1 ------------------------------------------------------------------------------
3 -- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
11 -- Copyright (C) 1991-2001, Florida State University --
13 -- GNARL is free software; you can redistribute it and/or modify it under --
14 -- terms of the GNU General Public License as published by the Free Soft- --
15 -- ware Foundation; either version 2, or (at your option) any later ver- --
16 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
17 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
18 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
19 -- for more details. You should have received a copy of the GNU General --
20 -- Public License distributed with GNARL; see file COPYING. If not, write --
21 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
22 -- MA 02111-1307, USA. --
24 -- As a special exception, if other files instantiate generics from this --
25 -- unit, or you link this unit with other files to produce an executable, --
26 -- this unit does not by itself cause the resulting executable to be --
27 -- covered by the GNU General Public License. This exception does not --
28 -- however invalidate any other reasons why the executable file might be --
29 -- covered by the GNU Public License. --
31 -- GNARL was developed by the GNARL team at Florida State University. It is --
32 -- now maintained by Ada Core Technologies Inc. in cooperation with Florida --
33 -- State University (http://www.gnat.com). --
35 ------------------------------------------------------------------------------
37 -- This is a HP-UX version of this package
39 -- This package contains all the GNULL primitives that interface directly
40 -- with the underlying OS.
43 -- Turn off polling, we do not want ATC polling to take place during
44 -- tasking operations. It causes infinite loops and other problems.
46 with System
.Tasking
.Debug
;
47 -- used for Known_Tasks
53 with System
.Interrupt_Management
;
54 -- used for Keep_Unmasked
55 -- Abort_Task_Interrupt
58 with System
.Interrupt_Management
.Operations
;
59 -- used for Set_Interrupt_Mask
61 pragma Elaborate_All
(System
.Interrupt_Management
.Operations
);
63 with System
.Parameters
;
66 with System
.Task_Primitives
.Interrupt_Operations
;
67 -- used for Get_Interrupt_ID
70 -- used for Ada_Task_Control_Block
73 with System
.Soft_Links
;
74 -- used for Defer/Undefer_Abort
76 -- Note that we do not use System.Tasking.Initialization directly since
77 -- this is a higher level package that we shouldn't depend on. For example
78 -- when using the restricted run time, it is replaced by
79 -- System.Tasking.Restricted.Initialization
81 with System
.OS_Primitives
;
82 -- used for Delay_Modes
84 with Unchecked_Conversion
;
85 with Unchecked_Deallocation
;
87 package body System
.Task_Primitives
.Operations
is
89 use System
.Tasking
.Debug
;
92 use System
.OS_Interface
;
93 use System
.Parameters
;
94 use System
.OS_Primitives
;
96 package PIO
renames System
.Task_Primitives
.Interrupt_Operations
;
97 package SSL
renames System
.Soft_Links
;
103 -- The followings are logically constants, but need to be initialized
106 ATCB_Key
: aliased pthread_key_t
;
107 -- Key used to find the Ada Task_ID associated with a thread
109 All_Tasks_L
: aliased System
.Task_Primitives
.RTS_Lock
;
110 -- See comments on locking rules in System.Tasking (spec).
112 Environment_Task_ID
: Task_ID
;
113 -- A variable to hold Task_ID for the environment task.
115 Unblocked_Signal_Mask
: aliased sigset_t
;
116 -- The set of signals that should unblocked in all tasks
118 Time_Slice_Val
: Integer;
119 pragma Import
(C
, Time_Slice_Val
, "__gl_time_slice_val");
121 Locking_Policy
: Character;
122 pragma Import
(C
, Locking_Policy
, "__gl_locking_policy");
124 Dispatching_Policy
: Character;
125 pragma Import
(C
, Dispatching_Policy
, "__gl_task_dispatching_policy");
127 FIFO_Within_Priorities
: constant Boolean := Dispatching_Policy
= 'F';
128 -- Indicates whether FIFO_Within_Priorities is set.
130 -- The followings are internal configuration constants needed.
132 -----------------------
133 -- Local Subprograms --
134 -----------------------
136 procedure Abort_Handler
(Sig
: Signal
);
138 function To_Task_ID
is new Unchecked_Conversion
(System
.Address
, Task_ID
);
140 function To_Address
is new Unchecked_Conversion
(Task_ID
, System
.Address
);
146 -- Target-dependent binding of inter-thread Abort signal to
147 -- the raising of the Abort_Signal exception.
149 -- The technical issues and alternatives here are essentially
150 -- the same as for raising exceptions in response to other
151 -- signals (e.g. Storage_Error). See code and comments in
152 -- the package body System.Interrupt_Management.
154 -- Some implementations may not allow an exception to be propagated
155 -- out of a handler, and others might leave the signal or
156 -- interrupt that invoked this handler masked after the exceptional
157 -- return to the application code.
159 -- GNAT exceptions are originally implemented using setjmp()/longjmp().
160 -- On most UNIX systems, this will allow transfer out of a signal handler,
161 -- which is usually the only mechanism available for implementing
162 -- asynchronous handlers of this kind. However, some
163 -- systems do not restore the signal mask on longjmp(), leaving the
164 -- abort signal masked.
166 -- Alternative solutions include:
168 -- 1. Change the PC saved in the system-dependent Context
169 -- parameter to point to code that raises the exception.
170 -- Normal return from this handler will then raise
171 -- the exception after the mask and other system state has
172 -- been restored (see example below).
173 -- 2. Use siglongjmp()/sigsetjmp() to implement exceptions.
174 -- 3. Unmask the signal in the Abortion_Signal exception handler
177 -- The following procedure would be needed if we can't lonjmp out of
178 -- a signal handler. (See below.)
179 -- procedure Raise_Abort_Signal is
181 -- raise Standard'Abort_Signal;
184 procedure Abort_Handler
(Sig
: Signal
) is
185 Self_Id
: constant Task_ID
:= Self
;
186 Result
: Interfaces
.C
.int
;
187 Old_Set
: aliased sigset_t
;
190 -- Assuming it is safe to longjmp out of a signal handler, the
191 -- following code can be used:
193 if Self_Id
.Deferral_Level
= 0
194 and then Self_Id
.Pending_ATC_Level
< Self_Id
.ATC_Nesting_Level
and then
197 Self_Id
.Aborting
:= True;
199 -- Make sure signals used for RTS internal purpose are unmasked
201 Result
:= pthread_sigmask
(SIG_UNBLOCK
,
202 Unblocked_Signal_Mask
'Unchecked_Access, Old_Set
'Unchecked_Access);
203 pragma Assert
(Result
= 0);
205 raise Standard
'Abort_Signal;
208 -- Otherwise, something like this is required:
209 -- if not Abort_Is_Deferred.all then
210 -- -- Overwrite the return PC address with the address of the
211 -- -- special raise routine, and "return" to that routine's
212 -- -- starting address.
213 -- Context.PC := Raise_Abort_Signal'Address;
222 -- The underlying thread system sets a guard page at the
223 -- bottom of a thread stack, so nothing is needed.
224 -- ??? Check the comment above
226 procedure Stack_Guard
(T
: ST
.Task_ID
; On
: Boolean) is
235 function Get_Thread_Id
(T
: ST
.Task_ID
) return OSI
.Thread_Id
is
237 return T
.Common
.LL
.Thread
;
244 function Self
return Task_ID
is
245 Result
: System
.Address
;
248 Result
:= pthread_getspecific
(ATCB_Key
);
249 pragma Assert
(Result
/= System
.Null_Address
);
250 return To_Task_ID
(Result
);
253 ---------------------
254 -- Initialize_Lock --
255 ---------------------
257 -- Note: mutexes and cond_variables needed per-task basis are
258 -- initialized in Intialize_TCB and the Storage_Error is
259 -- handled. Other mutexes (such as All_Tasks_Lock, Memory_Lock...)
260 -- used in RTS is initialized before any status change of RTS.
261 -- Therefore rasing Storage_Error in the following routines
262 -- should be able to be handled safely.
264 procedure Initialize_Lock
265 (Prio
: System
.Any_Priority
;
268 Attributes
: aliased pthread_mutexattr_t
;
269 Result
: Interfaces
.C
.int
;
271 Result
:= pthread_mutexattr_init
(Attributes
'Access);
272 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
274 if Result
= ENOMEM
then
280 Result
:= pthread_mutex_init
(L
.L
'Access, Attributes
'Access);
281 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
283 if Result
= ENOMEM
then
287 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
288 pragma Assert
(Result
= 0);
291 procedure Initialize_Lock
(L
: access RTS_Lock
; Level
: Lock_Level
) is
292 Attributes
: aliased pthread_mutexattr_t
;
293 Result
: Interfaces
.C
.int
;
296 Result
:= pthread_mutexattr_init
(Attributes
'Access);
297 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
299 if Result
= ENOMEM
then
303 Result
:= pthread_mutex_init
(L
, Attributes
'Access);
305 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
307 if Result
= ENOMEM
then
311 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
312 pragma Assert
(Result
= 0);
319 procedure Finalize_Lock
(L
: access Lock
) is
320 Result
: Interfaces
.C
.int
;
323 Result
:= pthread_mutex_destroy
(L
.L
'Access);
324 pragma Assert
(Result
= 0);
327 procedure Finalize_Lock
(L
: access RTS_Lock
) is
328 Result
: Interfaces
.C
.int
;
331 Result
:= pthread_mutex_destroy
(L
);
332 pragma Assert
(Result
= 0);
339 procedure Write_Lock
(L
: access Lock
; Ceiling_Violation
: out Boolean) is
340 Result
: Interfaces
.C
.int
;
343 L
.Owner_Priority
:= Get_Priority
(Self
);
345 if L
.Priority
< L
.Owner_Priority
then
346 Ceiling_Violation
:= True;
350 Result
:= pthread_mutex_lock
(L
.L
'Access);
351 pragma Assert
(Result
= 0);
352 Ceiling_Violation
:= False;
355 procedure Write_Lock
(L
: access RTS_Lock
) is
356 Result
: Interfaces
.C
.int
;
359 Result
:= pthread_mutex_lock
(L
);
360 pragma Assert
(Result
= 0);
363 procedure Write_Lock
(T
: Task_ID
) is
364 Result
: Interfaces
.C
.int
;
367 Result
:= pthread_mutex_lock
(T
.Common
.LL
.L
'Access);
368 pragma Assert
(Result
= 0);
375 procedure Read_Lock
(L
: access Lock
; Ceiling_Violation
: out Boolean) is
377 Write_Lock
(L
, Ceiling_Violation
);
384 procedure Unlock
(L
: access Lock
) is
385 Result
: Interfaces
.C
.int
;
388 Result
:= pthread_mutex_unlock
(L
.L
'Access);
389 pragma Assert
(Result
= 0);
392 procedure Unlock
(L
: access RTS_Lock
) is
393 Result
: Interfaces
.C
.int
;
396 Result
:= pthread_mutex_unlock
(L
);
397 pragma Assert
(Result
= 0);
400 procedure Unlock
(T
: Task_ID
) is
401 Result
: Interfaces
.C
.int
;
404 Result
:= pthread_mutex_unlock
(T
.Common
.LL
.L
'Access);
405 pragma Assert
(Result
= 0);
412 procedure Sleep
(Self_ID
: Task_ID
;
413 Reason
: System
.Tasking
.Task_States
) is
414 Result
: Interfaces
.C
.int
;
417 pragma Assert
(Self_ID
= Self
);
418 Result
:= pthread_cond_wait
(Self_ID
.Common
.LL
.CV
'Access,
419 Self_ID
.Common
.LL
.L
'Access);
420 -- EINTR is not considered a failure.
421 pragma Assert
(Result
= 0 or else Result
= EINTR
);
428 -- This is for use within the run-time system, so abort is
429 -- assumed to be already deferred, and the caller should be
430 -- holding its own ATCB lock.
432 procedure Timed_Sleep
435 Mode
: ST
.Delay_Modes
;
436 Reason
: System
.Tasking
.Task_States
;
437 Timedout
: out Boolean;
438 Yielded
: out Boolean)
440 Check_Time
: constant Duration := Monotonic_Clock
;
442 Request
: aliased timespec
;
443 Result
: Interfaces
.C
.int
;
448 if Mode
= Relative
then
449 Abs_Time
:= Duration'Min (Time
, Max_Sensible_Delay
) + Check_Time
;
451 Abs_Time
:= Duration'Min (Check_Time
+ Max_Sensible_Delay
, Time
);
454 if Abs_Time
> Check_Time
then
455 Request
:= To_Timespec
(Abs_Time
);
458 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
459 or else Self_ID
.Pending_Priority_Change
;
461 Result
:= pthread_cond_timedwait
462 (Self_ID
.Common
.LL
.CV
'Access, Self_ID
.Common
.LL
.L
'Access,
465 exit when Abs_Time
<= Monotonic_Clock
;
467 if Result
= 0 or Result
= EINTR
then
468 -- somebody may have called Wakeup for us
473 pragma Assert
(Result
= ETIMEDOUT
);
482 -- This is for use in implementing delay statements, so
483 -- we assume the caller is abort-deferred but is holding
486 procedure Timed_Delay
489 Mode
: ST
.Delay_Modes
)
491 Check_Time
: constant Duration := Monotonic_Clock
;
493 Request
: aliased timespec
;
494 Result
: Interfaces
.C
.int
;
497 -- Only the little window between deferring abort and
498 -- locking Self_ID is the reason we need to
499 -- check for pending abort and priority change below! :(
502 Write_Lock
(Self_ID
);
504 if Mode
= Relative
then
505 Abs_Time
:= Time
+ Check_Time
;
507 Abs_Time
:= Duration'Min (Check_Time
+ Max_Sensible_Delay
, Time
);
510 if Abs_Time
> Check_Time
then
511 Request
:= To_Timespec
(Abs_Time
);
512 Self_ID
.Common
.State
:= Delay_Sleep
;
515 if Self_ID
.Pending_Priority_Change
then
516 Self_ID
.Pending_Priority_Change
:= False;
517 Self_ID
.Common
.Base_Priority
:= Self_ID
.New_Base_Priority
;
518 Set_Priority
(Self_ID
, Self_ID
.Common
.Base_Priority
);
521 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
523 Result
:= pthread_cond_timedwait
(Self_ID
.Common
.LL
.CV
'Access,
524 Self_ID
.Common
.LL
.L
'Access, Request
'Access);
526 exit when Abs_Time
<= Monotonic_Clock
;
528 pragma Assert
(Result
= 0 or else
529 Result
= ETIMEDOUT
or else
533 Self_ID
.Common
.State
:= Runnable
;
537 Result
:= sched_yield
;
538 SSL
.Abort_Undefer
.all;
541 ---------------------
542 -- Monotonic_Clock --
543 ---------------------
545 function Monotonic_Clock
return Duration is
546 TS
: aliased timespec
;
547 Result
: Interfaces
.C
.int
;
550 Result
:= Clock_Gettime
(CLOCK_REALTIME
, TS
'Unchecked_Access);
551 pragma Assert
(Result
= 0);
552 return To_Duration
(TS
);
559 function RT_Resolution
return Duration is
568 procedure Wakeup
(T
: Task_ID
; Reason
: System
.Tasking
.Task_States
) is
569 Result
: Interfaces
.C
.int
;
572 Result
:= pthread_cond_signal
(T
.Common
.LL
.CV
'Access);
573 pragma Assert
(Result
= 0);
580 procedure Yield
(Do_Yield
: Boolean := True) is
581 Result
: Interfaces
.C
.int
;
585 Result
:= sched_yield
;
593 type Prio_Array_Type
is array (System
.Any_Priority
) of Integer;
594 pragma Atomic_Components
(Prio_Array_Type
);
596 Prio_Array
: Prio_Array_Type
;
597 -- Global array containing the id of the currently running task for
600 -- Note: we assume that we are on a single processor with run-til-blocked
603 procedure Set_Priority
605 Prio
: System
.Any_Priority
;
606 Loss_Of_Inheritance
: Boolean := False)
608 Result
: Interfaces
.C
.int
;
609 Array_Item
: Integer;
610 Param
: aliased struct_sched_param
;
613 Param
.sched_priority
:= Interfaces
.C
.int
(Underlying_Priorities
(Prio
));
615 if Time_Slice_Val
> 0 then
616 Result
:= pthread_setschedparam
617 (T
.Common
.LL
.Thread
, SCHED_RR
, Param
'Access);
619 elsif FIFO_Within_Priorities
or else Time_Slice_Val
= 0 then
620 Result
:= pthread_setschedparam
621 (T
.Common
.LL
.Thread
, SCHED_FIFO
, Param
'Access);
624 Result
:= pthread_setschedparam
625 (T
.Common
.LL
.Thread
, SCHED_OTHER
, Param
'Access);
628 pragma Assert
(Result
= 0);
630 if FIFO_Within_Priorities
then
632 -- Annex D requirement [RM D.2.2 par. 9]:
633 -- If the task drops its priority due to the loss of inherited
634 -- priority, it is added at the head of the ready queue for its
635 -- new active priority.
637 if Loss_Of_Inheritance
638 and then Prio
< T
.Common
.Current_Priority
640 Array_Item
:= Prio_Array
(T
.Common
.Base_Priority
) + 1;
641 Prio_Array
(T
.Common
.Base_Priority
) := Array_Item
;
644 -- Let some processes a chance to arrive
648 -- Then wait for our turn to proceed
650 exit when Array_Item
= Prio_Array
(T
.Common
.Base_Priority
)
651 or else Prio_Array
(T
.Common
.Base_Priority
) = 1;
654 Prio_Array
(T
.Common
.Base_Priority
) :=
655 Prio_Array
(T
.Common
.Base_Priority
) - 1;
659 T
.Common
.Current_Priority
:= Prio
;
666 function Get_Priority
(T
: Task_ID
) return System
.Any_Priority
is
668 return T
.Common
.Current_Priority
;
675 procedure Enter_Task
(Self_ID
: Task_ID
) is
676 Result
: Interfaces
.C
.int
;
679 Self_ID
.Common
.LL
.Thread
:= pthread_self
;
681 Result
:= pthread_setspecific
(ATCB_Key
, To_Address
(Self_ID
));
682 pragma Assert
(Result
= 0);
685 for I
in Known_Tasks
'Range loop
686 if Known_Tasks
(I
) = null then
687 Known_Tasks
(I
) := Self_ID
;
688 Self_ID
.Known_Tasks_Index
:= I
;
692 Unlock_All_Tasks_List
;
699 function New_ATCB
(Entry_Num
: Task_Entry_Index
) return Task_ID
is
701 return new Ada_Task_Control_Block
(Entry_Num
);
704 ----------------------
706 ----------------------
708 procedure Initialize_TCB
(Self_ID
: Task_ID
; Succeeded
: out Boolean) is
709 Mutex_Attr
: aliased pthread_mutexattr_t
;
710 Result
: Interfaces
.C
.int
;
711 Cond_Attr
: aliased pthread_condattr_t
;
714 Result
:= pthread_mutexattr_init
(Mutex_Attr
'Access);
715 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
722 Result
:= pthread_mutex_init
(Self_ID
.Common
.LL
.L
'Access,
724 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
731 Result
:= pthread_mutexattr_destroy
(Mutex_Attr
'Access);
732 pragma Assert
(Result
= 0);
734 Result
:= pthread_condattr_init
(Cond_Attr
'Access);
735 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
738 Result
:= pthread_mutex_destroy
(Self_ID
.Common
.LL
.L
'Access);
739 pragma Assert
(Result
= 0);
744 Result
:= pthread_cond_init
(Self_ID
.Common
.LL
.CV
'Access,
746 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
751 Result
:= pthread_mutex_destroy
(Self_ID
.Common
.LL
.L
'Access);
752 pragma Assert
(Result
= 0);
756 Result
:= pthread_condattr_destroy
(Cond_Attr
'Access);
757 pragma Assert
(Result
= 0);
764 procedure Create_Task
766 Wrapper
: System
.Address
;
767 Stack_Size
: System
.Parameters
.Size_Type
;
768 Priority
: System
.Any_Priority
;
769 Succeeded
: out Boolean)
771 Attributes
: aliased pthread_attr_t
;
772 Adjusted_Stack_Size
: Interfaces
.C
.size_t
;
773 Result
: Interfaces
.C
.int
;
775 function Thread_Body_Access
is new
776 Unchecked_Conversion
(System
.Address
, Thread_Body
);
779 if Stack_Size
= Unspecified_Size
then
780 Adjusted_Stack_Size
:= Interfaces
.C
.size_t
(Default_Stack_Size
);
782 elsif Stack_Size
< Minimum_Stack_Size
then
783 Adjusted_Stack_Size
:= Interfaces
.C
.size_t
(Minimum_Stack_Size
);
786 Adjusted_Stack_Size
:= Interfaces
.C
.size_t
(Stack_Size
);
789 Result
:= pthread_attr_init
(Attributes
'Access);
790 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
797 Result
:= pthread_attr_setstacksize
798 (Attributes
'Access, Adjusted_Stack_Size
);
799 pragma Assert
(Result
= 0);
801 -- Since the initial signal mask of a thread is inherited from the
802 -- creator, and the Environment task has all its signals masked, we
803 -- do not need to manipulate caller's signal mask at this point.
804 -- All tasks in RTS will have All_Tasks_Mask initially.
806 Result
:= pthread_create
807 (T
.Common
.LL
.Thread
'Access,
809 Thread_Body_Access
(Wrapper
),
811 pragma Assert
(Result
= 0 or else Result
= EAGAIN
);
813 Succeeded
:= Result
= 0;
815 pthread_detach
(T
.Common
.LL
.Thread
'Access);
816 -- Detach the thread using pthread_detach, sinc DCE threads do not have
817 -- pthread_attr_set_detachstate.
819 Result
:= pthread_attr_destroy
(Attributes
'Access);
820 pragma Assert
(Result
= 0);
822 Set_Priority
(T
, Priority
);
829 procedure Finalize_TCB
(T
: Task_ID
) is
830 Result
: Interfaces
.C
.int
;
833 procedure Free
is new
834 Unchecked_Deallocation
(Ada_Task_Control_Block
, Task_ID
);
837 Result
:= pthread_mutex_destroy
(T
.Common
.LL
.L
'Access);
838 pragma Assert
(Result
= 0);
839 Result
:= pthread_cond_destroy
(T
.Common
.LL
.CV
'Access);
840 pragma Assert
(Result
= 0);
842 if T
.Known_Tasks_Index
/= -1 then
843 Known_Tasks
(T
.Known_Tasks_Index
) := null;
853 procedure Exit_Task
is
855 pthread_exit
(System
.Null_Address
);
862 procedure Abort_Task
(T
: Task_ID
) is
865 -- Interrupt Server_Tasks may be waiting on an "event" flag (signal)
867 if T
.Common
.State
= Interrupt_Server_Blocked_On_Event_Flag
then
868 System
.Interrupt_Management
.Operations
.Interrupt_Self_Process
869 (System
.Interrupt_Management
.Interrupt_ID
870 (PIO
.Get_Interrupt_ID
(T
)));
878 -- Dummy versions. The only currently working versions is for solaris
881 function Check_Exit
(Self_ID
: ST
.Task_ID
) return Boolean is
890 function Check_No_Locks
(Self_ID
: ST
.Task_ID
) return Boolean is
895 ----------------------
896 -- Environment_Task --
897 ----------------------
899 function Environment_Task
return Task_ID
is
901 return Environment_Task_ID
;
902 end Environment_Task
;
904 -------------------------
905 -- Lock_All_Tasks_List --
906 -------------------------
908 procedure Lock_All_Tasks_List
is
910 Write_Lock
(All_Tasks_L
'Access);
911 end Lock_All_Tasks_List
;
913 ---------------------------
914 -- Unlock_All_Tasks_List --
915 ---------------------------
917 procedure Unlock_All_Tasks_List
is
919 Unlock
(All_Tasks_L
'Access);
920 end Unlock_All_Tasks_List
;
926 function Suspend_Task
928 Thread_Self
: Thread_Id
) return Boolean is
939 Thread_Self
: Thread_Id
) return Boolean is
948 procedure Initialize
(Environment_Task
: Task_ID
) is
949 act
: aliased struct_sigaction
;
950 old_act
: aliased struct_sigaction
;
951 Tmp_Set
: aliased sigset_t
;
952 Result
: Interfaces
.C
.int
;
956 Environment_Task_ID
:= Environment_Task
;
958 Initialize_Lock
(All_Tasks_L
'Access, All_Tasks_Level
);
959 -- Initialize the lock used to synchronize chain of all ATCBs.
961 Enter_Task
(Environment_Task
);
963 -- Install the abort-signal handler
966 act
.sa_handler
:= Abort_Handler
'Address;
968 Result
:= sigemptyset
(Tmp_Set
'Access);
969 pragma Assert
(Result
= 0);
970 act
.sa_mask
:= Tmp_Set
;
974 Signal
(System
.Interrupt_Management
.Abort_Task_Interrupt
),
975 act
'Unchecked_Access,
976 old_act
'Unchecked_Access);
977 pragma Assert
(Result
= 0);
980 procedure do_nothing
(arg
: System
.Address
);
982 procedure do_nothing
(arg
: System
.Address
) is
990 Result
: Interfaces
.C
.int
;
992 -- NOTE: Unlike other pthread implementations, we do *not* mask all
993 -- signals here since we handle signals using the process-wide primitive
994 -- signal, rather than using sigthreadmask and sigwait. The reason of
995 -- this difference is that sigwait doesn't work when some critical
996 -- signals (SIGABRT, SIGPIPE) are masked.
998 Result
:= pthread_key_create
(ATCB_Key
'Access, do_nothing
'Access);
999 pragma Assert
(Result
= 0);
1002 end System
.Task_Primitives
.Operations
;