* gcc.h (lang_specific_driver): Constify second argument.
[official-gcc.git] / gcc / ifcvt.c
blob54ad8a73a6f2ffdd285c2ed5abdfe8f9f8645a60
1 /* If-conversion support.
2 Copyright (C) 2000 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
24 #include "rtl.h"
25 #include "regs.h"
26 #include "function.h"
27 #include "flags.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "tm_p.h"
37 #ifndef HAVE_conditional_execution
38 #define HAVE_conditional_execution 0
39 #endif
40 #ifndef HAVE_conditional_move
41 #define HAVE_conditional_move 0
42 #endif
43 #ifndef HAVE_incscc
44 #define HAVE_incscc 0
45 #endif
46 #ifndef HAVE_decscc
47 #define HAVE_decscc 0
48 #endif
50 #ifndef MAX_CONDITIONAL_EXECUTE
51 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
52 #endif
54 #define NULL_EDGE ((struct edge_def *)NULL)
55 #define NULL_BLOCK ((struct basic_block_def *)NULL)
57 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
58 static int num_possible_if_blocks;
60 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
61 execution. */
62 static int num_updated_if_blocks;
64 /* # of basic blocks that were removed. */
65 static int num_removed_blocks;
67 /* The post-dominator relation on the original block numbers. */
68 static sbitmap *post_dominators;
70 /* Forward references. */
71 static int count_bb_insns PARAMS ((basic_block));
72 static rtx first_active_insn PARAMS ((basic_block));
73 static int last_active_insn_p PARAMS ((basic_block, rtx));
74 static int seq_contains_jump PARAMS ((rtx));
76 static int cond_exec_process_insns PARAMS ((rtx, rtx, rtx, rtx, int));
77 static rtx cond_exec_get_condition PARAMS ((rtx));
78 static int cond_exec_process_if_block PARAMS ((basic_block, basic_block,
79 basic_block, basic_block));
81 static rtx noce_get_condition PARAMS ((rtx, rtx *));
82 static int noce_process_if_block PARAMS ((basic_block, basic_block,
83 basic_block, basic_block));
85 static int process_if_block PARAMS ((basic_block, basic_block,
86 basic_block, basic_block));
87 static void merge_if_block PARAMS ((basic_block, basic_block,
88 basic_block, basic_block));
90 static int find_if_header PARAMS ((basic_block));
91 static int find_if_block PARAMS ((basic_block, edge, edge));
92 static int find_if_case_1 PARAMS ((basic_block, edge, edge));
93 static int find_if_case_2 PARAMS ((basic_block, edge, edge));
94 static int find_memory PARAMS ((rtx *, void *));
95 static int dead_or_predicable PARAMS ((basic_block, basic_block,
96 basic_block, rtx, int));
98 /* Abuse the basic_block AUX field to store the original block index,
99 as well as a flag indicating that the block should be rescaned for
100 life analysis. */
102 #define SET_ORIG_INDEX(BB,I) ((BB)->aux = (void *)((size_t)(I) << 1))
103 #define ORIG_INDEX(BB) ((size_t)(BB)->aux >> 1)
104 #define SET_UPDATE_LIFE(BB) ((BB)->aux = (void *)((size_t)(BB)->aux | 1))
105 #define UPDATE_LIFE(BB) ((size_t)(BB)->aux & 1)
108 /* Count the number of non-jump active insns in BB. */
110 static int
111 count_bb_insns (bb)
112 basic_block bb;
114 int count = 0;
115 rtx insn = bb->head;
117 while (1)
119 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == INSN)
120 count++;
122 if (insn == bb->end)
123 break;
124 insn = NEXT_INSN (insn);
127 return count;
130 /* Return the first non-jump active insn in the basic block. */
132 static rtx
133 first_active_insn (bb)
134 basic_block bb;
136 rtx insn = bb->head;
138 if (GET_CODE (insn) == CODE_LABEL)
140 if (insn == bb->end)
141 return NULL_RTX;
142 insn = NEXT_INSN (insn);
145 while (GET_CODE (insn) == NOTE)
147 if (insn == bb->end)
148 return NULL_RTX;
149 insn = NEXT_INSN (insn);
152 if (GET_CODE (insn) == JUMP_INSN)
153 return NULL_RTX;
155 return insn;
158 /* Return true if INSN is the last active non-jump insn in BB. */
160 static int
161 last_active_insn_p (bb, insn)
162 basic_block bb;
163 rtx insn;
167 if (insn == bb->end)
168 return TRUE;
169 insn = NEXT_INSN (insn);
171 while (GET_CODE (insn) == NOTE);
173 return GET_CODE (insn) == JUMP_INSN;
176 /* It is possible, especially when having dealt with multi-word
177 arithmetic, for the expanders to have emitted jumps. Search
178 through the sequence and return TRUE if a jump exists so that
179 we can abort the conversion. */
181 static int
182 seq_contains_jump (insn)
183 rtx insn;
185 while (insn)
187 if (GET_CODE (insn) == JUMP_INSN)
188 return 1;
189 insn = NEXT_INSN (insn);
191 return 0;
194 /* Go through a bunch of insns, converting them to conditional
195 execution format if possible. Return TRUE if all of the non-note
196 insns were processed. */
198 static int
199 cond_exec_process_insns (start, end, test, prob_val, mod_ok)
200 rtx start; /* first insn to look at */
201 rtx end; /* last insn to look at */
202 rtx test; /* conditional execution test */
203 rtx prob_val; /* probability of branch taken. */
204 int mod_ok; /* true if modifications ok last insn. */
206 int must_be_last = FALSE;
207 rtx insn;
208 rtx pattern;
210 for (insn = start; ; insn = NEXT_INSN (insn))
212 if (GET_CODE (insn) == NOTE)
213 goto insn_done;
215 if (GET_CODE (insn) != INSN && GET_CODE (insn) != CALL_INSN)
216 abort ();
218 /* Remove USE insns that get in the way. */
219 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
221 /* ??? Ug. Actually unlinking the thing is problematic,
222 given what we'd have to coordinate with our callers. */
223 PUT_CODE (insn, NOTE);
224 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
225 NOTE_SOURCE_FILE (insn) = 0;
226 goto insn_done;
229 /* Last insn wasn't last? */
230 if (must_be_last)
231 return FALSE;
233 if (modified_in_p (test, insn))
235 if (!mod_ok)
236 return FALSE;
237 must_be_last = TRUE;
240 /* Now build the conditional form of the instruction. */
241 pattern = PATTERN (insn);
243 /* If the machine needs to modify the insn being conditionally executed,
244 say for example to force a constant integer operand into a temp
245 register, do so here. */
246 #ifdef IFCVT_MODIFY_INSN
247 IFCVT_MODIFY_INSN (pattern, insn);
248 if (! pattern)
249 return FALSE;
250 #endif
252 validate_change (insn, &PATTERN (insn),
253 gen_rtx_COND_EXEC (VOIDmode, copy_rtx (test),
254 pattern), 1);
256 if (GET_CODE (insn) == CALL_INSN && prob_val)
257 validate_change (insn, &REG_NOTES (insn),
258 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
259 REG_NOTES (insn)), 1);
261 insn_done:
262 if (insn == end)
263 break;
266 return TRUE;
269 /* Return the condition for a jump. Do not do any special processing. */
271 static rtx
272 cond_exec_get_condition (jump)
273 rtx jump;
275 rtx test_if, cond;
277 if (any_condjump_p (jump))
278 test_if = SET_SRC (pc_set (jump));
279 else
280 return NULL_RTX;
281 cond = XEXP (test_if, 0);
283 /* If this branches to JUMP_LABEL when the condition is false,
284 reverse the condition. */
285 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
286 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
287 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
288 GET_MODE (cond), XEXP (cond, 0),
289 XEXP (cond, 1));
291 return cond;
294 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
295 to conditional execution. Return TRUE if we were successful at
296 converting the the block. */
298 static int
299 cond_exec_process_if_block (test_bb, then_bb, else_bb, join_bb)
300 basic_block test_bb; /* Basic block test is in */
301 basic_block then_bb; /* Basic block for THEN block */
302 basic_block else_bb; /* Basic block for ELSE block */
303 basic_block join_bb; /* Basic block the join label is in */
305 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
306 rtx then_start; /* first insn in THEN block */
307 rtx then_end; /* last insn + 1 in THEN block */
308 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
309 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
310 int max; /* max # of insns to convert. */
311 int then_mod_ok; /* whether conditional mods are ok in THEN */
312 rtx true_expr; /* test for else block insns */
313 rtx false_expr; /* test for then block insns */
314 rtx true_prob_val; /* probability of else block */
315 rtx false_prob_val; /* probability of then block */
316 int n_insns;
318 /* Find the conditional jump to the ELSE or JOIN part, and isolate
319 the test. */
320 test_expr = cond_exec_get_condition (test_bb->end);
321 if (! test_expr)
322 return FALSE;
324 /* If the conditional jump is more than just a conditional jump,
325 then we can not do conditional execution conversion on this block. */
326 if (!onlyjump_p (test_bb->end))
327 return FALSE;
329 /* Collect the bounds of where we're to search. */
331 then_start = then_bb->head;
332 then_end = then_bb->end;
334 /* Skip a label heading THEN block. */
335 if (GET_CODE (then_start) == CODE_LABEL)
336 then_start = NEXT_INSN (then_start);
338 /* Skip a (use (const_int 0)) or branch as the final insn. */
339 if (GET_CODE (then_end) == INSN
340 && GET_CODE (PATTERN (then_end)) == USE
341 && GET_CODE (XEXP (PATTERN (then_end), 0)) == CONST_INT)
342 then_end = PREV_INSN (then_end);
343 else if (GET_CODE (then_end) == JUMP_INSN)
344 then_end = PREV_INSN (then_end);
346 if (else_bb)
348 /* Skip the ELSE block's label. */
349 else_start = NEXT_INSN (else_bb->head);
350 else_end = else_bb->end;
352 /* Skip a (use (const_int 0)) or branch as the final insn. */
353 if (GET_CODE (else_end) == INSN
354 && GET_CODE (PATTERN (else_end)) == USE
355 && GET_CODE (XEXP (PATTERN (else_end), 0)) == CONST_INT)
356 else_end = PREV_INSN (else_end);
357 else if (GET_CODE (else_end) == JUMP_INSN)
358 else_end = PREV_INSN (else_end);
361 /* How many instructions should we convert in total? */
362 n_insns = 0;
363 if (else_bb)
365 max = 2 * MAX_CONDITIONAL_EXECUTE;
366 n_insns = count_bb_insns (else_bb);
368 else
369 max = MAX_CONDITIONAL_EXECUTE;
370 n_insns += count_bb_insns (then_bb);
371 if (n_insns > max)
372 return FALSE;
374 /* Map test_expr/test_jump into the appropriate MD tests to use on
375 the conditionally executed code. */
377 true_expr = test_expr;
378 false_expr = gen_rtx_fmt_ee (reverse_condition (GET_CODE (true_expr)),
379 GET_MODE (true_expr), XEXP (true_expr, 0),
380 XEXP (true_expr, 1));
382 #ifdef IFCVT_MODIFY_TESTS
383 /* If the machine description needs to modify the tests, such as setting a
384 conditional execution register from a comparison, it can do so here. */
385 IFCVT_MODIFY_TESTS (true_expr, false_expr, test_bb, then_bb, else_bb,
386 join_bb);
388 /* See if the conversion failed */
389 if (!true_expr || !false_expr)
390 goto fail;
391 #endif
393 true_prob_val = find_reg_note (test_bb->end, REG_BR_PROB, NULL_RTX);
394 if (true_prob_val)
396 true_prob_val = XEXP (true_prob_val, 0);
397 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
399 else
400 false_prob_val = NULL_RTX;
402 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
403 on then THEN block. */
404 then_mod_ok = (else_bb == NULL_BLOCK);
406 /* Go through the THEN and ELSE blocks converting the insns if possible
407 to conditional execution. */
409 if (then_end
410 && ! cond_exec_process_insns (then_start, then_end,
411 false_expr, false_prob_val, then_mod_ok))
412 goto fail;
414 if (else_bb
415 && ! cond_exec_process_insns (else_start, else_end,
416 true_expr, true_prob_val, TRUE))
417 goto fail;
419 if (! apply_change_group ())
420 return FALSE;
422 #ifdef IFCVT_MODIFY_FINAL
423 /* Do any machine dependent final modifications */
424 IFCVT_MODIFY_FINAL (test_bb, then_bb, else_bb, join_bb);
425 #endif
427 /* Conversion succeeded. */
428 if (rtl_dump_file)
429 fprintf (rtl_dump_file, "%d insn%s converted to conditional execution.\n",
430 n_insns, (n_insns == 1) ? " was" : "s were");
432 /* Merge the blocks! */
433 merge_if_block (test_bb, then_bb, else_bb, join_bb);
434 return TRUE;
436 fail:
437 #ifdef IFCVT_MODIFY_CANCEL
438 /* Cancel any machine dependent changes. */
439 IFCVT_MODIFY_CANCEL (test_bb, then_bb, else_bb, join_bb);
440 #endif
442 cancel_changes (0);
443 return FALSE;
446 /* Used by noce_process_if_block to communicate with its subroutines.
448 The subroutines know that A and B may be evaluated freely. They
449 know that X is a register. They should insert new instructions
450 before cond_earliest. */
452 struct noce_if_info
454 rtx insn_a, insn_b;
455 rtx x, a, b;
456 rtx jump, cond, cond_earliest;
459 static rtx noce_emit_store_flag PARAMS ((struct noce_if_info *,
460 rtx, int, int));
461 static int noce_try_store_flag PARAMS ((struct noce_if_info *));
462 static int noce_try_store_flag_inc PARAMS ((struct noce_if_info *));
463 static int noce_try_store_flag_constants PARAMS ((struct noce_if_info *));
464 static int noce_try_store_flag_mask PARAMS ((struct noce_if_info *));
465 static rtx noce_emit_cmove PARAMS ((struct noce_if_info *,
466 rtx, enum rtx_code, rtx,
467 rtx, rtx, rtx));
468 static int noce_try_cmove PARAMS ((struct noce_if_info *));
469 static int noce_try_cmove_arith PARAMS ((struct noce_if_info *));
471 /* Helper function for noce_try_store_flag*. */
473 static rtx
474 noce_emit_store_flag (if_info, x, reversep, normalize)
475 struct noce_if_info *if_info;
476 rtx x;
477 int reversep, normalize;
479 rtx cond = if_info->cond;
480 int cond_complex;
481 enum rtx_code code;
483 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
484 || ! general_operand (XEXP (cond, 1), VOIDmode));
486 /* If earliest == jump, or when the condition is complex, try to
487 build the store_flag insn directly. */
489 if (cond_complex)
490 cond = XEXP (SET_SRC (PATTERN (if_info->jump)), 0);
492 if ((if_info->cond_earliest == if_info->jump || cond_complex)
493 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
495 rtx tmp;
497 code = GET_CODE (cond);
498 if (reversep)
499 code = reverse_condition (code);
501 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
502 XEXP (cond, 1));
503 tmp = gen_rtx_SET (VOIDmode, x, tmp);
505 start_sequence ();
506 tmp = emit_insn (tmp);
508 if (recog_memoized (tmp) >= 0)
510 tmp = get_insns ();
511 end_sequence ();
512 emit_insns (tmp);
514 if_info->cond_earliest = if_info->jump;
516 return x;
519 end_sequence ();
522 /* Don't even try if the comparison operands are weird. */
523 if (cond_complex)
524 return NULL_RTX;
526 code = GET_CODE (cond);
527 if (reversep)
528 code = reverse_condition (code);
530 return emit_store_flag (x, code, XEXP (cond, 0),
531 XEXP (cond, 1), VOIDmode,
532 (code == LTU || code == LEU
533 || code == GEU || code == GTU), normalize);
536 /* Convert "if (test) x = 1; else x = 0".
538 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
539 tried in noce_try_store_flag_constants after noce_try_cmove has had
540 a go at the conversion. */
542 static int
543 noce_try_store_flag (if_info)
544 struct noce_if_info *if_info;
546 int reversep;
547 rtx target, seq;
549 if (GET_CODE (if_info->b) == CONST_INT
550 && INTVAL (if_info->b) == STORE_FLAG_VALUE
551 && if_info->a == const0_rtx)
552 reversep = 0;
553 else if (if_info->b == const0_rtx
554 && GET_CODE (if_info->a) == CONST_INT
555 && INTVAL (if_info->a) == STORE_FLAG_VALUE
556 && can_reverse_comparison_p (if_info->cond, if_info->jump))
557 reversep = 1;
558 else
559 return FALSE;
561 start_sequence ();
563 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
564 if (target)
566 if (target != if_info->x)
567 emit_move_insn (if_info->x, target);
569 seq = get_insns ();
570 end_sequence ();
571 emit_insns_before (seq, if_info->cond_earliest);
573 return TRUE;
575 else
577 end_sequence ();
578 return FALSE;
582 /* Convert "if (test) x = a; else x = b", for A and B constant. */
584 static int
585 noce_try_store_flag_constants (if_info)
586 struct noce_if_info *if_info;
588 rtx target, seq;
589 int reversep;
590 HOST_WIDE_INT itrue, ifalse, diff, tmp;
591 int normalize, can_reverse;
593 if (! no_new_pseudos
594 && GET_CODE (if_info->a) == CONST_INT
595 && GET_CODE (if_info->b) == CONST_INT)
597 ifalse = INTVAL (if_info->a);
598 itrue = INTVAL (if_info->b);
599 diff = itrue - ifalse;
601 can_reverse = can_reverse_comparison_p (if_info->cond, if_info->jump);
603 reversep = 0;
604 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
605 normalize = 0;
606 else if (ifalse == 0 && exact_log2 (itrue) >= 0
607 && (STORE_FLAG_VALUE == 1
608 || BRANCH_COST >= 2))
609 normalize = 1;
610 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
611 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
612 normalize = 1, reversep = 1;
613 else if (itrue == -1
614 && (STORE_FLAG_VALUE == -1
615 || BRANCH_COST >= 2))
616 normalize = -1;
617 else if (ifalse == -1 && can_reverse
618 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
619 normalize = -1, reversep = 1;
620 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
621 || BRANCH_COST >= 3)
622 normalize = -1;
623 else
624 return FALSE;
626 if (reversep)
628 tmp = itrue; itrue = ifalse; ifalse = tmp;
629 diff = -diff;
632 start_sequence ();
633 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
634 if (! target)
636 end_sequence ();
637 return FALSE;
640 /* if (test) x = 3; else x = 4;
641 => x = 3 + (test == 0); */
642 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
644 target = expand_binop (GET_MODE (if_info->x),
645 (diff == STORE_FLAG_VALUE
646 ? add_optab : sub_optab),
647 GEN_INT (ifalse), target, if_info->x, 0,
648 OPTAB_WIDEN);
651 /* if (test) x = 8; else x = 0;
652 => x = (test != 0) << 3; */
653 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
655 target = expand_binop (GET_MODE (if_info->x), ashl_optab,
656 target, GEN_INT (tmp), if_info->x, 0,
657 OPTAB_WIDEN);
660 /* if (test) x = -1; else x = b;
661 => x = -(test != 0) | b; */
662 else if (itrue == -1)
664 target = expand_binop (GET_MODE (if_info->x), ior_optab,
665 target, GEN_INT (ifalse), if_info->x, 0,
666 OPTAB_WIDEN);
669 /* if (test) x = a; else x = b;
670 => x = (-(test != 0) & (b - a)) + a; */
671 else
673 target = expand_binop (GET_MODE (if_info->x), and_optab,
674 target, GEN_INT (diff), if_info->x, 0,
675 OPTAB_WIDEN);
676 if (target)
677 target = expand_binop (GET_MODE (if_info->x), add_optab,
678 target, GEN_INT (ifalse), if_info->x, 0,
679 OPTAB_WIDEN);
682 if (! target)
684 end_sequence ();
685 return FALSE;
688 if (target != if_info->x)
689 emit_move_insn (if_info->x, target);
691 seq = get_insns ();
692 end_sequence ();
694 if (seq_contains_jump (seq))
695 return FALSE;
697 emit_insns_before (seq, if_info->cond_earliest);
699 return TRUE;
702 return FALSE;
705 /* Convert "if (test) foo++" into "foo += (test != 0)", and
706 similarly for "foo--". */
708 static int
709 noce_try_store_flag_inc (if_info)
710 struct noce_if_info *if_info;
712 rtx target, seq;
713 int subtract, normalize;
715 if (! no_new_pseudos
716 && (BRANCH_COST >= 2
717 || HAVE_incscc
718 || HAVE_decscc)
719 /* Should be no `else' case to worry about. */
720 && if_info->b == if_info->x
721 && GET_CODE (if_info->a) == PLUS
722 && (XEXP (if_info->a, 1) == const1_rtx
723 || XEXP (if_info->a, 1) == constm1_rtx)
724 && rtx_equal_p (XEXP (if_info->a, 0), if_info->x)
725 && can_reverse_comparison_p (if_info->cond, if_info->jump))
727 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
728 subtract = 0, normalize = 0;
729 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
730 subtract = 1, normalize = 0;
731 else
732 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
734 start_sequence ();
736 target = noce_emit_store_flag (if_info,
737 gen_reg_rtx (GET_MODE (if_info->x)),
738 1, normalize);
740 if (target)
741 target = expand_binop (GET_MODE (if_info->x),
742 subtract ? sub_optab : add_optab,
743 if_info->x, target, if_info->x, 0, OPTAB_WIDEN);
744 if (target)
746 if (target != if_info->x)
747 emit_move_insn (if_info->x, target);
749 seq = get_insns ();
750 end_sequence ();
752 if (seq_contains_jump (seq))
753 return FALSE;
755 emit_insns_before (seq, if_info->cond_earliest);
757 return TRUE;
760 end_sequence ();
763 return FALSE;
766 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
768 static int
769 noce_try_store_flag_mask (if_info)
770 struct noce_if_info *if_info;
772 rtx target, seq;
773 int reversep;
775 reversep = 0;
776 if (! no_new_pseudos
777 && (BRANCH_COST >= 2
778 || STORE_FLAG_VALUE == -1)
779 && ((if_info->a == const0_rtx
780 && rtx_equal_p (if_info->b, if_info->x))
781 || ((reversep = can_reverse_comparison_p (if_info->cond,
782 if_info->jump))
783 && if_info->b == const0_rtx
784 && rtx_equal_p (if_info->a, if_info->x))))
786 start_sequence ();
787 target = noce_emit_store_flag (if_info,
788 gen_reg_rtx (GET_MODE (if_info->x)),
789 reversep, -1);
790 if (target)
791 target = expand_binop (GET_MODE (if_info->x), and_optab,
792 if_info->x, target, if_info->x, 0,
793 OPTAB_WIDEN);
795 if (target)
797 if (target != if_info->x)
798 emit_move_insn (if_info->x, target);
800 seq = get_insns ();
801 end_sequence ();
803 if (seq_contains_jump (seq))
804 return FALSE;
806 emit_insns_before (seq, if_info->cond_earliest);
808 return TRUE;
811 end_sequence ();
814 return FALSE;
817 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
819 static rtx
820 noce_emit_cmove (if_info, x, code, cmp_a, cmp_b, vfalse, vtrue)
821 struct noce_if_info *if_info;
822 rtx x, cmp_a, cmp_b, vfalse, vtrue;
823 enum rtx_code code;
825 /* If earliest == jump, try to build the cmove insn directly.
826 This is helpful when combine has created some complex condition
827 (like for alpha's cmovlbs) that we can't hope to regenerate
828 through the normal interface. */
830 if (if_info->cond_earliest == if_info->jump)
832 rtx tmp;
834 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
835 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
836 tmp = gen_rtx_SET (VOIDmode, x, tmp);
838 start_sequence ();
839 tmp = emit_insn (tmp);
841 if (recog_memoized (tmp) >= 0)
843 tmp = get_insns ();
844 end_sequence ();
845 emit_insns (tmp);
847 return x;
850 end_sequence ();
853 /* Don't even try if the comparison operands are weird. */
854 if (! general_operand (cmp_a, GET_MODE (cmp_a))
855 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
856 return NULL_RTX;
858 #if HAVE_conditional_move
859 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
860 vtrue, vfalse, GET_MODE (x),
861 (code == LTU || code == GEU
862 || code == LEU || code == GTU));
863 #else
864 /* We'll never get here, as noce_process_if_block doesn't call the
865 functions involved. Ifdef code, however, should be discouraged
866 because it leads to typos in the code not selected. However,
867 emit_conditional_move won't exist either. */
868 return NULL_RTX;
869 #endif
872 /* Try only simple constants and registers here. More complex cases
873 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
874 has had a go at it. */
876 static int
877 noce_try_cmove (if_info)
878 struct noce_if_info *if_info;
880 enum rtx_code code;
881 rtx target, seq;
883 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
884 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
886 start_sequence ();
888 code = GET_CODE (if_info->cond);
889 target = noce_emit_cmove (if_info, if_info->x, code,
890 XEXP (if_info->cond, 0),
891 XEXP (if_info->cond, 1),
892 if_info->a, if_info->b);
894 if (target)
896 if (target != if_info->x)
897 emit_move_insn (if_info->x, target);
899 seq = get_insns ();
900 end_sequence ();
901 emit_insns_before (seq, if_info->cond_earliest);
902 return TRUE;
904 else
906 end_sequence ();
907 return FALSE;
911 return FALSE;
914 /* Try more complex cases involving conditional_move. */
916 static int
917 noce_try_cmove_arith (if_info)
918 struct noce_if_info *if_info;
920 rtx a = if_info->a;
921 rtx b = if_info->b;
922 rtx x = if_info->x;
923 rtx insn_a, insn_b;
924 rtx tmp, target;
925 int is_mem = 0;
926 enum rtx_code code;
928 /* A conditional move from two memory sources is equivalent to a
929 conditional on their addresses followed by a load. Don't do this
930 early because it'll screw alias analysis. Note that we've
931 already checked for no side effects. */
932 if (! no_new_pseudos && cse_not_expected
933 && GET_CODE (a) == MEM && GET_CODE (b) == MEM
934 && BRANCH_COST >= 5)
936 a = XEXP (a, 0);
937 b = XEXP (b, 0);
938 x = gen_reg_rtx (Pmode);
939 is_mem = 1;
942 /* ??? We could handle this if we knew that a load from A or B could
943 not fault. This is also true if we've already loaded
944 from the address along the path from ENTRY. */
945 else if (may_trap_p (a) || may_trap_p (b))
946 return FALSE;
948 /* if (test) x = a + b; else x = c - d;
949 => y = a + b;
950 x = c - d;
951 if (test)
952 x = y;
955 code = GET_CODE (if_info->cond);
956 insn_a = if_info->insn_a;
957 insn_b = if_info->insn_b;
959 /* Possibly rearrange operands to make things come out more natural. */
960 if (can_reverse_comparison_p (if_info->cond, if_info->jump))
962 int reversep = 0;
963 if (rtx_equal_p (b, x))
964 reversep = 1;
965 else if (general_operand (b, GET_MODE (b)))
966 reversep = 1;
968 if (reversep)
970 code = reverse_condition (code);
971 tmp = a, a = b, b = tmp;
972 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
976 start_sequence ();
978 /* If either operand is complex, load it into a register first.
979 The best way to do this is to copy the original insn. In this
980 way we preserve any clobbers etc that the insn may have had.
981 This is of course not possible in the IS_MEM case. */
982 if (! general_operand (a, GET_MODE (a)))
984 rtx set;
986 if (no_new_pseudos)
987 goto end_seq_and_fail;
989 if (is_mem)
991 tmp = gen_reg_rtx (GET_MODE (a));
992 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
994 else if (! insn_a)
995 goto end_seq_and_fail;
996 else
998 a = gen_reg_rtx (GET_MODE (a));
999 tmp = copy_rtx (insn_a);
1000 set = single_set (tmp);
1001 SET_DEST (set) = a;
1002 tmp = emit_insn (PATTERN (tmp));
1004 if (recog_memoized (tmp) < 0)
1005 goto end_seq_and_fail;
1007 if (! general_operand (b, GET_MODE (b)))
1009 rtx set;
1011 if (no_new_pseudos)
1012 goto end_seq_and_fail;
1014 if (is_mem)
1016 tmp = gen_reg_rtx (GET_MODE (b));
1017 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, b));
1019 else if (! insn_b)
1020 goto end_seq_and_fail;
1021 else
1023 b = gen_reg_rtx (GET_MODE (b));
1024 tmp = copy_rtx (insn_b);
1025 set = single_set (tmp);
1026 SET_DEST (set) = b;
1027 tmp = emit_insn (PATTERN (tmp));
1029 if (recog_memoized (tmp) < 0)
1030 goto end_seq_and_fail;
1033 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1034 XEXP (if_info->cond, 1), a, b);
1036 if (! target)
1037 goto end_seq_and_fail;
1039 /* If we're handling a memory for above, emit the load now. */
1040 if (is_mem)
1042 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1044 /* Copy over flags as appropriate. */
1045 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1046 MEM_VOLATILE_P (tmp) = 1;
1047 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1048 MEM_IN_STRUCT_P (tmp) = 1;
1049 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1050 MEM_SCALAR_P (tmp) = 1;
1051 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1052 MEM_ALIAS_SET (tmp) = MEM_ALIAS_SET (if_info->a);
1054 emit_move_insn (if_info->x, tmp);
1056 else if (target != x)
1057 emit_move_insn (x, target);
1059 tmp = get_insns ();
1060 end_sequence ();
1061 emit_insns_before (tmp, if_info->cond_earliest);
1062 return TRUE;
1064 end_seq_and_fail:
1065 end_sequence ();
1066 return FALSE;
1069 /* Look for the condition for the jump first. We'd prefer to avoid
1070 get_condition if we can -- it tries to look back for the contents
1071 of an original compare. On targets that use normal integers for
1072 comparisons, e.g. alpha, this is wasteful. */
1074 static rtx
1075 noce_get_condition (jump, earliest)
1076 rtx jump;
1077 rtx *earliest;
1079 rtx cond;
1080 rtx set;
1082 /* If the condition variable is a register and is MODE_INT, accept it.
1083 Otherwise, fall back on get_condition. */
1085 if (! any_condjump_p (jump))
1086 return NULL_RTX;
1088 set = pc_set (jump);
1090 cond = XEXP (SET_SRC (set), 0);
1091 if (GET_CODE (XEXP (cond, 0)) == REG
1092 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_INT)
1094 *earliest = jump;
1096 /* If this branches to JUMP_LABEL when the condition is false,
1097 reverse the condition. */
1098 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1099 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump))
1100 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
1101 GET_MODE (cond), XEXP (cond, 0),
1102 XEXP (cond, 1));
1104 else
1105 cond = get_condition (jump, earliest);
1107 return cond;
1110 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
1111 without using conditional execution. Return TRUE if we were
1112 successful at converting the the block. */
1114 static int
1115 noce_process_if_block (test_bb, then_bb, else_bb, join_bb)
1116 basic_block test_bb; /* Basic block test is in */
1117 basic_block then_bb; /* Basic block for THEN block */
1118 basic_block else_bb; /* Basic block for ELSE block */
1119 basic_block join_bb; /* Basic block the join label is in */
1121 /* We're looking for patterns of the form
1123 (1) if (...) x = a; else x = b;
1124 (2) x = b; if (...) x = a;
1125 (3) if (...) x = a; // as if with an initial x = x.
1127 The later patterns require jumps to be more expensive.
1129 ??? For future expansion, look for multiple X in such patterns. */
1131 struct noce_if_info if_info;
1132 rtx insn_a, insn_b;
1133 rtx set_a, set_b;
1134 rtx orig_x, x, a, b;
1135 rtx jump, cond, insn;
1137 /* If this is not a standard conditional jump, we can't parse it. */
1138 jump = test_bb->end;
1139 cond = noce_get_condition (jump, &if_info.cond_earliest);
1140 if (! cond)
1141 return FALSE;
1143 /* If the conditional jump is more than just a conditional jump,
1144 then we can not do if-conversion on this block. */
1145 if (! onlyjump_p (jump))
1146 return FALSE;
1148 /* We must be comparing objects whose modes imply the size. */
1149 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
1150 return FALSE;
1152 /* Look for one of the potential sets. */
1153 insn_a = first_active_insn (then_bb);
1154 if (! insn_a
1155 || ! last_active_insn_p (then_bb, insn_a)
1156 || (set_a = single_set (insn_a)) == NULL_RTX)
1157 return FALSE;
1159 x = SET_DEST (set_a);
1160 a = SET_SRC (set_a);
1162 /* Look for the other potential set. Make sure we've got equivalent
1163 destinations. */
1164 /* ??? This is overconservative. Storing to two different mems is
1165 as easy as conditionally computing the address. Storing to a
1166 single mem merely requires a scratch memory to use as one of the
1167 destination addresses; often the memory immediately below the
1168 stack pointer is available for this. */
1169 set_b = NULL_RTX;
1170 if (else_bb)
1172 insn_b = first_active_insn (else_bb);
1173 if (! insn_b
1174 || ! last_active_insn_p (else_bb, insn_b)
1175 || (set_b = single_set (insn_b)) == NULL_RTX
1176 || ! rtx_equal_p (x, SET_DEST (set_b)))
1177 return FALSE;
1179 else
1181 insn_b = prev_nonnote_insn (if_info.cond_earliest);
1182 if (! insn_b
1183 || GET_CODE (insn_b) != INSN
1184 || (set_b = single_set (insn_b)) == NULL_RTX
1185 || ! rtx_equal_p (x, SET_DEST (set_b))
1186 || reg_mentioned_p (x, cond)
1187 || reg_mentioned_p (x, a)
1188 || reg_mentioned_p (x, SET_SRC (set_b)))
1189 insn_b = set_b = NULL_RTX;
1191 b = (set_b ? SET_SRC (set_b) : x);
1193 /* X may not be mentioned in the range (cond_earliest, jump]. */
1194 for (insn = jump; insn != if_info.cond_earliest; insn = PREV_INSN (insn))
1195 if (INSN_P (insn) && reg_mentioned_p (x, insn))
1196 return FALSE;
1198 /* A and B may not be modified in the range [cond_earliest, jump). */
1199 for (insn = if_info.cond_earliest; insn != jump; insn = NEXT_INSN (insn))
1200 if (INSN_P (insn)
1201 && (modified_in_p (a, insn) || modified_in_p (b, insn)))
1202 return FALSE;
1204 /* Only operate on register destinations, and even then avoid extending
1205 the lifetime of hard registers on small register class machines. */
1206 orig_x = x;
1207 if (GET_CODE (x) != REG
1208 || (SMALL_REGISTER_CLASSES
1209 && REGNO (x) < FIRST_PSEUDO_REGISTER))
1211 if (no_new_pseudos)
1212 return FALSE;
1213 x = gen_reg_rtx (GET_MODE (x));
1216 /* Don't operate on sources that may trap or are volatile. */
1217 if (side_effects_p (a) || side_effects_p (b)
1218 || (GET_CODE (a) != MEM && may_trap_p (a))
1219 || (GET_CODE (b) != MEM && may_trap_p (b)))
1220 return FALSE;
1222 /* Set up the info block for our subroutines. */
1223 if_info.cond = cond;
1224 if_info.jump = jump;
1225 if_info.insn_a = insn_a;
1226 if_info.insn_b = insn_b;
1227 if_info.x = x;
1228 if_info.a = a;
1229 if_info.b = b;
1231 /* Try optimizations in some approximation of a useful order. */
1232 /* ??? Should first look to see if X is live incoming at all. If it
1233 isn't, we don't need anything but an unconditional set. */
1235 /* Look and see if A and B are really the same. Avoid creating silly
1236 cmove constructs that no one will fix up later. */
1237 if (rtx_equal_p (a, b))
1239 /* If we have an INSN_B, we don't have to create any new rtl. Just
1240 move the instruction that we already have. If we don't have an
1241 INSN_B, that means that A == X, and we've got a noop move. In
1242 that case don't do anything and let the code below delete INSN_A. */
1243 if (insn_b && else_bb)
1245 if (else_bb && insn_b == else_bb->end)
1246 else_bb->end = PREV_INSN (insn_b);
1247 reorder_insns (insn_b, insn_b, PREV_INSN (if_info.cond_earliest));
1248 insn_b = NULL_RTX;
1250 x = orig_x;
1251 goto success;
1254 if (noce_try_store_flag (&if_info))
1255 goto success;
1256 if (HAVE_conditional_move
1257 && noce_try_cmove (&if_info))
1258 goto success;
1259 if (! HAVE_conditional_execution)
1261 if (noce_try_store_flag_constants (&if_info))
1262 goto success;
1263 if (noce_try_store_flag_inc (&if_info))
1264 goto success;
1265 if (noce_try_store_flag_mask (&if_info))
1266 goto success;
1267 if (HAVE_conditional_move
1268 && noce_try_cmove_arith (&if_info))
1269 goto success;
1272 return FALSE;
1274 success:
1275 /* The original sets may now be killed. */
1276 if (insn_a == then_bb->end)
1277 then_bb->end = PREV_INSN (insn_a);
1278 flow_delete_insn (insn_a);
1280 /* Several special cases here: First, we may have reused insn_b above,
1281 in which case insn_b is now NULL. Second, we want to delete insn_b
1282 if it came from the ELSE block, because follows the now correct
1283 write that appears in the TEST block. However, if we got insn_b from
1284 the TEST block, it may in fact be loading data needed for the comparison.
1285 We'll let life_analysis remove the insn if it's really dead. */
1286 if (insn_b && else_bb)
1288 if (insn_b == else_bb->end)
1289 else_bb->end = PREV_INSN (insn_b);
1290 flow_delete_insn (insn_b);
1293 /* The new insns will have been inserted before cond_earliest. We should
1294 be able to remove the jump with impunity, but the condition itself may
1295 have been modified by gcse to be shared across basic blocks. */
1296 test_bb->end = PREV_INSN (jump);
1297 flow_delete_insn (jump);
1299 /* If we used a temporary, fix it up now. */
1300 if (orig_x != x)
1302 start_sequence ();
1303 emit_move_insn (orig_x, x);
1304 insn_b = gen_sequence ();
1305 end_sequence ();
1307 test_bb->end = emit_insn_after (insn_b, test_bb->end);
1310 /* Merge the blocks! */
1311 merge_if_block (test_bb, then_bb, else_bb, join_bb);
1313 return TRUE;
1316 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
1317 straight line code. Return true if successful. */
1319 static int
1320 process_if_block (test_bb, then_bb, else_bb, join_bb)
1321 basic_block test_bb; /* Basic block test is in */
1322 basic_block then_bb; /* Basic block for THEN block */
1323 basic_block else_bb; /* Basic block for ELSE block */
1324 basic_block join_bb; /* Basic block the join label is in */
1326 if (! reload_completed
1327 && noce_process_if_block (test_bb, then_bb, else_bb, join_bb))
1328 return TRUE;
1330 if (HAVE_conditional_execution
1331 && reload_completed
1332 && cond_exec_process_if_block (test_bb, then_bb, else_bb, join_bb))
1333 return TRUE;
1335 return FALSE;
1338 /* Merge the blocks and mark for local life update. */
1340 static void
1341 merge_if_block (test_bb, then_bb, else_bb, join_bb)
1342 basic_block test_bb; /* Basic block test is in */
1343 basic_block then_bb; /* Basic block for THEN block */
1344 basic_block else_bb; /* Basic block for ELSE block */
1345 basic_block join_bb; /* Basic block the join label is in */
1347 basic_block combo_bb;
1349 /* All block merging is done into the lower block numbers. */
1351 combo_bb = test_bb;
1353 /* First merge TEST block into THEN block. This is a no-brainer since
1354 the THEN block did not have a code label to begin with. */
1356 if (combo_bb->global_live_at_end)
1357 COPY_REG_SET (combo_bb->global_live_at_end, then_bb->global_live_at_end);
1358 merge_blocks_nomove (combo_bb, then_bb);
1359 num_removed_blocks++;
1361 /* The ELSE block, if it existed, had a label. That label count
1362 will almost always be zero, but odd things can happen when labels
1363 get their addresses taken. */
1364 if (else_bb)
1366 merge_blocks_nomove (combo_bb, else_bb);
1367 num_removed_blocks++;
1370 /* If there was no join block reported, that means it was not adjacent
1371 to the others, and so we cannot merge them. */
1373 if (! join_bb)
1375 /* The outgoing edge for the current COMBO block should already
1376 be correct. Verify this. */
1377 if (combo_bb->succ == NULL_EDGE)
1378 abort ();
1380 /* There should sill be a branch at the end of the THEN or ELSE
1381 blocks taking us to our final destination. */
1382 if (! simplejump_p (combo_bb->end)
1383 && ! returnjump_p (combo_bb->end))
1384 abort ();
1387 /* The JOIN block may have had quite a number of other predecessors too.
1388 Since we've already merged the TEST, THEN and ELSE blocks, we should
1389 have only one remaining edge from our if-then-else diamond. If there
1390 is more than one remaining edge, it must come from elsewhere. There
1391 may be zero incoming edges if the THEN block didn't actually join
1392 back up (as with a call to abort). */
1393 else if (join_bb->pred == NULL || join_bb->pred->pred_next == NULL)
1395 /* We can merge the JOIN. */
1396 if (combo_bb->global_live_at_end)
1397 COPY_REG_SET (combo_bb->global_live_at_end,
1398 join_bb->global_live_at_end);
1399 merge_blocks_nomove (combo_bb, join_bb);
1400 num_removed_blocks++;
1402 else
1404 /* We cannot merge the JOIN. */
1406 /* The outgoing edge for the current COMBO block should already
1407 be correct. Verify this. */
1408 if (combo_bb->succ->succ_next != NULL_EDGE
1409 || combo_bb->succ->dest != join_bb)
1410 abort ();
1412 /* Remove the jump and cruft from the end of the COMBO block. */
1413 tidy_fallthru_edge (combo_bb->succ, combo_bb, join_bb);
1416 /* Make sure we update life info properly. */
1417 SET_UPDATE_LIFE (combo_bb);
1419 num_updated_if_blocks++;
1422 /* Find a block ending in a simple IF condition. Return TRUE if
1423 we were able to transform it in some way. */
1425 static int
1426 find_if_header (test_bb)
1427 basic_block test_bb;
1429 edge then_edge;
1430 edge else_edge;
1432 /* The kind of block we're looking for has exactly two successors. */
1433 if ((then_edge = test_bb->succ) == NULL_EDGE
1434 || (else_edge = then_edge->succ_next) == NULL_EDGE
1435 || else_edge->succ_next != NULL_EDGE)
1436 return FALSE;
1438 /* Neither edge should be abnormal. */
1439 if ((then_edge->flags & EDGE_COMPLEX)
1440 || (else_edge->flags & EDGE_COMPLEX))
1441 return FALSE;
1443 /* The THEN edge is canonically the one that falls through. */
1444 if (then_edge->flags & EDGE_FALLTHRU)
1446 else if (else_edge->flags & EDGE_FALLTHRU)
1448 edge e = else_edge;
1449 else_edge = then_edge;
1450 then_edge = e;
1452 else
1453 /* Otherwise this must be a multiway branch of some sort. */
1454 return FALSE;
1456 if (find_if_block (test_bb, then_edge, else_edge))
1457 goto success;
1458 if (post_dominators
1459 && (! HAVE_conditional_execution || reload_completed))
1461 if (find_if_case_1 (test_bb, then_edge, else_edge))
1462 goto success;
1463 if (find_if_case_2 (test_bb, then_edge, else_edge))
1464 goto success;
1467 return FALSE;
1469 success:
1470 if (rtl_dump_file)
1471 fprintf (rtl_dump_file, "Conversion succeeded.\n");
1472 return TRUE;
1475 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
1476 block. If so, we'll try to convert the insns to not require the branch.
1477 Return TRUE if we were successful at converting the the block. */
1479 static int
1480 find_if_block (test_bb, then_edge, else_edge)
1481 basic_block test_bb;
1482 edge then_edge, else_edge;
1484 basic_block then_bb = then_edge->dest;
1485 basic_block else_bb = else_edge->dest;
1486 basic_block join_bb = NULL_BLOCK;
1487 edge then_succ = then_bb->succ;
1488 edge else_succ = else_bb->succ;
1489 int next_index;
1491 /* The THEN block of an IF-THEN combo must have exactly one predecessor. */
1492 if (then_bb->pred->pred_next != NULL_EDGE)
1493 return FALSE;
1495 /* The THEN block of an IF-THEN combo must have zero or one successors. */
1496 if (then_succ != NULL_EDGE
1497 && (then_succ->succ_next != NULL_EDGE
1498 || (then_succ->flags & EDGE_COMPLEX)))
1499 return FALSE;
1501 /* If the THEN block has no successors, conditional execution can still
1502 make a conditional call. Don't do this unless the ELSE block has
1503 only one incoming edge -- the CFG manipulation is too ugly otherwise. */
1504 if (then_succ == NULL)
1506 if (else_bb->pred->pred_next == NULL_EDGE)
1508 join_bb = else_bb;
1509 else_bb = NULL_BLOCK;
1511 else
1512 return FALSE;
1515 /* If the THEN block's successor is the other edge out of the TEST block,
1516 then we have an IF-THEN combo without an ELSE. */
1517 else if (then_succ->dest == else_bb)
1519 join_bb = else_bb;
1520 else_bb = NULL_BLOCK;
1523 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
1524 has exactly one predecessor and one successor, and the outgoing edge
1525 is not complex, then we have an IF-THEN-ELSE combo. */
1526 else if (else_succ != NULL_EDGE
1527 && then_succ->dest == else_succ->dest
1528 && else_bb->pred->pred_next == NULL_EDGE
1529 && else_succ->succ_next == NULL_EDGE
1530 && ! (else_succ->flags & EDGE_COMPLEX))
1531 join_bb = else_succ->dest;
1533 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
1534 else
1535 return FALSE;
1537 num_possible_if_blocks++;
1539 if (rtl_dump_file)
1541 if (else_bb)
1542 fprintf (rtl_dump_file,
1543 "\nIF-THEN-ELSE block found, start %d, then %d, else %d, join %d\n",
1544 test_bb->index, then_bb->index, else_bb->index,
1545 join_bb->index);
1546 else
1547 fprintf (rtl_dump_file,
1548 "\nIF-THEN block found, start %d, then %d, join %d\n",
1549 test_bb->index, then_bb->index, join_bb->index);
1552 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we
1553 get the first condition for free, since we've already asserted that
1554 there's a fallthru edge from IF to THEN. */
1555 /* ??? As an enhancement, move the ELSE block. Have to deal with EH and
1556 BLOCK notes, if by no other means than aborting the merge if they
1557 exist. Sticky enough I don't want to think about it now. */
1558 next_index = then_bb->index;
1559 if (else_bb && ++next_index != else_bb->index)
1560 return FALSE;
1561 if (++next_index != join_bb->index)
1563 if (else_bb)
1564 join_bb = NULL;
1565 else
1566 return FALSE;
1569 /* Do the real work. */
1570 return process_if_block (test_bb, then_bb, else_bb, join_bb);
1573 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
1574 transformable, but not necessarily the other. There need be no
1575 JOIN block.
1577 Return TRUE if we were successful at converting the the block.
1579 Cases we'd like to look at:
1582 if (test) goto over; // x not live
1583 x = a;
1584 goto label;
1585 over:
1587 becomes
1589 x = a;
1590 if (! test) goto label;
1593 if (test) goto E; // x not live
1594 x = big();
1595 goto L;
1597 x = b;
1598 goto M;
1600 becomes
1602 x = b;
1603 if (test) goto M;
1604 x = big();
1605 goto L;
1607 (3) // This one's really only interesting for targets that can do
1608 // multiway branching, e.g. IA-64 BBB bundles. For other targets
1609 // it results in multiple branches on a cache line, which often
1610 // does not sit well with predictors.
1612 if (test1) goto E; // predicted not taken
1613 x = a;
1614 if (test2) goto F;
1617 x = b;
1620 becomes
1622 x = a;
1623 if (test1) goto E;
1624 if (test2) goto F;
1626 Notes:
1628 (A) Don't do (2) if the branch is predicted against the block we're
1629 eliminating. Do it anyway if we can eliminate a branch; this requires
1630 that the sole successor of the eliminated block postdominate the other
1631 side of the if.
1633 (B) With CE, on (3) we can steal from both sides of the if, creating
1635 if (test1) x = a;
1636 if (!test1) x = b;
1637 if (test1) goto J;
1638 if (test2) goto F;
1642 Again, this is most useful if J postdominates.
1644 (C) CE substitutes for helpful life information.
1646 (D) These heuristics need a lot of work. */
1648 /* Tests for case 1 above. */
1650 static int
1651 find_if_case_1 (test_bb, then_edge, else_edge)
1652 basic_block test_bb;
1653 edge then_edge, else_edge;
1655 basic_block then_bb = then_edge->dest;
1656 basic_block else_bb = else_edge->dest;
1657 edge then_succ = then_bb->succ;
1658 rtx new_lab;
1660 /* THEN has one successor. */
1661 if (!then_succ || then_succ->succ_next != NULL)
1662 return FALSE;
1664 /* THEN does not fall through, but is not strange either. */
1665 if (then_succ->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
1666 return FALSE;
1668 /* THEN has one predecessor. */
1669 if (then_bb->pred->pred_next != NULL)
1670 return FALSE;
1672 /* ELSE follows THEN. (??? could be moved) */
1673 if (else_bb->index != then_bb->index + 1)
1674 return FALSE;
1676 num_possible_if_blocks++;
1677 if (rtl_dump_file)
1678 fprintf (rtl_dump_file,
1679 "\nIF-CASE-1 found, start %d, then %d\n",
1680 test_bb->index, then_bb->index);
1682 /* THEN is small. */
1683 if (count_bb_insns (then_bb) > BRANCH_COST)
1684 return FALSE;
1686 /* Find the label for THEN's destination. */
1687 if (then_succ->dest == EXIT_BLOCK_PTR)
1688 new_lab = NULL_RTX;
1689 else
1691 new_lab = JUMP_LABEL (then_bb->end);
1692 if (! new_lab)
1693 abort ();
1696 /* Registers set are dead, or are predicable. */
1697 if (! dead_or_predicable (test_bb, then_bb, else_bb, new_lab, 1))
1698 return FALSE;
1700 /* Conversion went ok, including moving the insns and fixing up the
1701 jump. Adjust the CFG to match. */
1703 SET_UPDATE_LIFE (test_bb);
1704 bitmap_operation (test_bb->global_live_at_end,
1705 else_bb->global_live_at_start,
1706 then_bb->global_live_at_end, BITMAP_IOR);
1708 make_edge (NULL, test_bb, then_succ->dest, 0);
1709 flow_delete_block (then_bb);
1710 tidy_fallthru_edge (else_edge, test_bb, else_bb);
1712 num_removed_blocks++;
1713 num_updated_if_blocks++;
1715 return TRUE;
1718 /* Test for case 2 above. */
1720 static int
1721 find_if_case_2 (test_bb, then_edge, else_edge)
1722 basic_block test_bb;
1723 edge then_edge, else_edge;
1725 basic_block then_bb = then_edge->dest;
1726 basic_block else_bb = else_edge->dest;
1727 edge else_succ = else_bb->succ;
1728 rtx new_lab, note;
1730 /* ELSE has one successor. */
1731 if (!else_succ || else_succ->succ_next != NULL)
1732 return FALSE;
1734 /* ELSE outgoing edge is not complex. */
1735 if (else_succ->flags & EDGE_COMPLEX)
1736 return FALSE;
1738 /* ELSE has one predecessor. */
1739 if (else_bb->pred->pred_next != NULL)
1740 return FALSE;
1742 /* THEN is not EXIT. */
1743 if (then_bb->index < 0)
1744 return FALSE;
1746 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
1747 note = find_reg_note (test_bb->end, REG_BR_PROB, NULL_RTX);
1748 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
1750 else if (else_succ->dest->index < 0
1751 || TEST_BIT (post_dominators[ORIG_INDEX (then_bb)],
1752 ORIG_INDEX (else_succ->dest)))
1754 else
1755 return FALSE;
1757 num_possible_if_blocks++;
1758 if (rtl_dump_file)
1759 fprintf (rtl_dump_file,
1760 "\nIF-CASE-2 found, start %d, else %d\n",
1761 test_bb->index, else_bb->index);
1763 /* ELSE is small. */
1764 if (count_bb_insns (then_bb) > BRANCH_COST)
1765 return FALSE;
1767 /* Find the label for ELSE's destination. */
1768 if (else_succ->dest == EXIT_BLOCK_PTR)
1769 new_lab = NULL_RTX;
1770 else
1772 if (else_succ->flags & EDGE_FALLTHRU)
1774 new_lab = else_succ->dest->head;
1775 if (GET_CODE (new_lab) != CODE_LABEL)
1776 abort ();
1778 else
1780 new_lab = JUMP_LABEL (else_bb->end);
1781 if (! new_lab)
1782 abort ();
1786 /* Registers set are dead, or are predicable. */
1787 if (! dead_or_predicable (test_bb, else_bb, then_bb, new_lab, 0))
1788 return FALSE;
1790 /* Conversion went ok, including moving the insns and fixing up the
1791 jump. Adjust the CFG to match. */
1793 SET_UPDATE_LIFE (test_bb);
1794 bitmap_operation (test_bb->global_live_at_end,
1795 then_bb->global_live_at_start,
1796 else_bb->global_live_at_end, BITMAP_IOR);
1798 remove_edge (else_edge);
1799 make_edge (NULL, test_bb, else_succ->dest, 0);
1800 flow_delete_block (else_bb);
1802 num_removed_blocks++;
1803 num_updated_if_blocks++;
1805 /* ??? We may now fallthru from one of THEN's successors into a join
1806 block. Rerun cleanup_cfg? Examine things manually? Wait? */
1808 return TRUE;
1811 /* A subroutine of dead_or_predicable called through for_each_rtx.
1812 Return 1 if a memory is found. */
1814 static int
1815 find_memory (px, data)
1816 rtx *px;
1817 void *data ATTRIBUTE_UNUSED;
1819 return GET_CODE (*px) == MEM;
1822 /* Used by the code above to perform the actual rtl transformations.
1823 Return TRUE if successful.
1825 TEST_BB is the block containing the conditional branch. MERGE_BB
1826 is the block containing the code to manipulate. NEW_DEST is the
1827 label TEST_BB should be branching to after the conversion.
1828 REVERSEP is true if the sense of the branch should be reversed. */
1830 static int
1831 dead_or_predicable (test_bb, merge_bb, other_bb, new_dest, reversep)
1832 basic_block test_bb, merge_bb, other_bb;
1833 rtx new_dest;
1834 int reversep;
1836 rtx head, end, jump, earliest, old_dest;
1838 jump = test_bb->end;
1840 /* Find the extent of the real code in the merge block. */
1841 head = merge_bb->head;
1842 end = merge_bb->end;
1844 if (GET_CODE (head) == CODE_LABEL)
1845 head = NEXT_INSN (head);
1846 if (GET_CODE (head) == NOTE)
1848 if (head == end)
1850 head = end = NULL_RTX;
1851 goto no_body;
1853 head = NEXT_INSN (head);
1856 if (GET_CODE (end) == JUMP_INSN)
1858 if (head == end)
1860 head = end = NULL_RTX;
1861 goto no_body;
1863 end = PREV_INSN (end);
1866 /* Disable handling dead code by conditional execution if the machine needs
1867 to do anything funny with the tests, etc. */
1868 #ifndef IFCVT_MODIFY_TESTS
1869 if (HAVE_conditional_execution)
1871 /* In the conditional execution case, we have things easy. We know
1872 the condition is reversable. We don't have to check life info,
1873 becase we're going to conditionally execute the code anyway.
1874 All that's left is making sure the insns involved can actually
1875 be predicated. */
1877 rtx cond, prob_val;
1879 cond = cond_exec_get_condition (jump);
1881 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
1882 if (prob_val)
1883 prob_val = XEXP (prob_val, 0);
1885 if (reversep)
1887 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
1888 GET_MODE (cond), XEXP (cond, 0),
1889 XEXP (cond, 1));
1890 if (prob_val)
1891 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
1894 if (! cond_exec_process_insns (head, end, cond, prob_val, 0))
1895 goto cancel;
1897 earliest = jump;
1899 else
1900 #endif
1902 /* In the non-conditional execution case, we have to verify that there
1903 are no trapping operations, no calls, no references to memory, and
1904 that any registers modified are dead at the branch site. */
1906 rtx insn, cond, prev;
1907 regset_head merge_set_head, tmp_head, test_live_head, test_set_head;
1908 regset merge_set, tmp, test_live, test_set;
1909 struct propagate_block_info *pbi;
1910 int i, fail = 0;
1912 /* Check for no calls or trapping operations. */
1913 for (insn = head; ; insn = NEXT_INSN (insn))
1915 if (GET_CODE (insn) == CALL_INSN)
1916 return FALSE;
1917 if (INSN_P (insn))
1919 if (may_trap_p (PATTERN (insn)))
1920 return FALSE;
1922 /* ??? Even non-trapping memories such as stack frame
1923 references must be avoided. For stores, we collect
1924 no lifetime info; for reads, we'd have to assert
1925 true_dependance false against every store in the
1926 TEST range. */
1927 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
1928 return FALSE;
1930 if (insn == end)
1931 break;
1934 if (! any_condjump_p (jump))
1935 return FALSE;
1937 /* Find the extent of the conditional. */
1938 cond = noce_get_condition (jump, &earliest);
1939 if (! cond)
1940 return FALSE;
1942 /* Collect:
1943 MERGE_SET = set of registers set in MERGE_BB
1944 TEST_LIVE = set of registers live at EARLIEST
1945 TEST_SET = set of registers set between EARLIEST and the
1946 end of the block. */
1948 tmp = INITIALIZE_REG_SET (tmp_head);
1949 merge_set = INITIALIZE_REG_SET (merge_set_head);
1950 test_live = INITIALIZE_REG_SET (test_live_head);
1951 test_set = INITIALIZE_REG_SET (test_set_head);
1953 /* ??? bb->local_set is only valid during calculate_global_regs_live,
1954 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
1955 since we've already asserted that MERGE_BB is small. */
1956 propagate_block (merge_bb, tmp, merge_set, 0);
1958 /* For small register class machines, don't lengthen lifetimes of
1959 hard registers before reload. */
1960 if (SMALL_REGISTER_CLASSES && ! reload_completed)
1962 EXECUTE_IF_SET_IN_BITMAP
1963 (merge_set, 0, i,
1965 if (i < FIRST_PSEUDO_REGISTER
1966 && ! fixed_regs[i]
1967 && ! global_regs[i])
1968 fail = 1;
1972 /* For TEST, we're interested in a range of insns, not a whole block.
1973 Moreover, we're interested in the insns live from OTHER_BB. */
1975 COPY_REG_SET (test_live, other_bb->global_live_at_start);
1976 pbi = init_propagate_block_info (test_bb, test_live, test_set, 0);
1978 for (insn = jump; ; insn = prev)
1980 prev = propagate_one_insn (pbi, insn);
1981 if (insn == earliest)
1982 break;
1985 free_propagate_block_info (pbi);
1987 /* We can perform the transformation if
1988 MERGE_SET & (TEST_SET | TEST_LIVE)
1990 TEST_SET & merge_bb->global_live_at_start
1991 are empty. */
1993 bitmap_operation (tmp, test_set, test_live, BITMAP_IOR);
1994 bitmap_operation (tmp, tmp, merge_set, BITMAP_AND);
1995 EXECUTE_IF_SET_IN_BITMAP(tmp, 0, i, fail = 1);
1997 bitmap_operation (tmp, test_set, merge_bb->global_live_at_start,
1998 BITMAP_AND);
1999 EXECUTE_IF_SET_IN_BITMAP(tmp, 0, i, fail = 1);
2001 FREE_REG_SET (tmp);
2002 FREE_REG_SET (merge_set);
2003 FREE_REG_SET (test_live);
2004 FREE_REG_SET (test_set);
2006 if (fail)
2007 return FALSE;
2010 no_body:
2011 /* We don't want to use normal invert_jump or redirect_jump because
2012 we don't want to delete_insn called. Also, we want to do our own
2013 change group management. */
2015 old_dest = JUMP_LABEL (jump);
2016 if (reversep
2017 ? ! invert_jump_1 (jump, new_dest)
2018 : ! redirect_jump_1 (jump, new_dest))
2019 goto cancel;
2021 if (! apply_change_group ())
2022 return FALSE;
2024 if (old_dest)
2025 LABEL_NUSES (old_dest) -= 1;
2026 if (new_dest)
2027 LABEL_NUSES (new_dest) += 1;
2028 JUMP_LABEL (jump) = new_dest;
2030 if (reversep)
2032 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
2033 if (note)
2034 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
2037 /* Move the insns out of MERGE_BB to before the branch. */
2038 if (head != NULL)
2040 if (end == merge_bb->end)
2041 merge_bb->end = PREV_INSN (head);
2043 head = squeeze_notes (head, end);
2044 if (GET_CODE (end) == NOTE
2045 && (NOTE_LINE_NUMBER (end) == NOTE_INSN_BLOCK_END
2046 || NOTE_LINE_NUMBER (end) == NOTE_INSN_BLOCK_BEG
2047 || NOTE_LINE_NUMBER (end) == NOTE_INSN_LOOP_BEG
2048 || NOTE_LINE_NUMBER (end) == NOTE_INSN_LOOP_END
2049 || NOTE_LINE_NUMBER (end) == NOTE_INSN_LOOP_CONT
2050 || NOTE_LINE_NUMBER (end) == NOTE_INSN_LOOP_VTOP))
2052 if (head == end)
2053 return TRUE;
2054 end = PREV_INSN (end);
2057 reorder_insns (head, end, PREV_INSN (earliest));
2059 return TRUE;
2061 cancel:
2062 cancel_changes (0);
2063 return FALSE;
2066 /* Main entry point for all if-conversion. */
2068 void
2069 if_convert (life_data_ok)
2070 int life_data_ok;
2072 int block_num;
2074 num_possible_if_blocks = 0;
2075 num_updated_if_blocks = 0;
2076 num_removed_blocks = 0;
2078 /* Free up basic_block_for_insn so that we don't have to keep it
2079 up to date, either here or in merge_blocks_nomove. */
2080 free_basic_block_vars (1);
2082 /* Compute postdominators if we think we'll use them. */
2083 post_dominators = NULL;
2084 if (HAVE_conditional_execution || life_data_ok)
2086 post_dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
2087 compute_flow_dominators (NULL, post_dominators);
2090 /* Record initial block numbers. */
2091 for (block_num = 0; block_num < n_basic_blocks; block_num++)
2092 SET_ORIG_INDEX (BASIC_BLOCK (block_num), block_num);
2094 /* Go through each of the basic blocks looking for things to convert. */
2095 for (block_num = 0; block_num < n_basic_blocks; )
2097 basic_block bb = BASIC_BLOCK (block_num);
2098 if (find_if_header (bb))
2099 block_num = bb->index;
2100 else
2101 block_num++;
2104 if (post_dominators)
2105 sbitmap_vector_free (post_dominators);
2107 if (rtl_dump_file)
2108 fflush (rtl_dump_file);
2110 /* Rebuild basic_block_for_insn for update_life_info and for gcse. */
2111 compute_bb_for_insn (get_max_uid ());
2113 /* Rebuild life info for basic blocks that require it. */
2114 if (num_removed_blocks && life_data_ok)
2116 sbitmap update_life_blocks = sbitmap_alloc (n_basic_blocks);
2117 sbitmap_zero (update_life_blocks);
2119 /* If we allocated new pseudos, we must resize the array for sched1. */
2120 if (max_regno < max_reg_num ())
2122 max_regno = max_reg_num ();
2123 allocate_reg_info (max_regno, FALSE, FALSE);
2126 for (block_num = 0; block_num < n_basic_blocks; block_num++)
2127 if (UPDATE_LIFE (BASIC_BLOCK (block_num)))
2128 SET_BIT (update_life_blocks, block_num);
2130 count_or_remove_death_notes (update_life_blocks, 1);
2131 /* ??? See about adding a mode that verifies that the initial
2132 set of blocks don't let registers come live. */
2133 update_life_info (update_life_blocks, UPDATE_LIFE_GLOBAL,
2134 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
2135 | PROP_KILL_DEAD_CODE);
2137 sbitmap_free (update_life_blocks);
2140 /* Write the final stats. */
2141 if (rtl_dump_file && num_possible_if_blocks > 0)
2143 fprintf (rtl_dump_file,
2144 "\n%d possible IF blocks searched.\n",
2145 num_possible_if_blocks);
2146 fprintf (rtl_dump_file,
2147 "%d IF blocks converted.\n",
2148 num_updated_if_blocks);
2149 fprintf (rtl_dump_file,
2150 "%d basic blocks deleted.\n\n\n",
2151 num_removed_blocks);
2154 #ifdef ENABLE_CHECKING
2155 verify_flow_info ();
2156 #endif