1 /* Lambda matrix and vector interface.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
27 /* An integer vector. A vector formally consists of an element of a vector
28 space. A vector space is a set that is closed under vector addition
29 and scalar multiplication. In this vector space, an element is a list of
31 typedef int *lambda_vector
;
33 DEF_VEC_P(lambda_vector
);
34 DEF_VEC_ALLOC_P(lambda_vector
,heap
);
36 /* An integer matrix. A matrix consists of m vectors of length n (IE
37 all vectors are the same length). */
38 typedef lambda_vector
*lambda_matrix
;
40 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
41 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
42 represents the denominator for every element in the matrix. */
49 } *lambda_trans_matrix
;
50 #define LTM_MATRIX(T) ((T)->matrix)
51 #define LTM_ROWSIZE(T) ((T)->rowsize)
52 #define LTM_COLSIZE(T) ((T)->colsize)
53 #define LTM_DENOMINATOR(T) ((T)->denominator)
55 /* A vector representing a statement in the body of a loop.
56 The COEFFICIENTS vector contains a coefficient for each induction variable
57 in the loop nest containing the statement.
58 The DENOMINATOR represents the denominator for each coefficient in the
61 This structure is used during code generation in order to rewrite the old
62 induction variable uses in a statement in terms of the newly created
63 induction variables. */
66 lambda_vector coefficients
;
69 } *lambda_body_vector
;
70 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
71 #define LBV_SIZE(T) ((T)->size)
72 #define LBV_DENOMINATOR(T) ((T)->denominator)
74 /* Piecewise linear expression.
75 This structure represents a linear expression with terms for the invariants
76 and induction variables of a loop.
77 COEFFICIENTS is a vector of coefficients for the induction variables, one
78 per loop in the loop nest.
79 CONSTANT is the constant portion of the linear expression
80 INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
82 DENOMINATOR is the denominator for all of the coefficients and constants in
84 The linear expressions can be linked together using the NEXT field, in
85 order to represent MAX or MIN of a group of linear expressions. */
86 typedef struct lambda_linear_expression_s
88 lambda_vector coefficients
;
90 lambda_vector invariant_coefficients
;
92 struct lambda_linear_expression_s
*next
;
93 } *lambda_linear_expression
;
95 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
96 #define LLE_CONSTANT(T) ((T)->constant)
97 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
98 #define LLE_DENOMINATOR(T) ((T)->denominator)
99 #define LLE_NEXT(T) ((T)->next)
101 lambda_linear_expression
lambda_linear_expression_new (int, int);
102 void print_lambda_linear_expression (FILE *, lambda_linear_expression
, int,
105 /* Loop structure. Our loop structure consists of a constant representing the
106 STEP of the loop, a set of linear expressions representing the LOWER_BOUND
107 of the loop, a set of linear expressions representing the UPPER_BOUND of
108 the loop, and a set of linear expressions representing the LINEAR_OFFSET of
109 the loop. The linear offset is a set of linear expressions that are
110 applied to *both* the lower bound, and the upper bound. */
111 typedef struct lambda_loop_s
113 lambda_linear_expression lower_bound
;
114 lambda_linear_expression upper_bound
;
115 lambda_linear_expression linear_offset
;
119 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
120 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
121 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
122 #define LL_STEP(T) ((T)->step)
124 /* Loop nest structure.
125 The loop nest structure consists of a set of loop structures (defined
126 above) in LOOPS, along with an integer representing the DEPTH of the loop,
127 and an integer representing the number of INVARIANTS in the loop. Both of
128 these integers are used to size the associated coefficient vectors in the
129 linear expression structures. */
137 #define LN_LOOPS(T) ((T)->loops)
138 #define LN_DEPTH(T) ((T)->depth)
139 #define LN_INVARIANTS(T) ((T)->invariants)
141 lambda_loopnest
lambda_loopnest_new (int, int);
142 lambda_loopnest
lambda_loopnest_transform (lambda_loopnest
, lambda_trans_matrix
);
145 bool perfect_nest_p (struct loop
*);
146 bool lambda_transform_legal_p (lambda_trans_matrix
, int, varray_type
);
147 void print_lambda_loopnest (FILE *, lambda_loopnest
, char);
149 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
151 void print_lambda_loop (FILE *, lambda_loop
, int, int, char);
153 lambda_matrix
lambda_matrix_new (int, int);
155 void lambda_matrix_id (lambda_matrix
, int);
156 bool lambda_matrix_id_p (lambda_matrix
, int);
157 void lambda_matrix_copy (lambda_matrix
, lambda_matrix
, int, int);
158 void lambda_matrix_negate (lambda_matrix
, lambda_matrix
, int, int);
159 void lambda_matrix_transpose (lambda_matrix
, lambda_matrix
, int, int);
160 void lambda_matrix_add (lambda_matrix
, lambda_matrix
, lambda_matrix
, int,
162 void lambda_matrix_add_mc (lambda_matrix
, int, lambda_matrix
, int,
163 lambda_matrix
, int, int);
164 void lambda_matrix_mult (lambda_matrix
, lambda_matrix
, lambda_matrix
,
166 void lambda_matrix_delete_rows (lambda_matrix
, int, int, int);
167 void lambda_matrix_row_exchange (lambda_matrix
, int, int);
168 void lambda_matrix_row_add (lambda_matrix
, int, int, int, int);
169 void lambda_matrix_row_negate (lambda_matrix mat
, int, int);
170 void lambda_matrix_row_mc (lambda_matrix
, int, int, int);
171 void lambda_matrix_col_exchange (lambda_matrix
, int, int, int);
172 void lambda_matrix_col_add (lambda_matrix
, int, int, int, int);
173 void lambda_matrix_col_negate (lambda_matrix
, int, int);
174 void lambda_matrix_col_mc (lambda_matrix
, int, int, int);
175 int lambda_matrix_inverse (lambda_matrix
, lambda_matrix
, int);
176 void lambda_matrix_hermite (lambda_matrix
, int, lambda_matrix
, lambda_matrix
);
177 void lambda_matrix_left_hermite (lambda_matrix
, int, int, lambda_matrix
, lambda_matrix
);
178 void lambda_matrix_right_hermite (lambda_matrix
, int, int, lambda_matrix
, lambda_matrix
);
179 int lambda_matrix_first_nz_vec (lambda_matrix
, int, int, int);
180 void lambda_matrix_project_to_null (lambda_matrix
, int, int, int,
182 void print_lambda_matrix (FILE *, lambda_matrix
, int, int);
184 lambda_trans_matrix
lambda_trans_matrix_new (int, int);
185 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix
);
186 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix
);
187 int lambda_trans_matrix_rank (lambda_trans_matrix
);
188 lambda_trans_matrix
lambda_trans_matrix_basis (lambda_trans_matrix
);
189 lambda_trans_matrix
lambda_trans_matrix_padding (lambda_trans_matrix
);
190 lambda_trans_matrix
lambda_trans_matrix_inverse (lambda_trans_matrix
);
191 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix
);
192 void lambda_matrix_vector_mult (lambda_matrix
, int, int, lambda_vector
,
194 bool lambda_trans_matrix_id_p (lambda_trans_matrix
);
196 lambda_body_vector
lambda_body_vector_new (int);
197 lambda_body_vector
lambda_body_vector_compute_new (lambda_trans_matrix
,
199 void print_lambda_body_vector (FILE *, lambda_body_vector
);
200 lambda_loopnest
gcc_loopnest_to_lambda_loopnest (struct loops
*,
205 void lambda_loopnest_to_gcc_loopnest (struct loop
*,
206 VEC(tree
,heap
) *, VEC(tree
,heap
) *,
207 lambda_loopnest
, lambda_trans_matrix
);
210 static inline void lambda_vector_negate (lambda_vector
, lambda_vector
, int);
211 static inline void lambda_vector_mult_const (lambda_vector
, lambda_vector
, int, int);
212 static inline void lambda_vector_add (lambda_vector
, lambda_vector
,
214 static inline void lambda_vector_add_mc (lambda_vector
, int, lambda_vector
, int,
216 static inline void lambda_vector_copy (lambda_vector
, lambda_vector
, int);
217 static inline bool lambda_vector_zerop (lambda_vector
, int);
218 static inline void lambda_vector_clear (lambda_vector
, int);
219 static inline bool lambda_vector_equal (lambda_vector
, lambda_vector
, int);
220 static inline int lambda_vector_min_nz (lambda_vector
, int, int);
221 static inline int lambda_vector_first_nz (lambda_vector
, int, int);
222 static inline void print_lambda_vector (FILE *, lambda_vector
, int);
224 /* Allocate a new vector of given SIZE. */
226 static inline lambda_vector
227 lambda_vector_new (int size
)
229 return ggc_alloc_cleared (size
* sizeof(int));
234 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
235 and store the result in VEC2. */
238 lambda_vector_mult_const (lambda_vector vec1
, lambda_vector vec2
,
239 int size
, int const1
)
244 lambda_vector_clear (vec2
, size
);
246 for (i
= 0; i
< size
; i
++)
247 vec2
[i
] = const1
* vec1
[i
];
250 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
253 lambda_vector_negate (lambda_vector vec1
, lambda_vector vec2
,
256 lambda_vector_mult_const (vec1
, vec2
, size
, -1);
259 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
262 lambda_vector_add (lambda_vector vec1
, lambda_vector vec2
,
263 lambda_vector vec3
, int size
)
266 for (i
= 0; i
< size
; i
++)
267 vec3
[i
] = vec1
[i
] + vec2
[i
];
270 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
273 lambda_vector_add_mc (lambda_vector vec1
, int const1
,
274 lambda_vector vec2
, int const2
,
275 lambda_vector vec3
, int size
)
278 for (i
= 0; i
< size
; i
++)
279 vec3
[i
] = const1
* vec1
[i
] + const2
* vec2
[i
];
282 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
285 lambda_vector_copy (lambda_vector vec1
, lambda_vector vec2
,
288 memcpy (vec2
, vec1
, size
* sizeof (*vec1
));
291 /* Return true if vector VEC1 of length SIZE is the zero vector. */
294 lambda_vector_zerop (lambda_vector vec1
, int size
)
297 for (i
= 0; i
< size
; i
++)
303 /* Clear out vector VEC1 of length SIZE. */
306 lambda_vector_clear (lambda_vector vec1
, int size
)
308 memset (vec1
, 0, size
* sizeof (*vec1
));
311 /* Return true if two vectors are equal. */
314 lambda_vector_equal (lambda_vector vec1
, lambda_vector vec2
, int size
)
317 for (i
= 0; i
< size
; i
++)
318 if (vec1
[i
] != vec2
[i
])
323 /* Return the minimum nonzero element in vector VEC1 between START and N.
324 We must have START <= N. */
327 lambda_vector_min_nz (lambda_vector vec1
, int n
, int start
)
332 gcc_assert (start
<= n
);
333 for (j
= start
; j
< n
; j
++)
336 if (min
< 0 || vec1
[j
] < vec1
[min
])
339 gcc_assert (min
>= 0);
344 /* Return the first nonzero element of vector VEC1 between START and N.
345 We must have START <= N. Returns N if VEC1 is the zero vector. */
348 lambda_vector_first_nz (lambda_vector vec1
, int n
, int start
)
351 while (j
< n
&& vec1
[j
] == 0)
357 /* Multiply a vector by a matrix. */
360 lambda_vector_matrix_mult (lambda_vector vect
, int m
, lambda_matrix mat
,
361 int n
, lambda_vector dest
)
364 lambda_vector_clear (dest
, n
);
365 for (i
= 0; i
< n
; i
++)
366 for (j
= 0; j
< m
; j
++)
367 dest
[i
] += mat
[j
][i
] * vect
[j
];
371 /* Print out a vector VEC of length N to OUTFILE. */
374 print_lambda_vector (FILE * outfile
, lambda_vector vector
, int n
)
378 for (i
= 0; i
< n
; i
++)
379 fprintf (outfile
, "%3d ", vector
[i
]);
380 fprintf (outfile
, "\n");
383 /* Returns true when the vector V is lexicographically positive, in
384 other words, when the first nonzero element is positive. */
387 lambda_vector_lexico_pos (lambda_vector v
,
391 for (i
= 0; i
< n
; i
++)
403 #endif /* LAMBDA_H */