_Etype
(Desig_Type
,
1156 Create_Null_Excluding_Itype
1158 Related_Nod
=> T_Def
,
1159 Scope_Id
=> Current_Scope
));
1162 if From_Limited_With
(Typ
) then
1164 -- AI05-151: Incomplete types are allowed in all basic
1165 -- declarations, including access to subprograms.
1167 if Ada_Version
>= Ada_2012
then
1172 ("illegal use of incomplete type&",
1173 Result_Definition
(T_Def
), Typ
);
1176 elsif Ekind
(Current_Scope
) = E_Package
1177 and then In_Private_Part
(Current_Scope
)
1179 if Ekind
(Typ
) = E_Incomplete_Type
then
1180 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1182 elsif Is_Class_Wide_Type
(Typ
)
1183 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1186 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1190 Set_Etype
(Desig_Type
, Typ
);
1195 if not (Is_Type
(Etype
(Desig_Type
))) then
1197 ("expect type in function specification",
1198 Result_Definition
(T_Def
));
1202 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1205 if Present
(Formals
) then
1206 Push_Scope
(Desig_Type
);
1208 -- Some special tests here. These special tests can be removed
1209 -- if and when Itypes always have proper parent pointers to their
1212 -- Special test 1) Link defining_identifier of formals. Required by
1213 -- First_Formal to provide its functionality.
1219 F
:= First
(Formals
);
1221 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1222 -- when it is part of an unconstrained type and subtype expansion
1223 -- is disabled. To avoid back-end problems with shared profiles,
1224 -- use previous subprogram type as the designated type, and then
1225 -- remove scope added above.
1227 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1229 Set_Etype
(T_Name
, T_Name
);
1230 Init_Size_Align
(T_Name
);
1231 Set_Directly_Designated_Type
(T_Name
,
1232 Scope
(Defining_Identifier
(F
)));
1237 while Present
(F
) loop
1238 if No
(Parent
(Defining_Identifier
(F
))) then
1239 Set_Parent
(Defining_Identifier
(F
), F
);
1246 Process_Formals
(Formals
, Parent
(T_Def
));
1248 -- Special test 2) End_Scope requires that the parent pointer be set
1249 -- to something reasonable, but Itypes don't have parent pointers. So
1250 -- we set it and then unset it ???
1252 Set_Parent
(Desig_Type
, T_Name
);
1254 Set_Parent
(Desig_Type
, Empty
);
1257 -- Check for premature usage of the type being defined
1259 Check_For_Premature_Usage
(T_Def
);
1261 -- The return type and/or any parameter type may be incomplete. Mark the
1262 -- subprogram_type as depending on the incomplete type, so that it can
1263 -- be updated when the full type declaration is seen. This only applies
1264 -- to incomplete types declared in some enclosing scope, not to limited
1265 -- views from other packages.
1267 -- Prior to Ada 2012, access to functions can only have in_parameters.
1269 if Present
(Formals
) then
1270 Formal
:= First_Formal
(Desig_Type
);
1271 while Present
(Formal
) loop
1272 if Ekind
(Formal
) /= E_In_Parameter
1273 and then Nkind
(T_Def
) = N_Access_Function_Definition
1274 and then Ada_Version
< Ada_2012
1276 Error_Msg_N
("functions can only have IN parameters", Formal
);
1279 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1280 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1282 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1283 Set_Has_Delayed_Freeze
(Desig_Type
);
1286 Next_Formal
(Formal
);
1290 -- Check whether an indirect call without actuals may be possible. This
1291 -- is used when resolving calls whose result is then indexed.
1293 May_Need_Actuals
(Desig_Type
);
1295 -- If the return type is incomplete, this is legal as long as the type
1296 -- is declared in the current scope and will be completed in it (rather
1297 -- than being part of limited view).
1299 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1300 and then not Has_Delayed_Freeze
(Desig_Type
)
1301 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1303 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1304 Set_Has_Delayed_Freeze
(Desig_Type
);
1307 Check_Delayed_Subprogram
(Desig_Type
);
1309 if Protected_Present
(T_Def
) then
1310 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1311 Set_Convention
(Desig_Type
, Convention_Protected
);
1313 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1316 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1318 Set_Etype
(T_Name
, T_Name
);
1319 Init_Size_Align
(T_Name
);
1320 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1322 Generate_Reference_To_Formals
(T_Name
);
1324 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1326 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1328 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1329 end Access_Subprogram_Declaration
;
1331 ----------------------------
1332 -- Access_Type_Declaration --
1333 ----------------------------
1335 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1336 P
: constant Node_Id
:= Parent
(Def
);
1337 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1339 Full_Desig
: Entity_Id
;
1342 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1344 -- Check for permissible use of incomplete type
1346 if Nkind
(S
) /= N_Subtype_Indication
then
1349 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1350 Set_Directly_Designated_Type
(T
, Entity
(S
));
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1358 if From_Limited_With
(Entity
(S
))
1359 and then not Is_Class_Wide_Type
(Entity
(S
))
1361 Set_Ekind
(T
, E_Access_Type
);
1362 Build_Master_Entity
(T
);
1363 Build_Master_Renaming
(T
);
1367 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1374 if Null_Excluding_Subtype
(Def
) then
1375 if not Is_Access_Type
(Entity
(S
)) then
1376 Error_Msg_N
("null exclusion must apply to access type", Def
);
1380 Loc
: constant Source_Ptr
:= Sloc
(S
);
1382 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1386 Make_Subtype_Declaration
(Loc
,
1387 Defining_Identifier
=> Nam
,
1388 Subtype_Indication
=>
1389 New_Occurrence_Of
(Entity
(S
), Loc
));
1390 Set_Null_Exclusion_Present
(Decl
);
1391 Insert_Before
(Parent
(Def
), Decl
);
1393 Set_Entity
(S
, Nam
);
1399 Set_Directly_Designated_Type
(T
,
1400 Process_Subtype
(S
, P
, T
, 'P'));
1403 if All_Present
(Def
) or Constant_Present
(Def
) then
1404 Set_Ekind
(T
, E_General_Access_Type
);
1406 Set_Ekind
(T
, E_Access_Type
);
1409 Full_Desig
:= Designated_Type
(T
);
1411 if Base_Type
(Full_Desig
) = T
then
1412 Error_Msg_N
("access type cannot designate itself", S
);
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1418 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1421 ("access type cannot designate its own classwide type", S
);
1423 -- Clean up indication of tagged status to prevent cascaded errors
1425 Set_Is_Tagged_Type
(T
, False);
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1433 if not From_Limited_With
(T
) then
1434 Init_Size_Align
(T
);
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1442 Set_Has_Task
(T
, False);
1443 Set_Has_Controlled_Component
(T
, False);
1444 Set_Has_Protected
(T
, False);
1446 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1447 -- problems where an incomplete view of this entity has been previously
1448 -- established by a limited with and an overlaid version of this field
1449 -- (Stored_Constraint) was initialized for the incomplete view.
1451 -- This reset is performed in most cases except where the access type
1452 -- has been created for the purposes of allocating or deallocating a
1453 -- build-in-place object. Such access types have explicitly set pools
1454 -- and finalization masters.
1456 if No
(Associated_Storage_Pool
(T
)) then
1457 Set_Finalization_Master
(T
, Empty
);
1460 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1463 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1464 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1465 end Access_Type_Declaration
;
1467 ----------------------------------
1468 -- Add_Interface_Tag_Components --
1469 ----------------------------------
1471 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1472 Loc
: constant Source_Ptr
:= Sloc
(N
);
1476 procedure Add_Tag
(Iface
: Entity_Id
);
1477 -- Add tag for one of the progenitor interfaces
1483 procedure Add_Tag
(Iface
: Entity_Id
) is
1490 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1492 -- This is a reasonable place to propagate predicates
1494 if Has_Predicates
(Iface
) then
1495 Set_Has_Predicates
(Typ
);
1499 Make_Component_Definition
(Loc
,
1500 Aliased_Present
=> True,
1501 Subtype_Indication
=>
1502 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1504 Tag
:= Make_Temporary
(Loc
, 'V');
1507 Make_Component_Declaration
(Loc
,
1508 Defining_Identifier
=> Tag
,
1509 Component_Definition
=> Def
);
1511 Analyze_Component_Declaration
(Decl
);
1513 Set_Analyzed
(Decl
);
1514 Set_Ekind
(Tag
, E_Component
);
1516 Set_Is_Aliased
(Tag
);
1517 Set_Related_Type
(Tag
, Iface
);
1518 Init_Component_Location
(Tag
);
1520 pragma Assert
(Is_Frozen
(Iface
));
1522 Set_DT_Entry_Count
(Tag
,
1523 DT_Entry_Count
(First_Entity
(Iface
)));
1525 if No
(Last_Tag
) then
1528 Insert_After
(Last_Tag
, Decl
);
1533 -- If the ancestor has discriminants we need to give special support
1534 -- to store the offset_to_top value of the secondary dispatch tables.
1535 -- For this purpose we add a supplementary component just after the
1536 -- field that contains the tag associated with each secondary DT.
1538 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1540 Make_Component_Definition
(Loc
,
1541 Subtype_Indication
=>
1542 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1544 Offset
:= Make_Temporary
(Loc
, 'V');
1547 Make_Component_Declaration
(Loc
,
1548 Defining_Identifier
=> Offset
,
1549 Component_Definition
=> Def
);
1551 Analyze_Component_Declaration
(Decl
);
1553 Set_Analyzed
(Decl
);
1554 Set_Ekind
(Offset
, E_Component
);
1555 Set_Is_Aliased
(Offset
);
1556 Set_Related_Type
(Offset
, Iface
);
1557 Init_Component_Location
(Offset
);
1558 Insert_After
(Last_Tag
, Decl
);
1569 -- Start of processing for Add_Interface_Tag_Components
1572 if not RTE_Available
(RE_Interface_Tag
) then
1574 ("(Ada 2005) interface types not supported by this run-time!",
1579 if Ekind
(Typ
) /= E_Record_Type
1580 or else (Is_Concurrent_Record_Type
(Typ
)
1581 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1582 or else (not Is_Concurrent_Record_Type
(Typ
)
1583 and then No
(Interfaces
(Typ
))
1584 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1589 -- Find the current last tag
1591 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1592 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1594 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1595 Ext
:= Type_Definition
(N
);
1600 if not (Present
(Component_List
(Ext
))) then
1601 Set_Null_Present
(Ext
, False);
1603 Set_Component_List
(Ext
,
1604 Make_Component_List
(Loc
,
1605 Component_Items
=> L
,
1606 Null_Present
=> False));
1608 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1609 L
:= Component_Items
1611 (Record_Extension_Part
1612 (Type_Definition
(N
))));
1614 L
:= Component_Items
1616 (Type_Definition
(N
)));
1619 -- Find the last tag component
1622 while Present
(Comp
) loop
1623 if Nkind
(Comp
) = N_Component_Declaration
1624 and then Is_Tag
(Defining_Identifier
(Comp
))
1633 -- At this point L references the list of components and Last_Tag
1634 -- references the current last tag (if any). Now we add the tag
1635 -- corresponding with all the interfaces that are not implemented
1638 if Present
(Interfaces
(Typ
)) then
1639 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1640 while Present
(Elmt
) loop
1641 Add_Tag
(Node
(Elmt
));
1645 end Add_Interface_Tag_Components
;
1647 -------------------------------------
1648 -- Add_Internal_Interface_Entities --
1649 -------------------------------------
1651 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1654 Iface_Elmt
: Elmt_Id
;
1655 Iface_Prim
: Entity_Id
;
1656 Ifaces_List
: Elist_Id
;
1657 New_Subp
: Entity_Id
:= Empty
;
1659 Restore_Scope
: Boolean := False;
1662 pragma Assert
(Ada_Version
>= Ada_2005
1663 and then Is_Record_Type
(Tagged_Type
)
1664 and then Is_Tagged_Type
(Tagged_Type
)
1665 and then Has_Interfaces
(Tagged_Type
)
1666 and then not Is_Interface
(Tagged_Type
));
1668 -- Ensure that the internal entities are added to the scope of the type
1670 if Scope
(Tagged_Type
) /= Current_Scope
then
1671 Push_Scope
(Scope
(Tagged_Type
));
1672 Restore_Scope
:= True;
1675 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1677 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1678 while Present
(Iface_Elmt
) loop
1679 Iface
:= Node
(Iface_Elmt
);
1681 -- Originally we excluded here from this processing interfaces that
1682 -- are parents of Tagged_Type because their primitives are located
1683 -- in the primary dispatch table (and hence no auxiliary internal
1684 -- entities are required to handle secondary dispatch tables in such
1685 -- case). However, these auxiliary entities are also required to
1686 -- handle derivations of interfaces in formals of generics (see
1687 -- Derive_Subprograms).
1689 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1690 while Present
(Elmt
) loop
1691 Iface_Prim
:= Node
(Elmt
);
1693 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1695 Find_Primitive_Covering_Interface
1696 (Tagged_Type
=> Tagged_Type
,
1697 Iface_Prim
=> Iface_Prim
);
1699 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1703 pragma Assert
(Present
(Prim
));
1705 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1706 -- differs from the name of the interface primitive then it is
1707 -- a private primitive inherited from a parent type. In such
1708 -- case, given that Tagged_Type covers the interface, the
1709 -- inherited private primitive becomes visible. For such
1710 -- purpose we add a new entity that renames the inherited
1711 -- private primitive.
1713 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1714 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1716 (New_Subp
=> New_Subp
,
1717 Parent_Subp
=> Iface_Prim
,
1718 Derived_Type
=> Tagged_Type
,
1719 Parent_Type
=> Iface
);
1720 Set_Alias
(New_Subp
, Prim
);
1721 Set_Is_Abstract_Subprogram
1722 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1726 (New_Subp
=> New_Subp
,
1727 Parent_Subp
=> Iface_Prim
,
1728 Derived_Type
=> Tagged_Type
,
1729 Parent_Type
=> Iface
);
1731 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1732 -- associated with interface types. These entities are
1733 -- only registered in the list of primitives of its
1734 -- corresponding tagged type because they are only used
1735 -- to fill the contents of the secondary dispatch tables.
1736 -- Therefore they are removed from the homonym chains.
1738 Set_Is_Hidden
(New_Subp
);
1739 Set_Is_Internal
(New_Subp
);
1740 Set_Alias
(New_Subp
, Prim
);
1741 Set_Is_Abstract_Subprogram
1742 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1743 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1745 -- If the returned type is an interface then propagate it to
1746 -- the returned type. Needed by the thunk to generate the code
1747 -- which displaces "this" to reference the corresponding
1748 -- secondary dispatch table in the returned object.
1750 if Is_Interface
(Etype
(Iface_Prim
)) then
1751 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1754 -- Internal entities associated with interface types are
1755 -- only registered in the list of primitives of the tagged
1756 -- type. They are only used to fill the contents of the
1757 -- secondary dispatch tables. Therefore they are not needed
1758 -- in the homonym chains.
1760 Remove_Homonym
(New_Subp
);
1762 -- Hidden entities associated with interfaces must have set
1763 -- the Has_Delay_Freeze attribute to ensure that, in case of
1764 -- locally defined tagged types (or compiling with static
1765 -- dispatch tables generation disabled) the corresponding
1766 -- entry of the secondary dispatch table is filled when
1767 -- such an entity is frozen.
1769 Set_Has_Delayed_Freeze
(New_Subp
);
1776 Next_Elmt
(Iface_Elmt
);
1779 if Restore_Scope
then
1782 end Add_Internal_Interface_Entities
;
1784 -----------------------------------
1785 -- Analyze_Component_Declaration --
1786 -----------------------------------
1788 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1789 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1790 E
: constant Node_Id
:= Expression
(N
);
1791 Typ
: constant Node_Id
:=
1792 Subtype_Indication
(Component_Definition
(N
));
1796 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1797 -- Determines whether a constraint uses the discriminant of a record
1798 -- type thus becoming a per-object constraint (POC).
1800 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1801 -- Typ is the type of the current component, check whether this type is
1802 -- a limited type. Used to validate declaration against that of
1803 -- enclosing record.
1809 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1811 -- Prevent cascaded errors
1813 if Error_Posted
(Constr
) then
1817 case Nkind
(Constr
) is
1818 when N_Attribute_Reference
=>
1819 return Attribute_Name
(Constr
) = Name_Access
1820 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1822 when N_Discriminant_Association
=>
1823 return Denotes_Discriminant
(Expression
(Constr
));
1825 when N_Identifier
=>
1826 return Denotes_Discriminant
(Constr
);
1828 when N_Index_Or_Discriminant_Constraint
=>
1833 IDC
:= First
(Constraints
(Constr
));
1834 while Present
(IDC
) loop
1836 -- One per-object constraint is sufficient
1838 if Contains_POC
(IDC
) then
1849 return Denotes_Discriminant
(Low_Bound
(Constr
))
1851 Denotes_Discriminant
(High_Bound
(Constr
));
1853 when N_Range_Constraint
=>
1854 return Denotes_Discriminant
(Range_Expression
(Constr
));
1862 ----------------------
1863 -- Is_Known_Limited --
1864 ----------------------
1866 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1867 P
: constant Entity_Id
:= Etype
(Typ
);
1868 R
: constant Entity_Id
:= Root_Type
(Typ
);
1871 if Is_Limited_Record
(Typ
) then
1874 -- If the root type is limited (and not a limited interface)
1875 -- so is the current type
1877 elsif Is_Limited_Record
(R
)
1878 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1882 -- Else the type may have a limited interface progenitor, but a
1883 -- limited record parent.
1885 elsif R
/= P
and then Is_Limited_Record
(P
) then
1891 end Is_Known_Limited
;
1893 -- Start of processing for Analyze_Component_Declaration
1896 Generate_Definition
(Id
);
1899 if Present
(Typ
) then
1900 T
:= Find_Type_Of_Object
1901 (Subtype_Indication
(Component_Definition
(N
)), N
);
1903 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1904 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1907 -- Ada 2005 (AI-230): Access Definition case
1910 pragma Assert
(Present
1911 (Access_Definition
(Component_Definition
(N
))));
1913 T
:= Access_Definition
1915 N
=> Access_Definition
(Component_Definition
(N
)));
1916 Set_Is_Local_Anonymous_Access
(T
);
1918 -- Ada 2005 (AI-254)
1920 if Present
(Access_To_Subprogram_Definition
1921 (Access_Definition
(Component_Definition
(N
))))
1922 and then Protected_Present
(Access_To_Subprogram_Definition
1924 (Component_Definition
(N
))))
1926 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1930 -- If the subtype is a constrained subtype of the enclosing record,
1931 -- (which must have a partial view) the back-end does not properly
1932 -- handle the recursion. Rewrite the component declaration with an
1933 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1934 -- the tree directly because side effects have already been removed from
1935 -- discriminant constraints.
1937 if Ekind
(T
) = E_Access_Subtype
1938 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1939 and then Comes_From_Source
(T
)
1940 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1941 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1944 (Subtype_Indication
(Component_Definition
(N
)),
1945 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1946 T
:= Find_Type_Of_Object
1947 (Subtype_Indication
(Component_Definition
(N
)), N
);
1950 -- If the component declaration includes a default expression, then we
1951 -- check that the component is not of a limited type (RM 3.7(5)),
1952 -- and do the special preanalysis of the expression (see section on
1953 -- "Handling of Default and Per-Object Expressions" in the spec of
1957 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1958 Preanalyze_Default_Expression
(E
, T
);
1959 Check_Initialization
(T
, E
);
1961 if Ada_Version
>= Ada_2005
1962 and then Ekind
(T
) = E_Anonymous_Access_Type
1963 and then Etype
(E
) /= Any_Type
1965 -- Check RM 3.9.2(9): "if the expected type for an expression is
1966 -- an anonymous access-to-specific tagged type, then the object
1967 -- designated by the expression shall not be dynamically tagged
1968 -- unless it is a controlling operand in a call on a dispatching
1971 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1973 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1975 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1979 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1982 -- (Ada 2005: AI-230): Accessibility check for anonymous
1985 if Type_Access_Level
(Etype
(E
)) >
1986 Deepest_Type_Access_Level
(T
)
1989 ("expression has deeper access level than component " &
1990 "(RM 3.10.2 (12.2))", E
);
1993 -- The initialization expression is a reference to an access
1994 -- discriminant. The type of the discriminant is always deeper
1995 -- than any access type.
1997 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1998 and then Is_Entity_Name
(E
)
1999 and then Ekind
(Entity
(E
)) = E_In_Parameter
2000 and then Present
(Discriminal_Link
(Entity
(E
)))
2003 ("discriminant has deeper accessibility level than target",
2009 -- The parent type may be a private view with unknown discriminants,
2010 -- and thus unconstrained. Regular components must be constrained.
2012 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2013 if Is_Class_Wide_Type
(T
) then
2015 ("class-wide subtype with unknown discriminants" &
2016 " in component declaration",
2017 Subtype_Indication
(Component_Definition
(N
)));
2020 ("unconstrained subtype in component declaration",
2021 Subtype_Indication
(Component_Definition
(N
)));
2024 -- Components cannot be abstract, except for the special case of
2025 -- the _Parent field (case of extending an abstract tagged type)
2027 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2028 Error_Msg_N
("type of a component cannot be abstract", N
);
2032 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2034 -- The component declaration may have a per-object constraint, set
2035 -- the appropriate flag in the defining identifier of the subtype.
2037 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2039 Sindic
: constant Node_Id
:=
2040 Subtype_Indication
(Component_Definition
(N
));
2042 if Nkind
(Sindic
) = N_Subtype_Indication
2043 and then Present
(Constraint
(Sindic
))
2044 and then Contains_POC
(Constraint
(Sindic
))
2046 Set_Has_Per_Object_Constraint
(Id
);
2051 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2052 -- out some static checks.
2054 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2055 Null_Exclusion_Static_Checks
(N
);
2058 -- If this component is private (or depends on a private type), flag the
2059 -- record type to indicate that some operations are not available.
2061 P
:= Private_Component
(T
);
2065 -- Check for circular definitions
2067 if P
= Any_Type
then
2068 Set_Etype
(Id
, Any_Type
);
2070 -- There is a gap in the visibility of operations only if the
2071 -- component type is not defined in the scope of the record type.
2073 elsif Scope
(P
) = Scope
(Current_Scope
) then
2076 elsif Is_Limited_Type
(P
) then
2077 Set_Is_Limited_Composite
(Current_Scope
);
2080 Set_Is_Private_Composite
(Current_Scope
);
2085 and then Is_Limited_Type
(T
)
2086 and then Chars
(Id
) /= Name_uParent
2087 and then Is_Tagged_Type
(Current_Scope
)
2089 if Is_Derived_Type
(Current_Scope
)
2090 and then not Is_Known_Limited
(Current_Scope
)
2093 ("extension of nonlimited type cannot have limited components",
2096 if Is_Interface
(Root_Type
(Current_Scope
)) then
2098 ("\limitedness is not inherited from limited interface", N
);
2099 Error_Msg_N
("\add LIMITED to type indication", N
);
2102 Explain_Limited_Type
(T
, N
);
2103 Set_Etype
(Id
, Any_Type
);
2104 Set_Is_Limited_Composite
(Current_Scope
, False);
2106 elsif not Is_Derived_Type
(Current_Scope
)
2107 and then not Is_Limited_Record
(Current_Scope
)
2108 and then not Is_Concurrent_Type
(Current_Scope
)
2111 ("nonlimited tagged type cannot have limited components", N
);
2112 Explain_Limited_Type
(T
, N
);
2113 Set_Etype
(Id
, Any_Type
);
2114 Set_Is_Limited_Composite
(Current_Scope
, False);
2118 Set_Original_Record_Component
(Id
, Id
);
2120 if Has_Aspects
(N
) then
2121 Analyze_Aspect_Specifications
(N
, Id
);
2124 Analyze_Dimension
(N
);
2125 end Analyze_Component_Declaration
;
2127 --------------------------
2128 -- Analyze_Declarations --
2129 --------------------------
2131 procedure Analyze_Declarations
(L
: List_Id
) is
2134 procedure Adjust_Decl
;
2135 -- Adjust Decl not to include implicit label declarations, since these
2136 -- have strange Sloc values that result in elaboration check problems.
2137 -- (They have the sloc of the label as found in the source, and that
2138 -- is ahead of the current declarative part).
2140 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2141 -- Determine whether Body_Decl denotes the body of a late controlled
2142 -- primitive (either Initialize, Adjust or Finalize). If this is the
2143 -- case, add a proper spec if the body lacks one. The spec is inserted
2144 -- before Body_Decl and immedately analyzed.
2146 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2147 -- Spec_Id is the entity of a package that may define abstract states.
2148 -- If the states have visible refinement, remove the visibility of each
2149 -- constituent at the end of the package body declarations.
2155 procedure Adjust_Decl
is
2157 while Present
(Prev
(Decl
))
2158 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2164 --------------------------------------
2165 -- Handle_Late_Controlled_Primitive --
2166 --------------------------------------
2168 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2169 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2170 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2171 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2172 Params
: constant List_Id
:=
2173 Parameter_Specifications
(Body_Spec
);
2175 Spec_Id
: Entity_Id
;
2179 -- Consider only procedure bodies whose name matches one of the three
2180 -- controlled primitives.
2182 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2183 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2189 -- A controlled primitive must have exactly one formal which is not
2190 -- an anonymous access type.
2192 elsif List_Length
(Params
) /= 1 then
2196 Typ
:= Parameter_Type
(First
(Params
));
2198 if Nkind
(Typ
) = N_Access_Definition
then
2204 -- The type of the formal must be derived from [Limited_]Controlled
2206 if not Is_Controlled
(Entity
(Typ
)) then
2210 -- Check whether a specification exists for this body. We do not
2211 -- analyze the spec of the body in full, because it will be analyzed
2212 -- again when the body is properly analyzed, and we cannot create
2213 -- duplicate entries in the formals chain. We look for an explicit
2214 -- specification because the body may be an overriding operation and
2215 -- an inherited spec may be present.
2217 Spec_Id
:= Current_Entity
(Body_Id
);
2219 while Present
(Spec_Id
) loop
2220 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2221 and then Scope
(Spec_Id
) = Current_Scope
2222 and then Present
(First_Formal
(Spec_Id
))
2223 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2224 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2225 and then Comes_From_Source
(Spec_Id
)
2230 Spec_Id
:= Homonym
(Spec_Id
);
2233 -- At this point the body is known to be a late controlled primitive.
2234 -- Generate a matching spec and insert it before the body. Note the
2235 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2236 -- tree in this case.
2238 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2240 -- Ensure that the subprogram declaration does not inherit the null
2241 -- indicator from the body as we now have a proper spec/body pair.
2243 Set_Null_Present
(Spec
, False);
2245 Insert_Before_And_Analyze
(Body_Decl
,
2246 Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
2247 end Handle_Late_Controlled_Primitive
;
2249 --------------------------------
2250 -- Remove_Visible_Refinements --
2251 --------------------------------
2253 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2254 State_Elmt
: Elmt_Id
;
2256 if Present
(Abstract_States
(Spec_Id
)) then
2257 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2258 while Present
(State_Elmt
) loop
2259 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2260 Next_Elmt
(State_Elmt
);
2263 end Remove_Visible_Refinements
;
2268 Freeze_From
: Entity_Id
:= Empty
;
2269 Next_Decl
: Node_Id
;
2270 Spec_Id
: Entity_Id
;
2272 Body_Seen
: Boolean := False;
2273 -- Flag set when the first body [stub] is encountered
2275 In_Package_Body
: Boolean := False;
2276 -- Flag set when the current declaration list belongs to a package body
2278 -- Start of processing for Analyze_Declarations
2281 if Restriction_Check_Required
(SPARK_05
) then
2282 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2286 while Present
(Decl
) loop
2288 -- Package spec cannot contain a package declaration in SPARK
2290 if Nkind
(Decl
) = N_Package_Declaration
2291 and then Nkind
(Parent
(L
)) = N_Package_Specification
2293 Check_SPARK_05_Restriction
2294 ("package specification cannot contain a package declaration",
2298 -- Complete analysis of declaration
2301 Next_Decl
:= Next
(Decl
);
2303 if No
(Freeze_From
) then
2304 Freeze_From
:= First_Entity
(Current_Scope
);
2307 -- At the end of a declarative part, freeze remaining entities
2308 -- declared in it. The end of the visible declarations of package
2309 -- specification is not the end of a declarative part if private
2310 -- declarations are present. The end of a package declaration is a
2311 -- freezing point only if it a library package. A task definition or
2312 -- protected type definition is not a freeze point either. Finally,
2313 -- we do not freeze entities in generic scopes, because there is no
2314 -- code generated for them and freeze nodes will be generated for
2317 -- The end of a package instantiation is not a freeze point, but
2318 -- for now we make it one, because the generic body is inserted
2319 -- (currently) immediately after. Generic instantiations will not
2320 -- be a freeze point once delayed freezing of bodies is implemented.
2321 -- (This is needed in any case for early instantiations ???).
2323 if No
(Next_Decl
) then
2324 if Nkind_In
(Parent
(L
), N_Component_List
,
2326 N_Protected_Definition
)
2330 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2331 if Nkind
(Parent
(L
)) = N_Package_Body
then
2332 Freeze_From
:= First_Entity
(Current_Scope
);
2335 -- There may have been several freezing points previously,
2336 -- for example object declarations or subprogram bodies, but
2337 -- at the end of a declarative part we check freezing from
2338 -- the beginning, even though entities may already be frozen,
2339 -- in order to perform visibility checks on delayed aspects.
2342 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2343 Freeze_From
:= Last_Entity
(Current_Scope
);
2345 elsif Scope
(Current_Scope
) /= Standard_Standard
2346 and then not Is_Child_Unit
(Current_Scope
)
2347 and then No
(Generic_Parent
(Parent
(L
)))
2351 elsif L
/= Visible_Declarations
(Parent
(L
))
2352 or else No
(Private_Declarations
(Parent
(L
)))
2353 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2356 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2357 Freeze_From
:= Last_Entity
(Current_Scope
);
2360 -- If next node is a body then freeze all types before the body.
2361 -- An exception occurs for some expander-generated bodies. If these
2362 -- are generated at places where in general language rules would not
2363 -- allow a freeze point, then we assume that the expander has
2364 -- explicitly checked that all required types are properly frozen,
2365 -- and we do not cause general freezing here. This special circuit
2366 -- is used when the encountered body is marked as having already
2369 -- In all other cases (bodies that come from source, and expander
2370 -- generated bodies that have not been analyzed yet), freeze all
2371 -- types now. Note that in the latter case, the expander must take
2372 -- care to attach the bodies at a proper place in the tree so as to
2373 -- not cause unwanted freezing at that point.
2375 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
) then
2377 -- When a controlled type is frozen, the expander generates stream
2378 -- and controlled type support routines. If the freeze is caused
2379 -- by the stand alone body of Initialize, Adjust and Finalize, the
2380 -- expander will end up using the wrong version of these routines
2381 -- as the body has not been processed yet. To remedy this, detect
2382 -- a late controlled primitive and create a proper spec for it.
2383 -- This ensures that the primitive will override its inherited
2384 -- counterpart before the freeze takes place.
2386 -- If the declaration we just processed is a body, do not attempt
2387 -- to examine Next_Decl as the late primitive idiom can only apply
2388 -- to the first encountered body.
2390 -- The spec of the late primitive is not generated in ASIS mode to
2391 -- ensure a consistent list of primitives that indicates the true
2392 -- semantic structure of the program (which is not relevant when
2393 -- generating executable code.
2395 -- ??? a cleaner approach may be possible and/or this solution
2396 -- could be extended to general-purpose late primitives, TBD.
2398 if not ASIS_Mode
and then not Body_Seen
and then not Is_Body
(Decl
)
2402 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2403 Handle_Late_Controlled_Primitive
(Next_Decl
);
2408 Freeze_All
(Freeze_From
, Decl
);
2409 Freeze_From
:= Last_Entity
(Current_Scope
);
2415 -- Analyze the contracts of packages and their bodies
2418 Context
:= Parent
(L
);
2420 if Nkind
(Context
) = N_Package_Specification
then
2422 -- When a package has private declarations, its contract must be
2423 -- analyzed at the end of the said declarations. This way both the
2424 -- analysis and freeze actions are properly synchronized in case
2425 -- of private type use within the contract.
2427 if L
= Private_Declarations
(Context
) then
2428 Analyze_Package_Contract
(Defining_Entity
(Context
));
2430 -- Build the bodies of the default initial condition procedures
2431 -- for all types subject to pragma Default_Initial_Condition.
2432 -- From a purely Ada stand point, this is a freezing activity,
2433 -- however freezing is not available under GNATprove_Mode. To
2434 -- accomodate both scenarios, the bodies are build at the end
2435 -- of private declaration analysis.
2437 Build_Default_Init_Cond_Procedure_Bodies
(L
);
2439 -- Otherwise the contract is analyzed at the end of the visible
2442 elsif L
= Visible_Declarations
(Context
)
2443 and then No
(Private_Declarations
(Context
))
2445 Analyze_Package_Contract
(Defining_Entity
(Context
));
2448 elsif Nkind
(Context
) = N_Package_Body
then
2449 In_Package_Body
:= True;
2450 Spec_Id
:= Corresponding_Spec
(Context
);
2452 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2456 -- Analyze the contracts of subprogram declarations, subprogram bodies
2457 -- and variables now due to the delayed visibility requirements of their
2461 while Present
(Decl
) loop
2462 if Nkind
(Decl
) = N_Object_Declaration
then
2463 Analyze_Object_Contract
(Defining_Entity
(Decl
));
2465 elsif Nkind_In
(Decl
, N_Abstract_Subprogram_Declaration
,
2466 N_Subprogram_Declaration
)
2468 Analyze_Subprogram_Contract
(Defining_Entity
(Decl
));
2470 elsif Nkind
(Decl
) = N_Subprogram_Body
then
2471 Analyze_Subprogram_Body_Contract
(Defining_Entity
(Decl
));
2473 elsif Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2474 Analyze_Subprogram_Body_Stub_Contract
(Defining_Entity
(Decl
));
2480 -- State refinements are visible upto the end the of the package body
2481 -- declarations. Hide the refinements from visibility to restore the
2482 -- original state conditions.
2484 if In_Package_Body
then
2485 Remove_Visible_Refinements
(Spec_Id
);
2487 end Analyze_Declarations
;
2489 -----------------------------------
2490 -- Analyze_Full_Type_Declaration --
2491 -----------------------------------
2493 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2494 Def
: constant Node_Id
:= Type_Definition
(N
);
2495 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2499 Is_Remote
: constant Boolean :=
2500 (Is_Remote_Types
(Current_Scope
)
2501 or else Is_Remote_Call_Interface
(Current_Scope
))
2502 and then not (In_Private_Part
(Current_Scope
)
2503 or else In_Package_Body
(Current_Scope
));
2505 procedure Check_Ops_From_Incomplete_Type
;
2506 -- If there is a tagged incomplete partial view of the type, traverse
2507 -- the primitives of the incomplete view and change the type of any
2508 -- controlling formals and result to indicate the full view. The
2509 -- primitives will be added to the full type's primitive operations
2510 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2511 -- is called from Process_Incomplete_Dependents).
2513 ------------------------------------
2514 -- Check_Ops_From_Incomplete_Type --
2515 ------------------------------------
2517 procedure Check_Ops_From_Incomplete_Type
is
2524 and then Ekind
(Prev
) = E_Incomplete_Type
2525 and then Is_Tagged_Type
(Prev
)
2526 and then Is_Tagged_Type
(T
)
2528 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2529 while Present
(Elmt
) loop
2532 Formal
:= First_Formal
(Op
);
2533 while Present
(Formal
) loop
2534 if Etype
(Formal
) = Prev
then
2535 Set_Etype
(Formal
, T
);
2538 Next_Formal
(Formal
);
2541 if Etype
(Op
) = Prev
then
2548 end Check_Ops_From_Incomplete_Type
;
2550 -- Start of processing for Analyze_Full_Type_Declaration
2553 Prev
:= Find_Type_Name
(N
);
2555 -- The full view, if present, now points to the current type
2556 -- If there is an incomplete partial view, set a link to it, to
2557 -- simplify the retrieval of primitive operations of the type.
2559 -- Ada 2005 (AI-50217): If the type was previously decorated when
2560 -- imported through a LIMITED WITH clause, it appears as incomplete
2561 -- but has no full view.
2563 if Ekind
(Prev
) = E_Incomplete_Type
2564 and then Present
(Full_View
(Prev
))
2566 T
:= Full_View
(Prev
);
2567 Set_Incomplete_View
(N
, Parent
(Prev
));
2572 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2574 -- We set the flag Is_First_Subtype here. It is needed to set the
2575 -- corresponding flag for the Implicit class-wide-type created
2576 -- during tagged types processing.
2578 Set_Is_First_Subtype
(T
, True);
2580 -- Only composite types other than array types are allowed to have
2585 -- For derived types, the rule will be checked once we've figured
2586 -- out the parent type.
2588 when N_Derived_Type_Definition
=>
2591 -- For record types, discriminants are allowed, unless we are in
2594 when N_Record_Definition
=>
2595 if Present
(Discriminant_Specifications
(N
)) then
2596 Check_SPARK_05_Restriction
2597 ("discriminant type is not allowed",
2599 (First
(Discriminant_Specifications
(N
))));
2603 if Present
(Discriminant_Specifications
(N
)) then
2605 ("elementary or array type cannot have discriminants",
2607 (First
(Discriminant_Specifications
(N
))));
2611 -- Elaborate the type definition according to kind, and generate
2612 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2613 -- already done (this happens during the reanalysis that follows a call
2614 -- to the high level optimizer).
2616 if not Analyzed
(T
) then
2620 when N_Access_To_Subprogram_Definition
=>
2621 Access_Subprogram_Declaration
(T
, Def
);
2623 -- If this is a remote access to subprogram, we must create the
2624 -- equivalent fat pointer type, and related subprograms.
2627 Process_Remote_AST_Declaration
(N
);
2630 -- Validate categorization rule against access type declaration
2631 -- usually a violation in Pure unit, Shared_Passive unit.
2633 Validate_Access_Type_Declaration
(T
, N
);
2635 when N_Access_To_Object_Definition
=>
2636 Access_Type_Declaration
(T
, Def
);
2638 -- Validate categorization rule against access type declaration
2639 -- usually a violation in Pure unit, Shared_Passive unit.
2641 Validate_Access_Type_Declaration
(T
, N
);
2643 -- If we are in a Remote_Call_Interface package and define a
2644 -- RACW, then calling stubs and specific stream attributes
2648 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2650 Add_RACW_Features
(Def_Id
);
2653 -- Set no strict aliasing flag if config pragma seen
2655 if Opt
.No_Strict_Aliasing
then
2656 Set_No_Strict_Aliasing
(Base_Type
(Def_Id
));
2659 when N_Array_Type_Definition
=>
2660 Array_Type_Declaration
(T
, Def
);
2662 when N_Derived_Type_Definition
=>
2663 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2665 when N_Enumeration_Type_Definition
=>
2666 Enumeration_Type_Declaration
(T
, Def
);
2668 when N_Floating_Point_Definition
=>
2669 Floating_Point_Type_Declaration
(T
, Def
);
2671 when N_Decimal_Fixed_Point_Definition
=>
2672 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2674 when N_Ordinary_Fixed_Point_Definition
=>
2675 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2677 when N_Signed_Integer_Type_Definition
=>
2678 Signed_Integer_Type_Declaration
(T
, Def
);
2680 when N_Modular_Type_Definition
=>
2681 Modular_Type_Declaration
(T
, Def
);
2683 when N_Record_Definition
=>
2684 Record_Type_Declaration
(T
, N
, Prev
);
2686 -- If declaration has a parse error, nothing to elaborate.
2692 raise Program_Error
;
2697 if Etype
(T
) = Any_Type
then
2701 -- Controlled type is not allowed in SPARK
2703 if Is_Visibly_Controlled
(T
) then
2704 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
2707 -- A type declared within a Ghost scope is automatically Ghost
2708 -- (SPARK RM 6.9(2)).
2710 if Comes_From_Source
(T
) and then Within_Ghost_Scope
then
2711 Set_Is_Ghost_Entity
(T
);
2714 -- Some common processing for all types
2716 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2717 Check_Ops_From_Incomplete_Type
;
2719 -- Both the declared entity, and its anonymous base type if one was
2720 -- created, need freeze nodes allocated.
2723 B
: constant Entity_Id
:= Base_Type
(T
);
2726 -- In the case where the base type differs from the first subtype, we
2727 -- pre-allocate a freeze node, and set the proper link to the first
2728 -- subtype. Freeze_Entity will use this preallocated freeze node when
2729 -- it freezes the entity.
2731 -- This does not apply if the base type is a generic type, whose
2732 -- declaration is independent of the current derived definition.
2734 if B
/= T
and then not Is_Generic_Type
(B
) then
2735 Ensure_Freeze_Node
(B
);
2736 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2739 -- A type that is imported through a limited_with clause cannot
2740 -- generate any code, and thus need not be frozen. However, an access
2741 -- type with an imported designated type needs a finalization list,
2742 -- which may be referenced in some other package that has non-limited
2743 -- visibility on the designated type. Thus we must create the
2744 -- finalization list at the point the access type is frozen, to
2745 -- prevent unsatisfied references at link time.
2747 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
2748 Set_Has_Delayed_Freeze
(T
);
2752 -- Case where T is the full declaration of some private type which has
2753 -- been swapped in Defining_Identifier (N).
2755 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2756 Process_Full_View
(N
, T
, Def_Id
);
2758 -- Record the reference. The form of this is a little strange, since
2759 -- the full declaration has been swapped in. So the first parameter
2760 -- here represents the entity to which a reference is made which is
2761 -- the "real" entity, i.e. the one swapped in, and the second
2762 -- parameter provides the reference location.
2764 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2765 -- since we don't want a complaint about the full type being an
2766 -- unwanted reference to the private type
2769 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2771 Set_Has_Pragma_Unreferenced
(T
, False);
2772 Generate_Reference
(T
, T
, 'c');
2773 Set_Has_Pragma_Unreferenced
(T
, B
);
2776 Set_Completion_Referenced
(Def_Id
);
2778 -- For completion of incomplete type, process incomplete dependents
2779 -- and always mark the full type as referenced (it is the incomplete
2780 -- type that we get for any real reference).
2782 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2783 Process_Incomplete_Dependents
(N
, T
, Prev
);
2784 Generate_Reference
(Prev
, Def_Id
, 'c');
2785 Set_Completion_Referenced
(Def_Id
);
2787 -- If not private type or incomplete type completion, this is a real
2788 -- definition of a new entity, so record it.
2791 Generate_Definition
(Def_Id
);
2794 if Chars
(Scope
(Def_Id
)) = Name_System
2795 and then Chars
(Def_Id
) = Name_Address
2796 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2798 Set_Is_Descendent_Of_Address
(Def_Id
);
2799 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2800 Set_Is_Descendent_Of_Address
(Prev
);
2803 Set_Optimize_Alignment_Flags
(Def_Id
);
2804 Check_Eliminated
(Def_Id
);
2806 -- If the declaration is a completion and aspects are present, apply
2807 -- them to the entity for the type which is currently the partial
2808 -- view, but which is the one that will be frozen.
2810 if Has_Aspects
(N
) then
2812 -- In most cases the partial view is a private type, and both views
2813 -- appear in different declarative parts. In the unusual case where
2814 -- the partial view is incomplete, perform the analysis on the
2815 -- full view, to prevent freezing anomalies with the corresponding
2816 -- class-wide type, which otherwise might be frozen before the
2817 -- dispatch table is built.
2820 and then Ekind
(Prev
) /= E_Incomplete_Type
2822 Analyze_Aspect_Specifications
(N
, Prev
);
2827 Analyze_Aspect_Specifications
(N
, Def_Id
);
2830 end Analyze_Full_Type_Declaration
;
2832 ----------------------------------
2833 -- Analyze_Incomplete_Type_Decl --
2834 ----------------------------------
2836 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2837 F
: constant Boolean := Is_Pure
(Current_Scope
);
2841 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
2843 Generate_Definition
(Defining_Identifier
(N
));
2845 -- Process an incomplete declaration. The identifier must not have been
2846 -- declared already in the scope. However, an incomplete declaration may
2847 -- appear in the private part of a package, for a private type that has
2848 -- already been declared.
2850 -- In this case, the discriminants (if any) must match
2852 T
:= Find_Type_Name
(N
);
2854 Set_Ekind
(T
, E_Incomplete_Type
);
2855 Init_Size_Align
(T
);
2856 Set_Is_First_Subtype
(T
, True);
2859 -- An incomplete type declared within a Ghost scope is automatically
2860 -- Ghost (SPARK RM 6.9(2)).
2862 if Within_Ghost_Scope
then
2863 Set_Is_Ghost_Entity
(T
);
2866 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2867 -- incomplete types.
2869 if Tagged_Present
(N
) then
2870 Set_Is_Tagged_Type
(T
, True);
2871 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2872 Make_Class_Wide_Type
(T
);
2873 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2878 Set_Stored_Constraint
(T
, No_Elist
);
2880 if Present
(Discriminant_Specifications
(N
)) then
2881 Process_Discriminants
(N
);
2886 -- If the type has discriminants, non-trivial subtypes may be
2887 -- declared before the full view of the type. The full views of those
2888 -- subtypes will be built after the full view of the type.
2890 Set_Private_Dependents
(T
, New_Elmt_List
);
2892 end Analyze_Incomplete_Type_Decl
;
2894 -----------------------------------
2895 -- Analyze_Interface_Declaration --
2896 -----------------------------------
2898 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2899 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2902 Set_Is_Tagged_Type
(T
);
2903 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2905 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2906 or else Task_Present
(Def
)
2907 or else Protected_Present
(Def
)
2908 or else Synchronized_Present
(Def
));
2910 -- Type is abstract if full declaration carries keyword, or if previous
2911 -- partial view did.
2913 Set_Is_Abstract_Type
(T
);
2914 Set_Is_Interface
(T
);
2916 -- Type is a limited interface if it includes the keyword limited, task,
2917 -- protected, or synchronized.
2919 Set_Is_Limited_Interface
2920 (T
, Limited_Present
(Def
)
2921 or else Protected_Present
(Def
)
2922 or else Synchronized_Present
(Def
)
2923 or else Task_Present
(Def
));
2925 Set_Interfaces
(T
, New_Elmt_List
);
2926 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2928 -- Complete the decoration of the class-wide entity if it was already
2929 -- built (i.e. during the creation of the limited view)
2931 if Present
(CW
) then
2932 Set_Is_Interface
(CW
);
2933 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2936 -- Check runtime support for synchronized interfaces
2938 if VM_Target
= No_VM
2939 and then (Is_Task_Interface
(T
)
2940 or else Is_Protected_Interface
(T
)
2941 or else Is_Synchronized_Interface
(T
))
2942 and then not RTE_Available
(RE_Select_Specific_Data
)
2944 Error_Msg_CRT
("synchronized interfaces", T
);
2946 end Analyze_Interface_Declaration
;
2948 -----------------------------
2949 -- Analyze_Itype_Reference --
2950 -----------------------------
2952 -- Nothing to do. This node is placed in the tree only for the benefit of
2953 -- back end processing, and has no effect on the semantic processing.
2955 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2957 pragma Assert
(Is_Itype
(Itype
(N
)));
2959 end Analyze_Itype_Reference
;
2961 --------------------------------
2962 -- Analyze_Number_Declaration --
2963 --------------------------------
2965 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2966 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2967 E
: constant Node_Id
:= Expression
(N
);
2969 Index
: Interp_Index
;
2973 Generate_Definition
(Id
);
2976 -- A number declared within a Ghost scope is automatically Ghost
2977 -- (SPARK RM 6.9(2)).
2979 if Within_Ghost_Scope
then
2980 Set_Is_Ghost_Entity
(Id
);
2983 -- This is an optimization of a common case of an integer literal
2985 if Nkind
(E
) = N_Integer_Literal
then
2986 Set_Is_Static_Expression
(E
, True);
2987 Set_Etype
(E
, Universal_Integer
);
2989 Set_Etype
(Id
, Universal_Integer
);
2990 Set_Ekind
(Id
, E_Named_Integer
);
2991 Set_Is_Frozen
(Id
, True);
2995 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2997 -- Process expression, replacing error by integer zero, to avoid
2998 -- cascaded errors or aborts further along in the processing
3000 -- Replace Error by integer zero, which seems least likely to cause
3004 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
3005 Set_Error_Posted
(E
);
3010 -- Verify that the expression is static and numeric. If
3011 -- the expression is overloaded, we apply the preference
3012 -- rule that favors root numeric types.
3014 if not Is_Overloaded
(E
) then
3016 if Has_Dynamic_Predicate_Aspect
(T
) then
3018 ("subtype has dynamic predicate, "
3019 & "not allowed in number declaration", N
);
3025 Get_First_Interp
(E
, Index
, It
);
3026 while Present
(It
.Typ
) loop
3027 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3028 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3030 if T
= Any_Type
then
3033 elsif It
.Typ
= Universal_Real
3035 It
.Typ
= Universal_Integer
3037 -- Choose universal interpretation over any other
3044 Get_Next_Interp
(Index
, It
);
3048 if Is_Integer_Type
(T
) then
3050 Set_Etype
(Id
, Universal_Integer
);
3051 Set_Ekind
(Id
, E_Named_Integer
);
3053 elsif Is_Real_Type
(T
) then
3055 -- Because the real value is converted to universal_real, this is a
3056 -- legal context for a universal fixed expression.
3058 if T
= Universal_Fixed
then
3060 Loc
: constant Source_Ptr
:= Sloc
(N
);
3061 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3063 New_Occurrence_Of
(Universal_Real
, Loc
),
3064 Expression
=> Relocate_Node
(E
));
3071 elsif T
= Any_Fixed
then
3072 Error_Msg_N
("illegal context for mixed mode operation", E
);
3074 -- Expression is of the form : universal_fixed * integer. Try to
3075 -- resolve as universal_real.
3077 T
:= Universal_Real
;
3082 Set_Etype
(Id
, Universal_Real
);
3083 Set_Ekind
(Id
, E_Named_Real
);
3086 Wrong_Type
(E
, Any_Numeric
);
3090 Set_Ekind
(Id
, E_Constant
);
3091 Set_Never_Set_In_Source
(Id
, True);
3092 Set_Is_True_Constant
(Id
, True);
3096 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3097 Set_Etype
(E
, Etype
(Id
));
3100 if not Is_OK_Static_Expression
(E
) then
3101 Flag_Non_Static_Expr
3102 ("non-static expression used in number declaration!", E
);
3103 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3104 Set_Etype
(E
, Any_Type
);
3106 end Analyze_Number_Declaration
;
3108 -----------------------------
3109 -- Analyze_Object_Contract --
3110 -----------------------------
3112 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
) is
3113 Obj_Typ
: constant Entity_Id
:= Etype
(Obj_Id
);
3114 AR_Val
: Boolean := False;
3115 AW_Val
: Boolean := False;
3116 ER_Val
: Boolean := False;
3117 EW_Val
: Boolean := False;
3119 Seen
: Boolean := False;
3122 -- The loop parameter in an element iterator over a formal container
3123 -- is declared with an object declaration but no contracts apply.
3125 if Ekind
(Obj_Id
) = E_Loop_Parameter
then
3129 if Ekind
(Obj_Id
) = E_Constant
then
3131 -- A constant cannot be effectively volatile. This check is only
3132 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3133 -- rule. Do not flag internally-generated constants that map generic
3134 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3137 and then Is_Effectively_Volatile
(Obj_Id
)
3138 and then No
(Corresponding_Generic_Association
(Parent
(Obj_Id
)))
3140 Error_Msg_N
("constant cannot be volatile", Obj_Id
);
3143 else pragma Assert
(Ekind
(Obj_Id
) = E_Variable
);
3145 -- The following checks are only relevant when SPARK_Mode is on as
3146 -- they are not standard Ada legality rules. Internally generated
3147 -- temporaries are ignored.
3149 if SPARK_Mode
= On
and then Comes_From_Source
(Obj_Id
) then
3150 if Is_Effectively_Volatile
(Obj_Id
) then
3152 -- The declaration of an effectively volatile object must
3153 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3155 if not Is_Library_Level_Entity
(Obj_Id
) then
3157 ("volatile variable & must be declared at library level",
3160 -- An object of a discriminated type cannot be effectively
3161 -- volatile (SPARK RM C.6(4)).
3163 elsif Has_Discriminants
(Obj_Typ
) then
3165 ("discriminated object & cannot be volatile", Obj_Id
);
3167 -- An object of a tagged type cannot be effectively volatile
3168 -- (SPARK RM C.6(5)).
3170 elsif Is_Tagged_Type
(Obj_Typ
) then
3171 Error_Msg_N
("tagged object & cannot be volatile", Obj_Id
);
3174 -- The object is not effectively volatile
3177 -- A non-effectively volatile object cannot have effectively
3178 -- volatile components (SPARK RM 7.1.3(7)).
3180 if not Is_Effectively_Volatile
(Obj_Id
)
3181 and then Has_Volatile_Component
(Obj_Typ
)
3184 ("non-volatile object & cannot have volatile components",
3190 if Is_Ghost_Entity
(Obj_Id
) then
3192 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3194 if Is_Effectively_Volatile
(Obj_Id
) then
3195 Error_Msg_N
("ghost variable & cannot be volatile", Obj_Id
);
3197 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3199 elsif Is_Imported
(Obj_Id
) then
3200 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3202 elsif Is_Exported
(Obj_Id
) then
3203 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3207 -- Analyze all external properties
3209 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Readers
);
3211 if Present
(Prag
) then
3212 Analyze_External_Property_In_Decl_Part
(Prag
, AR_Val
);
3216 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Writers
);
3218 if Present
(Prag
) then
3219 Analyze_External_Property_In_Decl_Part
(Prag
, AW_Val
);
3223 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Reads
);
3225 if Present
(Prag
) then
3226 Analyze_External_Property_In_Decl_Part
(Prag
, ER_Val
);
3230 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Writes
);
3232 if Present
(Prag
) then
3233 Analyze_External_Property_In_Decl_Part
(Prag
, EW_Val
);
3237 -- Verify the mutual interaction of the various external properties
3240 Check_External_Properties
(Obj_Id
, AR_Val
, AW_Val
, ER_Val
, EW_Val
);
3243 -- Check whether the lack of indicator Part_Of agrees with the
3244 -- placement of the variable with respect to the state space.
3246 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Part_Of
);
3249 Check_Missing_Part_Of
(Obj_Id
);
3253 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3255 if Is_Ghost_Entity
(Obj_Id
) then
3256 if Is_Exported
(Obj_Id
) then
3257 Error_Msg_N
("ghost object & cannot be exported", Obj_Id
);
3259 elsif Is_Imported
(Obj_Id
) then
3260 Error_Msg_N
("ghost object & cannot be imported", Obj_Id
);
3263 end Analyze_Object_Contract
;
3265 --------------------------------
3266 -- Analyze_Object_Declaration --
3267 --------------------------------
3269 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3270 Loc
: constant Source_Ptr
:= Sloc
(N
);
3271 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3275 E
: Node_Id
:= Expression
(N
);
3276 -- E is set to Expression (N) throughout this routine. When
3277 -- Expression (N) is modified, E is changed accordingly.
3279 Prev_Entity
: Entity_Id
:= Empty
;
3281 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3282 -- This function is called when a non-generic library level object of a
3283 -- task type is declared. Its function is to count the static number of
3284 -- tasks declared within the type (it is only called if Has_Tasks is set
3285 -- for T). As a side effect, if an array of tasks with non-static bounds
3286 -- or a variant record type is encountered, Check_Restrictions is called
3287 -- indicating the count is unknown.
3293 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3299 if Is_Task_Type
(T
) then
3302 elsif Is_Record_Type
(T
) then
3303 if Has_Discriminants
(T
) then
3304 Check_Restriction
(Max_Tasks
, N
);
3309 C
:= First_Component
(T
);
3310 while Present
(C
) loop
3311 V
:= V
+ Count_Tasks
(Etype
(C
));
3318 elsif Is_Array_Type
(T
) then
3319 X
:= First_Index
(T
);
3320 V
:= Count_Tasks
(Component_Type
(T
));
3321 while Present
(X
) loop
3324 if not Is_OK_Static_Subtype
(C
) then
3325 Check_Restriction
(Max_Tasks
, N
);
3328 V
:= V
* (UI_Max
(Uint_0
,
3329 Expr_Value
(Type_High_Bound
(C
)) -
3330 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3343 -- Start of processing for Analyze_Object_Declaration
3346 -- There are three kinds of implicit types generated by an
3347 -- object declaration:
3349 -- 1. Those generated by the original Object Definition
3351 -- 2. Those generated by the Expression
3353 -- 3. Those used to constrain the Object Definition with the
3354 -- expression constraints when the definition is unconstrained.
3356 -- They must be generated in this order to avoid order of elaboration
3357 -- issues. Thus the first step (after entering the name) is to analyze
3358 -- the object definition.
3360 if Constant_Present
(N
) then
3361 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3363 if Present
(Prev_Entity
)
3365 -- If the homograph is an implicit subprogram, it is overridden
3366 -- by the current declaration.
3368 ((Is_Overloadable
(Prev_Entity
)
3369 and then Is_Inherited_Operation
(Prev_Entity
))
3371 -- The current object is a discriminal generated for an entry
3372 -- family index. Even though the index is a constant, in this
3373 -- particular context there is no true constant redeclaration.
3374 -- Enter_Name will handle the visibility.
3377 (Is_Discriminal
(Id
)
3378 and then Ekind
(Discriminal_Link
(Id
)) =
3379 E_Entry_Index_Parameter
)
3381 -- The current object is the renaming for a generic declared
3382 -- within the instance.
3385 (Ekind
(Prev_Entity
) = E_Package
3386 and then Nkind
(Parent
(Prev_Entity
)) =
3387 N_Package_Renaming_Declaration
3388 and then not Comes_From_Source
(Prev_Entity
)
3390 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
3392 Prev_Entity
:= Empty
;
3396 if Present
(Prev_Entity
) then
3397 Constant_Redeclaration
(Id
, N
, T
);
3399 Generate_Reference
(Prev_Entity
, Id
, 'c');
3400 Set_Completion_Referenced
(Id
);
3402 if Error_Posted
(N
) then
3404 -- Type mismatch or illegal redeclaration, Do not analyze
3405 -- expression to avoid cascaded errors.
3407 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3409 Set_Ekind
(Id
, E_Variable
);
3413 -- In the normal case, enter identifier at the start to catch premature
3414 -- usage in the initialization expression.
3417 Generate_Definition
(Id
);
3420 Mark_Coextensions
(N
, Object_Definition
(N
));
3422 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3424 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
3426 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3427 and then Protected_Present
3428 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3430 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
3433 if Error_Posted
(Id
) then
3435 Set_Ekind
(Id
, E_Variable
);
3440 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3441 -- out some static checks
3443 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
3445 -- In case of aggregates we must also take care of the correct
3446 -- initialization of nested aggregates bug this is done at the
3447 -- point of the analysis of the aggregate (see sem_aggr.adb).
3449 if Present
(Expression
(N
))
3450 and then Nkind
(Expression
(N
)) = N_Aggregate
3456 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
3458 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
3459 Null_Exclusion_Static_Checks
(N
);
3460 Set_Etype
(Id
, Save_Typ
);
3465 -- Object is marked pure if it is in a pure scope
3467 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3469 -- If deferred constant, make sure context is appropriate. We detect
3470 -- a deferred constant as a constant declaration with no expression.
3471 -- A deferred constant can appear in a package body if its completion
3472 -- is by means of an interface pragma.
3474 if Constant_Present
(N
) and then No
(E
) then
3476 -- A deferred constant may appear in the declarative part of the
3477 -- following constructs:
3481 -- extended return statements
3484 -- subprogram bodies
3487 -- When declared inside a package spec, a deferred constant must be
3488 -- completed by a full constant declaration or pragma Import. In all
3489 -- other cases, the only proper completion is pragma Import. Extended
3490 -- return statements are flagged as invalid contexts because they do
3491 -- not have a declarative part and so cannot accommodate the pragma.
3493 if Ekind
(Current_Scope
) = E_Return_Statement
then
3495 ("invalid context for deferred constant declaration (RM 7.4)",
3498 ("\declaration requires an initialization expression",
3500 Set_Constant_Present
(N
, False);
3502 -- In Ada 83, deferred constant must be of private type
3504 elsif not Is_Private_Type
(T
) then
3505 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3507 ("(Ada 83) deferred constant must be private type", N
);
3511 -- If not a deferred constant, then the object declaration freezes
3512 -- its type, unless the object is of an anonymous type and has delayed
3513 -- aspects. In that case the type is frozen when the object itself is.
3516 Check_Fully_Declared
(T
, N
);
3518 if Has_Delayed_Aspects
(Id
)
3519 and then Is_Array_Type
(T
)
3520 and then Is_Itype
(T
)
3522 Set_Has_Delayed_Freeze
(T
);
3524 Freeze_Before
(N
, T
);
3528 -- If the object was created by a constrained array definition, then
3529 -- set the link in both the anonymous base type and anonymous subtype
3530 -- that are built to represent the array type to point to the object.
3532 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3533 N_Constrained_Array_Definition
3535 Set_Related_Array_Object
(T
, Id
);
3536 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3539 -- Special checks for protected objects not at library level
3541 if Is_Protected_Type
(T
)
3542 and then not Is_Library_Level_Entity
(Id
)
3544 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3546 -- Protected objects with interrupt handlers must be at library level
3548 -- Ada 2005: This test is not needed (and the corresponding clause
3549 -- in the RM is removed) because accessibility checks are sufficient
3550 -- to make handlers not at the library level illegal.
3552 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3553 -- applies to the '95 version of the language as well.
3555 if Has_Interrupt_Handler
(T
) and then Ada_Version
< Ada_95
then
3557 ("interrupt object can only be declared at library level", Id
);
3561 -- The actual subtype of the object is the nominal subtype, unless
3562 -- the nominal one is unconstrained and obtained from the expression.
3566 -- These checks should be performed before the initialization expression
3567 -- is considered, so that the Object_Definition node is still the same
3568 -- as in source code.
3570 -- In SPARK, the nominal subtype is always given by a subtype mark
3571 -- and must not be unconstrained. (The only exception to this is the
3572 -- acceptance of declarations of constants of type String.)
3574 if not Nkind_In
(Object_Definition
(N
), N_Expanded_Name
, N_Identifier
)
3576 Check_SPARK_05_Restriction
3577 ("subtype mark required", Object_Definition
(N
));
3579 elsif Is_Array_Type
(T
)
3580 and then not Is_Constrained
(T
)
3581 and then T
/= Standard_String
3583 Check_SPARK_05_Restriction
3584 ("subtype mark of constrained type expected",
3585 Object_Definition
(N
));
3588 -- There are no aliased objects in SPARK
3590 if Aliased_Present
(N
) then
3591 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
3594 -- Process initialization expression if present and not in error
3596 if Present
(E
) and then E
/= Error
then
3598 -- Generate an error in case of CPP class-wide object initialization.
3599 -- Required because otherwise the expansion of the class-wide
3600 -- assignment would try to use 'size to initialize the object
3601 -- (primitive that is not available in CPP tagged types).
3603 if Is_Class_Wide_Type
(Act_T
)
3605 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3607 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3609 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3612 ("predefined assignment not available for 'C'P'P tagged types",
3616 Mark_Coextensions
(N
, E
);
3619 -- In case of errors detected in the analysis of the expression,
3620 -- decorate it with the expected type to avoid cascaded errors
3622 if No
(Etype
(E
)) then
3626 -- If an initialization expression is present, then we set the
3627 -- Is_True_Constant flag. It will be reset if this is a variable
3628 -- and it is indeed modified.
3630 Set_Is_True_Constant
(Id
, True);
3632 -- If we are analyzing a constant declaration, set its completion
3633 -- flag after analyzing and resolving the expression.
3635 if Constant_Present
(N
) then
3636 Set_Has_Completion
(Id
);
3639 -- Set type and resolve (type may be overridden later on). Note:
3640 -- Ekind (Id) must still be E_Void at this point so that incorrect
3641 -- early usage within E is properly diagnosed.
3645 -- If the expression is an aggregate we must look ahead to detect
3646 -- the possible presence of an address clause, and defer resolution
3647 -- and expansion of the aggregate to the freeze point of the entity.
3649 if Comes_From_Source
(N
)
3650 and then Expander_Active
3651 and then Nkind
(E
) = N_Aggregate
3652 and then Present
(Following_Address_Clause
(N
))
3660 -- No further action needed if E is a call to an inlined function
3661 -- which returns an unconstrained type and it has been expanded into
3662 -- a procedure call. In that case N has been replaced by an object
3663 -- declaration without initializing expression and it has been
3664 -- analyzed (see Expand_Inlined_Call).
3666 if Back_End_Inlining
3667 and then Expander_Active
3668 and then Nkind
(E
) = N_Function_Call
3669 and then Nkind
(Name
(E
)) in N_Has_Entity
3670 and then Is_Inlined
(Entity
(Name
(E
)))
3671 and then not Is_Constrained
(Etype
(E
))
3672 and then Analyzed
(N
)
3673 and then No
(Expression
(N
))
3678 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3679 -- node (which was marked already-analyzed), we need to set the type
3680 -- to something other than Any_Access in order to keep gigi happy.
3682 if Etype
(E
) = Any_Access
then
3686 -- If the object is an access to variable, the initialization
3687 -- expression cannot be an access to constant.
3689 if Is_Access_Type
(T
)
3690 and then not Is_Access_Constant
(T
)
3691 and then Is_Access_Type
(Etype
(E
))
3692 and then Is_Access_Constant
(Etype
(E
))
3695 ("access to variable cannot be initialized with an "
3696 & "access-to-constant expression", E
);
3699 if not Assignment_OK
(N
) then
3700 Check_Initialization
(T
, E
);
3703 Check_Unset_Reference
(E
);
3705 -- If this is a variable, then set current value. If this is a
3706 -- declared constant of a scalar type with a static expression,
3707 -- indicate that it is always valid.
3709 if not Constant_Present
(N
) then
3710 if Compile_Time_Known_Value
(E
) then
3711 Set_Current_Value
(Id
, E
);
3714 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
3715 Set_Is_Known_Valid
(Id
);
3718 -- Deal with setting of null flags
3720 if Is_Access_Type
(T
) then
3721 if Known_Non_Null
(E
) then
3722 Set_Is_Known_Non_Null
(Id
, True);
3723 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
3724 Set_Is_Known_Null
(Id
, True);
3728 -- Check incorrect use of dynamically tagged expressions
3730 if Is_Tagged_Type
(T
) then
3731 Check_Dynamically_Tagged_Expression
3737 Apply_Scalar_Range_Check
(E
, T
);
3738 Apply_Static_Length_Check
(E
, T
);
3740 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3741 and then Comes_From_Source
(Original_Node
(N
))
3743 -- Only call test if needed
3745 and then Restriction_Check_Required
(SPARK_05
)
3746 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
3748 Check_SPARK_05_Restriction
3749 ("initialization expression is not appropriate", E
);
3752 -- A formal parameter of a specific tagged type whose related
3753 -- subprogram is subject to pragma Extensions_Visible with value
3754 -- "False" cannot be implicitly converted to a class-wide type by
3755 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3757 if Is_Class_Wide_Type
(T
) and then Is_EVF_Expression
(E
) then
3759 ("formal parameter with Extensions_Visible False cannot be "
3760 & "implicitly converted to class-wide type", E
);
3764 -- If the No_Streams restriction is set, check that the type of the
3765 -- object is not, and does not contain, any subtype derived from
3766 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3767 -- Has_Stream just for efficiency reasons. There is no point in
3768 -- spending time on a Has_Stream check if the restriction is not set.
3770 if Restriction_Check_Required
(No_Streams
) then
3771 if Has_Stream
(T
) then
3772 Check_Restriction
(No_Streams
, N
);
3776 -- Deal with predicate check before we start to do major rewriting. It
3777 -- is OK to initialize and then check the initialized value, since the
3778 -- object goes out of scope if we get a predicate failure. Note that we
3779 -- do this in the analyzer and not the expander because the analyzer
3780 -- does some substantial rewriting in some cases.
3782 -- We need a predicate check if the type has predicates, and if either
3783 -- there is an initializing expression, or for default initialization
3784 -- when we have at least one case of an explicit default initial value
3785 -- and then this is not an internal declaration whose initialization
3786 -- comes later (as for an aggregate expansion).
3788 if not Suppress_Assignment_Checks
(N
)
3789 and then Present
(Predicate_Function
(T
))
3790 and then not No_Initialization
(N
)
3794 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3796 -- If the type has a static predicate and the expression is known at
3797 -- compile time, see if the expression satisfies the predicate.
3800 Check_Expression_Against_Static_Predicate
(E
, T
);
3804 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3807 -- Case of unconstrained type
3809 if Is_Indefinite_Subtype
(T
) then
3811 -- In SPARK, a declaration of unconstrained type is allowed
3812 -- only for constants of type string.
3814 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3815 Check_SPARK_05_Restriction
3816 ("declaration of object of unconstrained type not allowed", N
);
3819 -- Nothing to do in deferred constant case
3821 if Constant_Present
(N
) and then No
(E
) then
3824 -- Case of no initialization present
3827 if No_Initialization
(N
) then
3830 elsif Is_Class_Wide_Type
(T
) then
3832 ("initialization required in class-wide declaration ", N
);
3836 ("unconstrained subtype not allowed (need initialization)",
3837 Object_Definition
(N
));
3839 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3841 ("\provide initial value or explicit discriminant values",
3842 Object_Definition
(N
));
3845 ("\or give default discriminant values for type&",
3846 Object_Definition
(N
), T
);
3848 elsif Is_Array_Type
(T
) then
3850 ("\provide initial value or explicit array bounds",
3851 Object_Definition
(N
));
3855 -- Case of initialization present but in error. Set initial
3856 -- expression as absent (but do not make above complaints)
3858 elsif E
= Error
then
3859 Set_Expression
(N
, Empty
);
3862 -- Case of initialization present
3865 -- Check restrictions in Ada 83
3867 if not Constant_Present
(N
) then
3869 -- Unconstrained variables not allowed in Ada 83 mode
3871 if Ada_Version
= Ada_83
3872 and then Comes_From_Source
(Object_Definition
(N
))
3875 ("(Ada 83) unconstrained variable not allowed",
3876 Object_Definition
(N
));
3880 -- Now we constrain the variable from the initializing expression
3882 -- If the expression is an aggregate, it has been expanded into
3883 -- individual assignments. Retrieve the actual type from the
3884 -- expanded construct.
3886 if Is_Array_Type
(T
)
3887 and then No_Initialization
(N
)
3888 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3892 -- In case of class-wide interface object declarations we delay
3893 -- the generation of the equivalent record type declarations until
3894 -- its expansion because there are cases in they are not required.
3896 elsif Is_Interface
(T
) then
3899 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3900 -- we should prevent the generation of another Itype with the
3901 -- same name as the one already generated, or we end up with
3902 -- two identical types in GNATprove.
3904 elsif GNATprove_Mode
then
3907 -- If the type is an unchecked union, no subtype can be built from
3908 -- the expression. Rewrite declaration as a renaming, which the
3909 -- back-end can handle properly. This is a rather unusual case,
3910 -- because most unchecked_union declarations have default values
3911 -- for discriminants and are thus not indefinite.
3913 elsif Is_Unchecked_Union
(T
) then
3914 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
3915 Set_Ekind
(Id
, E_Constant
);
3917 Set_Ekind
(Id
, E_Variable
);
3920 -- An object declared within a Ghost scope is automatically
3921 -- Ghost (SPARK RM 6.9(2)).
3923 if Comes_From_Source
(Id
) and then Within_Ghost_Scope
then
3924 Set_Is_Ghost_Entity
(Id
);
3926 -- The Ghost policy in effect at the point of declaration
3927 -- and at the point of completion must match
3928 -- (SPARK RM 6.9(15)).
3930 if Present
(Prev_Entity
)
3931 and then Is_Ghost_Entity
(Prev_Entity
)
3933 Check_Ghost_Completion
(Prev_Entity
, Id
);
3938 Make_Object_Renaming_Declaration
(Loc
,
3939 Defining_Identifier
=> Id
,
3940 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
3943 Set_Renamed_Object
(Id
, E
);
3944 Freeze_Before
(N
, T
);
3949 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
3950 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3953 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
3955 if Aliased_Present
(N
) then
3956 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3959 Freeze_Before
(N
, Act_T
);
3960 Freeze_Before
(N
, T
);
3963 elsif Is_Array_Type
(T
)
3964 and then No_Initialization
(N
)
3965 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3967 if not Is_Entity_Name
(Object_Definition
(N
)) then
3969 Check_Compile_Time_Size
(Act_T
);
3971 if Aliased_Present
(N
) then
3972 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3976 -- When the given object definition and the aggregate are specified
3977 -- independently, and their lengths might differ do a length check.
3978 -- This cannot happen if the aggregate is of the form (others =>...)
3980 if not Is_Constrained
(T
) then
3983 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
3985 -- Aggregate is statically illegal. Place back in declaration
3987 Set_Expression
(N
, E
);
3988 Set_No_Initialization
(N
, False);
3990 elsif T
= Etype
(E
) then
3993 elsif Nkind
(E
) = N_Aggregate
3994 and then Present
(Component_Associations
(E
))
3995 and then Present
(Choices
(First
(Component_Associations
(E
))))
3996 and then Nkind
(First
3997 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
4002 Apply_Length_Check
(E
, T
);
4005 -- If the type is limited unconstrained with defaulted discriminants and
4006 -- there is no expression, then the object is constrained by the
4007 -- defaults, so it is worthwhile building the corresponding subtype.
4009 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
4010 and then not Is_Constrained
(T
)
4011 and then Has_Discriminants
(T
)
4014 Act_T
:= Build_Default_Subtype
(T
, N
);
4016 -- Ada 2005: A limited object may be initialized by means of an
4017 -- aggregate. If the type has default discriminants it has an
4018 -- unconstrained nominal type, Its actual subtype will be obtained
4019 -- from the aggregate, and not from the default discriminants.
4024 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
4026 elsif Nkind
(E
) = N_Function_Call
4027 and then Constant_Present
(N
)
4028 and then Has_Unconstrained_Elements
(Etype
(E
))
4030 -- The back-end has problems with constants of a discriminated type
4031 -- with defaults, if the initial value is a function call. We
4032 -- generate an intermediate temporary that will receive a reference
4033 -- to the result of the call. The initialization expression then
4034 -- becomes a dereference of that temporary.
4036 Remove_Side_Effects
(E
);
4038 -- If this is a constant declaration of an unconstrained type and
4039 -- the initialization is an aggregate, we can use the subtype of the
4040 -- aggregate for the declared entity because it is immutable.
4042 elsif not Is_Constrained
(T
)
4043 and then Has_Discriminants
(T
)
4044 and then Constant_Present
(N
)
4045 and then not Has_Unchecked_Union
(T
)
4046 and then Nkind
(E
) = N_Aggregate
4051 -- Check No_Wide_Characters restriction
4053 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
4055 -- Indicate this is not set in source. Certainly true for constants, and
4056 -- true for variables so far (will be reset for a variable if and when
4057 -- we encounter a modification in the source).
4059 Set_Never_Set_In_Source
(Id
);
4061 -- Now establish the proper kind and type of the object
4063 if Constant_Present
(N
) then
4064 Set_Ekind
(Id
, E_Constant
);
4065 Set_Is_True_Constant
(Id
);
4068 Set_Ekind
(Id
, E_Variable
);
4070 -- A variable is set as shared passive if it appears in a shared
4071 -- passive package, and is at the outer level. This is not done for
4072 -- entities generated during expansion, because those are always
4073 -- manipulated locally.
4075 if Is_Shared_Passive
(Current_Scope
)
4076 and then Is_Library_Level_Entity
(Id
)
4077 and then Comes_From_Source
(Id
)
4079 Set_Is_Shared_Passive
(Id
);
4080 Check_Shared_Var
(Id
, T
, N
);
4083 -- Set Has_Initial_Value if initializing expression present. Note
4084 -- that if there is no initializing expression, we leave the state
4085 -- of this flag unchanged (usually it will be False, but notably in
4086 -- the case of exception choice variables, it will already be true).
4089 Set_Has_Initial_Value
(Id
);
4092 Set_Contract
(Id
, Make_Contract
(Sloc
(Id
)));
4095 -- Initialize alignment and size and capture alignment setting
4097 Init_Alignment
(Id
);
4099 Set_Optimize_Alignment_Flags
(Id
);
4101 -- An object declared within a Ghost scope is automatically Ghost
4102 -- (SPARK RM 6.9(2)). This property is also inherited when its type
4103 -- is Ghost or the previous declaration of the deferred constant is
4106 if Comes_From_Source
(Id
)
4107 and then (Is_Ghost_Entity
(T
)
4108 or else (Present
(Prev_Entity
)
4109 and then Is_Ghost_Entity
(Prev_Entity
))
4110 or else Within_Ghost_Scope
)
4112 Set_Is_Ghost_Entity
(Id
);
4114 -- The Ghost policy in effect at the point of declaration and at the
4115 -- point of completion must match (SPARK RM 6.9(16)).
4117 if Present
(Prev_Entity
) and then Is_Ghost_Entity
(Prev_Entity
) then
4118 Check_Ghost_Completion
(Prev_Entity
, Id
);
4122 -- Deal with aliased case
4124 if Aliased_Present
(N
) then
4125 Set_Is_Aliased
(Id
);
4127 -- If the object is aliased and the type is unconstrained with
4128 -- defaulted discriminants and there is no expression, then the
4129 -- object is constrained by the defaults, so it is worthwhile
4130 -- building the corresponding subtype.
4132 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4133 -- unconstrained, then only establish an actual subtype if the
4134 -- nominal subtype is indefinite. In definite cases the object is
4135 -- unconstrained in Ada 2005.
4138 and then Is_Record_Type
(T
)
4139 and then not Is_Constrained
(T
)
4140 and then Has_Discriminants
(T
)
4141 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
4143 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4147 -- Now we can set the type of the object
4149 Set_Etype
(Id
, Act_T
);
4151 -- Non-constant object is marked to be treated as volatile if type is
4152 -- volatile and we clear the Current_Value setting that may have been
4153 -- set above. Doing so for constants isn't required and might interfere
4154 -- with possible uses of the object as a static expression in contexts
4155 -- incompatible with volatility (e.g. as a case-statement alternative).
4157 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4158 Set_Treat_As_Volatile
(Id
);
4159 Set_Current_Value
(Id
, Empty
);
4162 -- Deal with controlled types
4164 if Has_Controlled_Component
(Etype
(Id
))
4165 or else Is_Controlled
(Etype
(Id
))
4167 if not Is_Library_Level_Entity
(Id
) then
4168 Check_Restriction
(No_Nested_Finalization
, N
);
4170 Validate_Controlled_Object
(Id
);
4174 if Has_Task
(Etype
(Id
)) then
4175 Check_Restriction
(No_Tasking
, N
);
4177 -- Deal with counting max tasks
4179 -- Nothing to do if inside a generic
4181 if Inside_A_Generic
then
4184 -- If library level entity, then count tasks
4186 elsif Is_Library_Level_Entity
(Id
) then
4187 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4189 -- If not library level entity, then indicate we don't know max
4190 -- tasks and also check task hierarchy restriction and blocking
4191 -- operation (since starting a task is definitely blocking).
4194 Check_Restriction
(Max_Tasks
, N
);
4195 Check_Restriction
(No_Task_Hierarchy
, N
);
4196 Check_Potentially_Blocking_Operation
(N
);
4199 -- A rather specialized test. If we see two tasks being declared
4200 -- of the same type in the same object declaration, and the task
4201 -- has an entry with an address clause, we know that program error
4202 -- will be raised at run time since we can't have two tasks with
4203 -- entries at the same address.
4205 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4210 E
:= First_Entity
(Etype
(Id
));
4211 while Present
(E
) loop
4212 if Ekind
(E
) = E_Entry
4213 and then Present
(Get_Attribute_Definition_Clause
4214 (E
, Attribute_Address
))
4216 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4218 ("more than one task with same entry address<<", N
);
4219 Error_Msg_N
("\Program_Error [<<", N
);
4221 Make_Raise_Program_Error
(Loc
,
4222 Reason
=> PE_Duplicated_Entry_Address
));
4232 -- Some simple constant-propagation: if the expression is a constant
4233 -- string initialized with a literal, share the literal. This avoids
4237 and then Is_Entity_Name
(E
)
4238 and then Ekind
(Entity
(E
)) = E_Constant
4239 and then Base_Type
(Etype
(E
)) = Standard_String
4242 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4244 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4245 Rewrite
(E
, New_Copy
(Val
));
4250 -- Another optimization: if the nominal subtype is unconstrained and
4251 -- the expression is a function call that returns an unconstrained
4252 -- type, rewrite the declaration as a renaming of the result of the
4253 -- call. The exceptions below are cases where the copy is expected,
4254 -- either by the back end (Aliased case) or by the semantics, as for
4255 -- initializing controlled types or copying tags for classwide types.
4258 and then Nkind
(E
) = N_Explicit_Dereference
4259 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4260 and then not Is_Library_Level_Entity
(Id
)
4261 and then not Is_Constrained
(Underlying_Type
(T
))
4262 and then not Is_Aliased
(Id
)
4263 and then not Is_Class_Wide_Type
(T
)
4264 and then not Is_Controlled
(T
)
4265 and then not Has_Controlled_Component
(Base_Type
(T
))
4266 and then Expander_Active
4269 Make_Object_Renaming_Declaration
(Loc
,
4270 Defining_Identifier
=> Id
,
4271 Access_Definition
=> Empty
,
4272 Subtype_Mark
=> New_Occurrence_Of
4273 (Base_Type
(Etype
(Id
)), Loc
),
4276 Set_Renamed_Object
(Id
, E
);
4278 -- Force generation of debugging information for the constant and for
4279 -- the renamed function call.
4281 Set_Debug_Info_Needed
(Id
);
4282 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4285 if Present
(Prev_Entity
)
4286 and then Is_Frozen
(Prev_Entity
)
4287 and then not Error_Posted
(Id
)
4289 Error_Msg_N
("full constant declaration appears too late", N
);
4292 Check_Eliminated
(Id
);
4294 -- Deal with setting In_Private_Part flag if in private part
4296 if Ekind
(Scope
(Id
)) = E_Package
and then In_Private_Part
(Scope
(Id
))
4298 Set_In_Private_Part
(Id
);
4301 -- Check for violation of No_Local_Timing_Events
4303 if Restriction_Check_Required
(No_Local_Timing_Events
)
4304 and then not Is_Library_Level_Entity
(Id
)
4305 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
4307 Check_Restriction
(No_Local_Timing_Events
, N
);
4311 -- Initialize the refined state of a variable here because this is a
4312 -- common destination for legal and illegal object declarations.
4314 if Ekind
(Id
) = E_Variable
then
4315 Set_Encapsulating_State
(Id
, Empty
);
4318 if Has_Aspects
(N
) then
4319 Analyze_Aspect_Specifications
(N
, Id
);
4322 Analyze_Dimension
(N
);
4324 -- Verify whether the object declaration introduces an illegal hidden
4325 -- state within a package subject to a null abstract state.
4327 if Ekind
(Id
) = E_Variable
then
4328 Check_No_Hidden_State
(Id
);
4330 end Analyze_Object_Declaration
;
4332 ---------------------------
4333 -- Analyze_Others_Choice --
4334 ---------------------------
4336 -- Nothing to do for the others choice node itself, the semantic analysis
4337 -- of the others choice will occur as part of the processing of the parent
4339 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4340 pragma Warnings
(Off
, N
);
4343 end Analyze_Others_Choice
;
4345 -------------------------------------------
4346 -- Analyze_Private_Extension_Declaration --
4347 -------------------------------------------
4349 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4350 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4351 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4352 Parent_Type
: Entity_Id
;
4353 Parent_Base
: Entity_Id
;
4356 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4358 if Is_Non_Empty_List
(Interface_List
(N
)) then
4364 Intf
:= First
(Interface_List
(N
));
4365 while Present
(Intf
) loop
4366 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4368 Diagnose_Interface
(Intf
, T
);
4374 Generate_Definition
(T
);
4376 -- For other than Ada 2012, just enter the name in the current scope
4378 if Ada_Version
< Ada_2012
then
4381 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4382 -- case of private type that completes an incomplete type.
4389 Prev
:= Find_Type_Name
(N
);
4391 pragma Assert
(Prev
= T
4392 or else (Ekind
(Prev
) = E_Incomplete_Type
4393 and then Present
(Full_View
(Prev
))
4394 and then Full_View
(Prev
) = T
));
4398 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
4399 Parent_Base
:= Base_Type
(Parent_Type
);
4401 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
4402 Set_Ekind
(T
, Ekind
(Parent_Type
));
4403 Set_Etype
(T
, Any_Type
);
4406 elsif not Is_Tagged_Type
(Parent_Type
) then
4408 ("parent of type extension must be a tagged type ", Indic
);
4411 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
4412 Error_Msg_N
("premature derivation of incomplete type", Indic
);
4415 elsif Is_Concurrent_Type
(Parent_Type
) then
4417 ("parent type of a private extension cannot be "
4418 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
4420 Set_Etype
(T
, Any_Type
);
4421 Set_Ekind
(T
, E_Limited_Private_Type
);
4422 Set_Private_Dependents
(T
, New_Elmt_List
);
4423 Set_Error_Posted
(T
);
4427 -- Perhaps the parent type should be changed to the class-wide type's
4428 -- specific type in this case to prevent cascading errors ???
4430 if Is_Class_Wide_Type
(Parent_Type
) then
4432 ("parent of type extension must not be a class-wide type", Indic
);
4436 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
4437 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
4438 or else In_Private_Part
(Current_Scope
)
4441 Error_Msg_N
("invalid context for private extension", N
);
4444 -- Set common attributes
4446 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
4447 Set_Scope
(T
, Current_Scope
);
4448 Set_Ekind
(T
, E_Record_Type_With_Private
);
4449 Init_Size_Align
(T
);
4450 Set_Default_SSO
(T
);
4452 Set_Etype
(T
, Parent_Base
);
4453 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
4454 Set_Has_Protected
(T
, Has_Task
(Parent_Base
));
4456 Set_Convention
(T
, Convention
(Parent_Type
));
4457 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
4458 Set_Is_First_Subtype
(T
);
4459 Make_Class_Wide_Type
(T
);
4461 if Unknown_Discriminants_Present
(N
) then
4462 Set_Discriminant_Constraint
(T
, No_Elist
);
4465 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
4467 -- Propagate inherited invariant information. The new type has
4468 -- invariants, if the parent type has inheritable invariants,
4469 -- and these invariants can in turn be inherited.
4471 if Has_Inheritable_Invariants
(Parent_Type
) then
4472 Set_Has_Inheritable_Invariants
(T
);
4473 Set_Has_Invariants
(T
);
4476 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4477 -- synchronized formal derived type.
4479 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
4480 Set_Is_Limited_Record
(T
);
4482 -- Formal derived type case
4484 if Is_Generic_Type
(T
) then
4486 -- The parent must be a tagged limited type or a synchronized
4489 if (not Is_Tagged_Type
(Parent_Type
)
4490 or else not Is_Limited_Type
(Parent_Type
))
4492 (not Is_Interface
(Parent_Type
)
4493 or else not Is_Synchronized_Interface
(Parent_Type
))
4495 Error_Msg_NE
("parent type of & must be tagged limited " &
4496 "or synchronized", N
, T
);
4499 -- The progenitors (if any) must be limited or synchronized
4502 if Present
(Interfaces
(T
)) then
4505 Iface_Elmt
: Elmt_Id
;
4508 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
4509 while Present
(Iface_Elmt
) loop
4510 Iface
:= Node
(Iface_Elmt
);
4512 if not Is_Limited_Interface
(Iface
)
4513 and then not Is_Synchronized_Interface
(Iface
)
4515 Error_Msg_NE
("progenitor & must be limited " &
4516 "or synchronized", N
, Iface
);
4519 Next_Elmt
(Iface_Elmt
);
4524 -- Regular derived extension, the parent must be a limited or
4525 -- synchronized interface.
4528 if not Is_Interface
(Parent_Type
)
4529 or else (not Is_Limited_Interface
(Parent_Type
)
4530 and then not Is_Synchronized_Interface
(Parent_Type
))
4533 ("parent type of & must be limited interface", N
, T
);
4537 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4538 -- extension with a synchronized parent must be explicitly declared
4539 -- synchronized, because the full view will be a synchronized type.
4540 -- This must be checked before the check for limited types below,
4541 -- to ensure that types declared limited are not allowed to extend
4542 -- synchronized interfaces.
4544 elsif Is_Interface
(Parent_Type
)
4545 and then Is_Synchronized_Interface
(Parent_Type
)
4546 and then not Synchronized_Present
(N
)
4549 ("private extension of& must be explicitly synchronized",
4552 elsif Limited_Present
(N
) then
4553 Set_Is_Limited_Record
(T
);
4555 if not Is_Limited_Type
(Parent_Type
)
4557 (not Is_Interface
(Parent_Type
)
4558 or else not Is_Limited_Interface
(Parent_Type
))
4560 Error_Msg_NE
("parent type& of limited extension must be limited",
4566 if Has_Aspects
(N
) then
4567 Analyze_Aspect_Specifications
(N
, T
);
4569 end Analyze_Private_Extension_Declaration
;
4571 ---------------------------------
4572 -- Analyze_Subtype_Declaration --
4573 ---------------------------------
4575 procedure Analyze_Subtype_Declaration
4577 Skip
: Boolean := False)
4579 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4581 R_Checks
: Check_Result
;
4584 Generate_Definition
(Id
);
4585 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4586 Init_Size_Align
(Id
);
4588 -- The following guard condition on Enter_Name is to handle cases where
4589 -- the defining identifier has already been entered into the scope but
4590 -- the declaration as a whole needs to be analyzed.
4592 -- This case in particular happens for derived enumeration types. The
4593 -- derived enumeration type is processed as an inserted enumeration type
4594 -- declaration followed by a rewritten subtype declaration. The defining
4595 -- identifier, however, is entered into the name scope very early in the
4596 -- processing of the original type declaration and therefore needs to be
4597 -- avoided here, when the created subtype declaration is analyzed. (See
4598 -- Build_Derived_Types)
4600 -- This also happens when the full view of a private type is derived
4601 -- type with constraints. In this case the entity has been introduced
4602 -- in the private declaration.
4604 -- Finally this happens in some complex cases when validity checks are
4605 -- enabled, where the same subtype declaration may be analyzed twice.
4606 -- This can happen if the subtype is created by the pre-analysis of
4607 -- an attribute tht gives the range of a loop statement, and the loop
4608 -- itself appears within an if_statement that will be rewritten during
4612 or else (Present
(Etype
(Id
))
4613 and then (Is_Private_Type
(Etype
(Id
))
4614 or else Is_Task_Type
(Etype
(Id
))
4615 or else Is_Rewrite_Substitution
(N
)))
4619 elsif Current_Entity
(Id
) = Id
then
4626 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4628 -- Class-wide equivalent types of records with unknown discriminants
4629 -- involve the generation of an itype which serves as the private view
4630 -- of a constrained record subtype. In such cases the base type of the
4631 -- current subtype we are processing is the private itype. Use the full
4632 -- of the private itype when decorating various attributes.
4635 and then Is_Private_Type
(T
)
4636 and then Present
(Full_View
(T
))
4641 -- Inherit common attributes
4643 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4644 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4645 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4646 Set_Convention
(Id
, Convention
(T
));
4648 -- If ancestor has predicates then so does the subtype, and in addition
4649 -- we must delay the freeze to properly arrange predicate inheritance.
4651 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4652 -- in which T = ID, so the above tests and assignments do nothing???
4654 if Has_Predicates
(T
)
4655 or else (Present
(Ancestor_Subtype
(T
))
4656 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4658 Set_Has_Predicates
(Id
);
4659 Set_Has_Delayed_Freeze
(Id
);
4662 -- Subtype of Boolean cannot have a constraint in SPARK
4664 if Is_Boolean_Type
(T
)
4665 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4667 Check_SPARK_05_Restriction
4668 ("subtype of Boolean cannot have constraint", N
);
4671 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4673 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4679 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4680 One_Cstr
:= First
(Constraints
(Cstr
));
4681 while Present
(One_Cstr
) loop
4683 -- Index or discriminant constraint in SPARK must be a
4687 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4689 Check_SPARK_05_Restriction
4690 ("subtype mark required", One_Cstr
);
4692 -- String subtype must have a lower bound of 1 in SPARK.
4693 -- Note that we do not need to test for the non-static case
4694 -- here, since that was already taken care of in
4695 -- Process_Range_Expr_In_Decl.
4697 elsif Base_Type
(T
) = Standard_String
then
4698 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4700 if Is_OK_Static_Expression
(Low
)
4701 and then Expr_Value
(Low
) /= 1
4703 Check_SPARK_05_Restriction
4704 ("String subtype must have lower bound of 1", N
);
4714 -- In the case where there is no constraint given in the subtype
4715 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4716 -- semantic attributes must be established here.
4718 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4719 Set_Etype
(Id
, Base_Type
(T
));
4721 -- Subtype of unconstrained array without constraint is not allowed
4724 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
4725 Check_SPARK_05_Restriction
4726 ("subtype of unconstrained array must have constraint", N
);
4731 Set_Ekind
(Id
, E_Array_Subtype
);
4732 Copy_Array_Subtype_Attributes
(Id
, T
);
4734 when Decimal_Fixed_Point_Kind
=>
4735 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4736 Set_Digits_Value
(Id
, Digits_Value
(T
));
4737 Set_Delta_Value
(Id
, Delta_Value
(T
));
4738 Set_Scale_Value
(Id
, Scale_Value
(T
));
4739 Set_Small_Value
(Id
, Small_Value
(T
));
4740 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4741 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4742 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4743 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4744 Set_RM_Size
(Id
, RM_Size
(T
));
4746 when Enumeration_Kind
=>
4747 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4748 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4749 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4750 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4751 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4752 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4753 Set_RM_Size
(Id
, RM_Size
(T
));
4754 Inherit_Predicate_Flags
(Id
, T
);
4756 when Ordinary_Fixed_Point_Kind
=>
4757 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4758 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4759 Set_Small_Value
(Id
, Small_Value
(T
));
4760 Set_Delta_Value
(Id
, Delta_Value
(T
));
4761 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4762 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4763 Set_RM_Size
(Id
, RM_Size
(T
));
4766 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4767 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4768 Set_Digits_Value
(Id
, Digits_Value
(T
));
4769 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4771 when Signed_Integer_Kind
=>
4772 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4773 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4774 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4775 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4776 Set_RM_Size
(Id
, RM_Size
(T
));
4777 Inherit_Predicate_Flags
(Id
, T
);
4779 when Modular_Integer_Kind
=>
4780 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4781 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4782 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4783 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4784 Set_RM_Size
(Id
, RM_Size
(T
));
4785 Inherit_Predicate_Flags
(Id
, T
);
4787 when Class_Wide_Kind
=>
4788 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4789 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4790 Set_Cloned_Subtype
(Id
, T
);
4791 Set_Is_Tagged_Type
(Id
, True);
4792 Set_Has_Unknown_Discriminants
4794 Set_No_Tagged_Streams_Pragma
4795 (Id
, No_Tagged_Streams_Pragma
(T
));
4797 if Ekind
(T
) = E_Class_Wide_Subtype
then
4798 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4801 when E_Record_Type | E_Record_Subtype
=>
4802 Set_Ekind
(Id
, E_Record_Subtype
);
4804 if Ekind
(T
) = E_Record_Subtype
4805 and then Present
(Cloned_Subtype
(T
))
4807 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4809 Set_Cloned_Subtype
(Id
, T
);
4812 Set_First_Entity
(Id
, First_Entity
(T
));
4813 Set_Last_Entity
(Id
, Last_Entity
(T
));
4814 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4815 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4816 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4817 Set_Has_Implicit_Dereference
4818 (Id
, Has_Implicit_Dereference
(T
));
4819 Set_Has_Unknown_Discriminants
4820 (Id
, Has_Unknown_Discriminants
(T
));
4822 if Has_Discriminants
(T
) then
4823 Set_Discriminant_Constraint
4824 (Id
, Discriminant_Constraint
(T
));
4825 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4827 elsif Has_Unknown_Discriminants
(Id
) then
4828 Set_Discriminant_Constraint
(Id
, No_Elist
);
4831 if Is_Tagged_Type
(T
) then
4832 Set_Is_Tagged_Type
(Id
, True);
4833 Set_No_Tagged_Streams_Pragma
4834 (Id
, No_Tagged_Streams_Pragma
(T
));
4835 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4836 Set_Direct_Primitive_Operations
4837 (Id
, Direct_Primitive_Operations
(T
));
4838 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4840 if Is_Interface
(T
) then
4841 Set_Is_Interface
(Id
);
4842 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4846 when Private_Kind
=>
4847 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4848 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4849 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4850 Set_First_Entity
(Id
, First_Entity
(T
));
4851 Set_Last_Entity
(Id
, Last_Entity
(T
));
4852 Set_Private_Dependents
(Id
, New_Elmt_List
);
4853 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4854 Set_Has_Implicit_Dereference
4855 (Id
, Has_Implicit_Dereference
(T
));
4856 Set_Has_Unknown_Discriminants
4857 (Id
, Has_Unknown_Discriminants
(T
));
4858 Set_Known_To_Have_Preelab_Init
4859 (Id
, Known_To_Have_Preelab_Init
(T
));
4861 if Is_Tagged_Type
(T
) then
4862 Set_Is_Tagged_Type
(Id
);
4863 Set_No_Tagged_Streams_Pragma
(Id
,
4864 No_Tagged_Streams_Pragma
(T
));
4865 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4866 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4867 Set_Direct_Primitive_Operations
(Id
,
4868 Direct_Primitive_Operations
(T
));
4871 -- In general the attributes of the subtype of a private type
4872 -- are the attributes of the partial view of parent. However,
4873 -- the full view may be a discriminated type, and the subtype
4874 -- must share the discriminant constraint to generate correct
4875 -- calls to initialization procedures.
4877 if Has_Discriminants
(T
) then
4878 Set_Discriminant_Constraint
4879 (Id
, Discriminant_Constraint
(T
));
4880 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4882 elsif Present
(Full_View
(T
))
4883 and then Has_Discriminants
(Full_View
(T
))
4885 Set_Discriminant_Constraint
4886 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4887 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4889 -- This would seem semantically correct, but apparently
4890 -- generates spurious errors about missing components ???
4892 -- Set_Has_Discriminants (Id);
4895 Prepare_Private_Subtype_Completion
(Id
, N
);
4897 -- If this is the subtype of a constrained private type with
4898 -- discriminants that has got a full view and we also have
4899 -- built a completion just above, show that the completion
4900 -- is a clone of the full view to the back-end.
4902 if Has_Discriminants
(T
)
4903 and then not Has_Unknown_Discriminants
(T
)
4904 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
4905 and then Present
(Full_View
(T
))
4906 and then Present
(Full_View
(Id
))
4908 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
4912 Set_Ekind
(Id
, E_Access_Subtype
);
4913 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4914 Set_Is_Access_Constant
4915 (Id
, Is_Access_Constant
(T
));
4916 Set_Directly_Designated_Type
4917 (Id
, Designated_Type
(T
));
4918 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
4920 -- A Pure library_item must not contain the declaration of a
4921 -- named access type, except within a subprogram, generic
4922 -- subprogram, task unit, or protected unit, or if it has
4923 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4925 if Comes_From_Source
(Id
)
4926 and then In_Pure_Unit
4927 and then not In_Subprogram_Task_Protected_Unit
4928 and then not No_Pool_Assigned
(Id
)
4931 ("named access types not allowed in pure unit", N
);
4934 when Concurrent_Kind
=>
4935 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4936 Set_Corresponding_Record_Type
(Id
,
4937 Corresponding_Record_Type
(T
));
4938 Set_First_Entity
(Id
, First_Entity
(T
));
4939 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
4940 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4941 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4942 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4943 Set_Last_Entity
(Id
, Last_Entity
(T
));
4945 if Is_Tagged_Type
(T
) then
4946 Set_No_Tagged_Streams_Pragma
4947 (Id
, No_Tagged_Streams_Pragma
(T
));
4950 if Has_Discriminants
(T
) then
4951 Set_Discriminant_Constraint
(Id
,
4952 Discriminant_Constraint
(T
));
4953 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4956 when E_Incomplete_Type
=>
4957 if Ada_Version
>= Ada_2005
then
4959 -- In Ada 2005 an incomplete type can be explicitly tagged:
4960 -- propagate indication.
4962 Set_Ekind
(Id
, E_Incomplete_Subtype
);
4963 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4964 Set_Private_Dependents
(Id
, New_Elmt_List
);
4966 if Is_Tagged_Type
(Id
) then
4967 Set_No_Tagged_Streams_Pragma
4968 (Id
, No_Tagged_Streams_Pragma
(T
));
4971 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4972 -- incomplete type visible through a limited with clause.
4974 if From_Limited_With
(T
)
4975 and then Present
(Non_Limited_View
(T
))
4977 Set_From_Limited_With
(Id
);
4978 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
4980 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4981 -- to the private dependents of the original incomplete
4982 -- type for future transformation.
4985 Append_Elmt
(Id
, Private_Dependents
(T
));
4988 -- If the subtype name denotes an incomplete type an error
4989 -- was already reported by Process_Subtype.
4992 Set_Etype
(Id
, Any_Type
);
4996 raise Program_Error
;
5000 if Etype
(Id
) = Any_Type
then
5004 -- Some common processing on all types
5006 Set_Size_Info
(Id
, T
);
5007 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
5009 -- If the parent type is a generic actual, so is the subtype. This may
5010 -- happen in a nested instance. Why Comes_From_Source test???
5012 if not Comes_From_Source
(N
) then
5013 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
5018 Set_Is_Immediately_Visible
(Id
, True);
5019 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
5020 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
5022 if Is_Interface
(T
) then
5023 Set_Is_Interface
(Id
);
5026 if Present
(Generic_Parent_Type
(N
))
5028 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
5029 N_Formal_Type_Declaration
5030 or else Nkind
(Formal_Type_Definition
5031 (Parent
(Generic_Parent_Type
(N
)))) /=
5032 N_Formal_Private_Type_Definition
)
5034 if Is_Tagged_Type
(Id
) then
5036 -- If this is a generic actual subtype for a synchronized type,
5037 -- the primitive operations are those of the corresponding record
5038 -- for which there is a separate subtype declaration.
5040 if Is_Concurrent_Type
(Id
) then
5042 elsif Is_Class_Wide_Type
(Id
) then
5043 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
5045 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
5048 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
5049 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
5053 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
5054 Conditional_Delay
(Id
, Full_View
(T
));
5056 -- The subtypes of components or subcomponents of protected types
5057 -- do not need freeze nodes, which would otherwise appear in the
5058 -- wrong scope (before the freeze node for the protected type). The
5059 -- proper subtypes are those of the subcomponents of the corresponding
5062 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
5063 and then Present
(Scope
(Scope
(Id
))) -- error defense
5064 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
5066 Conditional_Delay
(Id
, T
);
5069 -- Check that Constraint_Error is raised for a scalar subtype indication
5070 -- when the lower or upper bound of a non-null range lies outside the
5071 -- range of the type mark.
5073 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5074 if Is_Scalar_Type
(Etype
(Id
))
5075 and then Scalar_Range
(Id
) /=
5076 Scalar_Range
(Etype
(Subtype_Mark
5077 (Subtype_Indication
(N
))))
5081 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
5083 -- In the array case, check compatibility for each index
5085 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5087 -- This really should be a subprogram that finds the indications
5091 Subt_Index
: Node_Id
:= First_Index
(Id
);
5092 Target_Index
: Node_Id
:=
5094 (Subtype_Mark
(Subtype_Indication
(N
))));
5095 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5098 while Present
(Subt_Index
) loop
5099 if ((Nkind
(Subt_Index
) = N_Identifier
5100 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5101 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5103 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5106 Target_Typ
: constant Entity_Id
:=
5107 Etype
(Target_Index
);
5111 (Scalar_Range
(Etype
(Subt_Index
)),
5114 Defining_Identifier
(N
));
5116 -- Reset Has_Dynamic_Range_Check on the subtype to
5117 -- prevent elision of the index check due to a dynamic
5118 -- check generated for a preceding index (needed since
5119 -- Insert_Range_Checks tries to avoid generating
5120 -- redundant checks on a given declaration).
5122 Set_Has_Dynamic_Range_Check
(N
, False);
5128 Sloc
(Defining_Identifier
(N
)));
5130 -- Record whether this index involved a dynamic check
5133 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5137 Next_Index
(Subt_Index
);
5138 Next_Index
(Target_Index
);
5141 -- Finally, mark whether the subtype involves dynamic checks
5143 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5148 -- A type invariant applies to any subtype in its scope, in particular
5149 -- to a generic actual.
5151 if Has_Invariants
(T
) and then In_Open_Scopes
(Scope
(T
)) then
5152 Set_Has_Invariants
(Id
);
5153 Set_Invariant_Procedure
(Id
, Invariant_Procedure
(T
));
5156 -- Make sure that generic actual types are properly frozen. The subtype
5157 -- is marked as a generic actual type when the enclosing instance is
5158 -- analyzed, so here we identify the subtype from the tree structure.
5161 and then Is_Generic_Actual_Type
(Id
)
5162 and then In_Instance
5163 and then not Comes_From_Source
(N
)
5164 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
5165 and then Is_Frozen
(T
)
5167 Freeze_Before
(N
, Id
);
5170 Set_Optimize_Alignment_Flags
(Id
);
5171 Check_Eliminated
(Id
);
5174 if Has_Aspects
(N
) then
5175 Analyze_Aspect_Specifications
(N
, Id
);
5178 Analyze_Dimension
(N
);
5179 end Analyze_Subtype_Declaration
;
5181 --------------------------------
5182 -- Analyze_Subtype_Indication --
5183 --------------------------------
5185 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5186 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5187 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5194 Set_Etype
(N
, Etype
(R
));
5195 Resolve
(R
, Entity
(T
));
5197 Set_Error_Posted
(R
);
5198 Set_Error_Posted
(T
);
5200 end Analyze_Subtype_Indication
;
5202 --------------------------
5203 -- Analyze_Variant_Part --
5204 --------------------------
5206 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5207 Discr_Name
: Node_Id
;
5208 Discr_Type
: Entity_Id
;
5210 procedure Process_Variant
(A
: Node_Id
);
5211 -- Analyze declarations for a single variant
5213 package Analyze_Variant_Choices
is
5214 new Generic_Analyze_Choices
(Process_Variant
);
5215 use Analyze_Variant_Choices
;
5217 ---------------------
5218 -- Process_Variant --
5219 ---------------------
5221 procedure Process_Variant
(A
: Node_Id
) is
5222 CL
: constant Node_Id
:= Component_List
(A
);
5224 if not Null_Present
(CL
) then
5225 Analyze_Declarations
(Component_Items
(CL
));
5227 if Present
(Variant_Part
(CL
)) then
5228 Analyze
(Variant_Part
(CL
));
5231 end Process_Variant
;
5233 -- Start of processing for Analyze_Variant_Part
5236 Discr_Name
:= Name
(N
);
5237 Analyze
(Discr_Name
);
5239 -- If Discr_Name bad, get out (prevent cascaded errors)
5241 if Etype
(Discr_Name
) = Any_Type
then
5245 -- Check invalid discriminant in variant part
5247 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5248 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5251 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5253 if not Is_Discrete_Type
(Discr_Type
) then
5255 ("discriminant in a variant part must be of a discrete type",
5260 -- Now analyze the choices, which also analyzes the declarations that
5261 -- are associated with each choice.
5263 Analyze_Choices
(Variants
(N
), Discr_Type
);
5265 -- Note: we used to instantiate and call Check_Choices here to check
5266 -- that the choices covered the discriminant, but it's too early to do
5267 -- that because of statically predicated subtypes, whose analysis may
5268 -- be deferred to their freeze point which may be as late as the freeze
5269 -- point of the containing record. So this call is now to be found in
5270 -- Freeze_Record_Declaration.
5272 end Analyze_Variant_Part
;
5274 ----------------------------
5275 -- Array_Type_Declaration --
5276 ----------------------------
5278 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
5279 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
5280 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
5281 Element_Type
: Entity_Id
;
5282 Implicit_Base
: Entity_Id
;
5284 Related_Id
: Entity_Id
:= Empty
;
5286 P
: constant Node_Id
:= Parent
(Def
);
5290 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5291 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
5293 Index
:= First
(Subtype_Marks
(Def
));
5296 -- Find proper names for the implicit types which may be public. In case
5297 -- of anonymous arrays we use the name of the first object of that type
5301 Related_Id
:= Defining_Identifier
(P
);
5307 while Present
(Index
) loop
5310 -- Test for odd case of trying to index a type by the type itself
5312 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
5313 Error_Msg_N
("type& cannot be indexed by itself", Index
);
5314 Set_Entity
(Index
, Standard_Boolean
);
5315 Set_Etype
(Index
, Standard_Boolean
);
5318 -- Check SPARK restriction requiring a subtype mark
5320 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
5321 Check_SPARK_05_Restriction
("subtype mark required", Index
);
5324 -- Add a subtype declaration for each index of private array type
5325 -- declaration whose etype is also private. For example:
5328 -- type Index is private;
5330 -- type Table is array (Index) of ...
5333 -- This is currently required by the expander for the internally
5334 -- generated equality subprogram of records with variant parts in
5335 -- which the etype of some component is such private type.
5337 if Ekind
(Current_Scope
) = E_Package
5338 and then In_Private_Part
(Current_Scope
)
5339 and then Has_Private_Declaration
(Etype
(Index
))
5342 Loc
: constant Source_Ptr
:= Sloc
(Def
);
5347 New_E
:= Make_Temporary
(Loc
, 'T');
5348 Set_Is_Internal
(New_E
);
5351 Make_Subtype_Declaration
(Loc
,
5352 Defining_Identifier
=> New_E
,
5353 Subtype_Indication
=>
5354 New_Occurrence_Of
(Etype
(Index
), Loc
));
5356 Insert_Before
(Parent
(Def
), Decl
);
5358 Set_Etype
(Index
, New_E
);
5360 -- If the index is a range the Entity attribute is not
5361 -- available. Example:
5364 -- type T is private;
5366 -- type T is new Natural;
5367 -- Table : array (T(1) .. T(10)) of Boolean;
5370 if Nkind
(Index
) /= N_Range
then
5371 Set_Entity
(Index
, New_E
);
5376 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
5378 -- Check error of subtype with predicate for index type
5380 Bad_Predicated_Subtype_Use
5381 ("subtype& has predicate, not allowed as index subtype",
5382 Index
, Etype
(Index
));
5384 -- Move to next index
5387 Nb_Index
:= Nb_Index
+ 1;
5390 -- Process subtype indication if one is present
5392 if Present
(Component_Typ
) then
5393 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
5395 Set_Etype
(Component_Typ
, Element_Type
);
5397 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
5398 Check_SPARK_05_Restriction
5399 ("subtype mark required", Component_Typ
);
5402 -- Ada 2005 (AI-230): Access Definition case
5404 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
5406 -- Indicate that the anonymous access type is created by the
5407 -- array type declaration.
5409 Element_Type
:= Access_Definition
5411 N
=> Access_Definition
(Component_Def
));
5412 Set_Is_Local_Anonymous_Access
(Element_Type
);
5414 -- Propagate the parent. This field is needed if we have to generate
5415 -- the master_id associated with an anonymous access to task type
5416 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5418 Set_Parent
(Element_Type
, Parent
(T
));
5420 -- Ada 2005 (AI-230): In case of components that are anonymous access
5421 -- types the level of accessibility depends on the enclosing type
5424 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
5426 -- Ada 2005 (AI-254)
5429 CD
: constant Node_Id
:=
5430 Access_To_Subprogram_Definition
5431 (Access_Definition
(Component_Def
));
5433 if Present
(CD
) and then Protected_Present
(CD
) then
5435 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
5440 -- Constrained array case
5443 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
5446 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5448 -- Establish Implicit_Base as unconstrained base type
5450 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
5452 Set_Etype
(Implicit_Base
, Implicit_Base
);
5453 Set_Scope
(Implicit_Base
, Current_Scope
);
5454 Set_Has_Delayed_Freeze
(Implicit_Base
);
5455 Set_Default_SSO
(Implicit_Base
);
5457 -- The constrained array type is a subtype of the unconstrained one
5459 Set_Ekind
(T
, E_Array_Subtype
);
5460 Init_Size_Align
(T
);
5461 Set_Etype
(T
, Implicit_Base
);
5462 Set_Scope
(T
, Current_Scope
);
5463 Set_Is_Constrained
(T
, True);
5464 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
5465 Set_Has_Delayed_Freeze
(T
);
5467 -- Complete setup of implicit base type
5469 Set_First_Index
(Implicit_Base
, First_Index
(T
));
5470 Set_Component_Type
(Implicit_Base
, Element_Type
);
5471 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
5472 Set_Has_Protected
(Implicit_Base
, Has_Protected
(Element_Type
));
5473 Set_Component_Size
(Implicit_Base
, Uint_0
);
5474 Set_Packed_Array_Impl_Type
(Implicit_Base
, Empty
);
5475 Set_Has_Controlled_Component
5477 Has_Controlled_Component
(Element_Type
)
5478 or else Is_Controlled
(Element_Type
));
5479 Set_Finalize_Storage_Only
5480 (Implicit_Base
, Finalize_Storage_Only
5483 -- Unconstrained array case
5486 Set_Ekind
(T
, E_Array_Type
);
5487 Init_Size_Align
(T
);
5489 Set_Scope
(T
, Current_Scope
);
5490 Set_Component_Size
(T
, Uint_0
);
5491 Set_Is_Constrained
(T
, False);
5492 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
5493 Set_Has_Delayed_Freeze
(T
, True);
5494 Set_Has_Task
(T
, Has_Task
(Element_Type
));
5495 Set_Has_Protected
(T
, Has_Protected
(Element_Type
));
5496 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
5499 Is_Controlled
(Element_Type
));
5500 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
5502 Set_Default_SSO
(T
);
5505 -- Common attributes for both cases
5507 Set_Component_Type
(Base_Type
(T
), Element_Type
);
5508 Set_Packed_Array_Impl_Type
(T
, Empty
);
5510 if Aliased_Present
(Component_Definition
(Def
)) then
5511 Check_SPARK_05_Restriction
5512 ("aliased is not allowed", Component_Definition
(Def
));
5513 Set_Has_Aliased_Components
(Etype
(T
));
5516 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5517 -- array type to ensure that objects of this type are initialized.
5519 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
5520 Set_Can_Never_Be_Null
(T
);
5522 if Null_Exclusion_Present
(Component_Definition
(Def
))
5524 -- No need to check itypes because in their case this check was
5525 -- done at their point of creation
5527 and then not Is_Itype
(Element_Type
)
5530 ("`NOT NULL` not allowed (null already excluded)",
5531 Subtype_Indication
(Component_Definition
(Def
)));
5535 Priv
:= Private_Component
(Element_Type
);
5537 if Present
(Priv
) then
5539 -- Check for circular definitions
5541 if Priv
= Any_Type
then
5542 Set_Component_Type
(Etype
(T
), Any_Type
);
5544 -- There is a gap in the visibility of operations on the composite
5545 -- type only if the component type is defined in a different scope.
5547 elsif Scope
(Priv
) = Current_Scope
then
5550 elsif Is_Limited_Type
(Priv
) then
5551 Set_Is_Limited_Composite
(Etype
(T
));
5552 Set_Is_Limited_Composite
(T
);
5554 Set_Is_Private_Composite
(Etype
(T
));
5555 Set_Is_Private_Composite
(T
);
5559 -- A syntax error in the declaration itself may lead to an empty index
5560 -- list, in which case do a minimal patch.
5562 if No
(First_Index
(T
)) then
5563 Error_Msg_N
("missing index definition in array type declaration", T
);
5566 Indexes
: constant List_Id
:=
5567 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
5569 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
5570 Set_First_Index
(T
, First
(Indexes
));
5575 -- Create a concatenation operator for the new type. Internal array
5576 -- types created for packed entities do not need such, they are
5577 -- compatible with the user-defined type.
5579 if Number_Dimensions
(T
) = 1
5580 and then not Is_Packed_Array_Impl_Type
(T
)
5582 New_Concatenation_Op
(T
);
5585 -- In the case of an unconstrained array the parser has already verified
5586 -- that all the indexes are unconstrained but we still need to make sure
5587 -- that the element type is constrained.
5589 if Is_Indefinite_Subtype
(Element_Type
) then
5591 ("unconstrained element type in array declaration",
5592 Subtype_Indication
(Component_Def
));
5594 elsif Is_Abstract_Type
(Element_Type
) then
5596 ("the type of a component cannot be abstract",
5597 Subtype_Indication
(Component_Def
));
5600 -- There may be an invariant declared for the component type, but
5601 -- the construction of the component invariant checking procedure
5602 -- takes place during expansion.
5603 end Array_Type_Declaration
;
5605 ------------------------------------------------------
5606 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5607 ------------------------------------------------------
5609 function Replace_Anonymous_Access_To_Protected_Subprogram
5610 (N
: Node_Id
) return Entity_Id
5612 Loc
: constant Source_Ptr
:= Sloc
(N
);
5614 Curr_Scope
: constant Scope_Stack_Entry
:=
5615 Scope_Stack
.Table
(Scope_Stack
.Last
);
5617 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5620 -- Access definition in declaration
5623 -- Object definition or formal definition with an access definition
5626 -- Declaration of anonymous access to subprogram type
5629 -- Original specification in access to subprogram
5634 Set_Is_Internal
(Anon
);
5637 when N_Component_Declaration |
5638 N_Unconstrained_Array_Definition |
5639 N_Constrained_Array_Definition
=>
5640 Comp
:= Component_Definition
(N
);
5641 Acc
:= Access_Definition
(Comp
);
5643 when N_Discriminant_Specification
=>
5644 Comp
:= Discriminant_Type
(N
);
5647 when N_Parameter_Specification
=>
5648 Comp
:= Parameter_Type
(N
);
5651 when N_Access_Function_Definition
=>
5652 Comp
:= Result_Definition
(N
);
5655 when N_Object_Declaration
=>
5656 Comp
:= Object_Definition
(N
);
5659 when N_Function_Specification
=>
5660 Comp
:= Result_Definition
(N
);
5664 raise Program_Error
;
5667 Spec
:= Access_To_Subprogram_Definition
(Acc
);
5670 Make_Full_Type_Declaration
(Loc
,
5671 Defining_Identifier
=> Anon
,
5672 Type_Definition
=> Copy_Separate_Tree
(Spec
));
5674 Mark_Rewrite_Insertion
(Decl
);
5676 -- In ASIS mode, analyze the profile on the original node, because
5677 -- the separate copy does not provide enough links to recover the
5678 -- original tree. Analysis is limited to type annotations, within
5679 -- a temporary scope that serves as an anonymous subprogram to collect
5680 -- otherwise useless temporaries and itypes.
5684 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5687 if Nkind
(Spec
) = N_Access_Function_Definition
then
5688 Set_Ekind
(Typ
, E_Function
);
5690 Set_Ekind
(Typ
, E_Procedure
);
5693 Set_Parent
(Typ
, N
);
5694 Set_Scope
(Typ
, Current_Scope
);
5697 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
5699 if Nkind
(Spec
) = N_Access_Function_Definition
then
5701 Def
: constant Node_Id
:= Result_Definition
(Spec
);
5704 -- The result might itself be an anonymous access type, so
5707 if Nkind
(Def
) = N_Access_Definition
then
5708 if Present
(Access_To_Subprogram_Definition
(Def
)) then
5711 Replace_Anonymous_Access_To_Protected_Subprogram
5714 Find_Type
(Subtype_Mark
(Def
));
5727 -- Insert the new declaration in the nearest enclosing scope. If the
5728 -- node is a body and N is its return type, the declaration belongs in
5729 -- the enclosing scope.
5733 if Nkind
(P
) = N_Subprogram_Body
5734 and then Nkind
(N
) = N_Function_Specification
5739 while Present
(P
) and then not Has_Declarations
(P
) loop
5743 pragma Assert
(Present
(P
));
5745 if Nkind
(P
) = N_Package_Specification
then
5746 Prepend
(Decl
, Visible_Declarations
(P
));
5748 Prepend
(Decl
, Declarations
(P
));
5751 -- Replace the anonymous type with an occurrence of the new declaration.
5752 -- In all cases the rewritten node does not have the null-exclusion
5753 -- attribute because (if present) it was already inherited by the
5754 -- anonymous entity (Anon). Thus, in case of components we do not
5755 -- inherit this attribute.
5757 if Nkind
(N
) = N_Parameter_Specification
then
5758 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5759 Set_Etype
(Defining_Identifier
(N
), Anon
);
5760 Set_Null_Exclusion_Present
(N
, False);
5762 elsif Nkind
(N
) = N_Object_Declaration
then
5763 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5764 Set_Etype
(Defining_Identifier
(N
), Anon
);
5766 elsif Nkind
(N
) = N_Access_Function_Definition
then
5767 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5769 elsif Nkind
(N
) = N_Function_Specification
then
5770 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5771 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5775 Make_Component_Definition
(Loc
,
5776 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5779 Mark_Rewrite_Insertion
(Comp
);
5781 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5785 -- Temporarily remove the current scope (record or subprogram) from
5786 -- the stack to add the new declarations to the enclosing scope.
5788 Scope_Stack
.Decrement_Last
;
5790 Set_Is_Itype
(Anon
);
5791 Scope_Stack
.Append
(Curr_Scope
);
5794 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5795 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5797 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5799 -------------------------------
5800 -- Build_Derived_Access_Type --
5801 -------------------------------
5803 procedure Build_Derived_Access_Type
5805 Parent_Type
: Entity_Id
;
5806 Derived_Type
: Entity_Id
)
5808 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5810 Desig_Type
: Entity_Id
;
5812 Discr_Con_Elist
: Elist_Id
;
5813 Discr_Con_El
: Elmt_Id
;
5817 -- Set the designated type so it is available in case this is an access
5818 -- to a self-referential type, e.g. a standard list type with a next
5819 -- pointer. Will be reset after subtype is built.
5821 Set_Directly_Designated_Type
5822 (Derived_Type
, Designated_Type
(Parent_Type
));
5824 Subt
:= Process_Subtype
(S
, N
);
5826 if Nkind
(S
) /= N_Subtype_Indication
5827 and then Subt
/= Base_Type
(Subt
)
5829 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5832 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5834 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5835 Ibase
: constant Entity_Id
:=
5836 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5837 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5838 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5841 Copy_Node
(Pbase
, Ibase
);
5843 Set_Chars
(Ibase
, Svg_Chars
);
5844 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5845 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5846 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5847 Set_Freeze_Node
(Ibase
, Empty
);
5848 Set_Is_Frozen
(Ibase
, False);
5849 Set_Comes_From_Source
(Ibase
, False);
5850 Set_Is_First_Subtype
(Ibase
, False);
5852 Set_Etype
(Ibase
, Pbase
);
5853 Set_Etype
(Derived_Type
, Ibase
);
5857 Set_Directly_Designated_Type
5858 (Derived_Type
, Designated_Type
(Subt
));
5860 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5861 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5862 Set_Size_Info
(Derived_Type
, Parent_Type
);
5863 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5864 Set_Depends_On_Private
(Derived_Type
,
5865 Has_Private_Component
(Derived_Type
));
5866 Conditional_Delay
(Derived_Type
, Subt
);
5868 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5869 -- that it is not redundant.
5871 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5872 Set_Can_Never_Be_Null
(Derived_Type
);
5874 -- What is with the "AND THEN FALSE" here ???
5876 if Can_Never_Be_Null
(Parent_Type
)
5880 ("`NOT NULL` not allowed (& already excludes null)",
5884 elsif Can_Never_Be_Null
(Parent_Type
) then
5885 Set_Can_Never_Be_Null
(Derived_Type
);
5888 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5889 -- the root type for this information.
5891 -- Apply range checks to discriminants for derived record case
5892 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5894 Desig_Type
:= Designated_Type
(Derived_Type
);
5895 if Is_Composite_Type
(Desig_Type
)
5896 and then (not Is_Array_Type
(Desig_Type
))
5897 and then Has_Discriminants
(Desig_Type
)
5898 and then Base_Type
(Desig_Type
) /= Desig_Type
5900 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
5901 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
5903 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
5904 while Present
(Discr_Con_El
) loop
5905 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
5906 Next_Elmt
(Discr_Con_El
);
5907 Next_Discriminant
(Discr
);
5910 end Build_Derived_Access_Type
;
5912 ------------------------------
5913 -- Build_Derived_Array_Type --
5914 ------------------------------
5916 procedure Build_Derived_Array_Type
5918 Parent_Type
: Entity_Id
;
5919 Derived_Type
: Entity_Id
)
5921 Loc
: constant Source_Ptr
:= Sloc
(N
);
5922 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5923 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5924 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5925 Implicit_Base
: Entity_Id
;
5926 New_Indic
: Node_Id
;
5928 procedure Make_Implicit_Base
;
5929 -- If the parent subtype is constrained, the derived type is a subtype
5930 -- of an implicit base type derived from the parent base.
5932 ------------------------
5933 -- Make_Implicit_Base --
5934 ------------------------
5936 procedure Make_Implicit_Base
is
5939 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5941 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5942 Set_Etype
(Implicit_Base
, Parent_Base
);
5944 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
5945 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
5947 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
5948 end Make_Implicit_Base
;
5950 -- Start of processing for Build_Derived_Array_Type
5953 if not Is_Constrained
(Parent_Type
) then
5954 if Nkind
(Indic
) /= N_Subtype_Indication
then
5955 Set_Ekind
(Derived_Type
, E_Array_Type
);
5957 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5958 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
5960 Set_Has_Delayed_Freeze
(Derived_Type
, True);
5964 Set_Etype
(Derived_Type
, Implicit_Base
);
5967 Make_Subtype_Declaration
(Loc
,
5968 Defining_Identifier
=> Derived_Type
,
5969 Subtype_Indication
=>
5970 Make_Subtype_Indication
(Loc
,
5971 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
5972 Constraint
=> Constraint
(Indic
)));
5974 Rewrite
(N
, New_Indic
);
5979 if Nkind
(Indic
) /= N_Subtype_Indication
then
5982 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
5983 Set_Etype
(Derived_Type
, Implicit_Base
);
5984 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5987 Error_Msg_N
("illegal constraint on constrained type", Indic
);
5991 -- If parent type is not a derived type itself, and is declared in
5992 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5993 -- the new type's concatenation operator since Derive_Subprograms
5994 -- will not inherit the parent's operator. If the parent type is
5995 -- unconstrained, the operator is of the unconstrained base type.
5997 if Number_Dimensions
(Parent_Type
) = 1
5998 and then not Is_Limited_Type
(Parent_Type
)
5999 and then not Is_Derived_Type
(Parent_Type
)
6000 and then not Is_Package_Or_Generic_Package
6001 (Scope
(Base_Type
(Parent_Type
)))
6003 if not Is_Constrained
(Parent_Type
)
6004 and then Is_Constrained
(Derived_Type
)
6006 New_Concatenation_Op
(Implicit_Base
);
6008 New_Concatenation_Op
(Derived_Type
);
6011 end Build_Derived_Array_Type
;
6013 -----------------------------------
6014 -- Build_Derived_Concurrent_Type --
6015 -----------------------------------
6017 procedure Build_Derived_Concurrent_Type
6019 Parent_Type
: Entity_Id
;
6020 Derived_Type
: Entity_Id
)
6022 Loc
: constant Source_Ptr
:= Sloc
(N
);
6024 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
6025 Corr_Decl
: Node_Id
;
6026 Corr_Decl_Needed
: Boolean;
6027 -- If the derived type has fewer discriminants than its parent, the
6028 -- corresponding record is also a derived type, in order to account for
6029 -- the bound discriminants. We create a full type declaration for it in
6032 Constraint_Present
: constant Boolean :=
6033 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6034 N_Subtype_Indication
;
6036 D_Constraint
: Node_Id
;
6037 New_Constraint
: Elist_Id
;
6038 Old_Disc
: Entity_Id
;
6039 New_Disc
: Entity_Id
;
6043 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6044 Corr_Decl_Needed
:= False;
6047 if Present
(Discriminant_Specifications
(N
))
6048 and then Constraint_Present
6050 Old_Disc
:= First_Discriminant
(Parent_Type
);
6051 New_Disc
:= First
(Discriminant_Specifications
(N
));
6052 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
6053 Next_Discriminant
(Old_Disc
);
6058 if Present
(Old_Disc
) and then Expander_Active
then
6060 -- The new type has fewer discriminants, so we need to create a new
6061 -- corresponding record, which is derived from the corresponding
6062 -- record of the parent, and has a stored constraint that captures
6063 -- the values of the discriminant constraints. The corresponding
6064 -- record is needed only if expander is active and code generation is
6067 -- The type declaration for the derived corresponding record has the
6068 -- same discriminant part and constraints as the current declaration.
6069 -- Copy the unanalyzed tree to build declaration.
6071 Corr_Decl_Needed
:= True;
6072 New_N
:= Copy_Separate_Tree
(N
);
6075 Make_Full_Type_Declaration
(Loc
,
6076 Defining_Identifier
=> Corr_Record
,
6077 Discriminant_Specifications
=>
6078 Discriminant_Specifications
(New_N
),
6080 Make_Derived_Type_Definition
(Loc
,
6081 Subtype_Indication
=>
6082 Make_Subtype_Indication
(Loc
,
6085 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6088 (Subtype_Indication
(Type_Definition
(New_N
))))));
6091 -- Copy Storage_Size and Relative_Deadline variables if task case
6093 if Is_Task_Type
(Parent_Type
) then
6094 Set_Storage_Size_Variable
(Derived_Type
,
6095 Storage_Size_Variable
(Parent_Type
));
6096 Set_Relative_Deadline_Variable
(Derived_Type
,
6097 Relative_Deadline_Variable
(Parent_Type
));
6100 if Present
(Discriminant_Specifications
(N
)) then
6101 Push_Scope
(Derived_Type
);
6102 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6104 if Constraint_Present
then
6106 Expand_To_Stored_Constraint
6108 Build_Discriminant_Constraints
6110 Subtype_Indication
(Type_Definition
(N
)), True));
6115 elsif Constraint_Present
then
6117 -- Build constrained subtype, copying the constraint, and derive
6118 -- from it to create a derived constrained type.
6121 Loc
: constant Source_Ptr
:= Sloc
(N
);
6122 Anon
: constant Entity_Id
:=
6123 Make_Defining_Identifier
(Loc
,
6124 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6129 Make_Subtype_Declaration
(Loc
,
6130 Defining_Identifier
=> Anon
,
6131 Subtype_Indication
=>
6132 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6133 Insert_Before
(N
, Decl
);
6136 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6137 New_Occurrence_Of
(Anon
, Loc
));
6138 Set_Analyzed
(Derived_Type
, False);
6144 -- By default, operations and private data are inherited from parent.
6145 -- However, in the presence of bound discriminants, a new corresponding
6146 -- record will be created, see below.
6148 Set_Has_Discriminants
6149 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6150 Set_Corresponding_Record_Type
6151 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6153 -- Is_Constrained is set according the parent subtype, but is set to
6154 -- False if the derived type is declared with new discriminants.
6158 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6159 and then not Present
(Discriminant_Specifications
(N
)));
6161 if Constraint_Present
then
6162 if not Has_Discriminants
(Parent_Type
) then
6163 Error_Msg_N
("untagged parent must have discriminants", N
);
6165 elsif Present
(Discriminant_Specifications
(N
)) then
6167 -- Verify that new discriminants are used to constrain old ones
6172 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6174 Old_Disc
:= First_Discriminant
(Parent_Type
);
6176 while Present
(D_Constraint
) loop
6177 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6179 -- Positional constraint. If it is a reference to a new
6180 -- discriminant, it constrains the corresponding old one.
6182 if Nkind
(D_Constraint
) = N_Identifier
then
6183 New_Disc
:= First_Discriminant
(Derived_Type
);
6184 while Present
(New_Disc
) loop
6185 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6186 Next_Discriminant
(New_Disc
);
6189 if Present
(New_Disc
) then
6190 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6194 Next_Discriminant
(Old_Disc
);
6196 -- if this is a named constraint, search by name for the old
6197 -- discriminants constrained by the new one.
6199 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6201 -- Find new discriminant with that name
6203 New_Disc
:= First_Discriminant
(Derived_Type
);
6204 while Present
(New_Disc
) loop
6206 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6207 Next_Discriminant
(New_Disc
);
6210 if Present
(New_Disc
) then
6212 -- Verify that new discriminant renames some discriminant
6213 -- of the parent type, and associate the new discriminant
6214 -- with one or more old ones that it renames.
6220 Selector
:= First
(Selector_Names
(D_Constraint
));
6221 while Present
(Selector
) loop
6222 Old_Disc
:= First_Discriminant
(Parent_Type
);
6223 while Present
(Old_Disc
) loop
6224 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6225 Next_Discriminant
(Old_Disc
);
6228 if Present
(Old_Disc
) then
6229 Set_Corresponding_Discriminant
6230 (New_Disc
, Old_Disc
);
6239 Next
(D_Constraint
);
6242 New_Disc
:= First_Discriminant
(Derived_Type
);
6243 while Present
(New_Disc
) loop
6244 if No
(Corresponding_Discriminant
(New_Disc
)) then
6246 ("new discriminant& must constrain old one", N
, New_Disc
);
6249 Subtypes_Statically_Compatible
6251 Etype
(Corresponding_Discriminant
(New_Disc
)))
6254 ("& not statically compatible with parent discriminant",
6258 Next_Discriminant
(New_Disc
);
6262 elsif Present
(Discriminant_Specifications
(N
)) then
6264 ("missing discriminant constraint in untagged derivation", N
);
6267 -- The entity chain of the derived type includes the new discriminants
6268 -- but shares operations with the parent.
6270 if Present
(Discriminant_Specifications
(N
)) then
6271 Old_Disc
:= First_Discriminant
(Parent_Type
);
6272 while Present
(Old_Disc
) loop
6273 if No
(Next_Entity
(Old_Disc
))
6274 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
6277 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
6281 Next_Discriminant
(Old_Disc
);
6285 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
6286 if Has_Discriminants
(Parent_Type
) then
6287 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6288 Set_Discriminant_Constraint
(
6289 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
6293 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
6295 Set_Has_Completion
(Derived_Type
);
6297 if Corr_Decl_Needed
then
6298 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
6299 Insert_After
(N
, Corr_Decl
);
6300 Analyze
(Corr_Decl
);
6301 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
6303 end Build_Derived_Concurrent_Type
;
6305 ------------------------------------
6306 -- Build_Derived_Enumeration_Type --
6307 ------------------------------------
6309 procedure Build_Derived_Enumeration_Type
6311 Parent_Type
: Entity_Id
;
6312 Derived_Type
: Entity_Id
)
6314 Loc
: constant Source_Ptr
:= Sloc
(N
);
6315 Def
: constant Node_Id
:= Type_Definition
(N
);
6316 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6317 Implicit_Base
: Entity_Id
;
6318 Literal
: Entity_Id
;
6319 New_Lit
: Entity_Id
;
6320 Literals_List
: List_Id
;
6321 Type_Decl
: Node_Id
;
6323 Rang_Expr
: Node_Id
;
6326 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6327 -- not have explicit literals lists we need to process types derived
6328 -- from them specially. This is handled by Derived_Standard_Character.
6329 -- If the parent type is a generic type, there are no literals either,
6330 -- and we construct the same skeletal representation as for the generic
6333 if Is_Standard_Character_Type
(Parent_Type
) then
6334 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
6336 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
6342 if Nkind
(Indic
) /= N_Subtype_Indication
then
6344 Make_Attribute_Reference
(Loc
,
6345 Attribute_Name
=> Name_First
,
6346 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6347 Set_Etype
(Lo
, Derived_Type
);
6350 Make_Attribute_Reference
(Loc
,
6351 Attribute_Name
=> Name_Last
,
6352 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6353 Set_Etype
(Hi
, Derived_Type
);
6355 Set_Scalar_Range
(Derived_Type
,
6361 -- Analyze subtype indication and verify compatibility
6362 -- with parent type.
6364 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
6365 Base_Type
(Parent_Type
)
6368 ("illegal constraint for formal discrete type", N
);
6374 -- If a constraint is present, analyze the bounds to catch
6375 -- premature usage of the derived literals.
6377 if Nkind
(Indic
) = N_Subtype_Indication
6378 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
6380 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
6381 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
6384 -- Introduce an implicit base type for the derived type even if there
6385 -- is no constraint attached to it, since this seems closer to the
6386 -- Ada semantics. Build a full type declaration tree for the derived
6387 -- type using the implicit base type as the defining identifier. The
6388 -- build a subtype declaration tree which applies the constraint (if
6389 -- any) have it replace the derived type declaration.
6391 Literal
:= First_Literal
(Parent_Type
);
6392 Literals_List
:= New_List
;
6393 while Present
(Literal
)
6394 and then Ekind
(Literal
) = E_Enumeration_Literal
6396 -- Literals of the derived type have the same representation as
6397 -- those of the parent type, but this representation can be
6398 -- overridden by an explicit representation clause. Indicate
6399 -- that there is no explicit representation given yet. These
6400 -- derived literals are implicit operations of the new type,
6401 -- and can be overridden by explicit ones.
6403 if Nkind
(Literal
) = N_Defining_Character_Literal
then
6405 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
6407 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
6410 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
6411 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
6412 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
6413 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
6414 Set_Alias
(New_Lit
, Literal
);
6415 Set_Is_Known_Valid
(New_Lit
, True);
6417 Append
(New_Lit
, Literals_List
);
6418 Next_Literal
(Literal
);
6422 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6423 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
6425 -- Indicate the proper nature of the derived type. This must be done
6426 -- before analysis of the literals, to recognize cases when a literal
6427 -- may be hidden by a previous explicit function definition (cf.
6430 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
6431 Set_Etype
(Derived_Type
, Implicit_Base
);
6434 Make_Full_Type_Declaration
(Loc
,
6435 Defining_Identifier
=> Implicit_Base
,
6436 Discriminant_Specifications
=> No_List
,
6438 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
6440 Mark_Rewrite_Insertion
(Type_Decl
);
6441 Insert_Before
(N
, Type_Decl
);
6442 Analyze
(Type_Decl
);
6444 -- After the implicit base is analyzed its Etype needs to be changed
6445 -- to reflect the fact that it is derived from the parent type which
6446 -- was ignored during analysis. We also set the size at this point.
6448 Set_Etype
(Implicit_Base
, Parent_Type
);
6450 Set_Size_Info
(Implicit_Base
, Parent_Type
);
6451 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
6452 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
6454 -- Copy other flags from parent type
6456 Set_Has_Non_Standard_Rep
6457 (Implicit_Base
, Has_Non_Standard_Rep
6459 Set_Has_Pragma_Ordered
6460 (Implicit_Base
, Has_Pragma_Ordered
6462 Set_Has_Delayed_Freeze
(Implicit_Base
);
6464 -- Process the subtype indication including a validation check on the
6465 -- constraint, if any. If a constraint is given, its bounds must be
6466 -- implicitly converted to the new type.
6468 if Nkind
(Indic
) = N_Subtype_Indication
then
6470 R
: constant Node_Id
:=
6471 Range_Expression
(Constraint
(Indic
));
6474 if Nkind
(R
) = N_Range
then
6475 Hi
:= Build_Scalar_Bound
6476 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
6477 Lo
:= Build_Scalar_Bound
6478 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
6481 -- Constraint is a Range attribute. Replace with explicit
6482 -- mention of the bounds of the prefix, which must be a
6485 Analyze
(Prefix
(R
));
6487 Convert_To
(Implicit_Base
,
6488 Make_Attribute_Reference
(Loc
,
6489 Attribute_Name
=> Name_Last
,
6491 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6494 Convert_To
(Implicit_Base
,
6495 Make_Attribute_Reference
(Loc
,
6496 Attribute_Name
=> Name_First
,
6498 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6505 (Type_High_Bound
(Parent_Type
),
6506 Parent_Type
, Implicit_Base
);
6509 (Type_Low_Bound
(Parent_Type
),
6510 Parent_Type
, Implicit_Base
);
6518 -- If we constructed a default range for the case where no range
6519 -- was given, then the expressions in the range must not freeze
6520 -- since they do not correspond to expressions in the source.
6522 if Nkind
(Indic
) /= N_Subtype_Indication
then
6523 Set_Must_Not_Freeze
(Lo
);
6524 Set_Must_Not_Freeze
(Hi
);
6525 Set_Must_Not_Freeze
(Rang_Expr
);
6529 Make_Subtype_Declaration
(Loc
,
6530 Defining_Identifier
=> Derived_Type
,
6531 Subtype_Indication
=>
6532 Make_Subtype_Indication
(Loc
,
6533 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6535 Make_Range_Constraint
(Loc
,
6536 Range_Expression
=> Rang_Expr
))));
6540 -- Propagate the aspects from the original type declaration to the
6541 -- declaration of the implicit base.
6543 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
6545 -- Apply a range check. Since this range expression doesn't have an
6546 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6549 if Nkind
(Indic
) = N_Subtype_Indication
then
6551 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
6552 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
6555 end Build_Derived_Enumeration_Type
;
6557 --------------------------------
6558 -- Build_Derived_Numeric_Type --
6559 --------------------------------
6561 procedure Build_Derived_Numeric_Type
6563 Parent_Type
: Entity_Id
;
6564 Derived_Type
: Entity_Id
)
6566 Loc
: constant Source_Ptr
:= Sloc
(N
);
6567 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6568 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6569 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6570 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
6571 N_Subtype_Indication
;
6572 Implicit_Base
: Entity_Id
;
6578 -- Process the subtype indication including a validation check on
6579 -- the constraint if any.
6581 Discard_Node
(Process_Subtype
(Indic
, N
));
6583 -- Introduce an implicit base type for the derived type even if there
6584 -- is no constraint attached to it, since this seems closer to the Ada
6588 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6590 Set_Etype
(Implicit_Base
, Parent_Base
);
6591 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6592 Set_Size_Info
(Implicit_Base
, Parent_Base
);
6593 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
6594 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
6595 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6597 -- Set RM Size for discrete type or decimal fixed-point type
6598 -- Ordinary fixed-point is excluded, why???
6600 if Is_Discrete_Type
(Parent_Base
)
6601 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
6603 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
6606 Set_Has_Delayed_Freeze
(Implicit_Base
);
6608 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
6609 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
6611 Set_Scalar_Range
(Implicit_Base
,
6616 if Has_Infinities
(Parent_Base
) then
6617 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
6620 -- The Derived_Type, which is the entity of the declaration, is a
6621 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6622 -- absence of an explicit constraint.
6624 Set_Etype
(Derived_Type
, Implicit_Base
);
6626 -- If we did not have a constraint, then the Ekind is set from the
6627 -- parent type (otherwise Process_Subtype has set the bounds)
6629 if No_Constraint
then
6630 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
6633 -- If we did not have a range constraint, then set the range from the
6634 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6636 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
6637 Set_Scalar_Range
(Derived_Type
,
6639 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6640 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6641 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6643 if Has_Infinities
(Parent_Type
) then
6644 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6647 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6650 Set_Is_Descendent_Of_Address
(Derived_Type
,
6651 Is_Descendent_Of_Address
(Parent_Type
));
6652 Set_Is_Descendent_Of_Address
(Implicit_Base
,
6653 Is_Descendent_Of_Address
(Parent_Type
));
6655 -- Set remaining type-specific fields, depending on numeric type
6657 if Is_Modular_Integer_Type
(Parent_Type
) then
6658 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6660 Set_Non_Binary_Modulus
6661 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6664 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6666 elsif Is_Floating_Point_Type
(Parent_Type
) then
6668 -- Digits of base type is always copied from the digits value of
6669 -- the parent base type, but the digits of the derived type will
6670 -- already have been set if there was a constraint present.
6672 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6673 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6675 if No_Constraint
then
6676 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6679 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6681 -- Small of base type and derived type are always copied from the
6682 -- parent base type, since smalls never change. The delta of the
6683 -- base type is also copied from the parent base type. However the
6684 -- delta of the derived type will have been set already if a
6685 -- constraint was present.
6687 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6688 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6689 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6691 if No_Constraint
then
6692 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6695 -- The scale and machine radix in the decimal case are always
6696 -- copied from the parent base type.
6698 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6699 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6700 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6702 Set_Machine_Radix_10
6703 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6704 Set_Machine_Radix_10
6705 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6707 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6709 if No_Constraint
then
6710 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6713 -- the analysis of the subtype_indication sets the
6714 -- digits value of the derived type.
6721 if Is_Integer_Type
(Parent_Type
) then
6722 Set_Has_Shift_Operator
6723 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
6726 -- The type of the bounds is that of the parent type, and they
6727 -- must be converted to the derived type.
6729 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6731 -- The implicit_base should be frozen when the derived type is frozen,
6732 -- but note that it is used in the conversions of the bounds. For fixed
6733 -- types we delay the determination of the bounds until the proper
6734 -- freezing point. For other numeric types this is rejected by GCC, for
6735 -- reasons that are currently unclear (???), so we choose to freeze the
6736 -- implicit base now. In the case of integers and floating point types
6737 -- this is harmless because subsequent representation clauses cannot
6738 -- affect anything, but it is still baffling that we cannot use the
6739 -- same mechanism for all derived numeric types.
6741 -- There is a further complication: actually some representation
6742 -- clauses can affect the implicit base type. For example, attribute
6743 -- definition clauses for stream-oriented attributes need to set the
6744 -- corresponding TSS entries on the base type, and this normally
6745 -- cannot be done after the base type is frozen, so the circuitry in
6746 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6747 -- and not use Set_TSS in this case.
6749 -- There are also consequences for the case of delayed representation
6750 -- aspects for some cases. For example, a Size aspect is delayed and
6751 -- should not be evaluated to the freeze point. This early freezing
6752 -- means that the size attribute evaluation happens too early???
6754 if Is_Fixed_Point_Type
(Parent_Type
) then
6755 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6757 Freeze_Before
(N
, Implicit_Base
);
6759 end Build_Derived_Numeric_Type
;
6761 --------------------------------
6762 -- Build_Derived_Private_Type --
6763 --------------------------------
6765 procedure Build_Derived_Private_Type
6767 Parent_Type
: Entity_Id
;
6768 Derived_Type
: Entity_Id
;
6769 Is_Completion
: Boolean;
6770 Derive_Subps
: Boolean := True)
6772 Loc
: constant Source_Ptr
:= Sloc
(N
);
6773 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6774 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
6775 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
6776 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
6779 procedure Build_Full_Derivation
;
6780 -- Build full derivation, i.e. derive from the full view
6782 procedure Copy_And_Build
;
6783 -- Copy derived type declaration, replace parent with its full view,
6784 -- and build derivation
6786 ---------------------------
6787 -- Build_Full_Derivation --
6788 ---------------------------
6790 procedure Build_Full_Derivation
is
6792 -- If parent scope is not open, install the declarations
6794 if not In_Open_Scopes
(Par_Scope
) then
6795 Install_Private_Declarations
(Par_Scope
);
6796 Install_Visible_Declarations
(Par_Scope
);
6798 Uninstall_Declarations
(Par_Scope
);
6800 -- If parent scope is open and in another unit, and parent has a
6801 -- completion, then the derivation is taking place in the visible
6802 -- part of a child unit. In that case retrieve the full view of
6803 -- the parent momentarily.
6805 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6806 Full_P
:= Full_View
(Parent_Type
);
6807 Exchange_Declarations
(Parent_Type
);
6809 Exchange_Declarations
(Full_P
);
6811 -- Otherwise it is a local derivation
6816 end Build_Full_Derivation
;
6818 --------------------
6819 -- Copy_And_Build --
6820 --------------------
6822 procedure Copy_And_Build
is
6823 Full_Parent
: Entity_Id
:= Parent_Type
;
6826 -- If the parent is itself derived from another private type,
6827 -- installing the private declarations has not affected its
6828 -- privacy status, so use its own full view explicitly.
6830 if Is_Private_Type
(Full_Parent
)
6831 and then Present
(Full_View
(Full_Parent
))
6833 Full_Parent
:= Full_View
(Full_Parent
);
6836 -- And its underlying full view if necessary
6838 if Is_Private_Type
(Full_Parent
)
6839 and then Present
(Underlying_Full_View
(Full_Parent
))
6841 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
6844 -- For record, access and most enumeration types, derivation from
6845 -- the full view requires a fully-fledged declaration. In the other
6846 -- cases, just use an itype.
6848 if Ekind
(Full_Parent
) in Record_Kind
6849 or else Ekind
(Full_Parent
) in Access_Kind
6851 (Ekind
(Full_Parent
) in Enumeration_Kind
6852 and then not Is_Standard_Character_Type
(Full_Parent
)
6853 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
6855 -- Copy and adjust declaration to provide a completion for what
6856 -- is originally a private declaration. Indicate that full view
6857 -- is internally generated.
6859 Set_Comes_From_Source
(Full_N
, False);
6860 Set_Comes_From_Source
(Full_Der
, False);
6861 Set_Parent
(Full_Der
, Full_N
);
6862 Set_Defining_Identifier
(Full_N
, Full_Der
);
6864 -- If there are no constraints, adjust the subtype mark
6866 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
6867 N_Subtype_Indication
6869 Set_Subtype_Indication
6870 (Type_Definition
(Full_N
),
6871 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
6874 Insert_After
(N
, Full_N
);
6876 -- Build full view of derived type from full view of parent which
6877 -- is now installed. Subprograms have been derived on the partial
6878 -- view, the completion does not derive them anew.
6880 if Ekind
(Full_Parent
) in Record_Kind
then
6882 -- If parent type is tagged, the completion inherits the proper
6883 -- primitive operations.
6885 if Is_Tagged_Type
(Parent_Type
) then
6886 Build_Derived_Record_Type
6887 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
6889 Build_Derived_Record_Type
6890 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
6895 (Full_N
, Full_Parent
, Full_Der
,
6896 Is_Completion
=> False, Derive_Subps
=> False);
6899 -- The full declaration has been introduced into the tree and
6900 -- processed in the step above. It should not be analyzed again
6901 -- (when encountered later in the current list of declarations)
6902 -- to prevent spurious name conflicts. The full entity remains
6905 Set_Analyzed
(Full_N
);
6909 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6910 Chars
=> Chars
(Derived_Type
));
6911 Set_Is_Itype
(Full_Der
);
6912 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6913 Set_Parent
(Full_Der
, N
);
6915 (N
, Full_Parent
, Full_Der
,
6916 Is_Completion
=> False, Derive_Subps
=> False);
6919 Set_Has_Private_Declaration
(Full_Der
);
6920 Set_Has_Private_Declaration
(Derived_Type
);
6922 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
6923 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
6924 Set_Has_Size_Clause
(Full_Der
, False);
6925 Set_Has_Alignment_Clause
(Full_Der
, False);
6926 Set_Has_Delayed_Freeze
(Full_Der
);
6927 Set_Is_Frozen
(Full_Der
, False);
6928 Set_Freeze_Node
(Full_Der
, Empty
);
6929 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
6930 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
6932 -- The convention on the base type may be set in the private part
6933 -- and not propagated to the subtype until later, so we obtain the
6934 -- convention from the base type of the parent.
6936 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
6939 -- Start of processing for Build_Derived_Private_Type
6942 if Is_Tagged_Type
(Parent_Type
) then
6943 Full_P
:= Full_View
(Parent_Type
);
6945 -- A type extension of a type with unknown discriminants is an
6946 -- indefinite type that the back-end cannot handle directly.
6947 -- We treat it as a private type, and build a completion that is
6948 -- derived from the full view of the parent, and hopefully has
6949 -- known discriminants.
6951 -- If the full view of the parent type has an underlying record view,
6952 -- use it to generate the underlying record view of this derived type
6953 -- (required for chains of derivations with unknown discriminants).
6955 -- Minor optimization: we avoid the generation of useless underlying
6956 -- record view entities if the private type declaration has unknown
6957 -- discriminants but its corresponding full view has no
6960 if Has_Unknown_Discriminants
(Parent_Type
)
6961 and then Present
(Full_P
)
6962 and then (Has_Discriminants
(Full_P
)
6963 or else Present
(Underlying_Record_View
(Full_P
)))
6964 and then not In_Open_Scopes
(Par_Scope
)
6965 and then Expander_Active
6968 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
6969 New_Ext
: constant Node_Id
:=
6971 (Record_Extension_Part
(Type_Definition
(N
)));
6975 Build_Derived_Record_Type
6976 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6978 -- Build anonymous completion, as a derivation from the full
6979 -- view of the parent. This is not a completion in the usual
6980 -- sense, because the current type is not private.
6983 Make_Full_Type_Declaration
(Loc
,
6984 Defining_Identifier
=> Full_Der
,
6986 Make_Derived_Type_Definition
(Loc
,
6987 Subtype_Indication
=>
6989 (Subtype_Indication
(Type_Definition
(N
))),
6990 Record_Extension_Part
=> New_Ext
));
6992 -- If the parent type has an underlying record view, use it
6993 -- here to build the new underlying record view.
6995 if Present
(Underlying_Record_View
(Full_P
)) then
6997 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
6999 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
7000 Underlying_Record_View
(Full_P
));
7003 Install_Private_Declarations
(Par_Scope
);
7004 Install_Visible_Declarations
(Par_Scope
);
7005 Insert_Before
(N
, Decl
);
7007 -- Mark entity as an underlying record view before analysis,
7008 -- to avoid generating the list of its primitive operations
7009 -- (which is not really required for this entity) and thus
7010 -- prevent spurious errors associated with missing overriding
7011 -- of abstract primitives (overridden only for Derived_Type).
7013 Set_Ekind
(Full_Der
, E_Record_Type
);
7014 Set_Is_Underlying_Record_View
(Full_Der
);
7015 Set_Default_SSO
(Full_Der
);
7019 pragma Assert
(Has_Discriminants
(Full_Der
)
7020 and then not Has_Unknown_Discriminants
(Full_Der
));
7022 Uninstall_Declarations
(Par_Scope
);
7024 -- Freeze the underlying record view, to prevent generation of
7025 -- useless dispatching information, which is simply shared with
7026 -- the real derived type.
7028 Set_Is_Frozen
(Full_Der
);
7030 -- If the derived type has access discriminants, create
7031 -- references to their anonymous types now, to prevent
7032 -- back-end problems when their first use is in generated
7033 -- bodies of primitives.
7039 E
:= First_Entity
(Full_Der
);
7041 while Present
(E
) loop
7042 if Ekind
(E
) = E_Discriminant
7043 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
7045 Build_Itype_Reference
(Etype
(E
), Decl
);
7052 -- Set up links between real entity and underlying record view
7054 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
7055 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
7058 -- If discriminants are known, build derived record
7061 Build_Derived_Record_Type
7062 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7067 elsif Has_Discriminants
(Parent_Type
) then
7069 -- Build partial view of derived type from partial view of parent.
7070 -- This must be done before building the full derivation because the
7071 -- second derivation will modify the discriminants of the first and
7072 -- the discriminants are chained with the rest of the components in
7073 -- the full derivation.
7075 Build_Derived_Record_Type
7076 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7078 -- Build the full derivation if this is not the anonymous derived
7079 -- base type created by Build_Derived_Record_Type in the constrained
7080 -- case (see point 5. of its head comment) since we build it for the
7081 -- derived subtype. And skip it for protected types altogether, as
7082 -- gigi does not use these types directly.
7084 if Present
(Full_View
(Parent_Type
))
7085 and then not Is_Itype
(Derived_Type
)
7086 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7089 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7091 Last_Discr
: Entity_Id
;
7094 -- If this is not a completion, construct the implicit full
7095 -- view by deriving from the full view of the parent type.
7096 -- But if this is a completion, the derived private type
7097 -- being built is a full view and the full derivation can
7098 -- only be its underlying full view.
7100 Build_Full_Derivation
;
7102 if not Is_Completion
then
7103 Set_Full_View
(Derived_Type
, Full_Der
);
7105 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7108 if not Is_Base_Type
(Derived_Type
) then
7109 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7112 -- Copy the discriminant list from full view to the partial
7113 -- view (base type and its subtype). Gigi requires that the
7114 -- partial and full views have the same discriminants.
7116 -- Note that since the partial view points to discriminants
7117 -- in the full view, their scope will be that of the full
7118 -- view. This might cause some front end problems and need
7121 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7122 Set_First_Entity
(Der_Base
, Discr
);
7125 Last_Discr
:= Discr
;
7126 Next_Discriminant
(Discr
);
7127 exit when No
(Discr
);
7130 Set_Last_Entity
(Der_Base
, Last_Discr
);
7131 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7132 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7134 Set_Stored_Constraint
7135 (Full_Der
, Stored_Constraint
(Derived_Type
));
7139 elsif Present
(Full_View
(Parent_Type
))
7140 and then Has_Discriminants
(Full_View
(Parent_Type
))
7142 if Has_Unknown_Discriminants
(Parent_Type
)
7143 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7144 N_Subtype_Indication
7147 ("cannot constrain type with unknown discriminants",
7148 Subtype_Indication
(Type_Definition
(N
)));
7152 -- If this is not a completion, construct the implicit full view by
7153 -- deriving from the full view of the parent type. But if this is a
7154 -- completion, the derived private type being built is a full view
7155 -- and the full derivation can only be its underlying full view.
7157 Build_Full_Derivation
;
7159 if not Is_Completion
then
7160 Set_Full_View
(Derived_Type
, Full_Der
);
7162 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7165 -- In any case, the primitive operations are inherited from the
7166 -- parent type, not from the internal full view.
7168 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7170 if Derive_Subps
then
7171 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7174 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7176 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7179 -- Untagged type, No discriminants on either view
7181 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7182 N_Subtype_Indication
7185 ("illegal constraint on type without discriminants", N
);
7188 if Present
(Discriminant_Specifications
(N
))
7189 and then Present
(Full_View
(Parent_Type
))
7190 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7192 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7195 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7196 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7197 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7198 Set_Has_Controlled_Component
7199 (Derived_Type
, Has_Controlled_Component
7202 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7204 if not Is_Controlled
(Parent_Type
) then
7205 Set_Finalize_Storage_Only
7206 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7209 -- If this is not a completion, construct the implicit full view by
7210 -- deriving from the full view of the parent type.
7212 -- ??? If the parent is untagged private and its completion is
7213 -- tagged, this mechanism will not work because we cannot derive from
7214 -- the tagged full view unless we have an extension.
7216 if Present
(Full_View
(Parent_Type
))
7217 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7218 and then not Is_Completion
7220 Build_Full_Derivation
;
7221 Set_Full_View
(Derived_Type
, Full_Der
);
7225 Set_Has_Unknown_Discriminants
(Derived_Type
,
7226 Has_Unknown_Discriminants
(Parent_Type
));
7228 if Is_Private_Type
(Derived_Type
) then
7229 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7232 -- If the parent base type is in scope, add the derived type to its
7233 -- list of private dependents, because its full view may become
7234 -- visible subsequently (in a nested private part, a body, or in a
7235 -- further child unit).
7237 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7238 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
7240 -- Check for unusual case where a type completed by a private
7241 -- derivation occurs within a package nested in a child unit, and
7242 -- the parent is declared in an ancestor.
7244 if Is_Child_Unit
(Scope
(Current_Scope
))
7245 and then Is_Completion
7246 and then In_Private_Part
(Current_Scope
)
7247 and then Scope
(Parent_Type
) /= Current_Scope
7249 -- Note that if the parent has a completion in the private part,
7250 -- (which is itself a derivation from some other private type)
7251 -- it is that completion that is visible, there is no full view
7252 -- available, and no special processing is needed.
7254 and then Present
(Full_View
(Parent_Type
))
7256 -- In this case, the full view of the parent type will become
7257 -- visible in the body of the enclosing child, and only then will
7258 -- the current type be possibly non-private. Build an underlying
7259 -- full view that will be installed when the enclosing child body
7262 if Present
(Underlying_Full_View
(Derived_Type
)) then
7263 Full_Der
:= Underlying_Full_View
(Derived_Type
);
7265 Build_Full_Derivation
;
7266 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7269 -- The full view will be used to swap entities on entry/exit to
7270 -- the body, and must appear in the entity list for the package.
7272 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
7275 end Build_Derived_Private_Type
;
7277 -------------------------------
7278 -- Build_Derived_Record_Type --
7279 -------------------------------
7283 -- Ideally we would like to use the same model of type derivation for
7284 -- tagged and untagged record types. Unfortunately this is not quite
7285 -- possible because the semantics of representation clauses is different
7286 -- for tagged and untagged records under inheritance. Consider the
7289 -- type R (...) is [tagged] record ... end record;
7290 -- type T (...) is new R (...) [with ...];
7292 -- The representation clauses for T can specify a completely different
7293 -- record layout from R's. Hence the same component can be placed in two
7294 -- very different positions in objects of type T and R. If R and T are
7295 -- tagged types, representation clauses for T can only specify the layout
7296 -- of non inherited components, thus components that are common in R and T
7297 -- have the same position in objects of type R and T.
7299 -- This has two implications. The first is that the entire tree for R's
7300 -- declaration needs to be copied for T in the untagged case, so that T
7301 -- can be viewed as a record type of its own with its own representation
7302 -- clauses. The second implication is the way we handle discriminants.
7303 -- Specifically, in the untagged case we need a way to communicate to Gigi
7304 -- what are the real discriminants in the record, while for the semantics
7305 -- we need to consider those introduced by the user to rename the
7306 -- discriminants in the parent type. This is handled by introducing the
7307 -- notion of stored discriminants. See below for more.
7309 -- Fortunately the way regular components are inherited can be handled in
7310 -- the same way in tagged and untagged types.
7312 -- To complicate things a bit more the private view of a private extension
7313 -- cannot be handled in the same way as the full view (for one thing the
7314 -- semantic rules are somewhat different). We will explain what differs
7317 -- 2. DISCRIMINANTS UNDER INHERITANCE
7319 -- The semantic rules governing the discriminants of derived types are
7322 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7323 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7325 -- If parent type has discriminants, then the discriminants that are
7326 -- declared in the derived type are [3.4 (11)]:
7328 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7331 -- o Otherwise, each discriminant of the parent type (implicitly declared
7332 -- in the same order with the same specifications). In this case, the
7333 -- discriminants are said to be "inherited", or if unknown in the parent
7334 -- are also unknown in the derived type.
7336 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7338 -- o The parent subtype must be constrained;
7340 -- o If the parent type is not a tagged type, then each discriminant of
7341 -- the derived type must be used in the constraint defining a parent
7342 -- subtype. [Implementation note: This ensures that the new discriminant
7343 -- can share storage with an existing discriminant.]
7345 -- For the derived type each discriminant of the parent type is either
7346 -- inherited, constrained to equal some new discriminant of the derived
7347 -- type, or constrained to the value of an expression.
7349 -- When inherited or constrained to equal some new discriminant, the
7350 -- parent discriminant and the discriminant of the derived type are said
7353 -- If a discriminant of the parent type is constrained to a specific value
7354 -- in the derived type definition, then the discriminant is said to be
7355 -- "specified" by that derived type definition.
7357 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7359 -- We have spoken about stored discriminants in point 1 (introduction)
7360 -- above. There are two sort of stored discriminants: implicit and
7361 -- explicit. As long as the derived type inherits the same discriminants as
7362 -- the root record type, stored discriminants are the same as regular
7363 -- discriminants, and are said to be implicit. However, if any discriminant
7364 -- in the root type was renamed in the derived type, then the derived
7365 -- type will contain explicit stored discriminants. Explicit stored
7366 -- discriminants are discriminants in addition to the semantically visible
7367 -- discriminants defined for the derived type. Stored discriminants are
7368 -- used by Gigi to figure out what are the physical discriminants in
7369 -- objects of the derived type (see precise definition in einfo.ads).
7370 -- As an example, consider the following:
7372 -- type R (D1, D2, D3 : Int) is record ... end record;
7373 -- type T1 is new R;
7374 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7375 -- type T3 is new T2;
7376 -- type T4 (Y : Int) is new T3 (Y, 99);
7378 -- The following table summarizes the discriminants and stored
7379 -- discriminants in R and T1 through T4.
7381 -- Type Discrim Stored Discrim Comment
7382 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7383 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7384 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7385 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7386 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7388 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7389 -- find the corresponding discriminant in the parent type, while
7390 -- Original_Record_Component (abbreviated ORC below), the actual physical
7391 -- component that is renamed. Finally the field Is_Completely_Hidden
7392 -- (abbreviated ICH below) is set for all explicit stored discriminants
7393 -- (see einfo.ads for more info). For the above example this gives:
7395 -- Discrim CD ORC ICH
7396 -- ^^^^^^^ ^^ ^^^ ^^^
7397 -- D1 in R empty itself no
7398 -- D2 in R empty itself no
7399 -- D3 in R empty itself no
7401 -- D1 in T1 D1 in R itself no
7402 -- D2 in T1 D2 in R itself no
7403 -- D3 in T1 D3 in R itself no
7405 -- X1 in T2 D3 in T1 D3 in T2 no
7406 -- X2 in T2 D1 in T1 D1 in T2 no
7407 -- D1 in T2 empty itself yes
7408 -- D2 in T2 empty itself yes
7409 -- D3 in T2 empty itself yes
7411 -- X1 in T3 X1 in T2 D3 in T3 no
7412 -- X2 in T3 X2 in T2 D1 in T3 no
7413 -- D1 in T3 empty itself yes
7414 -- D2 in T3 empty itself yes
7415 -- D3 in T3 empty itself yes
7417 -- Y in T4 X1 in T3 D3 in T3 no
7418 -- D1 in T3 empty itself yes
7419 -- D2 in T3 empty itself yes
7420 -- D3 in T3 empty itself yes
7422 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7424 -- Type derivation for tagged types is fairly straightforward. If no
7425 -- discriminants are specified by the derived type, these are inherited
7426 -- from the parent. No explicit stored discriminants are ever necessary.
7427 -- The only manipulation that is done to the tree is that of adding a
7428 -- _parent field with parent type and constrained to the same constraint
7429 -- specified for the parent in the derived type definition. For instance:
7431 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7432 -- type T1 is new R with null record;
7433 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7435 -- are changed into:
7437 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7438 -- _parent : R (D1, D2, D3);
7441 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7442 -- _parent : T1 (X2, 88, X1);
7445 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7446 -- ORC and ICH fields are:
7448 -- Discrim CD ORC ICH
7449 -- ^^^^^^^ ^^ ^^^ ^^^
7450 -- D1 in R empty itself no
7451 -- D2 in R empty itself no
7452 -- D3 in R empty itself no
7454 -- D1 in T1 D1 in R D1 in R no
7455 -- D2 in T1 D2 in R D2 in R no
7456 -- D3 in T1 D3 in R D3 in R no
7458 -- X1 in T2 D3 in T1 D3 in R no
7459 -- X2 in T2 D1 in T1 D1 in R no
7461 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7463 -- Regardless of whether we dealing with a tagged or untagged type
7464 -- we will transform all derived type declarations of the form
7466 -- type T is new R (...) [with ...];
7468 -- subtype S is R (...);
7469 -- type T is new S [with ...];
7471 -- type BT is new R [with ...];
7472 -- subtype T is BT (...);
7474 -- That is, the base derived type is constrained only if it has no
7475 -- discriminants. The reason for doing this is that GNAT's semantic model
7476 -- assumes that a base type with discriminants is unconstrained.
7478 -- Note that, strictly speaking, the above transformation is not always
7479 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7481 -- procedure B34011A is
7482 -- type REC (D : integer := 0) is record
7487 -- type T6 is new Rec;
7488 -- function F return T6;
7493 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7496 -- The definition of Q6.U is illegal. However transforming Q6.U into
7498 -- type BaseU is new T6;
7499 -- subtype U is BaseU (Q6.F.I)
7501 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7502 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7503 -- the transformation described above.
7505 -- There is another instance where the above transformation is incorrect.
7509 -- type Base (D : Integer) is tagged null record;
7510 -- procedure P (X : Base);
7512 -- type Der is new Base (2) with null record;
7513 -- procedure P (X : Der);
7516 -- Then the above transformation turns this into
7518 -- type Der_Base is new Base with null record;
7519 -- -- procedure P (X : Base) is implicitly inherited here
7520 -- -- as procedure P (X : Der_Base).
7522 -- subtype Der is Der_Base (2);
7523 -- procedure P (X : Der);
7524 -- -- The overriding of P (X : Der_Base) is illegal since we
7525 -- -- have a parameter conformance problem.
7527 -- To get around this problem, after having semantically processed Der_Base
7528 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7529 -- Discriminant_Constraint from Der so that when parameter conformance is
7530 -- checked when P is overridden, no semantic errors are flagged.
7532 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7534 -- Regardless of whether we are dealing with a tagged or untagged type
7535 -- we will transform all derived type declarations of the form
7537 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7538 -- type T is new R [with ...];
7540 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7542 -- The reason for such transformation is that it allows us to implement a
7543 -- very clean form of component inheritance as explained below.
7545 -- Note that this transformation is not achieved by direct tree rewriting
7546 -- and manipulation, but rather by redoing the semantic actions that the
7547 -- above transformation will entail. This is done directly in routine
7548 -- Inherit_Components.
7550 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7552 -- In both tagged and untagged derived types, regular non discriminant
7553 -- components are inherited in the derived type from the parent type. In
7554 -- the absence of discriminants component, inheritance is straightforward
7555 -- as components can simply be copied from the parent.
7557 -- If the parent has discriminants, inheriting components constrained with
7558 -- these discriminants requires caution. Consider the following example:
7560 -- type R (D1, D2 : Positive) is [tagged] record
7561 -- S : String (D1 .. D2);
7564 -- type T1 is new R [with null record];
7565 -- type T2 (X : positive) is new R (1, X) [with null record];
7567 -- As explained in 6. above, T1 is rewritten as
7568 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7569 -- which makes the treatment for T1 and T2 identical.
7571 -- What we want when inheriting S, is that references to D1 and D2 in R are
7572 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7573 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7574 -- with either discriminant references in the derived type or expressions.
7575 -- This replacement is achieved as follows: before inheriting R's
7576 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7577 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7578 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7579 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7580 -- by String (1 .. X).
7582 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7584 -- We explain here the rules governing private type extensions relevant to
7585 -- type derivation. These rules are explained on the following example:
7587 -- type D [(...)] is new A [(...)] with private; <-- partial view
7588 -- type D [(...)] is new P [(...)] with null record; <-- full view
7590 -- Type A is called the ancestor subtype of the private extension.
7591 -- Type P is the parent type of the full view of the private extension. It
7592 -- must be A or a type derived from A.
7594 -- The rules concerning the discriminants of private type extensions are
7597 -- o If a private extension inherits known discriminants from the ancestor
7598 -- subtype, then the full view must also inherit its discriminants from
7599 -- the ancestor subtype and the parent subtype of the full view must be
7600 -- constrained if and only if the ancestor subtype is constrained.
7602 -- o If a partial view has unknown discriminants, then the full view may
7603 -- define a definite or an indefinite subtype, with or without
7606 -- o If a partial view has neither known nor unknown discriminants, then
7607 -- the full view must define a definite subtype.
7609 -- o If the ancestor subtype of a private extension has constrained
7610 -- discriminants, then the parent subtype of the full view must impose a
7611 -- statically matching constraint on those discriminants.
7613 -- This means that only the following forms of private extensions are
7616 -- type D is new A with private; <-- partial view
7617 -- type D is new P with null record; <-- full view
7619 -- If A has no discriminants than P has no discriminants, otherwise P must
7620 -- inherit A's discriminants.
7622 -- type D is new A (...) with private; <-- partial view
7623 -- type D is new P (:::) with null record; <-- full view
7625 -- P must inherit A's discriminants and (...) and (:::) must statically
7628 -- subtype A is R (...);
7629 -- type D is new A with private; <-- partial view
7630 -- type D is new P with null record; <-- full view
7632 -- P must have inherited R's discriminants and must be derived from A or
7633 -- any of its subtypes.
7635 -- type D (..) is new A with private; <-- partial view
7636 -- type D (..) is new P [(:::)] with null record; <-- full view
7638 -- No specific constraints on P's discriminants or constraint (:::).
7639 -- Note that A can be unconstrained, but the parent subtype P must either
7640 -- be constrained or (:::) must be present.
7642 -- type D (..) is new A [(...)] with private; <-- partial view
7643 -- type D (..) is new P [(:::)] with null record; <-- full view
7645 -- P's constraints on A's discriminants must statically match those
7646 -- imposed by (...).
7648 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7650 -- The full view of a private extension is handled exactly as described
7651 -- above. The model chose for the private view of a private extension is
7652 -- the same for what concerns discriminants (i.e. they receive the same
7653 -- treatment as in the tagged case). However, the private view of the
7654 -- private extension always inherits the components of the parent base,
7655 -- without replacing any discriminant reference. Strictly speaking this is
7656 -- incorrect. However, Gigi never uses this view to generate code so this
7657 -- is a purely semantic issue. In theory, a set of transformations similar
7658 -- to those given in 5. and 6. above could be applied to private views of
7659 -- private extensions to have the same model of component inheritance as
7660 -- for non private extensions. However, this is not done because it would
7661 -- further complicate private type processing. Semantically speaking, this
7662 -- leaves us in an uncomfortable situation. As an example consider:
7665 -- type R (D : integer) is tagged record
7666 -- S : String (1 .. D);
7668 -- procedure P (X : R);
7669 -- type T is new R (1) with private;
7671 -- type T is new R (1) with null record;
7674 -- This is transformed into:
7677 -- type R (D : integer) is tagged record
7678 -- S : String (1 .. D);
7680 -- procedure P (X : R);
7681 -- type T is new R (1) with private;
7683 -- type BaseT is new R with null record;
7684 -- subtype T is BaseT (1);
7687 -- (strictly speaking the above is incorrect Ada)
7689 -- From the semantic standpoint the private view of private extension T
7690 -- should be flagged as constrained since one can clearly have
7694 -- in a unit withing Pack. However, when deriving subprograms for the
7695 -- private view of private extension T, T must be seen as unconstrained
7696 -- since T has discriminants (this is a constraint of the current
7697 -- subprogram derivation model). Thus, when processing the private view of
7698 -- a private extension such as T, we first mark T as unconstrained, we
7699 -- process it, we perform program derivation and just before returning from
7700 -- Build_Derived_Record_Type we mark T as constrained.
7702 -- ??? Are there are other uncomfortable cases that we will have to
7705 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7707 -- Types that are derived from a visible record type and have a private
7708 -- extension present other peculiarities. They behave mostly like private
7709 -- types, but if they have primitive operations defined, these will not
7710 -- have the proper signatures for further inheritance, because other
7711 -- primitive operations will use the implicit base that we define for
7712 -- private derivations below. This affect subprogram inheritance (see
7713 -- Derive_Subprograms for details). We also derive the implicit base from
7714 -- the base type of the full view, so that the implicit base is a record
7715 -- type and not another private type, This avoids infinite loops.
7717 procedure Build_Derived_Record_Type
7719 Parent_Type
: Entity_Id
;
7720 Derived_Type
: Entity_Id
;
7721 Derive_Subps
: Boolean := True)
7723 function Implements_Ghost_Interface
(Typ
: Entity_Id
) return Boolean;
7724 -- Determine whether type Typ implements at least one Ghost interface
7726 --------------------------------
7727 -- Implements_Ghost_Interface --
7728 --------------------------------
7730 function Implements_Ghost_Interface
(Typ
: Entity_Id
) return Boolean is
7731 Iface_Elmt
: Elmt_Id
;
7733 -- Traverse the list of interfaces looking for a Ghost interface
7735 if Is_Tagged_Type
(Typ
) and then Present
(Interfaces
(Typ
)) then
7736 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
7737 while Present
(Iface_Elmt
) loop
7738 if Is_Ghost_Entity
(Node
(Iface_Elmt
)) then
7742 Next_Elmt
(Iface_Elmt
);
7747 end Implements_Ghost_Interface
;
7751 Discriminant_Specs
: constant Boolean :=
7752 Present
(Discriminant_Specifications
(N
));
7753 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7754 Loc
: constant Source_Ptr
:= Sloc
(N
);
7755 Private_Extension
: constant Boolean :=
7756 Nkind
(N
) = N_Private_Extension_Declaration
;
7757 Assoc_List
: Elist_Id
;
7758 Constraint_Present
: Boolean;
7760 Discrim
: Entity_Id
;
7762 Inherit_Discrims
: Boolean := False;
7763 Last_Discrim
: Entity_Id
;
7764 New_Base
: Entity_Id
;
7766 New_Discrs
: Elist_Id
;
7767 New_Indic
: Node_Id
;
7768 Parent_Base
: Entity_Id
;
7769 Save_Etype
: Entity_Id
;
7770 Save_Discr_Constr
: Elist_Id
;
7771 Save_Next_Entity
: Entity_Id
;
7774 Discs
: Elist_Id
:= New_Elmt_List
;
7775 -- An empty Discs list means that there were no constraints in the
7776 -- subtype indication or that there was an error processing it.
7778 -- Start of processing for Build_Derived_Record_Type
7781 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7782 and then Present
(Full_View
(Parent_Type
))
7783 and then Has_Discriminants
(Parent_Type
)
7785 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7787 Parent_Base
:= Base_Type
(Parent_Type
);
7790 -- AI05-0115 : if this is a derivation from a private type in some
7791 -- other scope that may lead to invisible components for the derived
7792 -- type, mark it accordingly.
7794 if Is_Private_Type
(Parent_Type
) then
7795 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7798 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7799 and then In_Private_Part
(Scope
(Parent_Type
))
7804 Set_Has_Private_Ancestor
(Derived_Type
);
7808 Set_Has_Private_Ancestor
7809 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7812 -- Before we start the previously documented transformations, here is
7813 -- little fix for size and alignment of tagged types. Normally when we
7814 -- derive type D from type P, we copy the size and alignment of P as the
7815 -- default for D, and in the absence of explicit representation clauses
7816 -- for D, the size and alignment are indeed the same as the parent.
7818 -- But this is wrong for tagged types, since fields may be added, and
7819 -- the default size may need to be larger, and the default alignment may
7820 -- need to be larger.
7822 -- We therefore reset the size and alignment fields in the tagged case.
7823 -- Note that the size and alignment will in any case be at least as
7824 -- large as the parent type (since the derived type has a copy of the
7825 -- parent type in the _parent field)
7827 -- The type is also marked as being tagged here, which is needed when
7828 -- processing components with a self-referential anonymous access type
7829 -- in the call to Check_Anonymous_Access_Components below. Note that
7830 -- this flag is also set later on for completeness.
7833 Set_Is_Tagged_Type
(Derived_Type
);
7834 Init_Size_Align
(Derived_Type
);
7837 -- STEP 0a: figure out what kind of derived type declaration we have
7839 if Private_Extension
then
7841 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7842 Set_Default_SSO
(Derived_Type
);
7845 Type_Def
:= Type_Definition
(N
);
7847 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7848 -- Parent_Base can be a private type or private extension. However,
7849 -- for tagged types with an extension the newly added fields are
7850 -- visible and hence the Derived_Type is always an E_Record_Type.
7851 -- (except that the parent may have its own private fields).
7852 -- For untagged types we preserve the Ekind of the Parent_Base.
7854 if Present
(Record_Extension_Part
(Type_Def
)) then
7855 Set_Ekind
(Derived_Type
, E_Record_Type
);
7856 Set_Default_SSO
(Derived_Type
);
7858 -- Create internal access types for components with anonymous
7861 if Ada_Version
>= Ada_2005
then
7862 Check_Anonymous_Access_Components
7863 (N
, Derived_Type
, Derived_Type
,
7864 Component_List
(Record_Extension_Part
(Type_Def
)));
7868 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7872 -- Indic can either be an N_Identifier if the subtype indication
7873 -- contains no constraint or an N_Subtype_Indication if the subtype
7874 -- indication has a constraint.
7876 Indic
:= Subtype_Indication
(Type_Def
);
7877 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7879 -- Check that the type has visible discriminants. The type may be
7880 -- a private type with unknown discriminants whose full view has
7881 -- discriminants which are invisible.
7883 if Constraint_Present
then
7884 if not Has_Discriminants
(Parent_Base
)
7886 (Has_Unknown_Discriminants
(Parent_Base
)
7887 and then Is_Private_Type
(Parent_Base
))
7890 ("invalid constraint: type has no discriminant",
7891 Constraint
(Indic
));
7893 Constraint_Present
:= False;
7894 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7896 elsif Is_Constrained
(Parent_Type
) then
7898 ("invalid constraint: parent type is already constrained",
7899 Constraint
(Indic
));
7901 Constraint_Present
:= False;
7902 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7906 -- STEP 0b: If needed, apply transformation given in point 5. above
7908 if not Private_Extension
7909 and then Has_Discriminants
(Parent_Type
)
7910 and then not Discriminant_Specs
7911 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
7913 -- First, we must analyze the constraint (see comment in point 5.)
7914 -- The constraint may come from the subtype indication of the full
7917 if Constraint_Present
then
7918 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7920 -- If there is no explicit constraint, there might be one that is
7921 -- inherited from a constrained parent type. In that case verify that
7922 -- it conforms to the constraint in the partial view. In perverse
7923 -- cases the parent subtypes of the partial and full view can have
7924 -- different constraints.
7926 elsif Present
(Stored_Constraint
(Parent_Type
)) then
7927 New_Discrs
:= Stored_Constraint
(Parent_Type
);
7930 New_Discrs
:= No_Elist
;
7933 if Has_Discriminants
(Derived_Type
)
7934 and then Has_Private_Declaration
(Derived_Type
)
7935 and then Present
(Discriminant_Constraint
(Derived_Type
))
7936 and then Present
(New_Discrs
)
7938 -- Verify that constraints of the full view statically match
7939 -- those given in the partial view.
7945 C1
:= First_Elmt
(New_Discrs
);
7946 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
7947 while Present
(C1
) and then Present
(C2
) loop
7948 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7950 (Is_OK_Static_Expression
(Node
(C1
))
7951 and then Is_OK_Static_Expression
(Node
(C2
))
7953 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
7958 if Constraint_Present
then
7960 ("constraint not conformant to previous declaration",
7964 ("constraint of full view is incompatible "
7965 & "with partial view", N
);
7975 -- Insert and analyze the declaration for the unconstrained base type
7977 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
7980 Make_Full_Type_Declaration
(Loc
,
7981 Defining_Identifier
=> New_Base
,
7983 Make_Derived_Type_Definition
(Loc
,
7984 Abstract_Present
=> Abstract_Present
(Type_Def
),
7985 Limited_Present
=> Limited_Present
(Type_Def
),
7986 Subtype_Indication
=>
7987 New_Occurrence_Of
(Parent_Base
, Loc
),
7988 Record_Extension_Part
=>
7989 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
7990 Interface_List
=> Interface_List
(Type_Def
)));
7992 Set_Parent
(New_Decl
, Parent
(N
));
7993 Mark_Rewrite_Insertion
(New_Decl
);
7994 Insert_Before
(N
, New_Decl
);
7996 -- In the extension case, make sure ancestor is frozen appropriately
7997 -- (see also non-discriminated case below).
7999 if Present
(Record_Extension_Part
(Type_Def
))
8000 or else Is_Interface
(Parent_Base
)
8002 Freeze_Before
(New_Decl
, Parent_Type
);
8005 -- Note that this call passes False for the Derive_Subps parameter
8006 -- because subprogram derivation is deferred until after creating
8007 -- the subtype (see below).
8010 (New_Decl
, Parent_Base
, New_Base
,
8011 Is_Completion
=> False, Derive_Subps
=> False);
8013 -- ??? This needs re-examination to determine whether the
8014 -- above call can simply be replaced by a call to Analyze.
8016 Set_Analyzed
(New_Decl
);
8018 -- Insert and analyze the declaration for the constrained subtype
8020 if Constraint_Present
then
8022 Make_Subtype_Indication
(Loc
,
8023 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8024 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
8028 Constr_List
: constant List_Id
:= New_List
;
8033 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
8034 while Present
(C
) loop
8037 -- It is safe here to call New_Copy_Tree since
8038 -- Force_Evaluation was called on each constraint in
8039 -- Build_Discriminant_Constraints.
8041 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
8047 Make_Subtype_Indication
(Loc
,
8048 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8050 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
8055 Make_Subtype_Declaration
(Loc
,
8056 Defining_Identifier
=> Derived_Type
,
8057 Subtype_Indication
=> New_Indic
));
8061 -- Derivation of subprograms must be delayed until the full subtype
8062 -- has been established, to ensure proper overriding of subprograms
8063 -- inherited by full types. If the derivations occurred as part of
8064 -- the call to Build_Derived_Type above, then the check for type
8065 -- conformance would fail because earlier primitive subprograms
8066 -- could still refer to the full type prior the change to the new
8067 -- subtype and hence would not match the new base type created here.
8068 -- Subprograms are not derived, however, when Derive_Subps is False
8069 -- (since otherwise there could be redundant derivations).
8071 if Derive_Subps
then
8072 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8075 -- For tagged types the Discriminant_Constraint of the new base itype
8076 -- is inherited from the first subtype so that no subtype conformance
8077 -- problem arise when the first subtype overrides primitive
8078 -- operations inherited by the implicit base type.
8081 Set_Discriminant_Constraint
8082 (New_Base
, Discriminant_Constraint
(Derived_Type
));
8088 -- If we get here Derived_Type will have no discriminants or it will be
8089 -- a discriminated unconstrained base type.
8091 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8095 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8096 -- The declaration of a specific descendant of an interface type
8097 -- freezes the interface type (RM 13.14).
8099 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
8100 Freeze_Before
(N
, Parent_Type
);
8103 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8104 -- cannot be declared at a deeper level than its parent type is
8105 -- removed. The check on derivation within a generic body is also
8106 -- relaxed, but there's a restriction that a derived tagged type
8107 -- cannot be declared in a generic body if it's derived directly
8108 -- or indirectly from a formal type of that generic.
8110 if Ada_Version
>= Ada_2005
then
8111 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
8113 Ancestor_Type
: Entity_Id
;
8116 -- Check to see if any ancestor of the derived type is a
8119 Ancestor_Type
:= Parent_Type
;
8120 while not Is_Generic_Type
(Ancestor_Type
)
8121 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8123 Ancestor_Type
:= Etype
(Ancestor_Type
);
8126 -- If the derived type does have a formal type as an
8127 -- ancestor, then it's an error if the derived type is
8128 -- declared within the body of the generic unit that
8129 -- declares the formal type in its generic formal part. It's
8130 -- sufficient to check whether the ancestor type is declared
8131 -- inside the same generic body as the derived type (such as
8132 -- within a nested generic spec), in which case the
8133 -- derivation is legal. If the formal type is declared
8134 -- outside of that generic body, then it's guaranteed that
8135 -- the derived type is declared within the generic body of
8136 -- the generic unit declaring the formal type.
8138 if Is_Generic_Type
(Ancestor_Type
)
8139 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8140 Enclosing_Generic_Body
(Derived_Type
)
8143 ("parent type of& must not be descendant of formal type"
8144 & " of an enclosing generic body",
8145 Indic
, Derived_Type
);
8150 elsif Type_Access_Level
(Derived_Type
) /=
8151 Type_Access_Level
(Parent_Type
)
8152 and then not Is_Generic_Type
(Derived_Type
)
8154 if Is_Controlled
(Parent_Type
) then
8156 ("controlled type must be declared at the library level",
8160 ("type extension at deeper accessibility level than parent",
8166 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8169 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8172 ("parent type of& must not be outside generic body"
8174 Indic
, Derived_Type
);
8180 -- Ada 2005 (AI-251)
8182 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8184 -- "The declaration of a specific descendant of an interface type
8185 -- freezes the interface type" (RM 13.14).
8190 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8191 Iface
:= First
(Interface_List
(Type_Def
));
8192 while Present
(Iface
) loop
8193 Freeze_Before
(N
, Etype
(Iface
));
8200 -- STEP 1b : preliminary cleanup of the full view of private types
8202 -- If the type is already marked as having discriminants, then it's the
8203 -- completion of a private type or private extension and we need to
8204 -- retain the discriminants from the partial view if the current
8205 -- declaration has Discriminant_Specifications so that we can verify
8206 -- conformance. However, we must remove any existing components that
8207 -- were inherited from the parent (and attached in Copy_And_Swap)
8208 -- because the full type inherits all appropriate components anyway, and
8209 -- we do not want the partial view's components interfering.
8211 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8212 Discrim
:= First_Discriminant
(Derived_Type
);
8214 Last_Discrim
:= Discrim
;
8215 Next_Discriminant
(Discrim
);
8216 exit when No
(Discrim
);
8219 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8221 -- In all other cases wipe out the list of inherited components (even
8222 -- inherited discriminants), it will be properly rebuilt here.
8225 Set_First_Entity
(Derived_Type
, Empty
);
8226 Set_Last_Entity
(Derived_Type
, Empty
);
8229 -- STEP 1c: Initialize some flags for the Derived_Type
8231 -- The following flags must be initialized here so that
8232 -- Process_Discriminants can check that discriminants of tagged types do
8233 -- not have a default initial value and that access discriminants are
8234 -- only specified for limited records. For completeness, these flags are
8235 -- also initialized along with all the other flags below.
8237 -- AI-419: Limitedness is not inherited from an interface parent, so to
8238 -- be limited in that case the type must be explicitly declared as
8239 -- limited. However, task and protected interfaces are always limited.
8241 if Limited_Present
(Type_Def
) then
8242 Set_Is_Limited_Record
(Derived_Type
);
8244 elsif Is_Limited_Record
(Parent_Type
)
8245 or else (Present
(Full_View
(Parent_Type
))
8246 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8248 if not Is_Interface
(Parent_Type
)
8249 or else Is_Synchronized_Interface
(Parent_Type
)
8250 or else Is_Protected_Interface
(Parent_Type
)
8251 or else Is_Task_Interface
(Parent_Type
)
8253 Set_Is_Limited_Record
(Derived_Type
);
8257 -- STEP 2a: process discriminants of derived type if any
8259 Push_Scope
(Derived_Type
);
8261 if Discriminant_Specs
then
8262 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8264 -- The following call initializes fields Has_Discriminants and
8265 -- Discriminant_Constraint, unless we are processing the completion
8266 -- of a private type declaration.
8268 Check_Or_Process_Discriminants
(N
, Derived_Type
);
8270 -- For untagged types, the constraint on the Parent_Type must be
8271 -- present and is used to rename the discriminants.
8273 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
8274 Error_Msg_N
("untagged parent must have discriminants", Indic
);
8276 elsif not Is_Tagged
and then not Constraint_Present
then
8278 ("discriminant constraint needed for derived untagged records",
8281 -- Otherwise the parent subtype must be constrained unless we have a
8282 -- private extension.
8284 elsif not Constraint_Present
8285 and then not Private_Extension
8286 and then not Is_Constrained
(Parent_Type
)
8289 ("unconstrained type not allowed in this context", Indic
);
8291 elsif Constraint_Present
then
8292 -- The following call sets the field Corresponding_Discriminant
8293 -- for the discriminants in the Derived_Type.
8295 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
8297 -- For untagged types all new discriminants must rename
8298 -- discriminants in the parent. For private extensions new
8299 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8301 Discrim
:= First_Discriminant
(Derived_Type
);
8302 while Present
(Discrim
) loop
8304 and then No
(Corresponding_Discriminant
(Discrim
))
8307 ("new discriminants must constrain old ones", Discrim
);
8309 elsif Private_Extension
8310 and then Present
(Corresponding_Discriminant
(Discrim
))
8313 ("only static constraints allowed for parent"
8314 & " discriminants in the partial view", Indic
);
8318 -- If a new discriminant is used in the constraint, then its
8319 -- subtype must be statically compatible with the parent
8320 -- discriminant's subtype (3.7(15)).
8322 -- However, if the record contains an array constrained by
8323 -- the discriminant but with some different bound, the compiler
8324 -- attemps to create a smaller range for the discriminant type.
8325 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8326 -- the discriminant type is a scalar type, the check must use
8327 -- the original discriminant type in the parent declaration.
8330 Corr_Disc
: constant Entity_Id
:=
8331 Corresponding_Discriminant
(Discrim
);
8332 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
8333 Corr_Type
: Entity_Id
;
8336 if Present
(Corr_Disc
) then
8337 if Is_Scalar_Type
(Disc_Type
) then
8339 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
8341 Corr_Type
:= Etype
(Corr_Disc
);
8345 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
8348 ("subtype must be compatible "
8349 & "with parent discriminant",
8355 Next_Discriminant
(Discrim
);
8358 -- Check whether the constraints of the full view statically
8359 -- match those imposed by the parent subtype [7.3(13)].
8361 if Present
(Stored_Constraint
(Derived_Type
)) then
8366 C1
:= First_Elmt
(Discs
);
8367 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
8368 while Present
(C1
) and then Present
(C2
) loop
8370 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8373 ("not conformant with previous declaration",
8384 -- STEP 2b: No new discriminants, inherit discriminants if any
8387 if Private_Extension
then
8388 Set_Has_Unknown_Discriminants
8390 Has_Unknown_Discriminants
(Parent_Type
)
8391 or else Unknown_Discriminants_Present
(N
));
8393 -- The partial view of the parent may have unknown discriminants,
8394 -- but if the full view has discriminants and the parent type is
8395 -- in scope they must be inherited.
8397 elsif Has_Unknown_Discriminants
(Parent_Type
)
8399 (not Has_Discriminants
(Parent_Type
)
8400 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
8402 Set_Has_Unknown_Discriminants
(Derived_Type
);
8405 if not Has_Unknown_Discriminants
(Derived_Type
)
8406 and then not Has_Unknown_Discriminants
(Parent_Base
)
8407 and then Has_Discriminants
(Parent_Type
)
8409 Inherit_Discrims
:= True;
8410 Set_Has_Discriminants
8411 (Derived_Type
, True);
8412 Set_Discriminant_Constraint
8413 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
8416 -- The following test is true for private types (remember
8417 -- transformation 5. is not applied to those) and in an error
8420 if Constraint_Present
then
8421 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8424 -- For now mark a new derived type as constrained only if it has no
8425 -- discriminants. At the end of Build_Derived_Record_Type we properly
8426 -- set this flag in the case of private extensions. See comments in
8427 -- point 9. just before body of Build_Derived_Record_Type.
8431 not (Inherit_Discrims
8432 or else Has_Unknown_Discriminants
(Derived_Type
)));
8435 -- STEP 3: initialize fields of derived type
8437 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
8438 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
8440 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8441 -- but cannot be interfaces
8443 if not Private_Extension
8444 and then Ekind
(Derived_Type
) /= E_Private_Type
8445 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
8447 if Interface_Present
(Type_Def
) then
8448 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
8451 Set_Interfaces
(Derived_Type
, No_Elist
);
8454 -- Fields inherited from the Parent_Type
8456 Set_Has_Specified_Layout
8457 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
8458 Set_Is_Limited_Composite
8459 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
8460 Set_Is_Private_Composite
8461 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
8463 if Is_Tagged_Type
(Parent_Type
) then
8464 Set_No_Tagged_Streams_Pragma
8465 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8468 -- Fields inherited from the Parent_Base
8470 Set_Has_Controlled_Component
8471 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
8472 Set_Has_Non_Standard_Rep
8473 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8474 Set_Has_Primitive_Operations
8475 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
8477 -- Fields inherited from the Parent_Base in the non-private case
8479 if Ekind
(Derived_Type
) = E_Record_Type
then
8480 Set_Has_Complex_Representation
8481 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
8484 -- Fields inherited from the Parent_Base for record types
8486 if Is_Record_Type
(Derived_Type
) then
8488 Parent_Full
: Entity_Id
;
8491 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8492 -- Parent_Base can be a private type or private extension. Go
8493 -- to the full view here to get the E_Record_Type specific flags.
8495 if Present
(Full_View
(Parent_Base
)) then
8496 Parent_Full
:= Full_View
(Parent_Base
);
8498 Parent_Full
:= Parent_Base
;
8501 Set_OK_To_Reorder_Components
8502 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
8506 -- Set fields for private derived types
8508 if Is_Private_Type
(Derived_Type
) then
8509 Set_Depends_On_Private
(Derived_Type
, True);
8510 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
8512 -- Inherit fields from non private record types. If this is the
8513 -- completion of a derivation from a private type, the parent itself
8514 -- is private, and the attributes come from its full view, which must
8518 if Is_Private_Type
(Parent_Base
)
8519 and then not Is_Record_Type
(Parent_Base
)
8521 Set_Component_Alignment
8522 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
8524 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
8526 Set_Component_Alignment
8527 (Derived_Type
, Component_Alignment
(Parent_Base
));
8529 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
8533 -- Set fields for tagged types
8536 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
8538 -- All tagged types defined in Ada.Finalization are controlled
8540 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
8541 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
8542 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
8544 Set_Is_Controlled
(Derived_Type
);
8546 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
8549 -- Minor optimization: there is no need to generate the class-wide
8550 -- entity associated with an underlying record view.
8552 if not Is_Underlying_Record_View
(Derived_Type
) then
8553 Make_Class_Wide_Type
(Derived_Type
);
8556 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
8558 if Has_Discriminants
(Derived_Type
)
8559 and then Constraint_Present
8561 Set_Stored_Constraint
8562 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
8565 if Ada_Version
>= Ada_2005
then
8567 Ifaces_List
: Elist_Id
;
8570 -- Checks rules 3.9.4 (13/2 and 14/2)
8572 if Comes_From_Source
(Derived_Type
)
8573 and then not Is_Private_Type
(Derived_Type
)
8574 and then Is_Interface
(Parent_Type
)
8575 and then not Is_Interface
(Derived_Type
)
8577 if Is_Task_Interface
(Parent_Type
) then
8579 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8582 elsif Is_Protected_Interface
(Parent_Type
) then
8584 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8589 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8591 Check_Interfaces
(N
, Type_Def
);
8593 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8594 -- not already in the parents.
8598 Ifaces_List
=> Ifaces_List
,
8599 Exclude_Parents
=> True);
8601 Set_Interfaces
(Derived_Type
, Ifaces_List
);
8603 -- If the derived type is the anonymous type created for
8604 -- a declaration whose parent has a constraint, propagate
8605 -- the interface list to the source type. This must be done
8606 -- prior to the completion of the analysis of the source type
8607 -- because the components in the extension may contain current
8608 -- instances whose legality depends on some ancestor.
8610 if Is_Itype
(Derived_Type
) then
8612 Def
: constant Node_Id
:=
8613 Associated_Node_For_Itype
(Derived_Type
);
8616 and then Nkind
(Def
) = N_Full_Type_Declaration
8619 (Defining_Identifier
(Def
), Ifaces_List
);
8624 -- A type extension is automatically Ghost when one of its
8625 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8626 -- also inherited when the parent type is Ghost, but this is
8627 -- done in Build_Derived_Type as the mechanism also handles
8628 -- untagged derivations.
8630 if Implements_Ghost_Interface
(Derived_Type
) then
8631 Set_Is_Ghost_Entity
(Derived_Type
);
8637 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
8638 Set_Has_Non_Standard_Rep
8639 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8642 -- STEP 4: Inherit components from the parent base and constrain them.
8643 -- Apply the second transformation described in point 6. above.
8645 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
8646 or else not Has_Discriminants
(Parent_Type
)
8647 or else not Is_Constrained
(Parent_Type
)
8651 Constrs
:= Discriminant_Constraint
(Parent_Type
);
8656 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
8658 -- STEP 5a: Copy the parent record declaration for untagged types
8660 if not Is_Tagged
then
8662 -- Discriminant_Constraint (Derived_Type) has been properly
8663 -- constructed. Save it and temporarily set it to Empty because we
8664 -- do not want the call to New_Copy_Tree below to mess this list.
8666 if Has_Discriminants
(Derived_Type
) then
8667 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
8668 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
8670 Save_Discr_Constr
:= No_Elist
;
8673 -- Save the Etype field of Derived_Type. It is correctly set now,
8674 -- but the call to New_Copy tree may remap it to point to itself,
8675 -- which is not what we want. Ditto for the Next_Entity field.
8677 Save_Etype
:= Etype
(Derived_Type
);
8678 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
8680 -- Assoc_List maps all stored discriminants in the Parent_Base to
8681 -- stored discriminants in the Derived_Type. It is fundamental that
8682 -- no types or itypes with discriminants other than the stored
8683 -- discriminants appear in the entities declared inside
8684 -- Derived_Type, since the back end cannot deal with it.
8688 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
8690 -- Restore the fields saved prior to the New_Copy_Tree call
8691 -- and compute the stored constraint.
8693 Set_Etype
(Derived_Type
, Save_Etype
);
8694 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
8696 if Has_Discriminants
(Derived_Type
) then
8697 Set_Discriminant_Constraint
8698 (Derived_Type
, Save_Discr_Constr
);
8699 Set_Stored_Constraint
8700 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
8701 Replace_Components
(Derived_Type
, New_Decl
);
8702 Set_Has_Implicit_Dereference
8703 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
8706 -- Insert the new derived type declaration
8708 Rewrite
(N
, New_Decl
);
8710 -- STEP 5b: Complete the processing for record extensions in generics
8712 -- There is no completion for record extensions declared in the
8713 -- parameter part of a generic, so we need to complete processing for
8714 -- these generic record extensions here. The Record_Type_Definition call
8715 -- will change the Ekind of the components from E_Void to E_Component.
8717 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
8718 Record_Type_Definition
(Empty
, Derived_Type
);
8720 -- STEP 5c: Process the record extension for non private tagged types
8722 elsif not Private_Extension
then
8723 Expand_Record_Extension
(Derived_Type
, Type_Def
);
8725 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8726 -- derived type to propagate some semantic information. This led
8727 -- to other ASIS failures and has been removed.
8729 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8730 -- implemented interfaces if we are in expansion mode
8733 and then Has_Interfaces
(Derived_Type
)
8735 Add_Interface_Tag_Components
(N
, Derived_Type
);
8738 -- Analyze the record extension
8740 Record_Type_Definition
8741 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8746 -- Nothing else to do if there is an error in the derivation.
8747 -- An unusual case: the full view may be derived from a type in an
8748 -- instance, when the partial view was used illegally as an actual
8749 -- in that instance, leading to a circular definition.
8751 if Etype
(Derived_Type
) = Any_Type
8752 or else Etype
(Parent_Type
) = Derived_Type
8757 -- Set delayed freeze and then derive subprograms, we need to do
8758 -- this in this order so that derived subprograms inherit the
8759 -- derived freeze if necessary.
8761 Set_Has_Delayed_Freeze
(Derived_Type
);
8763 if Derive_Subps
then
8764 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8767 -- If we have a private extension which defines a constrained derived
8768 -- type mark as constrained here after we have derived subprograms. See
8769 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8771 if Private_Extension
and then Inherit_Discrims
then
8772 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
8773 Set_Is_Constrained
(Derived_Type
, True);
8774 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
8776 elsif Is_Constrained
(Parent_Type
) then
8778 (Derived_Type
, True);
8779 Set_Discriminant_Constraint
8780 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
8784 -- Update the class-wide type, which shares the now-completed entity
8785 -- list with its specific type. In case of underlying record views,
8786 -- we do not generate the corresponding class wide entity.
8789 and then not Is_Underlying_Record_View
(Derived_Type
)
8792 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8794 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8797 Check_Function_Writable_Actuals
(N
);
8798 end Build_Derived_Record_Type
;
8800 ------------------------
8801 -- Build_Derived_Type --
8802 ------------------------
8804 procedure Build_Derived_Type
8806 Parent_Type
: Entity_Id
;
8807 Derived_Type
: Entity_Id
;
8808 Is_Completion
: Boolean;
8809 Derive_Subps
: Boolean := True)
8811 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8814 -- Set common attributes
8816 Set_Scope
(Derived_Type
, Current_Scope
);
8818 Set_Etype
(Derived_Type
, Parent_Base
);
8819 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8820 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8821 Set_Has_Protected
(Derived_Type
, Has_Protected
(Parent_Base
));
8823 Set_Size_Info
(Derived_Type
, Parent_Type
);
8824 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8825 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8826 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8827 Set_Is_Volatile
(Derived_Type
, Is_Volatile
(Parent_Type
));
8829 if Is_Tagged_Type
(Derived_Type
) then
8830 Set_No_Tagged_Streams_Pragma
8831 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8834 -- If the parent has primitive routines, set the derived type link
8836 if Has_Primitive_Operations
(Parent_Type
) then
8837 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
8840 -- If the parent type is a private subtype, the convention on the base
8841 -- type may be set in the private part, and not propagated to the
8842 -- subtype until later, so we obtain the convention from the base type.
8844 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8846 -- Set SSO default for record or array type
8848 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
8849 and then Is_Base_Type
(Derived_Type
)
8851 Set_Default_SSO
(Derived_Type
);
8854 -- Propagate invariant information. The new type has invariants if
8855 -- they are inherited from the parent type, and these invariants can
8856 -- be further inherited, so both flags are set.
8858 -- We similarly inherit predicates
8860 if Has_Predicates
(Parent_Type
) then
8861 Set_Has_Predicates
(Derived_Type
);
8864 -- The derived type inherits the representation clauses of the parent
8866 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
8868 -- Propagate the attributes related to pragma Default_Initial_Condition
8869 -- from the parent type to the private extension. A derived type always
8870 -- inherits the default initial condition flag from the parent type. If
8871 -- the derived type carries its own Default_Initial_Condition pragma,
8872 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8873 -- mutually exclusive.
8875 Propagate_Default_Init_Cond_Attributes
8876 (From_Typ
=> Parent_Type
,
8877 To_Typ
=> Derived_Type
,
8878 Parent_To_Derivation
=> True);
8880 -- If the parent type has delayed rep aspects, then mark the derived
8881 -- type as possibly inheriting a delayed rep aspect.
8883 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
8884 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
8887 -- Propagate the attributes related to pragma Ghost from the parent type
8888 -- to the derived type or type extension (SPARK RM 6.9(9)).
8890 if Is_Ghost_Entity
(Parent_Type
) then
8891 Set_Is_Ghost_Entity
(Derived_Type
);
8894 -- Type dependent processing
8896 case Ekind
(Parent_Type
) is
8897 when Numeric_Kind
=>
8898 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
8901 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
8905 | Class_Wide_Kind
=>
8906 Build_Derived_Record_Type
8907 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
8910 when Enumeration_Kind
=>
8911 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
8914 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
8916 when Incomplete_Or_Private_Kind
=>
8917 Build_Derived_Private_Type
8918 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
8920 -- For discriminated types, the derivation includes deriving
8921 -- primitive operations. For others it is done below.
8923 if Is_Tagged_Type
(Parent_Type
)
8924 or else Has_Discriminants
(Parent_Type
)
8925 or else (Present
(Full_View
(Parent_Type
))
8926 and then Has_Discriminants
(Full_View
(Parent_Type
)))
8931 when Concurrent_Kind
=>
8932 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
8935 raise Program_Error
;
8938 -- Nothing more to do if some error occurred
8940 if Etype
(Derived_Type
) = Any_Type
then
8944 -- Set delayed freeze and then derive subprograms, we need to do this
8945 -- in this order so that derived subprograms inherit the derived freeze
8948 Set_Has_Delayed_Freeze
(Derived_Type
);
8950 if Derive_Subps
then
8951 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8954 Set_Has_Primitive_Operations
8955 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
8956 end Build_Derived_Type
;
8958 -----------------------
8959 -- Build_Discriminal --
8960 -----------------------
8962 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
8963 D_Minal
: Entity_Id
;
8964 CR_Disc
: Entity_Id
;
8967 -- A discriminal has the same name as the discriminant
8969 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8971 Set_Ekind
(D_Minal
, E_In_Parameter
);
8972 Set_Mechanism
(D_Minal
, Default_Mechanism
);
8973 Set_Etype
(D_Minal
, Etype
(Discrim
));
8974 Set_Scope
(D_Minal
, Current_Scope
);
8976 Set_Discriminal
(Discrim
, D_Minal
);
8977 Set_Discriminal_Link
(D_Minal
, Discrim
);
8979 -- For task types, build at once the discriminants of the corresponding
8980 -- record, which are needed if discriminants are used in entry defaults
8981 -- and in family bounds.
8983 if Is_Concurrent_Type
(Current_Scope
)
8985 Is_Limited_Type
(Current_Scope
)
8987 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8989 Set_Ekind
(CR_Disc
, E_In_Parameter
);
8990 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
8991 Set_Etype
(CR_Disc
, Etype
(Discrim
));
8992 Set_Scope
(CR_Disc
, Current_Scope
);
8993 Set_Discriminal_Link
(CR_Disc
, Discrim
);
8994 Set_CR_Discriminant
(Discrim
, CR_Disc
);
8996 end Build_Discriminal
;
8998 ------------------------------------
8999 -- Build_Discriminant_Constraints --
9000 ------------------------------------
9002 function Build_Discriminant_Constraints
9005 Derived_Def
: Boolean := False) return Elist_Id
9007 C
: constant Node_Id
:= Constraint
(Def
);
9008 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
9010 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
9011 -- Saves the expression corresponding to a given discriminant in T
9013 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
9014 -- Return the Position number within array Discr_Expr of a discriminant
9015 -- D within the discriminant list of the discriminated type T.
9017 procedure Process_Discriminant_Expression
9020 -- If this is a discriminant constraint on a partial view, do not
9021 -- generate an overflow check on the discriminant expression. The check
9022 -- will be generated when constraining the full view. Otherwise the
9023 -- backend creates duplicate symbols for the temporaries corresponding
9024 -- to the expressions to be checked, causing spurious assembler errors.
9030 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
9034 Disc
:= First_Discriminant
(T
);
9035 for J
in Discr_Expr
'Range loop
9040 Next_Discriminant
(Disc
);
9043 -- Note: Since this function is called on discriminants that are
9044 -- known to belong to the discriminated type, falling through the
9045 -- loop with no match signals an internal compiler error.
9047 raise Program_Error
;
9050 -------------------------------------
9051 -- Process_Discriminant_Expression --
9052 -------------------------------------
9054 procedure Process_Discriminant_Expression
9058 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
9061 -- If this is a discriminant constraint on a partial view, do
9062 -- not generate an overflow on the discriminant expression. The
9063 -- check will be generated when constraining the full view.
9065 if Is_Private_Type
(T
)
9066 and then Present
(Full_View
(T
))
9068 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
9070 Analyze_And_Resolve
(Expr
, BDT
);
9072 end Process_Discriminant_Expression
;
9074 -- Declarations local to Build_Discriminant_Constraints
9078 Elist
: constant Elist_Id
:= New_Elmt_List
;
9086 Discrim_Present
: Boolean := False;
9088 -- Start of processing for Build_Discriminant_Constraints
9091 -- The following loop will process positional associations only.
9092 -- For a positional association, the (single) discriminant is
9093 -- implicitly specified by position, in textual order (RM 3.7.2).
9095 Discr
:= First_Discriminant
(T
);
9096 Constr
:= First
(Constraints
(C
));
9097 for D
in Discr_Expr
'Range loop
9098 exit when Nkind
(Constr
) = N_Discriminant_Association
;
9101 Error_Msg_N
("too few discriminants given in constraint", C
);
9102 return New_Elmt_List
;
9104 elsif Nkind
(Constr
) = N_Range
9105 or else (Nkind
(Constr
) = N_Attribute_Reference
9106 and then Attribute_Name
(Constr
) = Name_Range
)
9109 ("a range is not a valid discriminant constraint", Constr
);
9110 Discr_Expr
(D
) := Error
;
9113 Process_Discriminant_Expression
(Constr
, Discr
);
9114 Discr_Expr
(D
) := Constr
;
9117 Next_Discriminant
(Discr
);
9121 if No
(Discr
) and then Present
(Constr
) then
9122 Error_Msg_N
("too many discriminants given in constraint", Constr
);
9123 return New_Elmt_List
;
9126 -- Named associations can be given in any order, but if both positional
9127 -- and named associations are used in the same discriminant constraint,
9128 -- then positional associations must occur first, at their normal
9129 -- position. Hence once a named association is used, the rest of the
9130 -- discriminant constraint must use only named associations.
9132 while Present
(Constr
) loop
9134 -- Positional association forbidden after a named association
9136 if Nkind
(Constr
) /= N_Discriminant_Association
then
9137 Error_Msg_N
("positional association follows named one", Constr
);
9138 return New_Elmt_List
;
9140 -- Otherwise it is a named association
9143 -- E records the type of the discriminants in the named
9144 -- association. All the discriminants specified in the same name
9145 -- association must have the same type.
9149 -- Search the list of discriminants in T to see if the simple name
9150 -- given in the constraint matches any of them.
9152 Id
:= First
(Selector_Names
(Constr
));
9153 while Present
(Id
) loop
9156 -- If Original_Discriminant is present, we are processing a
9157 -- generic instantiation and this is an instance node. We need
9158 -- to find the name of the corresponding discriminant in the
9159 -- actual record type T and not the name of the discriminant in
9160 -- the generic formal. Example:
9163 -- type G (D : int) is private;
9165 -- subtype W is G (D => 1);
9167 -- type Rec (X : int) is record ... end record;
9168 -- package Q is new P (G => Rec);
9170 -- At the point of the instantiation, formal type G is Rec
9171 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9172 -- which really looks like "subtype W is Rec (D => 1);" at
9173 -- the point of instantiation, we want to find the discriminant
9174 -- that corresponds to D in Rec, i.e. X.
9176 if Present
(Original_Discriminant
(Id
))
9177 and then In_Instance
9179 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9183 Discr
:= First_Discriminant
(T
);
9184 while Present
(Discr
) loop
9185 if Chars
(Discr
) = Chars
(Id
) then
9190 Next_Discriminant
(Discr
);
9194 Error_Msg_N
("& does not match any discriminant", Id
);
9195 return New_Elmt_List
;
9197 -- If the parent type is a generic formal, preserve the
9198 -- name of the discriminant for subsequent instances.
9199 -- see comment at the beginning of this if statement.
9201 elsif Is_Generic_Type
(Root_Type
(T
)) then
9202 Set_Original_Discriminant
(Id
, Discr
);
9206 Position
:= Pos_Of_Discr
(T
, Discr
);
9208 if Present
(Discr_Expr
(Position
)) then
9209 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9212 -- Each discriminant specified in the same named association
9213 -- must be associated with a separate copy of the
9214 -- corresponding expression.
9216 if Present
(Next
(Id
)) then
9217 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9218 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9220 Expr
:= Expression
(Constr
);
9223 Discr_Expr
(Position
) := Expr
;
9224 Process_Discriminant_Expression
(Expr
, Discr
);
9227 -- A discriminant association with more than one discriminant
9228 -- name is only allowed if the named discriminants are all of
9229 -- the same type (RM 3.7.1(8)).
9232 E
:= Base_Type
(Etype
(Discr
));
9234 elsif Base_Type
(Etype
(Discr
)) /= E
then
9236 ("all discriminants in an association " &
9237 "must have the same type", Id
);
9247 -- A discriminant constraint must provide exactly one value for each
9248 -- discriminant of the type (RM 3.7.1(8)).
9250 for J
in Discr_Expr
'Range loop
9251 if No
(Discr_Expr
(J
)) then
9252 Error_Msg_N
("too few discriminants given in constraint", C
);
9253 return New_Elmt_List
;
9257 -- Determine if there are discriminant expressions in the constraint
9259 for J
in Discr_Expr
'Range loop
9260 if Denotes_Discriminant
9261 (Discr_Expr
(J
), Check_Concurrent
=> True)
9263 Discrim_Present
:= True;
9267 -- Build an element list consisting of the expressions given in the
9268 -- discriminant constraint and apply the appropriate checks. The list
9269 -- is constructed after resolving any named discriminant associations
9270 -- and therefore the expressions appear in the textual order of the
9273 Discr
:= First_Discriminant
(T
);
9274 for J
in Discr_Expr
'Range loop
9275 if Discr_Expr
(J
) /= Error
then
9276 Append_Elmt
(Discr_Expr
(J
), Elist
);
9278 -- If any of the discriminant constraints is given by a
9279 -- discriminant and we are in a derived type declaration we
9280 -- have a discriminant renaming. Establish link between new
9281 -- and old discriminant.
9283 if Denotes_Discriminant
(Discr_Expr
(J
)) then
9285 Set_Corresponding_Discriminant
9286 (Entity
(Discr_Expr
(J
)), Discr
);
9289 -- Force the evaluation of non-discriminant expressions.
9290 -- If we have found a discriminant in the constraint 3.4(26)
9291 -- and 3.8(18) demand that no range checks are performed are
9292 -- after evaluation. If the constraint is for a component
9293 -- definition that has a per-object constraint, expressions are
9294 -- evaluated but not checked either. In all other cases perform
9298 if Discrim_Present
then
9301 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
9303 Has_Per_Object_Constraint
9304 (Defining_Identifier
(Parent
(Parent
(Def
))))
9308 elsif Is_Access_Type
(Etype
(Discr
)) then
9309 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
9312 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
9315 Force_Evaluation
(Discr_Expr
(J
));
9318 -- Check that the designated type of an access discriminant's
9319 -- expression is not a class-wide type unless the discriminant's
9320 -- designated type is also class-wide.
9322 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
9323 and then not Is_Class_Wide_Type
9324 (Designated_Type
(Etype
(Discr
)))
9325 and then Etype
(Discr_Expr
(J
)) /= Any_Type
9326 and then Is_Class_Wide_Type
9327 (Designated_Type
(Etype
(Discr_Expr
(J
))))
9329 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
9331 elsif Is_Access_Type
(Etype
(Discr
))
9332 and then not Is_Access_Constant
(Etype
(Discr
))
9333 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
9334 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
9337 ("constraint for discriminant& must be access to variable",
9342 Next_Discriminant
(Discr
);
9346 end Build_Discriminant_Constraints
;
9348 ---------------------------------
9349 -- Build_Discriminated_Subtype --
9350 ---------------------------------
9352 procedure Build_Discriminated_Subtype
9356 Related_Nod
: Node_Id
;
9357 For_Access
: Boolean := False)
9359 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
9360 Constrained
: constant Boolean :=
9362 and then not Is_Empty_Elmt_List
(Elist
)
9363 and then not Is_Class_Wide_Type
(T
))
9364 or else Is_Constrained
(T
);
9367 if Ekind
(T
) = E_Record_Type
then
9369 Set_Ekind
(Def_Id
, E_Private_Subtype
);
9370 Set_Is_For_Access_Subtype
(Def_Id
, True);
9372 Set_Ekind
(Def_Id
, E_Record_Subtype
);
9375 -- Inherit preelaboration flag from base, for types for which it
9376 -- may have been set: records, private types, protected types.
9378 Set_Known_To_Have_Preelab_Init
9379 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9381 elsif Ekind
(T
) = E_Task_Type
then
9382 Set_Ekind
(Def_Id
, E_Task_Subtype
);
9384 elsif Ekind
(T
) = E_Protected_Type
then
9385 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
9386 Set_Known_To_Have_Preelab_Init
9387 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9389 elsif Is_Private_Type
(T
) then
9390 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
9391 Set_Known_To_Have_Preelab_Init
9392 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9394 -- Private subtypes may have private dependents
9396 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
9398 elsif Is_Class_Wide_Type
(T
) then
9399 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
9402 -- Incomplete type. Attach subtype to list of dependents, to be
9403 -- completed with full view of parent type, unless is it the
9404 -- designated subtype of a record component within an init_proc.
9405 -- This last case arises for a component of an access type whose
9406 -- designated type is incomplete (e.g. a Taft Amendment type).
9407 -- The designated subtype is within an inner scope, and needs no
9408 -- elaboration, because only the access type is needed in the
9409 -- initialization procedure.
9411 Set_Ekind
(Def_Id
, Ekind
(T
));
9413 if For_Access
and then Within_Init_Proc
then
9416 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
9420 Set_Etype
(Def_Id
, T
);
9421 Init_Size_Align
(Def_Id
);
9422 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
9423 Set_Is_Constrained
(Def_Id
, Constrained
);
9425 Set_First_Entity
(Def_Id
, First_Entity
(T
));
9426 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
9427 Set_Has_Implicit_Dereference
9428 (Def_Id
, Has_Implicit_Dereference
(T
));
9430 -- If the subtype is the completion of a private declaration, there may
9431 -- have been representation clauses for the partial view, and they must
9432 -- be preserved. Build_Derived_Type chains the inherited clauses with
9433 -- the ones appearing on the extension. If this comes from a subtype
9434 -- declaration, all clauses are inherited.
9436 if No
(First_Rep_Item
(Def_Id
)) then
9437 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
9440 if Is_Tagged_Type
(T
) then
9441 Set_Is_Tagged_Type
(Def_Id
);
9442 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
9443 Make_Class_Wide_Type
(Def_Id
);
9446 Set_Stored_Constraint
(Def_Id
, No_Elist
);
9449 Set_Discriminant_Constraint
(Def_Id
, Elist
);
9450 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
9453 if Is_Tagged_Type
(T
) then
9455 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9456 -- concurrent record type (which has the list of primitive
9459 if Ada_Version
>= Ada_2005
9460 and then Is_Concurrent_Type
(T
)
9462 Set_Corresponding_Record_Type
(Def_Id
,
9463 Corresponding_Record_Type
(T
));
9465 Set_Direct_Primitive_Operations
(Def_Id
,
9466 Direct_Primitive_Operations
(T
));
9469 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
9472 -- Subtypes introduced by component declarations do not need to be
9473 -- marked as delayed, and do not get freeze nodes, because the semantics
9474 -- verifies that the parents of the subtypes are frozen before the
9475 -- enclosing record is frozen.
9477 if not Is_Type
(Scope
(Def_Id
)) then
9478 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
9480 if Is_Private_Type
(T
)
9481 and then Present
(Full_View
(T
))
9483 Conditional_Delay
(Def_Id
, Full_View
(T
));
9485 Conditional_Delay
(Def_Id
, T
);
9489 if Is_Record_Type
(T
) then
9490 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
9493 and then not Is_Empty_Elmt_List
(Elist
)
9494 and then not For_Access
9496 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
9497 elsif not For_Access
then
9498 Set_Cloned_Subtype
(Def_Id
, T
);
9501 end Build_Discriminated_Subtype
;
9503 ---------------------------
9504 -- Build_Itype_Reference --
9505 ---------------------------
9507 procedure Build_Itype_Reference
9511 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
9514 -- Itype references are only created for use by the back-end
9516 if Inside_A_Generic
then
9519 Set_Itype
(IR
, Ityp
);
9520 Insert_After
(Nod
, IR
);
9522 end Build_Itype_Reference
;
9524 ------------------------
9525 -- Build_Scalar_Bound --
9526 ------------------------
9528 function Build_Scalar_Bound
9531 Der_T
: Entity_Id
) return Node_Id
9533 New_Bound
: Entity_Id
;
9536 -- Note: not clear why this is needed, how can the original bound
9537 -- be unanalyzed at this point? and if it is, what business do we
9538 -- have messing around with it? and why is the base type of the
9539 -- parent type the right type for the resolution. It probably is
9540 -- not. It is OK for the new bound we are creating, but not for
9541 -- the old one??? Still if it never happens, no problem.
9543 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
9545 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
9546 New_Bound
:= New_Copy
(Bound
);
9547 Set_Etype
(New_Bound
, Der_T
);
9548 Set_Analyzed
(New_Bound
);
9550 elsif Is_Entity_Name
(Bound
) then
9551 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
9553 -- The following is almost certainly wrong. What business do we have
9554 -- relocating a node (Bound) that is presumably still attached to
9555 -- the tree elsewhere???
9558 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
9561 Set_Etype
(New_Bound
, Der_T
);
9563 end Build_Scalar_Bound
;
9565 --------------------------------
9566 -- Build_Underlying_Full_View --
9567 --------------------------------
9569 procedure Build_Underlying_Full_View
9574 Loc
: constant Source_Ptr
:= Sloc
(N
);
9575 Subt
: constant Entity_Id
:=
9576 Make_Defining_Identifier
9577 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
9584 procedure Set_Discriminant_Name
(Id
: Node_Id
);
9585 -- If the derived type has discriminants, they may rename discriminants
9586 -- of the parent. When building the full view of the parent, we need to
9587 -- recover the names of the original discriminants if the constraint is
9588 -- given by named associations.
9590 ---------------------------
9591 -- Set_Discriminant_Name --
9592 ---------------------------
9594 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
9598 Set_Original_Discriminant
(Id
, Empty
);
9600 if Has_Discriminants
(Typ
) then
9601 Disc
:= First_Discriminant
(Typ
);
9602 while Present
(Disc
) loop
9603 if Chars
(Disc
) = Chars
(Id
)
9604 and then Present
(Corresponding_Discriminant
(Disc
))
9606 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
9608 Next_Discriminant
(Disc
);
9611 end Set_Discriminant_Name
;
9613 -- Start of processing for Build_Underlying_Full_View
9616 if Nkind
(N
) = N_Full_Type_Declaration
then
9617 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
9619 elsif Nkind
(N
) = N_Subtype_Declaration
then
9620 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
9622 elsif Nkind
(N
) = N_Component_Declaration
then
9625 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
9628 raise Program_Error
;
9631 C
:= First
(Constraints
(Constr
));
9632 while Present
(C
) loop
9633 if Nkind
(C
) = N_Discriminant_Association
then
9634 Id
:= First
(Selector_Names
(C
));
9635 while Present
(Id
) loop
9636 Set_Discriminant_Name
(Id
);
9645 Make_Subtype_Declaration
(Loc
,
9646 Defining_Identifier
=> Subt
,
9647 Subtype_Indication
=>
9648 Make_Subtype_Indication
(Loc
,
9649 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
9650 Constraint
=> New_Copy_Tree
(Constr
)));
9652 -- If this is a component subtype for an outer itype, it is not
9653 -- a list member, so simply set the parent link for analysis: if
9654 -- the enclosing type does not need to be in a declarative list,
9655 -- neither do the components.
9657 if Is_List_Member
(N
)
9658 and then Nkind
(N
) /= N_Component_Declaration
9660 Insert_Before
(N
, Indic
);
9662 Set_Parent
(Indic
, Parent
(N
));
9666 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
9667 end Build_Underlying_Full_View
;
9669 -------------------------------
9670 -- Check_Abstract_Overriding --
9671 -------------------------------
9673 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
9674 Alias_Subp
: Entity_Id
;
9680 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
9681 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9682 -- which has pragma Implemented already set. Check whether Subp's entity
9683 -- kind conforms to the implementation kind of the overridden routine.
9685 procedure Check_Pragma_Implemented
9687 Iface_Subp
: Entity_Id
);
9688 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9689 -- Iface_Subp and both entities have pragma Implemented already set on
9690 -- them. Check whether the two implementation kinds are conforming.
9692 procedure Inherit_Pragma_Implemented
9694 Iface_Subp
: Entity_Id
);
9695 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9696 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9697 -- Propagate the implementation kind of Iface_Subp to Subp.
9699 ------------------------------
9700 -- Check_Pragma_Implemented --
9701 ------------------------------
9703 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
9704 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
9705 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
9706 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
9707 Contr_Typ
: Entity_Id
;
9708 Impl_Subp
: Entity_Id
;
9711 -- Subp must have an alias since it is a hidden entity used to link
9712 -- an interface subprogram to its overriding counterpart.
9714 pragma Assert
(Present
(Subp_Alias
));
9716 -- Handle aliases to synchronized wrappers
9718 Impl_Subp
:= Subp_Alias
;
9720 if Is_Primitive_Wrapper
(Impl_Subp
) then
9721 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
9724 -- Extract the type of the controlling formal
9726 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
9728 if Is_Concurrent_Record_Type
(Contr_Typ
) then
9729 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
9732 -- An interface subprogram whose implementation kind is By_Entry must
9733 -- be implemented by an entry.
9735 if Impl_Kind
= Name_By_Entry
9736 and then Ekind
(Impl_Subp
) /= E_Entry
9738 Error_Msg_Node_2
:= Iface_Alias
;
9740 ("type & must implement abstract subprogram & with an entry",
9741 Subp_Alias
, Contr_Typ
);
9743 elsif Impl_Kind
= Name_By_Protected_Procedure
then
9745 -- An interface subprogram whose implementation kind is By_
9746 -- Protected_Procedure cannot be implemented by a primitive
9747 -- procedure of a task type.
9749 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
9750 Error_Msg_Node_2
:= Contr_Typ
;
9752 ("interface subprogram & cannot be implemented by a " &
9753 "primitive procedure of task type &", Subp_Alias
,
9756 -- An interface subprogram whose implementation kind is By_
9757 -- Protected_Procedure must be implemented by a procedure.
9759 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
9760 Error_Msg_Node_2
:= Iface_Alias
;
9762 ("type & must implement abstract subprogram & with a " &
9763 "procedure", Subp_Alias
, Contr_Typ
);
9765 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9766 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9768 Error_Msg_Name_1
:= Impl_Kind
;
9770 ("overriding operation& must have synchronization%",
9774 -- If primitive has Optional synchronization, overriding operation
9775 -- must match if it has an explicit synchronization..
9777 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9778 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9780 Error_Msg_Name_1
:= Impl_Kind
;
9782 ("overriding operation& must have syncrhonization%",
9785 end Check_Pragma_Implemented
;
9787 ------------------------------
9788 -- Check_Pragma_Implemented --
9789 ------------------------------
9791 procedure Check_Pragma_Implemented
9793 Iface_Subp
: Entity_Id
)
9795 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9796 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
9799 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9800 -- and overriding subprogram are different. In general this is an
9801 -- error except when the implementation kind of the overridden
9802 -- subprograms is By_Any or Optional.
9804 if Iface_Kind
/= Subp_Kind
9805 and then Iface_Kind
/= Name_By_Any
9806 and then Iface_Kind
/= Name_Optional
9808 if Iface_Kind
= Name_By_Entry
then
9810 ("incompatible implementation kind, overridden subprogram " &
9811 "is marked By_Entry", Subp
);
9814 ("incompatible implementation kind, overridden subprogram " &
9815 "is marked By_Protected_Procedure", Subp
);
9818 end Check_Pragma_Implemented
;
9820 --------------------------------
9821 -- Inherit_Pragma_Implemented --
9822 --------------------------------
9824 procedure Inherit_Pragma_Implemented
9826 Iface_Subp
: Entity_Id
)
9828 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9829 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
9830 Impl_Prag
: Node_Id
;
9833 -- Since the implementation kind is stored as a representation item
9834 -- rather than a flag, create a pragma node.
9838 Chars
=> Name_Implemented
,
9839 Pragma_Argument_Associations
=> New_List
(
9840 Make_Pragma_Argument_Association
(Loc
,
9841 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
9843 Make_Pragma_Argument_Association
(Loc
,
9844 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
9846 -- The pragma doesn't need to be analyzed because it is internally
9847 -- built. It is safe to directly register it as a rep item since we
9848 -- are only interested in the characters of the implementation kind.
9850 Record_Rep_Item
(Subp
, Impl_Prag
);
9851 end Inherit_Pragma_Implemented
;
9853 -- Start of processing for Check_Abstract_Overriding
9856 Op_List
:= Primitive_Operations
(T
);
9858 -- Loop to check primitive operations
9860 Elmt
:= First_Elmt
(Op_List
);
9861 while Present
(Elmt
) loop
9862 Subp
:= Node
(Elmt
);
9863 Alias_Subp
:= Alias
(Subp
);
9865 -- Inherited subprograms are identified by the fact that they do not
9866 -- come from source, and the associated source location is the
9867 -- location of the first subtype of the derived type.
9869 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9870 -- subprograms that "require overriding".
9872 -- Special exception, do not complain about failure to override the
9873 -- stream routines _Input and _Output, as well as the primitive
9874 -- operations used in dispatching selects since we always provide
9875 -- automatic overridings for these subprograms.
9877 -- Also ignore this rule for convention CIL since .NET libraries
9878 -- do bizarre things with interfaces???
9880 -- The partial view of T may have been a private extension, for
9881 -- which inherited functions dispatching on result are abstract.
9882 -- If the full view is a null extension, there is no need for
9883 -- overriding in Ada 2005, but wrappers need to be built for them
9884 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9886 if Is_Null_Extension
(T
)
9887 and then Has_Controlling_Result
(Subp
)
9888 and then Ada_Version
>= Ada_2005
9889 and then Present
(Alias_Subp
)
9890 and then not Comes_From_Source
(Subp
)
9891 and then not Is_Abstract_Subprogram
(Alias_Subp
)
9892 and then not Is_Access_Type
(Etype
(Subp
))
9896 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9897 -- processing because this check is done with the aliased
9900 elsif Present
(Interface_Alias
(Subp
)) then
9903 elsif (Is_Abstract_Subprogram
(Subp
)
9904 or else Requires_Overriding
(Subp
)
9906 (Has_Controlling_Result
(Subp
)
9907 and then Present
(Alias_Subp
)
9908 and then not Comes_From_Source
(Subp
)
9909 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
9910 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
9911 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
9912 and then not Is_Abstract_Type
(T
)
9913 and then Convention
(T
) /= Convention_CIL
9914 and then not Is_Predefined_Interface_Primitive
(Subp
)
9916 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9917 -- with abstract interface types because the check will be done
9918 -- with the aliased entity (otherwise we generate a duplicated
9921 and then not Present
(Interface_Alias
(Subp
))
9923 if Present
(Alias_Subp
) then
9925 -- Only perform the check for a derived subprogram when the
9926 -- type has an explicit record extension. This avoids incorrect
9927 -- flagging of abstract subprograms for the case of a type
9928 -- without an extension that is derived from a formal type
9929 -- with a tagged actual (can occur within a private part).
9931 -- Ada 2005 (AI-391): In the case of an inherited function with
9932 -- a controlling result of the type, the rule does not apply if
9933 -- the type is a null extension (unless the parent function
9934 -- itself is abstract, in which case the function must still be
9935 -- be overridden). The expander will generate an overriding
9936 -- wrapper function calling the parent subprogram (see
9937 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9939 Type_Def
:= Type_Definition
(Parent
(T
));
9941 if Nkind
(Type_Def
) = N_Derived_Type_Definition
9942 and then Present
(Record_Extension_Part
(Type_Def
))
9944 (Ada_Version
< Ada_2005
9945 or else not Is_Null_Extension
(T
)
9946 or else Ekind
(Subp
) = E_Procedure
9947 or else not Has_Controlling_Result
(Subp
)
9948 or else Is_Abstract_Subprogram
(Alias_Subp
)
9949 or else Requires_Overriding
(Subp
)
9950 or else Is_Access_Type
(Etype
(Subp
)))
9952 -- Avoid reporting error in case of abstract predefined
9953 -- primitive inherited from interface type because the
9954 -- body of internally generated predefined primitives
9955 -- of tagged types are generated later by Freeze_Type
9957 if Is_Interface
(Root_Type
(T
))
9958 and then Is_Abstract_Subprogram
(Subp
)
9959 and then Is_Predefined_Dispatching_Operation
(Subp
)
9960 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
9964 -- A null extension is not obliged to override an inherited
9965 -- procedure subject to pragma Extensions_Visible with value
9966 -- False and at least one controlling OUT parameter
9967 -- (SPARK RM 6.1.7(6)).
9969 elsif Is_Null_Extension
(T
)
9970 and then Is_EVF_Procedure
(Subp
)
9976 ("type must be declared abstract or & overridden",
9979 -- Traverse the whole chain of aliased subprograms to
9980 -- complete the error notification. This is especially
9981 -- useful for traceability of the chain of entities when
9982 -- the subprogram corresponds with an interface
9983 -- subprogram (which may be defined in another package).
9985 if Present
(Alias_Subp
) then
9991 while Present
(Alias
(E
)) loop
9993 -- Avoid reporting redundant errors on entities
9994 -- inherited from interfaces
9996 if Sloc
(E
) /= Sloc
(T
) then
9997 Error_Msg_Sloc
:= Sloc
(E
);
9999 ("\& has been inherited #", T
, Subp
);
10005 Error_Msg_Sloc
:= Sloc
(E
);
10007 -- AI05-0068: report if there is an overriding
10008 -- non-abstract subprogram that is invisible.
10011 and then not Is_Abstract_Subprogram
(E
)
10014 ("\& subprogram# is not visible",
10017 -- Clarify the case where a non-null extension must
10018 -- override inherited procedure subject to pragma
10019 -- Extensions_Visible with value False and at least
10020 -- one controlling OUT param.
10022 elsif Is_EVF_Procedure
(E
) then
10024 ("\& # is subject to Extensions_Visible False",
10029 ("\& has been inherited from subprogram #",
10036 -- Ada 2005 (AI-345): Protected or task type implementing
10037 -- abstract interfaces.
10039 elsif Is_Concurrent_Record_Type
(T
)
10040 and then Present
(Interfaces
(T
))
10042 -- If an inherited subprogram is implemented by a protected
10043 -- procedure or an entry, then the first parameter of the
10044 -- inherited subprogram shall be of mode OUT or IN OUT, or
10045 -- an access-to-variable parameter (RM 9.4(11.9/3))
10047 if Is_Protected_Type
(Corresponding_Concurrent_Type
(T
))
10048 and then Ekind
(First_Formal
(Subp
)) = E_In_Parameter
10049 and then Ekind
(Subp
) /= E_Function
10050 and then not Is_Predefined_Dispatching_Operation
(Subp
)
10052 Error_Msg_PT
(T
, Subp
);
10054 -- Some other kind of overriding failure
10058 ("interface subprogram & must be overridden",
10061 -- Examine primitive operations of synchronized type,
10062 -- to find homonyms that have the wrong profile.
10069 First_Entity
(Corresponding_Concurrent_Type
(T
));
10070 while Present
(Prim
) loop
10071 if Chars
(Prim
) = Chars
(Subp
) then
10073 ("profile is not type conformant with "
10074 & "prefixed view profile of "
10075 & "inherited operation&", Prim
, Subp
);
10078 Next_Entity
(Prim
);
10085 Error_Msg_Node_2
:= T
;
10087 ("abstract subprogram& not allowed for type&", Subp
);
10089 -- Also post unconditional warning on the type (unconditional
10090 -- so that if there are more than one of these cases, we get
10091 -- them all, and not just the first one).
10093 Error_Msg_Node_2
:= Subp
;
10094 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
10097 -- A subprogram subject to pragma Extensions_Visible with value
10098 -- "True" cannot override a subprogram subject to the same pragma
10099 -- with value "False" (SPARK RM 6.1.7(5)).
10101 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
10102 and then Present
(Overridden_Operation
(Subp
))
10103 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
10104 Extensions_Visible_False
10106 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
10108 ("subprogram & with Extensions_Visible True cannot override "
10109 & "subprogram # with Extensions_Visible False", Subp
);
10112 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10114 -- Subp is an expander-generated procedure which maps an interface
10115 -- alias to a protected wrapper. The interface alias is flagged by
10116 -- pragma Implemented. Ensure that Subp is a procedure when the
10117 -- implementation kind is By_Protected_Procedure or an entry when
10120 if Ada_Version
>= Ada_2012
10121 and then Is_Hidden
(Subp
)
10122 and then Present
(Interface_Alias
(Subp
))
10123 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
10125 Check_Pragma_Implemented
(Subp
);
10128 -- Subp is an interface primitive which overrides another interface
10129 -- primitive marked with pragma Implemented.
10131 if Ada_Version
>= Ada_2012
10132 and then Present
(Overridden_Operation
(Subp
))
10133 and then Has_Rep_Pragma
10134 (Overridden_Operation
(Subp
), Name_Implemented
)
10136 -- If the overriding routine is also marked by Implemented, check
10137 -- that the two implementation kinds are conforming.
10139 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10140 Check_Pragma_Implemented
10142 Iface_Subp
=> Overridden_Operation
(Subp
));
10144 -- Otherwise the overriding routine inherits the implementation
10145 -- kind from the overridden subprogram.
10148 Inherit_Pragma_Implemented
10150 Iface_Subp
=> Overridden_Operation
(Subp
));
10154 -- If the operation is a wrapper for a synchronized primitive, it
10155 -- may be called indirectly through a dispatching select. We assume
10156 -- that it will be referenced elsewhere indirectly, and suppress
10157 -- warnings about an unused entity.
10159 if Is_Primitive_Wrapper
(Subp
)
10160 and then Present
(Wrapped_Entity
(Subp
))
10162 Set_Referenced
(Wrapped_Entity
(Subp
));
10167 end Check_Abstract_Overriding
;
10169 ------------------------------------------------
10170 -- Check_Access_Discriminant_Requires_Limited --
10171 ------------------------------------------------
10173 procedure Check_Access_Discriminant_Requires_Limited
10178 -- A discriminant_specification for an access discriminant shall appear
10179 -- only in the declaration for a task or protected type, or for a type
10180 -- with the reserved word 'limited' in its definition or in one of its
10181 -- ancestors (RM 3.7(10)).
10183 -- AI-0063: The proper condition is that type must be immutably limited,
10184 -- or else be a partial view.
10186 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10187 if Is_Limited_View
(Current_Scope
)
10189 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10190 and then Limited_Present
(Parent
(Current_Scope
)))
10196 ("access discriminants allowed only for limited types", Loc
);
10199 end Check_Access_Discriminant_Requires_Limited
;
10201 -----------------------------------
10202 -- Check_Aliased_Component_Types --
10203 -----------------------------------
10205 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10209 -- ??? Also need to check components of record extensions, but not
10210 -- components of protected types (which are always limited).
10212 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10213 -- types to be unconstrained. This is safe because it is illegal to
10214 -- create access subtypes to such types with explicit discriminant
10217 if not Is_Limited_Type
(T
) then
10218 if Ekind
(T
) = E_Record_Type
then
10219 C
:= First_Component
(T
);
10220 while Present
(C
) loop
10222 and then Has_Discriminants
(Etype
(C
))
10223 and then not Is_Constrained
(Etype
(C
))
10224 and then not In_Instance_Body
10225 and then Ada_Version
< Ada_2005
10228 ("aliased component must be constrained (RM 3.6(11))",
10232 Next_Component
(C
);
10235 elsif Ekind
(T
) = E_Array_Type
then
10236 if Has_Aliased_Components
(T
)
10237 and then Has_Discriminants
(Component_Type
(T
))
10238 and then not Is_Constrained
(Component_Type
(T
))
10239 and then not In_Instance_Body
10240 and then Ada_Version
< Ada_2005
10243 ("aliased component type must be constrained (RM 3.6(11))",
10248 end Check_Aliased_Component_Types
;
10250 ---------------------------------------
10251 -- Check_Anonymous_Access_Components --
10252 ---------------------------------------
10254 procedure Check_Anonymous_Access_Components
10255 (Typ_Decl
: Node_Id
;
10258 Comp_List
: Node_Id
)
10260 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
10261 Anon_Access
: Entity_Id
;
10264 Comp_Def
: Node_Id
;
10266 Type_Def
: Node_Id
;
10268 procedure Build_Incomplete_Type_Declaration
;
10269 -- If the record type contains components that include an access to the
10270 -- current record, then create an incomplete type declaration for the
10271 -- record, to be used as the designated type of the anonymous access.
10272 -- This is done only once, and only if there is no previous partial
10273 -- view of the type.
10275 function Designates_T
(Subt
: Node_Id
) return Boolean;
10276 -- Check whether a node designates the enclosing record type, or 'Class
10279 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
10280 -- Check whether an access definition includes a reference to
10281 -- the enclosing record type. The reference can be a subtype mark
10282 -- in the access definition itself, a 'Class attribute reference, or
10283 -- recursively a reference appearing in a parameter specification
10284 -- or result definition of an access_to_subprogram definition.
10286 --------------------------------------
10287 -- Build_Incomplete_Type_Declaration --
10288 --------------------------------------
10290 procedure Build_Incomplete_Type_Declaration
is
10295 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10296 -- it's "is new ... with record" or else "is tagged record ...".
10298 Is_Tagged
: constant Boolean :=
10299 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
10301 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
10303 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
10304 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
10307 -- If there is a previous partial view, no need to create a new one
10308 -- If the partial view, given by Prev, is incomplete, If Prev is
10309 -- a private declaration, full declaration is flagged accordingly.
10311 if Prev
/= Typ
then
10313 Make_Class_Wide_Type
(Prev
);
10314 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
10315 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10320 elsif Has_Private_Declaration
(Typ
) then
10322 -- If we refer to T'Class inside T, and T is the completion of a
10323 -- private type, then make sure the class-wide type exists.
10326 Make_Class_Wide_Type
(Typ
);
10331 -- If there was a previous anonymous access type, the incomplete
10332 -- type declaration will have been created already.
10334 elsif Present
(Current_Entity
(Typ
))
10335 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
10336 and then Full_View
(Current_Entity
(Typ
)) = Typ
10339 and then Comes_From_Source
(Current_Entity
(Typ
))
10340 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
10342 Make_Class_Wide_Type
(Typ
);
10344 ("incomplete view of tagged type should be declared tagged??",
10345 Parent
(Current_Entity
(Typ
)));
10350 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
10351 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
10353 -- Type has already been inserted into the current scope. Remove
10354 -- it, and add incomplete declaration for type, so that subsequent
10355 -- anonymous access types can use it. The entity is unchained from
10356 -- the homonym list and from immediate visibility. After analysis,
10357 -- the entity in the incomplete declaration becomes immediately
10358 -- visible in the record declaration that follows.
10360 H
:= Current_Entity
(Typ
);
10363 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
10366 and then Homonym
(H
) /= Typ
10368 H
:= Homonym
(Typ
);
10371 Set_Homonym
(H
, Homonym
(Typ
));
10374 Insert_Before
(Typ_Decl
, Decl
);
10376 Set_Full_View
(Inc_T
, Typ
);
10380 -- Create a common class-wide type for both views, and set the
10381 -- Etype of the class-wide type to the full view.
10383 Make_Class_Wide_Type
(Inc_T
);
10384 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
10385 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10388 end Build_Incomplete_Type_Declaration
;
10394 function Designates_T
(Subt
: Node_Id
) return Boolean is
10395 Type_Id
: constant Name_Id
:= Chars
(Typ
);
10397 function Names_T
(Nam
: Node_Id
) return Boolean;
10398 -- The record type has not been introduced in the current scope
10399 -- yet, so we must examine the name of the type itself, either
10400 -- an identifier T, or an expanded name of the form P.T, where
10401 -- P denotes the current scope.
10407 function Names_T
(Nam
: Node_Id
) return Boolean is
10409 if Nkind
(Nam
) = N_Identifier
then
10410 return Chars
(Nam
) = Type_Id
;
10412 elsif Nkind
(Nam
) = N_Selected_Component
then
10413 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
10414 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
10415 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
10417 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
10418 return Chars
(Selector_Name
(Prefix
(Nam
))) =
10419 Chars
(Current_Scope
);
10433 -- Start of processing for Designates_T
10436 if Nkind
(Subt
) = N_Identifier
then
10437 return Chars
(Subt
) = Type_Id
;
10439 -- Reference can be through an expanded name which has not been
10440 -- analyzed yet, and which designates enclosing scopes.
10442 elsif Nkind
(Subt
) = N_Selected_Component
then
10443 if Names_T
(Subt
) then
10446 -- Otherwise it must denote an entity that is already visible.
10447 -- The access definition may name a subtype of the enclosing
10448 -- type, if there is a previous incomplete declaration for it.
10451 Find_Selected_Component
(Subt
);
10453 Is_Entity_Name
(Subt
)
10454 and then Scope
(Entity
(Subt
)) = Current_Scope
10456 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
10458 (Is_Class_Wide_Type
(Entity
(Subt
))
10460 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
10464 -- A reference to the current type may appear as the prefix of
10465 -- a 'Class attribute.
10467 elsif Nkind
(Subt
) = N_Attribute_Reference
10468 and then Attribute_Name
(Subt
) = Name_Class
10470 return Names_T
(Prefix
(Subt
));
10481 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
10482 Param_Spec
: Node_Id
;
10484 Acc_Subprg
: constant Node_Id
:=
10485 Access_To_Subprogram_Definition
(Acc_Def
);
10488 if No
(Acc_Subprg
) then
10489 return Designates_T
(Subtype_Mark
(Acc_Def
));
10492 -- Component is an access_to_subprogram: examine its formals,
10493 -- and result definition in the case of an access_to_function.
10495 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
10496 while Present
(Param_Spec
) loop
10497 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
10498 and then Mentions_T
(Parameter_Type
(Param_Spec
))
10502 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
10509 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
10510 if Nkind
(Result_Definition
(Acc_Subprg
)) =
10511 N_Access_Definition
10513 return Mentions_T
(Result_Definition
(Acc_Subprg
));
10515 return Designates_T
(Result_Definition
(Acc_Subprg
));
10522 -- Start of processing for Check_Anonymous_Access_Components
10525 if No
(Comp_List
) then
10529 Comp
:= First
(Component_Items
(Comp_List
));
10530 while Present
(Comp
) loop
10531 if Nkind
(Comp
) = N_Component_Declaration
10533 (Access_Definition
(Component_Definition
(Comp
)))
10535 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
10537 Comp_Def
:= Component_Definition
(Comp
);
10539 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
10541 Build_Incomplete_Type_Declaration
;
10542 Anon_Access
:= Make_Temporary
(Loc
, 'S');
10544 -- Create a declaration for the anonymous access type: either
10545 -- an access_to_object or an access_to_subprogram.
10547 if Present
(Acc_Def
) then
10548 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
10550 Make_Access_Function_Definition
(Loc
,
10551 Parameter_Specifications
=>
10552 Parameter_Specifications
(Acc_Def
),
10553 Result_Definition
=> Result_Definition
(Acc_Def
));
10556 Make_Access_Procedure_Definition
(Loc
,
10557 Parameter_Specifications
=>
10558 Parameter_Specifications
(Acc_Def
));
10563 Make_Access_To_Object_Definition
(Loc
,
10564 Subtype_Indication
=>
10566 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
10568 Set_Constant_Present
10569 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
10571 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
10574 Set_Null_Exclusion_Present
10576 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
10579 Make_Full_Type_Declaration
(Loc
,
10580 Defining_Identifier
=> Anon_Access
,
10581 Type_Definition
=> Type_Def
);
10583 Insert_Before
(Typ_Decl
, Decl
);
10586 -- If an access to subprogram, create the extra formals
10588 if Present
(Acc_Def
) then
10589 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
10591 -- If an access to object, preserve entity of designated type,
10592 -- for ASIS use, before rewriting the component definition.
10599 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
10601 -- If the access definition is to the current record,
10602 -- the visible entity at this point is an incomplete
10603 -- type. Retrieve the full view to simplify ASIS queries
10605 if Ekind
(Desig
) = E_Incomplete_Type
then
10606 Desig
:= Full_View
(Desig
);
10610 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
10615 Make_Component_Definition
(Loc
,
10616 Subtype_Indication
=>
10617 New_Occurrence_Of
(Anon_Access
, Loc
)));
10619 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
10620 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
10622 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
10625 Set_Is_Local_Anonymous_Access
(Anon_Access
);
10631 if Present
(Variant_Part
(Comp_List
)) then
10635 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
10636 while Present
(V
) loop
10637 Check_Anonymous_Access_Components
10638 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
10639 Next_Non_Pragma
(V
);
10643 end Check_Anonymous_Access_Components
;
10645 ----------------------
10646 -- Check_Completion --
10647 ----------------------
10649 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
10652 procedure Post_Error
;
10653 -- Post error message for lack of completion for entity E
10659 procedure Post_Error
is
10661 procedure Missing_Body
;
10662 -- Output missing body message
10668 procedure Missing_Body
is
10670 -- Spec is in same unit, so we can post on spec
10672 if In_Same_Source_Unit
(Body_Id
, E
) then
10673 Error_Msg_N
("missing body for &", E
);
10675 -- Spec is in a separate unit, so we have to post on the body
10678 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
10682 -- Start of processing for Post_Error
10685 if not Comes_From_Source
(E
) then
10687 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
10689 -- It may be an anonymous protected type created for a
10690 -- single variable. Post error on variable, if present.
10696 Var
:= First_Entity
(Current_Scope
);
10697 while Present
(Var
) loop
10698 exit when Etype
(Var
) = E
10699 and then Comes_From_Source
(Var
);
10704 if Present
(Var
) then
10711 -- If a generated entity has no completion, then either previous
10712 -- semantic errors have disabled the expansion phase, or else we had
10713 -- missing subunits, or else we are compiling without expansion,
10714 -- or else something is very wrong.
10716 if not Comes_From_Source
(E
) then
10718 (Serious_Errors_Detected
> 0
10719 or else Configurable_Run_Time_Violations
> 0
10720 or else Subunits_Missing
10721 or else not Expander_Active
);
10724 -- Here for source entity
10727 -- Here if no body to post the error message, so we post the error
10728 -- on the declaration that has no completion. This is not really
10729 -- the right place to post it, think about this later ???
10731 if No
(Body_Id
) then
10732 if Is_Type
(E
) then
10734 ("missing full declaration for }", Parent
(E
), E
);
10736 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
10739 -- Package body has no completion for a declaration that appears
10740 -- in the corresponding spec. Post error on the body, with a
10741 -- reference to the non-completed declaration.
10744 Error_Msg_Sloc
:= Sloc
(E
);
10746 if Is_Type
(E
) then
10747 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
10749 elsif Is_Overloadable
(E
)
10750 and then Current_Entity_In_Scope
(E
) /= E
10752 -- It may be that the completion is mistyped and appears as
10753 -- a distinct overloading of the entity.
10756 Candidate
: constant Entity_Id
:=
10757 Current_Entity_In_Scope
(E
);
10758 Decl
: constant Node_Id
:=
10759 Unit_Declaration_Node
(Candidate
);
10762 if Is_Overloadable
(Candidate
)
10763 and then Ekind
(Candidate
) = Ekind
(E
)
10764 and then Nkind
(Decl
) = N_Subprogram_Body
10765 and then Acts_As_Spec
(Decl
)
10767 Check_Type_Conformant
(Candidate
, E
);
10783 Pack_Id
: constant Entity_Id
:= Current_Scope
;
10785 -- Start of processing for Check_Completion
10788 E
:= First_Entity
(Pack_Id
);
10789 while Present
(E
) loop
10790 if Is_Intrinsic_Subprogram
(E
) then
10793 -- A Ghost entity declared in a non-Ghost package does not force the
10794 -- need for a body (SPARK RM 6.9(11)).
10796 elsif not Is_Ghost_Entity
(Pack_Id
) and then Is_Ghost_Entity
(E
) then
10799 -- The following situation requires special handling: a child unit
10800 -- that appears in the context clause of the body of its parent:
10802 -- procedure Parent.Child (...);
10804 -- with Parent.Child;
10805 -- package body Parent is
10807 -- Here Parent.Child appears as a local entity, but should not be
10808 -- flagged as requiring completion, because it is a compilation
10811 -- Ignore missing completion for a subprogram that does not come from
10812 -- source (including the _Call primitive operation of RAS types,
10813 -- which has to have the flag Comes_From_Source for other purposes):
10814 -- we assume that the expander will provide the missing completion.
10815 -- In case of previous errors, other expansion actions that provide
10816 -- bodies for null procedures with not be invoked, so inhibit message
10819 -- Note that E_Operator is not in the list that follows, because
10820 -- this kind is reserved for predefined operators, that are
10821 -- intrinsic and do not need completion.
10823 elsif Ekind_In
(E
, E_Function
,
10825 E_Generic_Function
,
10826 E_Generic_Procedure
)
10828 if Has_Completion
(E
) then
10831 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
10834 elsif Is_Subprogram
(E
)
10835 and then (not Comes_From_Source
(E
)
10836 or else Chars
(E
) = Name_uCall
)
10841 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
10845 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
10846 and then Null_Present
(Parent
(E
))
10847 and then Serious_Errors_Detected
> 0
10855 elsif Is_Entry
(E
) then
10856 if not Has_Completion
(E
) and then
10857 (Ekind
(Scope
(E
)) = E_Protected_Object
10858 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
10863 elsif Is_Package_Or_Generic_Package
(E
) then
10864 if Unit_Requires_Body
(E
) then
10865 if not Has_Completion
(E
)
10866 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
10872 elsif not Is_Child_Unit
(E
) then
10873 May_Need_Implicit_Body
(E
);
10876 -- A formal incomplete type (Ada 2012) does not require a completion;
10877 -- other incomplete type declarations do.
10879 elsif Ekind
(E
) = E_Incomplete_Type
10880 and then No
(Underlying_Type
(E
))
10881 and then not Is_Generic_Type
(E
)
10885 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
10886 and then not Has_Completion
(E
)
10890 -- A single task declared in the current scope is a constant, verify
10891 -- that the body of its anonymous type is in the same scope. If the
10892 -- task is defined elsewhere, this may be a renaming declaration for
10893 -- which no completion is needed.
10895 elsif Ekind
(E
) = E_Constant
10896 and then Ekind
(Etype
(E
)) = E_Task_Type
10897 and then not Has_Completion
(Etype
(E
))
10898 and then Scope
(Etype
(E
)) = Current_Scope
10902 elsif Ekind
(E
) = E_Protected_Object
10903 and then not Has_Completion
(Etype
(E
))
10907 elsif Ekind
(E
) = E_Record_Type
then
10908 if Is_Tagged_Type
(E
) then
10909 Check_Abstract_Overriding
(E
);
10910 Check_Conventions
(E
);
10913 Check_Aliased_Component_Types
(E
);
10915 elsif Ekind
(E
) = E_Array_Type
then
10916 Check_Aliased_Component_Types
(E
);
10922 end Check_Completion
;
10924 ------------------------------------
10925 -- Check_CPP_Type_Has_No_Defaults --
10926 ------------------------------------
10928 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
10929 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
10934 -- Obtain the component list
10936 if Nkind
(Tdef
) = N_Record_Definition
then
10937 Clist
:= Component_List
(Tdef
);
10938 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
10939 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
10942 -- Check all components to ensure no default expressions
10944 if Present
(Clist
) then
10945 Comp
:= First
(Component_Items
(Clist
));
10946 while Present
(Comp
) loop
10947 if Present
(Expression
(Comp
)) then
10949 ("component of imported 'C'P'P type cannot have "
10950 & "default expression", Expression
(Comp
));
10956 end Check_CPP_Type_Has_No_Defaults
;
10958 ----------------------------
10959 -- Check_Delta_Expression --
10960 ----------------------------
10962 procedure Check_Delta_Expression
(E
: Node_Id
) is
10964 if not (Is_Real_Type
(Etype
(E
))) then
10965 Wrong_Type
(E
, Any_Real
);
10967 elsif not Is_OK_Static_Expression
(E
) then
10968 Flag_Non_Static_Expr
10969 ("non-static expression used for delta value!", E
);
10971 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
10972 Error_Msg_N
("delta expression must be positive", E
);
10978 -- If any of above errors occurred, then replace the incorrect
10979 -- expression by the real 0.1, which should prevent further errors.
10982 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
10983 Analyze_And_Resolve
(E
, Standard_Float
);
10984 end Check_Delta_Expression
;
10986 -----------------------------
10987 -- Check_Digits_Expression --
10988 -----------------------------
10990 procedure Check_Digits_Expression
(E
: Node_Id
) is
10992 if not (Is_Integer_Type
(Etype
(E
))) then
10993 Wrong_Type
(E
, Any_Integer
);
10995 elsif not Is_OK_Static_Expression
(E
) then
10996 Flag_Non_Static_Expr
10997 ("non-static expression used for digits value!", E
);
10999 elsif Expr_Value
(E
) <= 0 then
11000 Error_Msg_N
("digits value must be greater than zero", E
);
11006 -- If any of above errors occurred, then replace the incorrect
11007 -- expression by the integer 1, which should prevent further errors.
11009 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
11010 Analyze_And_Resolve
(E
, Standard_Integer
);
11012 end Check_Digits_Expression
;
11014 --------------------------
11015 -- Check_Initialization --
11016 --------------------------
11018 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
11020 -- Special processing for limited types
11022 if Is_Limited_Type
(T
)
11023 and then not In_Instance
11024 and then not In_Inlined_Body
11026 if not OK_For_Limited_Init
(T
, Exp
) then
11028 -- In GNAT mode, this is just a warning, to allow it to be evilly
11029 -- turned off. Otherwise it is a real error.
11033 ("??cannot initialize entities of limited type!", Exp
);
11035 elsif Ada_Version
< Ada_2005
then
11037 -- The side effect removal machinery may generate illegal Ada
11038 -- code to avoid the usage of access types and 'reference in
11039 -- SPARK mode. Since this is legal code with respect to theorem
11040 -- proving, do not emit the error.
11043 and then Nkind
(Exp
) = N_Function_Call
11044 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11045 and then not Comes_From_Source
11046 (Defining_Identifier
(Parent
(Exp
)))
11052 ("cannot initialize entities of limited type", Exp
);
11053 Explain_Limited_Type
(T
, Exp
);
11057 -- Specialize error message according to kind of illegal
11058 -- initial expression.
11060 if Nkind
(Exp
) = N_Type_Conversion
11061 and then Nkind
(Expression
(Exp
)) = N_Function_Call
11064 ("illegal context for call"
11065 & " to function with limited result", Exp
);
11069 ("initialization of limited object requires aggregate "
11070 & "or function call", Exp
);
11076 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11077 -- set unless we can be sure that no range check is required.
11079 if (GNATprove_Mode
or not Expander_Active
)
11080 and then Is_Scalar_Type
(T
)
11081 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
11083 Set_Do_Range_Check
(Exp
);
11085 end Check_Initialization
;
11087 ----------------------
11088 -- Check_Interfaces --
11089 ----------------------
11091 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
11092 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
11095 Iface_Def
: Node_Id
;
11096 Iface_Typ
: Entity_Id
;
11097 Parent_Node
: Node_Id
;
11099 Is_Task
: Boolean := False;
11100 -- Set True if parent type or any progenitor is a task interface
11102 Is_Protected
: Boolean := False;
11103 -- Set True if parent type or any progenitor is a protected interface
11105 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
11106 -- Check that a progenitor is compatible with declaration. If an error
11107 -- message is output, it is posted on Error_Node.
11113 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
11114 Iface_Id
: constant Entity_Id
:=
11115 Defining_Identifier
(Parent
(Iface_Def
));
11116 Type_Def
: Node_Id
;
11119 if Nkind
(N
) = N_Private_Extension_Declaration
then
11122 Type_Def
:= Type_Definition
(N
);
11125 if Is_Task_Interface
(Iface_Id
) then
11128 elsif Is_Protected_Interface
(Iface_Id
) then
11129 Is_Protected
:= True;
11132 if Is_Synchronized_Interface
(Iface_Id
) then
11134 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11135 -- extension derived from a synchronized interface must explicitly
11136 -- be declared synchronized, because the full view will be a
11137 -- synchronized type.
11139 if Nkind
(N
) = N_Private_Extension_Declaration
then
11140 if not Synchronized_Present
(N
) then
11142 ("private extension of& must be explicitly synchronized",
11146 -- However, by 3.9.4(16/2), a full type that is a record extension
11147 -- is never allowed to derive from a synchronized interface (note
11148 -- that interfaces must be excluded from this check, because those
11149 -- are represented by derived type definitions in some cases).
11151 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11152 and then not Interface_Present
(Type_Definition
(N
))
11154 Error_Msg_N
("record extension cannot derive from synchronized "
11155 & "interface", Error_Node
);
11159 -- Check that the characteristics of the progenitor are compatible
11160 -- with the explicit qualifier in the declaration.
11161 -- The check only applies to qualifiers that come from source.
11162 -- Limited_Present also appears in the declaration of corresponding
11163 -- records, and the check does not apply to them.
11165 if Limited_Present
(Type_Def
)
11167 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11169 if Is_Limited_Interface
(Parent_Type
)
11170 and then not Is_Limited_Interface
(Iface_Id
)
11173 ("progenitor & must be limited interface",
11174 Error_Node
, Iface_Id
);
11177 (Task_Present
(Iface_Def
)
11178 or else Protected_Present
(Iface_Def
)
11179 or else Synchronized_Present
(Iface_Def
))
11180 and then Nkind
(N
) /= N_Private_Extension_Declaration
11181 and then not Error_Posted
(N
)
11184 ("progenitor & must be limited interface",
11185 Error_Node
, Iface_Id
);
11188 -- Protected interfaces can only inherit from limited, synchronized
11189 -- or protected interfaces.
11191 elsif Nkind
(N
) = N_Full_Type_Declaration
11192 and then Protected_Present
(Type_Def
)
11194 if Limited_Present
(Iface_Def
)
11195 or else Synchronized_Present
(Iface_Def
)
11196 or else Protected_Present
(Iface_Def
)
11200 elsif Task_Present
(Iface_Def
) then
11201 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11202 & "from task interface", Error_Node
);
11205 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11206 & "from non-limited interface", Error_Node
);
11209 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11210 -- limited and synchronized.
11212 elsif Synchronized_Present
(Type_Def
) then
11213 if Limited_Present
(Iface_Def
)
11214 or else Synchronized_Present
(Iface_Def
)
11218 elsif Protected_Present
(Iface_Def
)
11219 and then Nkind
(N
) /= N_Private_Extension_Declaration
11221 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11222 & "from protected interface", Error_Node
);
11224 elsif Task_Present
(Iface_Def
)
11225 and then Nkind
(N
) /= N_Private_Extension_Declaration
11227 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11228 & "from task interface", Error_Node
);
11230 elsif not Is_Limited_Interface
(Iface_Id
) then
11231 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11232 & "from non-limited interface", Error_Node
);
11235 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11236 -- synchronized or task interfaces.
11238 elsif Nkind
(N
) = N_Full_Type_Declaration
11239 and then Task_Present
(Type_Def
)
11241 if Limited_Present
(Iface_Def
)
11242 or else Synchronized_Present
(Iface_Def
)
11243 or else Task_Present
(Iface_Def
)
11247 elsif Protected_Present
(Iface_Def
) then
11248 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11249 & "protected interface", Error_Node
);
11252 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11253 & "non-limited interface", Error_Node
);
11258 -- Start of processing for Check_Interfaces
11261 if Is_Interface
(Parent_Type
) then
11262 if Is_Task_Interface
(Parent_Type
) then
11265 elsif Is_Protected_Interface
(Parent_Type
) then
11266 Is_Protected
:= True;
11270 if Nkind
(N
) = N_Private_Extension_Declaration
then
11272 -- Check that progenitors are compatible with declaration
11274 Iface
:= First
(Interface_List
(Def
));
11275 while Present
(Iface
) loop
11276 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11278 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11279 Iface_Def
:= Type_Definition
(Parent_Node
);
11281 if not Is_Interface
(Iface_Typ
) then
11282 Diagnose_Interface
(Iface
, Iface_Typ
);
11284 Check_Ifaces
(Iface_Def
, Iface
);
11290 if Is_Task
and Is_Protected
then
11292 ("type cannot derive from task and protected interface", N
);
11298 -- Full type declaration of derived type.
11299 -- Check compatibility with parent if it is interface type
11301 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11302 and then Is_Interface
(Parent_Type
)
11304 Parent_Node
:= Parent
(Parent_Type
);
11306 -- More detailed checks for interface varieties
11309 (Iface_Def
=> Type_Definition
(Parent_Node
),
11310 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
11313 Iface
:= First
(Interface_List
(Def
));
11314 while Present
(Iface
) loop
11315 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11317 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11318 Iface_Def
:= Type_Definition
(Parent_Node
);
11320 if not Is_Interface
(Iface_Typ
) then
11321 Diagnose_Interface
(Iface
, Iface_Typ
);
11324 -- "The declaration of a specific descendant of an interface
11325 -- type freezes the interface type" RM 13.14
11327 Freeze_Before
(N
, Iface_Typ
);
11328 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
11334 if Is_Task
and Is_Protected
then
11336 ("type cannot derive from task and protected interface", N
);
11338 end Check_Interfaces
;
11340 ------------------------------------
11341 -- Check_Or_Process_Discriminants --
11342 ------------------------------------
11344 -- If an incomplete or private type declaration was already given for the
11345 -- type, the discriminants may have already been processed if they were
11346 -- present on the incomplete declaration. In this case a full conformance
11347 -- check has been performed in Find_Type_Name, and we then recheck here
11348 -- some properties that can't be checked on the partial view alone.
11349 -- Otherwise we call Process_Discriminants.
11351 procedure Check_Or_Process_Discriminants
11354 Prev
: Entity_Id
:= Empty
)
11357 if Has_Discriminants
(T
) then
11359 -- Discriminants are already set on T if they were already present
11360 -- on the partial view. Make them visible to component declarations.
11364 -- Discriminant on T (full view) referencing expr on partial view
11366 Prev_D
: Entity_Id
;
11367 -- Entity of corresponding discriminant on partial view
11370 -- Discriminant specification for full view, expression is
11371 -- the syntactic copy on full view (which has been checked for
11372 -- conformance with partial view), only used here to post error
11376 D
:= First_Discriminant
(T
);
11377 New_D
:= First
(Discriminant_Specifications
(N
));
11378 while Present
(D
) loop
11379 Prev_D
:= Current_Entity
(D
);
11380 Set_Current_Entity
(D
);
11381 Set_Is_Immediately_Visible
(D
);
11382 Set_Homonym
(D
, Prev_D
);
11384 -- Handle the case where there is an untagged partial view and
11385 -- the full view is tagged: must disallow discriminants with
11386 -- defaults, unless compiling for Ada 2012, which allows a
11387 -- limited tagged type to have defaulted discriminants (see
11388 -- AI05-0214). However, suppress error here if it was already
11389 -- reported on the default expression of the partial view.
11391 if Is_Tagged_Type
(T
)
11392 and then Present
(Expression
(Parent
(D
)))
11393 and then (not Is_Limited_Type
(Current_Scope
)
11394 or else Ada_Version
< Ada_2012
)
11395 and then not Error_Posted
(Expression
(Parent
(D
)))
11397 if Ada_Version
>= Ada_2012
then
11399 ("discriminants of nonlimited tagged type cannot have "
11401 Expression
(New_D
));
11404 ("discriminants of tagged type cannot have defaults",
11405 Expression
(New_D
));
11409 -- Ada 2005 (AI-230): Access discriminant allowed in
11410 -- non-limited record types.
11412 if Ada_Version
< Ada_2005
then
11414 -- This restriction gets applied to the full type here. It
11415 -- has already been applied earlier to the partial view.
11417 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
11420 Next_Discriminant
(D
);
11425 elsif Present
(Discriminant_Specifications
(N
)) then
11426 Process_Discriminants
(N
, Prev
);
11428 end Check_Or_Process_Discriminants
;
11430 ----------------------
11431 -- Check_Real_Bound --
11432 ----------------------
11434 procedure Check_Real_Bound
(Bound
: Node_Id
) is
11436 if not Is_Real_Type
(Etype
(Bound
)) then
11438 ("bound in real type definition must be of real type", Bound
);
11440 elsif not Is_OK_Static_Expression
(Bound
) then
11441 Flag_Non_Static_Expr
11442 ("non-static expression used for real type bound!", Bound
);
11449 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
11451 Resolve
(Bound
, Standard_Float
);
11452 end Check_Real_Bound
;
11454 ------------------------------
11455 -- Complete_Private_Subtype --
11456 ------------------------------
11458 procedure Complete_Private_Subtype
11461 Full_Base
: Entity_Id
;
11462 Related_Nod
: Node_Id
)
11464 Save_Next_Entity
: Entity_Id
;
11465 Save_Homonym
: Entity_Id
;
11468 -- Set semantic attributes for (implicit) private subtype completion.
11469 -- If the full type has no discriminants, then it is a copy of the
11470 -- full view of the base. Otherwise, it is a subtype of the base with
11471 -- a possible discriminant constraint. Save and restore the original
11472 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11473 -- not corrupt the entity chain.
11475 -- Note that the type of the full view is the same entity as the type
11476 -- of the partial view. In this fashion, the subtype has access to the
11477 -- correct view of the parent.
11479 Save_Next_Entity
:= Next_Entity
(Full
);
11480 Save_Homonym
:= Homonym
(Priv
);
11482 case Ekind
(Full_Base
) is
11483 when E_Record_Type |
11489 Copy_Node
(Priv
, Full
);
11491 Set_Has_Discriminants
11492 (Full
, Has_Discriminants
(Full_Base
));
11493 Set_Has_Unknown_Discriminants
11494 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11495 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
11496 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
11498 -- If the underlying base type is constrained, we know that the
11499 -- full view of the subtype is constrained as well (the converse
11500 -- is not necessarily true).
11502 if Is_Constrained
(Full_Base
) then
11503 Set_Is_Constrained
(Full
);
11507 Copy_Node
(Full_Base
, Full
);
11509 Set_Chars
(Full
, Chars
(Priv
));
11510 Conditional_Delay
(Full
, Priv
);
11511 Set_Sloc
(Full
, Sloc
(Priv
));
11514 Set_Next_Entity
(Full
, Save_Next_Entity
);
11515 Set_Homonym
(Full
, Save_Homonym
);
11516 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
11518 -- Set common attributes for all subtypes: kind, convention, etc.
11520 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
11521 Set_Convention
(Full
, Convention
(Full_Base
));
11523 -- The Etype of the full view is inconsistent. Gigi needs to see the
11524 -- structural full view, which is what the current scheme gives: the
11525 -- Etype of the full view is the etype of the full base. However, if the
11526 -- full base is a derived type, the full view then looks like a subtype
11527 -- of the parent, not a subtype of the full base. If instead we write:
11529 -- Set_Etype (Full, Full_Base);
11531 -- then we get inconsistencies in the front-end (confusion between
11532 -- views). Several outstanding bugs are related to this ???
11534 Set_Is_First_Subtype
(Full
, False);
11535 Set_Scope
(Full
, Scope
(Priv
));
11536 Set_Size_Info
(Full
, Full_Base
);
11537 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
11538 Set_Is_Itype
(Full
);
11540 -- A subtype of a private-type-without-discriminants, whose full-view
11541 -- has discriminants with default expressions, is not constrained.
11543 if not Has_Discriminants
(Priv
) then
11544 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
11546 if Has_Discriminants
(Full_Base
) then
11547 Set_Discriminant_Constraint
11548 (Full
, Discriminant_Constraint
(Full_Base
));
11550 -- The partial view may have been indefinite, the full view
11553 Set_Has_Unknown_Discriminants
11554 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11558 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
11559 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
11561 -- Freeze the private subtype entity if its parent is delayed, and not
11562 -- already frozen. We skip this processing if the type is an anonymous
11563 -- subtype of a record component, or is the corresponding record of a
11564 -- protected type, since ???
11566 if not Is_Type
(Scope
(Full
)) then
11567 Set_Has_Delayed_Freeze
(Full
,
11568 Has_Delayed_Freeze
(Full_Base
)
11569 and then (not Is_Frozen
(Full_Base
)));
11572 Set_Freeze_Node
(Full
, Empty
);
11573 Set_Is_Frozen
(Full
, False);
11574 Set_Full_View
(Priv
, Full
);
11576 if Has_Discriminants
(Full
) then
11577 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
11578 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
11580 if Has_Unknown_Discriminants
(Full
) then
11581 Set_Discriminant_Constraint
(Full
, No_Elist
);
11585 if Ekind
(Full_Base
) = E_Record_Type
11586 and then Has_Discriminants
(Full_Base
)
11587 and then Has_Discriminants
(Priv
) -- might not, if errors
11588 and then not Has_Unknown_Discriminants
(Priv
)
11589 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
11591 Create_Constrained_Components
11592 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
11594 -- If the full base is itself derived from private, build a congruent
11595 -- subtype of its underlying type, for use by the back end. For a
11596 -- constrained record component, the declaration cannot be placed on
11597 -- the component list, but it must nevertheless be built an analyzed, to
11598 -- supply enough information for Gigi to compute the size of component.
11600 elsif Ekind
(Full_Base
) in Private_Kind
11601 and then Is_Derived_Type
(Full_Base
)
11602 and then Has_Discriminants
(Full_Base
)
11603 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
11605 if not Is_Itype
(Priv
)
11607 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
11609 Build_Underlying_Full_View
11610 (Parent
(Priv
), Full
, Etype
(Full_Base
));
11612 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
11613 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
11616 elsif Is_Record_Type
(Full_Base
) then
11618 -- Show Full is simply a renaming of Full_Base
11620 Set_Cloned_Subtype
(Full
, Full_Base
);
11623 -- It is unsafe to share the bounds of a scalar type, because the Itype
11624 -- is elaborated on demand, and if a bound is non-static then different
11625 -- orders of elaboration in different units will lead to different
11626 -- external symbols.
11628 if Is_Scalar_Type
(Full_Base
) then
11629 Set_Scalar_Range
(Full
,
11630 Make_Range
(Sloc
(Related_Nod
),
11632 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
11634 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
11636 -- This completion inherits the bounds of the full parent, but if
11637 -- the parent is an unconstrained floating point type, so is the
11640 if Is_Floating_Point_Type
(Full_Base
) then
11641 Set_Includes_Infinities
11642 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
11646 -- ??? It seems that a lot of fields are missing that should be copied
11647 -- from Full_Base to Full. Here are some that are introduced in a
11648 -- non-disruptive way but a cleanup is necessary.
11650 if Is_Tagged_Type
(Full_Base
) then
11651 Set_Is_Tagged_Type
(Full
);
11652 Set_Direct_Primitive_Operations
11653 (Full
, Direct_Primitive_Operations
(Full_Base
));
11654 Set_No_Tagged_Streams_Pragma
11655 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
11657 -- Inherit class_wide type of full_base in case the partial view was
11658 -- not tagged. Otherwise it has already been created when the private
11659 -- subtype was analyzed.
11661 if No
(Class_Wide_Type
(Full
)) then
11662 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
11665 -- If this is a subtype of a protected or task type, constrain its
11666 -- corresponding record, unless this is a subtype without constraints,
11667 -- i.e. a simple renaming as with an actual subtype in an instance.
11669 elsif Is_Concurrent_Type
(Full_Base
) then
11670 if Has_Discriminants
(Full
)
11671 and then Present
(Corresponding_Record_Type
(Full_Base
))
11673 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
11675 Set_Corresponding_Record_Type
(Full
,
11676 Constrain_Corresponding_Record
11677 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
11680 Set_Corresponding_Record_Type
(Full
,
11681 Corresponding_Record_Type
(Full_Base
));
11685 -- Link rep item chain, and also setting of Has_Predicates from private
11686 -- subtype to full subtype, since we will need these on the full subtype
11687 -- to create the predicate function. Note that the full subtype may
11688 -- already have rep items, inherited from the full view of the base
11689 -- type, so we must be sure not to overwrite these entries.
11694 Next_Item
: Node_Id
;
11697 Item
:= First_Rep_Item
(Full
);
11699 -- If no existing rep items on full type, we can just link directly
11700 -- to the list of items on the private type, if any exist.. Same if
11701 -- the rep items are only those inherited from the base
11704 or else Nkind
(Item
) /= N_Aspect_Specification
11705 or else Entity
(Item
) = Full_Base
)
11706 and then Present
(First_Rep_Item
(Priv
))
11708 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
11710 -- Otherwise, search to the end of items currently linked to the full
11711 -- subtype and append the private items to the end. However, if Priv
11712 -- and Full already have the same list of rep items, then the append
11713 -- is not done, as that would create a circularity.
11715 elsif Item
/= First_Rep_Item
(Priv
) then
11718 Next_Item
:= Next_Rep_Item
(Item
);
11719 exit when No
(Next_Item
);
11722 -- If the private view has aspect specifications, the full view
11723 -- inherits them. Since these aspects may already have been
11724 -- attached to the full view during derivation, do not append
11725 -- them if already present.
11727 if Item
= First_Rep_Item
(Priv
) then
11733 -- And link the private type items at the end of the chain
11736 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
11741 -- Make sure Has_Predicates is set on full type if it is set on the
11742 -- private type. Note that it may already be set on the full type and
11743 -- if so, we don't want to unset it.
11745 if Has_Predicates
(Priv
) then
11746 Set_Has_Predicates
(Full
);
11748 end Complete_Private_Subtype
;
11750 ----------------------------
11751 -- Constant_Redeclaration --
11752 ----------------------------
11754 procedure Constant_Redeclaration
11759 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
11760 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
11763 procedure Check_Possible_Deferred_Completion
11764 (Prev_Id
: Entity_Id
;
11765 Prev_Obj_Def
: Node_Id
;
11766 Curr_Obj_Def
: Node_Id
);
11767 -- Determine whether the two object definitions describe the partial
11768 -- and the full view of a constrained deferred constant. Generate
11769 -- a subtype for the full view and verify that it statically matches
11770 -- the subtype of the partial view.
11772 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
11773 -- If deferred constant is an access type initialized with an allocator,
11774 -- check whether there is an illegal recursion in the definition,
11775 -- through a default value of some record subcomponent. This is normally
11776 -- detected when generating init procs, but requires this additional
11777 -- mechanism when expansion is disabled.
11779 ----------------------------------------
11780 -- Check_Possible_Deferred_Completion --
11781 ----------------------------------------
11783 procedure Check_Possible_Deferred_Completion
11784 (Prev_Id
: Entity_Id
;
11785 Prev_Obj_Def
: Node_Id
;
11786 Curr_Obj_Def
: Node_Id
)
11789 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
11790 and then Present
(Constraint
(Prev_Obj_Def
))
11791 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
11792 and then Present
(Constraint
(Curr_Obj_Def
))
11795 Loc
: constant Source_Ptr
:= Sloc
(N
);
11796 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
11797 Decl
: constant Node_Id
:=
11798 Make_Subtype_Declaration
(Loc
,
11799 Defining_Identifier
=> Def_Id
,
11800 Subtype_Indication
=>
11801 Relocate_Node
(Curr_Obj_Def
));
11804 Insert_Before_And_Analyze
(N
, Decl
);
11805 Set_Etype
(Id
, Def_Id
);
11807 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
11808 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
11809 Error_Msg_N
("subtype does not statically match deferred "
11810 & "declaration #", N
);
11814 end Check_Possible_Deferred_Completion
;
11816 ---------------------------------
11817 -- Check_Recursive_Declaration --
11818 ---------------------------------
11820 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
11824 if Is_Record_Type
(Typ
) then
11825 Comp
:= First_Component
(Typ
);
11826 while Present
(Comp
) loop
11827 if Comes_From_Source
(Comp
) then
11828 if Present
(Expression
(Parent
(Comp
)))
11829 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
11830 and then Entity
(Expression
(Parent
(Comp
))) = Prev
11832 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
11834 ("illegal circularity with declaration for & #",
11838 elsif Is_Record_Type
(Etype
(Comp
)) then
11839 Check_Recursive_Declaration
(Etype
(Comp
));
11843 Next_Component
(Comp
);
11846 end Check_Recursive_Declaration
;
11848 -- Start of processing for Constant_Redeclaration
11851 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
11852 if Nkind
(Object_Definition
11853 (Parent
(Prev
))) = N_Subtype_Indication
11855 -- Find type of new declaration. The constraints of the two
11856 -- views must match statically, but there is no point in
11857 -- creating an itype for the full view.
11859 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
11860 Find_Type
(Subtype_Mark
(Obj_Def
));
11861 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
11864 Find_Type
(Obj_Def
);
11865 New_T
:= Entity
(Obj_Def
);
11871 -- The full view may impose a constraint, even if the partial
11872 -- view does not, so construct the subtype.
11874 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
11879 -- Current declaration is illegal, diagnosed below in Enter_Name
11885 -- If previous full declaration or a renaming declaration exists, or if
11886 -- a homograph is present, let Enter_Name handle it, either with an
11887 -- error or with the removal of an overridden implicit subprogram.
11888 -- The previous one is a full declaration if it has an expression
11889 -- (which in the case of an aggregate is indicated by the Init flag).
11891 if Ekind
(Prev
) /= E_Constant
11892 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
11893 or else Present
(Expression
(Parent
(Prev
)))
11894 or else Has_Init_Expression
(Parent
(Prev
))
11895 or else Present
(Full_View
(Prev
))
11899 -- Verify that types of both declarations match, or else that both types
11900 -- are anonymous access types whose designated subtypes statically match
11901 -- (as allowed in Ada 2005 by AI-385).
11903 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
11905 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
11906 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
11907 or else Is_Access_Constant
(Etype
(New_T
)) /=
11908 Is_Access_Constant
(Etype
(Prev
))
11909 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
11910 Can_Never_Be_Null
(Etype
(Prev
))
11911 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
11912 Null_Exclusion_Present
(Parent
(Id
))
11913 or else not Subtypes_Statically_Match
11914 (Designated_Type
(Etype
(Prev
)),
11915 Designated_Type
(Etype
(New_T
))))
11917 Error_Msg_Sloc
:= Sloc
(Prev
);
11918 Error_Msg_N
("type does not match declaration#", N
);
11919 Set_Full_View
(Prev
, Id
);
11920 Set_Etype
(Id
, Any_Type
);
11922 -- A deferred constant whose type is an anonymous array is always
11923 -- illegal (unless imported). A detailed error message might be
11924 -- helpful for Ada beginners.
11926 if Nkind
(Object_Definition
(Parent
(Prev
)))
11927 = N_Constrained_Array_Definition
11928 and then Nkind
(Object_Definition
(N
))
11929 = N_Constrained_Array_Definition
11931 Error_Msg_N
("\each anonymous array is a distinct type", N
);
11932 Error_Msg_N
("a deferred constant must have a named type",
11933 Object_Definition
(Parent
(Prev
)));
11937 Null_Exclusion_Present
(Parent
(Prev
))
11938 and then not Null_Exclusion_Present
(N
)
11940 Error_Msg_Sloc
:= Sloc
(Prev
);
11941 Error_Msg_N
("null-exclusion does not match declaration#", N
);
11942 Set_Full_View
(Prev
, Id
);
11943 Set_Etype
(Id
, Any_Type
);
11945 -- If so, process the full constant declaration
11948 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11949 -- the deferred declaration is constrained, then the subtype defined
11950 -- by the subtype_indication in the full declaration shall match it
11953 Check_Possible_Deferred_Completion
11955 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
11956 Curr_Obj_Def
=> Obj_Def
);
11958 Set_Full_View
(Prev
, Id
);
11959 Set_Is_Public
(Id
, Is_Public
(Prev
));
11960 Set_Is_Internal
(Id
);
11961 Append_Entity
(Id
, Current_Scope
);
11963 -- Check ALIASED present if present before (RM 7.4(7))
11965 if Is_Aliased
(Prev
)
11966 and then not Aliased_Present
(N
)
11968 Error_Msg_Sloc
:= Sloc
(Prev
);
11969 Error_Msg_N
("ALIASED required (see declaration #)", N
);
11972 -- Check that placement is in private part and that the incomplete
11973 -- declaration appeared in the visible part.
11975 if Ekind
(Current_Scope
) = E_Package
11976 and then not In_Private_Part
(Current_Scope
)
11978 Error_Msg_Sloc
:= Sloc
(Prev
);
11980 ("full constant for declaration # must be in private part", N
);
11982 elsif Ekind
(Current_Scope
) = E_Package
11984 List_Containing
(Parent
(Prev
)) /=
11985 Visible_Declarations
(Package_Specification
(Current_Scope
))
11988 ("deferred constant must be declared in visible part",
11992 if Is_Access_Type
(T
)
11993 and then Nkind
(Expression
(N
)) = N_Allocator
11995 Check_Recursive_Declaration
(Designated_Type
(T
));
11998 -- A deferred constant is a visible entity. If type has invariants,
11999 -- verify that the initial value satisfies them.
12001 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
12003 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
12006 end Constant_Redeclaration
;
12008 ----------------------
12009 -- Constrain_Access --
12010 ----------------------
12012 procedure Constrain_Access
12013 (Def_Id
: in out Entity_Id
;
12015 Related_Nod
: Node_Id
)
12017 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12018 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
12019 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
12020 Constraint_OK
: Boolean := True;
12023 if Is_Array_Type
(Desig_Type
) then
12024 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
12026 elsif (Is_Record_Type
(Desig_Type
)
12027 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
12028 and then not Is_Constrained
(Desig_Type
)
12030 -- ??? The following code is a temporary bypass to ignore a
12031 -- discriminant constraint on access type if it is constraining
12032 -- the current record. Avoid creating the implicit subtype of the
12033 -- record we are currently compiling since right now, we cannot
12034 -- handle these. For now, just return the access type itself.
12036 if Desig_Type
= Current_Scope
12037 and then No
(Def_Id
)
12039 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
12040 Def_Id
:= Entity
(Subtype_Mark
(S
));
12042 -- This call added to ensure that the constraint is analyzed
12043 -- (needed for a B test). Note that we still return early from
12044 -- this procedure to avoid recursive processing. ???
12046 Constrain_Discriminated_Type
12047 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
12051 -- Enforce rule that the constraint is illegal if there is an
12052 -- unconstrained view of the designated type. This means that the
12053 -- partial view (either a private type declaration or a derivation
12054 -- from a private type) has no discriminants. (Defect Report
12055 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12057 -- Rule updated for Ada 2005: The private type is said to have
12058 -- a constrained partial view, given that objects of the type
12059 -- can be declared. Furthermore, the rule applies to all access
12060 -- types, unlike the rule concerning default discriminants (see
12063 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
12064 and then Has_Private_Declaration
(Desig_Type
)
12065 and then In_Open_Scopes
(Scope
(Desig_Type
))
12066 and then Has_Discriminants
(Desig_Type
)
12069 Pack
: constant Node_Id
:=
12070 Unit_Declaration_Node
(Scope
(Desig_Type
));
12075 if Nkind
(Pack
) = N_Package_Declaration
then
12076 Decls
:= Visible_Declarations
(Specification
(Pack
));
12077 Decl
:= First
(Decls
);
12078 while Present
(Decl
) loop
12079 if (Nkind
(Decl
) = N_Private_Type_Declaration
12080 and then Chars
(Defining_Identifier
(Decl
)) =
12081 Chars
(Desig_Type
))
12084 (Nkind
(Decl
) = N_Full_Type_Declaration
12086 Chars
(Defining_Identifier
(Decl
)) =
12088 and then Is_Derived_Type
(Desig_Type
)
12090 Has_Private_Declaration
(Etype
(Desig_Type
)))
12092 if No
(Discriminant_Specifications
(Decl
)) then
12094 ("cannot constrain access type if designated "
12095 & "type has constrained partial view", S
);
12107 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
12108 For_Access
=> True);
12110 elsif Is_Concurrent_Type
(Desig_Type
)
12111 and then not Is_Constrained
(Desig_Type
)
12113 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
12116 Error_Msg_N
("invalid constraint on access type", S
);
12118 -- We simply ignore an invalid constraint
12120 Desig_Subtype
:= Desig_Type
;
12121 Constraint_OK
:= False;
12124 if No
(Def_Id
) then
12125 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
12127 Set_Ekind
(Def_Id
, E_Access_Subtype
);
12130 if Constraint_OK
then
12131 Set_Etype
(Def_Id
, Base_Type
(T
));
12133 if Is_Private_Type
(Desig_Type
) then
12134 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
12137 Set_Etype
(Def_Id
, Any_Type
);
12140 Set_Size_Info
(Def_Id
, T
);
12141 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
12142 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
12143 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12144 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12146 Conditional_Delay
(Def_Id
, T
);
12148 -- AI-363 : Subtypes of general access types whose designated types have
12149 -- default discriminants are disallowed. In instances, the rule has to
12150 -- be checked against the actual, of which T is the subtype. In a
12151 -- generic body, the rule is checked assuming that the actual type has
12152 -- defaulted discriminants.
12154 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12155 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12156 and then Has_Defaulted_Discriminants
(Desig_Type
)
12158 if Ada_Version
< Ada_2005
then
12160 ("access subtype of general access type would not " &
12161 "be allowed in Ada 2005?y?", S
);
12164 ("access subtype of general access type not allowed", S
);
12167 Error_Msg_N
("\discriminants have defaults", S
);
12169 elsif Is_Access_Type
(T
)
12170 and then Is_Generic_Type
(Desig_Type
)
12171 and then Has_Discriminants
(Desig_Type
)
12172 and then In_Package_Body
(Current_Scope
)
12174 if Ada_Version
< Ada_2005
then
12176 ("access subtype would not be allowed in generic body "
12177 & "in Ada 2005?y?", S
);
12180 ("access subtype not allowed in generic body", S
);
12184 ("\designated type is a discriminated formal", S
);
12187 end Constrain_Access
;
12189 ---------------------
12190 -- Constrain_Array --
12191 ---------------------
12193 procedure Constrain_Array
12194 (Def_Id
: in out Entity_Id
;
12196 Related_Nod
: Node_Id
;
12197 Related_Id
: Entity_Id
;
12198 Suffix
: Character)
12200 C
: constant Node_Id
:= Constraint
(SI
);
12201 Number_Of_Constraints
: Nat
:= 0;
12204 Constraint_OK
: Boolean := True;
12207 T
:= Entity
(Subtype_Mark
(SI
));
12209 if Is_Access_Type
(T
) then
12210 T
:= Designated_Type
(T
);
12213 -- If an index constraint follows a subtype mark in a subtype indication
12214 -- then the type or subtype denoted by the subtype mark must not already
12215 -- impose an index constraint. The subtype mark must denote either an
12216 -- unconstrained array type or an access type whose designated type
12217 -- is such an array type... (RM 3.6.1)
12219 if Is_Constrained
(T
) then
12220 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
12221 Constraint_OK
:= False;
12224 S
:= First
(Constraints
(C
));
12225 while Present
(S
) loop
12226 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
12230 -- In either case, the index constraint must provide a discrete
12231 -- range for each index of the array type and the type of each
12232 -- discrete range must be the same as that of the corresponding
12233 -- index. (RM 3.6.1)
12235 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
12236 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
12237 Constraint_OK
:= False;
12240 S
:= First
(Constraints
(C
));
12241 Index
:= First_Index
(T
);
12244 -- Apply constraints to each index type
12246 for J
in 1 .. Number_Of_Constraints
loop
12247 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
12255 if No
(Def_Id
) then
12257 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
12258 Set_Parent
(Def_Id
, Related_Nod
);
12261 Set_Ekind
(Def_Id
, E_Array_Subtype
);
12264 Set_Size_Info
(Def_Id
, (T
));
12265 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12266 Set_Etype
(Def_Id
, Base_Type
(T
));
12268 if Constraint_OK
then
12269 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
12271 Set_First_Index
(Def_Id
, First_Index
(T
));
12274 Set_Is_Constrained
(Def_Id
, True);
12275 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
12276 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12278 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
12279 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
12281 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12282 -- We need to initialize the attribute because if Def_Id is previously
12283 -- analyzed through a limited_with clause, it will have the attributes
12284 -- of an incomplete type, one of which is an Elist that overlaps the
12285 -- Packed_Array_Impl_Type field.
12287 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
12289 -- Build a freeze node if parent still needs one. Also make sure that
12290 -- the Depends_On_Private status is set because the subtype will need
12291 -- reprocessing at the time the base type does, and also we must set a
12292 -- conditional delay.
12294 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
12295 Conditional_Delay
(Def_Id
, T
);
12296 end Constrain_Array
;
12298 ------------------------------
12299 -- Constrain_Component_Type --
12300 ------------------------------
12302 function Constrain_Component_Type
12304 Constrained_Typ
: Entity_Id
;
12305 Related_Node
: Node_Id
;
12307 Constraints
: Elist_Id
) return Entity_Id
12309 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
12310 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
12312 function Build_Constrained_Array_Type
12313 (Old_Type
: Entity_Id
) return Entity_Id
;
12314 -- If Old_Type is an array type, one of whose indexes is constrained
12315 -- by a discriminant, build an Itype whose constraint replaces the
12316 -- discriminant with its value in the constraint.
12318 function Build_Constrained_Discriminated_Type
12319 (Old_Type
: Entity_Id
) return Entity_Id
;
12320 -- Ditto for record components
12322 function Build_Constrained_Access_Type
12323 (Old_Type
: Entity_Id
) return Entity_Id
;
12324 -- Ditto for access types. Makes use of previous two functions, to
12325 -- constrain designated type.
12327 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
12328 -- T is an array or discriminated type, C is a list of constraints
12329 -- that apply to T. This routine builds the constrained subtype.
12331 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
12332 -- Returns True if Expr is a discriminant
12334 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
12335 -- Find the value of discriminant Discrim in Constraint
12337 -----------------------------------
12338 -- Build_Constrained_Access_Type --
12339 -----------------------------------
12341 function Build_Constrained_Access_Type
12342 (Old_Type
: Entity_Id
) return Entity_Id
12344 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
12346 Desig_Subtype
: Entity_Id
;
12350 -- if the original access type was not embedded in the enclosing
12351 -- type definition, there is no need to produce a new access
12352 -- subtype. In fact every access type with an explicit constraint
12353 -- generates an itype whose scope is the enclosing record.
12355 if not Is_Type
(Scope
(Old_Type
)) then
12358 elsif Is_Array_Type
(Desig_Type
) then
12359 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
12361 elsif Has_Discriminants
(Desig_Type
) then
12363 -- This may be an access type to an enclosing record type for
12364 -- which we are constructing the constrained components. Return
12365 -- the enclosing record subtype. This is not always correct,
12366 -- but avoids infinite recursion. ???
12368 Desig_Subtype
:= Any_Type
;
12370 for J
in reverse 0 .. Scope_Stack
.Last
loop
12371 Scop
:= Scope_Stack
.Table
(J
).Entity
;
12374 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
12376 Desig_Subtype
:= Scop
;
12379 exit when not Is_Type
(Scop
);
12382 if Desig_Subtype
= Any_Type
then
12384 Build_Constrained_Discriminated_Type
(Desig_Type
);
12391 if Desig_Subtype
/= Desig_Type
then
12393 -- The Related_Node better be here or else we won't be able
12394 -- to attach new itypes to a node in the tree.
12396 pragma Assert
(Present
(Related_Node
));
12398 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
12400 Set_Etype
(Itype
, Base_Type
(Old_Type
));
12401 Set_Size_Info
(Itype
, (Old_Type
));
12402 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
12403 Set_Depends_On_Private
(Itype
, Has_Private_Component
12405 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
12408 -- The new itype needs freezing when it depends on a not frozen
12409 -- type and the enclosing subtype needs freezing.
12411 if Has_Delayed_Freeze
(Constrained_Typ
)
12412 and then not Is_Frozen
(Constrained_Typ
)
12414 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
12422 end Build_Constrained_Access_Type
;
12424 ----------------------------------
12425 -- Build_Constrained_Array_Type --
12426 ----------------------------------
12428 function Build_Constrained_Array_Type
12429 (Old_Type
: Entity_Id
) return Entity_Id
12433 Old_Index
: Node_Id
;
12434 Range_Node
: Node_Id
;
12435 Constr_List
: List_Id
;
12437 Need_To_Create_Itype
: Boolean := False;
12440 Old_Index
:= First_Index
(Old_Type
);
12441 while Present
(Old_Index
) loop
12442 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12444 if Is_Discriminant
(Lo_Expr
)
12446 Is_Discriminant
(Hi_Expr
)
12448 Need_To_Create_Itype
:= True;
12451 Next_Index
(Old_Index
);
12454 if Need_To_Create_Itype
then
12455 Constr_List
:= New_List
;
12457 Old_Index
:= First_Index
(Old_Type
);
12458 while Present
(Old_Index
) loop
12459 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12461 if Is_Discriminant
(Lo_Expr
) then
12462 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
12465 if Is_Discriminant
(Hi_Expr
) then
12466 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
12471 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
12473 Append
(Range_Node
, To
=> Constr_List
);
12475 Next_Index
(Old_Index
);
12478 return Build_Subtype
(Old_Type
, Constr_List
);
12483 end Build_Constrained_Array_Type
;
12485 ------------------------------------------
12486 -- Build_Constrained_Discriminated_Type --
12487 ------------------------------------------
12489 function Build_Constrained_Discriminated_Type
12490 (Old_Type
: Entity_Id
) return Entity_Id
12493 Constr_List
: List_Id
;
12494 Old_Constraint
: Elmt_Id
;
12496 Need_To_Create_Itype
: Boolean := False;
12499 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12500 while Present
(Old_Constraint
) loop
12501 Expr
:= Node
(Old_Constraint
);
12503 if Is_Discriminant
(Expr
) then
12504 Need_To_Create_Itype
:= True;
12507 Next_Elmt
(Old_Constraint
);
12510 if Need_To_Create_Itype
then
12511 Constr_List
:= New_List
;
12513 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12514 while Present
(Old_Constraint
) loop
12515 Expr
:= Node
(Old_Constraint
);
12517 if Is_Discriminant
(Expr
) then
12518 Expr
:= Get_Discr_Value
(Expr
);
12521 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
12523 Next_Elmt
(Old_Constraint
);
12526 return Build_Subtype
(Old_Type
, Constr_List
);
12531 end Build_Constrained_Discriminated_Type
;
12533 -------------------
12534 -- Build_Subtype --
12535 -------------------
12537 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
12539 Subtyp_Decl
: Node_Id
;
12540 Def_Id
: Entity_Id
;
12541 Btyp
: Entity_Id
:= Base_Type
(T
);
12544 -- The Related_Node better be here or else we won't be able to
12545 -- attach new itypes to a node in the tree.
12547 pragma Assert
(Present
(Related_Node
));
12549 -- If the view of the component's type is incomplete or private
12550 -- with unknown discriminants, then the constraint must be applied
12551 -- to the full type.
12553 if Has_Unknown_Discriminants
(Btyp
)
12554 and then Present
(Underlying_Type
(Btyp
))
12556 Btyp
:= Underlying_Type
(Btyp
);
12560 Make_Subtype_Indication
(Loc
,
12561 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
12562 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
12564 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
12567 Make_Subtype_Declaration
(Loc
,
12568 Defining_Identifier
=> Def_Id
,
12569 Subtype_Indication
=> Indic
);
12571 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
12573 -- Itypes must be analyzed with checks off (see package Itypes)
12575 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
12580 ---------------------
12581 -- Get_Discr_Value --
12582 ---------------------
12584 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
12589 -- The discriminant may be declared for the type, in which case we
12590 -- find it by iterating over the list of discriminants. If the
12591 -- discriminant is inherited from a parent type, it appears as the
12592 -- corresponding discriminant of the current type. This will be the
12593 -- case when constraining an inherited component whose constraint is
12594 -- given by a discriminant of the parent.
12596 D
:= First_Discriminant
(Typ
);
12597 E
:= First_Elmt
(Constraints
);
12599 while Present
(D
) loop
12600 if D
= Entity
(Discrim
)
12601 or else D
= CR_Discriminant
(Entity
(Discrim
))
12602 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
12607 Next_Discriminant
(D
);
12611 -- The Corresponding_Discriminant mechanism is incomplete, because
12612 -- the correspondence between new and old discriminants is not one
12613 -- to one: one new discriminant can constrain several old ones. In
12614 -- that case, scan sequentially the stored_constraint, the list of
12615 -- discriminants of the parents, and the constraints.
12617 -- Previous code checked for the present of the Stored_Constraint
12618 -- list for the derived type, but did not use it at all. Should it
12619 -- be present when the component is a discriminated task type?
12621 if Is_Derived_Type
(Typ
)
12622 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
12624 D
:= First_Discriminant
(Etype
(Typ
));
12625 E
:= First_Elmt
(Constraints
);
12626 while Present
(D
) loop
12627 if D
= Entity
(Discrim
) then
12631 Next_Discriminant
(D
);
12636 -- Something is wrong if we did not find the value
12638 raise Program_Error
;
12639 end Get_Discr_Value
;
12641 ---------------------
12642 -- Is_Discriminant --
12643 ---------------------
12645 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
12646 Discrim_Scope
: Entity_Id
;
12649 if Denotes_Discriminant
(Expr
) then
12650 Discrim_Scope
:= Scope
(Entity
(Expr
));
12652 -- Either we have a reference to one of Typ's discriminants,
12654 pragma Assert
(Discrim_Scope
= Typ
12656 -- or to the discriminants of the parent type, in the case
12657 -- of a derivation of a tagged type with variants.
12659 or else Discrim_Scope
= Etype
(Typ
)
12660 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
12662 -- or same as above for the case where the discriminants
12663 -- were declared in Typ's private view.
12665 or else (Is_Private_Type
(Discrim_Scope
)
12666 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12668 -- or else we are deriving from the full view and the
12669 -- discriminant is declared in the private entity.
12671 or else (Is_Private_Type
(Typ
)
12672 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12674 -- Or we are constrained the corresponding record of a
12675 -- synchronized type that completes a private declaration.
12677 or else (Is_Concurrent_Record_Type
(Typ
)
12679 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
12681 -- or we have a class-wide type, in which case make sure the
12682 -- discriminant found belongs to the root type.
12684 or else (Is_Class_Wide_Type
(Typ
)
12685 and then Etype
(Typ
) = Discrim_Scope
));
12690 -- In all other cases we have something wrong
12693 end Is_Discriminant
;
12695 -- Start of processing for Constrain_Component_Type
12698 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
12699 and then Comes_From_Source
(Parent
(Comp
))
12700 and then Comes_From_Source
12701 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12704 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12706 return Compon_Type
;
12708 elsif Is_Array_Type
(Compon_Type
) then
12709 return Build_Constrained_Array_Type
(Compon_Type
);
12711 elsif Has_Discriminants
(Compon_Type
) then
12712 return Build_Constrained_Discriminated_Type
(Compon_Type
);
12714 elsif Is_Access_Type
(Compon_Type
) then
12715 return Build_Constrained_Access_Type
(Compon_Type
);
12718 return Compon_Type
;
12720 end Constrain_Component_Type
;
12722 --------------------------
12723 -- Constrain_Concurrent --
12724 --------------------------
12726 -- For concurrent types, the associated record value type carries the same
12727 -- discriminants, so when we constrain a concurrent type, we must constrain
12728 -- the corresponding record type as well.
12730 procedure Constrain_Concurrent
12731 (Def_Id
: in out Entity_Id
;
12733 Related_Nod
: Node_Id
;
12734 Related_Id
: Entity_Id
;
12735 Suffix
: Character)
12737 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12738 -- case of a private subtype (needed when only doing semantic analysis).
12740 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
12744 if Is_Access_Type
(T_Ent
) then
12745 T_Ent
:= Designated_Type
(T_Ent
);
12748 T_Val
:= Corresponding_Record_Type
(T_Ent
);
12750 if Present
(T_Val
) then
12752 if No
(Def_Id
) then
12753 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12756 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12758 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12759 Set_Corresponding_Record_Type
(Def_Id
,
12760 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
12763 -- If there is no associated record, expansion is disabled and this
12764 -- is a generic context. Create a subtype in any case, so that
12765 -- semantic analysis can proceed.
12767 if No
(Def_Id
) then
12768 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12771 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12773 end Constrain_Concurrent
;
12775 ------------------------------------
12776 -- Constrain_Corresponding_Record --
12777 ------------------------------------
12779 function Constrain_Corresponding_Record
12780 (Prot_Subt
: Entity_Id
;
12781 Corr_Rec
: Entity_Id
;
12782 Related_Nod
: Node_Id
) return Entity_Id
12784 T_Sub
: constant Entity_Id
:=
12785 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
12788 Set_Etype
(T_Sub
, Corr_Rec
);
12789 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
12790 Set_Is_Constrained
(T_Sub
, True);
12791 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
12792 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
12794 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
12795 Set_Discriminant_Constraint
12796 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
12797 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
12798 Create_Constrained_Components
12799 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
12802 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
12804 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
12805 Conditional_Delay
(T_Sub
, Corr_Rec
);
12808 -- This is a component subtype: it will be frozen in the context of
12809 -- the enclosing record's init_proc, so that discriminant references
12810 -- are resolved to discriminals. (Note: we used to skip freezing
12811 -- altogether in that case, which caused errors downstream for
12812 -- components of a bit packed array type).
12814 Set_Has_Delayed_Freeze
(T_Sub
);
12818 end Constrain_Corresponding_Record
;
12820 -----------------------
12821 -- Constrain_Decimal --
12822 -----------------------
12824 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
12825 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12826 C
: constant Node_Id
:= Constraint
(S
);
12827 Loc
: constant Source_Ptr
:= Sloc
(C
);
12828 Range_Expr
: Node_Id
;
12829 Digits_Expr
: Node_Id
;
12834 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
12836 if Nkind
(C
) = N_Range_Constraint
then
12837 Range_Expr
:= Range_Expression
(C
);
12838 Digits_Val
:= Digits_Value
(T
);
12841 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
12843 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
12845 Digits_Expr
:= Digits_Expression
(C
);
12846 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
12848 Check_Digits_Expression
(Digits_Expr
);
12849 Digits_Val
:= Expr_Value
(Digits_Expr
);
12851 if Digits_Val
> Digits_Value
(T
) then
12853 ("digits expression is incompatible with subtype", C
);
12854 Digits_Val
:= Digits_Value
(T
);
12857 if Present
(Range_Constraint
(C
)) then
12858 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
12860 Range_Expr
:= Empty
;
12864 Set_Etype
(Def_Id
, Base_Type
(T
));
12865 Set_Size_Info
(Def_Id
, (T
));
12866 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12867 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
12868 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
12869 Set_Small_Value
(Def_Id
, Small_Value
(T
));
12870 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
12871 Set_Digits_Value
(Def_Id
, Digits_Val
);
12873 -- Manufacture range from given digits value if no range present
12875 if No
(Range_Expr
) then
12876 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
12880 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
12882 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
12885 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
12886 Set_Discrete_RM_Size
(Def_Id
);
12888 -- Unconditionally delay the freeze, since we cannot set size
12889 -- information in all cases correctly until the freeze point.
12891 Set_Has_Delayed_Freeze
(Def_Id
);
12892 end Constrain_Decimal
;
12894 ----------------------------------
12895 -- Constrain_Discriminated_Type --
12896 ----------------------------------
12898 procedure Constrain_Discriminated_Type
12899 (Def_Id
: Entity_Id
;
12901 Related_Nod
: Node_Id
;
12902 For_Access
: Boolean := False)
12904 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12907 Elist
: Elist_Id
:= New_Elmt_List
;
12909 procedure Fixup_Bad_Constraint
;
12910 -- This is called after finding a bad constraint, and after having
12911 -- posted an appropriate error message. The mission is to leave the
12912 -- entity T in as reasonable state as possible.
12914 --------------------------
12915 -- Fixup_Bad_Constraint --
12916 --------------------------
12918 procedure Fixup_Bad_Constraint
is
12920 -- Set a reasonable Ekind for the entity. For an incomplete type,
12921 -- we can't do much, but for other types, we can set the proper
12922 -- corresponding subtype kind.
12924 if Ekind
(T
) = E_Incomplete_Type
then
12925 Set_Ekind
(Def_Id
, Ekind
(T
));
12927 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
12930 -- Set Etype to the known type, to reduce chances of cascaded errors
12932 Set_Etype
(Def_Id
, E
);
12933 Set_Error_Posted
(Def_Id
);
12934 end Fixup_Bad_Constraint
;
12936 -- Start of processing for Constrain_Discriminated_Type
12939 C
:= Constraint
(S
);
12941 -- A discriminant constraint is only allowed in a subtype indication,
12942 -- after a subtype mark. This subtype mark must denote either a type
12943 -- with discriminants, or an access type whose designated type is a
12944 -- type with discriminants. A discriminant constraint specifies the
12945 -- values of these discriminants (RM 3.7.2(5)).
12947 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
12949 if Is_Access_Type
(T
) then
12950 T
:= Designated_Type
(T
);
12953 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12954 -- Avoid generating an error for access-to-incomplete subtypes.
12956 if Ada_Version
>= Ada_2005
12957 and then Ekind
(T
) = E_Incomplete_Type
12958 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
12959 and then not Is_Itype
(Def_Id
)
12961 -- A little sanity check, emit an error message if the type
12962 -- has discriminants to begin with. Type T may be a regular
12963 -- incomplete type or imported via a limited with clause.
12965 if Has_Discriminants
(T
)
12966 or else (From_Limited_With
(T
)
12967 and then Present
(Non_Limited_View
(T
))
12968 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
12969 N_Full_Type_Declaration
12970 and then Present
(Discriminant_Specifications
12971 (Parent
(Non_Limited_View
(T
)))))
12974 ("(Ada 2005) incomplete subtype may not be constrained", C
);
12976 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
12979 Fixup_Bad_Constraint
;
12982 -- Check that the type has visible discriminants. The type may be
12983 -- a private type with unknown discriminants whose full view has
12984 -- discriminants which are invisible.
12986 elsif not Has_Discriminants
(T
)
12988 (Has_Unknown_Discriminants
(T
)
12989 and then Is_Private_Type
(T
))
12991 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
12992 Fixup_Bad_Constraint
;
12995 elsif Is_Constrained
(E
)
12996 or else (Ekind
(E
) = E_Class_Wide_Subtype
12997 and then Present
(Discriminant_Constraint
(E
)))
12999 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
13000 Fixup_Bad_Constraint
;
13004 -- T may be an unconstrained subtype (e.g. a generic actual).
13005 -- Constraint applies to the base type.
13007 T
:= Base_Type
(T
);
13009 Elist
:= Build_Discriminant_Constraints
(T
, S
);
13011 -- If the list returned was empty we had an error in building the
13012 -- discriminant constraint. We have also already signalled an error
13013 -- in the incomplete type case
13015 if Is_Empty_Elmt_List
(Elist
) then
13016 Fixup_Bad_Constraint
;
13020 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
13021 end Constrain_Discriminated_Type
;
13023 ---------------------------
13024 -- Constrain_Enumeration --
13025 ---------------------------
13027 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
13028 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13029 C
: constant Node_Id
:= Constraint
(S
);
13032 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13034 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
13036 Set_Etype
(Def_Id
, Base_Type
(T
));
13037 Set_Size_Info
(Def_Id
, (T
));
13038 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13039 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13041 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13043 Set_Discrete_RM_Size
(Def_Id
);
13044 end Constrain_Enumeration
;
13046 ----------------------
13047 -- Constrain_Float --
13048 ----------------------
13050 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
13051 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13057 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
13059 Set_Etype
(Def_Id
, Base_Type
(T
));
13060 Set_Size_Info
(Def_Id
, (T
));
13061 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13063 -- Process the constraint
13065 C
:= Constraint
(S
);
13067 -- Digits constraint present
13069 if Nkind
(C
) = N_Digits_Constraint
then
13071 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13072 Check_Restriction
(No_Obsolescent_Features
, C
);
13074 if Warn_On_Obsolescent_Feature
then
13076 ("subtype digits constraint is an " &
13077 "obsolescent feature (RM J.3(8))?j?", C
);
13080 D
:= Digits_Expression
(C
);
13081 Analyze_And_Resolve
(D
, Any_Integer
);
13082 Check_Digits_Expression
(D
);
13083 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
13085 -- Check that digits value is in range. Obviously we can do this
13086 -- at compile time, but it is strictly a runtime check, and of
13087 -- course there is an ACVC test that checks this.
13089 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
13090 Error_Msg_Uint_1
:= Digits_Value
(T
);
13091 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
13093 Make_Raise_Constraint_Error
(Sloc
(D
),
13094 Reason
=> CE_Range_Check_Failed
);
13095 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13098 C
:= Range_Constraint
(C
);
13100 -- No digits constraint present
13103 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
13106 -- Range constraint present
13108 if Nkind
(C
) = N_Range_Constraint
then
13109 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13111 -- No range constraint present
13114 pragma Assert
(No
(C
));
13115 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13118 Set_Is_Constrained
(Def_Id
);
13119 end Constrain_Float
;
13121 ---------------------
13122 -- Constrain_Index --
13123 ---------------------
13125 procedure Constrain_Index
13128 Related_Nod
: Node_Id
;
13129 Related_Id
: Entity_Id
;
13130 Suffix
: Character;
13131 Suffix_Index
: Nat
)
13133 Def_Id
: Entity_Id
;
13134 R
: Node_Id
:= Empty
;
13135 T
: constant Entity_Id
:= Etype
(Index
);
13138 if Nkind
(S
) = N_Range
13140 (Nkind
(S
) = N_Attribute_Reference
13141 and then Attribute_Name
(S
) = Name_Range
)
13143 -- A Range attribute will be transformed into N_Range by Resolve
13149 Process_Range_Expr_In_Decl
(R
, T
);
13151 if not Error_Posted
(S
)
13153 (Nkind
(S
) /= N_Range
13154 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
13155 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
13157 if Base_Type
(T
) /= Any_Type
13158 and then Etype
(Low_Bound
(S
)) /= Any_Type
13159 and then Etype
(High_Bound
(S
)) /= Any_Type
13161 Error_Msg_N
("range expected", S
);
13165 elsif Nkind
(S
) = N_Subtype_Indication
then
13167 -- The parser has verified that this is a discrete indication
13169 Resolve_Discrete_Subtype_Indication
(S
, T
);
13170 Bad_Predicated_Subtype_Use
13171 ("subtype& has predicate, not allowed in index constraint",
13172 S
, Entity
(Subtype_Mark
(S
)));
13174 R
:= Range_Expression
(Constraint
(S
));
13176 -- Capture values of bounds and generate temporaries for them if
13177 -- needed, since checks may cause duplication of the expressions
13178 -- which must not be reevaluated.
13180 -- The forced evaluation removes side effects from expressions, which
13181 -- should occur also in GNATprove mode. Otherwise, we end up with
13182 -- unexpected insertions of actions at places where this is not
13183 -- supposed to occur, e.g. on default parameters of a call.
13185 if Expander_Active
or GNATprove_Mode
then
13186 Force_Evaluation
(Low_Bound
(R
));
13187 Force_Evaluation
(High_Bound
(R
));
13190 elsif Nkind
(S
) = N_Discriminant_Association
then
13192 -- Syntactically valid in subtype indication
13194 Error_Msg_N
("invalid index constraint", S
);
13195 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13198 -- Subtype_Mark case, no anonymous subtypes to construct
13203 if Is_Entity_Name
(S
) then
13204 if not Is_Type
(Entity
(S
)) then
13205 Error_Msg_N
("expect subtype mark for index constraint", S
);
13207 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
13208 Wrong_Type
(S
, Base_Type
(T
));
13210 -- Check error of subtype with predicate in index constraint
13213 Bad_Predicated_Subtype_Use
13214 ("subtype& has predicate, not allowed in index constraint",
13221 Error_Msg_N
("invalid index constraint", S
);
13222 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13228 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13230 Set_Etype
(Def_Id
, Base_Type
(T
));
13232 if Is_Modular_Integer_Type
(T
) then
13233 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13235 elsif Is_Integer_Type
(T
) then
13236 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13239 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13240 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13241 Set_First_Literal
(Def_Id
, First_Literal
(T
));
13244 Set_Size_Info
(Def_Id
, (T
));
13245 Set_RM_Size
(Def_Id
, RM_Size
(T
));
13246 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13248 Set_Scalar_Range
(Def_Id
, R
);
13250 Set_Etype
(S
, Def_Id
);
13251 Set_Discrete_RM_Size
(Def_Id
);
13252 end Constrain_Index
;
13254 -----------------------
13255 -- Constrain_Integer --
13256 -----------------------
13258 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
13259 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13260 C
: constant Node_Id
:= Constraint
(S
);
13263 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13265 if Is_Modular_Integer_Type
(T
) then
13266 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13268 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13271 Set_Etype
(Def_Id
, Base_Type
(T
));
13272 Set_Size_Info
(Def_Id
, (T
));
13273 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13274 Set_Discrete_RM_Size
(Def_Id
);
13275 end Constrain_Integer
;
13277 ------------------------------
13278 -- Constrain_Ordinary_Fixed --
13279 ------------------------------
13281 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
13282 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13288 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
13289 Set_Etype
(Def_Id
, Base_Type
(T
));
13290 Set_Size_Info
(Def_Id
, (T
));
13291 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13292 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13294 -- Process the constraint
13296 C
:= Constraint
(S
);
13298 -- Delta constraint present
13300 if Nkind
(C
) = N_Delta_Constraint
then
13302 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
13303 Check_Restriction
(No_Obsolescent_Features
, C
);
13305 if Warn_On_Obsolescent_Feature
then
13307 ("subtype delta constraint is an " &
13308 "obsolescent feature (RM J.3(7))?j?");
13311 D
:= Delta_Expression
(C
);
13312 Analyze_And_Resolve
(D
, Any_Real
);
13313 Check_Delta_Expression
(D
);
13314 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
13316 -- Check that delta value is in range. Obviously we can do this
13317 -- at compile time, but it is strictly a runtime check, and of
13318 -- course there is an ACVC test that checks this.
13320 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
13321 Error_Msg_N
("??delta value is too small", D
);
13323 Make_Raise_Constraint_Error
(Sloc
(D
),
13324 Reason
=> CE_Range_Check_Failed
);
13325 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13328 C
:= Range_Constraint
(C
);
13330 -- No delta constraint present
13333 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13336 -- Range constraint present
13338 if Nkind
(C
) = N_Range_Constraint
then
13339 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13341 -- No range constraint present
13344 pragma Assert
(No
(C
));
13345 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13349 Set_Discrete_RM_Size
(Def_Id
);
13351 -- Unconditionally delay the freeze, since we cannot set size
13352 -- information in all cases correctly until the freeze point.
13354 Set_Has_Delayed_Freeze
(Def_Id
);
13355 end Constrain_Ordinary_Fixed
;
13357 -----------------------
13358 -- Contain_Interface --
13359 -----------------------
13361 function Contain_Interface
13362 (Iface
: Entity_Id
;
13363 Ifaces
: Elist_Id
) return Boolean
13365 Iface_Elmt
: Elmt_Id
;
13368 if Present
(Ifaces
) then
13369 Iface_Elmt
:= First_Elmt
(Ifaces
);
13370 while Present
(Iface_Elmt
) loop
13371 if Node
(Iface_Elmt
) = Iface
then
13375 Next_Elmt
(Iface_Elmt
);
13380 end Contain_Interface
;
13382 ---------------------------
13383 -- Convert_Scalar_Bounds --
13384 ---------------------------
13386 procedure Convert_Scalar_Bounds
13388 Parent_Type
: Entity_Id
;
13389 Derived_Type
: Entity_Id
;
13392 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
13399 -- Defend against previous errors
13401 if No
(Scalar_Range
(Derived_Type
)) then
13402 Check_Error_Detected
;
13406 Lo
:= Build_Scalar_Bound
13407 (Type_Low_Bound
(Derived_Type
),
13408 Parent_Type
, Implicit_Base
);
13410 Hi
:= Build_Scalar_Bound
13411 (Type_High_Bound
(Derived_Type
),
13412 Parent_Type
, Implicit_Base
);
13419 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
13421 Set_Parent
(Rng
, N
);
13422 Set_Scalar_Range
(Derived_Type
, Rng
);
13424 -- Analyze the bounds
13426 Analyze_And_Resolve
(Lo
, Implicit_Base
);
13427 Analyze_And_Resolve
(Hi
, Implicit_Base
);
13429 -- Analyze the range itself, except that we do not analyze it if
13430 -- the bounds are real literals, and we have a fixed-point type.
13431 -- The reason for this is that we delay setting the bounds in this
13432 -- case till we know the final Small and Size values (see circuit
13433 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13435 if Is_Fixed_Point_Type
(Parent_Type
)
13436 and then Nkind
(Lo
) = N_Real_Literal
13437 and then Nkind
(Hi
) = N_Real_Literal
13441 -- Here we do the analysis of the range
13443 -- Note: we do this manually, since if we do a normal Analyze and
13444 -- Resolve call, there are problems with the conversions used for
13445 -- the derived type range.
13448 Set_Etype
(Rng
, Implicit_Base
);
13449 Set_Analyzed
(Rng
, True);
13451 end Convert_Scalar_Bounds
;
13453 -------------------
13454 -- Copy_And_Swap --
13455 -------------------
13457 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
13459 -- Initialize new full declaration entity by copying the pertinent
13460 -- fields of the corresponding private declaration entity.
13462 -- We temporarily set Ekind to a value appropriate for a type to
13463 -- avoid assert failures in Einfo from checking for setting type
13464 -- attributes on something that is not a type. Ekind (Priv) is an
13465 -- appropriate choice, since it allowed the attributes to be set
13466 -- in the first place. This Ekind value will be modified later.
13468 Set_Ekind
(Full
, Ekind
(Priv
));
13470 -- Also set Etype temporarily to Any_Type, again, in the absence
13471 -- of errors, it will be properly reset, and if there are errors,
13472 -- then we want a value of Any_Type to remain.
13474 Set_Etype
(Full
, Any_Type
);
13476 -- Now start copying attributes
13478 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
13480 if Has_Discriminants
(Full
) then
13481 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
13482 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
13485 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
13486 Set_Homonym
(Full
, Homonym
(Priv
));
13487 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
13488 Set_Is_Public
(Full
, Is_Public
(Priv
));
13489 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
13490 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
13491 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
13492 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
13493 Set_Has_Pragma_Unreferenced_Objects
13494 (Full
, Has_Pragma_Unreferenced_Objects
13497 Conditional_Delay
(Full
, Priv
);
13499 if Is_Tagged_Type
(Full
) then
13500 Set_Direct_Primitive_Operations
13501 (Full
, Direct_Primitive_Operations
(Priv
));
13502 Set_No_Tagged_Streams_Pragma
13503 (Full
, No_Tagged_Streams_Pragma
(Priv
));
13505 if Is_Base_Type
(Priv
) then
13506 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
13510 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
13511 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
13512 Set_Scope
(Full
, Scope
(Priv
));
13513 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
13514 Set_First_Entity
(Full
, First_Entity
(Priv
));
13515 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
13517 -- If access types have been recorded for later handling, keep them in
13518 -- the full view so that they get handled when the full view freeze
13519 -- node is expanded.
13521 if Present
(Freeze_Node
(Priv
))
13522 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
13524 Ensure_Freeze_Node
(Full
);
13525 Set_Access_Types_To_Process
13526 (Freeze_Node
(Full
),
13527 Access_Types_To_Process
(Freeze_Node
(Priv
)));
13530 -- Swap the two entities. Now Private is the full type entity and Full
13531 -- is the private one. They will be swapped back at the end of the
13532 -- private part. This swapping ensures that the entity that is visible
13533 -- in the private part is the full declaration.
13535 Exchange_Entities
(Priv
, Full
);
13536 Append_Entity
(Full
, Scope
(Full
));
13539 -------------------------------------
13540 -- Copy_Array_Base_Type_Attributes --
13541 -------------------------------------
13543 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
13545 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
13546 Set_Component_Type
(T1
, Component_Type
(T2
));
13547 Set_Component_Size
(T1
, Component_Size
(T2
));
13548 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
13549 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
13550 Set_Has_Protected
(T1
, Has_Protected
(T2
));
13551 Set_Has_Task
(T1
, Has_Task
(T2
));
13552 Set_Is_Packed
(T1
, Is_Packed
(T2
));
13553 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
13554 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
13555 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
13556 end Copy_Array_Base_Type_Attributes
;
13558 -----------------------------------
13559 -- Copy_Array_Subtype_Attributes --
13560 -----------------------------------
13562 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
13564 Set_Size_Info
(T1
, T2
);
13566 Set_First_Index
(T1
, First_Index
(T2
));
13567 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
13568 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
13569 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
13570 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
13571 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
13572 Inherit_Rep_Item_Chain
(T1
, T2
);
13573 Set_Convention
(T1
, Convention
(T2
));
13574 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
13575 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
13576 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
13577 end Copy_Array_Subtype_Attributes
;
13579 -----------------------------------
13580 -- Create_Constrained_Components --
13581 -----------------------------------
13583 procedure Create_Constrained_Components
13585 Decl_Node
: Node_Id
;
13587 Constraints
: Elist_Id
)
13589 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
13590 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
13591 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
13592 Assoc_List
: constant List_Id
:= New_List
;
13593 Discr_Val
: Elmt_Id
;
13597 Is_Static
: Boolean := True;
13599 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
13600 -- Collect parent type components that do not appear in a variant part
13602 procedure Create_All_Components
;
13603 -- Iterate over Comp_List to create the components of the subtype
13605 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
13606 -- Creates a new component from Old_Compon, copying all the fields from
13607 -- it, including its Etype, inserts the new component in the Subt entity
13608 -- chain and returns the new component.
13610 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
13611 -- If true, and discriminants are static, collect only components from
13612 -- variants selected by discriminant values.
13614 ------------------------------
13615 -- Collect_Fixed_Components --
13616 ------------------------------
13618 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
13620 -- Build association list for discriminants, and find components of the
13621 -- variant part selected by the values of the discriminants.
13623 Old_C
:= First_Discriminant
(Typ
);
13624 Discr_Val
:= First_Elmt
(Constraints
);
13625 while Present
(Old_C
) loop
13626 Append_To
(Assoc_List
,
13627 Make_Component_Association
(Loc
,
13628 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
13629 Expression
=> New_Copy
(Node
(Discr_Val
))));
13631 Next_Elmt
(Discr_Val
);
13632 Next_Discriminant
(Old_C
);
13635 -- The tag and the possible parent component are unconditionally in
13638 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
13639 Old_C
:= First_Component
(Typ
);
13640 while Present
(Old_C
) loop
13641 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
13642 Append_Elmt
(Old_C
, Comp_List
);
13645 Next_Component
(Old_C
);
13648 end Collect_Fixed_Components
;
13650 ---------------------------
13651 -- Create_All_Components --
13652 ---------------------------
13654 procedure Create_All_Components
is
13658 Comp
:= First_Elmt
(Comp_List
);
13659 while Present
(Comp
) loop
13660 Old_C
:= Node
(Comp
);
13661 New_C
:= Create_Component
(Old_C
);
13665 Constrain_Component_Type
13666 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13667 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13671 end Create_All_Components
;
13673 ----------------------
13674 -- Create_Component --
13675 ----------------------
13677 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
13678 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
13681 if Ekind
(Old_Compon
) = E_Discriminant
13682 and then Is_Completely_Hidden
(Old_Compon
)
13684 -- This is a shadow discriminant created for a discriminant of
13685 -- the parent type, which needs to be present in the subtype.
13686 -- Give the shadow discriminant an internal name that cannot
13687 -- conflict with that of visible components.
13689 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
13692 -- Set the parent so we have a proper link for freezing etc. This is
13693 -- not a real parent pointer, since of course our parent does not own
13694 -- up to us and reference us, we are an illegitimate child of the
13695 -- original parent.
13697 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
13699 -- If the old component's Esize was already determined and is a
13700 -- static value, then the new component simply inherits it. Otherwise
13701 -- the old component's size may require run-time determination, but
13702 -- the new component's size still might be statically determinable
13703 -- (if, for example it has a static constraint). In that case we want
13704 -- Layout_Type to recompute the component's size, so we reset its
13705 -- size and positional fields.
13707 if Frontend_Layout_On_Target
13708 and then not Known_Static_Esize
(Old_Compon
)
13710 Set_Esize
(New_Compon
, Uint_0
);
13711 Init_Normalized_First_Bit
(New_Compon
);
13712 Init_Normalized_Position
(New_Compon
);
13713 Init_Normalized_Position_Max
(New_Compon
);
13716 -- We do not want this node marked as Comes_From_Source, since
13717 -- otherwise it would get first class status and a separate cross-
13718 -- reference line would be generated. Illegitimate children do not
13719 -- rate such recognition.
13721 Set_Comes_From_Source
(New_Compon
, False);
13723 -- But it is a real entity, and a birth certificate must be properly
13724 -- registered by entering it into the entity list.
13726 Enter_Name
(New_Compon
);
13729 end Create_Component
;
13731 -----------------------
13732 -- Is_Variant_Record --
13733 -----------------------
13735 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
13737 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
13738 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
13739 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
13742 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
13743 end Is_Variant_Record
;
13745 -- Start of processing for Create_Constrained_Components
13748 pragma Assert
(Subt
/= Base_Type
(Subt
));
13749 pragma Assert
(Typ
= Base_Type
(Typ
));
13751 Set_First_Entity
(Subt
, Empty
);
13752 Set_Last_Entity
(Subt
, Empty
);
13754 -- Check whether constraint is fully static, in which case we can
13755 -- optimize the list of components.
13757 Discr_Val
:= First_Elmt
(Constraints
);
13758 while Present
(Discr_Val
) loop
13759 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
13760 Is_Static
:= False;
13764 Next_Elmt
(Discr_Val
);
13767 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
13771 -- Inherit the discriminants of the parent type
13773 Add_Discriminants
: declare
13779 Old_C
:= First_Discriminant
(Typ
);
13781 while Present
(Old_C
) loop
13782 Num_Disc
:= Num_Disc
+ 1;
13783 New_C
:= Create_Component
(Old_C
);
13784 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13785 Next_Discriminant
(Old_C
);
13788 -- For an untagged derived subtype, the number of discriminants may
13789 -- be smaller than the number of inherited discriminants, because
13790 -- several of them may be renamed by a single new discriminant or
13791 -- constrained. In this case, add the hidden discriminants back into
13792 -- the subtype, because they need to be present if the optimizer of
13793 -- the GCC 4.x back-end decides to break apart assignments between
13794 -- objects using the parent view into member-wise assignments.
13798 if Is_Derived_Type
(Typ
)
13799 and then not Is_Tagged_Type
(Typ
)
13801 Old_C
:= First_Stored_Discriminant
(Typ
);
13803 while Present
(Old_C
) loop
13804 Num_Gird
:= Num_Gird
+ 1;
13805 Next_Stored_Discriminant
(Old_C
);
13809 if Num_Gird
> Num_Disc
then
13811 -- Find out multiple uses of new discriminants, and add hidden
13812 -- components for the extra renamed discriminants. We recognize
13813 -- multiple uses through the Corresponding_Discriminant of a
13814 -- new discriminant: if it constrains several old discriminants,
13815 -- this field points to the last one in the parent type. The
13816 -- stored discriminants of the derived type have the same name
13817 -- as those of the parent.
13821 New_Discr
: Entity_Id
;
13822 Old_Discr
: Entity_Id
;
13825 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
13826 Old_Discr
:= First_Stored_Discriminant
(Typ
);
13827 while Present
(Constr
) loop
13828 if Is_Entity_Name
(Node
(Constr
))
13829 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
13831 New_Discr
:= Entity
(Node
(Constr
));
13833 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
13836 -- The new discriminant has been used to rename a
13837 -- subsequent old discriminant. Introduce a shadow
13838 -- component for the current old discriminant.
13840 New_C
:= Create_Component
(Old_Discr
);
13841 Set_Original_Record_Component
(New_C
, Old_Discr
);
13845 -- The constraint has eliminated the old discriminant.
13846 -- Introduce a shadow component.
13848 New_C
:= Create_Component
(Old_Discr
);
13849 Set_Original_Record_Component
(New_C
, Old_Discr
);
13852 Next_Elmt
(Constr
);
13853 Next_Stored_Discriminant
(Old_Discr
);
13857 end Add_Discriminants
;
13860 and then Is_Variant_Record
(Typ
)
13862 Collect_Fixed_Components
(Typ
);
13864 Gather_Components
(
13866 Component_List
(Type_Definition
(Parent
(Typ
))),
13867 Governed_By
=> Assoc_List
,
13869 Report_Errors
=> Errors
);
13870 pragma Assert
(not Errors
);
13872 Create_All_Components
;
13874 -- If the subtype declaration is created for a tagged type derivation
13875 -- with constraints, we retrieve the record definition of the parent
13876 -- type to select the components of the proper variant.
13879 and then Is_Tagged_Type
(Typ
)
13880 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
13882 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
13883 and then Is_Variant_Record
(Parent_Type
)
13885 Collect_Fixed_Components
(Typ
);
13887 Gather_Components
(
13889 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
13890 Governed_By
=> Assoc_List
,
13892 Report_Errors
=> Errors
);
13893 pragma Assert
(not Errors
);
13895 -- If the tagged derivation has a type extension, collect all the
13896 -- new components therein.
13899 (Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
13901 Old_C
:= First_Component
(Typ
);
13902 while Present
(Old_C
) loop
13903 if Original_Record_Component
(Old_C
) = Old_C
13904 and then Chars
(Old_C
) /= Name_uTag
13905 and then Chars
(Old_C
) /= Name_uParent
13907 Append_Elmt
(Old_C
, Comp_List
);
13910 Next_Component
(Old_C
);
13914 Create_All_Components
;
13917 -- If discriminants are not static, or if this is a multi-level type
13918 -- extension, we have to include all components of the parent type.
13920 Old_C
:= First_Component
(Typ
);
13921 while Present
(Old_C
) loop
13922 New_C
:= Create_Component
(Old_C
);
13926 Constrain_Component_Type
13927 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13928 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13930 Next_Component
(Old_C
);
13935 end Create_Constrained_Components
;
13937 ------------------------------------------
13938 -- Decimal_Fixed_Point_Type_Declaration --
13939 ------------------------------------------
13941 procedure Decimal_Fixed_Point_Type_Declaration
13945 Loc
: constant Source_Ptr
:= Sloc
(Def
);
13946 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
13947 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
13948 Implicit_Base
: Entity_Id
;
13955 Check_SPARK_05_Restriction
13956 ("decimal fixed point type is not allowed", Def
);
13957 Check_Restriction
(No_Fixed_Point
, Def
);
13959 -- Create implicit base type
13962 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
13963 Set_Etype
(Implicit_Base
, Implicit_Base
);
13965 -- Analyze and process delta expression
13967 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
13969 Check_Delta_Expression
(Delta_Expr
);
13970 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
13972 -- Check delta is power of 10, and determine scale value from it
13978 Scale_Val
:= Uint_0
;
13981 if Val
< Ureal_1
then
13982 while Val
< Ureal_1
loop
13983 Val
:= Val
* Ureal_10
;
13984 Scale_Val
:= Scale_Val
+ 1;
13987 if Scale_Val
> 18 then
13988 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
13989 Scale_Val
:= UI_From_Int
(+18);
13993 while Val
> Ureal_1
loop
13994 Val
:= Val
/ Ureal_10
;
13995 Scale_Val
:= Scale_Val
- 1;
13998 if Scale_Val
< -18 then
13999 Error_Msg_N
("scale is less than minimum value of -18", Def
);
14000 Scale_Val
:= UI_From_Int
(-18);
14004 if Val
/= Ureal_1
then
14005 Error_Msg_N
("delta expression must be a power of 10", Def
);
14006 Delta_Val
:= Ureal_10
** (-Scale_Val
);
14010 -- Set delta, scale and small (small = delta for decimal type)
14012 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
14013 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
14014 Set_Small_Value
(Implicit_Base
, Delta_Val
);
14016 -- Analyze and process digits expression
14018 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
14019 Check_Digits_Expression
(Digs_Expr
);
14020 Digs_Val
:= Expr_Value
(Digs_Expr
);
14022 if Digs_Val
> 18 then
14023 Digs_Val
:= UI_From_Int
(+18);
14024 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
14027 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
14028 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
14030 -- Set range of base type from digits value for now. This will be
14031 -- expanded to represent the true underlying base range by Freeze.
14033 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
14035 -- Note: We leave size as zero for now, size will be set at freeze
14036 -- time. We have to do this for ordinary fixed-point, because the size
14037 -- depends on the specified small, and we might as well do the same for
14038 -- decimal fixed-point.
14040 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
14042 -- If there are bounds given in the declaration use them as the
14043 -- bounds of the first named subtype.
14045 if Present
(Real_Range_Specification
(Def
)) then
14047 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14048 Low
: constant Node_Id
:= Low_Bound
(RRS
);
14049 High
: constant Node_Id
:= High_Bound
(RRS
);
14054 Analyze_And_Resolve
(Low
, Any_Real
);
14055 Analyze_And_Resolve
(High
, Any_Real
);
14056 Check_Real_Bound
(Low
);
14057 Check_Real_Bound
(High
);
14058 Low_Val
:= Expr_Value_R
(Low
);
14059 High_Val
:= Expr_Value_R
(High
);
14061 if Low_Val
< (-Bound_Val
) then
14063 ("range low bound too small for digits value", Low
);
14064 Low_Val
:= -Bound_Val
;
14067 if High_Val
> Bound_Val
then
14069 ("range high bound too large for digits value", High
);
14070 High_Val
:= Bound_Val
;
14073 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
14076 -- If no explicit range, use range that corresponds to given
14077 -- digits value. This will end up as the final range for the
14081 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
14084 -- Complete entity for first subtype. The inheritance of the rep item
14085 -- chain ensures that SPARK-related pragmas are not clobbered when the
14086 -- decimal fixed point type acts as a full view of a private type.
14088 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
14089 Set_Etype
(T
, Implicit_Base
);
14090 Set_Size_Info
(T
, Implicit_Base
);
14091 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
14092 Set_Digits_Value
(T
, Digs_Val
);
14093 Set_Delta_Value
(T
, Delta_Val
);
14094 Set_Small_Value
(T
, Delta_Val
);
14095 Set_Scale_Value
(T
, Scale_Val
);
14096 Set_Is_Constrained
(T
);
14097 end Decimal_Fixed_Point_Type_Declaration
;
14099 -----------------------------------
14100 -- Derive_Progenitor_Subprograms --
14101 -----------------------------------
14103 procedure Derive_Progenitor_Subprograms
14104 (Parent_Type
: Entity_Id
;
14105 Tagged_Type
: Entity_Id
)
14110 Iface_Elmt
: Elmt_Id
;
14111 Iface_Subp
: Entity_Id
;
14112 New_Subp
: Entity_Id
:= Empty
;
14113 Prim_Elmt
: Elmt_Id
;
14118 pragma Assert
(Ada_Version
>= Ada_2005
14119 and then Is_Record_Type
(Tagged_Type
)
14120 and then Is_Tagged_Type
(Tagged_Type
)
14121 and then Has_Interfaces
(Tagged_Type
));
14123 -- Step 1: Transfer to the full-view primitives associated with the
14124 -- partial-view that cover interface primitives. Conceptually this
14125 -- work should be done later by Process_Full_View; done here to
14126 -- simplify its implementation at later stages. It can be safely
14127 -- done here because interfaces must be visible in the partial and
14128 -- private view (RM 7.3(7.3/2)).
14130 -- Small optimization: This work is only required if the parent may
14131 -- have entities whose Alias attribute reference an interface primitive.
14132 -- Such a situation may occur if the parent is an abstract type and the
14133 -- primitive has not been yet overridden or if the parent is a generic
14134 -- formal type covering interfaces.
14136 -- If the tagged type is not abstract, it cannot have abstract
14137 -- primitives (the only entities in the list of primitives of
14138 -- non-abstract tagged types that can reference abstract primitives
14139 -- through its Alias attribute are the internal entities that have
14140 -- attribute Interface_Alias, and these entities are generated later
14141 -- by Add_Internal_Interface_Entities).
14143 if In_Private_Part
(Current_Scope
)
14144 and then (Is_Abstract_Type
(Parent_Type
)
14146 Is_Generic_Type
(Parent_Type
))
14148 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14149 while Present
(Elmt
) loop
14150 Subp
:= Node
(Elmt
);
14152 -- At this stage it is not possible to have entities in the list
14153 -- of primitives that have attribute Interface_Alias.
14155 pragma Assert
(No
(Interface_Alias
(Subp
)));
14157 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
14159 if Is_Interface
(Typ
) then
14160 E
:= Find_Primitive_Covering_Interface
14161 (Tagged_Type
=> Tagged_Type
,
14162 Iface_Prim
=> Subp
);
14165 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
14167 Replace_Elmt
(Elmt
, E
);
14168 Remove_Homonym
(Subp
);
14176 -- Step 2: Add primitives of progenitors that are not implemented by
14177 -- parents of Tagged_Type.
14179 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
14180 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
14181 while Present
(Iface_Elmt
) loop
14182 Iface
:= Node
(Iface_Elmt
);
14184 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
14185 while Present
(Prim_Elmt
) loop
14186 Iface_Subp
:= Node
(Prim_Elmt
);
14188 -- Exclude derivation of predefined primitives except those
14189 -- that come from source, or are inherited from one that comes
14190 -- from source. Required to catch declarations of equality
14191 -- operators of interfaces. For example:
14193 -- type Iface is interface;
14194 -- function "=" (Left, Right : Iface) return Boolean;
14196 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
14197 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
14199 E
:= Find_Primitive_Covering_Interface
14200 (Tagged_Type
=> Tagged_Type
,
14201 Iface_Prim
=> Iface_Subp
);
14203 -- If not found we derive a new primitive leaving its alias
14204 -- attribute referencing the interface primitive.
14208 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14210 -- Ada 2012 (AI05-0197): If the covering primitive's name
14211 -- differs from the name of the interface primitive then it
14212 -- is a private primitive inherited from a parent type. In
14213 -- such case, given that Tagged_Type covers the interface,
14214 -- the inherited private primitive becomes visible. For such
14215 -- purpose we add a new entity that renames the inherited
14216 -- private primitive.
14218 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
14219 pragma Assert
(Has_Suffix
(E
, 'P'));
14221 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14222 Set_Alias
(New_Subp
, E
);
14223 Set_Is_Abstract_Subprogram
(New_Subp
,
14224 Is_Abstract_Subprogram
(E
));
14226 -- Propagate to the full view interface entities associated
14227 -- with the partial view.
14229 elsif In_Private_Part
(Current_Scope
)
14230 and then Present
(Alias
(E
))
14231 and then Alias
(E
) = Iface_Subp
14233 List_Containing
(Parent
(E
)) /=
14234 Private_Declarations
14236 (Unit_Declaration_Node
(Current_Scope
)))
14238 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
14242 Next_Elmt
(Prim_Elmt
);
14245 Next_Elmt
(Iface_Elmt
);
14248 end Derive_Progenitor_Subprograms
;
14250 -----------------------
14251 -- Derive_Subprogram --
14252 -----------------------
14254 procedure Derive_Subprogram
14255 (New_Subp
: in out Entity_Id
;
14256 Parent_Subp
: Entity_Id
;
14257 Derived_Type
: Entity_Id
;
14258 Parent_Type
: Entity_Id
;
14259 Actual_Subp
: Entity_Id
:= Empty
)
14261 Formal
: Entity_Id
;
14262 -- Formal parameter of parent primitive operation
14264 Formal_Of_Actual
: Entity_Id
;
14265 -- Formal parameter of actual operation, when the derivation is to
14266 -- create a renaming for a primitive operation of an actual in an
14269 New_Formal
: Entity_Id
;
14270 -- Formal of inherited operation
14272 Visible_Subp
: Entity_Id
:= Parent_Subp
;
14274 function Is_Private_Overriding
return Boolean;
14275 -- If Subp is a private overriding of a visible operation, the inherited
14276 -- operation derives from the overridden op (even though its body is the
14277 -- overriding one) and the inherited operation is visible now. See
14278 -- sem_disp to see the full details of the handling of the overridden
14279 -- subprogram, which is removed from the list of primitive operations of
14280 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14281 -- and used to diagnose abstract operations that need overriding in the
14284 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
14285 -- When the type is an anonymous access type, create a new access type
14286 -- designating the derived type.
14288 procedure Set_Derived_Name
;
14289 -- This procedure sets the appropriate Chars name for New_Subp. This
14290 -- is normally just a copy of the parent name. An exception arises for
14291 -- type support subprograms, where the name is changed to reflect the
14292 -- name of the derived type, e.g. if type foo is derived from type bar,
14293 -- then a procedure barDA is derived with a name fooDA.
14295 ---------------------------
14296 -- Is_Private_Overriding --
14297 ---------------------------
14299 function Is_Private_Overriding
return Boolean is
14303 -- If the parent is not a dispatching operation there is no
14304 -- need to investigate overridings
14306 if not Is_Dispatching_Operation
(Parent_Subp
) then
14310 -- The visible operation that is overridden is a homonym of the
14311 -- parent subprogram. We scan the homonym chain to find the one
14312 -- whose alias is the subprogram we are deriving.
14314 Prev
:= Current_Entity
(Parent_Subp
);
14315 while Present
(Prev
) loop
14316 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
14317 and then Alias
(Prev
) = Parent_Subp
14318 and then Scope
(Parent_Subp
) = Scope
(Prev
)
14319 and then not Is_Hidden
(Prev
)
14321 Visible_Subp
:= Prev
;
14325 Prev
:= Homonym
(Prev
);
14329 end Is_Private_Overriding
;
14335 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
14336 Id_Type
: constant Entity_Id
:= Etype
(Id
);
14337 Acc_Type
: Entity_Id
;
14338 Par
: constant Node_Id
:= Parent
(Derived_Type
);
14341 -- When the type is an anonymous access type, create a new access
14342 -- type designating the derived type. This itype must be elaborated
14343 -- at the point of the derivation, not on subsequent calls that may
14344 -- be out of the proper scope for Gigi, so we insert a reference to
14345 -- it after the derivation.
14347 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
14349 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
14352 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
14353 and then Present
(Full_View
(Desig_Typ
))
14354 and then not Is_Private_Type
(Parent_Type
)
14356 Desig_Typ
:= Full_View
(Desig_Typ
);
14359 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
14361 -- Ada 2005 (AI-251): Handle also derivations of abstract
14362 -- interface primitives.
14364 or else (Is_Interface
(Desig_Typ
)
14365 and then not Is_Class_Wide_Type
(Desig_Typ
))
14367 Acc_Type
:= New_Copy
(Id_Type
);
14368 Set_Etype
(Acc_Type
, Acc_Type
);
14369 Set_Scope
(Acc_Type
, New_Subp
);
14371 -- Set size of anonymous access type. If we have an access
14372 -- to an unconstrained array, this is a fat pointer, so it
14373 -- is sizes at twice addtress size.
14375 if Is_Array_Type
(Desig_Typ
)
14376 and then not Is_Constrained
(Desig_Typ
)
14378 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
14380 -- Other cases use a thin pointer
14383 Init_Size
(Acc_Type
, System_Address_Size
);
14386 -- Set remaining characterstics of anonymous access type
14388 Init_Alignment
(Acc_Type
);
14389 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
14391 Set_Etype
(New_Id
, Acc_Type
);
14392 Set_Scope
(New_Id
, New_Subp
);
14394 -- Create a reference to it
14396 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
14399 Set_Etype
(New_Id
, Id_Type
);
14403 -- In Ada2012, a formal may have an incomplete type but the type
14404 -- derivation that inherits the primitive follows the full view.
14406 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
14408 (Ekind
(Id_Type
) = E_Record_Type_With_Private
14409 and then Present
(Full_View
(Id_Type
))
14411 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
14413 (Ada_Version
>= Ada_2012
14414 and then Ekind
(Id_Type
) = E_Incomplete_Type
14415 and then Full_View
(Id_Type
) = Parent_Type
)
14417 -- Constraint checks on formals are generated during expansion,
14418 -- based on the signature of the original subprogram. The bounds
14419 -- of the derived type are not relevant, and thus we can use
14420 -- the base type for the formals. However, the return type may be
14421 -- used in a context that requires that the proper static bounds
14422 -- be used (a case statement, for example) and for those cases
14423 -- we must use the derived type (first subtype), not its base.
14425 -- If the derived_type_definition has no constraints, we know that
14426 -- the derived type has the same constraints as the first subtype
14427 -- of the parent, and we can also use it rather than its base,
14428 -- which can lead to more efficient code.
14430 if Etype
(Id
) = Parent_Type
then
14431 if Is_Scalar_Type
(Parent_Type
)
14433 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
14435 Set_Etype
(New_Id
, Derived_Type
);
14437 elsif Nkind
(Par
) = N_Full_Type_Declaration
14439 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
14442 (Subtype_Indication
(Type_Definition
(Par
)))
14444 Set_Etype
(New_Id
, Derived_Type
);
14447 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14451 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14455 Set_Etype
(New_Id
, Etype
(Id
));
14459 ----------------------
14460 -- Set_Derived_Name --
14461 ----------------------
14463 procedure Set_Derived_Name
is
14464 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
14466 if Nm
= TSS_Null
then
14467 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
14469 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
14471 end Set_Derived_Name
;
14473 -- Start of processing for Derive_Subprogram
14476 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
14477 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
14478 Set_Contract
(New_Subp
, Make_Contract
(Sloc
(New_Subp
)));
14480 -- Check whether the inherited subprogram is a private operation that
14481 -- should be inherited but not yet made visible. Such subprograms can
14482 -- become visible at a later point (e.g., the private part of a public
14483 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14484 -- following predicate is true, then this is not such a private
14485 -- operation and the subprogram simply inherits the name of the parent
14486 -- subprogram. Note the special check for the names of controlled
14487 -- operations, which are currently exempted from being inherited with
14488 -- a hidden name because they must be findable for generation of
14489 -- implicit run-time calls.
14491 if not Is_Hidden
(Parent_Subp
)
14492 or else Is_Internal
(Parent_Subp
)
14493 or else Is_Private_Overriding
14494 or else Is_Internal_Name
(Chars
(Parent_Subp
))
14495 or else Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14501 -- An inherited dispatching equality will be overridden by an internally
14502 -- generated one, or by an explicit one, so preserve its name and thus
14503 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14504 -- private operation it may become invisible if the full view has
14505 -- progenitors, and the dispatch table will be malformed.
14506 -- We check that the type is limited to handle the anomalous declaration
14507 -- of Limited_Controlled, which is derived from a non-limited type, and
14508 -- which is handled specially elsewhere as well.
14510 elsif Chars
(Parent_Subp
) = Name_Op_Eq
14511 and then Is_Dispatching_Operation
(Parent_Subp
)
14512 and then Etype
(Parent_Subp
) = Standard_Boolean
14513 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
14515 Etype
(First_Formal
(Parent_Subp
)) =
14516 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
14520 -- If parent is hidden, this can be a regular derivation if the
14521 -- parent is immediately visible in a non-instantiating context,
14522 -- or if we are in the private part of an instance. This test
14523 -- should still be refined ???
14525 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14526 -- operation as a non-visible operation in cases where the parent
14527 -- subprogram might not be visible now, but was visible within the
14528 -- original generic, so it would be wrong to make the inherited
14529 -- subprogram non-visible now. (Not clear if this test is fully
14530 -- correct; are there any cases where we should declare the inherited
14531 -- operation as not visible to avoid it being overridden, e.g., when
14532 -- the parent type is a generic actual with private primitives ???)
14534 -- (they should be treated the same as other private inherited
14535 -- subprograms, but it's not clear how to do this cleanly). ???
14537 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14538 and then Is_Immediately_Visible
(Parent_Subp
)
14539 and then not In_Instance
)
14540 or else In_Instance_Not_Visible
14544 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14545 -- overrides an interface primitive because interface primitives
14546 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14548 elsif Ada_Version
>= Ada_2005
14549 and then Is_Dispatching_Operation
(Parent_Subp
)
14550 and then Covers_Some_Interface
(Parent_Subp
)
14554 -- Otherwise, the type is inheriting a private operation, so enter
14555 -- it with a special name so it can't be overridden.
14558 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
14561 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
14563 if Present
(Actual_Subp
) then
14564 Replace_Type
(Actual_Subp
, New_Subp
);
14566 Replace_Type
(Parent_Subp
, New_Subp
);
14569 Conditional_Delay
(New_Subp
, Parent_Subp
);
14571 -- If we are creating a renaming for a primitive operation of an
14572 -- actual of a generic derived type, we must examine the signature
14573 -- of the actual primitive, not that of the generic formal, which for
14574 -- example may be an interface. However the name and initial value
14575 -- of the inherited operation are those of the formal primitive.
14577 Formal
:= First_Formal
(Parent_Subp
);
14579 if Present
(Actual_Subp
) then
14580 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
14582 Formal_Of_Actual
:= Empty
;
14585 while Present
(Formal
) loop
14586 New_Formal
:= New_Copy
(Formal
);
14588 -- Normally we do not go copying parents, but in the case of
14589 -- formals, we need to link up to the declaration (which is the
14590 -- parameter specification), and it is fine to link up to the
14591 -- original formal's parameter specification in this case.
14593 Set_Parent
(New_Formal
, Parent
(Formal
));
14594 Append_Entity
(New_Formal
, New_Subp
);
14596 if Present
(Formal_Of_Actual
) then
14597 Replace_Type
(Formal_Of_Actual
, New_Formal
);
14598 Next_Formal
(Formal_Of_Actual
);
14600 Replace_Type
(Formal
, New_Formal
);
14603 Next_Formal
(Formal
);
14606 -- If this derivation corresponds to a tagged generic actual, then
14607 -- primitive operations rename those of the actual. Otherwise the
14608 -- primitive operations rename those of the parent type, If the parent
14609 -- renames an intrinsic operator, so does the new subprogram. We except
14610 -- concatenation, which is always properly typed, and does not get
14611 -- expanded as other intrinsic operations.
14613 if No
(Actual_Subp
) then
14614 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
14615 Set_Is_Intrinsic_Subprogram
(New_Subp
);
14617 if Present
(Alias
(Parent_Subp
))
14618 and then Chars
(Parent_Subp
) /= Name_Op_Concat
14620 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
14622 Set_Alias
(New_Subp
, Parent_Subp
);
14626 Set_Alias
(New_Subp
, Parent_Subp
);
14630 Set_Alias
(New_Subp
, Actual_Subp
);
14633 -- Derived subprograms of a tagged type must inherit the convention
14634 -- of the parent subprogram (a requirement of AI-117). Derived
14635 -- subprograms of untagged types simply get convention Ada by default.
14637 -- If the derived type is a tagged generic formal type with unknown
14638 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14640 -- However, if the type is derived from a generic formal, the further
14641 -- inherited subprogram has the convention of the non-generic ancestor.
14642 -- Otherwise there would be no way to override the operation.
14643 -- (This is subject to forthcoming ARG discussions).
14645 if Is_Tagged_Type
(Derived_Type
) then
14646 if Is_Generic_Type
(Derived_Type
)
14647 and then Has_Unknown_Discriminants
(Derived_Type
)
14649 Set_Convention
(New_Subp
, Convention_Intrinsic
);
14652 if Is_Generic_Type
(Parent_Type
)
14653 and then Has_Unknown_Discriminants
(Parent_Type
)
14655 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
14657 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
14662 -- Predefined controlled operations retain their name even if the parent
14663 -- is hidden (see above), but they are not primitive operations if the
14664 -- ancestor is not visible, for example if the parent is a private
14665 -- extension completed with a controlled extension. Note that a full
14666 -- type that is controlled can break privacy: the flag Is_Controlled is
14667 -- set on both views of the type.
14669 if Is_Controlled
(Parent_Type
)
14670 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14673 and then Is_Hidden
(Parent_Subp
)
14674 and then not Is_Visibly_Controlled
(Parent_Type
)
14676 Set_Is_Hidden
(New_Subp
);
14679 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
14680 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
14682 if Ekind
(Parent_Subp
) = E_Procedure
then
14683 Set_Is_Valued_Procedure
14684 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
14686 Set_Has_Controlling_Result
14687 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
14690 -- No_Return must be inherited properly. If this is overridden in the
14691 -- case of a dispatching operation, then a check is made in Sem_Disp
14692 -- that the overriding operation is also No_Return (no such check is
14693 -- required for the case of non-dispatching operation.
14695 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
14697 -- A derived function with a controlling result is abstract. If the
14698 -- Derived_Type is a nonabstract formal generic derived type, then
14699 -- inherited operations are not abstract: the required check is done at
14700 -- instantiation time. If the derivation is for a generic actual, the
14701 -- function is not abstract unless the actual is.
14703 if Is_Generic_Type
(Derived_Type
)
14704 and then not Is_Abstract_Type
(Derived_Type
)
14708 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14709 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14711 -- A subprogram subject to pragma Extensions_Visible with value False
14712 -- requires overriding if the subprogram has at least one controlling
14713 -- OUT parameter (SPARK RM 6.1.7(6)).
14715 elsif Ada_Version
>= Ada_2005
14716 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14717 or else (Is_Tagged_Type
(Derived_Type
)
14718 and then Etype
(New_Subp
) = Derived_Type
14719 and then not Is_Null_Extension
(Derived_Type
))
14720 or else (Is_Tagged_Type
(Derived_Type
)
14721 and then Ekind
(Etype
(New_Subp
)) =
14722 E_Anonymous_Access_Type
14723 and then Designated_Type
(Etype
(New_Subp
)) =
14725 and then not Is_Null_Extension
(Derived_Type
))
14726 or else (Comes_From_Source
(Alias
(New_Subp
))
14727 and then Is_EVF_Procedure
(Alias
(New_Subp
))))
14728 and then No
(Actual_Subp
)
14730 if not Is_Tagged_Type
(Derived_Type
)
14731 or else Is_Abstract_Type
(Derived_Type
)
14732 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
14734 Set_Is_Abstract_Subprogram
(New_Subp
);
14736 Set_Requires_Overriding
(New_Subp
);
14739 elsif Ada_Version
< Ada_2005
14740 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14741 or else (Is_Tagged_Type
(Derived_Type
)
14742 and then Etype
(New_Subp
) = Derived_Type
14743 and then No
(Actual_Subp
)))
14745 Set_Is_Abstract_Subprogram
(New_Subp
);
14747 -- AI05-0097 : an inherited operation that dispatches on result is
14748 -- abstract if the derived type is abstract, even if the parent type
14749 -- is concrete and the derived type is a null extension.
14751 elsif Has_Controlling_Result
(Alias
(New_Subp
))
14752 and then Is_Abstract_Type
(Etype
(New_Subp
))
14754 Set_Is_Abstract_Subprogram
(New_Subp
);
14756 -- Finally, if the parent type is abstract we must verify that all
14757 -- inherited operations are either non-abstract or overridden, or that
14758 -- the derived type itself is abstract (this check is performed at the
14759 -- end of a package declaration, in Check_Abstract_Overriding). A
14760 -- private overriding in the parent type will not be visible in the
14761 -- derivation if we are not in an inner package or in a child unit of
14762 -- the parent type, in which case the abstractness of the inherited
14763 -- operation is carried to the new subprogram.
14765 elsif Is_Abstract_Type
(Parent_Type
)
14766 and then not In_Open_Scopes
(Scope
(Parent_Type
))
14767 and then Is_Private_Overriding
14768 and then Is_Abstract_Subprogram
(Visible_Subp
)
14770 if No
(Actual_Subp
) then
14771 Set_Alias
(New_Subp
, Visible_Subp
);
14772 Set_Is_Abstract_Subprogram
(New_Subp
, True);
14775 -- If this is a derivation for an instance of a formal derived
14776 -- type, abstractness comes from the primitive operation of the
14777 -- actual, not from the operation inherited from the ancestor.
14779 Set_Is_Abstract_Subprogram
14780 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
14784 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
14786 -- Check for case of a derived subprogram for the instantiation of a
14787 -- formal derived tagged type, if so mark the subprogram as dispatching
14788 -- and inherit the dispatching attributes of the actual subprogram. The
14789 -- derived subprogram is effectively renaming of the actual subprogram,
14790 -- so it needs to have the same attributes as the actual.
14792 if Present
(Actual_Subp
)
14793 and then Is_Dispatching_Operation
(Actual_Subp
)
14795 Set_Is_Dispatching_Operation
(New_Subp
);
14797 if Present
(DTC_Entity
(Actual_Subp
)) then
14798 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
14799 Set_DT_Position
(New_Subp
, DT_Position
(Actual_Subp
));
14803 -- Indicate that a derived subprogram does not require a body and that
14804 -- it does not require processing of default expressions.
14806 Set_Has_Completion
(New_Subp
);
14807 Set_Default_Expressions_Processed
(New_Subp
);
14809 if Ekind
(New_Subp
) = E_Function
then
14810 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
14812 end Derive_Subprogram
;
14814 ------------------------
14815 -- Derive_Subprograms --
14816 ------------------------
14818 procedure Derive_Subprograms
14819 (Parent_Type
: Entity_Id
;
14820 Derived_Type
: Entity_Id
;
14821 Generic_Actual
: Entity_Id
:= Empty
)
14823 Op_List
: constant Elist_Id
:=
14824 Collect_Primitive_Operations
(Parent_Type
);
14826 function Check_Derived_Type
return Boolean;
14827 -- Check that all the entities derived from Parent_Type are found in
14828 -- the list of primitives of Derived_Type exactly in the same order.
14830 procedure Derive_Interface_Subprogram
14831 (New_Subp
: in out Entity_Id
;
14833 Actual_Subp
: Entity_Id
);
14834 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14835 -- (which is an interface primitive). If Generic_Actual is present then
14836 -- Actual_Subp is the actual subprogram corresponding with the generic
14837 -- subprogram Subp.
14839 function Check_Derived_Type
return Boolean is
14843 New_Subp
: Entity_Id
;
14848 -- Traverse list of entities in the current scope searching for
14849 -- an incomplete type whose full-view is derived type
14851 E
:= First_Entity
(Scope
(Derived_Type
));
14852 while Present
(E
) and then E
/= Derived_Type
loop
14853 if Ekind
(E
) = E_Incomplete_Type
14854 and then Present
(Full_View
(E
))
14855 and then Full_View
(E
) = Derived_Type
14857 -- Disable this test if Derived_Type completes an incomplete
14858 -- type because in such case more primitives can be added
14859 -- later to the list of primitives of Derived_Type by routine
14860 -- Process_Incomplete_Dependents
14865 E
:= Next_Entity
(E
);
14868 List
:= Collect_Primitive_Operations
(Derived_Type
);
14869 Elmt
:= First_Elmt
(List
);
14871 Op_Elmt
:= First_Elmt
(Op_List
);
14872 while Present
(Op_Elmt
) loop
14873 Subp
:= Node
(Op_Elmt
);
14874 New_Subp
:= Node
(Elmt
);
14876 -- At this early stage Derived_Type has no entities with attribute
14877 -- Interface_Alias. In addition, such primitives are always
14878 -- located at the end of the list of primitives of Parent_Type.
14879 -- Therefore, if found we can safely stop processing pending
14882 exit when Present
(Interface_Alias
(Subp
));
14884 -- Handle hidden entities
14886 if not Is_Predefined_Dispatching_Operation
(Subp
)
14887 and then Is_Hidden
(Subp
)
14889 if Present
(New_Subp
)
14890 and then Primitive_Names_Match
(Subp
, New_Subp
)
14896 if not Present
(New_Subp
)
14897 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
14898 or else not Primitive_Names_Match
(Subp
, New_Subp
)
14906 Next_Elmt
(Op_Elmt
);
14910 end Check_Derived_Type
;
14912 ---------------------------------
14913 -- Derive_Interface_Subprogram --
14914 ---------------------------------
14916 procedure Derive_Interface_Subprogram
14917 (New_Subp
: in out Entity_Id
;
14919 Actual_Subp
: Entity_Id
)
14921 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
14922 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
14925 pragma Assert
(Is_Interface
(Iface_Type
));
14928 (New_Subp
=> New_Subp
,
14929 Parent_Subp
=> Iface_Subp
,
14930 Derived_Type
=> Derived_Type
,
14931 Parent_Type
=> Iface_Type
,
14932 Actual_Subp
=> Actual_Subp
);
14934 -- Given that this new interface entity corresponds with a primitive
14935 -- of the parent that was not overridden we must leave it associated
14936 -- with its parent primitive to ensure that it will share the same
14937 -- dispatch table slot when overridden.
14939 if No
(Actual_Subp
) then
14940 Set_Alias
(New_Subp
, Subp
);
14942 -- For instantiations this is not needed since the previous call to
14943 -- Derive_Subprogram leaves the entity well decorated.
14946 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
14949 end Derive_Interface_Subprogram
;
14953 Alias_Subp
: Entity_Id
;
14954 Act_List
: Elist_Id
;
14955 Act_Elmt
: Elmt_Id
;
14956 Act_Subp
: Entity_Id
:= Empty
;
14958 Need_Search
: Boolean := False;
14959 New_Subp
: Entity_Id
:= Empty
;
14960 Parent_Base
: Entity_Id
;
14963 -- Start of processing for Derive_Subprograms
14966 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
14967 and then Has_Discriminants
(Parent_Type
)
14968 and then Present
(Full_View
(Parent_Type
))
14970 Parent_Base
:= Full_View
(Parent_Type
);
14972 Parent_Base
:= Parent_Type
;
14975 if Present
(Generic_Actual
) then
14976 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
14977 Act_Elmt
:= First_Elmt
(Act_List
);
14979 Act_List
:= No_Elist
;
14980 Act_Elmt
:= No_Elmt
;
14983 -- Derive primitives inherited from the parent. Note that if the generic
14984 -- actual is present, this is not really a type derivation, it is a
14985 -- completion within an instance.
14987 -- Case 1: Derived_Type does not implement interfaces
14989 if not Is_Tagged_Type
(Derived_Type
)
14990 or else (not Has_Interfaces
(Derived_Type
)
14991 and then not (Present
(Generic_Actual
)
14992 and then Has_Interfaces
(Generic_Actual
)))
14994 Elmt
:= First_Elmt
(Op_List
);
14995 while Present
(Elmt
) loop
14996 Subp
:= Node
(Elmt
);
14998 -- Literals are derived earlier in the process of building the
14999 -- derived type, and are skipped here.
15001 if Ekind
(Subp
) = E_Enumeration_Literal
then
15004 -- The actual is a direct descendant and the common primitive
15005 -- operations appear in the same order.
15007 -- If the generic parent type is present, the derived type is an
15008 -- instance of a formal derived type, and within the instance its
15009 -- operations are those of the actual. We derive from the formal
15010 -- type but make the inherited operations aliases of the
15011 -- corresponding operations of the actual.
15014 pragma Assert
(No
(Node
(Act_Elmt
))
15015 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
15018 (Subp
, Node
(Act_Elmt
),
15019 Skip_Controlling_Formals
=> True)));
15022 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
15024 if Present
(Act_Elmt
) then
15025 Next_Elmt
(Act_Elmt
);
15032 -- Case 2: Derived_Type implements interfaces
15035 -- If the parent type has no predefined primitives we remove
15036 -- predefined primitives from the list of primitives of generic
15037 -- actual to simplify the complexity of this algorithm.
15039 if Present
(Generic_Actual
) then
15041 Has_Predefined_Primitives
: Boolean := False;
15044 -- Check if the parent type has predefined primitives
15046 Elmt
:= First_Elmt
(Op_List
);
15047 while Present
(Elmt
) loop
15048 Subp
:= Node
(Elmt
);
15050 if Is_Predefined_Dispatching_Operation
(Subp
)
15051 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
15053 Has_Predefined_Primitives
:= True;
15060 -- Remove predefined primitives of Generic_Actual. We must use
15061 -- an auxiliary list because in case of tagged types the value
15062 -- returned by Collect_Primitive_Operations is the value stored
15063 -- in its Primitive_Operations attribute (and we don't want to
15064 -- modify its current contents).
15066 if not Has_Predefined_Primitives
then
15068 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
15071 Elmt
:= First_Elmt
(Act_List
);
15072 while Present
(Elmt
) loop
15073 Subp
:= Node
(Elmt
);
15075 if not Is_Predefined_Dispatching_Operation
(Subp
)
15076 or else Comes_From_Source
(Subp
)
15078 Append_Elmt
(Subp
, Aux_List
);
15084 Act_List
:= Aux_List
;
15088 Act_Elmt
:= First_Elmt
(Act_List
);
15089 Act_Subp
:= Node
(Act_Elmt
);
15093 -- Stage 1: If the generic actual is not present we derive the
15094 -- primitives inherited from the parent type. If the generic parent
15095 -- type is present, the derived type is an instance of a formal
15096 -- derived type, and within the instance its operations are those of
15097 -- the actual. We derive from the formal type but make the inherited
15098 -- operations aliases of the corresponding operations of the actual.
15100 Elmt
:= First_Elmt
(Op_List
);
15101 while Present
(Elmt
) loop
15102 Subp
:= Node
(Elmt
);
15103 Alias_Subp
:= Ultimate_Alias
(Subp
);
15105 -- Do not derive internal entities of the parent that link
15106 -- interface primitives with their covering primitive. These
15107 -- entities will be added to this type when frozen.
15109 if Present
(Interface_Alias
(Subp
)) then
15113 -- If the generic actual is present find the corresponding
15114 -- operation in the generic actual. If the parent type is a
15115 -- direct ancestor of the derived type then, even if it is an
15116 -- interface, the operations are inherited from the primary
15117 -- dispatch table and are in the proper order. If we detect here
15118 -- that primitives are not in the same order we traverse the list
15119 -- of primitive operations of the actual to find the one that
15120 -- implements the interface primitive.
15124 (Present
(Generic_Actual
)
15125 and then Present
(Act_Subp
)
15127 (Primitive_Names_Match
(Subp
, Act_Subp
)
15129 Type_Conformant
(Subp
, Act_Subp
,
15130 Skip_Controlling_Formals
=> True)))
15132 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
15133 Use_Full_View
=> True));
15135 -- Remember that we need searching for all pending primitives
15137 Need_Search
:= True;
15139 -- Handle entities associated with interface primitives
15141 if Present
(Alias_Subp
)
15142 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15143 and then not Is_Predefined_Dispatching_Operation
(Subp
)
15145 -- Search for the primitive in the homonym chain
15148 Find_Primitive_Covering_Interface
15149 (Tagged_Type
=> Generic_Actual
,
15150 Iface_Prim
=> Alias_Subp
);
15152 -- Previous search may not locate primitives covering
15153 -- interfaces defined in generics units or instantiations.
15154 -- (it fails if the covering primitive has formals whose
15155 -- type is also defined in generics or instantiations).
15156 -- In such case we search in the list of primitives of the
15157 -- generic actual for the internal entity that links the
15158 -- interface primitive and the covering primitive.
15161 and then Is_Generic_Type
(Parent_Type
)
15163 -- This code has been designed to handle only generic
15164 -- formals that implement interfaces that are defined
15165 -- in a generic unit or instantiation. If this code is
15166 -- needed for other cases we must review it because
15167 -- (given that it relies on Original_Location to locate
15168 -- the primitive of Generic_Actual that covers the
15169 -- interface) it could leave linked through attribute
15170 -- Alias entities of unrelated instantiations).
15174 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
15176 Instantiation_Depth
15177 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
15180 Iface_Prim_Loc
: constant Source_Ptr
:=
15181 Original_Location
(Sloc
(Alias_Subp
));
15188 First_Elmt
(Primitive_Operations
(Generic_Actual
));
15190 Search
: while Present
(Elmt
) loop
15191 Prim
:= Node
(Elmt
);
15193 if Present
(Interface_Alias
(Prim
))
15194 and then Original_Location
15195 (Sloc
(Interface_Alias
(Prim
))) =
15198 Act_Subp
:= Alias
(Prim
);
15207 pragma Assert
(Present
(Act_Subp
)
15208 or else Is_Abstract_Type
(Generic_Actual
)
15209 or else Serious_Errors_Detected
> 0);
15211 -- Handle predefined primitives plus the rest of user-defined
15215 Act_Elmt
:= First_Elmt
(Act_List
);
15216 while Present
(Act_Elmt
) loop
15217 Act_Subp
:= Node
(Act_Elmt
);
15219 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
15220 and then Type_Conformant
15222 Skip_Controlling_Formals
=> True)
15223 and then No
(Interface_Alias
(Act_Subp
));
15225 Next_Elmt
(Act_Elmt
);
15228 if No
(Act_Elmt
) then
15234 -- Case 1: If the parent is a limited interface then it has the
15235 -- predefined primitives of synchronized interfaces. However, the
15236 -- actual type may be a non-limited type and hence it does not
15237 -- have such primitives.
15239 if Present
(Generic_Actual
)
15240 and then not Present
(Act_Subp
)
15241 and then Is_Limited_Interface
(Parent_Base
)
15242 and then Is_Predefined_Interface_Primitive
(Subp
)
15246 -- Case 2: Inherit entities associated with interfaces that were
15247 -- not covered by the parent type. We exclude here null interface
15248 -- primitives because they do not need special management.
15250 -- We also exclude interface operations that are renamings. If the
15251 -- subprogram is an explicit renaming of an interface primitive,
15252 -- it is a regular primitive operation, and the presence of its
15253 -- alias is not relevant: it has to be derived like any other
15256 elsif Present
(Alias
(Subp
))
15257 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
15258 N_Subprogram_Renaming_Declaration
15259 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15261 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
15262 and then Null_Present
(Parent
(Alias_Subp
)))
15264 -- If this is an abstract private type then we transfer the
15265 -- derivation of the interface primitive from the partial view
15266 -- to the full view. This is safe because all the interfaces
15267 -- must be visible in the partial view. Done to avoid adding
15268 -- a new interface derivation to the private part of the
15269 -- enclosing package; otherwise this new derivation would be
15270 -- decorated as hidden when the analysis of the enclosing
15271 -- package completes.
15273 if Is_Abstract_Type
(Derived_Type
)
15274 and then In_Private_Part
(Current_Scope
)
15275 and then Has_Private_Declaration
(Derived_Type
)
15278 Partial_View
: Entity_Id
;
15283 Partial_View
:= First_Entity
(Current_Scope
);
15285 exit when No
(Partial_View
)
15286 or else (Has_Private_Declaration
(Partial_View
)
15288 Full_View
(Partial_View
) = Derived_Type
);
15290 Next_Entity
(Partial_View
);
15293 -- If the partial view was not found then the source code
15294 -- has errors and the derivation is not needed.
15296 if Present
(Partial_View
) then
15298 First_Elmt
(Primitive_Operations
(Partial_View
));
15299 while Present
(Elmt
) loop
15300 Ent
:= Node
(Elmt
);
15302 if Present
(Alias
(Ent
))
15303 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
15306 (Ent
, Primitive_Operations
(Derived_Type
));
15313 -- If the interface primitive was not found in the
15314 -- partial view then this interface primitive was
15315 -- overridden. We add a derivation to activate in
15316 -- Derive_Progenitor_Subprograms the machinery to
15320 Derive_Interface_Subprogram
15321 (New_Subp
=> New_Subp
,
15323 Actual_Subp
=> Act_Subp
);
15328 Derive_Interface_Subprogram
15329 (New_Subp
=> New_Subp
,
15331 Actual_Subp
=> Act_Subp
);
15334 -- Case 3: Common derivation
15338 (New_Subp
=> New_Subp
,
15339 Parent_Subp
=> Subp
,
15340 Derived_Type
=> Derived_Type
,
15341 Parent_Type
=> Parent_Base
,
15342 Actual_Subp
=> Act_Subp
);
15345 -- No need to update Act_Elm if we must search for the
15346 -- corresponding operation in the generic actual
15349 and then Present
(Act_Elmt
)
15351 Next_Elmt
(Act_Elmt
);
15352 Act_Subp
:= Node
(Act_Elmt
);
15359 -- Inherit additional operations from progenitors. If the derived
15360 -- type is a generic actual, there are not new primitive operations
15361 -- for the type because it has those of the actual, and therefore
15362 -- nothing needs to be done. The renamings generated above are not
15363 -- primitive operations, and their purpose is simply to make the
15364 -- proper operations visible within an instantiation.
15366 if No
(Generic_Actual
) then
15367 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
15371 -- Final check: Direct descendants must have their primitives in the
15372 -- same order. We exclude from this test untagged types and instances
15373 -- of formal derived types. We skip this test if we have already
15374 -- reported serious errors in the sources.
15376 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
15377 or else Present
(Generic_Actual
)
15378 or else Serious_Errors_Detected
> 0
15379 or else Check_Derived_Type
);
15380 end Derive_Subprograms
;
15382 --------------------------------
15383 -- Derived_Standard_Character --
15384 --------------------------------
15386 procedure Derived_Standard_Character
15388 Parent_Type
: Entity_Id
;
15389 Derived_Type
: Entity_Id
)
15391 Loc
: constant Source_Ptr
:= Sloc
(N
);
15392 Def
: constant Node_Id
:= Type_Definition
(N
);
15393 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15394 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
15395 Implicit_Base
: constant Entity_Id
:=
15397 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
15403 Discard_Node
(Process_Subtype
(Indic
, N
));
15405 Set_Etype
(Implicit_Base
, Parent_Base
);
15406 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
15407 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
15409 Set_Is_Character_Type
(Implicit_Base
, True);
15410 Set_Has_Delayed_Freeze
(Implicit_Base
);
15412 -- The bounds of the implicit base are the bounds of the parent base.
15413 -- Note that their type is the parent base.
15415 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
15416 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
15418 Set_Scalar_Range
(Implicit_Base
,
15421 High_Bound
=> Hi
));
15423 Conditional_Delay
(Derived_Type
, Parent_Type
);
15425 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
15426 Set_Etype
(Derived_Type
, Implicit_Base
);
15427 Set_Size_Info
(Derived_Type
, Parent_Type
);
15429 if Unknown_RM_Size
(Derived_Type
) then
15430 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
15433 Set_Is_Character_Type
(Derived_Type
, True);
15435 if Nkind
(Indic
) /= N_Subtype_Indication
then
15437 -- If no explicit constraint, the bounds are those
15438 -- of the parent type.
15440 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
15441 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
15442 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
15445 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
15447 -- Because the implicit base is used in the conversion of the bounds, we
15448 -- have to freeze it now. This is similar to what is done for numeric
15449 -- types, and it equally suspicious, but otherwise a non-static bound
15450 -- will have a reference to an unfrozen type, which is rejected by Gigi
15451 -- (???). This requires specific care for definition of stream
15452 -- attributes. For details, see comments at the end of
15453 -- Build_Derived_Numeric_Type.
15455 Freeze_Before
(N
, Implicit_Base
);
15456 end Derived_Standard_Character
;
15458 ------------------------------
15459 -- Derived_Type_Declaration --
15460 ------------------------------
15462 procedure Derived_Type_Declaration
15465 Is_Completion
: Boolean)
15467 Parent_Type
: Entity_Id
;
15469 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
15470 -- Check whether the parent type is a generic formal, or derives
15471 -- directly or indirectly from one.
15473 ------------------------
15474 -- Comes_From_Generic --
15475 ------------------------
15477 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
15479 if Is_Generic_Type
(Typ
) then
15482 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
15485 elsif Is_Private_Type
(Typ
)
15486 and then Present
(Full_View
(Typ
))
15487 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
15491 elsif Is_Generic_Actual_Type
(Typ
) then
15497 end Comes_From_Generic
;
15501 Def
: constant Node_Id
:= Type_Definition
(N
);
15502 Iface_Def
: Node_Id
;
15503 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15504 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
15505 Parent_Node
: Node_Id
;
15508 -- Start of processing for Derived_Type_Declaration
15511 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
15513 -- Ada 2005 (AI-251): In case of interface derivation check that the
15514 -- parent is also an interface.
15516 if Interface_Present
(Def
) then
15517 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
15519 if not Is_Interface
(Parent_Type
) then
15520 Diagnose_Interface
(Indic
, Parent_Type
);
15523 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
15524 Iface_Def
:= Type_Definition
(Parent_Node
);
15526 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15527 -- other limited interfaces.
15529 if Limited_Present
(Def
) then
15530 if Limited_Present
(Iface_Def
) then
15533 elsif Protected_Present
(Iface_Def
) then
15535 ("descendant of& must be declared"
15536 & " as a protected interface",
15539 elsif Synchronized_Present
(Iface_Def
) then
15541 ("descendant of& must be declared"
15542 & " as a synchronized interface",
15545 elsif Task_Present
(Iface_Def
) then
15547 ("descendant of& must be declared as a task interface",
15552 ("(Ada 2005) limited interface cannot "
15553 & "inherit from non-limited interface", Indic
);
15556 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15557 -- from non-limited or limited interfaces.
15559 elsif not Protected_Present
(Def
)
15560 and then not Synchronized_Present
(Def
)
15561 and then not Task_Present
(Def
)
15563 if Limited_Present
(Iface_Def
) then
15566 elsif Protected_Present
(Iface_Def
) then
15568 ("descendant of& must be declared"
15569 & " as a protected interface",
15572 elsif Synchronized_Present
(Iface_Def
) then
15574 ("descendant of& must be declared"
15575 & " as a synchronized interface",
15578 elsif Task_Present
(Iface_Def
) then
15580 ("descendant of& must be declared as a task interface",
15589 if Is_Tagged_Type
(Parent_Type
)
15590 and then Is_Concurrent_Type
(Parent_Type
)
15591 and then not Is_Interface
(Parent_Type
)
15594 ("parent type of a record extension cannot be "
15595 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
15596 Set_Etype
(T
, Any_Type
);
15600 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15603 if Is_Tagged_Type
(Parent_Type
)
15604 and then Is_Non_Empty_List
(Interface_List
(Def
))
15611 Intf
:= First
(Interface_List
(Def
));
15612 while Present
(Intf
) loop
15613 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
15615 if not Is_Interface
(T
) then
15616 Diagnose_Interface
(Intf
, T
);
15618 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15619 -- a limited type from having a nonlimited progenitor.
15621 elsif (Limited_Present
(Def
)
15622 or else (not Is_Interface
(Parent_Type
)
15623 and then Is_Limited_Type
(Parent_Type
)))
15624 and then not Is_Limited_Interface
(T
)
15627 ("progenitor interface& of limited type must be limited",
15636 if Parent_Type
= Any_Type
15637 or else Etype
(Parent_Type
) = Any_Type
15638 or else (Is_Class_Wide_Type
(Parent_Type
)
15639 and then Etype
(Parent_Type
) = T
)
15641 -- If Parent_Type is undefined or illegal, make new type into a
15642 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15643 -- errors. If this is a self-definition, emit error now.
15645 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
15646 Error_Msg_N
("type cannot be used in its own definition", Indic
);
15649 Set_Ekind
(T
, Ekind
(Parent_Type
));
15650 Set_Etype
(T
, Any_Type
);
15651 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
15653 if Is_Tagged_Type
(T
)
15654 and then Is_Record_Type
(T
)
15656 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
15662 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15663 -- an interface is special because the list of interfaces in the full
15664 -- view can be given in any order. For example:
15666 -- type A is interface;
15667 -- type B is interface and A;
15668 -- type D is new B with private;
15670 -- type D is new A and B with null record; -- 1 --
15672 -- In this case we perform the following transformation of -1-:
15674 -- type D is new B and A with null record;
15676 -- If the parent of the full-view covers the parent of the partial-view
15677 -- we have two possible cases:
15679 -- 1) They have the same parent
15680 -- 2) The parent of the full-view implements some further interfaces
15682 -- In both cases we do not need to perform the transformation. In the
15683 -- first case the source program is correct and the transformation is
15684 -- not needed; in the second case the source program does not fulfill
15685 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15688 -- This transformation not only simplifies the rest of the analysis of
15689 -- this type declaration but also simplifies the correct generation of
15690 -- the object layout to the expander.
15692 if In_Private_Part
(Current_Scope
)
15693 and then Is_Interface
(Parent_Type
)
15697 Partial_View
: Entity_Id
;
15698 Partial_View_Parent
: Entity_Id
;
15699 New_Iface
: Node_Id
;
15702 -- Look for the associated private type declaration
15704 Partial_View
:= First_Entity
(Current_Scope
);
15706 exit when No
(Partial_View
)
15707 or else (Has_Private_Declaration
(Partial_View
)
15708 and then Full_View
(Partial_View
) = T
);
15710 Next_Entity
(Partial_View
);
15713 -- If the partial view was not found then the source code has
15714 -- errors and the transformation is not needed.
15716 if Present
(Partial_View
) then
15717 Partial_View_Parent
:= Etype
(Partial_View
);
15719 -- If the parent of the full-view covers the parent of the
15720 -- partial-view we have nothing else to do.
15722 if Interface_Present_In_Ancestor
15723 (Parent_Type
, Partial_View_Parent
)
15727 -- Traverse the list of interfaces of the full-view to look
15728 -- for the parent of the partial-view and perform the tree
15732 Iface
:= First
(Interface_List
(Def
));
15733 while Present
(Iface
) loop
15734 if Etype
(Iface
) = Etype
(Partial_View
) then
15735 Rewrite
(Subtype_Indication
(Def
),
15736 New_Copy
(Subtype_Indication
15737 (Parent
(Partial_View
))));
15740 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
15741 Append
(New_Iface
, Interface_List
(Def
));
15743 -- Analyze the transformed code
15745 Derived_Type_Declaration
(T
, N
, Is_Completion
);
15756 -- Only composite types other than array types are allowed to have
15759 if Present
(Discriminant_Specifications
(N
)) then
15760 if (Is_Elementary_Type
(Parent_Type
)
15762 Is_Array_Type
(Parent_Type
))
15763 and then not Error_Posted
(N
)
15766 ("elementary or array type cannot have discriminants",
15767 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
15768 Set_Has_Discriminants
(T
, False);
15770 -- The type is allowed to have discriminants
15773 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
15777 -- In Ada 83, a derived type defined in a package specification cannot
15778 -- be used for further derivation until the end of its visible part.
15779 -- Note that derivation in the private part of the package is allowed.
15781 if Ada_Version
= Ada_83
15782 and then Is_Derived_Type
(Parent_Type
)
15783 and then In_Visible_Part
(Scope
(Parent_Type
))
15785 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
15787 ("(Ada 83): premature use of type for derivation", Indic
);
15791 -- Check for early use of incomplete or private type
15793 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
15794 Error_Msg_N
("premature derivation of incomplete type", Indic
);
15797 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
15798 and then not Comes_From_Generic
(Parent_Type
))
15799 or else Has_Private_Component
(Parent_Type
)
15801 -- The ancestor type of a formal type can be incomplete, in which
15802 -- case only the operations of the partial view are available in the
15803 -- generic. Subsequent checks may be required when the full view is
15804 -- analyzed to verify that a derivation from a tagged type has an
15807 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
15810 elsif No
(Underlying_Type
(Parent_Type
))
15811 or else Has_Private_Component
(Parent_Type
)
15814 ("premature derivation of derived or private type", Indic
);
15816 -- Flag the type itself as being in error, this prevents some
15817 -- nasty problems with subsequent uses of the malformed type.
15819 Set_Error_Posted
(T
);
15821 -- Check that within the immediate scope of an untagged partial
15822 -- view it's illegal to derive from the partial view if the
15823 -- full view is tagged. (7.3(7))
15825 -- We verify that the Parent_Type is a partial view by checking
15826 -- that it is not a Full_Type_Declaration (i.e. a private type or
15827 -- private extension declaration), to distinguish a partial view
15828 -- from a derivation from a private type which also appears as
15829 -- E_Private_Type. If the parent base type is not declared in an
15830 -- enclosing scope there is no need to check.
15832 elsif Present
(Full_View
(Parent_Type
))
15833 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
15834 and then not Is_Tagged_Type
(Parent_Type
)
15835 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
15836 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
15839 ("premature derivation from type with tagged full view",
15844 -- Check that form of derivation is appropriate
15846 Taggd
:= Is_Tagged_Type
(Parent_Type
);
15848 -- Perhaps the parent type should be changed to the class-wide type's
15849 -- specific type in this case to prevent cascading errors ???
15851 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
15852 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
15856 if Present
(Extension
) and then not Taggd
then
15858 ("type derived from untagged type cannot have extension", Indic
);
15860 elsif No
(Extension
) and then Taggd
then
15862 -- If this declaration is within a private part (or body) of a
15863 -- generic instantiation then the derivation is allowed (the parent
15864 -- type can only appear tagged in this case if it's a generic actual
15865 -- type, since it would otherwise have been rejected in the analysis
15866 -- of the generic template).
15868 if not Is_Generic_Actual_Type
(Parent_Type
)
15869 or else In_Visible_Part
(Scope
(Parent_Type
))
15871 if Is_Class_Wide_Type
(Parent_Type
) then
15873 ("parent type must not be a class-wide type", Indic
);
15875 -- Use specific type to prevent cascaded errors.
15877 Parent_Type
:= Etype
(Parent_Type
);
15881 ("type derived from tagged type must have extension", Indic
);
15886 -- AI-443: Synchronized formal derived types require a private
15887 -- extension. There is no point in checking the ancestor type or
15888 -- the progenitors since the construct is wrong to begin with.
15890 if Ada_Version
>= Ada_2005
15891 and then Is_Generic_Type
(T
)
15892 and then Present
(Original_Node
(N
))
15895 Decl
: constant Node_Id
:= Original_Node
(N
);
15898 if Nkind
(Decl
) = N_Formal_Type_Declaration
15899 and then Nkind
(Formal_Type_Definition
(Decl
)) =
15900 N_Formal_Derived_Type_Definition
15901 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
15902 and then No
(Extension
)
15904 -- Avoid emitting a duplicate error message
15906 and then not Error_Posted
(Indic
)
15909 ("synchronized derived type must have extension", N
);
15914 if Null_Exclusion_Present
(Def
)
15915 and then not Is_Access_Type
(Parent_Type
)
15917 Error_Msg_N
("null exclusion can only apply to an access type", N
);
15920 -- Avoid deriving parent primitives of underlying record views
15922 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
15923 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
15925 -- AI-419: The parent type of an explicitly limited derived type must
15926 -- be a limited type or a limited interface.
15928 if Limited_Present
(Def
) then
15929 Set_Is_Limited_Record
(T
);
15931 if Is_Interface
(T
) then
15932 Set_Is_Limited_Interface
(T
);
15935 if not Is_Limited_Type
(Parent_Type
)
15937 (not Is_Interface
(Parent_Type
)
15938 or else not Is_Limited_Interface
(Parent_Type
))
15940 -- AI05-0096: a derivation in the private part of an instance is
15941 -- legal if the generic formal is untagged limited, and the actual
15944 if Is_Generic_Actual_Type
(Parent_Type
)
15945 and then In_Private_Part
(Current_Scope
)
15948 (Generic_Parent_Type
(Parent
(Parent_Type
)))
15954 ("parent type& of limited type must be limited",
15960 -- In SPARK, there are no derived type definitions other than type
15961 -- extensions of tagged record types.
15963 if No
(Extension
) then
15964 Check_SPARK_05_Restriction
15965 ("derived type is not allowed", Original_Node
(N
));
15967 end Derived_Type_Declaration
;
15969 ------------------------
15970 -- Diagnose_Interface --
15971 ------------------------
15973 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
15975 if not Is_Interface
(E
)
15976 and then E
/= Any_Type
15978 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
15980 end Diagnose_Interface
;
15982 ----------------------------------
15983 -- Enumeration_Type_Declaration --
15984 ----------------------------------
15986 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
15993 -- Create identifier node representing lower bound
15995 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
15996 L
:= First
(Literals
(Def
));
15997 Set_Chars
(B_Node
, Chars
(L
));
15998 Set_Entity
(B_Node
, L
);
15999 Set_Etype
(B_Node
, T
);
16000 Set_Is_Static_Expression
(B_Node
, True);
16002 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
16003 Set_Low_Bound
(R_Node
, B_Node
);
16005 Set_Ekind
(T
, E_Enumeration_Type
);
16006 Set_First_Literal
(T
, L
);
16008 Set_Is_Constrained
(T
);
16012 -- Loop through literals of enumeration type setting pos and rep values
16013 -- except that if the Ekind is already set, then it means the literal
16014 -- was already constructed (case of a derived type declaration and we
16015 -- should not disturb the Pos and Rep values.
16017 while Present
(L
) loop
16018 if Ekind
(L
) /= E_Enumeration_Literal
then
16019 Set_Ekind
(L
, E_Enumeration_Literal
);
16020 Set_Enumeration_Pos
(L
, Ev
);
16021 Set_Enumeration_Rep
(L
, Ev
);
16022 Set_Is_Known_Valid
(L
, True);
16026 New_Overloaded_Entity
(L
);
16027 Generate_Definition
(L
);
16028 Set_Convention
(L
, Convention_Intrinsic
);
16030 -- Case of character literal
16032 if Nkind
(L
) = N_Defining_Character_Literal
then
16033 Set_Is_Character_Type
(T
, True);
16035 -- Check violation of No_Wide_Characters
16037 if Restriction_Check_Required
(No_Wide_Characters
) then
16038 Get_Name_String
(Chars
(L
));
16040 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
16041 Check_Restriction
(No_Wide_Characters
, L
);
16050 -- Now create a node representing upper bound
16052 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16053 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
16054 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
16055 Set_Etype
(B_Node
, T
);
16056 Set_Is_Static_Expression
(B_Node
, True);
16058 Set_High_Bound
(R_Node
, B_Node
);
16060 -- Initialize various fields of the type. Some of this information
16061 -- may be overwritten later through rep.clauses.
16063 Set_Scalar_Range
(T
, R_Node
);
16064 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
16065 Set_Enum_Esize
(T
);
16066 Set_Enum_Pos_To_Rep
(T
, Empty
);
16068 -- Set Discard_Names if configuration pragma set, or if there is
16069 -- a parameterless pragma in the current declarative region
16071 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
16072 Set_Discard_Names
(T
);
16075 -- Process end label if there is one
16077 if Present
(Def
) then
16078 Process_End_Label
(Def
, 'e', T
);
16080 end Enumeration_Type_Declaration
;
16082 ---------------------------------
16083 -- Expand_To_Stored_Constraint --
16084 ---------------------------------
16086 function Expand_To_Stored_Constraint
16088 Constraint
: Elist_Id
) return Elist_Id
16090 Explicitly_Discriminated_Type
: Entity_Id
;
16091 Expansion
: Elist_Id
;
16092 Discriminant
: Entity_Id
;
16094 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
16095 -- Find the nearest type that actually specifies discriminants
16097 ---------------------------------
16098 -- Type_With_Explicit_Discrims --
16099 ---------------------------------
16101 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
16102 Typ
: constant E
:= Base_Type
(Id
);
16105 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
16106 if Present
(Full_View
(Typ
)) then
16107 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
16111 if Has_Discriminants
(Typ
) then
16116 if Etype
(Typ
) = Typ
then
16118 elsif Has_Discriminants
(Typ
) then
16121 return Type_With_Explicit_Discrims
(Etype
(Typ
));
16124 end Type_With_Explicit_Discrims
;
16126 -- Start of processing for Expand_To_Stored_Constraint
16129 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
16133 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
16135 if No
(Explicitly_Discriminated_Type
) then
16139 Expansion
:= New_Elmt_List
;
16142 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
16143 while Present
(Discriminant
) loop
16145 (Get_Discriminant_Value
16146 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
16148 Next_Stored_Discriminant
(Discriminant
);
16152 end Expand_To_Stored_Constraint
;
16154 ---------------------------
16155 -- Find_Hidden_Interface --
16156 ---------------------------
16158 function Find_Hidden_Interface
16160 Dest
: Elist_Id
) return Entity_Id
16163 Iface_Elmt
: Elmt_Id
;
16166 if Present
(Src
) and then Present
(Dest
) then
16167 Iface_Elmt
:= First_Elmt
(Src
);
16168 while Present
(Iface_Elmt
) loop
16169 Iface
:= Node
(Iface_Elmt
);
16171 if Is_Interface
(Iface
)
16172 and then not Contain_Interface
(Iface
, Dest
)
16177 Next_Elmt
(Iface_Elmt
);
16182 end Find_Hidden_Interface
;
16184 --------------------
16185 -- Find_Type_Name --
16186 --------------------
16188 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
16189 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
16191 New_Id
: Entity_Id
;
16192 Prev_Par
: Node_Id
;
16194 procedure Check_Duplicate_Aspects
;
16195 -- Check that aspects specified in a completion have not been specified
16196 -- already in the partial view. Type_Invariant and others can be
16197 -- specified on either view but never on both.
16199 procedure Tag_Mismatch
;
16200 -- Diagnose a tagged partial view whose full view is untagged.
16201 -- We post the message on the full view, with a reference to
16202 -- the previous partial view. The partial view can be private
16203 -- or incomplete, and these are handled in a different manner,
16204 -- so we determine the position of the error message from the
16205 -- respective slocs of both.
16207 -----------------------------
16208 -- Check_Duplicate_Aspects --
16209 -----------------------------
16210 procedure Check_Duplicate_Aspects
is
16211 Prev_Aspects
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
16212 Full_Aspects
: constant List_Id
:= Aspect_Specifications
(N
);
16213 F_Spec
, P_Spec
: Node_Id
;
16216 if Present
(Prev_Aspects
) and then Present
(Full_Aspects
) then
16217 F_Spec
:= First
(Full_Aspects
);
16218 while Present
(F_Spec
) loop
16219 P_Spec
:= First
(Prev_Aspects
);
16220 while Present
(P_Spec
) loop
16222 Chars
(Identifier
(P_Spec
)) = Chars
(Identifier
(F_Spec
))
16225 ("aspect already specified in private declaration",
16237 end Check_Duplicate_Aspects
;
16243 procedure Tag_Mismatch
is
16245 if Sloc
(Prev
) < Sloc
(Id
) then
16246 if Ada_Version
>= Ada_2012
16247 and then Nkind
(N
) = N_Private_Type_Declaration
16250 ("declaration of private } must be a tagged type ", Id
, Prev
);
16253 ("full declaration of } must be a tagged type ", Id
, Prev
);
16257 if Ada_Version
>= Ada_2012
16258 and then Nkind
(N
) = N_Private_Type_Declaration
16261 ("declaration of private } must be a tagged type ", Prev
, Id
);
16264 ("full declaration of } must be a tagged type ", Prev
, Id
);
16269 -- Start of processing for Find_Type_Name
16272 -- Find incomplete declaration, if one was given
16274 Prev
:= Current_Entity_In_Scope
(Id
);
16276 -- New type declaration
16282 -- Previous declaration exists
16285 Prev_Par
:= Parent
(Prev
);
16287 -- Error if not incomplete/private case except if previous
16288 -- declaration is implicit, etc. Enter_Name will emit error if
16291 if not Is_Incomplete_Or_Private_Type
(Prev
) then
16295 -- Check invalid completion of private or incomplete type
16297 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
16298 N_Task_Type_Declaration
,
16299 N_Protected_Type_Declaration
)
16301 (Ada_Version
< Ada_2012
16302 or else not Is_Incomplete_Type
(Prev
)
16303 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
16304 N_Private_Extension_Declaration
))
16306 -- Completion must be a full type declarations (RM 7.3(4))
16308 Error_Msg_Sloc
:= Sloc
(Prev
);
16309 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
16311 -- Set scope of Id to avoid cascaded errors. Entity is never
16312 -- examined again, except when saving globals in generics.
16314 Set_Scope
(Id
, Current_Scope
);
16317 -- If this is a repeated incomplete declaration, no further
16318 -- checks are possible.
16320 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
16324 -- Case of full declaration of incomplete type
16326 elsif Ekind
(Prev
) = E_Incomplete_Type
16327 and then (Ada_Version
< Ada_2012
16328 or else No
(Full_View
(Prev
))
16329 or else not Is_Private_Type
(Full_View
(Prev
)))
16331 -- Indicate that the incomplete declaration has a matching full
16332 -- declaration. The defining occurrence of the incomplete
16333 -- declaration remains the visible one, and the procedure
16334 -- Get_Full_View dereferences it whenever the type is used.
16336 if Present
(Full_View
(Prev
)) then
16337 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16340 Set_Full_View
(Prev
, Id
);
16341 Append_Entity
(Id
, Current_Scope
);
16342 Set_Is_Public
(Id
, Is_Public
(Prev
));
16343 Set_Is_Internal
(Id
);
16346 -- If the incomplete view is tagged, a class_wide type has been
16347 -- created already. Use it for the private type as well, in order
16348 -- to prevent multiple incompatible class-wide types that may be
16349 -- created for self-referential anonymous access components.
16351 if Is_Tagged_Type
(Prev
)
16352 and then Present
(Class_Wide_Type
(Prev
))
16354 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
16355 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
16357 -- The type of the classwide type is the current Id. Previously
16358 -- this was not done for private declarations because of order-
16359 -- of elaboration issues in the back-end, but gigi now handles
16362 Set_Etype
(Class_Wide_Type
(Id
), Id
);
16365 -- Case of full declaration of private type
16368 -- If the private type was a completion of an incomplete type then
16369 -- update Prev to reference the private type
16371 if Ada_Version
>= Ada_2012
16372 and then Ekind
(Prev
) = E_Incomplete_Type
16373 and then Present
(Full_View
(Prev
))
16374 and then Is_Private_Type
(Full_View
(Prev
))
16376 Prev
:= Full_View
(Prev
);
16377 Prev_Par
:= Parent
(Prev
);
16380 if Nkind
(N
) = N_Full_Type_Declaration
16382 (Type_Definition
(N
), N_Record_Definition
,
16383 N_Derived_Type_Definition
)
16384 and then Interface_Present
(Type_Definition
(N
))
16387 ("completion of private type cannot be an interface", N
);
16390 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
16391 if Etype
(Prev
) /= Prev
then
16393 -- Prev is a private subtype or a derived type, and needs
16396 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16399 elsif Ekind
(Prev
) = E_Private_Type
16400 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16401 N_Protected_Type_Declaration
)
16404 ("completion of nonlimited type cannot be limited", N
);
16406 elsif Ekind
(Prev
) = E_Record_Type_With_Private
16407 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16408 N_Protected_Type_Declaration
)
16410 if not Is_Limited_Record
(Prev
) then
16412 ("completion of nonlimited type cannot be limited", N
);
16414 elsif No
(Interface_List
(N
)) then
16416 ("completion of tagged private type must be tagged",
16421 -- Ada 2005 (AI-251): Private extension declaration of a task
16422 -- type or a protected type. This case arises when covering
16423 -- interface types.
16425 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16426 N_Protected_Type_Declaration
)
16430 elsif Nkind
(N
) /= N_Full_Type_Declaration
16431 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
16434 ("full view of private extension must be an extension", N
);
16436 elsif not (Abstract_Present
(Parent
(Prev
)))
16437 and then Abstract_Present
(Type_Definition
(N
))
16440 ("full view of non-abstract extension cannot be abstract", N
);
16443 if not In_Private_Part
(Current_Scope
) then
16445 ("declaration of full view must appear in private part", N
);
16448 if Ada_Version
>= Ada_2012
then
16449 Check_Duplicate_Aspects
;
16452 Copy_And_Swap
(Prev
, Id
);
16453 Set_Has_Private_Declaration
(Prev
);
16454 Set_Has_Private_Declaration
(Id
);
16456 -- Preserve aspect and iterator flags that may have been set on
16457 -- the partial view.
16459 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
16460 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
16462 -- If no error, propagate freeze_node from private to full view.
16463 -- It may have been generated for an early operational item.
16465 if Present
(Freeze_Node
(Id
))
16466 and then Serious_Errors_Detected
= 0
16467 and then No
(Full_View
(Id
))
16469 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
16470 Set_Freeze_Node
(Id
, Empty
);
16471 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
16474 Set_Full_View
(Id
, Prev
);
16478 -- Verify that full declaration conforms to partial one
16480 if Is_Incomplete_Or_Private_Type
(Prev
)
16481 and then Present
(Discriminant_Specifications
(Prev_Par
))
16483 if Present
(Discriminant_Specifications
(N
)) then
16484 if Ekind
(Prev
) = E_Incomplete_Type
then
16485 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
16487 Check_Discriminant_Conformance
(N
, Prev
, Id
);
16492 ("missing discriminants in full type declaration", N
);
16494 -- To avoid cascaded errors on subsequent use, share the
16495 -- discriminants of the partial view.
16497 Set_Discriminant_Specifications
(N
,
16498 Discriminant_Specifications
(Prev_Par
));
16502 -- A prior untagged partial view can have an associated class-wide
16503 -- type due to use of the class attribute, and in this case the full
16504 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16505 -- of incomplete tagged declarations, but we check for it.
16508 and then (Is_Tagged_Type
(Prev
)
16509 or else Present
(Class_Wide_Type
(Prev
)))
16511 -- Ada 2012 (AI05-0162): A private type may be the completion of
16512 -- an incomplete type.
16514 if Ada_Version
>= Ada_2012
16515 and then Is_Incomplete_Type
(Prev
)
16516 and then Nkind_In
(N
, N_Private_Type_Declaration
,
16517 N_Private_Extension_Declaration
)
16519 -- No need to check private extensions since they are tagged
16521 if Nkind
(N
) = N_Private_Type_Declaration
16522 and then not Tagged_Present
(N
)
16527 -- The full declaration is either a tagged type (including
16528 -- a synchronized type that implements interfaces) or a
16529 -- type extension, otherwise this is an error.
16531 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16532 N_Protected_Type_Declaration
)
16534 if No
(Interface_List
(N
))
16535 and then not Error_Posted
(N
)
16540 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
16542 -- Indicate that the previous declaration (tagged incomplete
16543 -- or private declaration) requires the same on the full one.
16545 if not Tagged_Present
(Type_Definition
(N
)) then
16547 Set_Is_Tagged_Type
(Id
);
16550 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
16551 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
16553 ("full declaration of } must be a record extension",
16556 -- Set some attributes to produce a usable full view
16558 Set_Is_Tagged_Type
(Id
);
16567 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
16568 and then Present
(Premature_Use
(Parent
(Prev
)))
16570 Error_Msg_Sloc
:= Sloc
(N
);
16572 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
16577 end Find_Type_Name
;
16579 -------------------------
16580 -- Find_Type_Of_Object --
16581 -------------------------
16583 function Find_Type_Of_Object
16584 (Obj_Def
: Node_Id
;
16585 Related_Nod
: Node_Id
) return Entity_Id
16587 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
16588 P
: Node_Id
:= Parent
(Obj_Def
);
16593 -- If the parent is a component_definition node we climb to the
16594 -- component_declaration node
16596 if Nkind
(P
) = N_Component_Definition
then
16600 -- Case of an anonymous array subtype
16602 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
16603 N_Unconstrained_Array_Definition
)
16606 Array_Type_Declaration
(T
, Obj_Def
);
16608 -- Create an explicit subtype whenever possible
16610 elsif Nkind
(P
) /= N_Component_Declaration
16611 and then Def_Kind
= N_Subtype_Indication
16613 -- Base name of subtype on object name, which will be unique in
16614 -- the current scope.
16616 -- If this is a duplicate declaration, return base type, to avoid
16617 -- generating duplicate anonymous types.
16619 if Error_Posted
(P
) then
16620 Analyze
(Subtype_Mark
(Obj_Def
));
16621 return Entity
(Subtype_Mark
(Obj_Def
));
16626 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
16628 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
16630 Insert_Action
(Obj_Def
,
16631 Make_Subtype_Declaration
(Sloc
(P
),
16632 Defining_Identifier
=> T
,
16633 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
16635 -- This subtype may need freezing, and this will not be done
16636 -- automatically if the object declaration is not in declarative
16637 -- part. Since this is an object declaration, the type cannot always
16638 -- be frozen here. Deferred constants do not freeze their type
16639 -- (which often enough will be private).
16641 if Nkind
(P
) = N_Object_Declaration
16642 and then Constant_Present
(P
)
16643 and then No
(Expression
(P
))
16647 -- Here we freeze the base type of object type to catch premature use
16648 -- of discriminated private type without a full view.
16651 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
16654 -- Ada 2005 AI-406: the object definition in an object declaration
16655 -- can be an access definition.
16657 elsif Def_Kind
= N_Access_Definition
then
16658 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
16660 Set_Is_Local_Anonymous_Access
16662 V
=> (Ada_Version
< Ada_2012
)
16663 or else (Nkind
(P
) /= N_Object_Declaration
)
16664 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
16666 -- Otherwise, the object definition is just a subtype_mark
16669 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
16671 -- If expansion is disabled an object definition that is an aggregate
16672 -- will not get expanded and may lead to scoping problems in the back
16673 -- end, if the object is referenced in an inner scope. In that case
16674 -- create an itype reference for the object definition now. This
16675 -- may be redundant in some cases, but harmless.
16678 and then Nkind
(Related_Nod
) = N_Object_Declaration
16681 Build_Itype_Reference
(T
, Related_Nod
);
16686 end Find_Type_Of_Object
;
16688 --------------------------------
16689 -- Find_Type_Of_Subtype_Indic --
16690 --------------------------------
16692 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
16696 -- Case of subtype mark with a constraint
16698 if Nkind
(S
) = N_Subtype_Indication
then
16699 Find_Type
(Subtype_Mark
(S
));
16700 Typ
:= Entity
(Subtype_Mark
(S
));
16703 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
16706 ("incorrect constraint for this kind of type", Constraint
(S
));
16707 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
16710 -- Otherwise we have a subtype mark without a constraint
16712 elsif Error_Posted
(S
) then
16713 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
16721 -- Check No_Wide_Characters restriction
16723 Check_Wide_Character_Restriction
(Typ
, S
);
16726 end Find_Type_Of_Subtype_Indic
;
16728 -------------------------------------
16729 -- Floating_Point_Type_Declaration --
16730 -------------------------------------
16732 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16733 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
16734 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
16736 Base_Typ
: Entity_Id
;
16737 Implicit_Base
: Entity_Id
;
16740 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
16741 -- Find if given digits value, and possibly a specified range, allows
16742 -- derivation from specified type
16744 function Find_Base_Type
return Entity_Id
;
16745 -- Find a predefined base type that Def can derive from, or generate
16746 -- an error and substitute Long_Long_Float if none exists.
16748 ---------------------
16749 -- Can_Derive_From --
16750 ---------------------
16752 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
16753 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
16756 -- Check specified "digits" constraint
16758 if Digs_Val
> Digits_Value
(E
) then
16762 -- Check for matching range, if specified
16764 if Present
(Spec
) then
16765 if Expr_Value_R
(Type_Low_Bound
(E
)) >
16766 Expr_Value_R
(Low_Bound
(Spec
))
16771 if Expr_Value_R
(Type_High_Bound
(E
)) <
16772 Expr_Value_R
(High_Bound
(Spec
))
16779 end Can_Derive_From
;
16781 --------------------
16782 -- Find_Base_Type --
16783 --------------------
16785 function Find_Base_Type
return Entity_Id
is
16786 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
16789 -- Iterate over the predefined types in order, returning the first
16790 -- one that Def can derive from.
16792 while Present
(Choice
) loop
16793 if Can_Derive_From
(Node
(Choice
)) then
16794 return Node
(Choice
);
16797 Next_Elmt
(Choice
);
16800 -- If we can't derive from any existing type, use Long_Long_Float
16801 -- and give appropriate message explaining the problem.
16803 if Digs_Val
> Max_Digs_Val
then
16804 -- It might be the case that there is a type with the requested
16805 -- range, just not the combination of digits and range.
16808 ("no predefined type has requested range and precision",
16809 Real_Range_Specification
(Def
));
16813 ("range too large for any predefined type",
16814 Real_Range_Specification
(Def
));
16817 return Standard_Long_Long_Float
;
16818 end Find_Base_Type
;
16820 -- Start of processing for Floating_Point_Type_Declaration
16823 Check_Restriction
(No_Floating_Point
, Def
);
16825 -- Create an implicit base type
16828 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
16830 -- Analyze and verify digits value
16832 Analyze_And_Resolve
(Digs
, Any_Integer
);
16833 Check_Digits_Expression
(Digs
);
16834 Digs_Val
:= Expr_Value
(Digs
);
16836 -- Process possible range spec and find correct type to derive from
16838 Process_Real_Range_Specification
(Def
);
16840 -- Check that requested number of digits is not too high.
16842 if Digs_Val
> Max_Digs_Val
then
16843 -- The check for Max_Base_Digits may be somewhat expensive, as it
16844 -- requires reading System, so only do it when necessary.
16847 Max_Base_Digits
: constant Uint
:=
16850 (Parent
(RTE
(RE_Max_Base_Digits
))));
16853 if Digs_Val
> Max_Base_Digits
then
16854 Error_Msg_Uint_1
:= Max_Base_Digits
;
16855 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
16857 elsif No
(Real_Range_Specification
(Def
)) then
16858 Error_Msg_Uint_1
:= Max_Digs_Val
;
16859 Error_Msg_N
("types with more than ^ digits need range spec "
16860 & "(RM 3.5.7(6))", Digs
);
16865 -- Find a suitable type to derive from or complain and use a substitute
16867 Base_Typ
:= Find_Base_Type
;
16869 -- If there are bounds given in the declaration use them as the bounds
16870 -- of the type, otherwise use the bounds of the predefined base type
16871 -- that was chosen based on the Digits value.
16873 if Present
(Real_Range_Specification
(Def
)) then
16874 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
16875 Set_Is_Constrained
(T
);
16877 -- The bounds of this range must be converted to machine numbers
16878 -- in accordance with RM 4.9(38).
16880 Bound
:= Type_Low_Bound
(T
);
16882 if Nkind
(Bound
) = N_Real_Literal
then
16884 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
16885 Set_Is_Machine_Number
(Bound
);
16888 Bound
:= Type_High_Bound
(T
);
16890 if Nkind
(Bound
) = N_Real_Literal
then
16892 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
16893 Set_Is_Machine_Number
(Bound
);
16897 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
16900 -- Complete definition of implicit base and declared first subtype. The
16901 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16902 -- are not clobbered when the floating point type acts as a full view of
16905 Set_Etype
(Implicit_Base
, Base_Typ
);
16906 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
16907 Set_Size_Info
(Implicit_Base
, Base_Typ
);
16908 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
16909 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
16910 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
16911 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
16913 Set_Ekind
(T
, E_Floating_Point_Subtype
);
16914 Set_Etype
(T
, Implicit_Base
);
16915 Set_Size_Info
(T
, Implicit_Base
);
16916 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
16917 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
16918 Set_Digits_Value
(T
, Digs_Val
);
16919 end Floating_Point_Type_Declaration
;
16921 ----------------------------
16922 -- Get_Discriminant_Value --
16923 ----------------------------
16925 -- This is the situation:
16927 -- There is a non-derived type
16929 -- type T0 (Dx, Dy, Dz...)
16931 -- There are zero or more levels of derivation, with each derivation
16932 -- either purely inheriting the discriminants, or defining its own.
16934 -- type Ti is new Ti-1
16936 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16938 -- subtype Ti is ...
16940 -- The subtype issue is avoided by the use of Original_Record_Component,
16941 -- and the fact that derived subtypes also derive the constraints.
16943 -- This chain leads back from
16945 -- Typ_For_Constraint
16947 -- Typ_For_Constraint has discriminants, and the value for each
16948 -- discriminant is given by its corresponding Elmt of Constraints.
16950 -- Discriminant is some discriminant in this hierarchy
16952 -- We need to return its value
16954 -- We do this by recursively searching each level, and looking for
16955 -- Discriminant. Once we get to the bottom, we start backing up
16956 -- returning the value for it which may in turn be a discriminant
16957 -- further up, so on the backup we continue the substitution.
16959 function Get_Discriminant_Value
16960 (Discriminant
: Entity_Id
;
16961 Typ_For_Constraint
: Entity_Id
;
16962 Constraint
: Elist_Id
) return Node_Id
16964 function Root_Corresponding_Discriminant
16965 (Discr
: Entity_Id
) return Entity_Id
;
16966 -- Given a discriminant, traverse the chain of inherited discriminants
16967 -- and return the topmost discriminant.
16969 function Search_Derivation_Levels
16971 Discrim_Values
: Elist_Id
;
16972 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
16973 -- This is the routine that performs the recursive search of levels
16974 -- as described above.
16976 -------------------------------------
16977 -- Root_Corresponding_Discriminant --
16978 -------------------------------------
16980 function Root_Corresponding_Discriminant
16981 (Discr
: Entity_Id
) return Entity_Id
16987 while Present
(Corresponding_Discriminant
(D
)) loop
16988 D
:= Corresponding_Discriminant
(D
);
16992 end Root_Corresponding_Discriminant
;
16994 ------------------------------
16995 -- Search_Derivation_Levels --
16996 ------------------------------
16998 function Search_Derivation_Levels
17000 Discrim_Values
: Elist_Id
;
17001 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
17005 Result
: Node_Or_Entity_Id
;
17006 Result_Entity
: Node_Id
;
17009 -- If inappropriate type, return Error, this happens only in
17010 -- cascaded error situations, and we want to avoid a blow up.
17012 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
17016 -- Look deeper if possible. Use Stored_Constraints only for
17017 -- untagged types. For tagged types use the given constraint.
17018 -- This asymmetry needs explanation???
17020 if not Stored_Discrim_Values
17021 and then Present
(Stored_Constraint
(Ti
))
17022 and then not Is_Tagged_Type
(Ti
)
17025 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
17028 Td
: constant Entity_Id
:= Etype
(Ti
);
17032 Result
:= Discriminant
;
17035 if Present
(Stored_Constraint
(Ti
)) then
17037 Search_Derivation_Levels
17038 (Td
, Stored_Constraint
(Ti
), True);
17041 Search_Derivation_Levels
17042 (Td
, Discrim_Values
, Stored_Discrim_Values
);
17048 -- Extra underlying places to search, if not found above. For
17049 -- concurrent types, the relevant discriminant appears in the
17050 -- corresponding record. For a type derived from a private type
17051 -- without discriminant, the full view inherits the discriminants
17052 -- of the full view of the parent.
17054 if Result
= Discriminant
then
17055 if Is_Concurrent_Type
(Ti
)
17056 and then Present
(Corresponding_Record_Type
(Ti
))
17059 Search_Derivation_Levels
(
17060 Corresponding_Record_Type
(Ti
),
17062 Stored_Discrim_Values
);
17064 elsif Is_Private_Type
(Ti
)
17065 and then not Has_Discriminants
(Ti
)
17066 and then Present
(Full_View
(Ti
))
17067 and then Etype
(Full_View
(Ti
)) /= Ti
17070 Search_Derivation_Levels
(
17073 Stored_Discrim_Values
);
17077 -- If Result is not a (reference to a) discriminant, return it,
17078 -- otherwise set Result_Entity to the discriminant.
17080 if Nkind
(Result
) = N_Defining_Identifier
then
17081 pragma Assert
(Result
= Discriminant
);
17082 Result_Entity
:= Result
;
17085 if not Denotes_Discriminant
(Result
) then
17089 Result_Entity
:= Entity
(Result
);
17092 -- See if this level of derivation actually has discriminants
17093 -- because tagged derivations can add them, hence the lower
17094 -- levels need not have any.
17096 if not Has_Discriminants
(Ti
) then
17100 -- Scan Ti's discriminants for Result_Entity,
17101 -- and return its corresponding value, if any.
17103 Result_Entity
:= Original_Record_Component
(Result_Entity
);
17105 Assoc
:= First_Elmt
(Discrim_Values
);
17107 if Stored_Discrim_Values
then
17108 Disc
:= First_Stored_Discriminant
(Ti
);
17110 Disc
:= First_Discriminant
(Ti
);
17113 while Present
(Disc
) loop
17114 pragma Assert
(Present
(Assoc
));
17116 if Original_Record_Component
(Disc
) = Result_Entity
then
17117 return Node
(Assoc
);
17122 if Stored_Discrim_Values
then
17123 Next_Stored_Discriminant
(Disc
);
17125 Next_Discriminant
(Disc
);
17129 -- Could not find it
17132 end Search_Derivation_Levels
;
17136 Result
: Node_Or_Entity_Id
;
17138 -- Start of processing for Get_Discriminant_Value
17141 -- ??? This routine is a gigantic mess and will be deleted. For the
17142 -- time being just test for the trivial case before calling recurse.
17144 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
17150 D
:= First_Discriminant
(Typ_For_Constraint
);
17151 E
:= First_Elmt
(Constraint
);
17152 while Present
(D
) loop
17153 if Chars
(D
) = Chars
(Discriminant
) then
17157 Next_Discriminant
(D
);
17163 Result
:= Search_Derivation_Levels
17164 (Typ_For_Constraint
, Constraint
, False);
17166 -- ??? hack to disappear when this routine is gone
17168 if Nkind
(Result
) = N_Defining_Identifier
then
17174 D
:= First_Discriminant
(Typ_For_Constraint
);
17175 E
:= First_Elmt
(Constraint
);
17176 while Present
(D
) loop
17177 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
17181 Next_Discriminant
(D
);
17187 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
17189 end Get_Discriminant_Value
;
17191 --------------------------
17192 -- Has_Range_Constraint --
17193 --------------------------
17195 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
17196 C
: constant Node_Id
:= Constraint
(N
);
17199 if Nkind
(C
) = N_Range_Constraint
then
17202 elsif Nkind
(C
) = N_Digits_Constraint
then
17204 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
17205 or else Present
(Range_Constraint
(C
));
17207 elsif Nkind
(C
) = N_Delta_Constraint
then
17208 return Present
(Range_Constraint
(C
));
17213 end Has_Range_Constraint
;
17215 ------------------------
17216 -- Inherit_Components --
17217 ------------------------
17219 function Inherit_Components
17221 Parent_Base
: Entity_Id
;
17222 Derived_Base
: Entity_Id
;
17223 Is_Tagged
: Boolean;
17224 Inherit_Discr
: Boolean;
17225 Discs
: Elist_Id
) return Elist_Id
17227 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
17229 procedure Inherit_Component
17230 (Old_C
: Entity_Id
;
17231 Plain_Discrim
: Boolean := False;
17232 Stored_Discrim
: Boolean := False);
17233 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17234 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17235 -- True, Old_C is a stored discriminant. If they are both false then
17236 -- Old_C is a regular component.
17238 -----------------------
17239 -- Inherit_Component --
17240 -----------------------
17242 procedure Inherit_Component
17243 (Old_C
: Entity_Id
;
17244 Plain_Discrim
: Boolean := False;
17245 Stored_Discrim
: Boolean := False)
17247 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
17248 -- Id denotes the entity of an access discriminant or anonymous
17249 -- access component. Set the type of Id to either the same type of
17250 -- Old_C or create a new one depending on whether the parent and
17251 -- the child types are in the same scope.
17253 ------------------------
17254 -- Set_Anonymous_Type --
17255 ------------------------
17257 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
17258 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
17261 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
17262 Set_Etype
(Id
, Old_Typ
);
17264 -- The parent and the derived type are in two different scopes.
17265 -- Reuse the type of the original discriminant / component by
17266 -- copying it in order to preserve all attributes.
17270 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
17273 Set_Etype
(Id
, Typ
);
17275 -- Since we do not generate component declarations for
17276 -- inherited components, associate the itype with the
17279 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
17280 Set_Scope
(Typ
, Derived_Base
);
17283 end Set_Anonymous_Type
;
17285 -- Local variables and constants
17287 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
17289 Corr_Discrim
: Entity_Id
;
17290 Discrim
: Entity_Id
;
17292 -- Start of processing for Inherit_Component
17295 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
17297 Set_Parent
(New_C
, Parent
(Old_C
));
17299 -- Regular discriminants and components must be inserted in the scope
17300 -- of the Derived_Base. Do it here.
17302 if not Stored_Discrim
then
17303 Enter_Name
(New_C
);
17306 -- For tagged types the Original_Record_Component must point to
17307 -- whatever this field was pointing to in the parent type. This has
17308 -- already been achieved by the call to New_Copy above.
17310 if not Is_Tagged
then
17311 Set_Original_Record_Component
(New_C
, New_C
);
17314 -- Set the proper type of an access discriminant
17316 if Ekind
(New_C
) = E_Discriminant
17317 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
17319 Set_Anonymous_Type
(New_C
);
17322 -- If we have inherited a component then see if its Etype contains
17323 -- references to Parent_Base discriminants. In this case, replace
17324 -- these references with the constraints given in Discs. We do not
17325 -- do this for the partial view of private types because this is
17326 -- not needed (only the components of the full view will be used
17327 -- for code generation) and cause problem. We also avoid this
17328 -- transformation in some error situations.
17330 if Ekind
(New_C
) = E_Component
then
17332 -- Set the proper type of an anonymous access component
17334 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
17335 Set_Anonymous_Type
(New_C
);
17337 elsif (Is_Private_Type
(Derived_Base
)
17338 and then not Is_Generic_Type
(Derived_Base
))
17339 or else (Is_Empty_Elmt_List
(Discs
)
17340 and then not Expander_Active
)
17342 Set_Etype
(New_C
, Etype
(Old_C
));
17345 -- The current component introduces a circularity of the
17348 -- limited with Pack_2;
17349 -- package Pack_1 is
17350 -- type T_1 is tagged record
17351 -- Comp : access Pack_2.T_2;
17357 -- package Pack_2 is
17358 -- type T_2 is new Pack_1.T_1 with ...;
17363 Constrain_Component_Type
17364 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
17368 -- In derived tagged types it is illegal to reference a non
17369 -- discriminant component in the parent type. To catch this, mark
17370 -- these components with an Ekind of E_Void. This will be reset in
17371 -- Record_Type_Definition after processing the record extension of
17372 -- the derived type.
17374 -- If the declaration is a private extension, there is no further
17375 -- record extension to process, and the components retain their
17376 -- current kind, because they are visible at this point.
17378 if Is_Tagged
and then Ekind
(New_C
) = E_Component
17379 and then Nkind
(N
) /= N_Private_Extension_Declaration
17381 Set_Ekind
(New_C
, E_Void
);
17384 if Plain_Discrim
then
17385 Set_Corresponding_Discriminant
(New_C
, Old_C
);
17386 Build_Discriminal
(New_C
);
17388 -- If we are explicitly inheriting a stored discriminant it will be
17389 -- completely hidden.
17391 elsif Stored_Discrim
then
17392 Set_Corresponding_Discriminant
(New_C
, Empty
);
17393 Set_Discriminal
(New_C
, Empty
);
17394 Set_Is_Completely_Hidden
(New_C
);
17396 -- Set the Original_Record_Component of each discriminant in the
17397 -- derived base to point to the corresponding stored that we just
17400 Discrim
:= First_Discriminant
(Derived_Base
);
17401 while Present
(Discrim
) loop
17402 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
17404 -- Corr_Discrim could be missing in an error situation
17406 if Present
(Corr_Discrim
)
17407 and then Original_Record_Component
(Corr_Discrim
) = Old_C
17409 Set_Original_Record_Component
(Discrim
, New_C
);
17412 Next_Discriminant
(Discrim
);
17415 Append_Entity
(New_C
, Derived_Base
);
17418 if not Is_Tagged
then
17419 Append_Elmt
(Old_C
, Assoc_List
);
17420 Append_Elmt
(New_C
, Assoc_List
);
17422 end Inherit_Component
;
17424 -- Variables local to Inherit_Component
17426 Loc
: constant Source_Ptr
:= Sloc
(N
);
17428 Parent_Discrim
: Entity_Id
;
17429 Stored_Discrim
: Entity_Id
;
17431 Component
: Entity_Id
;
17433 -- Start of processing for Inherit_Components
17436 if not Is_Tagged
then
17437 Append_Elmt
(Parent_Base
, Assoc_List
);
17438 Append_Elmt
(Derived_Base
, Assoc_List
);
17441 -- Inherit parent discriminants if needed
17443 if Inherit_Discr
then
17444 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
17445 while Present
(Parent_Discrim
) loop
17446 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
17447 Next_Discriminant
(Parent_Discrim
);
17451 -- Create explicit stored discrims for untagged types when necessary
17453 if not Has_Unknown_Discriminants
(Derived_Base
)
17454 and then Has_Discriminants
(Parent_Base
)
17455 and then not Is_Tagged
17458 or else First_Discriminant
(Parent_Base
) /=
17459 First_Stored_Discriminant
(Parent_Base
))
17461 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
17462 while Present
(Stored_Discrim
) loop
17463 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
17464 Next_Stored_Discriminant
(Stored_Discrim
);
17468 -- See if we can apply the second transformation for derived types, as
17469 -- explained in point 6. in the comments above Build_Derived_Record_Type
17470 -- This is achieved by appending Derived_Base discriminants into Discs,
17471 -- which has the side effect of returning a non empty Discs list to the
17472 -- caller of Inherit_Components, which is what we want. This must be
17473 -- done for private derived types if there are explicit stored
17474 -- discriminants, to ensure that we can retrieve the values of the
17475 -- constraints provided in the ancestors.
17478 and then Is_Empty_Elmt_List
(Discs
)
17479 and then Present
(First_Discriminant
(Derived_Base
))
17481 (not Is_Private_Type
(Derived_Base
)
17482 or else Is_Completely_Hidden
17483 (First_Stored_Discriminant
(Derived_Base
))
17484 or else Is_Generic_Type
(Derived_Base
))
17486 D
:= First_Discriminant
(Derived_Base
);
17487 while Present
(D
) loop
17488 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
17489 Next_Discriminant
(D
);
17493 -- Finally, inherit non-discriminant components unless they are not
17494 -- visible because defined or inherited from the full view of the
17495 -- parent. Don't inherit the _parent field of the parent type.
17497 Component
:= First_Entity
(Parent_Base
);
17498 while Present
(Component
) loop
17500 -- Ada 2005 (AI-251): Do not inherit components associated with
17501 -- secondary tags of the parent.
17503 if Ekind
(Component
) = E_Component
17504 and then Present
(Related_Type
(Component
))
17508 elsif Ekind
(Component
) /= E_Component
17509 or else Chars
(Component
) = Name_uParent
17513 -- If the derived type is within the parent type's declarative
17514 -- region, then the components can still be inherited even though
17515 -- they aren't visible at this point. This can occur for cases
17516 -- such as within public child units where the components must
17517 -- become visible upon entering the child unit's private part.
17519 elsif not Is_Visible_Component
(Component
)
17520 and then not In_Open_Scopes
(Scope
(Parent_Base
))
17524 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
17525 E_Limited_Private_Type
)
17530 Inherit_Component
(Component
);
17533 Next_Entity
(Component
);
17536 -- For tagged derived types, inherited discriminants cannot be used in
17537 -- component declarations of the record extension part. To achieve this
17538 -- we mark the inherited discriminants as not visible.
17540 if Is_Tagged
and then Inherit_Discr
then
17541 D
:= First_Discriminant
(Derived_Base
);
17542 while Present
(D
) loop
17543 Set_Is_Immediately_Visible
(D
, False);
17544 Next_Discriminant
(D
);
17549 end Inherit_Components
;
17551 -----------------------------
17552 -- Inherit_Predicate_Flags --
17553 -----------------------------
17555 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
17557 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
17558 Set_Has_Static_Predicate_Aspect
17559 (Subt
, Has_Static_Predicate_Aspect
(Par
));
17560 Set_Has_Dynamic_Predicate_Aspect
17561 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
17562 end Inherit_Predicate_Flags
;
17564 ----------------------
17565 -- Is_EVF_Procedure --
17566 ----------------------
17568 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
17569 Formal
: Entity_Id
;
17572 -- Examine the formals of an Extensions_Visible False procedure looking
17573 -- for a controlling OUT parameter.
17575 if Ekind
(Subp
) = E_Procedure
17576 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
17578 Formal
:= First_Formal
(Subp
);
17579 while Present
(Formal
) loop
17580 if Ekind
(Formal
) = E_Out_Parameter
17581 and then Is_Controlling_Formal
(Formal
)
17586 Next_Formal
(Formal
);
17591 end Is_EVF_Procedure
;
17593 -----------------------
17594 -- Is_Null_Extension --
17595 -----------------------
17597 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
17598 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
17599 Comp_List
: Node_Id
;
17603 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
17604 or else not Is_Tagged_Type
(T
)
17605 or else Nkind
(Type_Definition
(Type_Decl
)) /=
17606 N_Derived_Type_Definition
17607 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
17613 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
17615 if Present
(Discriminant_Specifications
(Type_Decl
)) then
17618 elsif Present
(Comp_List
)
17619 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
17621 Comp
:= First
(Component_Items
(Comp_List
));
17623 -- Only user-defined components are relevant. The component list
17624 -- may also contain a parent component and internal components
17625 -- corresponding to secondary tags, but these do not determine
17626 -- whether this is a null extension.
17628 while Present
(Comp
) loop
17629 if Comes_From_Source
(Comp
) then
17640 end Is_Null_Extension
;
17642 ------------------------------
17643 -- Is_Valid_Constraint_Kind --
17644 ------------------------------
17646 function Is_Valid_Constraint_Kind
17647 (T_Kind
: Type_Kind
;
17648 Constraint_Kind
: Node_Kind
) return Boolean
17652 when Enumeration_Kind |
17654 return Constraint_Kind
= N_Range_Constraint
;
17656 when Decimal_Fixed_Point_Kind
=>
17657 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17658 N_Range_Constraint
);
17660 when Ordinary_Fixed_Point_Kind
=>
17661 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
17662 N_Range_Constraint
);
17665 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17666 N_Range_Constraint
);
17673 E_Incomplete_Type |
17676 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
17679 return True; -- Error will be detected later
17681 end Is_Valid_Constraint_Kind
;
17683 --------------------------
17684 -- Is_Visible_Component --
17685 --------------------------
17687 function Is_Visible_Component
17689 N
: Node_Id
:= Empty
) return Boolean
17691 Original_Comp
: Entity_Id
:= Empty
;
17692 Original_Scope
: Entity_Id
;
17693 Type_Scope
: Entity_Id
;
17695 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
17696 -- Check whether parent type of inherited component is declared locally,
17697 -- possibly within a nested package or instance. The current scope is
17698 -- the derived record itself.
17700 -------------------
17701 -- Is_Local_Type --
17702 -------------------
17704 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
17708 Scop
:= Scope
(Typ
);
17709 while Present
(Scop
)
17710 and then Scop
/= Standard_Standard
17712 if Scop
= Scope
(Current_Scope
) then
17716 Scop
:= Scope
(Scop
);
17722 -- Start of processing for Is_Visible_Component
17725 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
17726 Original_Comp
:= Original_Record_Component
(C
);
17729 if No
(Original_Comp
) then
17731 -- Premature usage, or previous error
17736 Original_Scope
:= Scope
(Original_Comp
);
17737 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
17740 -- This test only concerns tagged types
17742 if not Is_Tagged_Type
(Original_Scope
) then
17745 -- If it is _Parent or _Tag, there is no visibility issue
17747 elsif not Comes_From_Source
(Original_Comp
) then
17750 -- Discriminants are visible unless the (private) type has unknown
17751 -- discriminants. If the discriminant reference is inserted for a
17752 -- discriminant check on a full view it is also visible.
17754 elsif Ekind
(Original_Comp
) = E_Discriminant
17756 (not Has_Unknown_Discriminants
(Original_Scope
)
17757 or else (Present
(N
)
17758 and then Nkind
(N
) = N_Selected_Component
17759 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
17760 and then not Comes_From_Source
(Prefix
(N
))))
17764 -- In the body of an instantiation, no need to check for the visibility
17767 elsif In_Instance_Body
then
17770 -- If the component has been declared in an ancestor which is currently
17771 -- a private type, then it is not visible. The same applies if the
17772 -- component's containing type is not in an open scope and the original
17773 -- component's enclosing type is a visible full view of a private type
17774 -- (which can occur in cases where an attempt is being made to reference
17775 -- a component in a sibling package that is inherited from a visible
17776 -- component of a type in an ancestor package; the component in the
17777 -- sibling package should not be visible even though the component it
17778 -- inherited from is visible). This does not apply however in the case
17779 -- where the scope of the type is a private child unit, or when the
17780 -- parent comes from a local package in which the ancestor is currently
17781 -- visible. The latter suppression of visibility is needed for cases
17782 -- that are tested in B730006.
17784 elsif Is_Private_Type
(Original_Scope
)
17786 (not Is_Private_Descendant
(Type_Scope
)
17787 and then not In_Open_Scopes
(Type_Scope
)
17788 and then Has_Private_Declaration
(Original_Scope
))
17790 -- If the type derives from an entity in a formal package, there
17791 -- are no additional visible components.
17793 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
17794 N_Formal_Package_Declaration
17798 -- if we are not in the private part of the current package, there
17799 -- are no additional visible components.
17801 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
17802 and then not In_Private_Part
(Scope
(Current_Scope
))
17807 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
17808 and then In_Open_Scopes
(Scope
(Original_Scope
))
17809 and then Is_Local_Type
(Type_Scope
);
17812 -- There is another weird way in which a component may be invisible when
17813 -- the private and the full view are not derived from the same ancestor.
17814 -- Here is an example :
17816 -- type A1 is tagged record F1 : integer; end record;
17817 -- type A2 is new A1 with record F2 : integer; end record;
17818 -- type T is new A1 with private;
17820 -- type T is new A2 with null record;
17822 -- In this case, the full view of T inherits F1 and F2 but the private
17823 -- view inherits only F1
17827 Ancestor
: Entity_Id
:= Scope
(C
);
17831 if Ancestor
= Original_Scope
then
17833 elsif Ancestor
= Etype
(Ancestor
) then
17837 Ancestor
:= Etype
(Ancestor
);
17841 end Is_Visible_Component
;
17843 --------------------------
17844 -- Make_Class_Wide_Type --
17845 --------------------------
17847 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
17848 CW_Type
: Entity_Id
;
17850 Next_E
: Entity_Id
;
17853 if Present
(Class_Wide_Type
(T
)) then
17855 -- The class-wide type is a partially decorated entity created for a
17856 -- unanalyzed tagged type referenced through a limited with clause.
17857 -- When the tagged type is analyzed, its class-wide type needs to be
17858 -- redecorated. Note that we reuse the entity created by Decorate_
17859 -- Tagged_Type in order to preserve all links.
17861 if Materialize_Entity
(Class_Wide_Type
(T
)) then
17862 CW_Type
:= Class_Wide_Type
(T
);
17863 Set_Materialize_Entity
(CW_Type
, False);
17865 -- The class wide type can have been defined by the partial view, in
17866 -- which case everything is already done.
17872 -- Default case, we need to create a new class-wide type
17876 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
17879 -- Inherit root type characteristics
17881 CW_Name
:= Chars
(CW_Type
);
17882 Next_E
:= Next_Entity
(CW_Type
);
17883 Copy_Node
(T
, CW_Type
);
17884 Set_Comes_From_Source
(CW_Type
, False);
17885 Set_Chars
(CW_Type
, CW_Name
);
17886 Set_Parent
(CW_Type
, Parent
(T
));
17887 Set_Next_Entity
(CW_Type
, Next_E
);
17889 -- Ensure we have a new freeze node for the class-wide type. The partial
17890 -- view may have freeze action of its own, requiring a proper freeze
17891 -- node, and the same freeze node cannot be shared between the two
17894 Set_Has_Delayed_Freeze
(CW_Type
);
17895 Set_Freeze_Node
(CW_Type
, Empty
);
17897 -- Customize the class-wide type: It has no prim. op., it cannot be
17898 -- abstract and its Etype points back to the specific root type.
17900 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
17901 Set_Is_Tagged_Type
(CW_Type
, True);
17902 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
17903 Set_Is_Abstract_Type
(CW_Type
, False);
17904 Set_Is_Constrained
(CW_Type
, False);
17905 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
17906 Set_Default_SSO
(CW_Type
);
17908 if Ekind
(T
) = E_Class_Wide_Subtype
then
17909 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
17911 Set_Etype
(CW_Type
, T
);
17914 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
17916 -- If this is the class_wide type of a constrained subtype, it does
17917 -- not have discriminants.
17919 Set_Has_Discriminants
(CW_Type
,
17920 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
17922 Set_Has_Unknown_Discriminants
(CW_Type
, True);
17923 Set_Class_Wide_Type
(T
, CW_Type
);
17924 Set_Equivalent_Type
(CW_Type
, Empty
);
17926 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17928 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
17929 end Make_Class_Wide_Type
;
17935 procedure Make_Index
17937 Related_Nod
: Node_Id
;
17938 Related_Id
: Entity_Id
:= Empty
;
17939 Suffix_Index
: Nat
:= 1;
17940 In_Iter_Schm
: Boolean := False)
17944 Def_Id
: Entity_Id
:= Empty
;
17945 Found
: Boolean := False;
17948 -- For a discrete range used in a constrained array definition and
17949 -- defined by a range, an implicit conversion to the predefined type
17950 -- INTEGER is assumed if each bound is either a numeric literal, a named
17951 -- number, or an attribute, and the type of both bounds (prior to the
17952 -- implicit conversion) is the type universal_integer. Otherwise, both
17953 -- bounds must be of the same discrete type, other than universal
17954 -- integer; this type must be determinable independently of the
17955 -- context, but using the fact that the type must be discrete and that
17956 -- both bounds must have the same type.
17958 -- Character literals also have a universal type in the absence of
17959 -- of additional context, and are resolved to Standard_Character.
17961 if Nkind
(N
) = N_Range
then
17963 -- The index is given by a range constraint. The bounds are known
17964 -- to be of a consistent type.
17966 if not Is_Overloaded
(N
) then
17969 -- For universal bounds, choose the specific predefined type
17971 if T
= Universal_Integer
then
17972 T
:= Standard_Integer
;
17974 elsif T
= Any_Character
then
17975 Ambiguous_Character
(Low_Bound
(N
));
17977 T
:= Standard_Character
;
17980 -- The node may be overloaded because some user-defined operators
17981 -- are available, but if a universal interpretation exists it is
17982 -- also the selected one.
17984 elsif Universal_Interpretation
(N
) = Universal_Integer
then
17985 T
:= Standard_Integer
;
17991 Ind
: Interp_Index
;
17995 Get_First_Interp
(N
, Ind
, It
);
17996 while Present
(It
.Typ
) loop
17997 if Is_Discrete_Type
(It
.Typ
) then
18000 and then not Covers
(It
.Typ
, T
)
18001 and then not Covers
(T
, It
.Typ
)
18003 Error_Msg_N
("ambiguous bounds in discrete range", N
);
18011 Get_Next_Interp
(Ind
, It
);
18014 if T
= Any_Type
then
18015 Error_Msg_N
("discrete type required for range", N
);
18016 Set_Etype
(N
, Any_Type
);
18019 elsif T
= Universal_Integer
then
18020 T
:= Standard_Integer
;
18025 if not Is_Discrete_Type
(T
) then
18026 Error_Msg_N
("discrete type required for range", N
);
18027 Set_Etype
(N
, Any_Type
);
18031 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
18032 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
18033 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
18034 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18035 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18037 -- The type of the index will be the type of the prefix, as long
18038 -- as the upper bound is 'Last of the same type.
18040 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
18042 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
18043 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
18044 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
18045 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
18052 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
18054 elsif Nkind
(N
) = N_Subtype_Indication
then
18056 -- The index is given by a subtype with a range constraint
18058 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
18060 if not Is_Discrete_Type
(T
) then
18061 Error_Msg_N
("discrete type required for range", N
);
18062 Set_Etype
(N
, Any_Type
);
18066 R
:= Range_Expression
(Constraint
(N
));
18069 Process_Range_Expr_In_Decl
18070 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
18072 elsif Nkind
(N
) = N_Attribute_Reference
then
18074 -- Catch beginner's error (use of attribute other than 'Range)
18076 if Attribute_Name
(N
) /= Name_Range
then
18077 Error_Msg_N
("expect attribute ''Range", N
);
18078 Set_Etype
(N
, Any_Type
);
18082 -- If the node denotes the range of a type mark, that is also the
18083 -- resulting type, and we do not need to create an Itype for it.
18085 if Is_Entity_Name
(Prefix
(N
))
18086 and then Comes_From_Source
(N
)
18087 and then Is_Type
(Entity
(Prefix
(N
)))
18088 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
18090 Def_Id
:= Entity
(Prefix
(N
));
18093 Analyze_And_Resolve
(N
);
18097 -- If none of the above, must be a subtype. We convert this to a
18098 -- range attribute reference because in the case of declared first
18099 -- named subtypes, the types in the range reference can be different
18100 -- from the type of the entity. A range attribute normalizes the
18101 -- reference and obtains the correct types for the bounds.
18103 -- This transformation is in the nature of an expansion, is only
18104 -- done if expansion is active. In particular, it is not done on
18105 -- formal generic types, because we need to retain the name of the
18106 -- original index for instantiation purposes.
18109 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
18110 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
18111 Set_Etype
(N
, Any_Integer
);
18115 -- The type mark may be that of an incomplete type. It is only
18116 -- now that we can get the full view, previous analysis does
18117 -- not look specifically for a type mark.
18119 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
18120 Set_Etype
(N
, Entity
(N
));
18121 Def_Id
:= Entity
(N
);
18123 if not Is_Discrete_Type
(Def_Id
) then
18124 Error_Msg_N
("discrete type required for index", N
);
18125 Set_Etype
(N
, Any_Type
);
18130 if Expander_Active
then
18132 Make_Attribute_Reference
(Sloc
(N
),
18133 Attribute_Name
=> Name_Range
,
18134 Prefix
=> Relocate_Node
(N
)));
18136 -- The original was a subtype mark that does not freeze. This
18137 -- means that the rewritten version must not freeze either.
18139 Set_Must_Not_Freeze
(N
);
18140 Set_Must_Not_Freeze
(Prefix
(N
));
18141 Analyze_And_Resolve
(N
);
18145 -- If expander is inactive, type is legal, nothing else to construct
18152 if not Is_Discrete_Type
(T
) then
18153 Error_Msg_N
("discrete type required for range", N
);
18154 Set_Etype
(N
, Any_Type
);
18157 elsif T
= Any_Type
then
18158 Set_Etype
(N
, Any_Type
);
18162 -- We will now create the appropriate Itype to describe the range, but
18163 -- first a check. If we originally had a subtype, then we just label
18164 -- the range with this subtype. Not only is there no need to construct
18165 -- a new subtype, but it is wrong to do so for two reasons:
18167 -- 1. A legality concern, if we have a subtype, it must not freeze,
18168 -- and the Itype would cause freezing incorrectly
18170 -- 2. An efficiency concern, if we created an Itype, it would not be
18171 -- recognized as the same type for the purposes of eliminating
18172 -- checks in some circumstances.
18174 -- We signal this case by setting the subtype entity in Def_Id
18176 if No
(Def_Id
) then
18178 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
18179 Set_Etype
(Def_Id
, Base_Type
(T
));
18181 if Is_Signed_Integer_Type
(T
) then
18182 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
18184 elsif Is_Modular_Integer_Type
(T
) then
18185 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
18188 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
18189 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
18190 Set_First_Literal
(Def_Id
, First_Literal
(T
));
18193 Set_Size_Info
(Def_Id
, (T
));
18194 Set_RM_Size
(Def_Id
, RM_Size
(T
));
18195 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
18197 Set_Scalar_Range
(Def_Id
, R
);
18198 Conditional_Delay
(Def_Id
, T
);
18200 if Nkind
(N
) = N_Subtype_Indication
then
18201 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
18204 -- In the subtype indication case, if the immediate parent of the
18205 -- new subtype is non-static, then the subtype we create is non-
18206 -- static, even if its bounds are static.
18208 if Nkind
(N
) = N_Subtype_Indication
18209 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
18211 Set_Is_Non_Static_Subtype
(Def_Id
);
18215 -- Final step is to label the index with this constructed type
18217 Set_Etype
(N
, Def_Id
);
18220 ------------------------------
18221 -- Modular_Type_Declaration --
18222 ------------------------------
18224 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
18225 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
18228 procedure Set_Modular_Size
(Bits
: Int
);
18229 -- Sets RM_Size to Bits, and Esize to normal word size above this
18231 ----------------------
18232 -- Set_Modular_Size --
18233 ----------------------
18235 procedure Set_Modular_Size
(Bits
: Int
) is
18237 Set_RM_Size
(T
, UI_From_Int
(Bits
));
18242 elsif Bits
<= 16 then
18243 Init_Esize
(T
, 16);
18245 elsif Bits
<= 32 then
18246 Init_Esize
(T
, 32);
18249 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
18252 if not Non_Binary_Modulus
(T
)
18253 and then Esize
(T
) = RM_Size
(T
)
18255 Set_Is_Known_Valid
(T
);
18257 end Set_Modular_Size
;
18259 -- Start of processing for Modular_Type_Declaration
18262 -- If the mod expression is (exactly) 2 * literal, where literal is
18263 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18265 if Warn_On_Suspicious_Modulus_Value
18266 and then Nkind
(Mod_Expr
) = N_Op_Multiply
18267 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
18268 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
18269 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
18270 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
18273 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
18276 -- Proceed with analysis of mod expression
18278 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
18280 Set_Ekind
(T
, E_Modular_Integer_Type
);
18281 Init_Alignment
(T
);
18282 Set_Is_Constrained
(T
);
18284 if not Is_OK_Static_Expression
(Mod_Expr
) then
18285 Flag_Non_Static_Expr
18286 ("non-static expression used for modular type bound!", Mod_Expr
);
18287 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18289 M_Val
:= Expr_Value
(Mod_Expr
);
18293 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
18294 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18297 if M_Val
> 2 ** Standard_Long_Integer_Size
then
18298 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
18301 Set_Modulus
(T
, M_Val
);
18303 -- Create bounds for the modular type based on the modulus given in
18304 -- the type declaration and then analyze and resolve those bounds.
18306 Set_Scalar_Range
(T
,
18307 Make_Range
(Sloc
(Mod_Expr
),
18308 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
18309 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
18311 -- Properly analyze the literals for the range. We do this manually
18312 -- because we can't go calling Resolve, since we are resolving these
18313 -- bounds with the type, and this type is certainly not complete yet.
18315 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
18316 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
18317 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
18318 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
18320 -- Loop through powers of two to find number of bits required
18322 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
18326 if M_Val
= 2 ** Bits
then
18327 Set_Modular_Size
(Bits
);
18332 elsif M_Val
< 2 ** Bits
then
18333 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
18334 Set_Non_Binary_Modulus
(T
);
18336 if Bits
> System_Max_Nonbinary_Modulus_Power
then
18337 Error_Msg_Uint_1
:=
18338 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
18340 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
18341 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18345 -- In the non-binary case, set size as per RM 13.3(55)
18347 Set_Modular_Size
(Bits
);
18354 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18355 -- so we just signal an error and set the maximum size.
18357 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
18358 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
18360 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18361 Init_Alignment
(T
);
18363 end Modular_Type_Declaration
;
18365 --------------------------
18366 -- New_Concatenation_Op --
18367 --------------------------
18369 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
18370 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
18373 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
18374 -- Create abbreviated declaration for the formal of a predefined
18375 -- Operator 'Op' of type 'Typ'
18377 --------------------
18378 -- Make_Op_Formal --
18379 --------------------
18381 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
18382 Formal
: Entity_Id
;
18384 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
18385 Set_Etype
(Formal
, Typ
);
18386 Set_Mechanism
(Formal
, Default_Mechanism
);
18388 end Make_Op_Formal
;
18390 -- Start of processing for New_Concatenation_Op
18393 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
18395 Set_Ekind
(Op
, E_Operator
);
18396 Set_Scope
(Op
, Current_Scope
);
18397 Set_Etype
(Op
, Typ
);
18398 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
18399 Set_Is_Immediately_Visible
(Op
);
18400 Set_Is_Intrinsic_Subprogram
(Op
);
18401 Set_Has_Completion
(Op
);
18402 Append_Entity
(Op
, Current_Scope
);
18404 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
18406 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18407 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18408 end New_Concatenation_Op
;
18410 -------------------------
18411 -- OK_For_Limited_Init --
18412 -------------------------
18414 -- ???Check all calls of this, and compare the conditions under which it's
18417 function OK_For_Limited_Init
18419 Exp
: Node_Id
) return Boolean
18422 return Is_CPP_Constructor_Call
(Exp
)
18423 or else (Ada_Version
>= Ada_2005
18424 and then not Debug_Flag_Dot_L
18425 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
18426 end OK_For_Limited_Init
;
18428 -------------------------------
18429 -- OK_For_Limited_Init_In_05 --
18430 -------------------------------
18432 function OK_For_Limited_Init_In_05
18434 Exp
: Node_Id
) return Boolean
18437 -- An object of a limited interface type can be initialized with any
18438 -- expression of a nonlimited descendant type.
18440 if Is_Class_Wide_Type
(Typ
)
18441 and then Is_Limited_Interface
(Typ
)
18442 and then not Is_Limited_Type
(Etype
(Exp
))
18447 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18448 -- case of limited aggregates (including extension aggregates), and
18449 -- function calls. The function call may have been given in prefixed
18450 -- notation, in which case the original node is an indexed component.
18451 -- If the function is parameterless, the original node was an explicit
18452 -- dereference. The function may also be parameterless, in which case
18453 -- the source node is just an identifier.
18455 case Nkind
(Original_Node
(Exp
)) is
18456 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
18459 when N_Identifier
=>
18460 return Present
(Entity
(Original_Node
(Exp
)))
18461 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
18463 when N_Qualified_Expression
=>
18465 OK_For_Limited_Init_In_05
18466 (Typ
, Expression
(Original_Node
(Exp
)));
18468 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18469 -- with a function call, the expander has rewritten the call into an
18470 -- N_Type_Conversion node to force displacement of the pointer to
18471 -- reference the component containing the secondary dispatch table.
18472 -- Otherwise a type conversion is not a legal context.
18473 -- A return statement for a build-in-place function returning a
18474 -- synchronized type also introduces an unchecked conversion.
18476 when N_Type_Conversion |
18477 N_Unchecked_Type_Conversion
=>
18478 return not Comes_From_Source
(Exp
)
18480 OK_For_Limited_Init_In_05
18481 (Typ
, Expression
(Original_Node
(Exp
)));
18483 when N_Indexed_Component |
18484 N_Selected_Component |
18485 N_Explicit_Dereference
=>
18486 return Nkind
(Exp
) = N_Function_Call
;
18488 -- A use of 'Input is a function call, hence allowed. Normally the
18489 -- attribute will be changed to a call, but the attribute by itself
18490 -- can occur with -gnatc.
18492 when N_Attribute_Reference
=>
18493 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
18495 -- For a case expression, all dependent expressions must be legal
18497 when N_Case_Expression
=>
18502 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
18503 while Present
(Alt
) loop
18504 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
18514 -- For an if expression, all dependent expressions must be legal
18516 when N_If_Expression
=>
18518 Then_Expr
: constant Node_Id
:=
18519 Next
(First
(Expressions
(Original_Node
(Exp
))));
18520 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
18522 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
18524 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
18530 end OK_For_Limited_Init_In_05
;
18532 -------------------------------------------
18533 -- Ordinary_Fixed_Point_Type_Declaration --
18534 -------------------------------------------
18536 procedure Ordinary_Fixed_Point_Type_Declaration
18540 Loc
: constant Source_Ptr
:= Sloc
(Def
);
18541 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
18542 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
18543 Implicit_Base
: Entity_Id
;
18550 Check_Restriction
(No_Fixed_Point
, Def
);
18552 -- Create implicit base type
18555 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
18556 Set_Etype
(Implicit_Base
, Implicit_Base
);
18558 -- Analyze and process delta expression
18560 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
18562 Check_Delta_Expression
(Delta_Expr
);
18563 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
18565 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
18567 -- Compute default small from given delta, which is the largest power
18568 -- of two that does not exceed the given delta value.
18578 if Delta_Val
< Ureal_1
then
18579 while Delta_Val
< Tmp
loop
18580 Tmp
:= Tmp
/ Ureal_2
;
18581 Scale
:= Scale
+ 1;
18586 Tmp
:= Tmp
* Ureal_2
;
18587 exit when Tmp
> Delta_Val
;
18588 Scale
:= Scale
- 1;
18592 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
18595 Set_Small_Value
(Implicit_Base
, Small_Val
);
18597 -- If no range was given, set a dummy range
18599 if RRS
<= Empty_Or_Error
then
18600 Low_Val
:= -Small_Val
;
18601 High_Val
:= Small_Val
;
18603 -- Otherwise analyze and process given range
18607 Low
: constant Node_Id
:= Low_Bound
(RRS
);
18608 High
: constant Node_Id
:= High_Bound
(RRS
);
18611 Analyze_And_Resolve
(Low
, Any_Real
);
18612 Analyze_And_Resolve
(High
, Any_Real
);
18613 Check_Real_Bound
(Low
);
18614 Check_Real_Bound
(High
);
18616 -- Obtain and set the range
18618 Low_Val
:= Expr_Value_R
(Low
);
18619 High_Val
:= Expr_Value_R
(High
);
18621 if Low_Val
> High_Val
then
18622 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
18627 -- The range for both the implicit base and the declared first subtype
18628 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18629 -- set a temporary range in place. Note that the bounds of the base
18630 -- type will be widened to be symmetrical and to fill the available
18631 -- bits when the type is frozen.
18633 -- We could do this with all discrete types, and probably should, but
18634 -- we absolutely have to do it for fixed-point, since the end-points
18635 -- of the range and the size are determined by the small value, which
18636 -- could be reset before the freeze point.
18638 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
18639 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
18641 -- Complete definition of first subtype. The inheritance of the rep item
18642 -- chain ensures that SPARK-related pragmas are not clobbered when the
18643 -- ordinary fixed point type acts as a full view of a private type.
18645 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
18646 Set_Etype
(T
, Implicit_Base
);
18647 Init_Size_Align
(T
);
18648 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
18649 Set_Small_Value
(T
, Small_Val
);
18650 Set_Delta_Value
(T
, Delta_Val
);
18651 Set_Is_Constrained
(T
);
18652 end Ordinary_Fixed_Point_Type_Declaration
;
18654 ----------------------------------
18655 -- Preanalyze_Assert_Expression --
18656 ----------------------------------
18658 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18660 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
18661 Preanalyze_Spec_Expression
(N
, T
);
18662 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
18663 end Preanalyze_Assert_Expression
;
18665 -----------------------------------
18666 -- Preanalyze_Default_Expression --
18667 -----------------------------------
18669 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18670 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
18672 In_Default_Expr
:= True;
18673 Preanalyze_Spec_Expression
(N
, T
);
18674 In_Default_Expr
:= Save_In_Default_Expr
;
18675 end Preanalyze_Default_Expression
;
18677 --------------------------------
18678 -- Preanalyze_Spec_Expression --
18679 --------------------------------
18681 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18682 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
18684 In_Spec_Expression
:= True;
18685 Preanalyze_And_Resolve
(N
, T
);
18686 In_Spec_Expression
:= Save_In_Spec_Expression
;
18687 end Preanalyze_Spec_Expression
;
18689 ----------------------------------------
18690 -- Prepare_Private_Subtype_Completion --
18691 ----------------------------------------
18693 procedure Prepare_Private_Subtype_Completion
18695 Related_Nod
: Node_Id
)
18697 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
18698 Full_B
: Entity_Id
:= Full_View
(Id_B
);
18702 if Present
(Full_B
) then
18704 -- Get to the underlying full view if necessary
18706 if Is_Private_Type
(Full_B
)
18707 and then Present
(Underlying_Full_View
(Full_B
))
18709 Full_B
:= Underlying_Full_View
(Full_B
);
18712 -- The Base_Type is already completed, we can complete the subtype
18713 -- now. We have to create a new entity with the same name, Thus we
18714 -- can't use Create_Itype.
18716 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
18717 Set_Is_Itype
(Full
);
18718 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
18719 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
18722 -- The parent subtype may be private, but the base might not, in some
18723 -- nested instances. In that case, the subtype does not need to be
18724 -- exchanged. It would still be nice to make private subtypes and their
18725 -- bases consistent at all times ???
18727 if Is_Private_Type
(Id_B
) then
18728 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
18730 end Prepare_Private_Subtype_Completion
;
18732 ---------------------------
18733 -- Process_Discriminants --
18734 ---------------------------
18736 procedure Process_Discriminants
18738 Prev
: Entity_Id
:= Empty
)
18740 Elist
: constant Elist_Id
:= New_Elmt_List
;
18743 Discr_Number
: Uint
;
18744 Discr_Type
: Entity_Id
;
18745 Default_Present
: Boolean := False;
18746 Default_Not_Present
: Boolean := False;
18749 -- A composite type other than an array type can have discriminants.
18750 -- On entry, the current scope is the composite type.
18752 -- The discriminants are initially entered into the scope of the type
18753 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18754 -- use, as explained at the end of this procedure.
18756 Discr
:= First
(Discriminant_Specifications
(N
));
18757 while Present
(Discr
) loop
18758 Enter_Name
(Defining_Identifier
(Discr
));
18760 -- For navigation purposes we add a reference to the discriminant
18761 -- in the entity for the type. If the current declaration is a
18762 -- completion, place references on the partial view. Otherwise the
18763 -- type is the current scope.
18765 if Present
(Prev
) then
18767 -- The references go on the partial view, if present. If the
18768 -- partial view has discriminants, the references have been
18769 -- generated already.
18771 if not Has_Discriminants
(Prev
) then
18772 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
18776 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
18779 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
18780 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
18782 -- Ada 2005 (AI-254)
18784 if Present
(Access_To_Subprogram_Definition
18785 (Discriminant_Type
(Discr
)))
18786 and then Protected_Present
(Access_To_Subprogram_Definition
18787 (Discriminant_Type
(Discr
)))
18790 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
18794 Find_Type
(Discriminant_Type
(Discr
));
18795 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
18797 if Error_Posted
(Discriminant_Type
(Discr
)) then
18798 Discr_Type
:= Any_Type
;
18802 -- Handling of discriminants that are access types
18804 if Is_Access_Type
(Discr_Type
) then
18806 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18807 -- limited record types
18809 if Ada_Version
< Ada_2005
then
18810 Check_Access_Discriminant_Requires_Limited
18811 (Discr
, Discriminant_Type
(Discr
));
18814 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
18816 ("(Ada 83) access discriminant not allowed", Discr
);
18819 -- If not access type, must be a discrete type
18821 elsif not Is_Discrete_Type
(Discr_Type
) then
18823 ("discriminants must have a discrete or access type",
18824 Discriminant_Type
(Discr
));
18827 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
18829 -- If a discriminant specification includes the assignment compound
18830 -- delimiter followed by an expression, the expression is the default
18831 -- expression of the discriminant; the default expression must be of
18832 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18833 -- a default expression, we do the special preanalysis, since this
18834 -- expression does not freeze (see section "Handling of Default and
18835 -- Per-Object Expressions" in spec of package Sem).
18837 if Present
(Expression
(Discr
)) then
18838 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
18842 if Nkind
(N
) = N_Formal_Type_Declaration
then
18844 ("discriminant defaults not allowed for formal type",
18845 Expression
(Discr
));
18847 -- Flag an error for a tagged type with defaulted discriminants,
18848 -- excluding limited tagged types when compiling for Ada 2012
18849 -- (see AI05-0214).
18851 elsif Is_Tagged_Type
(Current_Scope
)
18852 and then (not Is_Limited_Type
(Current_Scope
)
18853 or else Ada_Version
< Ada_2012
)
18854 and then Comes_From_Source
(N
)
18856 -- Note: see similar test in Check_Or_Process_Discriminants, to
18857 -- handle the (illegal) case of the completion of an untagged
18858 -- view with discriminants with defaults by a tagged full view.
18859 -- We skip the check if Discr does not come from source, to
18860 -- account for the case of an untagged derived type providing
18861 -- defaults for a renamed discriminant from a private untagged
18862 -- ancestor with a tagged full view (ACATS B460006).
18864 if Ada_Version
>= Ada_2012
then
18866 ("discriminants of nonlimited tagged type cannot have"
18868 Expression
(Discr
));
18871 ("discriminants of tagged type cannot have defaults",
18872 Expression
(Discr
));
18876 Default_Present
:= True;
18877 Append_Elmt
(Expression
(Discr
), Elist
);
18879 -- Tag the defining identifiers for the discriminants with
18880 -- their corresponding default expressions from the tree.
18882 Set_Discriminant_Default_Value
18883 (Defining_Identifier
(Discr
), Expression
(Discr
));
18886 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18887 -- gets set unless we can be sure that no range check is required.
18889 if (GNATprove_Mode
or not Expander_Active
)
18892 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
18894 Set_Do_Range_Check
(Expression
(Discr
));
18897 -- No default discriminant value given
18900 Default_Not_Present
:= True;
18903 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18904 -- Discr_Type but with the null-exclusion attribute
18906 if Ada_Version
>= Ada_2005
then
18908 -- Ada 2005 (AI-231): Static checks
18910 if Can_Never_Be_Null
(Discr_Type
) then
18911 Null_Exclusion_Static_Checks
(Discr
);
18913 elsif Is_Access_Type
(Discr_Type
)
18914 and then Null_Exclusion_Present
(Discr
)
18916 -- No need to check itypes because in their case this check
18917 -- was done at their point of creation
18919 and then not Is_Itype
(Discr_Type
)
18921 if Can_Never_Be_Null
(Discr_Type
) then
18923 ("`NOT NULL` not allowed (& already excludes null)",
18928 Set_Etype
(Defining_Identifier
(Discr
),
18929 Create_Null_Excluding_Itype
18931 Related_Nod
=> Discr
));
18933 -- Check for improper null exclusion if the type is otherwise
18934 -- legal for a discriminant.
18936 elsif Null_Exclusion_Present
(Discr
)
18937 and then Is_Discrete_Type
(Discr_Type
)
18940 ("null exclusion can only apply to an access type", Discr
);
18943 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18944 -- can't have defaults. Synchronized types, or types that are
18945 -- explicitly limited are fine, but special tests apply to derived
18946 -- types in generics: in a generic body we have to assume the
18947 -- worst, and therefore defaults are not allowed if the parent is
18948 -- a generic formal private type (see ACATS B370001).
18950 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
18951 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
18952 or else Is_Limited_Record
(Current_Scope
)
18953 or else Is_Concurrent_Type
(Current_Scope
)
18954 or else Is_Concurrent_Record_Type
(Current_Scope
)
18955 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
18957 if not Is_Derived_Type
(Current_Scope
)
18958 or else not Is_Generic_Type
(Etype
(Current_Scope
))
18959 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
18960 or else Limited_Present
18961 (Type_Definition
(Parent
(Current_Scope
)))
18966 Error_Msg_N
("access discriminants of nonlimited types",
18967 Expression
(Discr
));
18968 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
18971 elsif Present
(Expression
(Discr
)) then
18973 ("(Ada 2005) access discriminants of nonlimited types",
18974 Expression
(Discr
));
18975 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
18980 -- A discriminant cannot be effectively volatile. This check is only
18981 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18982 -- rule (SPARK RM 7.1.3(6)).
18985 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
18987 Error_Msg_N
("discriminant cannot be volatile", Discr
);
18993 -- An element list consisting of the default expressions of the
18994 -- discriminants is constructed in the above loop and used to set
18995 -- the Discriminant_Constraint attribute for the type. If an object
18996 -- is declared of this (record or task) type without any explicit
18997 -- discriminant constraint given, this element list will form the
18998 -- actual parameters for the corresponding initialization procedure
19001 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
19002 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
19004 -- Default expressions must be provided either for all or for none
19005 -- of the discriminants of a discriminant part. (RM 3.7.1)
19007 if Default_Present
and then Default_Not_Present
then
19009 ("incomplete specification of defaults for discriminants", N
);
19012 -- The use of the name of a discriminant is not allowed in default
19013 -- expressions of a discriminant part if the specification of the
19014 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19016 -- To detect this, the discriminant names are entered initially with an
19017 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19018 -- attempt to use a void entity (for example in an expression that is
19019 -- type-checked) produces the error message: premature usage. Now after
19020 -- completing the semantic analysis of the discriminant part, we can set
19021 -- the Ekind of all the discriminants appropriately.
19023 Discr
:= First
(Discriminant_Specifications
(N
));
19024 Discr_Number
:= Uint_1
;
19025 while Present
(Discr
) loop
19026 Id
:= Defining_Identifier
(Discr
);
19027 Set_Ekind
(Id
, E_Discriminant
);
19028 Init_Component_Location
(Id
);
19030 Set_Discriminant_Number
(Id
, Discr_Number
);
19032 -- Make sure this is always set, even in illegal programs
19034 Set_Corresponding_Discriminant
(Id
, Empty
);
19036 -- Initialize the Original_Record_Component to the entity itself.
19037 -- Inherit_Components will propagate the right value to
19038 -- discriminants in derived record types.
19040 Set_Original_Record_Component
(Id
, Id
);
19042 -- Create the discriminal for the discriminant
19044 Build_Discriminal
(Id
);
19047 Discr_Number
:= Discr_Number
+ 1;
19050 Set_Has_Discriminants
(Current_Scope
);
19051 end Process_Discriminants
;
19053 -----------------------
19054 -- Process_Full_View --
19055 -----------------------
19057 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
19058 procedure Collect_Implemented_Interfaces
19060 Ifaces
: Elist_Id
);
19061 -- Ada 2005: Gather all the interfaces that Typ directly or
19062 -- inherently implements. Duplicate entries are not added to
19063 -- the list Ifaces.
19065 ------------------------------------
19066 -- Collect_Implemented_Interfaces --
19067 ------------------------------------
19069 procedure Collect_Implemented_Interfaces
19074 Iface_Elmt
: Elmt_Id
;
19077 -- Abstract interfaces are only associated with tagged record types
19079 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
19083 -- Recursively climb to the ancestors
19085 if Etype
(Typ
) /= Typ
19087 -- Protect the frontend against wrong cyclic declarations like:
19089 -- type B is new A with private;
19090 -- type C is new A with private;
19092 -- type B is new C with null record;
19093 -- type C is new B with null record;
19095 and then Etype
(Typ
) /= Priv_T
19096 and then Etype
(Typ
) /= Full_T
19098 -- Keep separate the management of private type declarations
19100 if Ekind
(Typ
) = E_Record_Type_With_Private
then
19102 -- Handle the following illegal usage:
19103 -- type Private_Type is tagged private;
19105 -- type Private_Type is new Type_Implementing_Iface;
19107 if Present
(Full_View
(Typ
))
19108 and then Etype
(Typ
) /= Full_View
(Typ
)
19110 if Is_Interface
(Etype
(Typ
)) then
19111 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19114 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19117 -- Non-private types
19120 if Is_Interface
(Etype
(Typ
)) then
19121 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19124 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19128 -- Handle entities in the list of abstract interfaces
19130 if Present
(Interfaces
(Typ
)) then
19131 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
19132 while Present
(Iface_Elmt
) loop
19133 Iface
:= Node
(Iface_Elmt
);
19135 pragma Assert
(Is_Interface
(Iface
));
19137 if not Contain_Interface
(Iface
, Ifaces
) then
19138 Append_Elmt
(Iface
, Ifaces
);
19139 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
19142 Next_Elmt
(Iface_Elmt
);
19145 end Collect_Implemented_Interfaces
;
19149 Full_Indic
: Node_Id
;
19150 Full_Parent
: Entity_Id
;
19151 Priv_Parent
: Entity_Id
;
19153 -- Start of processing for Process_Full_View
19156 -- First some sanity checks that must be done after semantic
19157 -- decoration of the full view and thus cannot be placed with other
19158 -- similar checks in Find_Type_Name
19160 if not Is_Limited_Type
(Priv_T
)
19161 and then (Is_Limited_Type
(Full_T
)
19162 or else Is_Limited_Composite
(Full_T
))
19164 if In_Instance
then
19168 ("completion of nonlimited type cannot be limited", Full_T
);
19169 Explain_Limited_Type
(Full_T
, Full_T
);
19172 elsif Is_Abstract_Type
(Full_T
)
19173 and then not Is_Abstract_Type
(Priv_T
)
19176 ("completion of nonabstract type cannot be abstract", Full_T
);
19178 elsif Is_Tagged_Type
(Priv_T
)
19179 and then Is_Limited_Type
(Priv_T
)
19180 and then not Is_Limited_Type
(Full_T
)
19182 -- If pragma CPP_Class was applied to the private declaration
19183 -- propagate the limitedness to the full-view
19185 if Is_CPP_Class
(Priv_T
) then
19186 Set_Is_Limited_Record
(Full_T
);
19188 -- GNAT allow its own definition of Limited_Controlled to disobey
19189 -- this rule in order in ease the implementation. This test is safe
19190 -- because Root_Controlled is defined in a child of System that
19191 -- normal programs are not supposed to use.
19193 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
19194 Set_Is_Limited_Composite
(Full_T
);
19197 ("completion of limited tagged type must be limited", Full_T
);
19200 elsif Is_Generic_Type
(Priv_T
) then
19201 Error_Msg_N
("generic type cannot have a completion", Full_T
);
19204 -- Check that ancestor interfaces of private and full views are
19205 -- consistent. We omit this check for synchronized types because
19206 -- they are performed on the corresponding record type when frozen.
19208 if Ada_Version
>= Ada_2005
19209 and then Is_Tagged_Type
(Priv_T
)
19210 and then Is_Tagged_Type
(Full_T
)
19211 and then not Is_Concurrent_Type
(Full_T
)
19215 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19216 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19219 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
19220 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
19222 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19223 -- an interface type if and only if the full type is descendant
19224 -- of the interface type (AARM 7.3 (7.3/2)).
19226 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
19228 if Present
(Iface
) then
19230 ("interface in partial view& not implemented by full type "
19231 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19234 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
19236 if Present
(Iface
) then
19238 ("interface & not implemented by partial view "
19239 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19244 if Is_Tagged_Type
(Priv_T
)
19245 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19246 and then Is_Derived_Type
(Full_T
)
19248 Priv_Parent
:= Etype
(Priv_T
);
19250 -- The full view of a private extension may have been transformed
19251 -- into an unconstrained derived type declaration and a subtype
19252 -- declaration (see build_derived_record_type for details).
19254 if Nkind
(N
) = N_Subtype_Declaration
then
19255 Full_Indic
:= Subtype_Indication
(N
);
19256 Full_Parent
:= Etype
(Base_Type
(Full_T
));
19258 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
19259 Full_Parent
:= Etype
(Full_T
);
19262 -- Check that the parent type of the full type is a descendant of
19263 -- the ancestor subtype given in the private extension. If either
19264 -- entity has an Etype equal to Any_Type then we had some previous
19265 -- error situation [7.3(8)].
19267 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
19270 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19271 -- any order. Therefore we don't have to check that its parent must
19272 -- be a descendant of the parent of the private type declaration.
19274 elsif Is_Interface
(Priv_Parent
)
19275 and then Is_Interface
(Full_Parent
)
19279 -- Ada 2005 (AI-251): If the parent of the private type declaration
19280 -- is an interface there is no need to check that it is an ancestor
19281 -- of the associated full type declaration. The required tests for
19282 -- this case are performed by Build_Derived_Record_Type.
19284 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
19285 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
19288 ("parent of full type must descend from parent"
19289 & " of private extension", Full_Indic
);
19291 -- First check a formal restriction, and then proceed with checking
19292 -- Ada rules. Since the formal restriction is not a serious error, we
19293 -- don't prevent further error detection for this check, hence the
19297 -- In formal mode, when completing a private extension the type
19298 -- named in the private part must be exactly the same as that
19299 -- named in the visible part.
19301 if Priv_Parent
/= Full_Parent
then
19302 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
19303 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
19306 -- Check the rules of 7.3(10): if the private extension inherits
19307 -- known discriminants, then the full type must also inherit those
19308 -- discriminants from the same (ancestor) type, and the parent
19309 -- subtype of the full type must be constrained if and only if
19310 -- the ancestor subtype of the private extension is constrained.
19312 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
19313 and then not Has_Unknown_Discriminants
(Priv_T
)
19314 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
19317 Priv_Indic
: constant Node_Id
:=
19318 Subtype_Indication
(Parent
(Priv_T
));
19320 Priv_Constr
: constant Boolean :=
19321 Is_Constrained
(Priv_Parent
)
19323 Nkind
(Priv_Indic
) = N_Subtype_Indication
19325 Is_Constrained
(Entity
(Priv_Indic
));
19327 Full_Constr
: constant Boolean :=
19328 Is_Constrained
(Full_Parent
)
19330 Nkind
(Full_Indic
) = N_Subtype_Indication
19332 Is_Constrained
(Entity
(Full_Indic
));
19334 Priv_Discr
: Entity_Id
;
19335 Full_Discr
: Entity_Id
;
19338 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
19339 Full_Discr
:= First_Discriminant
(Full_Parent
);
19340 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
19341 if Original_Record_Component
(Priv_Discr
) =
19342 Original_Record_Component
(Full_Discr
)
19344 Corresponding_Discriminant
(Priv_Discr
) =
19345 Corresponding_Discriminant
(Full_Discr
)
19352 Next_Discriminant
(Priv_Discr
);
19353 Next_Discriminant
(Full_Discr
);
19356 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
19358 ("full view must inherit discriminants of the parent"
19359 & " type used in the private extension", Full_Indic
);
19361 elsif Priv_Constr
and then not Full_Constr
then
19363 ("parent subtype of full type must be constrained",
19366 elsif Full_Constr
and then not Priv_Constr
then
19368 ("parent subtype of full type must be unconstrained",
19373 -- Check the rules of 7.3(12): if a partial view has neither
19374 -- known or unknown discriminants, then the full type
19375 -- declaration shall define a definite subtype.
19377 elsif not Has_Unknown_Discriminants
(Priv_T
)
19378 and then not Has_Discriminants
(Priv_T
)
19379 and then not Is_Constrained
(Full_T
)
19382 ("full view must define a constrained type if partial view"
19383 & " has no discriminants", Full_T
);
19386 -- ??????? Do we implement the following properly ?????
19387 -- If the ancestor subtype of a private extension has constrained
19388 -- discriminants, then the parent subtype of the full view shall
19389 -- impose a statically matching constraint on those discriminants
19394 -- For untagged types, verify that a type without discriminants is
19395 -- not completed with an unconstrained type. A separate error message
19396 -- is produced if the full type has defaulted discriminants.
19398 if not Is_Indefinite_Subtype
(Priv_T
)
19399 and then Is_Indefinite_Subtype
(Full_T
)
19401 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
19403 ("full view of& not compatible with declaration#",
19406 if not Is_Tagged_Type
(Full_T
) then
19408 ("\one is constrained, the other unconstrained", Full_T
);
19413 -- AI-419: verify that the use of "limited" is consistent
19416 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
19419 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19420 and then not Limited_Present
(Parent
(Priv_T
))
19421 and then not Synchronized_Present
(Parent
(Priv_T
))
19422 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
19424 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
19425 and then Limited_Present
(Type_Definition
(Orig_Decl
))
19428 ("full view of non-limited extension cannot be limited", N
);
19432 -- Ada 2005 (AI-443): A synchronized private extension must be
19433 -- completed by a task or protected type.
19435 if Ada_Version
>= Ada_2005
19436 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19437 and then Synchronized_Present
(Parent
(Priv_T
))
19438 and then not Is_Concurrent_Type
(Full_T
)
19440 Error_Msg_N
("full view of synchronized extension must " &
19441 "be synchronized type", N
);
19444 -- Ada 2005 AI-363: if the full view has discriminants with
19445 -- defaults, it is illegal to declare constrained access subtypes
19446 -- whose designated type is the current type. This allows objects
19447 -- of the type that are declared in the heap to be unconstrained.
19449 if not Has_Unknown_Discriminants
(Priv_T
)
19450 and then not Has_Discriminants
(Priv_T
)
19451 and then Has_Discriminants
(Full_T
)
19453 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
19455 Set_Has_Constrained_Partial_View
(Full_T
);
19456 Set_Has_Constrained_Partial_View
(Priv_T
);
19459 -- Create a full declaration for all its subtypes recorded in
19460 -- Private_Dependents and swap them similarly to the base type. These
19461 -- are subtypes that have been define before the full declaration of
19462 -- the private type. We also swap the entry in Private_Dependents list
19463 -- so we can properly restore the private view on exit from the scope.
19466 Priv_Elmt
: Elmt_Id
;
19467 Priv_Scop
: Entity_Id
;
19472 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
19473 while Present
(Priv_Elmt
) loop
19474 Priv
:= Node
(Priv_Elmt
);
19475 Priv_Scop
:= Scope
(Priv
);
19477 if Ekind_In
(Priv
, E_Private_Subtype
,
19478 E_Limited_Private_Subtype
,
19479 E_Record_Subtype_With_Private
)
19481 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
19482 Set_Is_Itype
(Full
);
19483 Set_Parent
(Full
, Parent
(Priv
));
19484 Set_Associated_Node_For_Itype
(Full
, N
);
19486 -- Now we need to complete the private subtype, but since the
19487 -- base type has already been swapped, we must also swap the
19488 -- subtypes (and thus, reverse the arguments in the call to
19489 -- Complete_Private_Subtype). Also note that we may need to
19490 -- re-establish the scope of the private subtype.
19492 Copy_And_Swap
(Priv
, Full
);
19494 if not In_Open_Scopes
(Priv_Scop
) then
19495 Push_Scope
(Priv_Scop
);
19498 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19500 Priv_Scop
:= Empty
;
19503 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
19505 if Present
(Priv_Scop
) then
19509 Replace_Elmt
(Priv_Elmt
, Full
);
19512 Next_Elmt
(Priv_Elmt
);
19516 -- If the private view was tagged, copy the new primitive operations
19517 -- from the private view to the full view.
19519 if Is_Tagged_Type
(Full_T
) then
19521 Disp_Typ
: Entity_Id
;
19522 Full_List
: Elist_Id
;
19524 Prim_Elmt
: Elmt_Id
;
19525 Priv_List
: Elist_Id
;
19529 L
: Elist_Id
) return Boolean;
19530 -- Determine whether list L contains element E
19538 L
: Elist_Id
) return Boolean
19540 List_Elmt
: Elmt_Id
;
19543 List_Elmt
:= First_Elmt
(L
);
19544 while Present
(List_Elmt
) loop
19545 if Node
(List_Elmt
) = E
then
19549 Next_Elmt
(List_Elmt
);
19555 -- Start of processing
19558 if Is_Tagged_Type
(Priv_T
) then
19559 Priv_List
:= Primitive_Operations
(Priv_T
);
19560 Prim_Elmt
:= First_Elmt
(Priv_List
);
19562 -- In the case of a concurrent type completing a private tagged
19563 -- type, primitives may have been declared in between the two
19564 -- views. These subprograms need to be wrapped the same way
19565 -- entries and protected procedures are handled because they
19566 -- cannot be directly shared by the two views.
19568 if Is_Concurrent_Type
(Full_T
) then
19570 Conc_Typ
: constant Entity_Id
:=
19571 Corresponding_Record_Type
(Full_T
);
19572 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
19573 Wrap_Spec
: Node_Id
;
19576 while Present
(Prim_Elmt
) loop
19577 Prim
:= Node
(Prim_Elmt
);
19579 if Comes_From_Source
(Prim
)
19580 and then not Is_Abstract_Subprogram
(Prim
)
19583 Make_Subprogram_Declaration
(Sloc
(Prim
),
19587 Obj_Typ
=> Conc_Typ
,
19589 Parameter_Specifications
(
19592 Insert_After
(Curr_Nod
, Wrap_Spec
);
19593 Curr_Nod
:= Wrap_Spec
;
19595 Analyze
(Wrap_Spec
);
19598 Next_Elmt
(Prim_Elmt
);
19604 -- For non-concurrent types, transfer explicit primitives, but
19605 -- omit those inherited from the parent of the private view
19606 -- since they will be re-inherited later on.
19609 Full_List
:= Primitive_Operations
(Full_T
);
19611 while Present
(Prim_Elmt
) loop
19612 Prim
:= Node
(Prim_Elmt
);
19614 if Comes_From_Source
(Prim
)
19615 and then not Contains
(Prim
, Full_List
)
19617 Append_Elmt
(Prim
, Full_List
);
19620 Next_Elmt
(Prim_Elmt
);
19624 -- Untagged private view
19627 Full_List
:= Primitive_Operations
(Full_T
);
19629 -- In this case the partial view is untagged, so here we locate
19630 -- all of the earlier primitives that need to be treated as
19631 -- dispatching (those that appear between the two views). Note
19632 -- that these additional operations must all be new operations
19633 -- (any earlier operations that override inherited operations
19634 -- of the full view will already have been inserted in the
19635 -- primitives list, marked by Check_Operation_From_Private_View
19636 -- as dispatching. Note that implicit "/=" operators are
19637 -- excluded from being added to the primitives list since they
19638 -- shouldn't be treated as dispatching (tagged "/=" is handled
19641 Prim
:= Next_Entity
(Full_T
);
19642 while Present
(Prim
) and then Prim
/= Priv_T
loop
19643 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
19644 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
19646 if Disp_Typ
= Full_T
19647 and then (Chars
(Prim
) /= Name_Op_Ne
19648 or else Comes_From_Source
(Prim
))
19650 Check_Controlling_Formals
(Full_T
, Prim
);
19652 if not Is_Dispatching_Operation
(Prim
) then
19653 Append_Elmt
(Prim
, Full_List
);
19654 Set_Is_Dispatching_Operation
(Prim
, True);
19655 Set_DT_Position
(Prim
, No_Uint
);
19658 elsif Is_Dispatching_Operation
(Prim
)
19659 and then Disp_Typ
/= Full_T
19662 -- Verify that it is not otherwise controlled by a
19663 -- formal or a return value of type T.
19665 Check_Controlling_Formals
(Disp_Typ
, Prim
);
19669 Next_Entity
(Prim
);
19673 -- For the tagged case, the two views can share the same primitive
19674 -- operations list and the same class-wide type. Update attributes
19675 -- of the class-wide type which depend on the full declaration.
19677 if Is_Tagged_Type
(Priv_T
) then
19678 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
19679 Set_Class_Wide_Type
19680 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
19682 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
19684 (Class_Wide_Type
(Priv_T
), Has_Protected
(Full_T
));
19689 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19691 if Known_To_Have_Preelab_Init
(Priv_T
) then
19693 -- Case where there is a pragma Preelaborable_Initialization. We
19694 -- always allow this in predefined units, which is cheating a bit,
19695 -- but it means we don't have to struggle to meet the requirements in
19696 -- the RM for having Preelaborable Initialization. Otherwise we
19697 -- require that the type meets the RM rules. But we can't check that
19698 -- yet, because of the rule about overriding Initialize, so we simply
19699 -- set a flag that will be checked at freeze time.
19701 if not In_Predefined_Unit
(Full_T
) then
19702 Set_Must_Have_Preelab_Init
(Full_T
);
19706 -- If pragma CPP_Class was applied to the private type declaration,
19707 -- propagate it now to the full type declaration.
19709 if Is_CPP_Class
(Priv_T
) then
19710 Set_Is_CPP_Class
(Full_T
);
19711 Set_Convention
(Full_T
, Convention_CPP
);
19713 -- Check that components of imported CPP types do not have default
19716 Check_CPP_Type_Has_No_Defaults
(Full_T
);
19719 -- If the private view has user specified stream attributes, then so has
19722 -- Why the test, how could these flags be already set in Full_T ???
19724 if Has_Specified_Stream_Read
(Priv_T
) then
19725 Set_Has_Specified_Stream_Read
(Full_T
);
19728 if Has_Specified_Stream_Write
(Priv_T
) then
19729 Set_Has_Specified_Stream_Write
(Full_T
);
19732 if Has_Specified_Stream_Input
(Priv_T
) then
19733 Set_Has_Specified_Stream_Input
(Full_T
);
19736 if Has_Specified_Stream_Output
(Priv_T
) then
19737 Set_Has_Specified_Stream_Output
(Full_T
);
19740 -- Propagate the attributes related to pragma Default_Initial_Condition
19741 -- from the private to the full view. Note that both flags are mutually
19744 if Has_Default_Init_Cond
(Priv_T
)
19745 or else Has_Inherited_Default_Init_Cond
(Priv_T
)
19747 Propagate_Default_Init_Cond_Attributes
19748 (From_Typ
=> Priv_T
,
19750 Private_To_Full_View
=> True);
19752 -- In the case where the full view is derived from another private type,
19753 -- the attributes related to pragma Default_Initial_Condition must be
19754 -- propagated from the full to the private view to maintain consistency
19758 -- type Parent_Typ is private
19759 -- with Default_Initial_Condition ...;
19761 -- type Parent_Typ is ...;
19764 -- with Pack; use Pack;
19765 -- package Pack_2 is
19766 -- type Deriv_Typ is private; -- must inherit
19768 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19771 elsif Has_Default_Init_Cond
(Full_T
)
19772 or else Has_Inherited_Default_Init_Cond
(Full_T
)
19774 Propagate_Default_Init_Cond_Attributes
19775 (From_Typ
=> Full_T
,
19777 Private_To_Full_View
=> True);
19780 -- Propagate the attributes related to pragma Ghost from the private to
19783 if Is_Ghost_Entity
(Priv_T
) then
19784 Set_Is_Ghost_Entity
(Full_T
);
19786 -- The Ghost policy in effect at the point of declaration and at the
19787 -- point of completion must match (SPARK RM 6.9(15)).
19789 Check_Ghost_Completion
(Priv_T
, Full_T
);
19791 -- In the case where the private view of a tagged type lacks a parent
19792 -- type and is subject to pragma Ghost, ensure that the parent type
19793 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19795 if Is_Derived_Type
(Full_T
) then
19796 Check_Ghost_Derivation
(Full_T
);
19800 -- Propagate invariants to full type
19802 if Has_Invariants
(Priv_T
) then
19803 Set_Has_Invariants
(Full_T
);
19804 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
19807 if Has_Inheritable_Invariants
(Priv_T
) then
19808 Set_Has_Inheritable_Invariants
(Full_T
);
19811 -- Propagate predicates to full type, and predicate function if already
19812 -- defined. It is not clear that this can actually happen? the partial
19813 -- view cannot be frozen yet, and the predicate function has not been
19814 -- built. Still it is a cheap check and seems safer to make it.
19816 if Has_Predicates
(Priv_T
) then
19817 if Present
(Predicate_Function
(Priv_T
)) then
19818 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
19821 Set_Has_Predicates
(Full_T
);
19823 end Process_Full_View
;
19825 -----------------------------------
19826 -- Process_Incomplete_Dependents --
19827 -----------------------------------
19829 procedure Process_Incomplete_Dependents
19831 Full_T
: Entity_Id
;
19834 Inc_Elmt
: Elmt_Id
;
19835 Priv_Dep
: Entity_Id
;
19836 New_Subt
: Entity_Id
;
19838 Disc_Constraint
: Elist_Id
;
19841 if No
(Private_Dependents
(Inc_T
)) then
19845 -- Itypes that may be generated by the completion of an incomplete
19846 -- subtype are not used by the back-end and not attached to the tree.
19847 -- They are created only for constraint-checking purposes.
19849 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
19850 while Present
(Inc_Elmt
) loop
19851 Priv_Dep
:= Node
(Inc_Elmt
);
19853 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
19855 -- An Access_To_Subprogram type may have a return type or a
19856 -- parameter type that is incomplete. Replace with the full view.
19858 if Etype
(Priv_Dep
) = Inc_T
then
19859 Set_Etype
(Priv_Dep
, Full_T
);
19863 Formal
: Entity_Id
;
19866 Formal
:= First_Formal
(Priv_Dep
);
19867 while Present
(Formal
) loop
19868 if Etype
(Formal
) = Inc_T
then
19869 Set_Etype
(Formal
, Full_T
);
19872 Next_Formal
(Formal
);
19876 elsif Is_Overloadable
(Priv_Dep
) then
19878 -- If a subprogram in the incomplete dependents list is primitive
19879 -- for a tagged full type then mark it as a dispatching operation,
19880 -- check whether it overrides an inherited subprogram, and check
19881 -- restrictions on its controlling formals. Note that a protected
19882 -- operation is never dispatching: only its wrapper operation
19883 -- (which has convention Ada) is.
19885 if Is_Tagged_Type
(Full_T
)
19886 and then Is_Primitive
(Priv_Dep
)
19887 and then Convention
(Priv_Dep
) /= Convention_Protected
19889 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
19890 Set_Is_Dispatching_Operation
(Priv_Dep
);
19891 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
19894 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
19896 -- Can happen during processing of a body before the completion
19897 -- of a TA type. Ignore, because spec is also on dependent list.
19901 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19902 -- corresponding subtype of the full view.
19904 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
19905 Set_Subtype_Indication
19906 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
19907 Set_Etype
(Priv_Dep
, Full_T
);
19908 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
19909 Set_Analyzed
(Parent
(Priv_Dep
), False);
19911 -- Reanalyze the declaration, suppressing the call to
19912 -- Enter_Name to avoid duplicate names.
19914 Analyze_Subtype_Declaration
19915 (N
=> Parent
(Priv_Dep
),
19918 -- Dependent is a subtype
19921 -- We build a new subtype indication using the full view of the
19922 -- incomplete parent. The discriminant constraints have been
19923 -- elaborated already at the point of the subtype declaration.
19925 New_Subt
:= Create_Itype
(E_Void
, N
);
19927 if Has_Discriminants
(Full_T
) then
19928 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
19930 Disc_Constraint
:= No_Elist
;
19933 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
19934 Set_Full_View
(Priv_Dep
, New_Subt
);
19937 Next_Elmt
(Inc_Elmt
);
19939 end Process_Incomplete_Dependents
;
19941 --------------------------------
19942 -- Process_Range_Expr_In_Decl --
19943 --------------------------------
19945 procedure Process_Range_Expr_In_Decl
19948 Subtyp
: Entity_Id
:= Empty
;
19949 Check_List
: List_Id
:= Empty_List
;
19950 R_Check_Off
: Boolean := False;
19951 In_Iter_Schm
: Boolean := False)
19954 R_Checks
: Check_Result
;
19955 Insert_Node
: Node_Id
;
19956 Def_Id
: Entity_Id
;
19959 Analyze_And_Resolve
(R
, Base_Type
(T
));
19961 if Nkind
(R
) = N_Range
then
19963 -- In SPARK, all ranges should be static, with the exception of the
19964 -- discrete type definition of a loop parameter specification.
19966 if not In_Iter_Schm
19967 and then not Is_OK_Static_Range
(R
)
19969 Check_SPARK_05_Restriction
("range should be static", R
);
19972 Lo
:= Low_Bound
(R
);
19973 Hi
:= High_Bound
(R
);
19975 -- Validity checks on the range of a quantified expression are
19976 -- delayed until the construct is transformed into a loop.
19978 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
19979 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
19983 -- We need to ensure validity of the bounds here, because if we
19984 -- go ahead and do the expansion, then the expanded code will get
19985 -- analyzed with range checks suppressed and we miss the check.
19987 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
19988 -- the temporaries generated by routine Remove_Side_Effects by means
19989 -- of validity checks must use the same names. When a range appears
19990 -- in the parent of a generic, the range is processed with checks
19991 -- disabled as part of the generic context and with checks enabled
19992 -- for code generation purposes. This leads to link issues as the
19993 -- generic contains references to xxx_FIRST/_LAST, but the inlined
19994 -- template sees the temporaries generated by Remove_Side_Effects.
19997 Validity_Check_Range
(R
, Subtyp
);
20000 -- If there were errors in the declaration, try and patch up some
20001 -- common mistakes in the bounds. The cases handled are literals
20002 -- which are Integer where the expected type is Real and vice versa.
20003 -- These corrections allow the compilation process to proceed further
20004 -- along since some basic assumptions of the format of the bounds
20007 if Etype
(R
) = Any_Type
then
20008 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20010 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
20012 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20014 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
20016 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20018 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
20020 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20022 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
20029 -- If the bounds of the range have been mistakenly given as string
20030 -- literals (perhaps in place of character literals), then an error
20031 -- has already been reported, but we rewrite the string literal as a
20032 -- bound of the range's type to avoid blowups in later processing
20033 -- that looks at static values.
20035 if Nkind
(Lo
) = N_String_Literal
then
20037 Make_Attribute_Reference
(Sloc
(Lo
),
20038 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
20039 Attribute_Name
=> Name_First
));
20040 Analyze_And_Resolve
(Lo
);
20043 if Nkind
(Hi
) = N_String_Literal
then
20045 Make_Attribute_Reference
(Sloc
(Hi
),
20046 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
20047 Attribute_Name
=> Name_First
));
20048 Analyze_And_Resolve
(Hi
);
20051 -- If bounds aren't scalar at this point then exit, avoiding
20052 -- problems with further processing of the range in this procedure.
20054 if not Is_Scalar_Type
(Etype
(Lo
)) then
20058 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20059 -- then range of the base type. Here we check whether the bounds
20060 -- are in the range of the subtype itself. Note that if the bounds
20061 -- represent the null range the Constraint_Error exception should
20064 -- ??? The following code should be cleaned up as follows
20066 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20067 -- is done in the call to Range_Check (R, T); below
20069 -- 2. The use of R_Check_Off should be investigated and possibly
20070 -- removed, this would clean up things a bit.
20072 if Is_Null_Range
(Lo
, Hi
) then
20076 -- Capture values of bounds and generate temporaries for them
20077 -- if needed, before applying checks, since checks may cause
20078 -- duplication of the expression without forcing evaluation.
20080 -- The forced evaluation removes side effects from expressions,
20081 -- which should occur also in GNATprove mode. Otherwise, we end up
20082 -- with unexpected insertions of actions at places where this is
20083 -- not supposed to occur, e.g. on default parameters of a call.
20085 if Expander_Active
or GNATprove_Mode
then
20087 -- If no subtype name, then just call Force_Evaluation to
20088 -- create declarations as needed to deal with side effects.
20089 -- Also ignore calls from within a record type, where we
20090 -- have possible scoping issues.
20092 if No
(Subtyp
) or else Is_Record_Type
(Current_Scope
) then
20093 Force_Evaluation
(Lo
);
20094 Force_Evaluation
(Hi
);
20096 -- If a subtype is given, then we capture the bounds if they
20097 -- are not known at compile time, using constant identifiers
20098 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
20100 -- Note: we do this transformation even if expansion is not
20101 -- active, and in particular we do it in GNATprove_Mode since
20102 -- the transformation is in general required to ensure that the
20103 -- resulting tree has proper Ada semantics.
20105 -- Historical note: We used to just do Force_Evaluation calls
20106 -- in all cases, but it is better to capture the bounds with
20107 -- proper non-serialized names, since these will be accessed
20108 -- from other units, and hence may be public, and also we can
20109 -- then expand 'First and 'Last references to be references to
20110 -- these special names.
20113 if not Compile_Time_Known_Value
(Lo
)
20115 -- No need to capture bounds if they already are
20116 -- references to constants.
20118 and then not (Is_Entity_Name
(Lo
)
20119 and then Is_Constant_Object
(Entity
(Lo
)))
20122 Loc
: constant Source_Ptr
:= Sloc
(Lo
);
20123 Lov
: constant Entity_Id
:=
20124 Make_Defining_Identifier
(Loc
,
20126 New_External_Name
(Chars
(Subtyp
), "_FIRST"));
20129 Make_Object_Declaration
(Loc
,
20130 Defining_Identifier
=> Lov
,
20131 Object_Definition
=>
20132 New_Occurrence_Of
(Base_Type
(T
), Loc
),
20133 Constant_Present
=> True,
20134 Expression
=> Relocate_Node
(Lo
)));
20135 Rewrite
(Lo
, New_Occurrence_Of
(Lov
, Loc
));
20139 if not Compile_Time_Known_Value
(Hi
)
20140 and then not (Is_Entity_Name
(Hi
)
20141 and then Is_Constant_Object
(Entity
(Hi
)))
20144 Loc
: constant Source_Ptr
:= Sloc
(Hi
);
20145 Hiv
: constant Entity_Id
:=
20146 Make_Defining_Identifier
(Loc
,
20148 New_External_Name
(Chars
(Subtyp
), "_LAST"));
20151 Make_Object_Declaration
(Loc
,
20152 Defining_Identifier
=> Hiv
,
20153 Object_Definition
=>
20154 New_Occurrence_Of
(Base_Type
(T
), Loc
),
20155 Constant_Present
=> True,
20156 Expression
=> Relocate_Node
(Hi
)));
20157 Rewrite
(Hi
, New_Occurrence_Of
(Hiv
, Loc
));
20163 -- We use a flag here instead of suppressing checks on the
20164 -- type because the type we check against isn't necessarily
20165 -- the place where we put the check.
20167 if not R_Check_Off
then
20168 R_Checks
:= Get_Range_Checks
(R
, T
);
20170 -- Look up tree to find an appropriate insertion point. We
20171 -- can't just use insert_actions because later processing
20172 -- depends on the insertion node. Prior to Ada 2012 the
20173 -- insertion point could only be a declaration or a loop, but
20174 -- quantified expressions can appear within any context in an
20175 -- expression, and the insertion point can be any statement,
20176 -- pragma, or declaration.
20178 Insert_Node
:= Parent
(R
);
20179 while Present
(Insert_Node
) loop
20181 Nkind
(Insert_Node
) in N_Declaration
20184 (Insert_Node
, N_Component_Declaration
,
20185 N_Loop_Parameter_Specification
,
20186 N_Function_Specification
,
20187 N_Procedure_Specification
);
20189 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
20190 or else Nkind
(Insert_Node
) in
20191 N_Statement_Other_Than_Procedure_Call
20192 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
20195 Insert_Node
:= Parent
(Insert_Node
);
20198 -- Why would Type_Decl not be present??? Without this test,
20199 -- short regression tests fail.
20201 if Present
(Insert_Node
) then
20203 -- Case of loop statement. Verify that the range is part
20204 -- of the subtype indication of the iteration scheme.
20206 if Nkind
(Insert_Node
) = N_Loop_Statement
then
20211 Indic
:= Parent
(R
);
20212 while Present
(Indic
)
20213 and then Nkind
(Indic
) /= N_Subtype_Indication
20215 Indic
:= Parent
(Indic
);
20218 if Present
(Indic
) then
20219 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
20221 Insert_Range_Checks
20225 Sloc
(Insert_Node
),
20227 Do_Before
=> True);
20231 -- Insertion before a declaration. If the declaration
20232 -- includes discriminants, the list of applicable checks
20233 -- is given by the caller.
20235 elsif Nkind
(Insert_Node
) in N_Declaration
then
20236 Def_Id
:= Defining_Identifier
(Insert_Node
);
20238 if (Ekind
(Def_Id
) = E_Record_Type
20239 and then Depends_On_Discriminant
(R
))
20241 (Ekind
(Def_Id
) = E_Protected_Type
20242 and then Has_Discriminants
(Def_Id
))
20244 Append_Range_Checks
20246 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
20249 Insert_Range_Checks
20251 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
20255 -- Insertion before a statement. Range appears in the
20256 -- context of a quantified expression. Insertion will
20257 -- take place when expression is expanded.
20266 -- Case of other than an explicit N_Range node
20268 -- The forced evaluation removes side effects from expressions, which
20269 -- should occur also in GNATprove mode. Otherwise, we end up with
20270 -- unexpected insertions of actions at places where this is not
20271 -- supposed to occur, e.g. on default parameters of a call.
20273 elsif Expander_Active
or GNATprove_Mode
then
20274 Get_Index_Bounds
(R
, Lo
, Hi
);
20275 Force_Evaluation
(Lo
);
20276 Force_Evaluation
(Hi
);
20278 end Process_Range_Expr_In_Decl
;
20280 --------------------------------------
20281 -- Process_Real_Range_Specification --
20282 --------------------------------------
20284 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
20285 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
20288 Err
: Boolean := False;
20290 procedure Analyze_Bound
(N
: Node_Id
);
20291 -- Analyze and check one bound
20293 -------------------
20294 -- Analyze_Bound --
20295 -------------------
20297 procedure Analyze_Bound
(N
: Node_Id
) is
20299 Analyze_And_Resolve
(N
, Any_Real
);
20301 if not Is_OK_Static_Expression
(N
) then
20302 Flag_Non_Static_Expr
20303 ("bound in real type definition is not static!", N
);
20308 -- Start of processing for Process_Real_Range_Specification
20311 if Present
(Spec
) then
20312 Lo
:= Low_Bound
(Spec
);
20313 Hi
:= High_Bound
(Spec
);
20314 Analyze_Bound
(Lo
);
20315 Analyze_Bound
(Hi
);
20317 -- If error, clear away junk range specification
20320 Set_Real_Range_Specification
(Def
, Empty
);
20323 end Process_Real_Range_Specification
;
20325 ---------------------
20326 -- Process_Subtype --
20327 ---------------------
20329 function Process_Subtype
20331 Related_Nod
: Node_Id
;
20332 Related_Id
: Entity_Id
:= Empty
;
20333 Suffix
: Character := ' ') return Entity_Id
20336 Def_Id
: Entity_Id
;
20337 Error_Node
: Node_Id
;
20338 Full_View_Id
: Entity_Id
;
20339 Subtype_Mark_Id
: Entity_Id
;
20341 May_Have_Null_Exclusion
: Boolean;
20343 procedure Check_Incomplete
(T
: Entity_Id
);
20344 -- Called to verify that an incomplete type is not used prematurely
20346 ----------------------
20347 -- Check_Incomplete --
20348 ----------------------
20350 procedure Check_Incomplete
(T
: Entity_Id
) is
20352 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20354 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
20356 not (Ada_Version
>= Ada_2005
20358 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
20359 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
20360 and then Nkind
(Parent
(Parent
(T
))) =
20361 N_Subtype_Declaration
)))
20363 Error_Msg_N
("invalid use of type before its full declaration", T
);
20365 end Check_Incomplete
;
20367 -- Start of processing for Process_Subtype
20370 -- Case of no constraints present
20372 if Nkind
(S
) /= N_Subtype_Indication
then
20374 Check_Incomplete
(S
);
20377 -- Ada 2005 (AI-231): Static check
20379 if Ada_Version
>= Ada_2005
20380 and then Present
(P
)
20381 and then Null_Exclusion_Present
(P
)
20382 and then Nkind
(P
) /= N_Access_To_Object_Definition
20383 and then not Is_Access_Type
(Entity
(S
))
20385 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
20388 -- The following is ugly, can't we have a range or even a flag???
20390 May_Have_Null_Exclusion
:=
20391 Nkind_In
(P
, N_Access_Definition
,
20392 N_Access_Function_Definition
,
20393 N_Access_Procedure_Definition
,
20394 N_Access_To_Object_Definition
,
20396 N_Component_Definition
)
20398 Nkind_In
(P
, N_Derived_Type_Definition
,
20399 N_Discriminant_Specification
,
20400 N_Formal_Object_Declaration
,
20401 N_Object_Declaration
,
20402 N_Object_Renaming_Declaration
,
20403 N_Parameter_Specification
,
20404 N_Subtype_Declaration
);
20406 -- Create an Itype that is a duplicate of Entity (S) but with the
20407 -- null-exclusion attribute.
20409 if May_Have_Null_Exclusion
20410 and then Is_Access_Type
(Entity
(S
))
20411 and then Null_Exclusion_Present
(P
)
20413 -- No need to check the case of an access to object definition.
20414 -- It is correct to define double not-null pointers.
20417 -- type Not_Null_Int_Ptr is not null access Integer;
20418 -- type Acc is not null access Not_Null_Int_Ptr;
20420 and then Nkind
(P
) /= N_Access_To_Object_Definition
20422 if Can_Never_Be_Null
(Entity
(S
)) then
20423 case Nkind
(Related_Nod
) is
20424 when N_Full_Type_Declaration
=>
20425 if Nkind
(Type_Definition
(Related_Nod
))
20426 in N_Array_Type_Definition
20430 (Component_Definition
20431 (Type_Definition
(Related_Nod
)));
20434 Subtype_Indication
(Type_Definition
(Related_Nod
));
20437 when N_Subtype_Declaration
=>
20438 Error_Node
:= Subtype_Indication
(Related_Nod
);
20440 when N_Object_Declaration
=>
20441 Error_Node
:= Object_Definition
(Related_Nod
);
20443 when N_Component_Declaration
=>
20445 Subtype_Indication
(Component_Definition
(Related_Nod
));
20447 when N_Allocator
=>
20448 Error_Node
:= Expression
(Related_Nod
);
20451 pragma Assert
(False);
20452 Error_Node
:= Related_Nod
;
20456 ("`NOT NULL` not allowed (& already excludes null)",
20462 Create_Null_Excluding_Itype
20464 Related_Nod
=> P
));
20465 Set_Entity
(S
, Etype
(S
));
20470 -- Case of constraint present, so that we have an N_Subtype_Indication
20471 -- node (this node is created only if constraints are present).
20474 Find_Type
(Subtype_Mark
(S
));
20476 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
20478 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
20479 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
20481 Check_Incomplete
(Subtype_Mark
(S
));
20485 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
20487 -- Explicit subtype declaration case
20489 if Nkind
(P
) = N_Subtype_Declaration
then
20490 Def_Id
:= Defining_Identifier
(P
);
20492 -- Explicit derived type definition case
20494 elsif Nkind
(P
) = N_Derived_Type_Definition
then
20495 Def_Id
:= Defining_Identifier
(Parent
(P
));
20497 -- Implicit case, the Def_Id must be created as an implicit type.
20498 -- The one exception arises in the case of concurrent types, array
20499 -- and access types, where other subsidiary implicit types may be
20500 -- created and must appear before the main implicit type. In these
20501 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20502 -- has not yet been called to create Def_Id.
20505 if Is_Array_Type
(Subtype_Mark_Id
)
20506 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
20507 or else Is_Access_Type
(Subtype_Mark_Id
)
20511 -- For the other cases, we create a new unattached Itype,
20512 -- and set the indication to ensure it gets attached later.
20516 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20520 -- If the kind of constraint is invalid for this kind of type,
20521 -- then give an error, and then pretend no constraint was given.
20523 if not Is_Valid_Constraint_Kind
20524 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
20527 ("incorrect constraint for this kind of type", Constraint
(S
));
20529 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
20531 -- Set Ekind of orphan itype, to prevent cascaded errors
20533 if Present
(Def_Id
) then
20534 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
20537 -- Make recursive call, having got rid of the bogus constraint
20539 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
20542 -- Remaining processing depends on type. Select on Base_Type kind to
20543 -- ensure getting to the concrete type kind in the case of a private
20544 -- subtype (needed when only doing semantic analysis).
20546 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
20547 when Access_Kind
=>
20549 -- If this is a constraint on a class-wide type, discard it.
20550 -- There is currently no way to express a partial discriminant
20551 -- constraint on a type with unknown discriminants. This is
20552 -- a pathology that the ACATS wisely decides not to test.
20554 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
20555 if Comes_From_Source
(S
) then
20557 ("constraint on class-wide type ignored??",
20561 if Nkind
(P
) = N_Subtype_Declaration
then
20562 Set_Subtype_Indication
(P
,
20563 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
20566 return Subtype_Mark_Id
;
20569 Constrain_Access
(Def_Id
, S
, Related_Nod
);
20572 and then Is_Itype
(Designated_Type
(Def_Id
))
20573 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
20574 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
20576 Build_Itype_Reference
20577 (Designated_Type
(Def_Id
), Related_Nod
);
20581 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
20583 when Decimal_Fixed_Point_Kind
=>
20584 Constrain_Decimal
(Def_Id
, S
);
20586 when Enumeration_Kind
=>
20587 Constrain_Enumeration
(Def_Id
, S
);
20588 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20590 when Ordinary_Fixed_Point_Kind
=>
20591 Constrain_Ordinary_Fixed
(Def_Id
, S
);
20594 Constrain_Float
(Def_Id
, S
);
20596 when Integer_Kind
=>
20597 Constrain_Integer
(Def_Id
, S
);
20598 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20600 when E_Record_Type |
20603 E_Incomplete_Type
=>
20604 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20606 if Ekind
(Def_Id
) = E_Incomplete_Type
then
20607 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20610 when Private_Kind
=>
20611 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20612 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20614 -- In case of an invalid constraint prevent further processing
20615 -- since the type constructed is missing expected fields.
20617 if Etype
(Def_Id
) = Any_Type
then
20621 -- If the full view is that of a task with discriminants,
20622 -- we must constrain both the concurrent type and its
20623 -- corresponding record type. Otherwise we will just propagate
20624 -- the constraint to the full view, if available.
20626 if Present
(Full_View
(Subtype_Mark_Id
))
20627 and then Has_Discriminants
(Subtype_Mark_Id
)
20628 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
20631 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20633 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
20634 Constrain_Concurrent
(Full_View_Id
, S
,
20635 Related_Nod
, Related_Id
, Suffix
);
20636 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
20637 Set_Full_View
(Def_Id
, Full_View_Id
);
20639 -- Introduce an explicit reference to the private subtype,
20640 -- to prevent scope anomalies in gigi if first use appears
20641 -- in a nested context, e.g. a later function body.
20642 -- Should this be generated in other contexts than a full
20643 -- type declaration?
20645 if Is_Itype
(Def_Id
)
20647 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
20649 Build_Itype_Reference
(Def_Id
, Parent
(P
));
20653 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
20656 when Concurrent_Kind
=>
20657 Constrain_Concurrent
(Def_Id
, S
,
20658 Related_Nod
, Related_Id
, Suffix
);
20661 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
20664 -- Size and Convention are always inherited from the base type
20666 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
20667 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
20671 end Process_Subtype
;
20673 --------------------------------------------
20674 -- Propagate_Default_Init_Cond_Attributes --
20675 --------------------------------------------
20677 procedure Propagate_Default_Init_Cond_Attributes
20678 (From_Typ
: Entity_Id
;
20679 To_Typ
: Entity_Id
;
20680 Parent_To_Derivation
: Boolean := False;
20681 Private_To_Full_View
: Boolean := False)
20683 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
);
20684 -- Remove the default initial procedure (if any) from the rep chain of
20687 ----------------------------------------
20688 -- Remove_Default_Init_Cond_Procedure --
20689 ----------------------------------------
20691 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
) is
20692 Found
: Boolean := False;
20698 Subp
:= Subprograms_For_Type
(Typ
);
20699 while Present
(Subp
) loop
20700 if Is_Default_Init_Cond_Procedure
(Subp
) then
20706 Subp
:= Subprograms_For_Type
(Subp
);
20710 Set_Subprograms_For_Type
(Prev
, Subprograms_For_Type
(Subp
));
20711 Set_Subprograms_For_Type
(Subp
, Empty
);
20713 end Remove_Default_Init_Cond_Procedure
;
20717 Inherit_Procedure
: Boolean := False;
20719 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20722 if Has_Default_Init_Cond
(From_Typ
) then
20724 -- A derived type inherits the attributes from its parent type
20726 if Parent_To_Derivation
then
20727 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20729 -- A full view shares the attributes with its private view
20732 Set_Has_Default_Init_Cond
(To_Typ
);
20735 Inherit_Procedure
:= True;
20737 -- Due to the order of expansion, a derived private type is processed
20738 -- by two routines which both attempt to set the attributes related
20739 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20740 -- Process_Full_View.
20743 -- type Parent_Typ is private
20744 -- with Default_Initial_Condition ...;
20746 -- type Parent_Typ is ...;
20749 -- with Pack; use Pack;
20750 -- package Pack_2 is
20751 -- type Deriv_Typ is private
20752 -- with Default_Initial_Condition ...;
20754 -- type Deriv_Typ is new Parent_Typ;
20757 -- When Build_Derived_Type operates, it sets the attributes on the
20758 -- full view without taking into account that the private view may
20759 -- define its own default initial condition procedure. This becomes
20760 -- apparent in Process_Full_View which must undo some of the work by
20761 -- Build_Derived_Type and propagate the attributes from the private
20762 -- to the full view.
20764 if Private_To_Full_View
then
20765 Set_Has_Inherited_Default_Init_Cond
(To_Typ
, False);
20766 Remove_Default_Init_Cond_Procedure
(To_Typ
);
20769 -- A type must inherit the default initial condition procedure from a
20770 -- parent type when the parent itself is inheriting the procedure or
20771 -- when it is defining one. This circuitry is also used when dealing
20772 -- with the private / full view of a type.
20774 elsif Has_Inherited_Default_Init_Cond
(From_Typ
)
20775 or (Parent_To_Derivation
20776 and Present
(Get_Pragma
20777 (From_Typ
, Pragma_Default_Initial_Condition
)))
20779 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20780 Inherit_Procedure
:= True;
20783 if Inherit_Procedure
20784 and then No
(Default_Init_Cond_Procedure
(To_Typ
))
20786 Set_Default_Init_Cond_Procedure
20787 (To_Typ
, Default_Init_Cond_Procedure
(From_Typ
));
20789 end Propagate_Default_Init_Cond_Attributes
;
20791 -----------------------------
20792 -- Record_Type_Declaration --
20793 -----------------------------
20795 procedure Record_Type_Declaration
20800 Def
: constant Node_Id
:= Type_Definition
(N
);
20801 Is_Tagged
: Boolean;
20802 Tag_Comp
: Entity_Id
;
20805 -- These flags must be initialized before calling Process_Discriminants
20806 -- because this routine makes use of them.
20808 Set_Ekind
(T
, E_Record_Type
);
20810 Init_Size_Align
(T
);
20811 Set_Interfaces
(T
, No_Elist
);
20812 Set_Stored_Constraint
(T
, No_Elist
);
20813 Set_Default_SSO
(T
);
20817 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
20818 if Limited_Present
(Def
) then
20819 Check_SPARK_05_Restriction
("limited is not allowed", N
);
20822 if Abstract_Present
(Def
) then
20823 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
20826 -- The flag Is_Tagged_Type might have already been set by
20827 -- Find_Type_Name if it detected an error for declaration T. This
20828 -- arises in the case of private tagged types where the full view
20829 -- omits the word tagged.
20832 Tagged_Present
(Def
)
20833 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
20835 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
20838 Set_Is_Tagged_Type
(T
, True);
20839 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
20842 -- Type is abstract if full declaration carries keyword, or if
20843 -- previous partial view did.
20845 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
20846 or else Abstract_Present
(Def
));
20849 Check_SPARK_05_Restriction
("interface is not allowed", N
);
20852 Analyze_Interface_Declaration
(T
, Def
);
20854 if Present
(Discriminant_Specifications
(N
)) then
20856 ("interface types cannot have discriminants",
20857 Defining_Identifier
20858 (First
(Discriminant_Specifications
(N
))));
20862 -- First pass: if there are self-referential access components,
20863 -- create the required anonymous access type declarations, and if
20864 -- need be an incomplete type declaration for T itself.
20866 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
20868 if Ada_Version
>= Ada_2005
20869 and then Present
(Interface_List
(Def
))
20871 Check_Interfaces
(N
, Def
);
20874 Ifaces_List
: Elist_Id
;
20877 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20878 -- already in the parents.
20882 Ifaces_List
=> Ifaces_List
,
20883 Exclude_Parents
=> True);
20885 Set_Interfaces
(T
, Ifaces_List
);
20889 -- Records constitute a scope for the component declarations within.
20890 -- The scope is created prior to the processing of these declarations.
20891 -- Discriminants are processed first, so that they are visible when
20892 -- processing the other components. The Ekind of the record type itself
20893 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20895 -- Enter record scope
20899 -- If an incomplete or private type declaration was already given for
20900 -- the type, then this scope already exists, and the discriminants have
20901 -- been declared within. We must verify that the full declaration
20902 -- matches the incomplete one.
20904 Check_Or_Process_Discriminants
(N
, T
, Prev
);
20906 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
20907 Set_Has_Delayed_Freeze
(T
, True);
20909 -- For tagged types add a manually analyzed component corresponding
20910 -- to the component _tag, the corresponding piece of tree will be
20911 -- expanded as part of the freezing actions if it is not a CPP_Class.
20915 -- Do not add the tag unless we are in expansion mode
20917 if Expander_Active
then
20918 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
20919 Enter_Name
(Tag_Comp
);
20921 Set_Ekind
(Tag_Comp
, E_Component
);
20922 Set_Is_Tag
(Tag_Comp
);
20923 Set_Is_Aliased
(Tag_Comp
);
20924 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
20925 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
20926 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
20927 Init_Component_Location
(Tag_Comp
);
20929 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20930 -- implemented interfaces.
20932 if Has_Interfaces
(T
) then
20933 Add_Interface_Tag_Components
(N
, T
);
20937 Make_Class_Wide_Type
(T
);
20938 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
20941 -- We must suppress range checks when processing record components in
20942 -- the presence of discriminants, since we don't want spurious checks to
20943 -- be generated during their analysis, but Suppress_Range_Checks flags
20944 -- must be reset the after processing the record definition.
20946 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20947 -- couldn't we just use the normal range check suppression method here.
20948 -- That would seem cleaner ???
20950 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
20951 Set_Kill_Range_Checks
(T
, True);
20952 Record_Type_Definition
(Def
, Prev
);
20953 Set_Kill_Range_Checks
(T
, False);
20955 Record_Type_Definition
(Def
, Prev
);
20958 -- Exit from record scope
20962 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20963 -- the implemented interfaces and associate them an aliased entity.
20966 and then not Is_Empty_List
(Interface_List
(Def
))
20968 Derive_Progenitor_Subprograms
(T
, T
);
20971 Check_Function_Writable_Actuals
(N
);
20972 end Record_Type_Declaration
;
20974 ----------------------------
20975 -- Record_Type_Definition --
20976 ----------------------------
20978 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
20979 Component
: Entity_Id
;
20980 Ctrl_Components
: Boolean := False;
20981 Final_Storage_Only
: Boolean;
20985 if Ekind
(Prev_T
) = E_Incomplete_Type
then
20986 T
:= Full_View
(Prev_T
);
20991 -- In SPARK, tagged types and type extensions may only be declared in
20992 -- the specification of library unit packages.
20994 if Present
(Def
) and then Is_Tagged_Type
(T
) then
21000 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
21001 Typ
:= Parent
(Def
);
21004 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
21005 Typ
:= Parent
(Parent
(Def
));
21008 Ctxt
:= Parent
(Typ
);
21010 if Nkind
(Ctxt
) = N_Package_Body
21011 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
21013 Check_SPARK_05_Restriction
21014 ("type should be defined in package specification", Typ
);
21016 elsif Nkind
(Ctxt
) /= N_Package_Specification
21017 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
21019 Check_SPARK_05_Restriction
21020 ("type should be defined in library unit package", Typ
);
21025 Final_Storage_Only
:= not Is_Controlled
(T
);
21027 -- Ada 2005: Check whether an explicit Limited is present in a derived
21028 -- type declaration.
21030 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
21031 and then Limited_Present
(Parent
(Def
))
21033 Set_Is_Limited_Record
(T
);
21036 -- If the component list of a record type is defined by the reserved
21037 -- word null and there is no discriminant part, then the record type has
21038 -- no components and all records of the type are null records (RM 3.7)
21039 -- This procedure is also called to process the extension part of a
21040 -- record extension, in which case the current scope may have inherited
21044 or else No
(Component_List
(Def
))
21045 or else Null_Present
(Component_List
(Def
))
21047 if not Is_Tagged_Type
(T
) then
21048 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
21052 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
21054 if Present
(Variant_Part
(Component_List
(Def
))) then
21055 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
21056 Analyze
(Variant_Part
(Component_List
(Def
)));
21060 -- After completing the semantic analysis of the record definition,
21061 -- record components, both new and inherited, are accessible. Set their
21062 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21063 -- whose Ekind may be void.
21065 Component
:= First_Entity
(Current_Scope
);
21066 while Present
(Component
) loop
21067 if Ekind
(Component
) = E_Void
21068 and then not Is_Itype
(Component
)
21070 Set_Ekind
(Component
, E_Component
);
21071 Init_Component_Location
(Component
);
21074 if Has_Task
(Etype
(Component
)) then
21078 if Has_Protected
(Etype
(Component
)) then
21079 Set_Has_Protected
(T
);
21082 if Ekind
(Component
) /= E_Component
then
21085 -- Do not set Has_Controlled_Component on a class-wide equivalent
21086 -- type. See Make_CW_Equivalent_Type.
21088 elsif not Is_Class_Wide_Equivalent_Type
(T
)
21089 and then (Has_Controlled_Component
(Etype
(Component
))
21090 or else (Chars
(Component
) /= Name_uParent
21091 and then Is_Controlled
(Etype
(Component
))))
21093 Set_Has_Controlled_Component
(T
, True);
21094 Final_Storage_Only
:=
21096 and then Finalize_Storage_Only
(Etype
(Component
));
21097 Ctrl_Components
:= True;
21100 Next_Entity
(Component
);
21103 -- A Type is Finalize_Storage_Only only if all its controlled components
21106 if Ctrl_Components
then
21107 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
21110 -- Place reference to end record on the proper entity, which may
21111 -- be a partial view.
21113 if Present
(Def
) then
21114 Process_End_Label
(Def
, 'e', Prev_T
);
21116 end Record_Type_Definition
;
21118 ------------------------
21119 -- Replace_Components --
21120 ------------------------
21122 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
21123 function Process
(N
: Node_Id
) return Traverse_Result
;
21129 function Process
(N
: Node_Id
) return Traverse_Result
is
21133 if Nkind
(N
) = N_Discriminant_Specification
then
21134 Comp
:= First_Discriminant
(Typ
);
21135 while Present
(Comp
) loop
21136 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21137 Set_Defining_Identifier
(N
, Comp
);
21141 Next_Discriminant
(Comp
);
21144 elsif Nkind
(N
) = N_Component_Declaration
then
21145 Comp
:= First_Component
(Typ
);
21146 while Present
(Comp
) loop
21147 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21148 Set_Defining_Identifier
(N
, Comp
);
21152 Next_Component
(Comp
);
21159 procedure Replace
is new Traverse_Proc
(Process
);
21161 -- Start of processing for Replace_Components
21165 end Replace_Components
;
21167 -------------------------------
21168 -- Set_Completion_Referenced --
21169 -------------------------------
21171 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
21173 -- If in main unit, mark entity that is a completion as referenced,
21174 -- warnings go on the partial view when needed.
21176 if In_Extended_Main_Source_Unit
(E
) then
21177 Set_Referenced
(E
);
21179 end Set_Completion_Referenced
;
21181 ---------------------
21182 -- Set_Default_SSO --
21183 ---------------------
21185 procedure Set_Default_SSO
(T
: Entity_Id
) is
21187 case Opt
.Default_SSO
is
21191 Set_SSO_Set_Low_By_Default
(T
, True);
21193 Set_SSO_Set_High_By_Default
(T
, True);
21195 raise Program_Error
;
21197 end Set_Default_SSO
;
21199 ---------------------
21200 -- Set_Fixed_Range --
21201 ---------------------
21203 -- The range for fixed-point types is complicated by the fact that we
21204 -- do not know the exact end points at the time of the declaration. This
21205 -- is true for three reasons:
21207 -- A size clause may affect the fudging of the end-points.
21208 -- A small clause may affect the values of the end-points.
21209 -- We try to include the end-points if it does not affect the size.
21211 -- This means that the actual end-points must be established at the
21212 -- point when the type is frozen. Meanwhile, we first narrow the range
21213 -- as permitted (so that it will fit if necessary in a small specified
21214 -- size), and then build a range subtree with these narrowed bounds.
21215 -- Set_Fixed_Range constructs the range from real literal values, and
21216 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21218 -- The parent of this range is set to point to the entity so that it is
21219 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21220 -- other scalar types, which are just pointers to the range in the
21221 -- original tree, this would otherwise be an orphan).
21223 -- The tree is left unanalyzed. When the type is frozen, the processing
21224 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21225 -- analyzed, and uses this as an indication that it should complete
21226 -- work on the range (it will know the final small and size values).
21228 procedure Set_Fixed_Range
21234 S
: constant Node_Id
:=
21236 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
21237 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
21239 Set_Scalar_Range
(E
, S
);
21242 -- Before the freeze point, the bounds of a fixed point are universal
21243 -- and carry the corresponding type.
21245 Set_Etype
(Low_Bound
(S
), Universal_Real
);
21246 Set_Etype
(High_Bound
(S
), Universal_Real
);
21247 end Set_Fixed_Range
;
21249 ----------------------------------
21250 -- Set_Scalar_Range_For_Subtype --
21251 ----------------------------------
21253 procedure Set_Scalar_Range_For_Subtype
21254 (Def_Id
: Entity_Id
;
21258 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
21261 -- Defend against previous error
21263 if Nkind
(R
) = N_Error
then
21267 Set_Scalar_Range
(Def_Id
, R
);
21269 -- We need to link the range into the tree before resolving it so
21270 -- that types that are referenced, including importantly the subtype
21271 -- itself, are properly frozen (Freeze_Expression requires that the
21272 -- expression be properly linked into the tree). Of course if it is
21273 -- already linked in, then we do not disturb the current link.
21275 if No
(Parent
(R
)) then
21276 Set_Parent
(R
, Def_Id
);
21279 -- Reset the kind of the subtype during analysis of the range, to
21280 -- catch possible premature use in the bounds themselves.
21282 Set_Ekind
(Def_Id
, E_Void
);
21283 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
21284 Set_Ekind
(Def_Id
, Kind
);
21285 end Set_Scalar_Range_For_Subtype
;
21287 --------------------------------------------------------
21288 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21289 --------------------------------------------------------
21291 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21295 -- Make sure set if encountered during Expand_To_Stored_Constraint
21297 Set_Stored_Constraint
(E
, No_Elist
);
21299 -- Give it the right value
21301 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
21302 Set_Stored_Constraint
(E
,
21303 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
21305 end Set_Stored_Constraint_From_Discriminant_Constraint
;
21307 -------------------------------------
21308 -- Signed_Integer_Type_Declaration --
21309 -------------------------------------
21311 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
21312 Implicit_Base
: Entity_Id
;
21313 Base_Typ
: Entity_Id
;
21316 Errs
: Boolean := False;
21320 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
21321 -- Determine whether given bounds allow derivation from specified type
21323 procedure Check_Bound
(Expr
: Node_Id
);
21324 -- Check bound to make sure it is integral and static. If not, post
21325 -- appropriate error message and set Errs flag
21327 ---------------------
21328 -- Can_Derive_From --
21329 ---------------------
21331 -- Note we check both bounds against both end values, to deal with
21332 -- strange types like ones with a range of 0 .. -12341234.
21334 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
21335 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
21336 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
21338 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
21340 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
21341 end Can_Derive_From
;
21347 procedure Check_Bound
(Expr
: Node_Id
) is
21349 -- If a range constraint is used as an integer type definition, each
21350 -- bound of the range must be defined by a static expression of some
21351 -- integer type, but the two bounds need not have the same integer
21352 -- type (Negative bounds are allowed.) (RM 3.5.4)
21354 if not Is_Integer_Type
(Etype
(Expr
)) then
21356 ("integer type definition bounds must be of integer type", Expr
);
21359 elsif not Is_OK_Static_Expression
(Expr
) then
21360 Flag_Non_Static_Expr
21361 ("non-static expression used for integer type bound!", Expr
);
21364 -- The bounds are folded into literals, and we set their type to be
21365 -- universal, to avoid typing difficulties: we cannot set the type
21366 -- of the literal to the new type, because this would be a forward
21367 -- reference for the back end, and if the original type is user-
21368 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21371 if Is_Entity_Name
(Expr
) then
21372 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
21375 Set_Etype
(Expr
, Universal_Integer
);
21379 -- Start of processing for Signed_Integer_Type_Declaration
21382 -- Create an anonymous base type
21385 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
21387 -- Analyze and check the bounds, they can be of any integer type
21389 Lo
:= Low_Bound
(Def
);
21390 Hi
:= High_Bound
(Def
);
21392 -- Arbitrarily use Integer as the type if either bound had an error
21394 if Hi
= Error
or else Lo
= Error
then
21395 Base_Typ
:= Any_Integer
;
21396 Set_Error_Posted
(T
, True);
21398 -- Here both bounds are OK expressions
21401 Analyze_And_Resolve
(Lo
, Any_Integer
);
21402 Analyze_And_Resolve
(Hi
, Any_Integer
);
21408 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21409 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21412 -- Find type to derive from
21414 Lo_Val
:= Expr_Value
(Lo
);
21415 Hi_Val
:= Expr_Value
(Hi
);
21417 if Can_Derive_From
(Standard_Short_Short_Integer
) then
21418 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
21420 elsif Can_Derive_From
(Standard_Short_Integer
) then
21421 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
21423 elsif Can_Derive_From
(Standard_Integer
) then
21424 Base_Typ
:= Base_Type
(Standard_Integer
);
21426 elsif Can_Derive_From
(Standard_Long_Integer
) then
21427 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
21429 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
21430 Check_Restriction
(No_Long_Long_Integers
, Def
);
21431 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21434 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21435 Error_Msg_N
("integer type definition bounds out of range", Def
);
21436 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21437 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21441 -- Complete both implicit base and declared first subtype entities. The
21442 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21443 -- are not clobbered when the signed integer type acts as a full view of
21446 Set_Etype
(Implicit_Base
, Base_Typ
);
21447 Set_Size_Info
(Implicit_Base
, Base_Typ
);
21448 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
21449 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
21450 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
21452 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
21453 Set_Etype
(T
, Implicit_Base
);
21454 Set_Size_Info
(T
, Implicit_Base
);
21455 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
21456 Set_Scalar_Range
(T
, Def
);
21457 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
21458 Set_Is_Constrained
(T
);
21459 end Signed_Integer_Type_Declaration
;