1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
11 -- Copyright (C) 1992-2001 Free Software Foundation, Inc. --
13 -- GNAT is free software; you can redistribute it and/or modify it under --
14 -- terms of the GNU General Public License as published by the Free Soft- --
15 -- ware Foundation; either version 2, or (at your option) any later ver- --
16 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
17 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
18 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
19 -- for more details. You should have received a copy of the GNU General --
20 -- Public License distributed with GNAT; see file COPYING. If not, write --
21 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
22 -- MA 02111-1307, USA. --
24 -- GNAT was originally developed by the GNAT team at New York University. --
25 -- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
27 ------------------------------------------------------------------------------
29 with Atree
; use Atree
;
30 with Checks
; use Checks
;
31 with Einfo
; use Einfo
;
32 with Exp_Util
; use Exp_Util
;
33 with Nlists
; use Nlists
;
34 with Nmake
; use Nmake
;
35 with Restrict
; use Restrict
;
36 with Rtsfind
; use Rtsfind
;
38 with Sem_Eval
; use Sem_Eval
;
39 with Sem_Res
; use Sem_Res
;
40 with Sem_Util
; use Sem_Util
;
41 with Sinfo
; use Sinfo
;
42 with Stand
; use Stand
;
43 with Tbuild
; use Tbuild
;
44 with Ttypes
; use Ttypes
;
45 with Uintp
; use Uintp
;
46 with Urealp
; use Urealp
;
48 package body Exp_Fixd
is
50 -----------------------
51 -- Local Subprograms --
52 -----------------------
54 -- General note; in this unit, a number of routines are driven by the
55 -- types (Etype) of their operands. Since we are dealing with unanalyzed
56 -- expressions as they are constructed, the Etypes would not normally be
57 -- set, but the construction routines that we use in this unit do in fact
58 -- set the Etype values correctly. In addition, setting the Etype ensures
59 -- that the analyzer does not try to redetermine the type when the node
60 -- is analyzed (which would be wrong, since in the case where we set the
61 -- Treat_Fixed_As_Integer or Conversion_OK flags, it would think it was
62 -- still dealing with a normal fixed-point operation and mess it up).
64 function Build_Conversion
68 Rchk
: Boolean := False)
70 -- Build an expression that converts the expression Expr to type Typ,
71 -- taking the source location from Sloc (N). If the conversions involve
72 -- fixed-point types, then the Conversion_OK flag will be set so that the
73 -- resulting conversions do not get re-expanded. On return the resulting
74 -- node has its Etype set. If Rchk is set, then Do_Range_Check is set
75 -- in the resulting conversion node.
77 function Build_Divide
(N
: Node_Id
; L
, R
: Node_Id
) return Node_Id
;
78 -- Builds an N_Op_Divide node from the given left and right operand
79 -- expressions, using the source location from Sloc (N). The operands
80 -- are either both Long_Long_Float, in which case Build_Divide differs
81 -- from Make_Op_Divide only in that the Etype of the resulting node is
82 -- set (to Long_Long_Float), or they can be integer types. In this case
83 -- the integer types need not be the same, and Build_Divide converts
84 -- the operand with the smaller sized type to match the type of the
85 -- other operand and sets this as the result type. The Rounded_Result
86 -- flag of the result in this case is set from the Rounded_Result flag
87 -- of node N. On return, the resulting node is analyzed, and has its
90 function Build_Double_Divide
94 -- Returns a node corresponding to the value X/(Y*Z) using the source
95 -- location from Sloc (N). The division is rounded if the Rounded_Result
96 -- flag of N is set. The integer types of X, Y, Z may be different. On
97 -- return the resulting node is analyzed, and has its Etype set.
99 procedure Build_Double_Divide_Code
102 Qnn
, Rnn
: out Entity_Id
;
104 -- Generates a sequence of code for determining the quotient and remainder
105 -- of the division X/(Y*Z), using the source location from Sloc (N).
106 -- Entities of appropriate types are allocated for the quotient and
107 -- remainder and returned in Qnn and Rnn. The result is rounded if
108 -- the Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn
109 -- are appropriately set on return.
111 function Build_Multiply
(N
: Node_Id
; L
, R
: Node_Id
) return Node_Id
;
112 -- Builds an N_Op_Multiply node from the given left and right operand
113 -- expressions, using the source location from Sloc (N). The operands
114 -- are either both Long_Long_Float, in which case Build_Divide differs
115 -- from Make_Op_Multiply only in that the Etype of the resulting node is
116 -- set (to Long_Long_Float), or they can be integer types. In this case
117 -- the integer types need not be the same, and Build_Multiply chooses
118 -- a type long enough to hold the product (i.e. twice the size of the
119 -- longer of the two operand types), and both operands are converted
120 -- to this type. The Etype of the result is also set to this value.
121 -- However, the result can never overflow Integer_64, so this is the
122 -- largest type that is ever generated. On return, the resulting node
123 -- is analyzed and has its Etype set.
125 function Build_Rem
(N
: Node_Id
; L
, R
: Node_Id
) return Node_Id
;
126 -- Builds an N_Op_Rem node from the given left and right operand
127 -- expressions, using the source location from Sloc (N). The operands
128 -- are both integer types, which need not be the same. Build_Rem
129 -- converts the operand with the smaller sized type to match the type
130 -- of the other operand and sets this as the result type. The result
131 -- is never rounded (rem operations cannot be rounded in any case!)
132 -- On return, the resulting node is analyzed and has its Etype set.
134 function Build_Scaled_Divide
138 -- Returns a node corresponding to the value X*Y/Z using the source
139 -- location from Sloc (N). The division is rounded if the Rounded_Result
140 -- flag of N is set. The integer types of X, Y, Z may be different. On
141 -- return the resulting node is analyzed and has is Etype set.
143 procedure Build_Scaled_Divide_Code
146 Qnn
, Rnn
: out Entity_Id
;
148 -- Generates a sequence of code for determining the quotient and remainder
149 -- of the division X*Y/Z, using the source location from Sloc (N). Entities
150 -- of appropriate types are allocated for the quotient and remainder and
151 -- returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
152 -- The division is rounded if the Rounded_Result flag of N is set. The
153 -- Etype fields of Qnn and Rnn are appropriately set on return.
155 procedure Do_Divide_Fixed_Fixed
(N
: Node_Id
);
156 -- Handles expansion of divide for case of two fixed-point operands
157 -- (neither of them universal), with an integer or fixed-point result.
158 -- N is the N_Op_Divide node to be expanded.
160 procedure Do_Divide_Fixed_Universal
(N
: Node_Id
);
161 -- Handles expansion of divide for case of a fixed-point operand divided
162 -- by a universal real operand, with an integer or fixed-point result. N
163 -- is the N_Op_Divide node to be expanded.
165 procedure Do_Divide_Universal_Fixed
(N
: Node_Id
);
166 -- Handles expansion of divide for case of a universal real operand
167 -- divided by a fixed-point operand, with an integer or fixed-point
168 -- result. N is the N_Op_Divide node to be expanded.
170 procedure Do_Multiply_Fixed_Fixed
(N
: Node_Id
);
171 -- Handles expansion of multiply for case of two fixed-point operands
172 -- (neither of them universal), with an integer or fixed-point result.
173 -- N is the N_Op_Multiply node to be expanded.
175 procedure Do_Multiply_Fixed_Universal
(N
: Node_Id
; Left
, Right
: Node_Id
);
176 -- Handles expansion of multiply for case of a fixed-point operand
177 -- multiplied by a universal real operand, with an integer or fixed-
178 -- point result. N is the N_Op_Multiply node to be expanded, and
179 -- Left, Right are the operands (which may have been switched).
181 procedure Expand_Convert_Fixed_Static
(N
: Node_Id
);
182 -- This routine is called where the node N is a conversion of a literal
183 -- or other static expression of a fixed-point type to some other type.
184 -- In such cases, we simply rewrite the operand as a real literal and
185 -- reanalyze. This avoids problems which would otherwise result from
186 -- attempting to build and fold expressions involving constants.
188 function Fpt_Value
(N
: Node_Id
) return Node_Id
;
189 -- Given an operand of fixed-point operation, return an expression that
190 -- represents the corresponding Long_Long_Float value. The expression
191 -- can be of integer type, floating-point type, or fixed-point type.
192 -- The expression returned is neither analyzed and resolved. The Etype
193 -- of the result is properly set (to Long_Long_Float).
195 function Integer_Literal
(N
: Node_Id
; V
: Uint
) return Node_Id
;
196 -- Given a non-negative universal integer value, build a typed integer
197 -- literal node, using the smallest applicable standard integer type. If
198 -- the value exceeds 2**63-1, the largest value allowed for perfect result
199 -- set scaling factors (see RM G.2.3(22)), then Empty is returned. The
200 -- node N provides the Sloc value for the constructed literal. The Etype
201 -- of the resulting literal is correctly set, and it is marked as analyzed.
203 function Real_Literal
(N
: Node_Id
; V
: Ureal
) return Node_Id
;
204 -- Build a real literal node from the given value, the Etype of the
205 -- returned node is set to Long_Long_Float, since all floating-point
206 -- arithmetic operations that we construct use Long_Long_Float
208 function Rounded_Result_Set
(N
: Node_Id
) return Boolean;
209 -- Returns True if N is a node that contains the Rounded_Result flag
210 -- and if the flag is true.
212 procedure Set_Result
(N
: Node_Id
; Expr
: Node_Id
; Rchk
: Boolean := False);
213 -- N is the node for the current conversion, division or multiplication
214 -- operation, and Expr is an expression representing the result. Expr
215 -- may be of floating-point or integer type. If the operation result
216 -- is fixed-point, then the value of Expr is in units of small of the
217 -- result type (i.e. small's have already been dealt with). The result
218 -- of the call is to replace N by an appropriate conversion to the
219 -- result type, dealing with rounding for the decimal types case. The
220 -- node is then analyzed and resolved using the result type. If Rchk
221 -- is True, then Do_Range_Check is set in the resulting conversion.
223 ----------------------
224 -- Build_Conversion --
225 ----------------------
227 function Build_Conversion
231 Rchk
: Boolean := False)
234 Loc
: constant Source_Ptr
:= Sloc
(N
);
236 Rcheck
: Boolean := Rchk
;
239 -- A special case, if the expression is an integer literal and the
240 -- target type is an integer type, then just retype the integer
241 -- literal to the desired target type. Don't do this if we need
244 if Nkind
(Expr
) = N_Integer_Literal
245 and then Is_Integer_Type
(Typ
)
250 -- Cases where we end up with a conversion. Note that we do not use the
251 -- Convert_To abstraction here, since we may be decorating the resulting
252 -- conversion with Rounded_Result and/or Conversion_OK, so we want the
253 -- conversion node present, even if it appears to be redundant.
256 -- Remove inner conversion if both inner and outer conversions are
257 -- to integer types, since the inner one serves no purpose (except
258 -- perhaps to set rounding, so we preserve the Rounded_Result flag)
259 -- and also we preserve the range check flag on the inner operand
261 if Is_Integer_Type
(Typ
)
262 and then Is_Integer_Type
(Etype
(Expr
))
263 and then Nkind
(Expr
) = N_Type_Conversion
266 Make_Type_Conversion
(Loc
,
267 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
268 Expression
=> Expression
(Expr
));
269 Set_Rounded_Result
(Result
, Rounded_Result_Set
(Expr
));
270 Rcheck
:= Rcheck
or Do_Range_Check
(Expr
);
272 -- For all other cases, a simple type conversion will work
276 Make_Type_Conversion
(Loc
,
277 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
281 -- Set Conversion_OK if either result or expression type is a
282 -- fixed-point type, since from a semantic point of view, we are
283 -- treating fixed-point values as integers at this stage.
285 if Is_Fixed_Point_Type
(Typ
)
286 or else Is_Fixed_Point_Type
(Etype
(Expression
(Result
)))
288 Set_Conversion_OK
(Result
);
291 -- Set Do_Range_Check if either it was requested by the caller,
292 -- or if an eliminated inner conversion had a range check.
295 Enable_Range_Check
(Result
);
297 Set_Do_Range_Check
(Result
, False);
301 Set_Etype
(Result
, Typ
);
304 end Build_Conversion
;
310 function Build_Divide
(N
: Node_Id
; L
, R
: Node_Id
) return Node_Id
is
311 Loc
: constant Source_Ptr
:= Sloc
(N
);
312 Left_Type
: constant Entity_Id
:= Base_Type
(Etype
(L
));
313 Right_Type
: constant Entity_Id
:= Base_Type
(Etype
(R
));
314 Result_Type
: Entity_Id
;
318 -- Deal with floating-point case first
320 if Is_Floating_Point_Type
(Left_Type
) then
321 pragma Assert
(Left_Type
= Standard_Long_Long_Float
);
322 pragma Assert
(Right_Type
= Standard_Long_Long_Float
);
324 Rnode
:= Make_Op_Divide
(Loc
, L
, R
);
325 Result_Type
:= Standard_Long_Long_Float
;
327 -- Integer and fixed-point cases
330 -- An optimization. If the right operand is the literal 1, then we
331 -- can just return the left hand operand. Putting the optimization
332 -- here allows us to omit the check at the call site.
334 if Nkind
(R
) = N_Integer_Literal
and then Intval
(R
) = 1 then
338 -- If left and right types are the same, no conversion needed
340 if Left_Type
= Right_Type
then
341 Result_Type
:= Left_Type
;
347 -- Use left type if it is the larger of the two
349 elsif Esize
(Left_Type
) >= Esize
(Right_Type
) then
350 Result_Type
:= Left_Type
;
354 Right_Opnd
=> Build_Conversion
(N
, Left_Type
, R
));
356 -- Otherwise right type is larger of the two, us it
359 Result_Type
:= Right_Type
;
362 Left_Opnd
=> Build_Conversion
(N
, Right_Type
, L
),
367 -- We now have a divide node built with Result_Type set. First
368 -- set Etype of result, as required for all Build_xxx routines
370 Set_Etype
(Rnode
, Base_Type
(Result_Type
));
372 -- Set Treat_Fixed_As_Integer if operation on fixed-point type
373 -- since this is a literal arithmetic operation, to be performed
374 -- by Gigi without any consideration of small values.
376 if Is_Fixed_Point_Type
(Result_Type
) then
377 Set_Treat_Fixed_As_Integer
(Rnode
);
380 -- The result is rounded if the target of the operation is decimal
381 -- and Rounded_Result is set, or if the target of the operation
382 -- is an integer type.
384 if Is_Integer_Type
(Etype
(N
))
385 or else Rounded_Result_Set
(N
)
387 Set_Rounded_Result
(Rnode
);
394 -------------------------
395 -- Build_Double_Divide --
396 -------------------------
398 function Build_Double_Divide
403 Y_Size
: constant Int
:= UI_To_Int
(Esize
(Etype
(Y
)));
404 Z_Size
: constant Int
:= UI_To_Int
(Esize
(Etype
(Z
)));
408 if Y_Size
> System_Word_Size
410 Z_Size
> System_Word_Size
412 Disallow_In_No_Run_Time_Mode
(N
);
415 -- If denominator fits in 64 bits, we can build the operations directly
416 -- without causing any intermediate overflow, so that's what we do!
418 if Int
'Max (Y_Size
, Z_Size
) <= 32 then
420 Build_Divide
(N
, X
, Build_Multiply
(N
, Y
, Z
));
422 -- Otherwise we use the runtime routine
424 -- [Qnn : Interfaces.Integer_64,
425 -- Rnn : Interfaces.Integer_64;
426 -- Double_Divide (X, Y, Z, Qnn, Rnn, Round);
431 Loc
: constant Source_Ptr
:= Sloc
(N
);
437 Build_Double_Divide_Code
(N
, X
, Y
, Z
, Qnn
, Rnn
, Code
);
438 Insert_Actions
(N
, Code
);
439 Expr
:= New_Occurrence_Of
(Qnn
, Loc
);
441 -- Set type of result in case used elsewhere (see note at start)
443 Set_Etype
(Expr
, Etype
(Qnn
));
445 -- Set result as analyzed (see note at start on build routines)
450 end Build_Double_Divide
;
452 ------------------------------
453 -- Build_Double_Divide_Code --
454 ------------------------------
456 -- If the denominator can be computed in 64-bits, we build
458 -- [Nnn : constant typ := typ (X);
459 -- Dnn : constant typ := typ (Y) * typ (Z)
460 -- Qnn : constant typ := Nnn / Dnn;
461 -- Rnn : constant typ := Nnn / Dnn;
463 -- If the numerator cannot be computed in 64 bits, we build
467 -- Double_Divide (X, Y, Z, Qnn, Rnn, Round);]
469 procedure Build_Double_Divide_Code
472 Qnn
, Rnn
: out Entity_Id
;
475 Loc
: constant Source_Ptr
:= Sloc
(N
);
477 X_Size
: constant Int
:= UI_To_Int
(Esize
(Etype
(X
)));
478 Y_Size
: constant Int
:= UI_To_Int
(Esize
(Etype
(Y
)));
479 Z_Size
: constant Int
:= UI_To_Int
(Esize
(Etype
(Z
)));
491 -- Find type that will allow computation of numerator
493 QR_Siz
:= Int
'Max (X_Size
, 2 * Int
'Max (Y_Size
, Z_Size
));
496 QR_Typ
:= Standard_Integer_16
;
497 elsif QR_Siz
<= 32 then
498 QR_Typ
:= Standard_Integer_32
;
499 elsif QR_Siz
<= 64 then
500 QR_Typ
:= Standard_Integer_64
;
502 -- For more than 64, bits, we use the 64-bit integer defined in
503 -- Interfaces, so that it can be handled by the runtime routine
506 QR_Typ
:= RTE
(RE_Integer_64
);
509 -- Define quotient and remainder, and set their Etypes, so
510 -- that they can be picked up by Build_xxx routines.
512 Qnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('S'));
513 Rnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('R'));
515 Set_Etype
(Qnn
, QR_Typ
);
516 Set_Etype
(Rnn
, QR_Typ
);
518 -- Case that we can compute the denominator in 64 bits
522 -- Create temporaries for numerator and denominator and set Etypes,
523 -- so that New_Occurrence_Of picks them up for Build_xxx calls.
525 Nnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('N'));
526 Dnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('D'));
528 Set_Etype
(Nnn
, QR_Typ
);
529 Set_Etype
(Dnn
, QR_Typ
);
532 Make_Object_Declaration
(Loc
,
533 Defining_Identifier
=> Nnn
,
534 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
),
535 Constant_Present
=> True,
536 Expression
=> Build_Conversion
(N
, QR_Typ
, X
)),
538 Make_Object_Declaration
(Loc
,
539 Defining_Identifier
=> Dnn
,
540 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
),
541 Constant_Present
=> True,
544 Build_Conversion
(N
, QR_Typ
, Y
),
545 Build_Conversion
(N
, QR_Typ
, Z
))));
549 New_Occurrence_Of
(Nnn
, Loc
),
550 New_Occurrence_Of
(Dnn
, Loc
));
552 Set_Rounded_Result
(Quo
, Rounded_Result_Set
(N
));
555 Make_Object_Declaration
(Loc
,
556 Defining_Identifier
=> Qnn
,
557 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
),
558 Constant_Present
=> True,
562 Make_Object_Declaration
(Loc
,
563 Defining_Identifier
=> Rnn
,
564 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
),
565 Constant_Present
=> True,
568 New_Occurrence_Of
(Nnn
, Loc
),
569 New_Occurrence_Of
(Dnn
, Loc
))));
571 -- Case where denominator does not fit in 64 bits, so we have to
572 -- call the runtime routine to compute the quotient and remainder
575 if Rounded_Result_Set
(N
) then
576 Rnd
:= Standard_True
;
578 Rnd
:= Standard_False
;
582 Make_Object_Declaration
(Loc
,
583 Defining_Identifier
=> Qnn
,
584 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
)),
586 Make_Object_Declaration
(Loc
,
587 Defining_Identifier
=> Rnn
,
588 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
)),
590 Make_Procedure_Call_Statement
(Loc
,
591 Name
=> New_Occurrence_Of
(RTE
(RE_Double_Divide
), Loc
),
592 Parameter_Associations
=> New_List
(
593 Build_Conversion
(N
, QR_Typ
, X
),
594 Build_Conversion
(N
, QR_Typ
, Y
),
595 Build_Conversion
(N
, QR_Typ
, Z
),
596 New_Occurrence_Of
(Qnn
, Loc
),
597 New_Occurrence_Of
(Rnn
, Loc
),
598 New_Occurrence_Of
(Rnd
, Loc
))));
601 end Build_Double_Divide_Code
;
607 function Build_Multiply
(N
: Node_Id
; L
, R
: Node_Id
) return Node_Id
is
608 Loc
: constant Source_Ptr
:= Sloc
(N
);
609 Left_Type
: constant Entity_Id
:= Etype
(L
);
610 Right_Type
: constant Entity_Id
:= Etype
(R
);
612 Result_Type
: Entity_Id
;
616 -- Deal with floating-point case first
618 if Is_Floating_Point_Type
(Left_Type
) then
619 pragma Assert
(Left_Type
= Standard_Long_Long_Float
);
620 pragma Assert
(Right_Type
= Standard_Long_Long_Float
);
622 Result_Type
:= Standard_Long_Long_Float
;
623 Rnode
:= Make_Op_Multiply
(Loc
, L
, R
);
625 -- Integer and fixed-point cases
628 -- An optimization. If the right operand is the literal 1, then we
629 -- can just return the left hand operand. Putting the optimization
630 -- here allows us to omit the check at the call site. Similarly, if
631 -- the left operand is the integer 1 we can return the right operand.
633 if Nkind
(R
) = N_Integer_Literal
and then Intval
(R
) = 1 then
635 elsif Nkind
(L
) = N_Integer_Literal
and then Intval
(L
) = 1 then
639 -- Otherwise we use a type that is at least twice the longer
642 Rsize
:= 2 * Int
'Max (UI_To_Int
(Esize
(Left_Type
)),
643 UI_To_Int
(Esize
(Right_Type
)));
646 Result_Type
:= Standard_Integer_8
;
648 elsif Rsize
<= 16 then
649 Result_Type
:= Standard_Integer_16
;
651 elsif Rsize
<= 32 then
652 Result_Type
:= Standard_Integer_32
;
655 if Rsize
> System_Word_Size
then
656 Disallow_In_No_Run_Time_Mode
(N
);
659 Result_Type
:= Standard_Integer_64
;
663 Make_Op_Multiply
(Loc
,
664 Left_Opnd
=> Build_Conversion
(N
, Result_Type
, L
),
665 Right_Opnd
=> Build_Conversion
(N
, Result_Type
, R
));
668 -- We now have a multiply node built with Result_Type set. First
669 -- set Etype of result, as required for all Build_xxx routines
671 Set_Etype
(Rnode
, Base_Type
(Result_Type
));
673 -- Set Treat_Fixed_As_Integer if operation on fixed-point type
674 -- since this is a literal arithmetic operation, to be performed
675 -- by Gigi without any consideration of small values.
677 if Is_Fixed_Point_Type
(Result_Type
) then
678 Set_Treat_Fixed_As_Integer
(Rnode
);
688 function Build_Rem
(N
: Node_Id
; L
, R
: Node_Id
) return Node_Id
is
689 Loc
: constant Source_Ptr
:= Sloc
(N
);
690 Left_Type
: constant Entity_Id
:= Etype
(L
);
691 Right_Type
: constant Entity_Id
:= Etype
(R
);
692 Result_Type
: Entity_Id
;
696 if Left_Type
= Right_Type
then
697 Result_Type
:= Left_Type
;
703 -- If left size is larger, we do the remainder operation using the
704 -- size of the left type (i.e. the larger of the two integer types).
706 elsif Esize
(Left_Type
) >= Esize
(Right_Type
) then
707 Result_Type
:= Left_Type
;
711 Right_Opnd
=> Build_Conversion
(N
, Left_Type
, R
));
713 -- Similarly, if the right size is larger, we do the remainder
714 -- operation using the right type.
717 Result_Type
:= Right_Type
;
720 Left_Opnd
=> Build_Conversion
(N
, Right_Type
, L
),
724 -- We now have an N_Op_Rem node built with Result_Type set. First
725 -- set Etype of result, as required for all Build_xxx routines
727 Set_Etype
(Rnode
, Base_Type
(Result_Type
));
729 -- Set Treat_Fixed_As_Integer if operation on fixed-point type
730 -- since this is a literal arithmetic operation, to be performed
731 -- by Gigi without any consideration of small values.
733 if Is_Fixed_Point_Type
(Result_Type
) then
734 Set_Treat_Fixed_As_Integer
(Rnode
);
737 -- One more check. We did the rem operation using the larger of the
738 -- two types, which is reasonable. However, in the case where the
739 -- two types have unequal sizes, it is impossible for the result of
740 -- a remainder operation to be larger than the smaller of the two
741 -- types, so we can put a conversion round the result to keep the
742 -- evolving operation size as small as possible.
744 if Esize
(Left_Type
) >= Esize
(Right_Type
) then
745 Rnode
:= Build_Conversion
(N
, Right_Type
, Rnode
);
746 elsif Esize
(Right_Type
) >= Esize
(Left_Type
) then
747 Rnode
:= Build_Conversion
(N
, Left_Type
, Rnode
);
753 -------------------------
754 -- Build_Scaled_Divide --
755 -------------------------
757 function Build_Scaled_Divide
762 X_Size
: constant Int
:= UI_To_Int
(Esize
(Etype
(X
)));
763 Y_Size
: constant Int
:= UI_To_Int
(Esize
(Etype
(Y
)));
767 -- If numerator fits in 64 bits, we can build the operations directly
768 -- without causing any intermediate overflow, so that's what we do!
770 if Int
'Max (X_Size
, Y_Size
) <= 32 then
772 Build_Divide
(N
, Build_Multiply
(N
, X
, Y
), Z
);
774 -- Otherwise we use the runtime routine
776 -- [Qnn : Integer_64,
778 -- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);
783 Loc
: constant Source_Ptr
:= Sloc
(N
);
789 Build_Scaled_Divide_Code
(N
, X
, Y
, Z
, Qnn
, Rnn
, Code
);
790 Insert_Actions
(N
, Code
);
791 Expr
:= New_Occurrence_Of
(Qnn
, Loc
);
793 -- Set type of result in case used elsewhere (see note at start)
795 Set_Etype
(Expr
, Etype
(Qnn
));
799 end Build_Scaled_Divide
;
801 ------------------------------
802 -- Build_Scaled_Divide_Code --
803 ------------------------------
805 -- If the numerator can be computed in 64-bits, we build
807 -- [Nnn : constant typ := typ (X) * typ (Y);
808 -- Dnn : constant typ := typ (Z)
809 -- Qnn : constant typ := Nnn / Dnn;
810 -- Rnn : constant typ := Nnn / Dnn;
812 -- If the numerator cannot be computed in 64 bits, we build
814 -- [Qnn : Interfaces.Integer_64;
815 -- Rnn : Interfaces.Integer_64;
816 -- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);]
818 procedure Build_Scaled_Divide_Code
821 Qnn
, Rnn
: out Entity_Id
;
824 Loc
: constant Source_Ptr
:= Sloc
(N
);
826 X_Size
: constant Int
:= UI_To_Int
(Esize
(Etype
(X
)));
827 Y_Size
: constant Int
:= UI_To_Int
(Esize
(Etype
(Y
)));
828 Z_Size
: constant Int
:= UI_To_Int
(Esize
(Etype
(Z
)));
840 -- Find type that will allow computation of numerator
842 QR_Siz
:= Int
'Max (X_Size
, 2 * Int
'Max (Y_Size
, Z_Size
));
845 QR_Typ
:= Standard_Integer_16
;
846 elsif QR_Siz
<= 32 then
847 QR_Typ
:= Standard_Integer_32
;
848 elsif QR_Siz
<= 64 then
849 QR_Typ
:= Standard_Integer_64
;
851 -- For more than 64, bits, we use the 64-bit integer defined in
852 -- Interfaces, so that it can be handled by the runtime routine
855 QR_Typ
:= RTE
(RE_Integer_64
);
858 -- Define quotient and remainder, and set their Etypes, so
859 -- that they can be picked up by Build_xxx routines.
861 Qnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('S'));
862 Rnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('R'));
864 Set_Etype
(Qnn
, QR_Typ
);
865 Set_Etype
(Rnn
, QR_Typ
);
867 -- Case that we can compute the numerator in 64 bits
870 Nnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('N'));
871 Dnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('D'));
873 -- Set Etypes, so that they can be picked up by New_Occurrence_Of
875 Set_Etype
(Nnn
, QR_Typ
);
876 Set_Etype
(Dnn
, QR_Typ
);
879 Make_Object_Declaration
(Loc
,
880 Defining_Identifier
=> Nnn
,
881 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
),
882 Constant_Present
=> True,
885 Build_Conversion
(N
, QR_Typ
, X
),
886 Build_Conversion
(N
, QR_Typ
, Y
))),
888 Make_Object_Declaration
(Loc
,
889 Defining_Identifier
=> Dnn
,
890 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
),
891 Constant_Present
=> True,
892 Expression
=> Build_Conversion
(N
, QR_Typ
, Z
)));
896 New_Occurrence_Of
(Nnn
, Loc
),
897 New_Occurrence_Of
(Dnn
, Loc
));
900 Make_Object_Declaration
(Loc
,
901 Defining_Identifier
=> Qnn
,
902 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
),
903 Constant_Present
=> True,
907 Make_Object_Declaration
(Loc
,
908 Defining_Identifier
=> Rnn
,
909 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
),
910 Constant_Present
=> True,
913 New_Occurrence_Of
(Nnn
, Loc
),
914 New_Occurrence_Of
(Dnn
, Loc
))));
916 -- Case where numerator does not fit in 64 bits, so we have to
917 -- call the runtime routine to compute the quotient and remainder
920 if Rounded_Result_Set
(N
) then
921 Rnd
:= Standard_True
;
923 Rnd
:= Standard_False
;
927 Make_Object_Declaration
(Loc
,
928 Defining_Identifier
=> Qnn
,
929 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
)),
931 Make_Object_Declaration
(Loc
,
932 Defining_Identifier
=> Rnn
,
933 Object_Definition
=> New_Occurrence_Of
(QR_Typ
, Loc
)),
935 Make_Procedure_Call_Statement
(Loc
,
936 Name
=> New_Occurrence_Of
(RTE
(RE_Scaled_Divide
), Loc
),
937 Parameter_Associations
=> New_List
(
938 Build_Conversion
(N
, QR_Typ
, X
),
939 Build_Conversion
(N
, QR_Typ
, Y
),
940 Build_Conversion
(N
, QR_Typ
, Z
),
941 New_Occurrence_Of
(Qnn
, Loc
),
942 New_Occurrence_Of
(Rnn
, Loc
),
943 New_Occurrence_Of
(Rnd
, Loc
))));
946 -- Set type of result, for use in caller.
948 Set_Etype
(Qnn
, QR_Typ
);
949 end Build_Scaled_Divide_Code
;
951 ---------------------------
952 -- Do_Divide_Fixed_Fixed --
953 ---------------------------
957 -- (Result_Value * Result_Small) =
958 -- (Left_Value * Left_Small) / (Right_Value * Right_Small)
960 -- Result_Value = (Left_Value / Right_Value) *
961 -- (Left_Small / (Right_Small * Result_Small));
963 -- we can do the operation in integer arithmetic if this fraction is an
964 -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
965 -- Otherwise the result is in the close result set and our approach is to
966 -- use floating-point to compute this close result.
968 procedure Do_Divide_Fixed_Fixed
(N
: Node_Id
) is
969 Left
: constant Node_Id
:= Left_Opnd
(N
);
970 Right
: constant Node_Id
:= Right_Opnd
(N
);
971 Left_Type
: constant Entity_Id
:= Etype
(Left
);
972 Right_Type
: constant Entity_Id
:= Etype
(Right
);
973 Result_Type
: constant Entity_Id
:= Etype
(N
);
974 Right_Small
: constant Ureal
:= Small_Value
(Right_Type
);
975 Left_Small
: constant Ureal
:= Small_Value
(Left_Type
);
977 Result_Small
: Ureal
;
984 -- Rounding is required if the result is integral
986 if Is_Integer_Type
(Result_Type
) then
987 Set_Rounded_Result
(N
);
990 -- Get result small. If the result is an integer, treat it as though
991 -- it had a small of 1.0, all other processing is identical.
993 if Is_Integer_Type
(Result_Type
) then
994 Result_Small
:= Ureal_1
;
996 Result_Small
:= Small_Value
(Result_Type
);
1001 Frac
:= Left_Small
/ (Right_Small
* Result_Small
);
1002 Frac_Num
:= Norm_Num
(Frac
);
1003 Frac_Den
:= Norm_Den
(Frac
);
1005 -- If the fraction is an integer, then we get the result by multiplying
1006 -- the left operand by the integer, and then dividing by the right
1007 -- operand (the order is important, if we did the divide first, we
1008 -- would lose precision).
1010 if Frac_Den
= 1 then
1011 Lit_Int
:= Integer_Literal
(N
, Frac_Num
);
1013 if Present
(Lit_Int
) then
1014 Set_Result
(N
, Build_Scaled_Divide
(N
, Left
, Lit_Int
, Right
));
1018 -- If the fraction is the reciprocal of an integer, then we get the
1019 -- result by first multiplying the divisor by the integer, and then
1020 -- doing the division with the adjusted divisor.
1022 -- Note: this is much better than doing two divisions: multiplications
1023 -- are much faster than divisions (and certainly faster than rounded
1024 -- divisions), and we don't get inaccuracies from double rounding.
1026 elsif Frac_Num
= 1 then
1027 Lit_Int
:= Integer_Literal
(N
, Frac_Den
);
1029 if Present
(Lit_Int
) then
1030 Set_Result
(N
, Build_Double_Divide
(N
, Left
, Right
, Lit_Int
));
1035 -- If we fall through, we use floating-point to compute the result
1039 Build_Divide
(N
, Fpt_Value
(Left
), Fpt_Value
(Right
)),
1040 Real_Literal
(N
, Frac
)));
1042 end Do_Divide_Fixed_Fixed
;
1044 -------------------------------
1045 -- Do_Divide_Fixed_Universal --
1046 -------------------------------
1050 -- (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
1051 -- Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
1053 -- The result is required to be in the perfect result set if the literal
1054 -- can be factored so that the resulting small ratio is an integer or the
1055 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1056 -- analysis of these RM requirements:
1058 -- We must factor the literal, finding an integer K:
1060 -- Lit_Value = K * Right_Small
1061 -- Right_Small = Lit_Value / K
1063 -- such that the small ratio:
1066 -- ------------------------------
1067 -- (Lit_Value / K) * Result_Small
1070 -- = ------------------------ * K
1071 -- Lit_Value * Result_Small
1073 -- is an integer or the reciprocal of an integer, and for
1074 -- implementation efficiency we need the smallest such K.
1076 -- First we reduce the left fraction to lowest terms.
1078 -- If numerator = 1, then for K = 1, the small ratio is the reciprocal
1079 -- of an integer, and this is clearly the minimum K case, so set K = 1,
1080 -- Right_Small = Lit_Value.
1082 -- If numerator > 1, then set K to the denominator of the fraction so
1083 -- that the resulting small ratio is an integer (the numerator value).
1085 procedure Do_Divide_Fixed_Universal
(N
: Node_Id
) is
1086 Left
: constant Node_Id
:= Left_Opnd
(N
);
1087 Right
: constant Node_Id
:= Right_Opnd
(N
);
1088 Left_Type
: constant Entity_Id
:= Etype
(Left
);
1089 Result_Type
: constant Entity_Id
:= Etype
(N
);
1090 Left_Small
: constant Ureal
:= Small_Value
(Left_Type
);
1091 Lit_Value
: constant Ureal
:= Realval
(Right
);
1093 Result_Small
: Ureal
;
1101 -- Get result small. If the result is an integer, treat it as though
1102 -- it had a small of 1.0, all other processing is identical.
1104 if Is_Integer_Type
(Result_Type
) then
1105 Result_Small
:= Ureal_1
;
1107 Result_Small
:= Small_Value
(Result_Type
);
1110 -- Determine if literal can be rewritten successfully
1112 Frac
:= Left_Small
/ (Lit_Value
* Result_Small
);
1113 Frac_Num
:= Norm_Num
(Frac
);
1114 Frac_Den
:= Norm_Den
(Frac
);
1116 -- Case where fraction is the reciprocal of an integer (K = 1, integer
1117 -- = denominator). If this integer is not too large, this is the case
1118 -- where the result can be obtained by dividing by this integer value.
1120 if Frac_Num
= 1 then
1121 Lit_Int
:= Integer_Literal
(N
, Frac_Den
);
1123 if Present
(Lit_Int
) then
1124 Set_Result
(N
, Build_Divide
(N
, Left
, Lit_Int
));
1128 -- Case where we choose K to make fraction an integer (K = denominator
1129 -- of fraction, integer = numerator of fraction). If both K and the
1130 -- numerator are small enough, this is the case where the result can
1131 -- be obtained by first multiplying by the integer value and then
1132 -- dividing by K (the order is important, if we divided first, we
1133 -- would lose precision).
1136 Lit_Int
:= Integer_Literal
(N
, Frac_Num
);
1137 Lit_K
:= Integer_Literal
(N
, Frac_Den
);
1139 if Present
(Lit_Int
) and then Present
(Lit_K
) then
1140 Set_Result
(N
, Build_Scaled_Divide
(N
, Left
, Lit_Int
, Lit_K
));
1145 -- Fall through if the literal cannot be successfully rewritten, or if
1146 -- the small ratio is out of range of integer arithmetic. In the former
1147 -- case it is fine to use floating-point to get the close result set,
1148 -- and in the latter case, it means that the result is zero or raises
1149 -- constraint error, and we can do that accurately in floating-point.
1151 -- If we end up using floating-point, then we take the right integer
1152 -- to be one, and its small to be the value of the original right real
1153 -- literal. That way, we need only one floating-point multiplication.
1156 Build_Multiply
(N
, Fpt_Value
(Left
), Real_Literal
(N
, Frac
)));
1158 end Do_Divide_Fixed_Universal
;
1160 -------------------------------
1161 -- Do_Divide_Universal_Fixed --
1162 -------------------------------
1166 -- (Result_Value * Result_Small) =
1167 -- Lit_Value / (Right_Value * Right_Small)
1169 -- (Lit_Value / (Right_Small * Result_Small)) / Right_Value
1171 -- The result is required to be in the perfect result set if the literal
1172 -- can be factored so that the resulting small ratio is an integer or the
1173 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1174 -- analysis of these RM requirements:
1176 -- We must factor the literal, finding an integer K:
1178 -- Lit_Value = K * Left_Small
1179 -- Left_Small = Lit_Value / K
1181 -- such that the small ratio:
1184 -- --------------------------
1185 -- Right_Small * Result_Small
1188 -- = -------------------------- * -
1189 -- Right_Small * Result_Small K
1191 -- is an integer or the reciprocal of an integer, and for
1192 -- implementation efficiency we need the smallest such K.
1194 -- First we reduce the left fraction to lowest terms.
1196 -- If denominator = 1, then for K = 1, the small ratio is an integer
1197 -- (the numerator) and this is clearly the minimum K case, so set K = 1,
1198 -- and Left_Small = Lit_Value.
1200 -- If denominator > 1, then set K to the numerator of the fraction so
1201 -- that the resulting small ratio is the reciprocal of an integer (the
1202 -- numerator value).
1204 procedure Do_Divide_Universal_Fixed
(N
: Node_Id
) is
1205 Left
: constant Node_Id
:= Left_Opnd
(N
);
1206 Right
: constant Node_Id
:= Right_Opnd
(N
);
1207 Right_Type
: constant Entity_Id
:= Etype
(Right
);
1208 Result_Type
: constant Entity_Id
:= Etype
(N
);
1209 Right_Small
: constant Ureal
:= Small_Value
(Right_Type
);
1210 Lit_Value
: constant Ureal
:= Realval
(Left
);
1212 Result_Small
: Ureal
;
1220 -- Get result small. If the result is an integer, treat it as though
1221 -- it had a small of 1.0, all other processing is identical.
1223 if Is_Integer_Type
(Result_Type
) then
1224 Result_Small
:= Ureal_1
;
1226 Result_Small
:= Small_Value
(Result_Type
);
1229 -- Determine if literal can be rewritten successfully
1231 Frac
:= Lit_Value
/ (Right_Small
* Result_Small
);
1232 Frac_Num
:= Norm_Num
(Frac
);
1233 Frac_Den
:= Norm_Den
(Frac
);
1235 -- Case where fraction is an integer (K = 1, integer = numerator). If
1236 -- this integer is not too large, this is the case where the result
1237 -- can be obtained by dividing this integer by the right operand.
1239 if Frac_Den
= 1 then
1240 Lit_Int
:= Integer_Literal
(N
, Frac_Num
);
1242 if Present
(Lit_Int
) then
1243 Set_Result
(N
, Build_Divide
(N
, Lit_Int
, Right
));
1247 -- Case where we choose K to make the fraction the reciprocal of an
1248 -- integer (K = numerator of fraction, integer = numerator of fraction).
1249 -- If both K and the integer are small enough, this is the case where
1250 -- the result can be obtained by multiplying the right operand by K
1251 -- and then dividing by the integer value. The order of the operations
1252 -- is important (if we divided first, we would lose precision).
1255 Lit_Int
:= Integer_Literal
(N
, Frac_Den
);
1256 Lit_K
:= Integer_Literal
(N
, Frac_Num
);
1258 if Present
(Lit_Int
) and then Present
(Lit_K
) then
1259 Set_Result
(N
, Build_Double_Divide
(N
, Lit_K
, Right
, Lit_Int
));
1264 -- Fall through if the literal cannot be successfully rewritten, or if
1265 -- the small ratio is out of range of integer arithmetic. In the former
1266 -- case it is fine to use floating-point to get the close result set,
1267 -- and in the latter case, it means that the result is zero or raises
1268 -- constraint error, and we can do that accurately in floating-point.
1270 -- If we end up using floating-point, then we take the right integer
1271 -- to be one, and its small to be the value of the original right real
1272 -- literal. That way, we need only one floating-point division.
1275 Build_Divide
(N
, Real_Literal
(N
, Frac
), Fpt_Value
(Right
)));
1277 end Do_Divide_Universal_Fixed
;
1279 -----------------------------
1280 -- Do_Multiply_Fixed_Fixed --
1281 -----------------------------
1285 -- (Result_Value * Result_Small) =
1286 -- (Left_Value * Left_Small) * (Right_Value * Right_Small)
1288 -- Result_Value = (Left_Value * Right_Value) *
1289 -- (Left_Small * Right_Small) / Result_Small;
1291 -- we can do the operation in integer arithmetic if this fraction is an
1292 -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
1293 -- Otherwise the result is in the close result set and our approach is to
1294 -- use floating-point to compute this close result.
1296 procedure Do_Multiply_Fixed_Fixed
(N
: Node_Id
) is
1297 Left
: constant Node_Id
:= Left_Opnd
(N
);
1298 Right
: constant Node_Id
:= Right_Opnd
(N
);
1300 Left_Type
: constant Entity_Id
:= Etype
(Left
);
1301 Right_Type
: constant Entity_Id
:= Etype
(Right
);
1302 Result_Type
: constant Entity_Id
:= Etype
(N
);
1303 Right_Small
: constant Ureal
:= Small_Value
(Right_Type
);
1304 Left_Small
: constant Ureal
:= Small_Value
(Left_Type
);
1306 Result_Small
: Ureal
;
1313 -- Get result small. If the result is an integer, treat it as though
1314 -- it had a small of 1.0, all other processing is identical.
1316 if Is_Integer_Type
(Result_Type
) then
1317 Result_Small
:= Ureal_1
;
1319 Result_Small
:= Small_Value
(Result_Type
);
1324 Frac
:= (Left_Small
* Right_Small
) / Result_Small
;
1325 Frac_Num
:= Norm_Num
(Frac
);
1326 Frac_Den
:= Norm_Den
(Frac
);
1328 -- If the fraction is an integer, then we get the result by multiplying
1329 -- the operands, and then multiplying the result by the integer value.
1331 if Frac_Den
= 1 then
1332 Lit_Int
:= Integer_Literal
(N
, Frac_Num
);
1334 if Present
(Lit_Int
) then
1336 Build_Multiply
(N
, Build_Multiply
(N
, Left
, Right
),
1341 -- If the fraction is the reciprocal of an integer, then we get the
1342 -- result by multiplying the operands, and then dividing the result by
1343 -- the integer value. The order of the operations is important, if we
1344 -- divided first, we would lose precision.
1346 elsif Frac_Num
= 1 then
1347 Lit_Int
:= Integer_Literal
(N
, Frac_Den
);
1349 if Present
(Lit_Int
) then
1350 Set_Result
(N
, Build_Scaled_Divide
(N
, Left
, Right
, Lit_Int
));
1355 -- If we fall through, we use floating-point to compute the result
1359 Build_Multiply
(N
, Fpt_Value
(Left
), Fpt_Value
(Right
)),
1360 Real_Literal
(N
, Frac
)));
1362 end Do_Multiply_Fixed_Fixed
;
1364 ---------------------------------
1365 -- Do_Multiply_Fixed_Universal --
1366 ---------------------------------
1370 -- (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
1371 -- Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
1373 -- The result is required to be in the perfect result set if the literal
1374 -- can be factored so that the resulting small ratio is an integer or the
1375 -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
1376 -- analysis of these RM requirements:
1378 -- We must factor the literal, finding an integer K:
1380 -- Lit_Value = K * Right_Small
1381 -- Right_Small = Lit_Value / K
1383 -- such that the small ratio:
1385 -- Left_Small * (Lit_Value / K)
1386 -- ----------------------------
1389 -- Left_Small * Lit_Value 1
1390 -- = ---------------------- * -
1393 -- is an integer or the reciprocal of an integer, and for
1394 -- implementation efficiency we need the smallest such K.
1396 -- First we reduce the left fraction to lowest terms.
1398 -- If denominator = 1, then for K = 1, the small ratio is an
1399 -- integer, and this is clearly the minimum K case, so set
1400 -- K = 1, Right_Small = Lit_Value.
1402 -- If denominator > 1, then set K to the numerator of the
1403 -- fraction, so that the resulting small ratio is the
1404 -- reciprocal of the integer (the denominator value).
1406 procedure Do_Multiply_Fixed_Universal
1408 Left
, Right
: Node_Id
)
1410 Left_Type
: constant Entity_Id
:= Etype
(Left
);
1411 Result_Type
: constant Entity_Id
:= Etype
(N
);
1412 Left_Small
: constant Ureal
:= Small_Value
(Left_Type
);
1413 Lit_Value
: constant Ureal
:= Realval
(Right
);
1415 Result_Small
: Ureal
;
1423 -- Get result small. If the result is an integer, treat it as though
1424 -- it had a small of 1.0, all other processing is identical.
1426 if Is_Integer_Type
(Result_Type
) then
1427 Result_Small
:= Ureal_1
;
1429 Result_Small
:= Small_Value
(Result_Type
);
1432 -- Determine if literal can be rewritten successfully
1434 Frac
:= (Left_Small
* Lit_Value
) / Result_Small
;
1435 Frac_Num
:= Norm_Num
(Frac
);
1436 Frac_Den
:= Norm_Den
(Frac
);
1438 -- Case where fraction is an integer (K = 1, integer = numerator). If
1439 -- this integer is not too large, this is the case where the result can
1440 -- be obtained by multiplying by this integer value.
1442 if Frac_Den
= 1 then
1443 Lit_Int
:= Integer_Literal
(N
, Frac_Num
);
1445 if Present
(Lit_Int
) then
1446 Set_Result
(N
, Build_Multiply
(N
, Left
, Lit_Int
));
1450 -- Case where we choose K to make fraction the reciprocal of an integer
1451 -- (K = numerator of fraction, integer = denominator of fraction). If
1452 -- both K and the denominator are small enough, this is the case where
1453 -- the result can be obtained by first multiplying by K, and then
1454 -- dividing by the integer value.
1457 Lit_Int
:= Integer_Literal
(N
, Frac_Den
);
1458 Lit_K
:= Integer_Literal
(N
, Frac_Num
);
1460 if Present
(Lit_Int
) and then Present
(Lit_K
) then
1461 Set_Result
(N
, Build_Scaled_Divide
(N
, Left
, Lit_K
, Lit_Int
));
1466 -- Fall through if the literal cannot be successfully rewritten, or if
1467 -- the small ratio is out of range of integer arithmetic. In the former
1468 -- case it is fine to use floating-point to get the close result set,
1469 -- and in the latter case, it means that the result is zero or raises
1470 -- constraint error, and we can do that accurately in floating-point.
1472 -- If we end up using floating-point, then we take the right integer
1473 -- to be one, and its small to be the value of the original right real
1474 -- literal. That way, we need only one floating-point multiplication.
1477 Build_Multiply
(N
, Fpt_Value
(Left
), Real_Literal
(N
, Frac
)));
1479 end Do_Multiply_Fixed_Universal
;
1481 ---------------------------------
1482 -- Expand_Convert_Fixed_Static --
1483 ---------------------------------
1485 procedure Expand_Convert_Fixed_Static
(N
: Node_Id
) is
1488 Convert_To
(Etype
(N
),
1489 Make_Real_Literal
(Sloc
(N
), Expr_Value_R
(Expression
(N
)))));
1490 Analyze_And_Resolve
(N
);
1491 end Expand_Convert_Fixed_Static
;
1493 -----------------------------------
1494 -- Expand_Convert_Fixed_To_Fixed --
1495 -----------------------------------
1499 -- Result_Value * Result_Small = Source_Value * Source_Small
1500 -- Result_Value = Source_Value * (Source_Small / Result_Small)
1502 -- If the small ratio (Source_Small / Result_Small) is a sufficiently small
1503 -- integer, then the perfect result set is obtained by a single integer
1506 -- If the small ratio is the reciprocal of a sufficiently small integer,
1507 -- then the perfect result set is obtained by a single integer division.
1509 -- In other cases, we obtain the close result set by calculating the
1510 -- result in floating-point.
1512 procedure Expand_Convert_Fixed_To_Fixed
(N
: Node_Id
) is
1513 Rng_Check
: constant Boolean := Do_Range_Check
(N
);
1514 Expr
: constant Node_Id
:= Expression
(N
);
1515 Result_Type
: constant Entity_Id
:= Etype
(N
);
1516 Source_Type
: constant Entity_Id
:= Etype
(Expr
);
1517 Small_Ratio
: Ureal
;
1523 if Is_OK_Static_Expression
(Expr
) then
1524 Expand_Convert_Fixed_Static
(N
);
1528 Small_Ratio
:= Small_Value
(Source_Type
) / Small_Value
(Result_Type
);
1529 Ratio_Num
:= Norm_Num
(Small_Ratio
);
1530 Ratio_Den
:= Norm_Den
(Small_Ratio
);
1532 if Ratio_Den
= 1 then
1534 if Ratio_Num
= 1 then
1535 Set_Result
(N
, Expr
);
1539 Lit
:= Integer_Literal
(N
, Ratio_Num
);
1541 if Present
(Lit
) then
1542 Set_Result
(N
, Build_Multiply
(N
, Expr
, Lit
));
1547 elsif Ratio_Num
= 1 then
1548 Lit
:= Integer_Literal
(N
, Ratio_Den
);
1550 if Present
(Lit
) then
1551 Set_Result
(N
, Build_Divide
(N
, Expr
, Lit
), Rng_Check
);
1556 -- Fall through to use floating-point for the close result set case
1557 -- either as a result of the small ratio not being an integer or the
1558 -- reciprocal of an integer, or if the integer is out of range.
1563 Real_Literal
(N
, Small_Ratio
)),
1566 end Expand_Convert_Fixed_To_Fixed
;
1568 -----------------------------------
1569 -- Expand_Convert_Fixed_To_Float --
1570 -----------------------------------
1572 -- If the small of the fixed type is 1.0, then we simply convert the
1573 -- integer value directly to the target floating-point type, otherwise
1574 -- we first have to multiply by the small, in Long_Long_Float, and then
1575 -- convert the result to the target floating-point type.
1577 procedure Expand_Convert_Fixed_To_Float
(N
: Node_Id
) is
1578 Rng_Check
: constant Boolean := Do_Range_Check
(N
);
1579 Expr
: constant Node_Id
:= Expression
(N
);
1580 Source_Type
: constant Entity_Id
:= Etype
(Expr
);
1581 Small
: constant Ureal
:= Small_Value
(Source_Type
);
1584 if Is_OK_Static_Expression
(Expr
) then
1585 Expand_Convert_Fixed_Static
(N
);
1589 if Small
= Ureal_1
then
1590 Set_Result
(N
, Expr
);
1596 Real_Literal
(N
, Small
)),
1599 end Expand_Convert_Fixed_To_Float
;
1601 -------------------------------------
1602 -- Expand_Convert_Fixed_To_Integer --
1603 -------------------------------------
1607 -- Result_Value = Source_Value * Source_Small
1609 -- If the small value is a sufficiently small integer, then the perfect
1610 -- result set is obtained by a single integer multiplication.
1612 -- If the small value is the reciprocal of a sufficiently small integer,
1613 -- then the perfect result set is obtained by a single integer division.
1615 -- In other cases, we obtain the close result set by calculating the
1616 -- result in floating-point.
1618 procedure Expand_Convert_Fixed_To_Integer
(N
: Node_Id
) is
1619 Rng_Check
: constant Boolean := Do_Range_Check
(N
);
1620 Expr
: constant Node_Id
:= Expression
(N
);
1621 Source_Type
: constant Entity_Id
:= Etype
(Expr
);
1622 Small
: constant Ureal
:= Small_Value
(Source_Type
);
1623 Small_Num
: constant Uint
:= Norm_Num
(Small
);
1624 Small_Den
: constant Uint
:= Norm_Den
(Small
);
1628 if Is_OK_Static_Expression
(Expr
) then
1629 Expand_Convert_Fixed_Static
(N
);
1633 if Small_Den
= 1 then
1634 Lit
:= Integer_Literal
(N
, Small_Num
);
1636 if Present
(Lit
) then
1637 Set_Result
(N
, Build_Multiply
(N
, Expr
, Lit
), Rng_Check
);
1641 elsif Small_Num
= 1 then
1642 Lit
:= Integer_Literal
(N
, Small_Den
);
1644 if Present
(Lit
) then
1645 Set_Result
(N
, Build_Divide
(N
, Expr
, Lit
), Rng_Check
);
1650 -- Fall through to use floating-point for the close result set case
1651 -- either as a result of the small value not being an integer or the
1652 -- reciprocal of an integer, or if the integer is out of range.
1657 Real_Literal
(N
, Small
)),
1660 end Expand_Convert_Fixed_To_Integer
;
1662 -----------------------------------
1663 -- Expand_Convert_Float_To_Fixed --
1664 -----------------------------------
1668 -- Result_Value * Result_Small = Operand_Value
1672 -- Result_Value = Operand_Value * (1.0 / Result_Small)
1674 -- We do the small scaling in floating-point, and we do a multiplication
1675 -- rather than a division, since it is accurate enough for the perfect
1676 -- result cases, and faster.
1678 procedure Expand_Convert_Float_To_Fixed
(N
: Node_Id
) is
1679 Rng_Check
: constant Boolean := Do_Range_Check
(N
);
1680 Expr
: constant Node_Id
:= Expression
(N
);
1681 Result_Type
: constant Entity_Id
:= Etype
(N
);
1682 Small
: constant Ureal
:= Small_Value
(Result_Type
);
1685 -- Optimize small = 1, where we can avoid the multiply completely
1687 if Small
= Ureal_1
then
1688 Set_Result
(N
, Expr
, Rng_Check
);
1690 -- Normal case where multiply is required
1696 Real_Literal
(N
, Ureal_1
/ Small
)),
1699 end Expand_Convert_Float_To_Fixed
;
1701 -------------------------------------
1702 -- Expand_Convert_Integer_To_Fixed --
1703 -------------------------------------
1707 -- Result_Value * Result_Small = Operand_Value
1708 -- Result_Value = Operand_Value / Result_Small
1710 -- If the small value is a sufficiently small integer, then the perfect
1711 -- result set is obtained by a single integer division.
1713 -- If the small value is the reciprocal of a sufficiently small integer,
1714 -- the perfect result set is obtained by a single integer multiplication.
1716 -- In other cases, we obtain the close result set by calculating the
1717 -- result in floating-point using a multiplication by the reciprocal
1718 -- of the Result_Small.
1720 procedure Expand_Convert_Integer_To_Fixed
(N
: Node_Id
) is
1721 Rng_Check
: constant Boolean := Do_Range_Check
(N
);
1722 Expr
: constant Node_Id
:= Expression
(N
);
1723 Result_Type
: constant Entity_Id
:= Etype
(N
);
1724 Small
: constant Ureal
:= Small_Value
(Result_Type
);
1725 Small_Num
: constant Uint
:= Norm_Num
(Small
);
1726 Small_Den
: constant Uint
:= Norm_Den
(Small
);
1730 if Small_Den
= 1 then
1731 Lit
:= Integer_Literal
(N
, Small_Num
);
1733 if Present
(Lit
) then
1734 Set_Result
(N
, Build_Divide
(N
, Expr
, Lit
), Rng_Check
);
1738 elsif Small_Num
= 1 then
1739 Lit
:= Integer_Literal
(N
, Small_Den
);
1741 if Present
(Lit
) then
1742 Set_Result
(N
, Build_Multiply
(N
, Expr
, Lit
), Rng_Check
);
1747 -- Fall through to use floating-point for the close result set case
1748 -- either as a result of the small value not being an integer or the
1749 -- reciprocal of an integer, or if the integer is out of range.
1754 Real_Literal
(N
, Ureal_1
/ Small
)),
1757 end Expand_Convert_Integer_To_Fixed
;
1759 --------------------------------
1760 -- Expand_Decimal_Divide_Call --
1761 --------------------------------
1763 -- We have four operands
1770 -- All of which are decimal types, and which thus have associated
1773 -- Computing the quotient is a similar problem to that faced by the
1774 -- normal fixed-point division, except that it is simpler, because
1775 -- we always have compatible smalls.
1777 -- Quotient = (Dividend / Divisor) * 10**q
1779 -- where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
1780 -- so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
1782 -- For q >= 0, we compute
1784 -- Numerator := Dividend * 10 ** q
1785 -- Denominator := Divisor
1786 -- Quotient := Numerator / Denominator
1788 -- For q < 0, we compute
1790 -- Numerator := Dividend
1791 -- Denominator := Divisor * 10 ** q
1792 -- Quotient := Numerator / Denominator
1794 -- Both these divisions are done in truncated mode, and the remainder
1795 -- from these divisions is used to compute the result Remainder. This
1796 -- remainder has the effective scale of the numerator of the division,
1798 -- For q >= 0, the remainder scale is Dividend'Scale + q
1799 -- For q < 0, the remainder scale is Dividend'Scale
1801 -- The result Remainder is then computed by a normal truncating decimal
1802 -- conversion from this scale to the scale of the remainder, i.e. by a
1803 -- division or multiplication by the appropriate power of 10.
1805 procedure Expand_Decimal_Divide_Call
(N
: Node_Id
) is
1806 Loc
: constant Source_Ptr
:= Sloc
(N
);
1808 Dividend
: Node_Id
:= First_Actual
(N
);
1809 Divisor
: Node_Id
:= Next_Actual
(Dividend
);
1810 Quotient
: Node_Id
:= Next_Actual
(Divisor
);
1811 Remainder
: Node_Id
:= Next_Actual
(Quotient
);
1813 Dividend_Type
: constant Entity_Id
:= Etype
(Dividend
);
1814 Divisor_Type
: constant Entity_Id
:= Etype
(Divisor
);
1815 Quotient_Type
: constant Entity_Id
:= Etype
(Quotient
);
1816 Remainder_Type
: constant Entity_Id
:= Etype
(Remainder
);
1818 Dividend_Scale
: constant Uint
:= Scale_Value
(Dividend_Type
);
1819 Divisor_Scale
: constant Uint
:= Scale_Value
(Divisor_Type
);
1820 Quotient_Scale
: constant Uint
:= Scale_Value
(Quotient_Type
);
1821 Remainder_Scale
: constant Uint
:= Scale_Value
(Remainder_Type
);
1824 Numerator_Scale
: Uint
;
1828 Computed_Remainder
: Node_Id
;
1829 Adjusted_Remainder
: Node_Id
;
1830 Scale_Adjust
: Uint
;
1833 -- Relocate the operands, since they are now list elements, and we
1834 -- need to reference them separately as operands in the expanded code.
1836 Dividend
:= Relocate_Node
(Dividend
);
1837 Divisor
:= Relocate_Node
(Divisor
);
1838 Quotient
:= Relocate_Node
(Quotient
);
1839 Remainder
:= Relocate_Node
(Remainder
);
1841 -- Now compute Q, the adjustment scale
1843 Q
:= Divisor_Scale
+ Quotient_Scale
- Dividend_Scale
;
1845 -- If Q is non-negative then we need a scaled divide
1848 Build_Scaled_Divide_Code
1851 Integer_Literal
(N
, Uint_10
** Q
),
1855 Numerator_Scale
:= Dividend_Scale
+ Q
;
1857 -- If Q is negative, then we need a double divide
1860 Build_Double_Divide_Code
1864 Integer_Literal
(N
, Uint_10
** (-Q
)),
1867 Numerator_Scale
:= Dividend_Scale
;
1870 -- Add statement to set quotient value
1872 -- Quotient := quotient-type!(Qnn);
1875 Make_Assignment_Statement
(Loc
,
1878 Unchecked_Convert_To
(Quotient_Type
,
1879 Build_Conversion
(N
, Quotient_Type
,
1880 New_Occurrence_Of
(Qnn
, Loc
)))));
1882 -- Now we need to deal with computing and setting the remainder. The
1883 -- scale of the remainder is in Numerator_Scale, and the desired
1884 -- scale is the scale of the given Remainder argument. There are
1887 -- Numerator_Scale > Remainder_Scale
1889 -- in this case, there are extra digits in the computed remainder
1890 -- which must be eliminated by an extra division:
1892 -- computed-remainder := Numerator rem Denominator
1893 -- scale_adjust = Numerator_Scale - Remainder_Scale
1894 -- adjusted-remainder := computed-remainder / 10 ** scale_adjust
1896 -- Numerator_Scale = Remainder_Scale
1898 -- in this case, the we have the remainder we need
1900 -- computed-remainder := Numerator rem Denominator
1901 -- adjusted-remainder := computed-remainder
1903 -- Numerator_Scale < Remainder_Scale
1905 -- in this case, we have insufficient digits in the computed
1906 -- remainder, which must be eliminated by an extra multiply
1908 -- computed-remainder := Numerator rem Denominator
1909 -- scale_adjust = Remainder_Scale - Numerator_Scale
1910 -- adjusted-remainder := computed-remainder * 10 ** scale_adjust
1912 -- Finally we assign the adjusted-remainder to the result Remainder
1913 -- with conversions to get the proper fixed-point type representation.
1915 Computed_Remainder
:= New_Occurrence_Of
(Rnn
, Loc
);
1917 if Numerator_Scale
> Remainder_Scale
then
1918 Scale_Adjust
:= Numerator_Scale
- Remainder_Scale
;
1919 Adjusted_Remainder
:=
1921 (N
, Computed_Remainder
, Integer_Literal
(N
, 10 ** Scale_Adjust
));
1923 elsif Numerator_Scale
= Remainder_Scale
then
1924 Adjusted_Remainder
:= Computed_Remainder
;
1926 else -- Numerator_Scale < Remainder_Scale
1927 Scale_Adjust
:= Remainder_Scale
- Numerator_Scale
;
1928 Adjusted_Remainder
:=
1930 (N
, Computed_Remainder
, Integer_Literal
(N
, 10 ** Scale_Adjust
));
1933 -- Assignment of remainder result
1936 Make_Assignment_Statement
(Loc
,
1939 Unchecked_Convert_To
(Remainder_Type
, Adjusted_Remainder
)));
1941 -- Final step is to rewrite the call with a block containing the
1942 -- above sequence of constructed statements for the divide operation.
1945 Make_Block_Statement
(Loc
,
1946 Handled_Statement_Sequence
=>
1947 Make_Handled_Sequence_Of_Statements
(Loc
,
1948 Statements
=> Stmts
)));
1952 end Expand_Decimal_Divide_Call
;
1954 -----------------------------------------------
1955 -- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
1956 -----------------------------------------------
1958 procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed
(N
: Node_Id
) is
1959 Left
: constant Node_Id
:= Left_Opnd
(N
);
1960 Right
: constant Node_Id
:= Right_Opnd
(N
);
1963 if Etype
(Left
) = Universal_Real
then
1964 Do_Divide_Universal_Fixed
(N
);
1966 elsif Etype
(Right
) = Universal_Real
then
1967 Do_Divide_Fixed_Universal
(N
);
1970 Do_Divide_Fixed_Fixed
(N
);
1973 end Expand_Divide_Fixed_By_Fixed_Giving_Fixed
;
1975 -----------------------------------------------
1976 -- Expand_Divide_Fixed_By_Fixed_Giving_Float --
1977 -----------------------------------------------
1979 -- The division is done in long_long_float, and the result is multiplied
1980 -- by the small ratio, which is Small (Right) / Small (Left). Special
1981 -- treatment is required for universal operands, which represent their
1982 -- own value and do not require conversion.
1984 procedure Expand_Divide_Fixed_By_Fixed_Giving_Float
(N
: Node_Id
) is
1985 Left
: constant Node_Id
:= Left_Opnd
(N
);
1986 Right
: constant Node_Id
:= Right_Opnd
(N
);
1988 Left_Type
: constant Entity_Id
:= Etype
(Left
);
1989 Right_Type
: constant Entity_Id
:= Etype
(Right
);
1992 -- Case of left operand is universal real, the result we want is:
1994 -- Left_Value / (Right_Value * Right_Small)
1996 -- so we compute this as:
1998 -- (Left_Value / Right_Small) / Right_Value
2000 if Left_Type
= Universal_Real
then
2003 Real_Literal
(N
, Realval
(Left
) / Small_Value
(Right_Type
)),
2004 Fpt_Value
(Right
)));
2006 -- Case of right operand is universal real, the result we want is
2008 -- (Left_Value * Left_Small) / Right_Value
2010 -- so we compute this as:
2012 -- Left_Value * (Left_Small / Right_Value)
2014 -- Note we invert to a multiplication since usually floating-point
2015 -- multiplication is much faster than floating-point division.
2017 elsif Right_Type
= Universal_Real
then
2021 Real_Literal
(N
, Small_Value
(Left_Type
) / Realval
(Right
))));
2023 -- Both operands are fixed, so the value we want is
2025 -- (Left_Value * Left_Small) / (Right_Value * Right_Small)
2027 -- which we compute as:
2029 -- (Left_Value / Right_Value) * (Left_Small / Right_Small)
2034 Build_Divide
(N
, Fpt_Value
(Left
), Fpt_Value
(Right
)),
2036 Small_Value
(Left_Type
) / Small_Value
(Right_Type
))));
2039 end Expand_Divide_Fixed_By_Fixed_Giving_Float
;
2041 -------------------------------------------------
2042 -- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
2043 -------------------------------------------------
2045 procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer
(N
: Node_Id
) is
2046 Left
: constant Node_Id
:= Left_Opnd
(N
);
2047 Right
: constant Node_Id
:= Right_Opnd
(N
);
2050 if Etype
(Left
) = Universal_Real
then
2051 Do_Divide_Universal_Fixed
(N
);
2053 elsif Etype
(Right
) = Universal_Real
then
2054 Do_Divide_Fixed_Universal
(N
);
2057 Do_Divide_Fixed_Fixed
(N
);
2060 end Expand_Divide_Fixed_By_Fixed_Giving_Integer
;
2062 -------------------------------------------------
2063 -- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
2064 -------------------------------------------------
2066 -- Since the operand and result fixed-point type is the same, this is
2067 -- a straight divide by the right operand, the small can be ignored.
2069 procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed
(N
: Node_Id
) is
2070 Left
: constant Node_Id
:= Left_Opnd
(N
);
2071 Right
: constant Node_Id
:= Right_Opnd
(N
);
2074 Set_Result
(N
, Build_Divide
(N
, Left
, Right
));
2075 end Expand_Divide_Fixed_By_Integer_Giving_Fixed
;
2077 -------------------------------------------------
2078 -- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
2079 -------------------------------------------------
2081 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
(N
: Node_Id
) is
2082 Left
: constant Node_Id
:= Left_Opnd
(N
);
2083 Right
: constant Node_Id
:= Right_Opnd
(N
);
2085 procedure Rewrite_Non_Static_Universal
(Opnd
: Node_Id
);
2086 -- The operand may be a non-static universal value, such an
2087 -- exponentiation with a non-static exponent. In that case, treat
2088 -- as a fixed * fixed multiplication, and convert the argument to
2089 -- the target fixed type.
2091 procedure Rewrite_Non_Static_Universal
(Opnd
: Node_Id
) is
2092 Loc
: constant Source_Ptr
:= Sloc
(N
);
2096 Make_Type_Conversion
(Loc
,
2097 Subtype_Mark
=> New_Occurrence_Of
(Etype
(N
), Loc
),
2098 Expression
=> Expression
(Opnd
)));
2099 Analyze_And_Resolve
(Opnd
, Etype
(N
));
2100 end Rewrite_Non_Static_Universal
;
2103 if Etype
(Left
) = Universal_Real
then
2104 if Nkind
(Left
) = N_Real_Literal
then
2105 Do_Multiply_Fixed_Universal
(N
, Right
, Left
);
2107 elsif Nkind
(Left
) = N_Type_Conversion
then
2108 Rewrite_Non_Static_Universal
(Left
);
2109 Do_Multiply_Fixed_Fixed
(N
);
2112 elsif Etype
(Right
) = Universal_Real
then
2113 if Nkind
(Right
) = N_Real_Literal
then
2114 Do_Multiply_Fixed_Universal
(N
, Left
, Right
);
2116 elsif Nkind
(Right
) = N_Type_Conversion
then
2117 Rewrite_Non_Static_Universal
(Right
);
2118 Do_Multiply_Fixed_Fixed
(N
);
2122 Do_Multiply_Fixed_Fixed
(N
);
2125 end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
;
2127 -------------------------------------------------
2128 -- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
2129 -------------------------------------------------
2131 -- The multiply is done in long_long_float, and the result is multiplied
2132 -- by the adjustment for the smalls which is Small (Right) * Small (Left).
2133 -- Special treatment is required for universal operands.
2135 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float
(N
: Node_Id
) is
2136 Left
: constant Node_Id
:= Left_Opnd
(N
);
2137 Right
: constant Node_Id
:= Right_Opnd
(N
);
2139 Left_Type
: constant Entity_Id
:= Etype
(Left
);
2140 Right_Type
: constant Entity_Id
:= Etype
(Right
);
2143 -- Case of left operand is universal real, the result we want is
2145 -- Left_Value * (Right_Value * Right_Small)
2147 -- so we compute this as:
2149 -- (Left_Value * Right_Small) * Right_Value;
2151 if Left_Type
= Universal_Real
then
2154 Real_Literal
(N
, Realval
(Left
) * Small_Value
(Right_Type
)),
2155 Fpt_Value
(Right
)));
2157 -- Case of right operand is universal real, the result we want is
2159 -- (Left_Value * Left_Small) * Right_Value
2161 -- so we compute this as:
2163 -- Left_Value * (Left_Small * Right_Value)
2165 elsif Right_Type
= Universal_Real
then
2169 Real_Literal
(N
, Small_Value
(Left_Type
) * Realval
(Right
))));
2171 -- Both operands are fixed, so the value we want is
2173 -- (Left_Value * Left_Small) * (Right_Value * Right_Small)
2175 -- which we compute as:
2177 -- (Left_Value * Right_Value) * (Right_Small * Left_Small)
2182 Build_Multiply
(N
, Fpt_Value
(Left
), Fpt_Value
(Right
)),
2184 Small_Value
(Right_Type
) * Small_Value
(Left_Type
))));
2187 end Expand_Multiply_Fixed_By_Fixed_Giving_Float
;
2189 ---------------------------------------------------
2190 -- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
2191 ---------------------------------------------------
2193 procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer
(N
: Node_Id
) is
2194 Left
: constant Node_Id
:= Left_Opnd
(N
);
2195 Right
: constant Node_Id
:= Right_Opnd
(N
);
2198 if Etype
(Left
) = Universal_Real
then
2199 Do_Multiply_Fixed_Universal
(N
, Right
, Left
);
2201 elsif Etype
(Right
) = Universal_Real
then
2202 Do_Multiply_Fixed_Universal
(N
, Left
, Right
);
2205 Do_Multiply_Fixed_Fixed
(N
);
2208 end Expand_Multiply_Fixed_By_Fixed_Giving_Integer
;
2210 ---------------------------------------------------
2211 -- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
2212 ---------------------------------------------------
2214 -- Since the operand and result fixed-point type is the same, this is
2215 -- a straight multiply by the right operand, the small can be ignored.
2217 procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed
(N
: Node_Id
) is
2220 Build_Multiply
(N
, Left_Opnd
(N
), Right_Opnd
(N
)));
2221 end Expand_Multiply_Fixed_By_Integer_Giving_Fixed
;
2223 ---------------------------------------------------
2224 -- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
2225 ---------------------------------------------------
2227 -- Since the operand and result fixed-point type is the same, this is
2228 -- a straight multiply by the right operand, the small can be ignored.
2230 procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed
(N
: Node_Id
) is
2233 Build_Multiply
(N
, Left_Opnd
(N
), Right_Opnd
(N
)));
2234 end Expand_Multiply_Integer_By_Fixed_Giving_Fixed
;
2240 function Fpt_Value
(N
: Node_Id
) return Node_Id
is
2241 Typ
: constant Entity_Id
:= Etype
(N
);
2244 if Is_Integer_Type
(Typ
)
2245 or else Is_Floating_Point_Type
(Typ
)
2249 (N
, Standard_Long_Long_Float
, N
);
2251 -- Fixed-point case, must get integer value first
2255 Build_Conversion
(N
, Standard_Long_Long_Float
, N
);
2260 ---------------------
2261 -- Integer_Literal --
2262 ---------------------
2264 function Integer_Literal
(N
: Node_Id
; V
: Uint
) return Node_Id
is
2269 if V
< Uint_2
** 7 then
2270 T
:= Standard_Integer_8
;
2272 elsif V
< Uint_2
** 15 then
2273 T
:= Standard_Integer_16
;
2275 elsif V
< Uint_2
** 31 then
2276 T
:= Standard_Integer_32
;
2278 elsif V
< Uint_2
** 63 then
2279 T
:= Standard_Integer_64
;
2285 L
:= Make_Integer_Literal
(Sloc
(N
), V
);
2287 -- Set type of result in case used elsewhere (see note at start)
2290 Set_Is_Static_Expression
(L
);
2292 -- We really need to set Analyzed here because we may be creating a
2293 -- very strange beast, namely an integer literal typed as fixed-point
2294 -- and the analyzer won't like that. Probably we should allow the
2295 -- Treat_Fixed_As_Integer flag to appear on integer literal nodes
2296 -- and teach the analyzer how to handle them ???
2301 end Integer_Literal
;
2307 function Real_Literal
(N
: Node_Id
; V
: Ureal
) return Node_Id
is
2311 L
:= Make_Real_Literal
(Sloc
(N
), V
);
2313 -- Set type of result in case used elsewhere (see note at start)
2315 Set_Etype
(L
, Standard_Long_Long_Float
);
2319 ------------------------
2320 -- Rounded_Result_Set --
2321 ------------------------
2323 function Rounded_Result_Set
(N
: Node_Id
) return Boolean is
2324 K
: constant Node_Kind
:= Nkind
(N
);
2327 if (K
= N_Type_Conversion
or else
2328 K
= N_Op_Divide
or else
2330 and then Rounded_Result
(N
)
2336 end Rounded_Result_Set
;
2342 procedure Set_Result
2345 Rchk
: Boolean := False)
2349 Expr_Type
: constant Entity_Id
:= Etype
(Expr
);
2350 Result_Type
: constant Entity_Id
:= Etype
(N
);
2353 -- No conversion required if types match and no range check
2355 if Result_Type
= Expr_Type
and then not Rchk
then
2358 -- Else perform required conversion
2361 Cnode
:= Build_Conversion
(N
, Result_Type
, Expr
, Rchk
);
2365 Analyze_And_Resolve
(N
, Result_Type
);