* emit-rtl.c (widen_memory_access): New.
[official-gcc.git] / gcc / emit-rtl.c
blob7c7dfd3f1722ee64a96ac1f5f812dfef018610c0
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
60 /* Commonly used modes. */
62 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
71 static int label_num = 1;
73 /* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
77 static int last_label_num;
79 /* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
82 static int base_label_num;
84 /* Nonzero means do not generate NOTEs for source line numbers. */
86 static int no_line_numbers;
88 /* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these except perhaps the floating-point CONST_DOUBLEs
91 are unique; no other rtx-object will be equal to any of these. */
93 rtx global_rtl[GR_MAX];
95 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
96 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
97 record a copy of const[012]_rtx. */
99 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
101 rtx const_true_rtx;
103 REAL_VALUE_TYPE dconst0;
104 REAL_VALUE_TYPE dconst1;
105 REAL_VALUE_TYPE dconst2;
106 REAL_VALUE_TYPE dconstm1;
108 /* All references to the following fixed hard registers go through
109 these unique rtl objects. On machines where the frame-pointer and
110 arg-pointer are the same register, they use the same unique object.
112 After register allocation, other rtl objects which used to be pseudo-regs
113 may be clobbered to refer to the frame-pointer register.
114 But references that were originally to the frame-pointer can be
115 distinguished from the others because they contain frame_pointer_rtx.
117 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
118 tricky: until register elimination has taken place hard_frame_pointer_rtx
119 should be used if it is being set, and frame_pointer_rtx otherwise. After
120 register elimination hard_frame_pointer_rtx should always be used.
121 On machines where the two registers are same (most) then these are the
122 same.
124 In an inline procedure, the stack and frame pointer rtxs may not be
125 used for anything else. */
126 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
127 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
128 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
141 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
146 static htab_t const_int_htab;
148 /* A hash table storing memory attribute structures. */
149 static htab_t mem_attrs_htab;
151 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
152 shortly thrown away. We use two mechanisms to prevent this waste:
154 For sizes up to 5 elements, we keep a SEQUENCE and its associated
155 rtvec for use by gen_sequence. One entry for each size is
156 sufficient because most cases are calls to gen_sequence followed by
157 immediately emitting the SEQUENCE. Reuse is safe since emitting a
158 sequence is destructive on the insn in it anyway and hence can't be
159 redone.
161 We do not bother to save this cached data over nested function calls.
162 Instead, we just reinitialize them. */
164 #define SEQUENCE_RESULT_SIZE 5
166 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
168 /* During RTL generation, we also keep a list of free INSN rtl codes. */
169 static rtx free_insn;
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_linenum (cfun->emit->x_last_linenum)
175 #define last_filename (cfun->emit->x_last_filename)
176 #define first_label_num (cfun->emit->x_first_label_num)
178 static rtx make_jump_insn_raw PARAMS ((rtx));
179 static rtx make_call_insn_raw PARAMS ((rtx));
180 static rtx find_line_note PARAMS ((rtx));
181 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
182 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
183 int));
184 static void unshare_all_rtl_1 PARAMS ((rtx));
185 static void unshare_all_decls PARAMS ((tree));
186 static void reset_used_decls PARAMS ((tree));
187 static void mark_label_nuses PARAMS ((rtx));
188 static hashval_t const_int_htab_hash PARAMS ((const void *));
189 static int const_int_htab_eq PARAMS ((const void *,
190 const void *));
191 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
192 static int mem_attrs_htab_eq PARAMS ((const void *,
193 const void *));
194 static void mem_attrs_mark PARAMS ((const void *));
195 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
196 rtx, unsigned int,
197 enum machine_mode));
198 static tree component_ref_for_mem_expr PARAMS ((tree));
200 /* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202 int split_branch_probability = -1;
204 /* Returns a hash code for X (which is a really a CONST_INT). */
206 static hashval_t
207 const_int_htab_hash (x)
208 const void *x;
210 return (hashval_t) INTVAL ((const struct rtx_def *) x);
213 /* Returns non-zero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
217 static int
218 const_int_htab_eq (x, y)
219 const void *x;
220 const void *y;
222 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
225 /* Returns a hash code for X (which is a really a mem_attrs *). */
227 static hashval_t
228 mem_attrs_htab_hash (x)
229 const void *x;
231 mem_attrs *p = (mem_attrs *) x;
233 return (p->alias ^ (p->align * 1000)
234 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
235 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
236 ^ (size_t) p->expr);
239 /* Returns non-zero if the value represented by X (which is really a
240 mem_attrs *) is the same as that given by Y (which is also really a
241 mem_attrs *). */
243 static int
244 mem_attrs_htab_eq (x, y)
245 const void *x;
246 const void *y;
248 mem_attrs *p = (mem_attrs *) x;
249 mem_attrs *q = (mem_attrs *) y;
251 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
252 && p->size == q->size && p->align == q->align);
255 /* This routine is called when we determine that we need a mem_attrs entry.
256 It marks the associated decl and RTL as being used, if present. */
258 static void
259 mem_attrs_mark (x)
260 const void *x;
262 mem_attrs *p = (mem_attrs *) x;
264 if (p->expr)
265 ggc_mark_tree (p->expr);
267 if (p->offset)
268 ggc_mark_rtx (p->offset);
270 if (p->size)
271 ggc_mark_rtx (p->size);
274 /* Allocate a new mem_attrs structure and insert it into the hash table if
275 one identical to it is not already in the table. We are doing this for
276 MEM of mode MODE. */
278 static mem_attrs *
279 get_mem_attrs (alias, expr, offset, size, align, mode)
280 HOST_WIDE_INT alias;
281 tree expr;
282 rtx offset;
283 rtx size;
284 unsigned int align;
285 enum machine_mode mode;
287 mem_attrs attrs;
288 void **slot;
290 /* If everything is the default, we can just return zero. */
291 if (alias == 0 && expr == 0 && offset == 0
292 && (size == 0
293 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
294 && (align == BITS_PER_UNIT
295 || (mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
296 return 0;
298 attrs.alias = alias;
299 attrs.expr = expr;
300 attrs.offset = offset;
301 attrs.size = size;
302 attrs.align = align;
304 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
305 if (*slot == 0)
307 *slot = ggc_alloc (sizeof (mem_attrs));
308 memcpy (*slot, &attrs, sizeof (mem_attrs));
311 return *slot;
314 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
315 don't attempt to share with the various global pieces of rtl (such as
316 frame_pointer_rtx). */
319 gen_raw_REG (mode, regno)
320 enum machine_mode mode;
321 int regno;
323 rtx x = gen_rtx_raw_REG (mode, regno);
324 ORIGINAL_REGNO (x) = regno;
325 return x;
328 /* There are some RTL codes that require special attention; the generation
329 functions do the raw handling. If you add to this list, modify
330 special_rtx in gengenrtl.c as well. */
333 gen_rtx_CONST_INT (mode, arg)
334 enum machine_mode mode ATTRIBUTE_UNUSED;
335 HOST_WIDE_INT arg;
337 void **slot;
339 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
340 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
342 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
343 if (const_true_rtx && arg == STORE_FLAG_VALUE)
344 return const_true_rtx;
345 #endif
347 /* Look up the CONST_INT in the hash table. */
348 slot = htab_find_slot_with_hash (const_int_htab, &arg,
349 (hashval_t) arg, INSERT);
350 if (*slot == 0)
351 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
353 return (rtx) *slot;
356 /* CONST_DOUBLEs needs special handling because their length is known
357 only at run-time. */
360 gen_rtx_CONST_DOUBLE (mode, arg0, arg1)
361 enum machine_mode mode;
362 HOST_WIDE_INT arg0, arg1;
364 rtx r = rtx_alloc (CONST_DOUBLE);
365 int i;
367 PUT_MODE (r, mode);
368 X0EXP (r, 0) = NULL_RTX;
369 XWINT (r, 1) = arg0;
370 XWINT (r, 2) = arg1;
372 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 2; --i)
373 XWINT (r, i) = 0;
375 return r;
379 gen_rtx_REG (mode, regno)
380 enum machine_mode mode;
381 int regno;
383 /* In case the MD file explicitly references the frame pointer, have
384 all such references point to the same frame pointer. This is
385 used during frame pointer elimination to distinguish the explicit
386 references to these registers from pseudos that happened to be
387 assigned to them.
389 If we have eliminated the frame pointer or arg pointer, we will
390 be using it as a normal register, for example as a spill
391 register. In such cases, we might be accessing it in a mode that
392 is not Pmode and therefore cannot use the pre-allocated rtx.
394 Also don't do this when we are making new REGs in reload, since
395 we don't want to get confused with the real pointers. */
397 if (mode == Pmode && !reload_in_progress)
399 if (regno == FRAME_POINTER_REGNUM)
400 return frame_pointer_rtx;
401 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
402 if (regno == HARD_FRAME_POINTER_REGNUM)
403 return hard_frame_pointer_rtx;
404 #endif
405 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
406 if (regno == ARG_POINTER_REGNUM)
407 return arg_pointer_rtx;
408 #endif
409 #ifdef RETURN_ADDRESS_POINTER_REGNUM
410 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
411 return return_address_pointer_rtx;
412 #endif
413 if (regno == STACK_POINTER_REGNUM)
414 return stack_pointer_rtx;
417 return gen_raw_REG (mode, regno);
421 gen_rtx_MEM (mode, addr)
422 enum machine_mode mode;
423 rtx addr;
425 rtx rt = gen_rtx_raw_MEM (mode, addr);
427 /* This field is not cleared by the mere allocation of the rtx, so
428 we clear it here. */
429 MEM_ATTRS (rt) = 0;
431 return rt;
435 gen_rtx_SUBREG (mode, reg, offset)
436 enum machine_mode mode;
437 rtx reg;
438 int offset;
440 /* This is the most common failure type.
441 Catch it early so we can see who does it. */
442 if ((offset % GET_MODE_SIZE (mode)) != 0)
443 abort ();
445 /* This check isn't usable right now because combine will
446 throw arbitrary crap like a CALL into a SUBREG in
447 gen_lowpart_for_combine so we must just eat it. */
448 #if 0
449 /* Check for this too. */
450 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
451 abort ();
452 #endif
453 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
456 /* Generate a SUBREG representing the least-significant part of REG if MODE
457 is smaller than mode of REG, otherwise paradoxical SUBREG. */
460 gen_lowpart_SUBREG (mode, reg)
461 enum machine_mode mode;
462 rtx reg;
464 enum machine_mode inmode;
466 inmode = GET_MODE (reg);
467 if (inmode == VOIDmode)
468 inmode = mode;
469 return gen_rtx_SUBREG (mode, reg,
470 subreg_lowpart_offset (mode, inmode));
473 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
475 ** This routine generates an RTX of the size specified by
476 ** <code>, which is an RTX code. The RTX structure is initialized
477 ** from the arguments <element1> through <elementn>, which are
478 ** interpreted according to the specific RTX type's format. The
479 ** special machine mode associated with the rtx (if any) is specified
480 ** in <mode>.
482 ** gen_rtx can be invoked in a way which resembles the lisp-like
483 ** rtx it will generate. For example, the following rtx structure:
485 ** (plus:QI (mem:QI (reg:SI 1))
486 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
488 ** ...would be generated by the following C code:
490 ** gen_rtx (PLUS, QImode,
491 ** gen_rtx (MEM, QImode,
492 ** gen_rtx (REG, SImode, 1)),
493 ** gen_rtx (MEM, QImode,
494 ** gen_rtx (PLUS, SImode,
495 ** gen_rtx (REG, SImode, 2),
496 ** gen_rtx (REG, SImode, 3)))),
499 /*VARARGS2*/
501 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
503 int i; /* Array indices... */
504 const char *fmt; /* Current rtx's format... */
505 rtx rt_val; /* RTX to return to caller... */
507 VA_OPEN (p, mode);
508 VA_FIXEDARG (p, enum rtx_code, code);
509 VA_FIXEDARG (p, enum machine_mode, mode);
511 switch (code)
513 case CONST_INT:
514 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
515 break;
517 case CONST_DOUBLE:
519 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
520 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
522 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1);
524 break;
526 case REG:
527 rt_val = gen_rtx_REG (mode, va_arg (p, int));
528 break;
530 case MEM:
531 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
532 break;
534 default:
535 rt_val = rtx_alloc (code); /* Allocate the storage space. */
536 rt_val->mode = mode; /* Store the machine mode... */
538 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
539 for (i = 0; i < GET_RTX_LENGTH (code); i++)
541 switch (*fmt++)
543 case '0': /* Unused field. */
544 break;
546 case 'i': /* An integer? */
547 XINT (rt_val, i) = va_arg (p, int);
548 break;
550 case 'w': /* A wide integer? */
551 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
552 break;
554 case 's': /* A string? */
555 XSTR (rt_val, i) = va_arg (p, char *);
556 break;
558 case 'e': /* An expression? */
559 case 'u': /* An insn? Same except when printing. */
560 XEXP (rt_val, i) = va_arg (p, rtx);
561 break;
563 case 'E': /* An RTX vector? */
564 XVEC (rt_val, i) = va_arg (p, rtvec);
565 break;
567 case 'b': /* A bitmap? */
568 XBITMAP (rt_val, i) = va_arg (p, bitmap);
569 break;
571 case 't': /* A tree? */
572 XTREE (rt_val, i) = va_arg (p, tree);
573 break;
575 default:
576 abort ();
579 break;
582 VA_CLOSE (p);
583 return rt_val;
586 /* gen_rtvec (n, [rt1, ..., rtn])
588 ** This routine creates an rtvec and stores within it the
589 ** pointers to rtx's which are its arguments.
592 /*VARARGS1*/
593 rtvec
594 gen_rtvec VPARAMS ((int n, ...))
596 int i, save_n;
597 rtx *vector;
599 VA_OPEN (p, n);
600 VA_FIXEDARG (p, int, n);
602 if (n == 0)
603 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
605 vector = (rtx *) alloca (n * sizeof (rtx));
607 for (i = 0; i < n; i++)
608 vector[i] = va_arg (p, rtx);
610 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
611 save_n = n;
612 VA_CLOSE (p);
614 return gen_rtvec_v (save_n, vector);
617 rtvec
618 gen_rtvec_v (n, argp)
619 int n;
620 rtx *argp;
622 int i;
623 rtvec rt_val;
625 if (n == 0)
626 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
628 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
630 for (i = 0; i < n; i++)
631 rt_val->elem[i] = *argp++;
633 return rt_val;
636 /* Generate a REG rtx for a new pseudo register of mode MODE.
637 This pseudo is assigned the next sequential register number. */
640 gen_reg_rtx (mode)
641 enum machine_mode mode;
643 struct function *f = cfun;
644 rtx val;
646 /* Don't let anything called after initial flow analysis create new
647 registers. */
648 if (no_new_pseudos)
649 abort ();
651 if (generating_concat_p
652 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
653 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
655 /* For complex modes, don't make a single pseudo.
656 Instead, make a CONCAT of two pseudos.
657 This allows noncontiguous allocation of the real and imaginary parts,
658 which makes much better code. Besides, allocating DCmode
659 pseudos overstrains reload on some machines like the 386. */
660 rtx realpart, imagpart;
661 int size = GET_MODE_UNIT_SIZE (mode);
662 enum machine_mode partmode
663 = mode_for_size (size * BITS_PER_UNIT,
664 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
665 ? MODE_FLOAT : MODE_INT),
668 realpart = gen_reg_rtx (partmode);
669 imagpart = gen_reg_rtx (partmode);
670 return gen_rtx_CONCAT (mode, realpart, imagpart);
673 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
674 enough to have an element for this pseudo reg number. */
676 if (reg_rtx_no == f->emit->regno_pointer_align_length)
678 int old_size = f->emit->regno_pointer_align_length;
679 char *new;
680 rtx *new1;
681 tree *new2;
683 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
684 memset (new + old_size, 0, old_size);
685 f->emit->regno_pointer_align = (unsigned char *) new;
687 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
688 old_size * 2 * sizeof (rtx));
689 memset (new1 + old_size, 0, old_size * sizeof (rtx));
690 regno_reg_rtx = new1;
692 new2 = (tree *) xrealloc (f->emit->regno_decl,
693 old_size * 2 * sizeof (tree));
694 memset (new2 + old_size, 0, old_size * sizeof (tree));
695 f->emit->regno_decl = new2;
697 f->emit->regno_pointer_align_length = old_size * 2;
700 val = gen_raw_REG (mode, reg_rtx_no);
701 regno_reg_rtx[reg_rtx_no++] = val;
702 return val;
705 /* Identify REG (which may be a CONCAT) as a user register. */
707 void
708 mark_user_reg (reg)
709 rtx reg;
711 if (GET_CODE (reg) == CONCAT)
713 REG_USERVAR_P (XEXP (reg, 0)) = 1;
714 REG_USERVAR_P (XEXP (reg, 1)) = 1;
716 else if (GET_CODE (reg) == REG)
717 REG_USERVAR_P (reg) = 1;
718 else
719 abort ();
722 /* Identify REG as a probable pointer register and show its alignment
723 as ALIGN, if nonzero. */
725 void
726 mark_reg_pointer (reg, align)
727 rtx reg;
728 int align;
730 if (! REG_POINTER (reg))
732 REG_POINTER (reg) = 1;
734 if (align)
735 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
737 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
738 /* We can no-longer be sure just how aligned this pointer is */
739 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
742 /* Return 1 plus largest pseudo reg number used in the current function. */
745 max_reg_num ()
747 return reg_rtx_no;
750 /* Return 1 + the largest label number used so far in the current function. */
753 max_label_num ()
755 if (last_label_num && label_num == base_label_num)
756 return last_label_num;
757 return label_num;
760 /* Return first label number used in this function (if any were used). */
763 get_first_label_num ()
765 return first_label_num;
768 /* Return the final regno of X, which is a SUBREG of a hard
769 register. */
771 subreg_hard_regno (x, check_mode)
772 rtx x;
773 int check_mode;
775 enum machine_mode mode = GET_MODE (x);
776 unsigned int byte_offset, base_regno, final_regno;
777 rtx reg = SUBREG_REG (x);
779 /* This is where we attempt to catch illegal subregs
780 created by the compiler. */
781 if (GET_CODE (x) != SUBREG
782 || GET_CODE (reg) != REG)
783 abort ();
784 base_regno = REGNO (reg);
785 if (base_regno >= FIRST_PSEUDO_REGISTER)
786 abort ();
787 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
788 abort ();
790 /* Catch non-congruent offsets too. */
791 byte_offset = SUBREG_BYTE (x);
792 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
793 abort ();
795 final_regno = subreg_regno (x);
797 return final_regno;
800 /* Return a value representing some low-order bits of X, where the number
801 of low-order bits is given by MODE. Note that no conversion is done
802 between floating-point and fixed-point values, rather, the bit
803 representation is returned.
805 This function handles the cases in common between gen_lowpart, below,
806 and two variants in cse.c and combine.c. These are the cases that can
807 be safely handled at all points in the compilation.
809 If this is not a case we can handle, return 0. */
812 gen_lowpart_common (mode, x)
813 enum machine_mode mode;
814 rtx x;
816 int msize = GET_MODE_SIZE (mode);
817 int xsize = GET_MODE_SIZE (GET_MODE (x));
818 int offset = 0;
820 if (GET_MODE (x) == mode)
821 return x;
823 /* MODE must occupy no more words than the mode of X. */
824 if (GET_MODE (x) != VOIDmode
825 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
826 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
827 return 0;
829 offset = subreg_lowpart_offset (mode, GET_MODE (x));
831 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
832 && (GET_MODE_CLASS (mode) == MODE_INT
833 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
835 /* If we are getting the low-order part of something that has been
836 sign- or zero-extended, we can either just use the object being
837 extended or make a narrower extension. If we want an even smaller
838 piece than the size of the object being extended, call ourselves
839 recursively.
841 This case is used mostly by combine and cse. */
843 if (GET_MODE (XEXP (x, 0)) == mode)
844 return XEXP (x, 0);
845 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
846 return gen_lowpart_common (mode, XEXP (x, 0));
847 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
848 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
850 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
851 || GET_CODE (x) == CONCAT)
852 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
853 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
854 from the low-order part of the constant. */
855 else if ((GET_MODE_CLASS (mode) == MODE_INT
856 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
857 && GET_MODE (x) == VOIDmode
858 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
860 /* If MODE is twice the host word size, X is already the desired
861 representation. Otherwise, if MODE is wider than a word, we can't
862 do this. If MODE is exactly a word, return just one CONST_INT. */
864 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
865 return x;
866 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
867 return 0;
868 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
869 return (GET_CODE (x) == CONST_INT ? x
870 : GEN_INT (CONST_DOUBLE_LOW (x)));
871 else
873 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
874 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
875 : CONST_DOUBLE_LOW (x));
877 /* Sign extend to HOST_WIDE_INT. */
878 val = trunc_int_for_mode (val, mode);
880 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
881 : GEN_INT (val));
885 #ifndef REAL_ARITHMETIC
886 /* If X is an integral constant but we want it in floating-point, it
887 must be the case that we have a union of an integer and a floating-point
888 value. If the machine-parameters allow it, simulate that union here
889 and return the result. The two-word and single-word cases are
890 different. */
892 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
893 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
894 || flag_pretend_float)
895 && GET_MODE_CLASS (mode) == MODE_FLOAT
896 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
897 && GET_CODE (x) == CONST_INT
898 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
900 union {HOST_WIDE_INT i; float d; } u;
902 u.i = INTVAL (x);
903 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
905 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
907 || flag_pretend_float)
908 && GET_MODE_CLASS (mode) == MODE_FLOAT
909 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
910 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
911 && GET_MODE (x) == VOIDmode
912 && (sizeof (double) * HOST_BITS_PER_CHAR
913 == 2 * HOST_BITS_PER_WIDE_INT))
915 union {HOST_WIDE_INT i[2]; double d; } u;
916 HOST_WIDE_INT low, high;
918 if (GET_CODE (x) == CONST_INT)
919 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
920 else
921 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
923 #ifdef HOST_WORDS_BIG_ENDIAN
924 u.i[0] = high, u.i[1] = low;
925 #else
926 u.i[0] = low, u.i[1] = high;
927 #endif
929 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
932 /* Similarly, if this is converting a floating-point value into a
933 single-word integer. Only do this is the host and target parameters are
934 compatible. */
936 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
937 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
938 || flag_pretend_float)
939 && (GET_MODE_CLASS (mode) == MODE_INT
940 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
941 && GET_CODE (x) == CONST_DOUBLE
942 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
943 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
944 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
946 /* Similarly, if this is converting a floating-point value into a
947 two-word integer, we can do this one word at a time and make an
948 integer. Only do this is the host and target parameters are
949 compatible. */
951 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
952 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
953 || flag_pretend_float)
954 && (GET_MODE_CLASS (mode) == MODE_INT
955 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
956 && GET_CODE (x) == CONST_DOUBLE
957 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
958 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
960 rtx lowpart, highpart;
962 lowpart = constant_subword (x,
963 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
964 GET_MODE (x));
965 highpart = constant_subword (x,
966 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
967 GET_MODE (x));
968 if (lowpart && GET_CODE (lowpart) == CONST_INT
969 && highpart && GET_CODE (highpart) == CONST_INT)
970 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
972 #else /* ifndef REAL_ARITHMETIC */
974 /* When we have a FP emulator, we can handle all conversions between
975 FP and integer operands. This simplifies reload because it
976 doesn't have to deal with constructs like (subreg:DI
977 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
978 /* Single-precision floats are always 32-bits and double-precision
979 floats are always 64-bits. */
981 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
982 && GET_MODE_BITSIZE (mode) == 32
983 && GET_CODE (x) == CONST_INT)
985 REAL_VALUE_TYPE r;
986 HOST_WIDE_INT i;
988 i = INTVAL (x);
989 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
990 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
992 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
993 && GET_MODE_BITSIZE (mode) == 64
994 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
995 && GET_MODE (x) == VOIDmode)
997 REAL_VALUE_TYPE r;
998 HOST_WIDE_INT i[2];
999 HOST_WIDE_INT low, high;
1001 if (GET_CODE (x) == CONST_INT)
1003 low = INTVAL (x);
1004 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1006 else
1008 low = CONST_DOUBLE_LOW (x);
1009 high = CONST_DOUBLE_HIGH (x);
1012 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1013 target machine. */
1014 if (WORDS_BIG_ENDIAN)
1015 i[0] = high, i[1] = low;
1016 else
1017 i[0] = low, i[1] = high;
1019 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1020 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1022 else if ((GET_MODE_CLASS (mode) == MODE_INT
1023 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1024 && GET_CODE (x) == CONST_DOUBLE
1025 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1027 REAL_VALUE_TYPE r;
1028 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1029 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1031 /* Convert 'r' into an array of four 32-bit words in target word
1032 order. */
1033 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1034 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1036 case 32:
1037 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1038 i[1] = 0;
1039 i[2] = 0;
1040 i[3 - 3 * endian] = 0;
1041 break;
1042 case 64:
1043 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1044 i[2 - 2 * endian] = 0;
1045 i[3 - 2 * endian] = 0;
1046 break;
1047 case 96:
1048 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1049 i[3 - 3 * endian] = 0;
1050 break;
1051 case 128:
1052 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1053 break;
1054 default:
1055 abort ();
1057 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1058 and return it. */
1059 #if HOST_BITS_PER_WIDE_INT == 32
1060 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1061 #else
1062 if (HOST_BITS_PER_WIDE_INT != 64)
1063 abort ();
1065 return immed_double_const ((((unsigned long) i[3 * endian])
1066 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1067 (((unsigned long) i[2 - endian])
1068 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1069 mode);
1070 #endif
1072 #endif /* ifndef REAL_ARITHMETIC */
1074 /* Otherwise, we can't do this. */
1075 return 0;
1078 /* Return the real part (which has mode MODE) of a complex value X.
1079 This always comes at the low address in memory. */
1082 gen_realpart (mode, x)
1083 enum machine_mode mode;
1084 rtx x;
1086 if (WORDS_BIG_ENDIAN
1087 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1088 && REG_P (x)
1089 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1090 internal_error
1091 ("can't access real part of complex value in hard register");
1092 else if (WORDS_BIG_ENDIAN)
1093 return gen_highpart (mode, x);
1094 else
1095 return gen_lowpart (mode, x);
1098 /* Return the imaginary part (which has mode MODE) of a complex value X.
1099 This always comes at the high address in memory. */
1102 gen_imagpart (mode, x)
1103 enum machine_mode mode;
1104 rtx x;
1106 if (WORDS_BIG_ENDIAN)
1107 return gen_lowpart (mode, x);
1108 else if (! WORDS_BIG_ENDIAN
1109 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1110 && REG_P (x)
1111 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1112 internal_error
1113 ("can't access imaginary part of complex value in hard register");
1114 else
1115 return gen_highpart (mode, x);
1118 /* Return 1 iff X, assumed to be a SUBREG,
1119 refers to the real part of the complex value in its containing reg.
1120 Complex values are always stored with the real part in the first word,
1121 regardless of WORDS_BIG_ENDIAN. */
1124 subreg_realpart_p (x)
1125 rtx x;
1127 if (GET_CODE (x) != SUBREG)
1128 abort ();
1130 return ((unsigned int) SUBREG_BYTE (x)
1131 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1134 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1135 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1136 least-significant part of X.
1137 MODE specifies how big a part of X to return;
1138 it usually should not be larger than a word.
1139 If X is a MEM whose address is a QUEUED, the value may be so also. */
1142 gen_lowpart (mode, x)
1143 enum machine_mode mode;
1144 rtx x;
1146 rtx result = gen_lowpart_common (mode, x);
1148 if (result)
1149 return result;
1150 else if (GET_CODE (x) == REG)
1152 /* Must be a hard reg that's not valid in MODE. */
1153 result = gen_lowpart_common (mode, copy_to_reg (x));
1154 if (result == 0)
1155 abort ();
1156 return result;
1158 else if (GET_CODE (x) == MEM)
1160 /* The only additional case we can do is MEM. */
1161 int offset = 0;
1162 if (WORDS_BIG_ENDIAN)
1163 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1164 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1166 if (BYTES_BIG_ENDIAN)
1167 /* Adjust the address so that the address-after-the-data
1168 is unchanged. */
1169 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1170 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1172 return adjust_address (x, mode, offset);
1174 else if (GET_CODE (x) == ADDRESSOF)
1175 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1176 else
1177 abort ();
1180 /* Like `gen_lowpart', but refer to the most significant part.
1181 This is used to access the imaginary part of a complex number. */
1184 gen_highpart (mode, x)
1185 enum machine_mode mode;
1186 rtx x;
1188 unsigned int msize = GET_MODE_SIZE (mode);
1189 rtx result;
1191 /* This case loses if X is a subreg. To catch bugs early,
1192 complain if an invalid MODE is used even in other cases. */
1193 if (msize > UNITS_PER_WORD
1194 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1195 abort ();
1197 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1198 subreg_highpart_offset (mode, GET_MODE (x)));
1200 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1201 the target if we have a MEM. gen_highpart must return a valid operand,
1202 emitting code if necessary to do so. */
1203 if (GET_CODE (result) == MEM)
1204 result = validize_mem (result);
1206 if (!result)
1207 abort ();
1208 return result;
1211 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1212 be VOIDmode constant. */
1214 gen_highpart_mode (outermode, innermode, exp)
1215 enum machine_mode outermode, innermode;
1216 rtx exp;
1218 if (GET_MODE (exp) != VOIDmode)
1220 if (GET_MODE (exp) != innermode)
1221 abort ();
1222 return gen_highpart (outermode, exp);
1224 return simplify_gen_subreg (outermode, exp, innermode,
1225 subreg_highpart_offset (outermode, innermode));
1227 /* Return offset in bytes to get OUTERMODE low part
1228 of the value in mode INNERMODE stored in memory in target format. */
1230 unsigned int
1231 subreg_lowpart_offset (outermode, innermode)
1232 enum machine_mode outermode, innermode;
1234 unsigned int offset = 0;
1235 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1237 if (difference > 0)
1239 if (WORDS_BIG_ENDIAN)
1240 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1241 if (BYTES_BIG_ENDIAN)
1242 offset += difference % UNITS_PER_WORD;
1245 return offset;
1248 /* Return offset in bytes to get OUTERMODE high part
1249 of the value in mode INNERMODE stored in memory in target format. */
1250 unsigned int
1251 subreg_highpart_offset (outermode, innermode)
1252 enum machine_mode outermode, innermode;
1254 unsigned int offset = 0;
1255 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1257 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1258 abort ();
1260 if (difference > 0)
1262 if (! WORDS_BIG_ENDIAN)
1263 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1264 if (! BYTES_BIG_ENDIAN)
1265 offset += difference % UNITS_PER_WORD;
1268 return offset;
1271 /* Return 1 iff X, assumed to be a SUBREG,
1272 refers to the least significant part of its containing reg.
1273 If X is not a SUBREG, always return 1 (it is its own low part!). */
1276 subreg_lowpart_p (x)
1277 rtx x;
1279 if (GET_CODE (x) != SUBREG)
1280 return 1;
1281 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1282 return 0;
1284 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1285 == SUBREG_BYTE (x));
1289 /* Helper routine for all the constant cases of operand_subword.
1290 Some places invoke this directly. */
1293 constant_subword (op, offset, mode)
1294 rtx op;
1295 int offset;
1296 enum machine_mode mode;
1298 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1299 HOST_WIDE_INT val;
1301 /* If OP is already an integer word, return it. */
1302 if (GET_MODE_CLASS (mode) == MODE_INT
1303 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1304 return op;
1306 #ifdef REAL_ARITHMETIC
1307 /* The output is some bits, the width of the target machine's word.
1308 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1309 host can't. */
1310 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1311 && GET_MODE_CLASS (mode) == MODE_FLOAT
1312 && GET_MODE_BITSIZE (mode) == 64
1313 && GET_CODE (op) == CONST_DOUBLE)
1315 long k[2];
1316 REAL_VALUE_TYPE rv;
1318 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1319 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1321 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1322 which the words are written depends on the word endianness.
1323 ??? This is a potential portability problem and should
1324 be fixed at some point.
1326 We must exercise caution with the sign bit. By definition there
1327 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1328 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1329 So we explicitly mask and sign-extend as necessary. */
1330 if (BITS_PER_WORD == 32)
1332 val = k[offset];
1333 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1334 return GEN_INT (val);
1336 #if HOST_BITS_PER_WIDE_INT >= 64
1337 else if (BITS_PER_WORD >= 64 && offset == 0)
1339 val = k[! WORDS_BIG_ENDIAN];
1340 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1341 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1342 return GEN_INT (val);
1344 #endif
1345 else if (BITS_PER_WORD == 16)
1347 val = k[offset >> 1];
1348 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1349 val >>= 16;
1350 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1351 return GEN_INT (val);
1353 else
1354 abort ();
1356 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1357 && GET_MODE_CLASS (mode) == MODE_FLOAT
1358 && GET_MODE_BITSIZE (mode) > 64
1359 && GET_CODE (op) == CONST_DOUBLE)
1361 long k[4];
1362 REAL_VALUE_TYPE rv;
1364 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1365 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1367 if (BITS_PER_WORD == 32)
1369 val = k[offset];
1370 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1371 return GEN_INT (val);
1373 #if HOST_BITS_PER_WIDE_INT >= 64
1374 else if (BITS_PER_WORD >= 64 && offset <= 1)
1376 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1377 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1378 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1379 return GEN_INT (val);
1381 #endif
1382 else
1383 abort ();
1385 #else /* no REAL_ARITHMETIC */
1386 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1387 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1388 || flag_pretend_float)
1389 && GET_MODE_CLASS (mode) == MODE_FLOAT
1390 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1391 && GET_CODE (op) == CONST_DOUBLE)
1393 /* The constant is stored in the host's word-ordering,
1394 but we want to access it in the target's word-ordering. Some
1395 compilers don't like a conditional inside macro args, so we have two
1396 copies of the return. */
1397 #ifdef HOST_WORDS_BIG_ENDIAN
1398 return GEN_INT (offset == WORDS_BIG_ENDIAN
1399 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1400 #else
1401 return GEN_INT (offset != WORDS_BIG_ENDIAN
1402 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1403 #endif
1405 #endif /* no REAL_ARITHMETIC */
1407 /* Single word float is a little harder, since single- and double-word
1408 values often do not have the same high-order bits. We have already
1409 verified that we want the only defined word of the single-word value. */
1410 #ifdef REAL_ARITHMETIC
1411 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1412 && GET_MODE_BITSIZE (mode) == 32
1413 && GET_CODE (op) == CONST_DOUBLE)
1415 long l;
1416 REAL_VALUE_TYPE rv;
1418 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1419 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1421 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1422 val = l;
1423 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1425 if (BITS_PER_WORD == 16)
1427 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1428 val >>= 16;
1429 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1432 return GEN_INT (val);
1434 #else
1435 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1436 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1437 || flag_pretend_float)
1438 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1439 && GET_MODE_CLASS (mode) == MODE_FLOAT
1440 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1441 && GET_CODE (op) == CONST_DOUBLE)
1443 double d;
1444 union {float f; HOST_WIDE_INT i; } u;
1446 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1448 u.f = d;
1449 return GEN_INT (u.i);
1451 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1452 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1453 || flag_pretend_float)
1454 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1455 && GET_MODE_CLASS (mode) == MODE_FLOAT
1456 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1457 && GET_CODE (op) == CONST_DOUBLE)
1459 double d;
1460 union {double d; HOST_WIDE_INT i; } u;
1462 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1464 u.d = d;
1465 return GEN_INT (u.i);
1467 #endif /* no REAL_ARITHMETIC */
1469 /* The only remaining cases that we can handle are integers.
1470 Convert to proper endianness now since these cases need it.
1471 At this point, offset == 0 means the low-order word.
1473 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1474 in general. However, if OP is (const_int 0), we can just return
1475 it for any word. */
1477 if (op == const0_rtx)
1478 return op;
1480 if (GET_MODE_CLASS (mode) != MODE_INT
1481 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1482 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1483 return 0;
1485 if (WORDS_BIG_ENDIAN)
1486 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1488 /* Find out which word on the host machine this value is in and get
1489 it from the constant. */
1490 val = (offset / size_ratio == 0
1491 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1492 : (GET_CODE (op) == CONST_INT
1493 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1495 /* Get the value we want into the low bits of val. */
1496 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1497 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1499 val = trunc_int_for_mode (val, word_mode);
1501 return GEN_INT (val);
1504 /* Return subword OFFSET of operand OP.
1505 The word number, OFFSET, is interpreted as the word number starting
1506 at the low-order address. OFFSET 0 is the low-order word if not
1507 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1509 If we cannot extract the required word, we return zero. Otherwise,
1510 an rtx corresponding to the requested word will be returned.
1512 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1513 reload has completed, a valid address will always be returned. After
1514 reload, if a valid address cannot be returned, we return zero.
1516 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1517 it is the responsibility of the caller.
1519 MODE is the mode of OP in case it is a CONST_INT.
1521 ??? This is still rather broken for some cases. The problem for the
1522 moment is that all callers of this thing provide no 'goal mode' to
1523 tell us to work with. This exists because all callers were written
1524 in a word based SUBREG world.
1525 Now use of this function can be deprecated by simplify_subreg in most
1526 cases.
1530 operand_subword (op, offset, validate_address, mode)
1531 rtx op;
1532 unsigned int offset;
1533 int validate_address;
1534 enum machine_mode mode;
1536 if (mode == VOIDmode)
1537 mode = GET_MODE (op);
1539 if (mode == VOIDmode)
1540 abort ();
1542 /* If OP is narrower than a word, fail. */
1543 if (mode != BLKmode
1544 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1545 return 0;
1547 /* If we want a word outside OP, return zero. */
1548 if (mode != BLKmode
1549 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1550 return const0_rtx;
1552 /* Form a new MEM at the requested address. */
1553 if (GET_CODE (op) == MEM)
1555 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1557 if (! validate_address)
1558 return new;
1560 else if (reload_completed)
1562 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1563 return 0;
1565 else
1566 return replace_equiv_address (new, XEXP (new, 0));
1569 /* Rest can be handled by simplify_subreg. */
1570 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1573 /* Similar to `operand_subword', but never return 0. If we can't extract
1574 the required subword, put OP into a register and try again. If that fails,
1575 abort. We always validate the address in this case.
1577 MODE is the mode of OP, in case it is CONST_INT. */
1580 operand_subword_force (op, offset, mode)
1581 rtx op;
1582 unsigned int offset;
1583 enum machine_mode mode;
1585 rtx result = operand_subword (op, offset, 1, mode);
1587 if (result)
1588 return result;
1590 if (mode != BLKmode && mode != VOIDmode)
1592 /* If this is a register which can not be accessed by words, copy it
1593 to a pseudo register. */
1594 if (GET_CODE (op) == REG)
1595 op = copy_to_reg (op);
1596 else
1597 op = force_reg (mode, op);
1600 result = operand_subword (op, offset, 1, mode);
1601 if (result == 0)
1602 abort ();
1604 return result;
1607 /* Given a compare instruction, swap the operands.
1608 A test instruction is changed into a compare of 0 against the operand. */
1610 void
1611 reverse_comparison (insn)
1612 rtx insn;
1614 rtx body = PATTERN (insn);
1615 rtx comp;
1617 if (GET_CODE (body) == SET)
1618 comp = SET_SRC (body);
1619 else
1620 comp = SET_SRC (XVECEXP (body, 0, 0));
1622 if (GET_CODE (comp) == COMPARE)
1624 rtx op0 = XEXP (comp, 0);
1625 rtx op1 = XEXP (comp, 1);
1626 XEXP (comp, 0) = op1;
1627 XEXP (comp, 1) = op0;
1629 else
1631 rtx new = gen_rtx_COMPARE (VOIDmode,
1632 CONST0_RTX (GET_MODE (comp)), comp);
1633 if (GET_CODE (body) == SET)
1634 SET_SRC (body) = new;
1635 else
1636 SET_SRC (XVECEXP (body, 0, 0)) = new;
1640 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1641 or (2) a component ref of something variable. Represent the later with
1642 a NULL expression. */
1644 static tree
1645 component_ref_for_mem_expr (ref)
1646 tree ref;
1648 tree inner = TREE_OPERAND (ref, 0);
1650 if (TREE_CODE (inner) == COMPONENT_REF)
1651 inner = component_ref_for_mem_expr (inner);
1652 else
1654 tree placeholder_ptr = 0;
1656 /* Now remove any conversions: they don't change what the underlying
1657 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1658 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1659 || TREE_CODE (inner) == NON_LVALUE_EXPR
1660 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1661 || TREE_CODE (inner) == SAVE_EXPR
1662 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1663 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1664 inner = find_placeholder (inner, &placeholder_ptr);
1665 else
1666 inner = TREE_OPERAND (inner, 0);
1668 if (! DECL_P (inner))
1669 inner = NULL_TREE;
1672 if (inner == TREE_OPERAND (ref, 0))
1673 return ref;
1674 else
1675 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1676 TREE_OPERAND (ref, 1));
1679 /* Given REF, a MEM, and T, either the type of X or the expression
1680 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1681 if we are making a new object of this type. */
1683 void
1684 set_mem_attributes (ref, t, objectp)
1685 rtx ref;
1686 tree t;
1687 int objectp;
1689 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1690 tree expr = MEM_EXPR (ref);
1691 rtx offset = MEM_OFFSET (ref);
1692 rtx size = MEM_SIZE (ref);
1693 unsigned int align = MEM_ALIGN (ref);
1694 tree type;
1696 /* It can happen that type_for_mode was given a mode for which there
1697 is no language-level type. In which case it returns NULL, which
1698 we can see here. */
1699 if (t == NULL_TREE)
1700 return;
1702 type = TYPE_P (t) ? t : TREE_TYPE (t);
1704 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1705 wrong answer, as it assumes that DECL_RTL already has the right alias
1706 info. Callers should not set DECL_RTL until after the call to
1707 set_mem_attributes. */
1708 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1709 abort ();
1711 /* Get the alias set from the expression or type (perhaps using a
1712 front-end routine) and use it. */
1713 alias = get_alias_set (t);
1715 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1716 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1717 RTX_UNCHANGING_P (ref)
1718 |= ((lang_hooks.honor_readonly
1719 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1720 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1722 /* If we are making an object of this type, or if this is a DECL, we know
1723 that it is a scalar if the type is not an aggregate. */
1724 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1725 MEM_SCALAR_P (ref) = 1;
1727 /* We can set the alignment from the type if we are making an object,
1728 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1729 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1730 align = MAX (align, TYPE_ALIGN (type));
1732 /* If the size is known, we can set that. */
1733 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1734 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1736 /* If T is not a type, we may be able to deduce some more information about
1737 the expression. */
1738 if (! TYPE_P (t))
1740 maybe_set_unchanging (ref, t);
1741 if (TREE_THIS_VOLATILE (t))
1742 MEM_VOLATILE_P (ref) = 1;
1744 /* Now remove any conversions: they don't change what the underlying
1745 object is. Likewise for SAVE_EXPR. */
1746 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1747 || TREE_CODE (t) == NON_LVALUE_EXPR
1748 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1749 || TREE_CODE (t) == SAVE_EXPR)
1750 t = TREE_OPERAND (t, 0);
1752 /* If this expression can't be addressed (e.g., it contains a reference
1753 to a non-addressable field), show we don't change its alias set. */
1754 if (! can_address_p (t))
1755 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1757 /* If this is a decl, set the attributes of the MEM from it. */
1758 if (DECL_P (t))
1760 expr = t;
1761 offset = const0_rtx;
1762 size = (DECL_SIZE_UNIT (t)
1763 && host_integerp (DECL_SIZE_UNIT (t), 1)
1764 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1765 align = DECL_ALIGN (t);
1768 /* If this is a constant, we know the alignment. */
1769 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1771 align = TYPE_ALIGN (type);
1772 #ifdef CONSTANT_ALIGNMENT
1773 align = CONSTANT_ALIGNMENT (t, align);
1774 #endif
1777 /* If this is a field reference and not a bit-field, record it. */
1778 /* ??? There is some information that can be gleened from bit-fields,
1779 such as the word offset in the structure that might be modified.
1780 But skip it for now. */
1781 else if (TREE_CODE (t) == COMPONENT_REF
1782 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1784 expr = component_ref_for_mem_expr (t);
1785 offset = const0_rtx;
1786 /* ??? Any reason the field size would be different than
1787 the size we got from the type? */
1790 /* If this is an array reference, look for an outer field reference. */
1791 else if (TREE_CODE (t) == ARRAY_REF)
1793 tree off_tree = size_zero_node;
1797 off_tree
1798 = fold (build (PLUS_EXPR, sizetype,
1799 fold (build (MULT_EXPR, sizetype,
1800 TREE_OPERAND (t, 1),
1801 TYPE_SIZE_UNIT (TREE_TYPE (t)))),
1802 off_tree));
1803 t = TREE_OPERAND (t, 0);
1805 while (TREE_CODE (t) == ARRAY_REF);
1807 if (TREE_CODE (t) == COMPONENT_REF)
1809 expr = component_ref_for_mem_expr (t);
1810 if (host_integerp (off_tree, 1))
1811 offset = GEN_INT (tree_low_cst (off_tree, 1));
1812 /* ??? Any reason the field size would be different than
1813 the size we got from the type? */
1818 /* Now set the attributes we computed above. */
1819 MEM_ATTRS (ref)
1820 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1822 /* If this is already known to be a scalar or aggregate, we are done. */
1823 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1824 return;
1826 /* If it is a reference into an aggregate, this is part of an aggregate.
1827 Otherwise we don't know. */
1828 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1829 || TREE_CODE (t) == ARRAY_RANGE_REF
1830 || TREE_CODE (t) == BIT_FIELD_REF)
1831 MEM_IN_STRUCT_P (ref) = 1;
1834 /* Set the alias set of MEM to SET. */
1836 void
1837 set_mem_alias_set (mem, set)
1838 rtx mem;
1839 HOST_WIDE_INT set;
1841 #ifdef ENABLE_CHECKING
1842 /* If the new and old alias sets don't conflict, something is wrong. */
1843 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1844 abort ();
1845 #endif
1847 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1848 MEM_SIZE (mem), MEM_ALIGN (mem),
1849 GET_MODE (mem));
1852 /* Set the alignment of MEM to ALIGN bits. */
1854 void
1855 set_mem_align (mem, align)
1856 rtx mem;
1857 unsigned int align;
1859 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1860 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1861 GET_MODE (mem));
1864 /* Set the expr for MEM to EXPR. */
1866 void
1867 set_mem_expr (mem, expr)
1868 rtx mem;
1869 tree expr;
1871 MEM_ATTRS (mem)
1872 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1873 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1876 /* Set the offset of MEM to OFFSET. */
1878 void
1879 set_mem_offset (mem, offset)
1880 rtx mem, offset;
1882 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1883 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1884 GET_MODE (mem));
1887 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1888 and its address changed to ADDR. (VOIDmode means don't change the mode.
1889 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1890 returned memory location is required to be valid. The memory
1891 attributes are not changed. */
1893 static rtx
1894 change_address_1 (memref, mode, addr, validate)
1895 rtx memref;
1896 enum machine_mode mode;
1897 rtx addr;
1898 int validate;
1900 rtx new;
1902 if (GET_CODE (memref) != MEM)
1903 abort ();
1904 if (mode == VOIDmode)
1905 mode = GET_MODE (memref);
1906 if (addr == 0)
1907 addr = XEXP (memref, 0);
1909 if (validate)
1911 if (reload_in_progress || reload_completed)
1913 if (! memory_address_p (mode, addr))
1914 abort ();
1916 else
1917 addr = memory_address (mode, addr);
1920 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1921 return memref;
1923 new = gen_rtx_MEM (mode, addr);
1924 MEM_COPY_ATTRIBUTES (new, memref);
1925 return new;
1928 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1929 way we are changing MEMREF, so we only preserve the alias set. */
1932 change_address (memref, mode, addr)
1933 rtx memref;
1934 enum machine_mode mode;
1935 rtx addr;
1937 rtx new = change_address_1 (memref, mode, addr, 1);
1938 enum machine_mode mmode = GET_MODE (new);
1940 MEM_ATTRS (new)
1941 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1942 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
1943 (mmode == BLKmode ? BITS_PER_UNIT
1944 : GET_MODE_ALIGNMENT (mmode)),
1945 mmode);
1947 return new;
1950 /* Return a memory reference like MEMREF, but with its mode changed
1951 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1952 nonzero, the memory address is forced to be valid.
1953 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1954 and caller is responsible for adjusting MEMREF base register. */
1957 adjust_address_1 (memref, mode, offset, validate, adjust)
1958 rtx memref;
1959 enum machine_mode mode;
1960 HOST_WIDE_INT offset;
1961 int validate, adjust;
1963 rtx addr = XEXP (memref, 0);
1964 rtx new;
1965 rtx memoffset = MEM_OFFSET (memref);
1966 rtx size = 0;
1967 unsigned int memalign = MEM_ALIGN (memref);
1969 if (adjust == 0 || offset == 0)
1970 /* ??? Prefer to create garbage instead of creating shared rtl. */
1971 addr = copy_rtx (addr);
1972 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1973 object, we can merge it into the LO_SUM. */
1974 else if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1975 && offset >= 0
1976 && (unsigned HOST_WIDE_INT) offset
1977 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1978 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1979 plus_constant (XEXP (addr, 1), offset));
1980 else
1981 addr = plus_constant (addr, offset);
1983 new = change_address_1 (memref, mode, addr, validate);
1985 /* Compute the new values of the memory attributes due to this adjustment.
1986 We add the offsets and update the alignment. */
1987 if (memoffset)
1988 memoffset = GEN_INT (offset + INTVAL (memoffset));
1990 /* Compute the new alignment by taking the MIN of the alignment and the
1991 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1992 if zero. */
1993 if (offset != 0)
1994 memalign = MIN (memalign, (offset & -offset) * BITS_PER_UNIT);
1996 /* We can compute the size in a number of ways. */
1997 if (GET_MODE (new) != BLKmode)
1998 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1999 else if (MEM_SIZE (memref))
2000 size = plus_constant (MEM_SIZE (memref), -offset);
2002 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2003 memoffset, size, memalign, GET_MODE (new));
2005 /* At some point, we should validate that this offset is within the object,
2006 if all the appropriate values are known. */
2007 return new;
2010 /* Return a memory reference like MEMREF, but with its mode changed
2011 to MODE and its address changed to ADDR, which is assumed to be
2012 MEMREF offseted by OFFSET bytes. If VALIDATE is
2013 nonzero, the memory address is forced to be valid. */
2016 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2017 rtx memref;
2018 enum machine_mode mode;
2019 rtx addr;
2020 HOST_WIDE_INT offset;
2021 int validate;
2023 memref = change_address_1 (memref, VOIDmode, addr, validate);
2024 return adjust_address_1 (memref, mode, offset, validate, 0);
2027 /* Return a memory reference like MEMREF, but whose address is changed by
2028 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2029 known to be in OFFSET (possibly 1). */
2032 offset_address (memref, offset, pow2)
2033 rtx memref;
2034 rtx offset;
2035 HOST_WIDE_INT pow2;
2037 rtx new = change_address_1 (memref, VOIDmode,
2038 gen_rtx_PLUS (Pmode, XEXP (memref, 0),
2039 force_reg (Pmode, offset)), 1);
2041 /* Update the alignment to reflect the offset. Reset the offset, which
2042 we don't know. */
2043 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2044 0, 0, MIN (MEM_ALIGN (memref),
2045 pow2 * BITS_PER_UNIT),
2046 GET_MODE (new));
2047 return new;
2050 /* Return a memory reference like MEMREF, but with its address changed to
2051 ADDR. The caller is asserting that the actual piece of memory pointed
2052 to is the same, just the form of the address is being changed, such as
2053 by putting something into a register. */
2056 replace_equiv_address (memref, addr)
2057 rtx memref;
2058 rtx addr;
2060 /* change_address_1 copies the memory attribute structure without change
2061 and that's exactly what we want here. */
2062 update_temp_slot_address (XEXP (memref, 0), addr);
2063 return change_address_1 (memref, VOIDmode, addr, 1);
2066 /* Likewise, but the reference is not required to be valid. */
2069 replace_equiv_address_nv (memref, addr)
2070 rtx memref;
2071 rtx addr;
2073 return change_address_1 (memref, VOIDmode, addr, 0);
2076 /* Return a memory reference like MEMREF, but with its mode widened to
2077 MODE and offset by OFFSET. This would be used by targets that e.g.
2078 cannot issue QImode memory operations and have to use SImode memory
2079 operations plus masking logic. */
2082 widen_memory_access (memref, mode, offset)
2083 rtx memref;
2084 enum machine_mode mode;
2085 HOST_WIDE_INT offset;
2087 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2088 tree expr = MEM_EXPR (new);
2089 rtx memoffset = MEM_OFFSET (new);
2090 unsigned int size = GET_MODE_SIZE (mode);
2092 /* If we don't know what offset we were at within the expression, then
2093 we can't know if we've overstepped the bounds. */
2094 if (! memoffset && offset != 0)
2095 expr = NULL_TREE;
2097 while (expr)
2099 if (TREE_CODE (expr) == COMPONENT_REF)
2101 tree field = TREE_OPERAND (expr, 1);
2103 if (! DECL_SIZE_UNIT (field))
2105 expr = NULL_TREE;
2106 break;
2109 /* Is the field at least as large as the access? If so, ok,
2110 otherwise strip back to the containing structure. */
2111 if (compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2112 && INTVAL (memoffset) >= 0)
2113 break;
2115 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2117 expr = NULL_TREE;
2118 break;
2121 expr = TREE_OPERAND (expr, 0);
2122 memoffset = (GEN_INT (INTVAL (memoffset)
2123 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2124 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2125 / BITS_PER_UNIT)));
2127 /* Similarly for the decl. */
2128 else if (DECL_P (expr)
2129 && DECL_SIZE_UNIT (expr)
2130 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2131 && (! memoffset || INTVAL (memoffset) >= 0))
2132 break;
2133 else
2135 /* The widened memory access overflows the expression, which means
2136 that it could alias another expression. Zap it. */
2137 expr = NULL_TREE;
2138 break;
2142 if (! expr)
2143 memoffset = NULL_RTX;
2145 /* The widened memory may alias other stuff, so zap the alias set. */
2146 /* ??? Maybe use get_alias_set on any remaining expression. */
2148 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2149 MEM_ALIGN (new), mode);
2151 return new;
2154 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2157 gen_label_rtx ()
2159 rtx label;
2161 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
2162 NULL_RTX, label_num++, NULL, NULL);
2164 LABEL_NUSES (label) = 0;
2165 LABEL_ALTERNATE_NAME (label) = NULL;
2166 return label;
2169 /* For procedure integration. */
2171 /* Install new pointers to the first and last insns in the chain.
2172 Also, set cur_insn_uid to one higher than the last in use.
2173 Used for an inline-procedure after copying the insn chain. */
2175 void
2176 set_new_first_and_last_insn (first, last)
2177 rtx first, last;
2179 rtx insn;
2181 first_insn = first;
2182 last_insn = last;
2183 cur_insn_uid = 0;
2185 for (insn = first; insn; insn = NEXT_INSN (insn))
2186 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2188 cur_insn_uid++;
2191 /* Set the range of label numbers found in the current function.
2192 This is used when belatedly compiling an inline function. */
2194 void
2195 set_new_first_and_last_label_num (first, last)
2196 int first, last;
2198 base_label_num = label_num;
2199 first_label_num = first;
2200 last_label_num = last;
2203 /* Set the last label number found in the current function.
2204 This is used when belatedly compiling an inline function. */
2206 void
2207 set_new_last_label_num (last)
2208 int last;
2210 base_label_num = label_num;
2211 last_label_num = last;
2214 /* Restore all variables describing the current status from the structure *P.
2215 This is used after a nested function. */
2217 void
2218 restore_emit_status (p)
2219 struct function *p ATTRIBUTE_UNUSED;
2221 last_label_num = 0;
2222 clear_emit_caches ();
2225 /* Clear out all parts of the state in F that can safely be discarded
2226 after the function has been compiled, to let garbage collection
2227 reclaim the memory. */
2229 void
2230 free_emit_status (f)
2231 struct function *f;
2233 free (f->emit->x_regno_reg_rtx);
2234 free (f->emit->regno_pointer_align);
2235 free (f->emit->regno_decl);
2236 free (f->emit);
2237 f->emit = NULL;
2240 /* Go through all the RTL insn bodies and copy any invalid shared
2241 structure. This routine should only be called once. */
2243 void
2244 unshare_all_rtl (fndecl, insn)
2245 tree fndecl;
2246 rtx insn;
2248 tree decl;
2250 /* Make sure that virtual parameters are not shared. */
2251 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2252 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2254 /* Make sure that virtual stack slots are not shared. */
2255 unshare_all_decls (DECL_INITIAL (fndecl));
2257 /* Unshare just about everything else. */
2258 unshare_all_rtl_1 (insn);
2260 /* Make sure the addresses of stack slots found outside the insn chain
2261 (such as, in DECL_RTL of a variable) are not shared
2262 with the insn chain.
2264 This special care is necessary when the stack slot MEM does not
2265 actually appear in the insn chain. If it does appear, its address
2266 is unshared from all else at that point. */
2267 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2270 /* Go through all the RTL insn bodies and copy any invalid shared
2271 structure, again. This is a fairly expensive thing to do so it
2272 should be done sparingly. */
2274 void
2275 unshare_all_rtl_again (insn)
2276 rtx insn;
2278 rtx p;
2279 tree decl;
2281 for (p = insn; p; p = NEXT_INSN (p))
2282 if (INSN_P (p))
2284 reset_used_flags (PATTERN (p));
2285 reset_used_flags (REG_NOTES (p));
2286 reset_used_flags (LOG_LINKS (p));
2289 /* Make sure that virtual stack slots are not shared. */
2290 reset_used_decls (DECL_INITIAL (cfun->decl));
2292 /* Make sure that virtual parameters are not shared. */
2293 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2294 reset_used_flags (DECL_RTL (decl));
2296 reset_used_flags (stack_slot_list);
2298 unshare_all_rtl (cfun->decl, insn);
2301 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2302 Assumes the mark bits are cleared at entry. */
2304 static void
2305 unshare_all_rtl_1 (insn)
2306 rtx insn;
2308 for (; insn; insn = NEXT_INSN (insn))
2309 if (INSN_P (insn))
2311 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2312 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2313 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2317 /* Go through all virtual stack slots of a function and copy any
2318 shared structure. */
2319 static void
2320 unshare_all_decls (blk)
2321 tree blk;
2323 tree t;
2325 /* Copy shared decls. */
2326 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2327 if (DECL_RTL_SET_P (t))
2328 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2330 /* Now process sub-blocks. */
2331 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2332 unshare_all_decls (t);
2335 /* Go through all virtual stack slots of a function and mark them as
2336 not shared. */
2337 static void
2338 reset_used_decls (blk)
2339 tree blk;
2341 tree t;
2343 /* Mark decls. */
2344 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2345 if (DECL_RTL_SET_P (t))
2346 reset_used_flags (DECL_RTL (t));
2348 /* Now process sub-blocks. */
2349 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2350 reset_used_decls (t);
2353 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2354 Recursively does the same for subexpressions. */
2357 copy_rtx_if_shared (orig)
2358 rtx orig;
2360 rtx x = orig;
2361 int i;
2362 enum rtx_code code;
2363 const char *format_ptr;
2364 int copied = 0;
2366 if (x == 0)
2367 return 0;
2369 code = GET_CODE (x);
2371 /* These types may be freely shared. */
2373 switch (code)
2375 case REG:
2376 case QUEUED:
2377 case CONST_INT:
2378 case CONST_DOUBLE:
2379 case SYMBOL_REF:
2380 case CODE_LABEL:
2381 case PC:
2382 case CC0:
2383 case SCRATCH:
2384 /* SCRATCH must be shared because they represent distinct values. */
2385 return x;
2387 case CONST:
2388 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2389 a LABEL_REF, it isn't sharable. */
2390 if (GET_CODE (XEXP (x, 0)) == PLUS
2391 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2392 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2393 return x;
2394 break;
2396 case INSN:
2397 case JUMP_INSN:
2398 case CALL_INSN:
2399 case NOTE:
2400 case BARRIER:
2401 /* The chain of insns is not being copied. */
2402 return x;
2404 case MEM:
2405 /* A MEM is allowed to be shared if its address is constant.
2407 We used to allow sharing of MEMs which referenced
2408 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2409 that can lose. instantiate_virtual_regs will not unshare
2410 the MEMs, and combine may change the structure of the address
2411 because it looks safe and profitable in one context, but
2412 in some other context it creates unrecognizable RTL. */
2413 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2414 return x;
2416 break;
2418 default:
2419 break;
2422 /* This rtx may not be shared. If it has already been seen,
2423 replace it with a copy of itself. */
2425 if (x->used)
2427 rtx copy;
2429 copy = rtx_alloc (code);
2430 memcpy (copy, x,
2431 (sizeof (*copy) - sizeof (copy->fld)
2432 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2433 x = copy;
2434 copied = 1;
2436 x->used = 1;
2438 /* Now scan the subexpressions recursively.
2439 We can store any replaced subexpressions directly into X
2440 since we know X is not shared! Any vectors in X
2441 must be copied if X was copied. */
2443 format_ptr = GET_RTX_FORMAT (code);
2445 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2447 switch (*format_ptr++)
2449 case 'e':
2450 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2451 break;
2453 case 'E':
2454 if (XVEC (x, i) != NULL)
2456 int j;
2457 int len = XVECLEN (x, i);
2459 if (copied && len > 0)
2460 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2461 for (j = 0; j < len; j++)
2462 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2464 break;
2467 return x;
2470 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2471 to look for shared sub-parts. */
2473 void
2474 reset_used_flags (x)
2475 rtx x;
2477 int i, j;
2478 enum rtx_code code;
2479 const char *format_ptr;
2481 if (x == 0)
2482 return;
2484 code = GET_CODE (x);
2486 /* These types may be freely shared so we needn't do any resetting
2487 for them. */
2489 switch (code)
2491 case REG:
2492 case QUEUED:
2493 case CONST_INT:
2494 case CONST_DOUBLE:
2495 case SYMBOL_REF:
2496 case CODE_LABEL:
2497 case PC:
2498 case CC0:
2499 return;
2501 case INSN:
2502 case JUMP_INSN:
2503 case CALL_INSN:
2504 case NOTE:
2505 case LABEL_REF:
2506 case BARRIER:
2507 /* The chain of insns is not being copied. */
2508 return;
2510 default:
2511 break;
2514 x->used = 0;
2516 format_ptr = GET_RTX_FORMAT (code);
2517 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2519 switch (*format_ptr++)
2521 case 'e':
2522 reset_used_flags (XEXP (x, i));
2523 break;
2525 case 'E':
2526 for (j = 0; j < XVECLEN (x, i); j++)
2527 reset_used_flags (XVECEXP (x, i, j));
2528 break;
2533 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2534 Return X or the rtx for the pseudo reg the value of X was copied into.
2535 OTHER must be valid as a SET_DEST. */
2538 make_safe_from (x, other)
2539 rtx x, other;
2541 while (1)
2542 switch (GET_CODE (other))
2544 case SUBREG:
2545 other = SUBREG_REG (other);
2546 break;
2547 case STRICT_LOW_PART:
2548 case SIGN_EXTEND:
2549 case ZERO_EXTEND:
2550 other = XEXP (other, 0);
2551 break;
2552 default:
2553 goto done;
2555 done:
2556 if ((GET_CODE (other) == MEM
2557 && ! CONSTANT_P (x)
2558 && GET_CODE (x) != REG
2559 && GET_CODE (x) != SUBREG)
2560 || (GET_CODE (other) == REG
2561 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2562 || reg_mentioned_p (other, x))))
2564 rtx temp = gen_reg_rtx (GET_MODE (x));
2565 emit_move_insn (temp, x);
2566 return temp;
2568 return x;
2571 /* Emission of insns (adding them to the doubly-linked list). */
2573 /* Return the first insn of the current sequence or current function. */
2576 get_insns ()
2578 return first_insn;
2581 /* Return the last insn emitted in current sequence or current function. */
2584 get_last_insn ()
2586 return last_insn;
2589 /* Specify a new insn as the last in the chain. */
2591 void
2592 set_last_insn (insn)
2593 rtx insn;
2595 if (NEXT_INSN (insn) != 0)
2596 abort ();
2597 last_insn = insn;
2600 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2603 get_last_insn_anywhere ()
2605 struct sequence_stack *stack;
2606 if (last_insn)
2607 return last_insn;
2608 for (stack = seq_stack; stack; stack = stack->next)
2609 if (stack->last != 0)
2610 return stack->last;
2611 return 0;
2614 /* Return a number larger than any instruction's uid in this function. */
2617 get_max_uid ()
2619 return cur_insn_uid;
2622 /* Renumber instructions so that no instruction UIDs are wasted. */
2624 void
2625 renumber_insns (stream)
2626 FILE *stream;
2628 rtx insn;
2630 /* If we're not supposed to renumber instructions, don't. */
2631 if (!flag_renumber_insns)
2632 return;
2634 /* If there aren't that many instructions, then it's not really
2635 worth renumbering them. */
2636 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2637 return;
2639 cur_insn_uid = 1;
2641 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2643 if (stream)
2644 fprintf (stream, "Renumbering insn %d to %d\n",
2645 INSN_UID (insn), cur_insn_uid);
2646 INSN_UID (insn) = cur_insn_uid++;
2650 /* Return the next insn. If it is a SEQUENCE, return the first insn
2651 of the sequence. */
2654 next_insn (insn)
2655 rtx insn;
2657 if (insn)
2659 insn = NEXT_INSN (insn);
2660 if (insn && GET_CODE (insn) == INSN
2661 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2662 insn = XVECEXP (PATTERN (insn), 0, 0);
2665 return insn;
2668 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2669 of the sequence. */
2672 previous_insn (insn)
2673 rtx insn;
2675 if (insn)
2677 insn = PREV_INSN (insn);
2678 if (insn && GET_CODE (insn) == INSN
2679 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2680 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2683 return insn;
2686 /* Return the next insn after INSN that is not a NOTE. This routine does not
2687 look inside SEQUENCEs. */
2690 next_nonnote_insn (insn)
2691 rtx insn;
2693 while (insn)
2695 insn = NEXT_INSN (insn);
2696 if (insn == 0 || GET_CODE (insn) != NOTE)
2697 break;
2700 return insn;
2703 /* Return the previous insn before INSN that is not a NOTE. This routine does
2704 not look inside SEQUENCEs. */
2707 prev_nonnote_insn (insn)
2708 rtx insn;
2710 while (insn)
2712 insn = PREV_INSN (insn);
2713 if (insn == 0 || GET_CODE (insn) != NOTE)
2714 break;
2717 return insn;
2720 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2721 or 0, if there is none. This routine does not look inside
2722 SEQUENCEs. */
2725 next_real_insn (insn)
2726 rtx insn;
2728 while (insn)
2730 insn = NEXT_INSN (insn);
2731 if (insn == 0 || GET_CODE (insn) == INSN
2732 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2733 break;
2736 return insn;
2739 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2740 or 0, if there is none. This routine does not look inside
2741 SEQUENCEs. */
2744 prev_real_insn (insn)
2745 rtx insn;
2747 while (insn)
2749 insn = PREV_INSN (insn);
2750 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2751 || GET_CODE (insn) == JUMP_INSN)
2752 break;
2755 return insn;
2758 /* Find the next insn after INSN that really does something. This routine
2759 does not look inside SEQUENCEs. Until reload has completed, this is the
2760 same as next_real_insn. */
2763 active_insn_p (insn)
2764 rtx insn;
2766 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2767 || (GET_CODE (insn) == INSN
2768 && (! reload_completed
2769 || (GET_CODE (PATTERN (insn)) != USE
2770 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2774 next_active_insn (insn)
2775 rtx insn;
2777 while (insn)
2779 insn = NEXT_INSN (insn);
2780 if (insn == 0 || active_insn_p (insn))
2781 break;
2784 return insn;
2787 /* Find the last insn before INSN that really does something. This routine
2788 does not look inside SEQUENCEs. Until reload has completed, this is the
2789 same as prev_real_insn. */
2792 prev_active_insn (insn)
2793 rtx insn;
2795 while (insn)
2797 insn = PREV_INSN (insn);
2798 if (insn == 0 || active_insn_p (insn))
2799 break;
2802 return insn;
2805 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2808 next_label (insn)
2809 rtx insn;
2811 while (insn)
2813 insn = NEXT_INSN (insn);
2814 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2815 break;
2818 return insn;
2821 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2824 prev_label (insn)
2825 rtx insn;
2827 while (insn)
2829 insn = PREV_INSN (insn);
2830 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2831 break;
2834 return insn;
2837 #ifdef HAVE_cc0
2838 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2839 and REG_CC_USER notes so we can find it. */
2841 void
2842 link_cc0_insns (insn)
2843 rtx insn;
2845 rtx user = next_nonnote_insn (insn);
2847 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2848 user = XVECEXP (PATTERN (user), 0, 0);
2850 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2851 REG_NOTES (user));
2852 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2855 /* Return the next insn that uses CC0 after INSN, which is assumed to
2856 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2857 applied to the result of this function should yield INSN).
2859 Normally, this is simply the next insn. However, if a REG_CC_USER note
2860 is present, it contains the insn that uses CC0.
2862 Return 0 if we can't find the insn. */
2865 next_cc0_user (insn)
2866 rtx insn;
2868 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2870 if (note)
2871 return XEXP (note, 0);
2873 insn = next_nonnote_insn (insn);
2874 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2875 insn = XVECEXP (PATTERN (insn), 0, 0);
2877 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2878 return insn;
2880 return 0;
2883 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2884 note, it is the previous insn. */
2887 prev_cc0_setter (insn)
2888 rtx insn;
2890 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2892 if (note)
2893 return XEXP (note, 0);
2895 insn = prev_nonnote_insn (insn);
2896 if (! sets_cc0_p (PATTERN (insn)))
2897 abort ();
2899 return insn;
2901 #endif
2903 /* Increment the label uses for all labels present in rtx. */
2905 static void
2906 mark_label_nuses(x)
2907 rtx x;
2909 enum rtx_code code;
2910 int i, j;
2911 const char *fmt;
2913 code = GET_CODE (x);
2914 if (code == LABEL_REF)
2915 LABEL_NUSES (XEXP (x, 0))++;
2917 fmt = GET_RTX_FORMAT (code);
2918 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2920 if (fmt[i] == 'e')
2921 mark_label_nuses (XEXP (x, i));
2922 else if (fmt[i] == 'E')
2923 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2924 mark_label_nuses (XVECEXP (x, i, j));
2929 /* Try splitting insns that can be split for better scheduling.
2930 PAT is the pattern which might split.
2931 TRIAL is the insn providing PAT.
2932 LAST is non-zero if we should return the last insn of the sequence produced.
2934 If this routine succeeds in splitting, it returns the first or last
2935 replacement insn depending on the value of LAST. Otherwise, it
2936 returns TRIAL. If the insn to be returned can be split, it will be. */
2939 try_split (pat, trial, last)
2940 rtx pat, trial;
2941 int last;
2943 rtx before = PREV_INSN (trial);
2944 rtx after = NEXT_INSN (trial);
2945 int has_barrier = 0;
2946 rtx tem;
2947 rtx note, seq;
2948 int probability;
2950 if (any_condjump_p (trial)
2951 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
2952 split_branch_probability = INTVAL (XEXP (note, 0));
2953 probability = split_branch_probability;
2955 seq = split_insns (pat, trial);
2957 split_branch_probability = -1;
2959 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2960 We may need to handle this specially. */
2961 if (after && GET_CODE (after) == BARRIER)
2963 has_barrier = 1;
2964 after = NEXT_INSN (after);
2967 if (seq)
2969 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2970 The latter case will normally arise only when being done so that
2971 it, in turn, will be split (SFmode on the 29k is an example). */
2972 if (GET_CODE (seq) == SEQUENCE)
2974 int i, njumps = 0;
2976 /* Avoid infinite loop if any insn of the result matches
2977 the original pattern. */
2978 for (i = 0; i < XVECLEN (seq, 0); i++)
2979 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2980 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2981 return trial;
2983 /* Mark labels. */
2984 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2985 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2987 rtx insn = XVECEXP (seq, 0, i);
2988 mark_jump_label (PATTERN (insn),
2989 XVECEXP (seq, 0, i), 0);
2990 njumps++;
2991 if (probability != -1
2992 && any_condjump_p (insn)
2993 && !find_reg_note (insn, REG_BR_PROB, 0))
2995 /* We can preserve the REG_BR_PROB notes only if exactly
2996 one jump is created, otherwise the machine description
2997 is responsible for this step using
2998 split_branch_probability variable. */
2999 if (njumps != 1)
3000 abort ();
3001 REG_NOTES (insn)
3002 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3003 GEN_INT (probability),
3004 REG_NOTES (insn));
3008 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3009 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3010 if (GET_CODE (trial) == CALL_INSN)
3011 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3012 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
3013 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
3014 = CALL_INSN_FUNCTION_USAGE (trial);
3016 /* Copy notes, particularly those related to the CFG. */
3017 for (note = REG_NOTES (trial); note ; note = XEXP (note, 1))
3019 switch (REG_NOTE_KIND (note))
3021 case REG_EH_REGION:
3022 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3024 rtx insn = XVECEXP (seq, 0, i);
3025 if (GET_CODE (insn) == CALL_INSN
3026 || (flag_non_call_exceptions
3027 && may_trap_p (PATTERN (insn))))
3028 REG_NOTES (insn)
3029 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3030 XEXP (note, 0),
3031 REG_NOTES (insn));
3033 break;
3035 case REG_NORETURN:
3036 case REG_SETJMP:
3037 case REG_ALWAYS_RETURN:
3038 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3040 rtx insn = XVECEXP (seq, 0, i);
3041 if (GET_CODE (insn) == CALL_INSN)
3042 REG_NOTES (insn)
3043 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3044 XEXP (note, 0),
3045 REG_NOTES (insn));
3047 break;
3049 case REG_NON_LOCAL_GOTO:
3050 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3052 rtx insn = XVECEXP (seq, 0, i);
3053 if (GET_CODE (insn) == JUMP_INSN)
3054 REG_NOTES (insn)
3055 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3056 XEXP (note, 0),
3057 REG_NOTES (insn));
3059 break;
3061 default:
3062 break;
3066 /* If there are LABELS inside the split insns increment the
3067 usage count so we don't delete the label. */
3068 if (GET_CODE (trial) == INSN)
3069 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
3070 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
3071 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
3073 tem = emit_insn_after (seq, trial);
3075 delete_related_insns (trial);
3076 if (has_barrier)
3077 emit_barrier_after (tem);
3079 /* Recursively call try_split for each new insn created; by the
3080 time control returns here that insn will be fully split, so
3081 set LAST and continue from the insn after the one returned.
3082 We can't use next_active_insn here since AFTER may be a note.
3083 Ignore deleted insns, which can be occur if not optimizing. */
3084 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3085 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3086 tem = try_split (PATTERN (tem), tem, 1);
3088 /* Avoid infinite loop if the result matches the original pattern. */
3089 else if (rtx_equal_p (seq, pat))
3090 return trial;
3091 else
3093 PATTERN (trial) = seq;
3094 INSN_CODE (trial) = -1;
3095 try_split (seq, trial, last);
3098 /* Return either the first or the last insn, depending on which was
3099 requested. */
3100 return last
3101 ? (after ? PREV_INSN (after) : last_insn)
3102 : NEXT_INSN (before);
3105 return trial;
3108 /* Make and return an INSN rtx, initializing all its slots.
3109 Store PATTERN in the pattern slots. */
3112 make_insn_raw (pattern)
3113 rtx pattern;
3115 rtx insn;
3117 insn = rtx_alloc (INSN);
3119 INSN_UID (insn) = cur_insn_uid++;
3120 PATTERN (insn) = pattern;
3121 INSN_CODE (insn) = -1;
3122 LOG_LINKS (insn) = NULL;
3123 REG_NOTES (insn) = NULL;
3125 #ifdef ENABLE_RTL_CHECKING
3126 if (insn
3127 && INSN_P (insn)
3128 && (returnjump_p (insn)
3129 || (GET_CODE (insn) == SET
3130 && SET_DEST (insn) == pc_rtx)))
3132 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3133 debug_rtx (insn);
3135 #endif
3137 return insn;
3140 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
3142 static rtx
3143 make_jump_insn_raw (pattern)
3144 rtx pattern;
3146 rtx insn;
3148 insn = rtx_alloc (JUMP_INSN);
3149 INSN_UID (insn) = cur_insn_uid++;
3151 PATTERN (insn) = pattern;
3152 INSN_CODE (insn) = -1;
3153 LOG_LINKS (insn) = NULL;
3154 REG_NOTES (insn) = NULL;
3155 JUMP_LABEL (insn) = NULL;
3157 return insn;
3160 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
3162 static rtx
3163 make_call_insn_raw (pattern)
3164 rtx pattern;
3166 rtx insn;
3168 insn = rtx_alloc (CALL_INSN);
3169 INSN_UID (insn) = cur_insn_uid++;
3171 PATTERN (insn) = pattern;
3172 INSN_CODE (insn) = -1;
3173 LOG_LINKS (insn) = NULL;
3174 REG_NOTES (insn) = NULL;
3175 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3177 return insn;
3180 /* Add INSN to the end of the doubly-linked list.
3181 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3183 void
3184 add_insn (insn)
3185 rtx insn;
3187 PREV_INSN (insn) = last_insn;
3188 NEXT_INSN (insn) = 0;
3190 if (NULL != last_insn)
3191 NEXT_INSN (last_insn) = insn;
3193 if (NULL == first_insn)
3194 first_insn = insn;
3196 last_insn = insn;
3199 /* Add INSN into the doubly-linked list after insn AFTER. This and
3200 the next should be the only functions called to insert an insn once
3201 delay slots have been filled since only they know how to update a
3202 SEQUENCE. */
3204 void
3205 add_insn_after (insn, after)
3206 rtx insn, after;
3208 rtx next = NEXT_INSN (after);
3209 basic_block bb;
3211 if (optimize && INSN_DELETED_P (after))
3212 abort ();
3214 NEXT_INSN (insn) = next;
3215 PREV_INSN (insn) = after;
3217 if (next)
3219 PREV_INSN (next) = insn;
3220 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3221 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3223 else if (last_insn == after)
3224 last_insn = insn;
3225 else
3227 struct sequence_stack *stack = seq_stack;
3228 /* Scan all pending sequences too. */
3229 for (; stack; stack = stack->next)
3230 if (after == stack->last)
3232 stack->last = insn;
3233 break;
3236 if (stack == 0)
3237 abort ();
3240 if (basic_block_for_insn
3241 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3242 && (bb = BLOCK_FOR_INSN (after)))
3244 set_block_for_insn (insn, bb);
3245 /* Should not happen as first in the BB is always
3246 either NOTE or LABEL. */
3247 if (bb->end == after
3248 /* Avoid clobbering of structure when creating new BB. */
3249 && GET_CODE (insn) != BARRIER
3250 && (GET_CODE (insn) != NOTE
3251 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3252 bb->end = insn;
3255 NEXT_INSN (after) = insn;
3256 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3258 rtx sequence = PATTERN (after);
3259 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3263 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3264 the previous should be the only functions called to insert an insn once
3265 delay slots have been filled since only they know how to update a
3266 SEQUENCE. */
3268 void
3269 add_insn_before (insn, before)
3270 rtx insn, before;
3272 rtx prev = PREV_INSN (before);
3273 basic_block bb;
3275 if (optimize && INSN_DELETED_P (before))
3276 abort ();
3278 PREV_INSN (insn) = prev;
3279 NEXT_INSN (insn) = before;
3281 if (prev)
3283 NEXT_INSN (prev) = insn;
3284 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3286 rtx sequence = PATTERN (prev);
3287 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3290 else if (first_insn == before)
3291 first_insn = insn;
3292 else
3294 struct sequence_stack *stack = seq_stack;
3295 /* Scan all pending sequences too. */
3296 for (; stack; stack = stack->next)
3297 if (before == stack->first)
3299 stack->first = insn;
3300 break;
3303 if (stack == 0)
3304 abort ();
3307 if (basic_block_for_insn
3308 && (unsigned int)INSN_UID (before) < basic_block_for_insn->num_elements
3309 && (bb = BLOCK_FOR_INSN (before)))
3311 set_block_for_insn (insn, bb);
3312 /* Should not happen as first in the BB is always
3313 either NOTE or LABEl. */
3314 if (bb->head == insn
3315 /* Avoid clobbering of structure when creating new BB. */
3316 && GET_CODE (insn) != BARRIER
3317 && (GET_CODE (insn) != NOTE
3318 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3319 abort ();
3322 PREV_INSN (before) = insn;
3323 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3324 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3327 /* Remove an insn from its doubly-linked list. This function knows how
3328 to handle sequences. */
3329 void
3330 remove_insn (insn)
3331 rtx insn;
3333 rtx next = NEXT_INSN (insn);
3334 rtx prev = PREV_INSN (insn);
3335 basic_block bb;
3337 if (prev)
3339 NEXT_INSN (prev) = next;
3340 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3342 rtx sequence = PATTERN (prev);
3343 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3346 else if (first_insn == insn)
3347 first_insn = next;
3348 else
3350 struct sequence_stack *stack = seq_stack;
3351 /* Scan all pending sequences too. */
3352 for (; stack; stack = stack->next)
3353 if (insn == stack->first)
3355 stack->first = next;
3356 break;
3359 if (stack == 0)
3360 abort ();
3363 if (next)
3365 PREV_INSN (next) = prev;
3366 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3367 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3369 else if (last_insn == insn)
3370 last_insn = prev;
3371 else
3373 struct sequence_stack *stack = seq_stack;
3374 /* Scan all pending sequences too. */
3375 for (; stack; stack = stack->next)
3376 if (insn == stack->last)
3378 stack->last = prev;
3379 break;
3382 if (stack == 0)
3383 abort ();
3385 if (basic_block_for_insn
3386 && (unsigned int)INSN_UID (insn) < basic_block_for_insn->num_elements
3387 && (bb = BLOCK_FOR_INSN (insn)))
3389 if (bb->head == insn)
3391 /* Never ever delete the basic block note without deleting whole basic
3392 block. */
3393 if (GET_CODE (insn) == NOTE)
3394 abort ();
3395 bb->head = next;
3397 if (bb->end == insn)
3398 bb->end = prev;
3402 /* Delete all insns made since FROM.
3403 FROM becomes the new last instruction. */
3405 void
3406 delete_insns_since (from)
3407 rtx from;
3409 if (from == 0)
3410 first_insn = 0;
3411 else
3412 NEXT_INSN (from) = 0;
3413 last_insn = from;
3416 /* This function is deprecated, please use sequences instead.
3418 Move a consecutive bunch of insns to a different place in the chain.
3419 The insns to be moved are those between FROM and TO.
3420 They are moved to a new position after the insn AFTER.
3421 AFTER must not be FROM or TO or any insn in between.
3423 This function does not know about SEQUENCEs and hence should not be
3424 called after delay-slot filling has been done. */
3426 void
3427 reorder_insns_nobb (from, to, after)
3428 rtx from, to, after;
3430 /* Splice this bunch out of where it is now. */
3431 if (PREV_INSN (from))
3432 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3433 if (NEXT_INSN (to))
3434 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3435 if (last_insn == to)
3436 last_insn = PREV_INSN (from);
3437 if (first_insn == from)
3438 first_insn = NEXT_INSN (to);
3440 /* Make the new neighbors point to it and it to them. */
3441 if (NEXT_INSN (after))
3442 PREV_INSN (NEXT_INSN (after)) = to;
3444 NEXT_INSN (to) = NEXT_INSN (after);
3445 PREV_INSN (from) = after;
3446 NEXT_INSN (after) = from;
3447 if (after == last_insn)
3448 last_insn = to;
3451 /* Same as function above, but take care to update BB boundaries. */
3452 void
3453 reorder_insns (from, to, after)
3454 rtx from, to, after;
3456 rtx prev = PREV_INSN (from);
3457 basic_block bb, bb2;
3459 reorder_insns_nobb (from, to, after);
3461 if (basic_block_for_insn
3462 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3463 && (bb = BLOCK_FOR_INSN (after)))
3465 rtx x;
3467 if (basic_block_for_insn
3468 && (unsigned int)INSN_UID (from) < basic_block_for_insn->num_elements
3469 && (bb2 = BLOCK_FOR_INSN (from)))
3471 if (bb2->end == to)
3472 bb2->end = prev;
3475 if (bb->end == after)
3476 bb->end = to;
3478 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3479 set_block_for_insn (x, bb);
3483 /* Return the line note insn preceding INSN. */
3485 static rtx
3486 find_line_note (insn)
3487 rtx insn;
3489 if (no_line_numbers)
3490 return 0;
3492 for (; insn; insn = PREV_INSN (insn))
3493 if (GET_CODE (insn) == NOTE
3494 && NOTE_LINE_NUMBER (insn) >= 0)
3495 break;
3497 return insn;
3500 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3501 of the moved insns when debugging. This may insert a note between AFTER
3502 and FROM, and another one after TO. */
3504 void
3505 reorder_insns_with_line_notes (from, to, after)
3506 rtx from, to, after;
3508 rtx from_line = find_line_note (from);
3509 rtx after_line = find_line_note (after);
3511 reorder_insns (from, to, after);
3513 if (from_line == after_line)
3514 return;
3516 if (from_line)
3517 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3518 NOTE_LINE_NUMBER (from_line),
3519 after);
3520 if (after_line)
3521 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3522 NOTE_LINE_NUMBER (after_line),
3523 to);
3526 /* Remove unnecessary notes from the instruction stream. */
3528 void
3529 remove_unnecessary_notes ()
3531 rtx block_stack = NULL_RTX;
3532 rtx eh_stack = NULL_RTX;
3533 rtx insn;
3534 rtx next;
3535 rtx tmp;
3537 /* We must not remove the first instruction in the function because
3538 the compiler depends on the first instruction being a note. */
3539 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3541 /* Remember what's next. */
3542 next = NEXT_INSN (insn);
3544 /* We're only interested in notes. */
3545 if (GET_CODE (insn) != NOTE)
3546 continue;
3548 switch (NOTE_LINE_NUMBER (insn))
3550 case NOTE_INSN_DELETED:
3551 remove_insn (insn);
3552 break;
3554 case NOTE_INSN_EH_REGION_BEG:
3555 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3556 break;
3558 case NOTE_INSN_EH_REGION_END:
3559 /* Too many end notes. */
3560 if (eh_stack == NULL_RTX)
3561 abort ();
3562 /* Mismatched nesting. */
3563 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3564 abort ();
3565 tmp = eh_stack;
3566 eh_stack = XEXP (eh_stack, 1);
3567 free_INSN_LIST_node (tmp);
3568 break;
3570 case NOTE_INSN_BLOCK_BEG:
3571 /* By now, all notes indicating lexical blocks should have
3572 NOTE_BLOCK filled in. */
3573 if (NOTE_BLOCK (insn) == NULL_TREE)
3574 abort ();
3575 block_stack = alloc_INSN_LIST (insn, block_stack);
3576 break;
3578 case NOTE_INSN_BLOCK_END:
3579 /* Too many end notes. */
3580 if (block_stack == NULL_RTX)
3581 abort ();
3582 /* Mismatched nesting. */
3583 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3584 abort ();
3585 tmp = block_stack;
3586 block_stack = XEXP (block_stack, 1);
3587 free_INSN_LIST_node (tmp);
3589 /* Scan back to see if there are any non-note instructions
3590 between INSN and the beginning of this block. If not,
3591 then there is no PC range in the generated code that will
3592 actually be in this block, so there's no point in
3593 remembering the existence of the block. */
3594 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
3596 /* This block contains a real instruction. Note that we
3597 don't include labels; if the only thing in the block
3598 is a label, then there are still no PC values that
3599 lie within the block. */
3600 if (INSN_P (tmp))
3601 break;
3603 /* We're only interested in NOTEs. */
3604 if (GET_CODE (tmp) != NOTE)
3605 continue;
3607 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3609 /* We just verified that this BLOCK matches us with
3610 the block_stack check above. Never delete the
3611 BLOCK for the outermost scope of the function; we
3612 can refer to names from that scope even if the
3613 block notes are messed up. */
3614 if (! is_body_block (NOTE_BLOCK (insn))
3615 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3617 remove_insn (tmp);
3618 remove_insn (insn);
3620 break;
3622 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3623 /* There's a nested block. We need to leave the
3624 current block in place since otherwise the debugger
3625 wouldn't be able to show symbols from our block in
3626 the nested block. */
3627 break;
3632 /* Too many begin notes. */
3633 if (block_stack || eh_stack)
3634 abort ();
3638 /* Emit an insn of given code and pattern
3639 at a specified place within the doubly-linked list. */
3641 /* Make an instruction with body PATTERN
3642 and output it before the instruction BEFORE. */
3645 emit_insn_before (pattern, before)
3646 rtx pattern, before;
3648 rtx insn = before;
3650 if (GET_CODE (pattern) == SEQUENCE)
3652 int i;
3654 for (i = 0; i < XVECLEN (pattern, 0); i++)
3656 insn = XVECEXP (pattern, 0, i);
3657 add_insn_before (insn, before);
3660 else
3662 insn = make_insn_raw (pattern);
3663 add_insn_before (insn, before);
3666 return insn;
3669 /* Make an instruction with body PATTERN and code JUMP_INSN
3670 and output it before the instruction BEFORE. */
3673 emit_jump_insn_before (pattern, before)
3674 rtx pattern, before;
3676 rtx insn;
3678 if (GET_CODE (pattern) == SEQUENCE)
3679 insn = emit_insn_before (pattern, before);
3680 else
3682 insn = make_jump_insn_raw (pattern);
3683 add_insn_before (insn, before);
3686 return insn;
3689 /* Make an instruction with body PATTERN and code CALL_INSN
3690 and output it before the instruction BEFORE. */
3693 emit_call_insn_before (pattern, before)
3694 rtx pattern, before;
3696 rtx insn;
3698 if (GET_CODE (pattern) == SEQUENCE)
3699 insn = emit_insn_before (pattern, before);
3700 else
3702 insn = make_call_insn_raw (pattern);
3703 add_insn_before (insn, before);
3704 PUT_CODE (insn, CALL_INSN);
3707 return insn;
3710 /* Make an insn of code BARRIER
3711 and output it before the insn BEFORE. */
3714 emit_barrier_before (before)
3715 rtx before;
3717 rtx insn = rtx_alloc (BARRIER);
3719 INSN_UID (insn) = cur_insn_uid++;
3721 add_insn_before (insn, before);
3722 return insn;
3725 /* Emit the label LABEL before the insn BEFORE. */
3728 emit_label_before (label, before)
3729 rtx label, before;
3731 /* This can be called twice for the same label as a result of the
3732 confusion that follows a syntax error! So make it harmless. */
3733 if (INSN_UID (label) == 0)
3735 INSN_UID (label) = cur_insn_uid++;
3736 add_insn_before (label, before);
3739 return label;
3742 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3745 emit_note_before (subtype, before)
3746 int subtype;
3747 rtx before;
3749 rtx note = rtx_alloc (NOTE);
3750 INSN_UID (note) = cur_insn_uid++;
3751 NOTE_SOURCE_FILE (note) = 0;
3752 NOTE_LINE_NUMBER (note) = subtype;
3754 add_insn_before (note, before);
3755 return note;
3758 /* Make an insn of code INSN with body PATTERN
3759 and output it after the insn AFTER. */
3762 emit_insn_after (pattern, after)
3763 rtx pattern, after;
3765 rtx insn = after;
3767 if (GET_CODE (pattern) == SEQUENCE)
3769 int i;
3771 for (i = 0; i < XVECLEN (pattern, 0); i++)
3773 insn = XVECEXP (pattern, 0, i);
3774 add_insn_after (insn, after);
3775 after = insn;
3778 else
3780 insn = make_insn_raw (pattern);
3781 add_insn_after (insn, after);
3784 return insn;
3787 /* Similar to emit_insn_after, except that line notes are to be inserted so
3788 as to act as if this insn were at FROM. */
3790 void
3791 emit_insn_after_with_line_notes (pattern, after, from)
3792 rtx pattern, after, from;
3794 rtx from_line = find_line_note (from);
3795 rtx after_line = find_line_note (after);
3796 rtx insn = emit_insn_after (pattern, after);
3798 if (from_line)
3799 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3800 NOTE_LINE_NUMBER (from_line),
3801 after);
3803 if (after_line)
3804 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3805 NOTE_LINE_NUMBER (after_line),
3806 insn);
3809 /* Make an insn of code JUMP_INSN with body PATTERN
3810 and output it after the insn AFTER. */
3813 emit_jump_insn_after (pattern, after)
3814 rtx pattern, after;
3816 rtx insn;
3818 if (GET_CODE (pattern) == SEQUENCE)
3819 insn = emit_insn_after (pattern, after);
3820 else
3822 insn = make_jump_insn_raw (pattern);
3823 add_insn_after (insn, after);
3826 return insn;
3829 /* Make an insn of code BARRIER
3830 and output it after the insn AFTER. */
3833 emit_barrier_after (after)
3834 rtx after;
3836 rtx insn = rtx_alloc (BARRIER);
3838 INSN_UID (insn) = cur_insn_uid++;
3840 add_insn_after (insn, after);
3841 return insn;
3844 /* Emit the label LABEL after the insn AFTER. */
3847 emit_label_after (label, after)
3848 rtx label, after;
3850 /* This can be called twice for the same label
3851 as a result of the confusion that follows a syntax error!
3852 So make it harmless. */
3853 if (INSN_UID (label) == 0)
3855 INSN_UID (label) = cur_insn_uid++;
3856 add_insn_after (label, after);
3859 return label;
3862 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3865 emit_note_after (subtype, after)
3866 int subtype;
3867 rtx after;
3869 rtx note = rtx_alloc (NOTE);
3870 INSN_UID (note) = cur_insn_uid++;
3871 NOTE_SOURCE_FILE (note) = 0;
3872 NOTE_LINE_NUMBER (note) = subtype;
3873 add_insn_after (note, after);
3874 return note;
3877 /* Emit a line note for FILE and LINE after the insn AFTER. */
3880 emit_line_note_after (file, line, after)
3881 const char *file;
3882 int line;
3883 rtx after;
3885 rtx note;
3887 if (no_line_numbers && line > 0)
3889 cur_insn_uid++;
3890 return 0;
3893 note = rtx_alloc (NOTE);
3894 INSN_UID (note) = cur_insn_uid++;
3895 NOTE_SOURCE_FILE (note) = file;
3896 NOTE_LINE_NUMBER (note) = line;
3897 add_insn_after (note, after);
3898 return note;
3901 /* Make an insn of code INSN with pattern PATTERN
3902 and add it to the end of the doubly-linked list.
3903 If PATTERN is a SEQUENCE, take the elements of it
3904 and emit an insn for each element.
3906 Returns the last insn emitted. */
3909 emit_insn (pattern)
3910 rtx pattern;
3912 rtx insn = last_insn;
3914 if (GET_CODE (pattern) == SEQUENCE)
3916 int i;
3918 for (i = 0; i < XVECLEN (pattern, 0); i++)
3920 insn = XVECEXP (pattern, 0, i);
3921 add_insn (insn);
3924 else
3926 insn = make_insn_raw (pattern);
3927 add_insn (insn);
3930 return insn;
3933 /* Emit the insns in a chain starting with INSN.
3934 Return the last insn emitted. */
3937 emit_insns (insn)
3938 rtx insn;
3940 rtx last = 0;
3942 while (insn)
3944 rtx next = NEXT_INSN (insn);
3945 add_insn (insn);
3946 last = insn;
3947 insn = next;
3950 return last;
3953 /* Emit the insns in a chain starting with INSN and place them in front of
3954 the insn BEFORE. Return the last insn emitted. */
3957 emit_insns_before (insn, before)
3958 rtx insn;
3959 rtx before;
3961 rtx last = 0;
3963 while (insn)
3965 rtx next = NEXT_INSN (insn);
3966 add_insn_before (insn, before);
3967 last = insn;
3968 insn = next;
3971 return last;
3974 /* Emit the insns in a chain starting with FIRST and place them in back of
3975 the insn AFTER. Return the last insn emitted. */
3978 emit_insns_after (first, after)
3979 rtx first;
3980 rtx after;
3982 rtx last;
3983 rtx after_after;
3984 basic_block bb;
3986 if (!after)
3987 abort ();
3989 if (!first)
3990 return after;
3992 if (basic_block_for_insn
3993 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3994 && (bb = BLOCK_FOR_INSN (after)))
3996 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3997 set_block_for_insn (last, bb);
3998 set_block_for_insn (last, bb);
3999 if (bb->end == after)
4000 bb->end = last;
4002 else
4003 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4004 continue;
4006 after_after = NEXT_INSN (after);
4008 NEXT_INSN (after) = first;
4009 PREV_INSN (first) = after;
4010 NEXT_INSN (last) = after_after;
4011 if (after_after)
4012 PREV_INSN (after_after) = last;
4014 if (after == last_insn)
4015 last_insn = last;
4016 return last;
4019 /* Make an insn of code JUMP_INSN with pattern PATTERN
4020 and add it to the end of the doubly-linked list. */
4023 emit_jump_insn (pattern)
4024 rtx pattern;
4026 if (GET_CODE (pattern) == SEQUENCE)
4027 return emit_insn (pattern);
4028 else
4030 rtx insn = make_jump_insn_raw (pattern);
4031 add_insn (insn);
4032 return insn;
4036 /* Make an insn of code CALL_INSN with pattern PATTERN
4037 and add it to the end of the doubly-linked list. */
4040 emit_call_insn (pattern)
4041 rtx pattern;
4043 if (GET_CODE (pattern) == SEQUENCE)
4044 return emit_insn (pattern);
4045 else
4047 rtx insn = make_call_insn_raw (pattern);
4048 add_insn (insn);
4049 PUT_CODE (insn, CALL_INSN);
4050 return insn;
4054 /* Add the label LABEL to the end of the doubly-linked list. */
4057 emit_label (label)
4058 rtx label;
4060 /* This can be called twice for the same label
4061 as a result of the confusion that follows a syntax error!
4062 So make it harmless. */
4063 if (INSN_UID (label) == 0)
4065 INSN_UID (label) = cur_insn_uid++;
4066 add_insn (label);
4068 return label;
4071 /* Make an insn of code BARRIER
4072 and add it to the end of the doubly-linked list. */
4075 emit_barrier ()
4077 rtx barrier = rtx_alloc (BARRIER);
4078 INSN_UID (barrier) = cur_insn_uid++;
4079 add_insn (barrier);
4080 return barrier;
4083 /* Make an insn of code NOTE
4084 with data-fields specified by FILE and LINE
4085 and add it to the end of the doubly-linked list,
4086 but only if line-numbers are desired for debugging info. */
4089 emit_line_note (file, line)
4090 const char *file;
4091 int line;
4093 set_file_and_line_for_stmt (file, line);
4095 #if 0
4096 if (no_line_numbers)
4097 return 0;
4098 #endif
4100 return emit_note (file, line);
4103 /* Make an insn of code NOTE
4104 with data-fields specified by FILE and LINE
4105 and add it to the end of the doubly-linked list.
4106 If it is a line-number NOTE, omit it if it matches the previous one. */
4109 emit_note (file, line)
4110 const char *file;
4111 int line;
4113 rtx note;
4115 if (line > 0)
4117 if (file && last_filename && !strcmp (file, last_filename)
4118 && line == last_linenum)
4119 return 0;
4120 last_filename = file;
4121 last_linenum = line;
4124 if (no_line_numbers && line > 0)
4126 cur_insn_uid++;
4127 return 0;
4130 note = rtx_alloc (NOTE);
4131 INSN_UID (note) = cur_insn_uid++;
4132 NOTE_SOURCE_FILE (note) = file;
4133 NOTE_LINE_NUMBER (note) = line;
4134 add_insn (note);
4135 return note;
4138 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4141 emit_line_note_force (file, line)
4142 const char *file;
4143 int line;
4145 last_linenum = -1;
4146 return emit_line_note (file, line);
4149 /* Cause next statement to emit a line note even if the line number
4150 has not changed. This is used at the beginning of a function. */
4152 void
4153 force_next_line_note ()
4155 last_linenum = -1;
4158 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4159 note of this type already exists, remove it first. */
4162 set_unique_reg_note (insn, kind, datum)
4163 rtx insn;
4164 enum reg_note kind;
4165 rtx datum;
4167 rtx note = find_reg_note (insn, kind, NULL_RTX);
4169 switch (kind)
4171 case REG_EQUAL:
4172 case REG_EQUIV:
4173 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4174 has multiple sets (some callers assume single_set
4175 means the insn only has one set, when in fact it
4176 means the insn only has one * useful * set). */
4177 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4179 if (note)
4180 abort ();
4181 return NULL_RTX;
4184 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4185 It serves no useful purpose and breaks eliminate_regs. */
4186 if (GET_CODE (datum) == ASM_OPERANDS)
4187 return NULL_RTX;
4188 break;
4190 default:
4191 break;
4194 if (note)
4196 XEXP (note, 0) = datum;
4197 return note;
4200 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4201 return REG_NOTES (insn);
4204 /* Return an indication of which type of insn should have X as a body.
4205 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4207 enum rtx_code
4208 classify_insn (x)
4209 rtx x;
4211 if (GET_CODE (x) == CODE_LABEL)
4212 return CODE_LABEL;
4213 if (GET_CODE (x) == CALL)
4214 return CALL_INSN;
4215 if (GET_CODE (x) == RETURN)
4216 return JUMP_INSN;
4217 if (GET_CODE (x) == SET)
4219 if (SET_DEST (x) == pc_rtx)
4220 return JUMP_INSN;
4221 else if (GET_CODE (SET_SRC (x)) == CALL)
4222 return CALL_INSN;
4223 else
4224 return INSN;
4226 if (GET_CODE (x) == PARALLEL)
4228 int j;
4229 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4230 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4231 return CALL_INSN;
4232 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4233 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4234 return JUMP_INSN;
4235 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4236 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4237 return CALL_INSN;
4239 return INSN;
4242 /* Emit the rtl pattern X as an appropriate kind of insn.
4243 If X is a label, it is simply added into the insn chain. */
4246 emit (x)
4247 rtx x;
4249 enum rtx_code code = classify_insn (x);
4251 if (code == CODE_LABEL)
4252 return emit_label (x);
4253 else if (code == INSN)
4254 return emit_insn (x);
4255 else if (code == JUMP_INSN)
4257 rtx insn = emit_jump_insn (x);
4258 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4259 return emit_barrier ();
4260 return insn;
4262 else if (code == CALL_INSN)
4263 return emit_call_insn (x);
4264 else
4265 abort ();
4268 /* Begin emitting insns to a sequence which can be packaged in an
4269 RTL_EXPR. If this sequence will contain something that might cause
4270 the compiler to pop arguments to function calls (because those
4271 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4272 details), use do_pending_stack_adjust before calling this function.
4273 That will ensure that the deferred pops are not accidentally
4274 emitted in the middle of this sequence. */
4276 void
4277 start_sequence ()
4279 struct sequence_stack *tem;
4281 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
4283 tem->next = seq_stack;
4284 tem->first = first_insn;
4285 tem->last = last_insn;
4286 tem->sequence_rtl_expr = seq_rtl_expr;
4288 seq_stack = tem;
4290 first_insn = 0;
4291 last_insn = 0;
4294 /* Similarly, but indicate that this sequence will be placed in T, an
4295 RTL_EXPR. See the documentation for start_sequence for more
4296 information about how to use this function. */
4298 void
4299 start_sequence_for_rtl_expr (t)
4300 tree t;
4302 start_sequence ();
4304 seq_rtl_expr = t;
4307 /* Set up the insn chain starting with FIRST as the current sequence,
4308 saving the previously current one. See the documentation for
4309 start_sequence for more information about how to use this function. */
4311 void
4312 push_to_sequence (first)
4313 rtx first;
4315 rtx last;
4317 start_sequence ();
4319 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4321 first_insn = first;
4322 last_insn = last;
4325 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4327 void
4328 push_to_full_sequence (first, last)
4329 rtx first, last;
4331 start_sequence ();
4332 first_insn = first;
4333 last_insn = last;
4334 /* We really should have the end of the insn chain here. */
4335 if (last && NEXT_INSN (last))
4336 abort ();
4339 /* Set up the outer-level insn chain
4340 as the current sequence, saving the previously current one. */
4342 void
4343 push_topmost_sequence ()
4345 struct sequence_stack *stack, *top = NULL;
4347 start_sequence ();
4349 for (stack = seq_stack; stack; stack = stack->next)
4350 top = stack;
4352 first_insn = top->first;
4353 last_insn = top->last;
4354 seq_rtl_expr = top->sequence_rtl_expr;
4357 /* After emitting to the outer-level insn chain, update the outer-level
4358 insn chain, and restore the previous saved state. */
4360 void
4361 pop_topmost_sequence ()
4363 struct sequence_stack *stack, *top = NULL;
4365 for (stack = seq_stack; stack; stack = stack->next)
4366 top = stack;
4368 top->first = first_insn;
4369 top->last = last_insn;
4370 /* ??? Why don't we save seq_rtl_expr here? */
4372 end_sequence ();
4375 /* After emitting to a sequence, restore previous saved state.
4377 To get the contents of the sequence just made, you must call
4378 `gen_sequence' *before* calling here.
4380 If the compiler might have deferred popping arguments while
4381 generating this sequence, and this sequence will not be immediately
4382 inserted into the instruction stream, use do_pending_stack_adjust
4383 before calling gen_sequence. That will ensure that the deferred
4384 pops are inserted into this sequence, and not into some random
4385 location in the instruction stream. See INHIBIT_DEFER_POP for more
4386 information about deferred popping of arguments. */
4388 void
4389 end_sequence ()
4391 struct sequence_stack *tem = seq_stack;
4393 first_insn = tem->first;
4394 last_insn = tem->last;
4395 seq_rtl_expr = tem->sequence_rtl_expr;
4396 seq_stack = tem->next;
4398 free (tem);
4401 /* This works like end_sequence, but records the old sequence in FIRST
4402 and LAST. */
4404 void
4405 end_full_sequence (first, last)
4406 rtx *first, *last;
4408 *first = first_insn;
4409 *last = last_insn;
4410 end_sequence();
4413 /* Return 1 if currently emitting into a sequence. */
4416 in_sequence_p ()
4418 return seq_stack != 0;
4421 /* Generate a SEQUENCE rtx containing the insns already emitted
4422 to the current sequence.
4424 This is how the gen_... function from a DEFINE_EXPAND
4425 constructs the SEQUENCE that it returns. */
4428 gen_sequence ()
4430 rtx result;
4431 rtx tem;
4432 int i;
4433 int len;
4435 /* Count the insns in the chain. */
4436 len = 0;
4437 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
4438 len++;
4440 /* If only one insn, return it rather than a SEQUENCE.
4441 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
4442 the case of an empty list.)
4443 We only return the pattern of an insn if its code is INSN and it
4444 has no notes. This ensures that no information gets lost. */
4445 if (len == 1
4446 && ! RTX_FRAME_RELATED_P (first_insn)
4447 && GET_CODE (first_insn) == INSN
4448 /* Don't throw away any reg notes. */
4449 && REG_NOTES (first_insn) == 0)
4450 return PATTERN (first_insn);
4452 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
4454 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
4455 XVECEXP (result, 0, i) = tem;
4457 return result;
4460 /* Put the various virtual registers into REGNO_REG_RTX. */
4462 void
4463 init_virtual_regs (es)
4464 struct emit_status *es;
4466 rtx *ptr = es->x_regno_reg_rtx;
4467 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4468 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4469 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4470 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4471 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4474 void
4475 clear_emit_caches ()
4477 int i;
4479 /* Clear the start_sequence/gen_sequence cache. */
4480 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
4481 sequence_result[i] = 0;
4482 free_insn = 0;
4485 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4486 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4487 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4488 static int copy_insn_n_scratches;
4490 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4491 copied an ASM_OPERANDS.
4492 In that case, it is the original input-operand vector. */
4493 static rtvec orig_asm_operands_vector;
4495 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4496 copied an ASM_OPERANDS.
4497 In that case, it is the copied input-operand vector. */
4498 static rtvec copy_asm_operands_vector;
4500 /* Likewise for the constraints vector. */
4501 static rtvec orig_asm_constraints_vector;
4502 static rtvec copy_asm_constraints_vector;
4504 /* Recursively create a new copy of an rtx for copy_insn.
4505 This function differs from copy_rtx in that it handles SCRATCHes and
4506 ASM_OPERANDs properly.
4507 Normally, this function is not used directly; use copy_insn as front end.
4508 However, you could first copy an insn pattern with copy_insn and then use
4509 this function afterwards to properly copy any REG_NOTEs containing
4510 SCRATCHes. */
4513 copy_insn_1 (orig)
4514 rtx orig;
4516 rtx copy;
4517 int i, j;
4518 RTX_CODE code;
4519 const char *format_ptr;
4521 code = GET_CODE (orig);
4523 switch (code)
4525 case REG:
4526 case QUEUED:
4527 case CONST_INT:
4528 case CONST_DOUBLE:
4529 case SYMBOL_REF:
4530 case CODE_LABEL:
4531 case PC:
4532 case CC0:
4533 case ADDRESSOF:
4534 return orig;
4536 case SCRATCH:
4537 for (i = 0; i < copy_insn_n_scratches; i++)
4538 if (copy_insn_scratch_in[i] == orig)
4539 return copy_insn_scratch_out[i];
4540 break;
4542 case CONST:
4543 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4544 a LABEL_REF, it isn't sharable. */
4545 if (GET_CODE (XEXP (orig, 0)) == PLUS
4546 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4547 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4548 return orig;
4549 break;
4551 /* A MEM with a constant address is not sharable. The problem is that
4552 the constant address may need to be reloaded. If the mem is shared,
4553 then reloading one copy of this mem will cause all copies to appear
4554 to have been reloaded. */
4556 default:
4557 break;
4560 copy = rtx_alloc (code);
4562 /* Copy the various flags, and other information. We assume that
4563 all fields need copying, and then clear the fields that should
4564 not be copied. That is the sensible default behavior, and forces
4565 us to explicitly document why we are *not* copying a flag. */
4566 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4568 /* We do not copy the USED flag, which is used as a mark bit during
4569 walks over the RTL. */
4570 copy->used = 0;
4572 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4573 if (GET_RTX_CLASS (code) == 'i')
4575 copy->jump = 0;
4576 copy->call = 0;
4577 copy->frame_related = 0;
4580 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4582 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4584 copy->fld[i] = orig->fld[i];
4585 switch (*format_ptr++)
4587 case 'e':
4588 if (XEXP (orig, i) != NULL)
4589 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4590 break;
4592 case 'E':
4593 case 'V':
4594 if (XVEC (orig, i) == orig_asm_constraints_vector)
4595 XVEC (copy, i) = copy_asm_constraints_vector;
4596 else if (XVEC (orig, i) == orig_asm_operands_vector)
4597 XVEC (copy, i) = copy_asm_operands_vector;
4598 else if (XVEC (orig, i) != NULL)
4600 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4601 for (j = 0; j < XVECLEN (copy, i); j++)
4602 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4604 break;
4606 case 't':
4607 case 'w':
4608 case 'i':
4609 case 's':
4610 case 'S':
4611 case 'u':
4612 case '0':
4613 /* These are left unchanged. */
4614 break;
4616 default:
4617 abort ();
4621 if (code == SCRATCH)
4623 i = copy_insn_n_scratches++;
4624 if (i >= MAX_RECOG_OPERANDS)
4625 abort ();
4626 copy_insn_scratch_in[i] = orig;
4627 copy_insn_scratch_out[i] = copy;
4629 else if (code == ASM_OPERANDS)
4631 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4632 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4633 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4634 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4637 return copy;
4640 /* Create a new copy of an rtx.
4641 This function differs from copy_rtx in that it handles SCRATCHes and
4642 ASM_OPERANDs properly.
4643 INSN doesn't really have to be a full INSN; it could be just the
4644 pattern. */
4646 copy_insn (insn)
4647 rtx insn;
4649 copy_insn_n_scratches = 0;
4650 orig_asm_operands_vector = 0;
4651 orig_asm_constraints_vector = 0;
4652 copy_asm_operands_vector = 0;
4653 copy_asm_constraints_vector = 0;
4654 return copy_insn_1 (insn);
4657 /* Initialize data structures and variables in this file
4658 before generating rtl for each function. */
4660 void
4661 init_emit ()
4663 struct function *f = cfun;
4665 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
4666 first_insn = NULL;
4667 last_insn = NULL;
4668 seq_rtl_expr = NULL;
4669 cur_insn_uid = 1;
4670 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4671 last_linenum = 0;
4672 last_filename = 0;
4673 first_label_num = label_num;
4674 last_label_num = 0;
4675 seq_stack = NULL;
4677 clear_emit_caches ();
4679 /* Init the tables that describe all the pseudo regs. */
4681 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4683 f->emit->regno_pointer_align
4684 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4685 sizeof (unsigned char));
4687 regno_reg_rtx
4688 = (rtx *) xcalloc (f->emit->regno_pointer_align_length, sizeof (rtx));
4690 f->emit->regno_decl
4691 = (tree *) xcalloc (f->emit->regno_pointer_align_length, sizeof (tree));
4693 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4694 init_virtual_regs (f->emit);
4696 /* Indicate that the virtual registers and stack locations are
4697 all pointers. */
4698 REG_POINTER (stack_pointer_rtx) = 1;
4699 REG_POINTER (frame_pointer_rtx) = 1;
4700 REG_POINTER (hard_frame_pointer_rtx) = 1;
4701 REG_POINTER (arg_pointer_rtx) = 1;
4703 REG_POINTER (virtual_incoming_args_rtx) = 1;
4704 REG_POINTER (virtual_stack_vars_rtx) = 1;
4705 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4706 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4707 REG_POINTER (virtual_cfa_rtx) = 1;
4709 #ifdef STACK_BOUNDARY
4710 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4711 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4712 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4713 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4715 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4716 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4717 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4718 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4719 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4720 #endif
4722 #ifdef INIT_EXPANDERS
4723 INIT_EXPANDERS;
4724 #endif
4727 /* Mark SS for GC. */
4729 static void
4730 mark_sequence_stack (ss)
4731 struct sequence_stack *ss;
4733 while (ss)
4735 ggc_mark_rtx (ss->first);
4736 ggc_mark_tree (ss->sequence_rtl_expr);
4737 ss = ss->next;
4741 /* Mark ES for GC. */
4743 void
4744 mark_emit_status (es)
4745 struct emit_status *es;
4747 rtx *r;
4748 tree *t;
4749 int i;
4751 if (es == 0)
4752 return;
4754 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx,
4755 t = es->regno_decl;
4756 i > 0; --i, ++r, ++t)
4758 ggc_mark_rtx (*r);
4759 ggc_mark_tree (*t);
4762 mark_sequence_stack (es->sequence_stack);
4763 ggc_mark_tree (es->sequence_rtl_expr);
4764 ggc_mark_rtx (es->x_first_insn);
4767 /* Create some permanent unique rtl objects shared between all functions.
4768 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4770 void
4771 init_emit_once (line_numbers)
4772 int line_numbers;
4774 int i;
4775 enum machine_mode mode;
4776 enum machine_mode double_mode;
4778 /* Initialize the CONST_INT and memory attribute hash tables. */
4779 const_int_htab = htab_create (37, const_int_htab_hash,
4780 const_int_htab_eq, NULL);
4781 ggc_add_deletable_htab (const_int_htab, 0, 0);
4783 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
4784 mem_attrs_htab_eq, NULL);
4785 ggc_add_deletable_htab (mem_attrs_htab, 0, mem_attrs_mark);
4787 no_line_numbers = ! line_numbers;
4789 /* Compute the word and byte modes. */
4791 byte_mode = VOIDmode;
4792 word_mode = VOIDmode;
4793 double_mode = VOIDmode;
4795 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4796 mode = GET_MODE_WIDER_MODE (mode))
4798 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4799 && byte_mode == VOIDmode)
4800 byte_mode = mode;
4802 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4803 && word_mode == VOIDmode)
4804 word_mode = mode;
4807 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4808 mode = GET_MODE_WIDER_MODE (mode))
4810 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4811 && double_mode == VOIDmode)
4812 double_mode = mode;
4815 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4817 /* Assign register numbers to the globally defined register rtx.
4818 This must be done at runtime because the register number field
4819 is in a union and some compilers can't initialize unions. */
4821 pc_rtx = gen_rtx (PC, VOIDmode);
4822 cc0_rtx = gen_rtx (CC0, VOIDmode);
4823 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4824 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4825 if (hard_frame_pointer_rtx == 0)
4826 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4827 HARD_FRAME_POINTER_REGNUM);
4828 if (arg_pointer_rtx == 0)
4829 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4830 virtual_incoming_args_rtx =
4831 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4832 virtual_stack_vars_rtx =
4833 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4834 virtual_stack_dynamic_rtx =
4835 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4836 virtual_outgoing_args_rtx =
4837 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4838 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4840 /* These rtx must be roots if GC is enabled. */
4841 ggc_add_rtx_root (global_rtl, GR_MAX);
4843 #ifdef INIT_EXPANDERS
4844 /* This is to initialize {init|mark|free}_machine_status before the first
4845 call to push_function_context_to. This is needed by the Chill front
4846 end which calls push_function_context_to before the first call to
4847 init_function_start. */
4848 INIT_EXPANDERS;
4849 #endif
4851 /* Create the unique rtx's for certain rtx codes and operand values. */
4853 /* Don't use gen_rtx here since gen_rtx in this case
4854 tries to use these variables. */
4855 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4856 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4857 gen_rtx_raw_CONST_INT (VOIDmode, i);
4858 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4860 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4861 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4862 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4863 else
4864 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4866 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4867 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4868 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4869 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4871 for (i = 0; i <= 2; i++)
4873 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4874 mode = GET_MODE_WIDER_MODE (mode))
4876 rtx tem = rtx_alloc (CONST_DOUBLE);
4877 union real_extract u;
4879 /* Zero any holes in a structure. */
4880 memset ((char *) &u, 0, sizeof u);
4881 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4883 /* Avoid trailing garbage in the rtx. */
4884 if (sizeof (u) < sizeof (HOST_WIDE_INT))
4885 CONST_DOUBLE_LOW (tem) = 0;
4886 if (sizeof (u) < 2 * sizeof (HOST_WIDE_INT))
4887 CONST_DOUBLE_HIGH (tem) = 0;
4889 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4890 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4891 PUT_MODE (tem, mode);
4893 const_tiny_rtx[i][(int) mode] = tem;
4896 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4898 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4899 mode = GET_MODE_WIDER_MODE (mode))
4900 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4902 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4903 mode != VOIDmode;
4904 mode = GET_MODE_WIDER_MODE (mode))
4905 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4908 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4909 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4910 const_tiny_rtx[0][i] = const0_rtx;
4912 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4913 if (STORE_FLAG_VALUE == 1)
4914 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4916 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4917 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4918 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4919 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4920 ggc_add_rtx_root (&const_true_rtx, 1);
4922 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4923 return_address_pointer_rtx
4924 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4925 #endif
4927 #ifdef STRUCT_VALUE
4928 struct_value_rtx = STRUCT_VALUE;
4929 #else
4930 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4931 #endif
4933 #ifdef STRUCT_VALUE_INCOMING
4934 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4935 #else
4936 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4937 struct_value_incoming_rtx
4938 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4939 #else
4940 struct_value_incoming_rtx = struct_value_rtx;
4941 #endif
4942 #endif
4944 #ifdef STATIC_CHAIN_REGNUM
4945 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4947 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4948 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4949 static_chain_incoming_rtx
4950 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4951 else
4952 #endif
4953 static_chain_incoming_rtx = static_chain_rtx;
4954 #endif
4956 #ifdef STATIC_CHAIN
4957 static_chain_rtx = STATIC_CHAIN;
4959 #ifdef STATIC_CHAIN_INCOMING
4960 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4961 #else
4962 static_chain_incoming_rtx = static_chain_rtx;
4963 #endif
4964 #endif
4966 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4967 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4969 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4970 ggc_add_rtx_root (&struct_value_rtx, 1);
4971 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4972 ggc_add_rtx_root (&static_chain_rtx, 1);
4973 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4974 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4977 /* Query and clear/ restore no_line_numbers. This is used by the
4978 switch / case handling in stmt.c to give proper line numbers in
4979 warnings about unreachable code. */
4982 force_line_numbers ()
4984 int old = no_line_numbers;
4986 no_line_numbers = 0;
4987 if (old)
4988 force_next_line_note ();
4989 return old;
4992 void
4993 restore_line_number_status (old_value)
4994 int old_value;
4996 no_line_numbers = old_value;