2015-05-12 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob08ad303f0a5945e63a8d1ef9cfbe99d6ae12da97
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Prag; use Sem_Prag;
69 with Sem_Res; use Sem_Res;
70 with Sem_Smem; use Sem_Smem;
71 with Sem_Type; use Sem_Type;
72 with Sem_Util; use Sem_Util;
73 with Sem_Warn; use Sem_Warn;
74 with Stand; use Stand;
75 with Sinfo; use Sinfo;
76 with Sinput; use Sinput;
77 with Snames; use Snames;
78 with Targparm; use Targparm;
79 with Tbuild; use Tbuild;
80 with Ttypes; use Ttypes;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Ch3 is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
91 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
92 -- abstract interface types implemented by a record type or a derived
93 -- record type.
95 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
96 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
97 -- if they appeared at the end of the declarative region. The pragmas to be
98 -- considered are:
99 -- Async_Readers
100 -- Async_Writers
101 -- Effective_Reads
102 -- Effective_Writes
103 -- Part_Of
105 procedure Build_Derived_Type
106 (N : Node_Id;
107 Parent_Type : Entity_Id;
108 Derived_Type : Entity_Id;
109 Is_Completion : Boolean;
110 Derive_Subps : Boolean := True);
111 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
112 -- the N_Full_Type_Declaration node containing the derived type definition.
113 -- Parent_Type is the entity for the parent type in the derived type
114 -- definition and Derived_Type the actual derived type. Is_Completion must
115 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
116 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
117 -- completion of a private type declaration. If Is_Completion is set to
118 -- True, N is the completion of a private type declaration and Derived_Type
119 -- is different from the defining identifier inside N (i.e. Derived_Type /=
120 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
121 -- subprograms should be derived. The only case where this parameter is
122 -- False is when Build_Derived_Type is recursively called to process an
123 -- implicit derived full type for a type derived from a private type (in
124 -- that case the subprograms must only be derived for the private view of
125 -- the type).
127 -- ??? These flags need a bit of re-examination and re-documentation:
128 -- ??? are they both necessary (both seem related to the recursion)?
130 procedure Build_Derived_Access_Type
131 (N : Node_Id;
132 Parent_Type : Entity_Id;
133 Derived_Type : Entity_Id);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
135 -- create an implicit base if the parent type is constrained or if the
136 -- subtype indication has a constraint.
138 procedure Build_Derived_Array_Type
139 (N : Node_Id;
140 Parent_Type : Entity_Id;
141 Derived_Type : Entity_Id);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
143 -- create an implicit base if the parent type is constrained or if the
144 -- subtype indication has a constraint.
146 procedure Build_Derived_Concurrent_Type
147 (N : Node_Id;
148 Parent_Type : Entity_Id;
149 Derived_Type : Entity_Id);
150 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
151 -- protected type, inherit entries and protected subprograms, check
152 -- legality of discriminant constraints if any.
154 procedure Build_Derived_Enumeration_Type
155 (N : Node_Id;
156 Parent_Type : Entity_Id;
157 Derived_Type : Entity_Id);
158 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
159 -- type, we must create a new list of literals. Types derived from
160 -- Character and [Wide_]Wide_Character are special-cased.
162 procedure Build_Derived_Numeric_Type
163 (N : Node_Id;
164 Parent_Type : Entity_Id;
165 Derived_Type : Entity_Id);
166 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
167 -- an anonymous base type, and propagate constraint to subtype if needed.
169 procedure Build_Derived_Private_Type
170 (N : Node_Id;
171 Parent_Type : Entity_Id;
172 Derived_Type : Entity_Id;
173 Is_Completion : Boolean;
174 Derive_Subps : Boolean := True);
175 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
176 -- because the parent may or may not have a completion, and the derivation
177 -- may itself be a completion.
179 procedure Build_Derived_Record_Type
180 (N : Node_Id;
181 Parent_Type : Entity_Id;
182 Derived_Type : Entity_Id;
183 Derive_Subps : Boolean := True);
184 -- Subsidiary procedure used for tagged and untagged record types
185 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
186 -- All parameters are as in Build_Derived_Type except that N, in
187 -- addition to being an N_Full_Type_Declaration node, can also be an
188 -- N_Private_Extension_Declaration node. See the definition of this routine
189 -- for much more info. Derive_Subps indicates whether subprograms should be
190 -- derived from the parent type. The only case where Derive_Subps is False
191 -- is for an implicit derived full type for a type derived from a private
192 -- type (see Build_Derived_Type).
194 procedure Build_Discriminal (Discrim : Entity_Id);
195 -- Create the discriminal corresponding to discriminant Discrim, that is
196 -- the parameter corresponding to Discrim to be used in initialization
197 -- procedures for the type where Discrim is a discriminant. Discriminals
198 -- are not used during semantic analysis, and are not fully defined
199 -- entities until expansion. Thus they are not given a scope until
200 -- initialization procedures are built.
202 function Build_Discriminant_Constraints
203 (T : Entity_Id;
204 Def : Node_Id;
205 Derived_Def : Boolean := False) return Elist_Id;
206 -- Validate discriminant constraints and return the list of the constraints
207 -- in order of discriminant declarations, where T is the discriminated
208 -- unconstrained type. Def is the N_Subtype_Indication node where the
209 -- discriminants constraints for T are specified. Derived_Def is True
210 -- when building the discriminant constraints in a derived type definition
211 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
212 -- type and Def is the constraint "(xxx)" on T and this routine sets the
213 -- Corresponding_Discriminant field of the discriminants in the derived
214 -- type D to point to the corresponding discriminants in the parent type T.
216 procedure Build_Discriminated_Subtype
217 (T : Entity_Id;
218 Def_Id : Entity_Id;
219 Elist : Elist_Id;
220 Related_Nod : Node_Id;
221 For_Access : Boolean := False);
222 -- Subsidiary procedure to Constrain_Discriminated_Type and to
223 -- Process_Incomplete_Dependents. Given
225 -- T (a possibly discriminated base type)
226 -- Def_Id (a very partially built subtype for T),
228 -- the call completes Def_Id to be the appropriate E_*_Subtype.
230 -- The Elist is the list of discriminant constraints if any (it is set
231 -- to No_Elist if T is not a discriminated type, and to an empty list if
232 -- T has discriminants but there are no discriminant constraints). The
233 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
234 -- The For_Access says whether or not this subtype is really constraining
235 -- an access type. That is its sole purpose is the designated type of an
236 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
237 -- is built to avoid freezing T when the access subtype is frozen.
239 function Build_Scalar_Bound
240 (Bound : Node_Id;
241 Par_T : Entity_Id;
242 Der_T : Entity_Id) return Node_Id;
243 -- The bounds of a derived scalar type are conversions of the bounds of
244 -- the parent type. Optimize the representation if the bounds are literals.
245 -- Needs a more complete spec--what are the parameters exactly, and what
246 -- exactly is the returned value, and how is Bound affected???
248 procedure Build_Underlying_Full_View
249 (N : Node_Id;
250 Typ : Entity_Id;
251 Par : Entity_Id);
252 -- If the completion of a private type is itself derived from a private
253 -- type, or if the full view of a private subtype is itself private, the
254 -- back-end has no way to compute the actual size of this type. We build
255 -- an internal subtype declaration of the proper parent type to convey
256 -- this information. This extra mechanism is needed because a full
257 -- view cannot itself have a full view (it would get clobbered during
258 -- view exchanges).
260 procedure Check_Access_Discriminant_Requires_Limited
261 (D : Node_Id;
262 Loc : Node_Id);
263 -- Check the restriction that the type to which an access discriminant
264 -- belongs must be a concurrent type or a descendant of a type with
265 -- the reserved word 'limited' in its declaration.
267 procedure Check_Anonymous_Access_Components
268 (Typ_Decl : Node_Id;
269 Typ : Entity_Id;
270 Prev : Entity_Id;
271 Comp_List : Node_Id);
272 -- Ada 2005 AI-382: an access component in a record definition can refer to
273 -- the enclosing record, in which case it denotes the type itself, and not
274 -- the current instance of the type. We create an anonymous access type for
275 -- the component, and flag it as an access to a component, so accessibility
276 -- checks are properly performed on it. The declaration of the access type
277 -- is placed ahead of that of the record to prevent order-of-elaboration
278 -- circularity issues in Gigi. We create an incomplete type for the record
279 -- declaration, which is the designated type of the anonymous access.
281 procedure Check_Delta_Expression (E : Node_Id);
282 -- Check that the expression represented by E is suitable for use as a
283 -- delta expression, i.e. it is of real type and is static.
285 procedure Check_Digits_Expression (E : Node_Id);
286 -- Check that the expression represented by E is suitable for use as a
287 -- digits expression, i.e. it is of integer type, positive and static.
289 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
290 -- Validate the initialization of an object declaration. T is the required
291 -- type, and Exp is the initialization expression.
293 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
294 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
296 procedure Check_Or_Process_Discriminants
297 (N : Node_Id;
298 T : Entity_Id;
299 Prev : Entity_Id := Empty);
300 -- If N is the full declaration of the completion T of an incomplete or
301 -- private type, check its discriminants (which are already known to be
302 -- conformant with those of the partial view, see Find_Type_Name),
303 -- otherwise process them. Prev is the entity of the partial declaration,
304 -- if any.
306 procedure Check_Real_Bound (Bound : Node_Id);
307 -- Check given bound for being of real type and static. If not, post an
308 -- appropriate message, and rewrite the bound with the real literal zero.
310 procedure Constant_Redeclaration
311 (Id : Entity_Id;
312 N : Node_Id;
313 T : out Entity_Id);
314 -- Various checks on legality of full declaration of deferred constant.
315 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
316 -- node. The caller has not yet set any attributes of this entity.
318 function Contain_Interface
319 (Iface : Entity_Id;
320 Ifaces : Elist_Id) return Boolean;
321 -- Ada 2005: Determine whether Iface is present in the list Ifaces
323 procedure Convert_Scalar_Bounds
324 (N : Node_Id;
325 Parent_Type : Entity_Id;
326 Derived_Type : Entity_Id;
327 Loc : Source_Ptr);
328 -- For derived scalar types, convert the bounds in the type definition to
329 -- the derived type, and complete their analysis. Given a constraint of the
330 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
331 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
332 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
333 -- subtype are conversions of those bounds to the derived_type, so that
334 -- their typing is consistent.
336 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
337 -- Copies attributes from array base type T2 to array base type T1. Copies
338 -- only attributes that apply to base types, but not subtypes.
340 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
341 -- Copies attributes from array subtype T2 to array subtype T1. Copies
342 -- attributes that apply to both subtypes and base types.
344 procedure Create_Constrained_Components
345 (Subt : Entity_Id;
346 Decl_Node : Node_Id;
347 Typ : Entity_Id;
348 Constraints : Elist_Id);
349 -- Build the list of entities for a constrained discriminated record
350 -- subtype. If a component depends on a discriminant, replace its subtype
351 -- using the discriminant values in the discriminant constraint. Subt
352 -- is the defining identifier for the subtype whose list of constrained
353 -- entities we will create. Decl_Node is the type declaration node where
354 -- we will attach all the itypes created. Typ is the base discriminated
355 -- type for the subtype Subt. Constraints is the list of discriminant
356 -- constraints for Typ.
358 function Constrain_Component_Type
359 (Comp : Entity_Id;
360 Constrained_Typ : Entity_Id;
361 Related_Node : Node_Id;
362 Typ : Entity_Id;
363 Constraints : Elist_Id) return Entity_Id;
364 -- Given a discriminated base type Typ, a list of discriminant constraints,
365 -- Constraints, for Typ and a component Comp of Typ, create and return the
366 -- type corresponding to Etype (Comp) where all discriminant references
367 -- are replaced with the corresponding constraint. If Etype (Comp) contains
368 -- no discriminant references then it is returned as-is. Constrained_Typ
369 -- is the final constrained subtype to which the constrained component
370 -- belongs. Related_Node is the node where we attach all created itypes.
372 procedure Constrain_Access
373 (Def_Id : in out Entity_Id;
374 S : Node_Id;
375 Related_Nod : Node_Id);
376 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
377 -- an anonymous type created for a subtype indication. In that case it is
378 -- created in the procedure and attached to Related_Nod.
380 procedure Constrain_Array
381 (Def_Id : in out Entity_Id;
382 SI : Node_Id;
383 Related_Nod : Node_Id;
384 Related_Id : Entity_Id;
385 Suffix : Character);
386 -- Apply a list of index constraints to an unconstrained array type. The
387 -- first parameter is the entity for the resulting subtype. A value of
388 -- Empty for Def_Id indicates that an implicit type must be created, but
389 -- creation is delayed (and must be done by this procedure) because other
390 -- subsidiary implicit types must be created first (which is why Def_Id
391 -- is an in/out parameter). The second parameter is a subtype indication
392 -- node for the constrained array to be created (e.g. something of the
393 -- form string (1 .. 10)). Related_Nod gives the place where this type
394 -- has to be inserted in the tree. The Related_Id and Suffix parameters
395 -- are used to build the associated Implicit type name.
397 procedure Constrain_Concurrent
398 (Def_Id : in out Entity_Id;
399 SI : Node_Id;
400 Related_Nod : Node_Id;
401 Related_Id : Entity_Id;
402 Suffix : Character);
403 -- Apply list of discriminant constraints to an unconstrained concurrent
404 -- type.
406 -- SI is the N_Subtype_Indication node containing the constraint and
407 -- the unconstrained type to constrain.
409 -- Def_Id is the entity for the resulting constrained subtype. A value
410 -- of Empty for Def_Id indicates that an implicit type must be created,
411 -- but creation is delayed (and must be done by this procedure) because
412 -- other subsidiary implicit types must be created first (which is why
413 -- Def_Id is an in/out parameter).
415 -- Related_Nod gives the place where this type has to be inserted
416 -- in the tree.
418 -- The last two arguments are used to create its external name if needed.
420 function Constrain_Corresponding_Record
421 (Prot_Subt : Entity_Id;
422 Corr_Rec : Entity_Id;
423 Related_Nod : Node_Id) return Entity_Id;
424 -- When constraining a protected type or task type with discriminants,
425 -- constrain the corresponding record with the same discriminant values.
427 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
428 -- Constrain a decimal fixed point type with a digits constraint and/or a
429 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
431 procedure Constrain_Discriminated_Type
432 (Def_Id : Entity_Id;
433 S : Node_Id;
434 Related_Nod : Node_Id;
435 For_Access : Boolean := False);
436 -- Process discriminant constraints of composite type. Verify that values
437 -- have been provided for all discriminants, that the original type is
438 -- unconstrained, and that the types of the supplied expressions match
439 -- the discriminant types. The first three parameters are like in routine
440 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
441 -- of For_Access.
443 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
444 -- Constrain an enumeration type with a range constraint. This is identical
445 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
447 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
448 -- Constrain a floating point type with either a digits constraint
449 -- and/or a range constraint, building a E_Floating_Point_Subtype.
451 procedure Constrain_Index
452 (Index : Node_Id;
453 S : Node_Id;
454 Related_Nod : Node_Id;
455 Related_Id : Entity_Id;
456 Suffix : Character;
457 Suffix_Index : Nat);
458 -- Process an index constraint S in a constrained array declaration. The
459 -- constraint can be a subtype name, or a range with or without an explicit
460 -- subtype mark. The index is the corresponding index of the unconstrained
461 -- array. The Related_Id and Suffix parameters are used to build the
462 -- associated Implicit type name.
464 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
465 -- Build subtype of a signed or modular integer type
467 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
468 -- Constrain an ordinary fixed point type with a range constraint, and
469 -- build an E_Ordinary_Fixed_Point_Subtype entity.
471 procedure Copy_And_Swap (Priv, Full : Entity_Id);
472 -- Copy the Priv entity into the entity of its full declaration then swap
473 -- the two entities in such a manner that the former private type is now
474 -- seen as a full type.
476 procedure Decimal_Fixed_Point_Type_Declaration
477 (T : Entity_Id;
478 Def : Node_Id);
479 -- Create a new decimal fixed point type, and apply the constraint to
480 -- obtain a subtype of this new type.
482 procedure Complete_Private_Subtype
483 (Priv : Entity_Id;
484 Full : Entity_Id;
485 Full_Base : Entity_Id;
486 Related_Nod : Node_Id);
487 -- Complete the implicit full view of a private subtype by setting the
488 -- appropriate semantic fields. If the full view of the parent is a record
489 -- type, build constrained components of subtype.
491 procedure Derive_Progenitor_Subprograms
492 (Parent_Type : Entity_Id;
493 Tagged_Type : Entity_Id);
494 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
495 -- operations of progenitors of Tagged_Type, and replace the subsidiary
496 -- subtypes with Tagged_Type, to build the specs of the inherited interface
497 -- primitives. The derived primitives are aliased to those of the
498 -- interface. This routine takes care also of transferring to the full view
499 -- subprograms associated with the partial view of Tagged_Type that cover
500 -- interface primitives.
502 procedure Derived_Standard_Character
503 (N : Node_Id;
504 Parent_Type : Entity_Id;
505 Derived_Type : Entity_Id);
506 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
507 -- derivations from types Standard.Character and Standard.Wide_Character.
509 procedure Derived_Type_Declaration
510 (T : Entity_Id;
511 N : Node_Id;
512 Is_Completion : Boolean);
513 -- Process a derived type declaration. Build_Derived_Type is invoked
514 -- to process the actual derived type definition. Parameters N and
515 -- Is_Completion have the same meaning as in Build_Derived_Type.
516 -- T is the N_Defining_Identifier for the entity defined in the
517 -- N_Full_Type_Declaration node N, that is T is the derived type.
519 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
520 -- Insert each literal in symbol table, as an overloadable identifier. Each
521 -- enumeration type is mapped into a sequence of integers, and each literal
522 -- is defined as a constant with integer value. If any of the literals are
523 -- character literals, the type is a character type, which means that
524 -- strings are legal aggregates for arrays of components of the type.
526 function Expand_To_Stored_Constraint
527 (Typ : Entity_Id;
528 Constraint : Elist_Id) return Elist_Id;
529 -- Given a constraint (i.e. a list of expressions) on the discriminants of
530 -- Typ, expand it into a constraint on the stored discriminants and return
531 -- the new list of expressions constraining the stored discriminants.
533 function Find_Type_Of_Object
534 (Obj_Def : Node_Id;
535 Related_Nod : Node_Id) return Entity_Id;
536 -- Get type entity for object referenced by Obj_Def, attaching the implicit
537 -- types generated to Related_Nod.
539 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
540 -- Create a new float and apply the constraint to obtain subtype of it
542 function Has_Range_Constraint (N : Node_Id) return Boolean;
543 -- Given an N_Subtype_Indication node N, return True if a range constraint
544 -- is present, either directly, or as part of a digits or delta constraint.
545 -- In addition, a digits constraint in the decimal case returns True, since
546 -- it establishes a default range if no explicit range is present.
548 function Inherit_Components
549 (N : Node_Id;
550 Parent_Base : Entity_Id;
551 Derived_Base : Entity_Id;
552 Is_Tagged : Boolean;
553 Inherit_Discr : Boolean;
554 Discs : Elist_Id) return Elist_Id;
555 -- Called from Build_Derived_Record_Type to inherit the components of
556 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
557 -- For more information on derived types and component inheritance please
558 -- consult the comment above the body of Build_Derived_Record_Type.
560 -- N is the original derived type declaration
562 -- Is_Tagged is set if we are dealing with tagged types
564 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
565 -- Parent_Base, otherwise no discriminants are inherited.
567 -- Discs gives the list of constraints that apply to Parent_Base in the
568 -- derived type declaration. If Discs is set to No_Elist, then we have
569 -- the following situation:
571 -- type Parent (D1..Dn : ..) is [tagged] record ...;
572 -- type Derived is new Parent [with ...];
574 -- which gets treated as
576 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
578 -- For untagged types the returned value is an association list. The list
579 -- starts from the association (Parent_Base => Derived_Base), and then it
580 -- contains a sequence of the associations of the form
582 -- (Old_Component => New_Component),
584 -- where Old_Component is the Entity_Id of a component in Parent_Base and
585 -- New_Component is the Entity_Id of the corresponding component in
586 -- Derived_Base. For untagged records, this association list is needed when
587 -- copying the record declaration for the derived base. In the tagged case
588 -- the value returned is irrelevant.
590 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
591 -- Propagate static and dynamic predicate flags from a parent to the
592 -- subtype in a subtype declaration with and without constraints.
594 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
595 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
596 -- Determine whether subprogram Subp is a procedure subject to pragma
597 -- Extensions_Visible with value False and has at least one controlling
598 -- parameter of mode OUT.
600 function Is_Valid_Constraint_Kind
601 (T_Kind : Type_Kind;
602 Constraint_Kind : Node_Kind) return Boolean;
603 -- Returns True if it is legal to apply the given kind of constraint to the
604 -- given kind of type (index constraint to an array type, for example).
606 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
607 -- Create new modular type. Verify that modulus is in bounds
609 procedure New_Concatenation_Op (Typ : Entity_Id);
610 -- Create an abbreviated declaration for an operator in order to
611 -- materialize concatenation on array types.
613 procedure Ordinary_Fixed_Point_Type_Declaration
614 (T : Entity_Id;
615 Def : Node_Id);
616 -- Create a new ordinary fixed point type, and apply the constraint to
617 -- obtain subtype of it.
619 procedure Prepare_Private_Subtype_Completion
620 (Id : Entity_Id;
621 Related_Nod : Node_Id);
622 -- Id is a subtype of some private type. Creates the full declaration
623 -- associated with Id whenever possible, i.e. when the full declaration
624 -- of the base type is already known. Records each subtype into
625 -- Private_Dependents of the base type.
627 procedure Process_Incomplete_Dependents
628 (N : Node_Id;
629 Full_T : Entity_Id;
630 Inc_T : Entity_Id);
631 -- Process all entities that depend on an incomplete type. There include
632 -- subtypes, subprogram types that mention the incomplete type in their
633 -- profiles, and subprogram with access parameters that designate the
634 -- incomplete type.
636 -- Inc_T is the defining identifier of an incomplete type declaration, its
637 -- Ekind is E_Incomplete_Type.
639 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
641 -- Full_T is N's defining identifier.
643 -- Subtypes of incomplete types with discriminants are completed when the
644 -- parent type is. This is simpler than private subtypes, because they can
645 -- only appear in the same scope, and there is no need to exchange views.
646 -- Similarly, access_to_subprogram types may have a parameter or a return
647 -- type that is an incomplete type, and that must be replaced with the
648 -- full type.
650 -- If the full type is tagged, subprogram with access parameters that
651 -- designated the incomplete may be primitive operations of the full type,
652 -- and have to be processed accordingly.
654 procedure Process_Real_Range_Specification (Def : Node_Id);
655 -- Given the type definition for a real type, this procedure processes and
656 -- checks the real range specification of this type definition if one is
657 -- present. If errors are found, error messages are posted, and the
658 -- Real_Range_Specification of Def is reset to Empty.
660 procedure Propagate_Default_Init_Cond_Attributes
661 (From_Typ : Entity_Id;
662 To_Typ : Entity_Id;
663 Parent_To_Derivation : Boolean := False;
664 Private_To_Full_View : Boolean := False);
665 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
666 -- all attributes related to pragma Default_Initial_Condition from From_Typ
667 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
668 -- the creation of a derived type. Flag Private_To_Full_View should be set
669 -- when processing both views of a private type.
671 procedure Record_Type_Declaration
672 (T : Entity_Id;
673 N : Node_Id;
674 Prev : Entity_Id);
675 -- Process a record type declaration (for both untagged and tagged
676 -- records). Parameters T and N are exactly like in procedure
677 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
678 -- for this routine. If this is the completion of an incomplete type
679 -- declaration, Prev is the entity of the incomplete declaration, used for
680 -- cross-referencing. Otherwise Prev = T.
682 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
683 -- This routine is used to process the actual record type definition (both
684 -- for untagged and tagged records). Def is a record type definition node.
685 -- This procedure analyzes the components in this record type definition.
686 -- Prev_T is the entity for the enclosing record type. It is provided so
687 -- that its Has_Task flag can be set if any of the component have Has_Task
688 -- set. If the declaration is the completion of an incomplete type
689 -- declaration, Prev_T is the original incomplete type, whose full view is
690 -- the record type.
692 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
693 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
694 -- build a copy of the declaration tree of the parent, and we create
695 -- independently the list of components for the derived type. Semantic
696 -- information uses the component entities, but record representation
697 -- clauses are validated on the declaration tree. This procedure replaces
698 -- discriminants and components in the declaration with those that have
699 -- been created by Inherit_Components.
701 procedure Set_Fixed_Range
702 (E : Entity_Id;
703 Loc : Source_Ptr;
704 Lo : Ureal;
705 Hi : Ureal);
706 -- Build a range node with the given bounds and set it as the Scalar_Range
707 -- of the given fixed-point type entity. Loc is the source location used
708 -- for the constructed range. See body for further details.
710 procedure Set_Scalar_Range_For_Subtype
711 (Def_Id : Entity_Id;
712 R : Node_Id;
713 Subt : Entity_Id);
714 -- This routine is used to set the scalar range field for a subtype given
715 -- Def_Id, the entity for the subtype, and R, the range expression for the
716 -- scalar range. Subt provides the parent subtype to be used to analyze,
717 -- resolve, and check the given range.
719 procedure Set_Default_SSO (T : Entity_Id);
720 -- T is the entity for an array or record being declared. This procedure
721 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
722 -- to the setting of Opt.Default_SSO.
724 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
725 -- Create a new signed integer entity, and apply the constraint to obtain
726 -- the required first named subtype of this type.
728 procedure Set_Stored_Constraint_From_Discriminant_Constraint
729 (E : Entity_Id);
730 -- E is some record type. This routine computes E's Stored_Constraint
731 -- from its Discriminant_Constraint.
733 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
734 -- Check that an entity in a list of progenitors is an interface,
735 -- emit error otherwise.
737 -----------------------
738 -- Access_Definition --
739 -----------------------
741 function Access_Definition
742 (Related_Nod : Node_Id;
743 N : Node_Id) return Entity_Id
745 Anon_Type : Entity_Id;
746 Anon_Scope : Entity_Id;
747 Desig_Type : Entity_Id;
748 Enclosing_Prot_Type : Entity_Id := Empty;
750 begin
751 Check_SPARK_05_Restriction ("access type is not allowed", N);
753 if Is_Entry (Current_Scope)
754 and then Is_Task_Type (Etype (Scope (Current_Scope)))
755 then
756 Error_Msg_N ("task entries cannot have access parameters", N);
757 return Empty;
758 end if;
760 -- Ada 2005: For an object declaration the corresponding anonymous
761 -- type is declared in the current scope.
763 -- If the access definition is the return type of another access to
764 -- function, scope is the current one, because it is the one of the
765 -- current type declaration, except for the pathological case below.
767 if Nkind_In (Related_Nod, N_Object_Declaration,
768 N_Access_Function_Definition)
769 then
770 Anon_Scope := Current_Scope;
772 -- A pathological case: function returning access functions that
773 -- return access functions, etc. Each anonymous access type created
774 -- is in the enclosing scope of the outermost function.
776 declare
777 Par : Node_Id;
779 begin
780 Par := Related_Nod;
781 while Nkind_In (Par, N_Access_Function_Definition,
782 N_Access_Definition)
783 loop
784 Par := Parent (Par);
785 end loop;
787 if Nkind (Par) = N_Function_Specification then
788 Anon_Scope := Scope (Defining_Entity (Par));
789 end if;
790 end;
792 -- For the anonymous function result case, retrieve the scope of the
793 -- function specification's associated entity rather than using the
794 -- current scope. The current scope will be the function itself if the
795 -- formal part is currently being analyzed, but will be the parent scope
796 -- in the case of a parameterless function, and we always want to use
797 -- the function's parent scope. Finally, if the function is a child
798 -- unit, we must traverse the tree to retrieve the proper entity.
800 elsif Nkind (Related_Nod) = N_Function_Specification
801 and then Nkind (Parent (N)) /= N_Parameter_Specification
802 then
803 -- If the current scope is a protected type, the anonymous access
804 -- is associated with one of the protected operations, and must
805 -- be available in the scope that encloses the protected declaration.
806 -- Otherwise the type is in the scope enclosing the subprogram.
808 -- If the function has formals, The return type of a subprogram
809 -- declaration is analyzed in the scope of the subprogram (see
810 -- Process_Formals) and thus the protected type, if present, is
811 -- the scope of the current function scope.
813 if Ekind (Current_Scope) = E_Protected_Type then
814 Enclosing_Prot_Type := Current_Scope;
816 elsif Ekind (Current_Scope) = E_Function
817 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
818 then
819 Enclosing_Prot_Type := Scope (Current_Scope);
820 end if;
822 if Present (Enclosing_Prot_Type) then
823 Anon_Scope := Scope (Enclosing_Prot_Type);
825 else
826 Anon_Scope := Scope (Defining_Entity (Related_Nod));
827 end if;
829 -- For an access type definition, if the current scope is a child
830 -- unit it is the scope of the type.
832 elsif Is_Compilation_Unit (Current_Scope) then
833 Anon_Scope := Current_Scope;
835 -- For access formals, access components, and access discriminants, the
836 -- scope is that of the enclosing declaration,
838 else
839 Anon_Scope := Scope (Current_Scope);
840 end if;
842 Anon_Type :=
843 Create_Itype
844 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
846 if All_Present (N)
847 and then Ada_Version >= Ada_2005
848 then
849 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
850 end if;
852 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
853 -- the corresponding semantic routine
855 if Present (Access_To_Subprogram_Definition (N)) then
857 -- Compiler runtime units are compiled in Ada 2005 mode when building
858 -- the runtime library but must also be compilable in Ada 95 mode
859 -- (when bootstrapping the compiler).
861 Check_Compiler_Unit ("anonymous access to subprogram", N);
863 Access_Subprogram_Declaration
864 (T_Name => Anon_Type,
865 T_Def => Access_To_Subprogram_Definition (N));
867 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
868 Set_Ekind
869 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
870 else
871 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
872 end if;
874 Set_Can_Use_Internal_Rep
875 (Anon_Type, not Always_Compatible_Rep_On_Target);
877 -- If the anonymous access is associated with a protected operation,
878 -- create a reference to it after the enclosing protected definition
879 -- because the itype will be used in the subsequent bodies.
881 -- If the anonymous access itself is protected, a full type
882 -- declaratiton will be created for it, so that the equivalent
883 -- record type can be constructed. For further details, see
884 -- Replace_Anonymous_Access_To_Protected-Subprogram.
886 if Ekind (Current_Scope) = E_Protected_Type
887 and then not Protected_Present (Access_To_Subprogram_Definition (N))
888 then
889 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
890 end if;
892 return Anon_Type;
893 end if;
895 Find_Type (Subtype_Mark (N));
896 Desig_Type := Entity (Subtype_Mark (N));
898 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
899 Set_Etype (Anon_Type, Anon_Type);
901 -- Make sure the anonymous access type has size and alignment fields
902 -- set, as required by gigi. This is necessary in the case of the
903 -- Task_Body_Procedure.
905 if not Has_Private_Component (Desig_Type) then
906 Layout_Type (Anon_Type);
907 end if;
909 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
910 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
911 -- the null value is allowed. In Ada 95 the null value is never allowed.
913 if Ada_Version >= Ada_2005 then
914 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
915 else
916 Set_Can_Never_Be_Null (Anon_Type, True);
917 end if;
919 -- The anonymous access type is as public as the discriminated type or
920 -- subprogram that defines it. It is imported (for back-end purposes)
921 -- if the designated type is.
923 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
925 -- Ada 2005 (AI-231): Propagate the access-constant attribute
927 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
929 -- The context is either a subprogram declaration, object declaration,
930 -- or an access discriminant, in a private or a full type declaration.
931 -- In the case of a subprogram, if the designated type is incomplete,
932 -- the operation will be a primitive operation of the full type, to be
933 -- updated subsequently. If the type is imported through a limited_with
934 -- clause, the subprogram is not a primitive operation of the type
935 -- (which is declared elsewhere in some other scope).
937 if Ekind (Desig_Type) = E_Incomplete_Type
938 and then not From_Limited_With (Desig_Type)
939 and then Is_Overloadable (Current_Scope)
940 then
941 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
942 Set_Has_Delayed_Freeze (Current_Scope);
943 end if;
945 -- Ada 2005: If the designated type is an interface that may contain
946 -- tasks, create a Master entity for the declaration. This must be done
947 -- before expansion of the full declaration, because the declaration may
948 -- include an expression that is an allocator, whose expansion needs the
949 -- proper Master for the created tasks.
951 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
952 then
953 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
954 then
955 Build_Class_Wide_Master (Anon_Type);
957 -- Similarly, if the type is an anonymous access that designates
958 -- tasks, create a master entity for it in the current context.
960 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
961 then
962 Build_Master_Entity (Defining_Identifier (Related_Nod));
963 Build_Master_Renaming (Anon_Type);
964 end if;
965 end if;
967 -- For a private component of a protected type, it is imperative that
968 -- the back-end elaborate the type immediately after the protected
969 -- declaration, because this type will be used in the declarations
970 -- created for the component within each protected body, so we must
971 -- create an itype reference for it now.
973 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
974 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
976 -- Similarly, if the access definition is the return result of a
977 -- function, create an itype reference for it because it will be used
978 -- within the function body. For a regular function that is not a
979 -- compilation unit, insert reference after the declaration. For a
980 -- protected operation, insert it after the enclosing protected type
981 -- declaration. In either case, do not create a reference for a type
982 -- obtained through a limited_with clause, because this would introduce
983 -- semantic dependencies.
985 -- Similarly, do not create a reference if the designated type is a
986 -- generic formal, because no use of it will reach the backend.
988 elsif Nkind (Related_Nod) = N_Function_Specification
989 and then not From_Limited_With (Desig_Type)
990 and then not Is_Generic_Type (Desig_Type)
991 then
992 if Present (Enclosing_Prot_Type) then
993 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
995 elsif Is_List_Member (Parent (Related_Nod))
996 and then Nkind (Parent (N)) /= N_Parameter_Specification
997 then
998 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
999 end if;
1001 -- Finally, create an itype reference for an object declaration of an
1002 -- anonymous access type. This is strictly necessary only for deferred
1003 -- constants, but in any case will avoid out-of-scope problems in the
1004 -- back-end.
1006 elsif Nkind (Related_Nod) = N_Object_Declaration then
1007 Build_Itype_Reference (Anon_Type, Related_Nod);
1008 end if;
1010 return Anon_Type;
1011 end Access_Definition;
1013 -----------------------------------
1014 -- Access_Subprogram_Declaration --
1015 -----------------------------------
1017 procedure Access_Subprogram_Declaration
1018 (T_Name : Entity_Id;
1019 T_Def : Node_Id)
1021 procedure Check_For_Premature_Usage (Def : Node_Id);
1022 -- Check that type T_Name is not used, directly or recursively, as a
1023 -- parameter or a return type in Def. Def is either a subtype, an
1024 -- access_definition, or an access_to_subprogram_definition.
1026 -------------------------------
1027 -- Check_For_Premature_Usage --
1028 -------------------------------
1030 procedure Check_For_Premature_Usage (Def : Node_Id) is
1031 Param : Node_Id;
1033 begin
1034 -- Check for a subtype mark
1036 if Nkind (Def) in N_Has_Etype then
1037 if Etype (Def) = T_Name then
1038 Error_Msg_N
1039 ("type& cannot be used before end of its declaration", Def);
1040 end if;
1042 -- If this is not a subtype, then this is an access_definition
1044 elsif Nkind (Def) = N_Access_Definition then
1045 if Present (Access_To_Subprogram_Definition (Def)) then
1046 Check_For_Premature_Usage
1047 (Access_To_Subprogram_Definition (Def));
1048 else
1049 Check_For_Premature_Usage (Subtype_Mark (Def));
1050 end if;
1052 -- The only cases left are N_Access_Function_Definition and
1053 -- N_Access_Procedure_Definition.
1055 else
1056 if Present (Parameter_Specifications (Def)) then
1057 Param := First (Parameter_Specifications (Def));
1058 while Present (Param) loop
1059 Check_For_Premature_Usage (Parameter_Type (Param));
1060 Param := Next (Param);
1061 end loop;
1062 end if;
1064 if Nkind (Def) = N_Access_Function_Definition then
1065 Check_For_Premature_Usage (Result_Definition (Def));
1066 end if;
1067 end if;
1068 end Check_For_Premature_Usage;
1070 -- Local variables
1072 Formals : constant List_Id := Parameter_Specifications (T_Def);
1073 Formal : Entity_Id;
1074 D_Ityp : Node_Id;
1075 Desig_Type : constant Entity_Id :=
1076 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1078 -- Start of processing for Access_Subprogram_Declaration
1080 begin
1081 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1083 -- Associate the Itype node with the inner full-type declaration or
1084 -- subprogram spec or entry body. This is required to handle nested
1085 -- anonymous declarations. For example:
1087 -- procedure P
1088 -- (X : access procedure
1089 -- (Y : access procedure
1090 -- (Z : access T)))
1092 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1093 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1094 N_Private_Type_Declaration,
1095 N_Private_Extension_Declaration,
1096 N_Procedure_Specification,
1097 N_Function_Specification,
1098 N_Entry_Body)
1100 or else
1101 Nkind_In (D_Ityp, N_Object_Declaration,
1102 N_Object_Renaming_Declaration,
1103 N_Formal_Object_Declaration,
1104 N_Formal_Type_Declaration,
1105 N_Task_Type_Declaration,
1106 N_Protected_Type_Declaration))
1107 loop
1108 D_Ityp := Parent (D_Ityp);
1109 pragma Assert (D_Ityp /= Empty);
1110 end loop;
1112 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1114 if Nkind_In (D_Ityp, N_Procedure_Specification,
1115 N_Function_Specification)
1116 then
1117 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1119 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1120 N_Object_Declaration,
1121 N_Object_Renaming_Declaration,
1122 N_Formal_Type_Declaration)
1123 then
1124 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1125 end if;
1127 if Nkind (T_Def) = N_Access_Function_Definition then
1128 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1129 declare
1130 Acc : constant Node_Id := Result_Definition (T_Def);
1132 begin
1133 if Present (Access_To_Subprogram_Definition (Acc))
1134 and then
1135 Protected_Present (Access_To_Subprogram_Definition (Acc))
1136 then
1137 Set_Etype
1138 (Desig_Type,
1139 Replace_Anonymous_Access_To_Protected_Subprogram
1140 (T_Def));
1142 else
1143 Set_Etype
1144 (Desig_Type,
1145 Access_Definition (T_Def, Result_Definition (T_Def)));
1146 end if;
1147 end;
1149 else
1150 Analyze (Result_Definition (T_Def));
1152 declare
1153 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1155 begin
1156 -- If a null exclusion is imposed on the result type, then
1157 -- create a null-excluding itype (an access subtype) and use
1158 -- it as the function's Etype.
1160 if Is_Access_Type (Typ)
1161 and then Null_Exclusion_In_Return_Present (T_Def)
1162 then
1163 Set_Etype (Desig_Type,
1164 Create_Null_Excluding_Itype
1165 (T => Typ,
1166 Related_Nod => T_Def,
1167 Scope_Id => Current_Scope));
1169 else
1170 if From_Limited_With (Typ) then
1172 -- AI05-151: Incomplete types are allowed in all basic
1173 -- declarations, including access to subprograms.
1175 if Ada_Version >= Ada_2012 then
1176 null;
1178 else
1179 Error_Msg_NE
1180 ("illegal use of incomplete type&",
1181 Result_Definition (T_Def), Typ);
1182 end if;
1184 elsif Ekind (Current_Scope) = E_Package
1185 and then In_Private_Part (Current_Scope)
1186 then
1187 if Ekind (Typ) = E_Incomplete_Type then
1188 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1190 elsif Is_Class_Wide_Type (Typ)
1191 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1192 then
1193 Append_Elmt
1194 (Desig_Type, Private_Dependents (Etype (Typ)));
1195 end if;
1196 end if;
1198 Set_Etype (Desig_Type, Typ);
1199 end if;
1200 end;
1201 end if;
1203 if not (Is_Type (Etype (Desig_Type))) then
1204 Error_Msg_N
1205 ("expect type in function specification",
1206 Result_Definition (T_Def));
1207 end if;
1209 else
1210 Set_Etype (Desig_Type, Standard_Void_Type);
1211 end if;
1213 if Present (Formals) then
1214 Push_Scope (Desig_Type);
1216 -- Some special tests here. These special tests can be removed
1217 -- if and when Itypes always have proper parent pointers to their
1218 -- declarations???
1220 -- Special test 1) Link defining_identifier of formals. Required by
1221 -- First_Formal to provide its functionality.
1223 declare
1224 F : Node_Id;
1226 begin
1227 F := First (Formals);
1229 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1230 -- when it is part of an unconstrained type and subtype expansion
1231 -- is disabled. To avoid back-end problems with shared profiles,
1232 -- use previous subprogram type as the designated type, and then
1233 -- remove scope added above.
1235 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1236 then
1237 Set_Etype (T_Name, T_Name);
1238 Init_Size_Align (T_Name);
1239 Set_Directly_Designated_Type (T_Name,
1240 Scope (Defining_Identifier (F)));
1241 End_Scope;
1242 return;
1243 end if;
1245 while Present (F) loop
1246 if No (Parent (Defining_Identifier (F))) then
1247 Set_Parent (Defining_Identifier (F), F);
1248 end if;
1250 Next (F);
1251 end loop;
1252 end;
1254 Process_Formals (Formals, Parent (T_Def));
1256 -- Special test 2) End_Scope requires that the parent pointer be set
1257 -- to something reasonable, but Itypes don't have parent pointers. So
1258 -- we set it and then unset it ???
1260 Set_Parent (Desig_Type, T_Name);
1261 End_Scope;
1262 Set_Parent (Desig_Type, Empty);
1263 end if;
1265 -- Check for premature usage of the type being defined
1267 Check_For_Premature_Usage (T_Def);
1269 -- The return type and/or any parameter type may be incomplete. Mark the
1270 -- subprogram_type as depending on the incomplete type, so that it can
1271 -- be updated when the full type declaration is seen. This only applies
1272 -- to incomplete types declared in some enclosing scope, not to limited
1273 -- views from other packages.
1275 -- Prior to Ada 2012, access to functions can only have in_parameters.
1277 if Present (Formals) then
1278 Formal := First_Formal (Desig_Type);
1279 while Present (Formal) loop
1280 if Ekind (Formal) /= E_In_Parameter
1281 and then Nkind (T_Def) = N_Access_Function_Definition
1282 and then Ada_Version < Ada_2012
1283 then
1284 Error_Msg_N ("functions can only have IN parameters", Formal);
1285 end if;
1287 if Ekind (Etype (Formal)) = E_Incomplete_Type
1288 and then In_Open_Scopes (Scope (Etype (Formal)))
1289 then
1290 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1291 Set_Has_Delayed_Freeze (Desig_Type);
1292 end if;
1294 Next_Formal (Formal);
1295 end loop;
1296 end if;
1298 -- Check whether an indirect call without actuals may be possible. This
1299 -- is used when resolving calls whose result is then indexed.
1301 May_Need_Actuals (Desig_Type);
1303 -- If the return type is incomplete, this is legal as long as the type
1304 -- is declared in the current scope and will be completed in it (rather
1305 -- than being part of limited view).
1307 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1308 and then not Has_Delayed_Freeze (Desig_Type)
1309 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1310 then
1311 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1312 Set_Has_Delayed_Freeze (Desig_Type);
1313 end if;
1315 Check_Delayed_Subprogram (Desig_Type);
1317 if Protected_Present (T_Def) then
1318 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1319 Set_Convention (Desig_Type, Convention_Protected);
1320 else
1321 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1322 end if;
1324 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1326 Set_Etype (T_Name, T_Name);
1327 Init_Size_Align (T_Name);
1328 Set_Directly_Designated_Type (T_Name, Desig_Type);
1330 Generate_Reference_To_Formals (T_Name);
1332 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1334 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1336 Check_Restriction (No_Access_Subprograms, T_Def);
1337 end Access_Subprogram_Declaration;
1339 ----------------------------
1340 -- Access_Type_Declaration --
1341 ----------------------------
1343 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1344 P : constant Node_Id := Parent (Def);
1345 S : constant Node_Id := Subtype_Indication (Def);
1347 Full_Desig : Entity_Id;
1349 begin
1350 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1352 -- Check for permissible use of incomplete type
1354 if Nkind (S) /= N_Subtype_Indication then
1355 Analyze (S);
1357 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1358 Set_Directly_Designated_Type (T, Entity (S));
1360 -- If the designated type is a limited view, we cannot tell if
1361 -- the full view contains tasks, and there is no way to handle
1362 -- that full view in a client. We create a master entity for the
1363 -- scope, which will be used when a client determines that one
1364 -- is needed.
1366 if From_Limited_With (Entity (S))
1367 and then not Is_Class_Wide_Type (Entity (S))
1368 then
1369 Set_Ekind (T, E_Access_Type);
1370 Build_Master_Entity (T);
1371 Build_Master_Renaming (T);
1372 end if;
1374 else
1375 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1376 end if;
1378 -- If the access definition is of the form: ACCESS NOT NULL ..
1379 -- the subtype indication must be of an access type. Create
1380 -- a null-excluding subtype of it.
1382 if Null_Excluding_Subtype (Def) then
1383 if not Is_Access_Type (Entity (S)) then
1384 Error_Msg_N ("null exclusion must apply to access type", Def);
1386 else
1387 declare
1388 Loc : constant Source_Ptr := Sloc (S);
1389 Decl : Node_Id;
1390 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1392 begin
1393 Decl :=
1394 Make_Subtype_Declaration (Loc,
1395 Defining_Identifier => Nam,
1396 Subtype_Indication =>
1397 New_Occurrence_Of (Entity (S), Loc));
1398 Set_Null_Exclusion_Present (Decl);
1399 Insert_Before (Parent (Def), Decl);
1400 Analyze (Decl);
1401 Set_Entity (S, Nam);
1402 end;
1403 end if;
1404 end if;
1406 else
1407 Set_Directly_Designated_Type (T,
1408 Process_Subtype (S, P, T, 'P'));
1409 end if;
1411 if All_Present (Def) or Constant_Present (Def) then
1412 Set_Ekind (T, E_General_Access_Type);
1413 else
1414 Set_Ekind (T, E_Access_Type);
1415 end if;
1417 Full_Desig := Designated_Type (T);
1419 if Base_Type (Full_Desig) = T then
1420 Error_Msg_N ("access type cannot designate itself", S);
1422 -- In Ada 2005, the type may have a limited view through some unit in
1423 -- its own context, allowing the following circularity that cannot be
1424 -- detected earlier.
1426 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1427 then
1428 Error_Msg_N
1429 ("access type cannot designate its own classwide type", S);
1431 -- Clean up indication of tagged status to prevent cascaded errors
1433 Set_Is_Tagged_Type (T, False);
1434 end if;
1436 Set_Etype (T, T);
1438 -- If the type has appeared already in a with_type clause, it is frozen
1439 -- and the pointer size is already set. Else, initialize.
1441 if not From_Limited_With (T) then
1442 Init_Size_Align (T);
1443 end if;
1445 -- Note that Has_Task is always false, since the access type itself
1446 -- is not a task type. See Einfo for more description on this point.
1447 -- Exactly the same consideration applies to Has_Controlled_Component
1448 -- and to Has_Protected.
1450 Set_Has_Task (T, False);
1451 Set_Has_Controlled_Component (T, False);
1452 Set_Has_Protected (T, False);
1454 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1455 -- problems where an incomplete view of this entity has been previously
1456 -- established by a limited with and an overlaid version of this field
1457 -- (Stored_Constraint) was initialized for the incomplete view.
1459 -- This reset is performed in most cases except where the access type
1460 -- has been created for the purposes of allocating or deallocating a
1461 -- build-in-place object. Such access types have explicitly set pools
1462 -- and finalization masters.
1464 if No (Associated_Storage_Pool (T)) then
1465 Set_Finalization_Master (T, Empty);
1466 end if;
1468 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1469 -- attributes
1471 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1472 Set_Is_Access_Constant (T, Constant_Present (Def));
1473 end Access_Type_Declaration;
1475 ----------------------------------
1476 -- Add_Interface_Tag_Components --
1477 ----------------------------------
1479 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1480 Loc : constant Source_Ptr := Sloc (N);
1481 L : List_Id;
1482 Last_Tag : Node_Id;
1484 procedure Add_Tag (Iface : Entity_Id);
1485 -- Add tag for one of the progenitor interfaces
1487 -------------
1488 -- Add_Tag --
1489 -------------
1491 procedure Add_Tag (Iface : Entity_Id) is
1492 Decl : Node_Id;
1493 Def : Node_Id;
1494 Tag : Entity_Id;
1495 Offset : Entity_Id;
1497 begin
1498 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1500 -- This is a reasonable place to propagate predicates
1502 if Has_Predicates (Iface) then
1503 Set_Has_Predicates (Typ);
1504 end if;
1506 Def :=
1507 Make_Component_Definition (Loc,
1508 Aliased_Present => True,
1509 Subtype_Indication =>
1510 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1512 Tag := Make_Temporary (Loc, 'V');
1514 Decl :=
1515 Make_Component_Declaration (Loc,
1516 Defining_Identifier => Tag,
1517 Component_Definition => Def);
1519 Analyze_Component_Declaration (Decl);
1521 Set_Analyzed (Decl);
1522 Set_Ekind (Tag, E_Component);
1523 Set_Is_Tag (Tag);
1524 Set_Is_Aliased (Tag);
1525 Set_Related_Type (Tag, Iface);
1526 Init_Component_Location (Tag);
1528 pragma Assert (Is_Frozen (Iface));
1530 Set_DT_Entry_Count (Tag,
1531 DT_Entry_Count (First_Entity (Iface)));
1533 if No (Last_Tag) then
1534 Prepend (Decl, L);
1535 else
1536 Insert_After (Last_Tag, Decl);
1537 end if;
1539 Last_Tag := Decl;
1541 -- If the ancestor has discriminants we need to give special support
1542 -- to store the offset_to_top value of the secondary dispatch tables.
1543 -- For this purpose we add a supplementary component just after the
1544 -- field that contains the tag associated with each secondary DT.
1546 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1547 Def :=
1548 Make_Component_Definition (Loc,
1549 Subtype_Indication =>
1550 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1552 Offset := Make_Temporary (Loc, 'V');
1554 Decl :=
1555 Make_Component_Declaration (Loc,
1556 Defining_Identifier => Offset,
1557 Component_Definition => Def);
1559 Analyze_Component_Declaration (Decl);
1561 Set_Analyzed (Decl);
1562 Set_Ekind (Offset, E_Component);
1563 Set_Is_Aliased (Offset);
1564 Set_Related_Type (Offset, Iface);
1565 Init_Component_Location (Offset);
1566 Insert_After (Last_Tag, Decl);
1567 Last_Tag := Decl;
1568 end if;
1569 end Add_Tag;
1571 -- Local variables
1573 Elmt : Elmt_Id;
1574 Ext : Node_Id;
1575 Comp : Node_Id;
1577 -- Start of processing for Add_Interface_Tag_Components
1579 begin
1580 if not RTE_Available (RE_Interface_Tag) then
1581 Error_Msg
1582 ("(Ada 2005) interface types not supported by this run-time!",
1583 Sloc (N));
1584 return;
1585 end if;
1587 if Ekind (Typ) /= E_Record_Type
1588 or else (Is_Concurrent_Record_Type (Typ)
1589 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1590 or else (not Is_Concurrent_Record_Type (Typ)
1591 and then No (Interfaces (Typ))
1592 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1593 then
1594 return;
1595 end if;
1597 -- Find the current last tag
1599 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1600 Ext := Record_Extension_Part (Type_Definition (N));
1601 else
1602 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1603 Ext := Type_Definition (N);
1604 end if;
1606 Last_Tag := Empty;
1608 if not (Present (Component_List (Ext))) then
1609 Set_Null_Present (Ext, False);
1610 L := New_List;
1611 Set_Component_List (Ext,
1612 Make_Component_List (Loc,
1613 Component_Items => L,
1614 Null_Present => False));
1615 else
1616 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1617 L := Component_Items
1618 (Component_List
1619 (Record_Extension_Part
1620 (Type_Definition (N))));
1621 else
1622 L := Component_Items
1623 (Component_List
1624 (Type_Definition (N)));
1625 end if;
1627 -- Find the last tag component
1629 Comp := First (L);
1630 while Present (Comp) loop
1631 if Nkind (Comp) = N_Component_Declaration
1632 and then Is_Tag (Defining_Identifier (Comp))
1633 then
1634 Last_Tag := Comp;
1635 end if;
1637 Next (Comp);
1638 end loop;
1639 end if;
1641 -- At this point L references the list of components and Last_Tag
1642 -- references the current last tag (if any). Now we add the tag
1643 -- corresponding with all the interfaces that are not implemented
1644 -- by the parent.
1646 if Present (Interfaces (Typ)) then
1647 Elmt := First_Elmt (Interfaces (Typ));
1648 while Present (Elmt) loop
1649 Add_Tag (Node (Elmt));
1650 Next_Elmt (Elmt);
1651 end loop;
1652 end if;
1653 end Add_Interface_Tag_Components;
1655 -------------------------------------
1656 -- Add_Internal_Interface_Entities --
1657 -------------------------------------
1659 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1660 Elmt : Elmt_Id;
1661 Iface : Entity_Id;
1662 Iface_Elmt : Elmt_Id;
1663 Iface_Prim : Entity_Id;
1664 Ifaces_List : Elist_Id;
1665 New_Subp : Entity_Id := Empty;
1666 Prim : Entity_Id;
1667 Restore_Scope : Boolean := False;
1669 begin
1670 pragma Assert (Ada_Version >= Ada_2005
1671 and then Is_Record_Type (Tagged_Type)
1672 and then Is_Tagged_Type (Tagged_Type)
1673 and then Has_Interfaces (Tagged_Type)
1674 and then not Is_Interface (Tagged_Type));
1676 -- Ensure that the internal entities are added to the scope of the type
1678 if Scope (Tagged_Type) /= Current_Scope then
1679 Push_Scope (Scope (Tagged_Type));
1680 Restore_Scope := True;
1681 end if;
1683 Collect_Interfaces (Tagged_Type, Ifaces_List);
1685 Iface_Elmt := First_Elmt (Ifaces_List);
1686 while Present (Iface_Elmt) loop
1687 Iface := Node (Iface_Elmt);
1689 -- Originally we excluded here from this processing interfaces that
1690 -- are parents of Tagged_Type because their primitives are located
1691 -- in the primary dispatch table (and hence no auxiliary internal
1692 -- entities are required to handle secondary dispatch tables in such
1693 -- case). However, these auxiliary entities are also required to
1694 -- handle derivations of interfaces in formals of generics (see
1695 -- Derive_Subprograms).
1697 Elmt := First_Elmt (Primitive_Operations (Iface));
1698 while Present (Elmt) loop
1699 Iface_Prim := Node (Elmt);
1701 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1702 Prim :=
1703 Find_Primitive_Covering_Interface
1704 (Tagged_Type => Tagged_Type,
1705 Iface_Prim => Iface_Prim);
1707 if No (Prim) and then Serious_Errors_Detected > 0 then
1708 goto Continue;
1709 end if;
1711 pragma Assert (Present (Prim));
1713 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1714 -- differs from the name of the interface primitive then it is
1715 -- a private primitive inherited from a parent type. In such
1716 -- case, given that Tagged_Type covers the interface, the
1717 -- inherited private primitive becomes visible. For such
1718 -- purpose we add a new entity that renames the inherited
1719 -- private primitive.
1721 if Chars (Prim) /= Chars (Iface_Prim) then
1722 pragma Assert (Has_Suffix (Prim, 'P'));
1723 Derive_Subprogram
1724 (New_Subp => New_Subp,
1725 Parent_Subp => Iface_Prim,
1726 Derived_Type => Tagged_Type,
1727 Parent_Type => Iface);
1728 Set_Alias (New_Subp, Prim);
1729 Set_Is_Abstract_Subprogram
1730 (New_Subp, Is_Abstract_Subprogram (Prim));
1731 end if;
1733 Derive_Subprogram
1734 (New_Subp => New_Subp,
1735 Parent_Subp => Iface_Prim,
1736 Derived_Type => Tagged_Type,
1737 Parent_Type => Iface);
1739 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1740 -- associated with interface types. These entities are
1741 -- only registered in the list of primitives of its
1742 -- corresponding tagged type because they are only used
1743 -- to fill the contents of the secondary dispatch tables.
1744 -- Therefore they are removed from the homonym chains.
1746 Set_Is_Hidden (New_Subp);
1747 Set_Is_Internal (New_Subp);
1748 Set_Alias (New_Subp, Prim);
1749 Set_Is_Abstract_Subprogram
1750 (New_Subp, Is_Abstract_Subprogram (Prim));
1751 Set_Interface_Alias (New_Subp, Iface_Prim);
1753 -- If the returned type is an interface then propagate it to
1754 -- the returned type. Needed by the thunk to generate the code
1755 -- which displaces "this" to reference the corresponding
1756 -- secondary dispatch table in the returned object.
1758 if Is_Interface (Etype (Iface_Prim)) then
1759 Set_Etype (New_Subp, Etype (Iface_Prim));
1760 end if;
1762 -- Internal entities associated with interface types are
1763 -- only registered in the list of primitives of the tagged
1764 -- type. They are only used to fill the contents of the
1765 -- secondary dispatch tables. Therefore they are not needed
1766 -- in the homonym chains.
1768 Remove_Homonym (New_Subp);
1770 -- Hidden entities associated with interfaces must have set
1771 -- the Has_Delay_Freeze attribute to ensure that, in case of
1772 -- locally defined tagged types (or compiling with static
1773 -- dispatch tables generation disabled) the corresponding
1774 -- entry of the secondary dispatch table is filled when
1775 -- such an entity is frozen.
1777 Set_Has_Delayed_Freeze (New_Subp);
1778 end if;
1780 <<Continue>>
1781 Next_Elmt (Elmt);
1782 end loop;
1784 Next_Elmt (Iface_Elmt);
1785 end loop;
1787 if Restore_Scope then
1788 Pop_Scope;
1789 end if;
1790 end Add_Internal_Interface_Entities;
1792 -----------------------------------
1793 -- Analyze_Component_Declaration --
1794 -----------------------------------
1796 procedure Analyze_Component_Declaration (N : Node_Id) is
1797 Loc : constant Source_Ptr := Sloc (N);
1798 Id : constant Entity_Id := Defining_Identifier (N);
1799 E : constant Node_Id := Expression (N);
1800 Typ : constant Node_Id :=
1801 Subtype_Indication (Component_Definition (N));
1802 T : Entity_Id;
1803 P : Entity_Id;
1805 function Contains_POC (Constr : Node_Id) return Boolean;
1806 -- Determines whether a constraint uses the discriminant of a record
1807 -- type thus becoming a per-object constraint (POC).
1809 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1810 -- Typ is the type of the current component, check whether this type is
1811 -- a limited type. Used to validate declaration against that of
1812 -- enclosing record.
1814 ------------------
1815 -- Contains_POC --
1816 ------------------
1818 function Contains_POC (Constr : Node_Id) return Boolean is
1819 begin
1820 -- Prevent cascaded errors
1822 if Error_Posted (Constr) then
1823 return False;
1824 end if;
1826 case Nkind (Constr) is
1827 when N_Attribute_Reference =>
1828 return Attribute_Name (Constr) = Name_Access
1829 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1831 when N_Discriminant_Association =>
1832 return Denotes_Discriminant (Expression (Constr));
1834 when N_Identifier =>
1835 return Denotes_Discriminant (Constr);
1837 when N_Index_Or_Discriminant_Constraint =>
1838 declare
1839 IDC : Node_Id;
1841 begin
1842 IDC := First (Constraints (Constr));
1843 while Present (IDC) loop
1845 -- One per-object constraint is sufficient
1847 if Contains_POC (IDC) then
1848 return True;
1849 end if;
1851 Next (IDC);
1852 end loop;
1854 return False;
1855 end;
1857 when N_Range =>
1858 return Denotes_Discriminant (Low_Bound (Constr))
1859 or else
1860 Denotes_Discriminant (High_Bound (Constr));
1862 when N_Range_Constraint =>
1863 return Denotes_Discriminant (Range_Expression (Constr));
1865 when others =>
1866 return False;
1868 end case;
1869 end Contains_POC;
1871 ----------------------
1872 -- Is_Known_Limited --
1873 ----------------------
1875 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1876 P : constant Entity_Id := Etype (Typ);
1877 R : constant Entity_Id := Root_Type (Typ);
1879 begin
1880 if Is_Limited_Record (Typ) then
1881 return True;
1883 -- If the root type is limited (and not a limited interface)
1884 -- so is the current type
1886 elsif Is_Limited_Record (R)
1887 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1888 then
1889 return True;
1891 -- Else the type may have a limited interface progenitor, but a
1892 -- limited record parent.
1894 elsif R /= P and then Is_Limited_Record (P) then
1895 return True;
1897 else
1898 return False;
1899 end if;
1900 end Is_Known_Limited;
1902 -- Start of processing for Analyze_Component_Declaration
1904 begin
1905 Generate_Definition (Id);
1906 Enter_Name (Id);
1908 if Present (Typ) then
1909 T := Find_Type_Of_Object
1910 (Subtype_Indication (Component_Definition (N)), N);
1912 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1913 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1914 end if;
1916 -- Ada 2005 (AI-230): Access Definition case
1918 else
1919 pragma Assert (Present
1920 (Access_Definition (Component_Definition (N))));
1922 T := Access_Definition
1923 (Related_Nod => N,
1924 N => Access_Definition (Component_Definition (N)));
1925 Set_Is_Local_Anonymous_Access (T);
1927 -- Ada 2005 (AI-254)
1929 if Present (Access_To_Subprogram_Definition
1930 (Access_Definition (Component_Definition (N))))
1931 and then Protected_Present (Access_To_Subprogram_Definition
1932 (Access_Definition
1933 (Component_Definition (N))))
1934 then
1935 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1936 end if;
1937 end if;
1939 -- If the subtype is a constrained subtype of the enclosing record,
1940 -- (which must have a partial view) the back-end does not properly
1941 -- handle the recursion. Rewrite the component declaration with an
1942 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1943 -- the tree directly because side effects have already been removed from
1944 -- discriminant constraints.
1946 if Ekind (T) = E_Access_Subtype
1947 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1948 and then Comes_From_Source (T)
1949 and then Nkind (Parent (T)) = N_Subtype_Declaration
1950 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1951 then
1952 Rewrite
1953 (Subtype_Indication (Component_Definition (N)),
1954 New_Copy_Tree (Subtype_Indication (Parent (T))));
1955 T := Find_Type_Of_Object
1956 (Subtype_Indication (Component_Definition (N)), N);
1957 end if;
1959 -- If the component declaration includes a default expression, then we
1960 -- check that the component is not of a limited type (RM 3.7(5)),
1961 -- and do the special preanalysis of the expression (see section on
1962 -- "Handling of Default and Per-Object Expressions" in the spec of
1963 -- package Sem).
1965 if Present (E) then
1966 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1967 Preanalyze_Default_Expression (E, T);
1968 Check_Initialization (T, E);
1970 if Ada_Version >= Ada_2005
1971 and then Ekind (T) = E_Anonymous_Access_Type
1972 and then Etype (E) /= Any_Type
1973 then
1974 -- Check RM 3.9.2(9): "if the expected type for an expression is
1975 -- an anonymous access-to-specific tagged type, then the object
1976 -- designated by the expression shall not be dynamically tagged
1977 -- unless it is a controlling operand in a call on a dispatching
1978 -- operation"
1980 if Is_Tagged_Type (Directly_Designated_Type (T))
1981 and then
1982 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1983 and then
1984 Ekind (Directly_Designated_Type (Etype (E))) =
1985 E_Class_Wide_Type
1986 then
1987 Error_Msg_N
1988 ("access to specific tagged type required (RM 3.9.2(9))", E);
1989 end if;
1991 -- (Ada 2005: AI-230): Accessibility check for anonymous
1992 -- components
1994 if Type_Access_Level (Etype (E)) >
1995 Deepest_Type_Access_Level (T)
1996 then
1997 Error_Msg_N
1998 ("expression has deeper access level than component " &
1999 "(RM 3.10.2 (12.2))", E);
2000 end if;
2002 -- The initialization expression is a reference to an access
2003 -- discriminant. The type of the discriminant is always deeper
2004 -- than any access type.
2006 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2007 and then Is_Entity_Name (E)
2008 and then Ekind (Entity (E)) = E_In_Parameter
2009 and then Present (Discriminal_Link (Entity (E)))
2010 then
2011 Error_Msg_N
2012 ("discriminant has deeper accessibility level than target",
2014 end if;
2015 end if;
2016 end if;
2018 -- The parent type may be a private view with unknown discriminants,
2019 -- and thus unconstrained. Regular components must be constrained.
2021 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2022 if Is_Class_Wide_Type (T) then
2023 Error_Msg_N
2024 ("class-wide subtype with unknown discriminants" &
2025 " in component declaration",
2026 Subtype_Indication (Component_Definition (N)));
2027 else
2028 Error_Msg_N
2029 ("unconstrained subtype in component declaration",
2030 Subtype_Indication (Component_Definition (N)));
2031 end if;
2033 -- Components cannot be abstract, except for the special case of
2034 -- the _Parent field (case of extending an abstract tagged type)
2036 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2037 Error_Msg_N ("type of a component cannot be abstract", N);
2038 end if;
2040 Set_Etype (Id, T);
2041 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2043 -- The component declaration may have a per-object constraint, set
2044 -- the appropriate flag in the defining identifier of the subtype.
2046 if Present (Subtype_Indication (Component_Definition (N))) then
2047 declare
2048 Sindic : constant Node_Id :=
2049 Subtype_Indication (Component_Definition (N));
2050 begin
2051 if Nkind (Sindic) = N_Subtype_Indication
2052 and then Present (Constraint (Sindic))
2053 and then Contains_POC (Constraint (Sindic))
2054 then
2055 Set_Has_Per_Object_Constraint (Id);
2056 end if;
2057 end;
2058 end if;
2060 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2061 -- out some static checks.
2063 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2064 Null_Exclusion_Static_Checks (N);
2065 end if;
2067 -- If this component is private (or depends on a private type), flag the
2068 -- record type to indicate that some operations are not available.
2070 P := Private_Component (T);
2072 if Present (P) then
2074 -- Check for circular definitions
2076 if P = Any_Type then
2077 Set_Etype (Id, Any_Type);
2079 -- There is a gap in the visibility of operations only if the
2080 -- component type is not defined in the scope of the record type.
2082 elsif Scope (P) = Scope (Current_Scope) then
2083 null;
2085 elsif Is_Limited_Type (P) then
2086 Set_Is_Limited_Composite (Current_Scope);
2088 else
2089 Set_Is_Private_Composite (Current_Scope);
2090 end if;
2091 end if;
2093 if P /= Any_Type
2094 and then Is_Limited_Type (T)
2095 and then Chars (Id) /= Name_uParent
2096 and then Is_Tagged_Type (Current_Scope)
2097 then
2098 if Is_Derived_Type (Current_Scope)
2099 and then not Is_Known_Limited (Current_Scope)
2100 then
2101 Error_Msg_N
2102 ("extension of nonlimited type cannot have limited components",
2105 if Is_Interface (Root_Type (Current_Scope)) then
2106 Error_Msg_N
2107 ("\limitedness is not inherited from limited interface", N);
2108 Error_Msg_N ("\add LIMITED to type indication", N);
2109 end if;
2111 Explain_Limited_Type (T, N);
2112 Set_Etype (Id, Any_Type);
2113 Set_Is_Limited_Composite (Current_Scope, False);
2115 elsif not Is_Derived_Type (Current_Scope)
2116 and then not Is_Limited_Record (Current_Scope)
2117 and then not Is_Concurrent_Type (Current_Scope)
2118 then
2119 Error_Msg_N
2120 ("nonlimited tagged type cannot have limited components", N);
2121 Explain_Limited_Type (T, N);
2122 Set_Etype (Id, Any_Type);
2123 Set_Is_Limited_Composite (Current_Scope, False);
2124 end if;
2125 end if;
2127 -- If the component is an unconstrained task or protected type with
2128 -- discriminants, the component and the enclosing record are limited
2129 -- and the component is constrained by its default values. Compute
2130 -- its actual subtype, else it may be allocated the maximum size by
2131 -- the backend, and possibly overflow.
2133 if Is_Concurrent_Type (T)
2134 and then not Is_Constrained (T)
2135 and then Has_Discriminants (T)
2136 and then not Has_Discriminants (Current_Scope)
2137 then
2138 declare
2139 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2140 begin
2141 Set_Etype (Id, Act_T);
2142 Set_Component_Definition (N,
2143 Make_Component_Definition (Loc,
2144 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2145 end;
2146 end if;
2148 Set_Original_Record_Component (Id, Id);
2150 if Has_Aspects (N) then
2151 Analyze_Aspect_Specifications (N, Id);
2152 end if;
2154 Analyze_Dimension (N);
2155 end Analyze_Component_Declaration;
2157 --------------------------
2158 -- Analyze_Declarations --
2159 --------------------------
2161 procedure Analyze_Declarations (L : List_Id) is
2162 Decl : Node_Id;
2164 procedure Adjust_Decl;
2165 -- Adjust Decl not to include implicit label declarations, since these
2166 -- have strange Sloc values that result in elaboration check problems.
2167 -- (They have the sloc of the label as found in the source, and that
2168 -- is ahead of the current declarative part).
2170 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2171 -- Determine whether Body_Decl denotes the body of a late controlled
2172 -- primitive (either Initialize, Adjust or Finalize). If this is the
2173 -- case, add a proper spec if the body lacks one. The spec is inserted
2174 -- before Body_Decl and immedately analyzed.
2176 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2177 -- Spec_Id is the entity of a package that may define abstract states.
2178 -- If the states have visible refinement, remove the visibility of each
2179 -- constituent at the end of the package body declarations.
2181 -----------------
2182 -- Adjust_Decl --
2183 -----------------
2185 procedure Adjust_Decl is
2186 begin
2187 while Present (Prev (Decl))
2188 and then Nkind (Decl) = N_Implicit_Label_Declaration
2189 loop
2190 Prev (Decl);
2191 end loop;
2192 end Adjust_Decl;
2194 --------------------------------------
2195 -- Handle_Late_Controlled_Primitive --
2196 --------------------------------------
2198 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2199 Body_Spec : constant Node_Id := Specification (Body_Decl);
2200 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2201 Loc : constant Source_Ptr := Sloc (Body_Id);
2202 Params : constant List_Id :=
2203 Parameter_Specifications (Body_Spec);
2204 Spec : Node_Id;
2205 Spec_Id : Entity_Id;
2206 Typ : Node_Id;
2208 begin
2209 -- Consider only procedure bodies whose name matches one of the three
2210 -- controlled primitives.
2212 if Nkind (Body_Spec) /= N_Procedure_Specification
2213 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2214 Name_Finalize,
2215 Name_Initialize)
2216 then
2217 return;
2219 -- A controlled primitive must have exactly one formal which is not
2220 -- an anonymous access type.
2222 elsif List_Length (Params) /= 1 then
2223 return;
2224 end if;
2226 Typ := Parameter_Type (First (Params));
2228 if Nkind (Typ) = N_Access_Definition then
2229 return;
2230 end if;
2232 Find_Type (Typ);
2234 -- The type of the formal must be derived from [Limited_]Controlled
2236 if not Is_Controlled (Entity (Typ)) then
2237 return;
2238 end if;
2240 -- Check whether a specification exists for this body. We do not
2241 -- analyze the spec of the body in full, because it will be analyzed
2242 -- again when the body is properly analyzed, and we cannot create
2243 -- duplicate entries in the formals chain. We look for an explicit
2244 -- specification because the body may be an overriding operation and
2245 -- an inherited spec may be present.
2247 Spec_Id := Current_Entity (Body_Id);
2249 while Present (Spec_Id) loop
2250 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2251 and then Scope (Spec_Id) = Current_Scope
2252 and then Present (First_Formal (Spec_Id))
2253 and then No (Next_Formal (First_Formal (Spec_Id)))
2254 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2255 and then Comes_From_Source (Spec_Id)
2256 then
2257 return;
2258 end if;
2260 Spec_Id := Homonym (Spec_Id);
2261 end loop;
2263 -- At this point the body is known to be a late controlled primitive.
2264 -- Generate a matching spec and insert it before the body. Note the
2265 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2266 -- tree in this case.
2268 Spec := Copy_Separate_Tree (Body_Spec);
2270 -- Ensure that the subprogram declaration does not inherit the null
2271 -- indicator from the body as we now have a proper spec/body pair.
2273 Set_Null_Present (Spec, False);
2275 Insert_Before_And_Analyze (Body_Decl,
2276 Make_Subprogram_Declaration (Loc, Specification => Spec));
2277 end Handle_Late_Controlled_Primitive;
2279 --------------------------------
2280 -- Remove_Visible_Refinements --
2281 --------------------------------
2283 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2284 State_Elmt : Elmt_Id;
2285 begin
2286 if Present (Abstract_States (Spec_Id)) then
2287 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2288 while Present (State_Elmt) loop
2289 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2290 Next_Elmt (State_Elmt);
2291 end loop;
2292 end if;
2293 end Remove_Visible_Refinements;
2295 -- Local variables
2297 Context : Node_Id;
2298 Freeze_From : Entity_Id := Empty;
2299 Next_Decl : Node_Id;
2300 Spec_Id : Entity_Id;
2302 Body_Seen : Boolean := False;
2303 -- Flag set when the first body [stub] is encountered
2305 In_Package_Body : Boolean := False;
2306 -- Flag set when the current declaration list belongs to a package body
2308 -- Start of processing for Analyze_Declarations
2310 begin
2311 if Restriction_Check_Required (SPARK_05) then
2312 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2313 end if;
2315 Decl := First (L);
2316 while Present (Decl) loop
2318 -- Package spec cannot contain a package declaration in SPARK
2320 if Nkind (Decl) = N_Package_Declaration
2321 and then Nkind (Parent (L)) = N_Package_Specification
2322 then
2323 Check_SPARK_05_Restriction
2324 ("package specification cannot contain a package declaration",
2325 Decl);
2326 end if;
2328 -- Complete analysis of declaration
2330 Analyze (Decl);
2331 Next_Decl := Next (Decl);
2333 if No (Freeze_From) then
2334 Freeze_From := First_Entity (Current_Scope);
2335 end if;
2337 -- At the end of a declarative part, freeze remaining entities
2338 -- declared in it. The end of the visible declarations of package
2339 -- specification is not the end of a declarative part if private
2340 -- declarations are present. The end of a package declaration is a
2341 -- freezing point only if it a library package. A task definition or
2342 -- protected type definition is not a freeze point either. Finally,
2343 -- we do not freeze entities in generic scopes, because there is no
2344 -- code generated for them and freeze nodes will be generated for
2345 -- the instance.
2347 -- The end of a package instantiation is not a freeze point, but
2348 -- for now we make it one, because the generic body is inserted
2349 -- (currently) immediately after. Generic instantiations will not
2350 -- be a freeze point once delayed freezing of bodies is implemented.
2351 -- (This is needed in any case for early instantiations ???).
2353 if No (Next_Decl) then
2354 if Nkind_In (Parent (L), N_Component_List,
2355 N_Task_Definition,
2356 N_Protected_Definition)
2357 then
2358 null;
2360 elsif Nkind (Parent (L)) /= N_Package_Specification then
2361 if Nkind (Parent (L)) = N_Package_Body then
2362 Freeze_From := First_Entity (Current_Scope);
2363 end if;
2365 -- There may have been several freezing points previously,
2366 -- for example object declarations or subprogram bodies, but
2367 -- at the end of a declarative part we check freezing from
2368 -- the beginning, even though entities may already be frozen,
2369 -- in order to perform visibility checks on delayed aspects.
2371 Adjust_Decl;
2372 Freeze_All (First_Entity (Current_Scope), Decl);
2373 Freeze_From := Last_Entity (Current_Scope);
2375 elsif Scope (Current_Scope) /= Standard_Standard
2376 and then not Is_Child_Unit (Current_Scope)
2377 and then No (Generic_Parent (Parent (L)))
2378 then
2379 null;
2381 elsif L /= Visible_Declarations (Parent (L))
2382 or else No (Private_Declarations (Parent (L)))
2383 or else Is_Empty_List (Private_Declarations (Parent (L)))
2384 then
2385 Adjust_Decl;
2386 Freeze_All (First_Entity (Current_Scope), Decl);
2387 Freeze_From := Last_Entity (Current_Scope);
2388 end if;
2390 -- If next node is a body then freeze all types before the body.
2391 -- An exception occurs for some expander-generated bodies. If these
2392 -- are generated at places where in general language rules would not
2393 -- allow a freeze point, then we assume that the expander has
2394 -- explicitly checked that all required types are properly frozen,
2395 -- and we do not cause general freezing here. This special circuit
2396 -- is used when the encountered body is marked as having already
2397 -- been analyzed.
2399 -- In all other cases (bodies that come from source, and expander
2400 -- generated bodies that have not been analyzed yet), freeze all
2401 -- types now. Note that in the latter case, the expander must take
2402 -- care to attach the bodies at a proper place in the tree so as to
2403 -- not cause unwanted freezing at that point.
2405 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2407 -- When a controlled type is frozen, the expander generates stream
2408 -- and controlled type support routines. If the freeze is caused
2409 -- by the stand alone body of Initialize, Adjust and Finalize, the
2410 -- expander will end up using the wrong version of these routines
2411 -- as the body has not been processed yet. To remedy this, detect
2412 -- a late controlled primitive and create a proper spec for it.
2413 -- This ensures that the primitive will override its inherited
2414 -- counterpart before the freeze takes place.
2416 -- If the declaration we just processed is a body, do not attempt
2417 -- to examine Next_Decl as the late primitive idiom can only apply
2418 -- to the first encountered body.
2420 -- The spec of the late primitive is not generated in ASIS mode to
2421 -- ensure a consistent list of primitives that indicates the true
2422 -- semantic structure of the program (which is not relevant when
2423 -- generating executable code.
2425 -- ??? a cleaner approach may be possible and/or this solution
2426 -- could be extended to general-purpose late primitives, TBD.
2428 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2429 then
2430 Body_Seen := True;
2432 if Nkind (Next_Decl) = N_Subprogram_Body then
2433 Handle_Late_Controlled_Primitive (Next_Decl);
2434 end if;
2435 end if;
2437 Adjust_Decl;
2438 Freeze_All (Freeze_From, Decl);
2439 Freeze_From := Last_Entity (Current_Scope);
2440 end if;
2442 Decl := Next_Decl;
2443 end loop;
2445 -- Analyze the contracts of packages and their bodies
2447 if Present (L) then
2448 Context := Parent (L);
2450 if Nkind (Context) = N_Package_Specification then
2452 -- When a package has private declarations, its contract must be
2453 -- analyzed at the end of the said declarations. This way both the
2454 -- analysis and freeze actions are properly synchronized in case
2455 -- of private type use within the contract.
2457 if L = Private_Declarations (Context) then
2458 Analyze_Package_Contract (Defining_Entity (Context));
2460 -- Build the bodies of the default initial condition procedures
2461 -- for all types subject to pragma Default_Initial_Condition.
2462 -- From a purely Ada stand point, this is a freezing activity,
2463 -- however freezing is not available under GNATprove_Mode. To
2464 -- accomodate both scenarios, the bodies are build at the end
2465 -- of private declaration analysis.
2467 Build_Default_Init_Cond_Procedure_Bodies (L);
2469 -- Otherwise the contract is analyzed at the end of the visible
2470 -- declarations.
2472 elsif L = Visible_Declarations (Context)
2473 and then No (Private_Declarations (Context))
2474 then
2475 Analyze_Package_Contract (Defining_Entity (Context));
2476 end if;
2478 elsif Nkind (Context) = N_Package_Body then
2479 In_Package_Body := True;
2480 Spec_Id := Corresponding_Spec (Context);
2482 Analyze_Package_Body_Contract (Defining_Entity (Context));
2483 end if;
2484 end if;
2486 -- Analyze the contracts of subprogram declarations, subprogram bodies
2487 -- and variables now due to the delayed visibility requirements of their
2488 -- aspects.
2490 Decl := First (L);
2491 while Present (Decl) loop
2492 if Nkind (Decl) = N_Object_Declaration then
2493 Analyze_Object_Contract (Defining_Entity (Decl));
2495 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2496 N_Generic_Subprogram_Declaration,
2497 N_Subprogram_Declaration)
2498 then
2499 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2501 elsif Nkind (Decl) = N_Subprogram_Body then
2502 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2504 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2505 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2506 end if;
2508 Next (Decl);
2509 end loop;
2511 -- State refinements are visible upto the end the of the package body
2512 -- declarations. Hide the refinements from visibility to restore the
2513 -- original state conditions.
2515 if In_Package_Body then
2516 Remove_Visible_Refinements (Spec_Id);
2517 end if;
2518 end Analyze_Declarations;
2520 -----------------------------------
2521 -- Analyze_Full_Type_Declaration --
2522 -----------------------------------
2524 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2525 Def : constant Node_Id := Type_Definition (N);
2526 Def_Id : constant Entity_Id := Defining_Identifier (N);
2527 T : Entity_Id;
2528 Prev : Entity_Id;
2530 Is_Remote : constant Boolean :=
2531 (Is_Remote_Types (Current_Scope)
2532 or else Is_Remote_Call_Interface (Current_Scope))
2533 and then not (In_Private_Part (Current_Scope)
2534 or else In_Package_Body (Current_Scope));
2536 procedure Check_Ops_From_Incomplete_Type;
2537 -- If there is a tagged incomplete partial view of the type, traverse
2538 -- the primitives of the incomplete view and change the type of any
2539 -- controlling formals and result to indicate the full view. The
2540 -- primitives will be added to the full type's primitive operations
2541 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2542 -- is called from Process_Incomplete_Dependents).
2544 ------------------------------------
2545 -- Check_Ops_From_Incomplete_Type --
2546 ------------------------------------
2548 procedure Check_Ops_From_Incomplete_Type is
2549 Elmt : Elmt_Id;
2550 Formal : Entity_Id;
2551 Op : Entity_Id;
2553 begin
2554 if Prev /= T
2555 and then Ekind (Prev) = E_Incomplete_Type
2556 and then Is_Tagged_Type (Prev)
2557 and then Is_Tagged_Type (T)
2558 then
2559 Elmt := First_Elmt (Primitive_Operations (Prev));
2560 while Present (Elmt) loop
2561 Op := Node (Elmt);
2563 Formal := First_Formal (Op);
2564 while Present (Formal) loop
2565 if Etype (Formal) = Prev then
2566 Set_Etype (Formal, T);
2567 end if;
2569 Next_Formal (Formal);
2570 end loop;
2572 if Etype (Op) = Prev then
2573 Set_Etype (Op, T);
2574 end if;
2576 Next_Elmt (Elmt);
2577 end loop;
2578 end if;
2579 end Check_Ops_From_Incomplete_Type;
2581 -- Start of processing for Analyze_Full_Type_Declaration
2583 begin
2584 Prev := Find_Type_Name (N);
2586 -- The type declaration may be subject to pragma Ghost with policy
2587 -- Ignore. Set the mode now to ensure that any nodes generated during
2588 -- analysis and expansion are properly flagged as ignored Ghost.
2590 Set_Ghost_Mode (N, Prev);
2592 -- The full view, if present, now points to the current type. If there
2593 -- is an incomplete partial view, set a link to it, to simplify the
2594 -- retrieval of primitive operations of the type.
2596 -- Ada 2005 (AI-50217): If the type was previously decorated when
2597 -- imported through a LIMITED WITH clause, it appears as incomplete
2598 -- but has no full view.
2600 if Ekind (Prev) = E_Incomplete_Type
2601 and then Present (Full_View (Prev))
2602 then
2603 T := Full_View (Prev);
2604 Set_Incomplete_View (N, Parent (Prev));
2605 else
2606 T := Prev;
2607 end if;
2609 Set_Is_Pure (T, Is_Pure (Current_Scope));
2611 -- We set the flag Is_First_Subtype here. It is needed to set the
2612 -- corresponding flag for the Implicit class-wide-type created
2613 -- during tagged types processing.
2615 Set_Is_First_Subtype (T, True);
2617 -- Only composite types other than array types are allowed to have
2618 -- discriminants.
2620 case Nkind (Def) is
2622 -- For derived types, the rule will be checked once we've figured
2623 -- out the parent type.
2625 when N_Derived_Type_Definition =>
2626 null;
2628 -- For record types, discriminants are allowed, unless we are in
2629 -- SPARK.
2631 when N_Record_Definition =>
2632 if Present (Discriminant_Specifications (N)) then
2633 Check_SPARK_05_Restriction
2634 ("discriminant type is not allowed",
2635 Defining_Identifier
2636 (First (Discriminant_Specifications (N))));
2637 end if;
2639 when others =>
2640 if Present (Discriminant_Specifications (N)) then
2641 Error_Msg_N
2642 ("elementary or array type cannot have discriminants",
2643 Defining_Identifier
2644 (First (Discriminant_Specifications (N))));
2645 end if;
2646 end case;
2648 -- Elaborate the type definition according to kind, and generate
2649 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2650 -- already done (this happens during the reanalysis that follows a call
2651 -- to the high level optimizer).
2653 if not Analyzed (T) then
2654 Set_Analyzed (T);
2656 case Nkind (Def) is
2657 when N_Access_To_Subprogram_Definition =>
2658 Access_Subprogram_Declaration (T, Def);
2660 -- If this is a remote access to subprogram, we must create the
2661 -- equivalent fat pointer type, and related subprograms.
2663 if Is_Remote then
2664 Process_Remote_AST_Declaration (N);
2665 end if;
2667 -- Validate categorization rule against access type declaration
2668 -- usually a violation in Pure unit, Shared_Passive unit.
2670 Validate_Access_Type_Declaration (T, N);
2672 when N_Access_To_Object_Definition =>
2673 Access_Type_Declaration (T, Def);
2675 -- Validate categorization rule against access type declaration
2676 -- usually a violation in Pure unit, Shared_Passive unit.
2678 Validate_Access_Type_Declaration (T, N);
2680 -- If we are in a Remote_Call_Interface package and define a
2681 -- RACW, then calling stubs and specific stream attributes
2682 -- must be added.
2684 if Is_Remote
2685 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2686 then
2687 Add_RACW_Features (Def_Id);
2688 end if;
2690 when N_Array_Type_Definition =>
2691 Array_Type_Declaration (T, Def);
2693 when N_Derived_Type_Definition =>
2694 Derived_Type_Declaration (T, N, T /= Def_Id);
2696 when N_Enumeration_Type_Definition =>
2697 Enumeration_Type_Declaration (T, Def);
2699 when N_Floating_Point_Definition =>
2700 Floating_Point_Type_Declaration (T, Def);
2702 when N_Decimal_Fixed_Point_Definition =>
2703 Decimal_Fixed_Point_Type_Declaration (T, Def);
2705 when N_Ordinary_Fixed_Point_Definition =>
2706 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2708 when N_Signed_Integer_Type_Definition =>
2709 Signed_Integer_Type_Declaration (T, Def);
2711 when N_Modular_Type_Definition =>
2712 Modular_Type_Declaration (T, Def);
2714 when N_Record_Definition =>
2715 Record_Type_Declaration (T, N, Prev);
2717 -- If declaration has a parse error, nothing to elaborate.
2719 when N_Error =>
2720 null;
2722 when others =>
2723 raise Program_Error;
2725 end case;
2726 end if;
2728 if Etype (T) = Any_Type then
2729 return;
2730 end if;
2732 -- Controlled type is not allowed in SPARK
2734 if Is_Visibly_Controlled (T) then
2735 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2736 end if;
2738 -- A type declared within a Ghost region is automatically Ghost
2739 -- (SPARK RM 6.9(2)).
2741 if Comes_From_Source (T) and then Ghost_Mode > None then
2742 Set_Is_Ghost_Entity (T);
2743 end if;
2745 -- Some common processing for all types
2747 Set_Depends_On_Private (T, Has_Private_Component (T));
2748 Check_Ops_From_Incomplete_Type;
2750 -- Both the declared entity, and its anonymous base type if one was
2751 -- created, need freeze nodes allocated.
2753 declare
2754 B : constant Entity_Id := Base_Type (T);
2756 begin
2757 -- In the case where the base type differs from the first subtype, we
2758 -- pre-allocate a freeze node, and set the proper link to the first
2759 -- subtype. Freeze_Entity will use this preallocated freeze node when
2760 -- it freezes the entity.
2762 -- This does not apply if the base type is a generic type, whose
2763 -- declaration is independent of the current derived definition.
2765 if B /= T and then not Is_Generic_Type (B) then
2766 Ensure_Freeze_Node (B);
2767 Set_First_Subtype_Link (Freeze_Node (B), T);
2768 end if;
2770 -- A type that is imported through a limited_with clause cannot
2771 -- generate any code, and thus need not be frozen. However, an access
2772 -- type with an imported designated type needs a finalization list,
2773 -- which may be referenced in some other package that has non-limited
2774 -- visibility on the designated type. Thus we must create the
2775 -- finalization list at the point the access type is frozen, to
2776 -- prevent unsatisfied references at link time.
2778 if not From_Limited_With (T) or else Is_Access_Type (T) then
2779 Set_Has_Delayed_Freeze (T);
2780 end if;
2781 end;
2783 -- Case where T is the full declaration of some private type which has
2784 -- been swapped in Defining_Identifier (N).
2786 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2787 Process_Full_View (N, T, Def_Id);
2789 -- Record the reference. The form of this is a little strange, since
2790 -- the full declaration has been swapped in. So the first parameter
2791 -- here represents the entity to which a reference is made which is
2792 -- the "real" entity, i.e. the one swapped in, and the second
2793 -- parameter provides the reference location.
2795 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2796 -- since we don't want a complaint about the full type being an
2797 -- unwanted reference to the private type
2799 declare
2800 B : constant Boolean := Has_Pragma_Unreferenced (T);
2801 begin
2802 Set_Has_Pragma_Unreferenced (T, False);
2803 Generate_Reference (T, T, 'c');
2804 Set_Has_Pragma_Unreferenced (T, B);
2805 end;
2807 Set_Completion_Referenced (Def_Id);
2809 -- For completion of incomplete type, process incomplete dependents
2810 -- and always mark the full type as referenced (it is the incomplete
2811 -- type that we get for any real reference).
2813 elsif Ekind (Prev) = E_Incomplete_Type then
2814 Process_Incomplete_Dependents (N, T, Prev);
2815 Generate_Reference (Prev, Def_Id, 'c');
2816 Set_Completion_Referenced (Def_Id);
2818 -- If not private type or incomplete type completion, this is a real
2819 -- definition of a new entity, so record it.
2821 else
2822 Generate_Definition (Def_Id);
2823 end if;
2825 -- Propagate any pending access types whose finalization masters need to
2826 -- be fully initialized from the partial to the full view. Guard against
2827 -- an illegal full view that remains unanalyzed.
2829 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
2830 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
2831 end if;
2833 if Chars (Scope (Def_Id)) = Name_System
2834 and then Chars (Def_Id) = Name_Address
2835 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2836 then
2837 Set_Is_Descendent_Of_Address (Def_Id);
2838 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2839 Set_Is_Descendent_Of_Address (Prev);
2840 end if;
2842 Set_Optimize_Alignment_Flags (Def_Id);
2843 Check_Eliminated (Def_Id);
2845 -- If the declaration is a completion and aspects are present, apply
2846 -- them to the entity for the type which is currently the partial
2847 -- view, but which is the one that will be frozen.
2849 if Has_Aspects (N) then
2851 -- In most cases the partial view is a private type, and both views
2852 -- appear in different declarative parts. In the unusual case where
2853 -- the partial view is incomplete, perform the analysis on the
2854 -- full view, to prevent freezing anomalies with the corresponding
2855 -- class-wide type, which otherwise might be frozen before the
2856 -- dispatch table is built.
2858 if Prev /= Def_Id
2859 and then Ekind (Prev) /= E_Incomplete_Type
2860 then
2861 Analyze_Aspect_Specifications (N, Prev);
2863 -- Normal case
2865 else
2866 Analyze_Aspect_Specifications (N, Def_Id);
2867 end if;
2868 end if;
2869 end Analyze_Full_Type_Declaration;
2871 ----------------------------------
2872 -- Analyze_Incomplete_Type_Decl --
2873 ----------------------------------
2875 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2876 F : constant Boolean := Is_Pure (Current_Scope);
2877 T : Entity_Id;
2879 begin
2880 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2882 Generate_Definition (Defining_Identifier (N));
2884 -- Process an incomplete declaration. The identifier must not have been
2885 -- declared already in the scope. However, an incomplete declaration may
2886 -- appear in the private part of a package, for a private type that has
2887 -- already been declared.
2889 -- In this case, the discriminants (if any) must match
2891 T := Find_Type_Name (N);
2893 Set_Ekind (T, E_Incomplete_Type);
2894 Init_Size_Align (T);
2895 Set_Is_First_Subtype (T, True);
2896 Set_Etype (T, T);
2898 -- An incomplete type declared within a Ghost region is automatically
2899 -- Ghost (SPARK RM 6.9(2)).
2901 if Ghost_Mode > None then
2902 Set_Is_Ghost_Entity (T);
2903 end if;
2905 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2906 -- incomplete types.
2908 if Tagged_Present (N) then
2909 Set_Is_Tagged_Type (T, True);
2910 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2911 Make_Class_Wide_Type (T);
2912 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2913 end if;
2915 Push_Scope (T);
2917 Set_Stored_Constraint (T, No_Elist);
2919 if Present (Discriminant_Specifications (N)) then
2920 Process_Discriminants (N);
2921 end if;
2923 End_Scope;
2925 -- If the type has discriminants, non-trivial subtypes may be
2926 -- declared before the full view of the type. The full views of those
2927 -- subtypes will be built after the full view of the type.
2929 Set_Private_Dependents (T, New_Elmt_List);
2930 Set_Is_Pure (T, F);
2931 end Analyze_Incomplete_Type_Decl;
2933 -----------------------------------
2934 -- Analyze_Interface_Declaration --
2935 -----------------------------------
2937 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2938 CW : constant Entity_Id := Class_Wide_Type (T);
2940 begin
2941 Set_Is_Tagged_Type (T);
2942 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2944 Set_Is_Limited_Record (T, Limited_Present (Def)
2945 or else Task_Present (Def)
2946 or else Protected_Present (Def)
2947 or else Synchronized_Present (Def));
2949 -- Type is abstract if full declaration carries keyword, or if previous
2950 -- partial view did.
2952 Set_Is_Abstract_Type (T);
2953 Set_Is_Interface (T);
2955 -- Type is a limited interface if it includes the keyword limited, task,
2956 -- protected, or synchronized.
2958 Set_Is_Limited_Interface
2959 (T, Limited_Present (Def)
2960 or else Protected_Present (Def)
2961 or else Synchronized_Present (Def)
2962 or else Task_Present (Def));
2964 Set_Interfaces (T, New_Elmt_List);
2965 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2967 -- Complete the decoration of the class-wide entity if it was already
2968 -- built (i.e. during the creation of the limited view)
2970 if Present (CW) then
2971 Set_Is_Interface (CW);
2972 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2973 end if;
2975 -- Check runtime support for synchronized interfaces
2977 if VM_Target = No_VM
2978 and then (Is_Task_Interface (T)
2979 or else Is_Protected_Interface (T)
2980 or else Is_Synchronized_Interface (T))
2981 and then not RTE_Available (RE_Select_Specific_Data)
2982 then
2983 Error_Msg_CRT ("synchronized interfaces", T);
2984 end if;
2985 end Analyze_Interface_Declaration;
2987 -----------------------------
2988 -- Analyze_Itype_Reference --
2989 -----------------------------
2991 -- Nothing to do. This node is placed in the tree only for the benefit of
2992 -- back end processing, and has no effect on the semantic processing.
2994 procedure Analyze_Itype_Reference (N : Node_Id) is
2995 begin
2996 pragma Assert (Is_Itype (Itype (N)));
2997 null;
2998 end Analyze_Itype_Reference;
3000 --------------------------------
3001 -- Analyze_Number_Declaration --
3002 --------------------------------
3004 procedure Analyze_Number_Declaration (N : Node_Id) is
3005 Id : constant Entity_Id := Defining_Identifier (N);
3006 E : constant Node_Id := Expression (N);
3007 T : Entity_Id;
3008 Index : Interp_Index;
3009 It : Interp;
3011 begin
3012 -- The number declaration may be subject to pragma Ghost with policy
3013 -- Ignore. Set the mode now to ensure that any nodes generated during
3014 -- analysis and expansion are properly flagged as ignored Ghost.
3016 Set_Ghost_Mode (N);
3018 Generate_Definition (Id);
3019 Enter_Name (Id);
3021 -- A number declared within a Ghost region is automatically Ghost
3022 -- (SPARK RM 6.9(2)).
3024 if Ghost_Mode > None then
3025 Set_Is_Ghost_Entity (Id);
3026 end if;
3028 -- This is an optimization of a common case of an integer literal
3030 if Nkind (E) = N_Integer_Literal then
3031 Set_Is_Static_Expression (E, True);
3032 Set_Etype (E, Universal_Integer);
3034 Set_Etype (Id, Universal_Integer);
3035 Set_Ekind (Id, E_Named_Integer);
3036 Set_Is_Frozen (Id, True);
3037 return;
3038 end if;
3040 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3042 -- Process expression, replacing error by integer zero, to avoid
3043 -- cascaded errors or aborts further along in the processing
3045 -- Replace Error by integer zero, which seems least likely to cause
3046 -- cascaded errors.
3048 if E = Error then
3049 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3050 Set_Error_Posted (E);
3051 end if;
3053 Analyze (E);
3055 -- Verify that the expression is static and numeric. If
3056 -- the expression is overloaded, we apply the preference
3057 -- rule that favors root numeric types.
3059 if not Is_Overloaded (E) then
3060 T := Etype (E);
3061 if Has_Dynamic_Predicate_Aspect (T) then
3062 Error_Msg_N
3063 ("subtype has dynamic predicate, "
3064 & "not allowed in number declaration", N);
3065 end if;
3067 else
3068 T := Any_Type;
3070 Get_First_Interp (E, Index, It);
3071 while Present (It.Typ) loop
3072 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3073 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3074 then
3075 if T = Any_Type then
3076 T := It.Typ;
3078 elsif It.Typ = Universal_Real
3079 or else
3080 It.Typ = Universal_Integer
3081 then
3082 -- Choose universal interpretation over any other
3084 T := It.Typ;
3085 exit;
3086 end if;
3087 end if;
3089 Get_Next_Interp (Index, It);
3090 end loop;
3091 end if;
3093 if Is_Integer_Type (T) then
3094 Resolve (E, T);
3095 Set_Etype (Id, Universal_Integer);
3096 Set_Ekind (Id, E_Named_Integer);
3098 elsif Is_Real_Type (T) then
3100 -- Because the real value is converted to universal_real, this is a
3101 -- legal context for a universal fixed expression.
3103 if T = Universal_Fixed then
3104 declare
3105 Loc : constant Source_Ptr := Sloc (N);
3106 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3107 Subtype_Mark =>
3108 New_Occurrence_Of (Universal_Real, Loc),
3109 Expression => Relocate_Node (E));
3111 begin
3112 Rewrite (E, Conv);
3113 Analyze (E);
3114 end;
3116 elsif T = Any_Fixed then
3117 Error_Msg_N ("illegal context for mixed mode operation", E);
3119 -- Expression is of the form : universal_fixed * integer. Try to
3120 -- resolve as universal_real.
3122 T := Universal_Real;
3123 Set_Etype (E, T);
3124 end if;
3126 Resolve (E, T);
3127 Set_Etype (Id, Universal_Real);
3128 Set_Ekind (Id, E_Named_Real);
3130 else
3131 Wrong_Type (E, Any_Numeric);
3132 Resolve (E, T);
3134 Set_Etype (Id, T);
3135 Set_Ekind (Id, E_Constant);
3136 Set_Never_Set_In_Source (Id, True);
3137 Set_Is_True_Constant (Id, True);
3138 return;
3139 end if;
3141 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3142 Set_Etype (E, Etype (Id));
3143 end if;
3145 if not Is_OK_Static_Expression (E) then
3146 Flag_Non_Static_Expr
3147 ("non-static expression used in number declaration!", E);
3148 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3149 Set_Etype (E, Any_Type);
3150 end if;
3151 end Analyze_Number_Declaration;
3153 -----------------------------
3154 -- Analyze_Object_Contract --
3155 -----------------------------
3157 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3158 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3159 AR_Val : Boolean := False;
3160 AW_Val : Boolean := False;
3161 ER_Val : Boolean := False;
3162 EW_Val : Boolean := False;
3163 Prag : Node_Id;
3164 Seen : Boolean := False;
3166 begin
3167 -- The loop parameter in an element iterator over a formal container
3168 -- is declared with an object declaration but no contracts apply.
3170 if Ekind (Obj_Id) = E_Loop_Parameter then
3171 return;
3172 end if;
3174 if Ekind (Obj_Id) = E_Constant then
3176 -- A constant cannot be effectively volatile. This check is only
3177 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3178 -- rule. Do not flag internally-generated constants that map generic
3179 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3181 if SPARK_Mode = On
3182 and then Is_Effectively_Volatile (Obj_Id)
3183 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3185 -- Don't give this for internally generated entities (such as the
3186 -- FIRST and LAST temporaries generated for bounds).
3188 and then Comes_From_Source (Obj_Id)
3189 then
3190 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3191 end if;
3193 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3195 -- The following checks are only relevant when SPARK_Mode is on as
3196 -- they are not standard Ada legality rules. Internally generated
3197 -- temporaries are ignored.
3199 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3200 if Is_Effectively_Volatile (Obj_Id) then
3202 -- The declaration of an effectively volatile object must
3203 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3205 if not Is_Library_Level_Entity (Obj_Id) then
3206 Error_Msg_N
3207 ("volatile variable & must be declared at library level",
3208 Obj_Id);
3210 -- An object of a discriminated type cannot be effectively
3211 -- volatile (SPARK RM C.6(4)).
3213 elsif Has_Discriminants (Obj_Typ) then
3214 Error_Msg_N
3215 ("discriminated object & cannot be volatile", Obj_Id);
3217 -- An object of a tagged type cannot be effectively volatile
3218 -- (SPARK RM C.6(5)).
3220 elsif Is_Tagged_Type (Obj_Typ) then
3221 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3222 end if;
3224 -- The object is not effectively volatile
3226 else
3227 -- A non-effectively volatile object cannot have effectively
3228 -- volatile components (SPARK RM 7.1.3(7)).
3230 if not Is_Effectively_Volatile (Obj_Id)
3231 and then Has_Volatile_Component (Obj_Typ)
3232 then
3233 Error_Msg_N
3234 ("non-volatile object & cannot have volatile components",
3235 Obj_Id);
3236 end if;
3237 end if;
3238 end if;
3240 if Is_Ghost_Entity (Obj_Id) then
3242 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3244 if Is_Effectively_Volatile (Obj_Id) then
3245 Error_Msg_N ("ghost variable & cannot be volatile", Obj_Id);
3247 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3249 elsif Is_Imported (Obj_Id) then
3250 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3252 elsif Is_Exported (Obj_Id) then
3253 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3254 end if;
3255 end if;
3257 -- Analyze all external properties
3259 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3261 if Present (Prag) then
3262 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3263 Seen := True;
3264 end if;
3266 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3268 if Present (Prag) then
3269 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3270 Seen := True;
3271 end if;
3273 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3275 if Present (Prag) then
3276 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3277 Seen := True;
3278 end if;
3280 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3282 if Present (Prag) then
3283 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3284 Seen := True;
3285 end if;
3287 -- Verify the mutual interaction of the various external properties
3289 if Seen then
3290 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3291 end if;
3293 -- Check whether the lack of indicator Part_Of agrees with the
3294 -- placement of the variable with respect to the state space.
3296 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3298 if No (Prag) then
3299 Check_Missing_Part_Of (Obj_Id);
3300 end if;
3301 end if;
3303 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3305 if Is_Ghost_Entity (Obj_Id) then
3306 if Is_Exported (Obj_Id) then
3307 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3309 elsif Is_Imported (Obj_Id) then
3310 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3311 end if;
3312 end if;
3313 end Analyze_Object_Contract;
3315 --------------------------------
3316 -- Analyze_Object_Declaration --
3317 --------------------------------
3319 procedure Analyze_Object_Declaration (N : Node_Id) is
3320 Loc : constant Source_Ptr := Sloc (N);
3321 Id : constant Entity_Id := Defining_Identifier (N);
3322 T : Entity_Id;
3323 Act_T : Entity_Id;
3325 E : Node_Id := Expression (N);
3326 -- E is set to Expression (N) throughout this routine. When
3327 -- Expression (N) is modified, E is changed accordingly.
3329 Prev_Entity : Entity_Id := Empty;
3331 function Count_Tasks (T : Entity_Id) return Uint;
3332 -- This function is called when a non-generic library level object of a
3333 -- task type is declared. Its function is to count the static number of
3334 -- tasks declared within the type (it is only called if Has_Tasks is set
3335 -- for T). As a side effect, if an array of tasks with non-static bounds
3336 -- or a variant record type is encountered, Check_Restrictions is called
3337 -- indicating the count is unknown.
3339 function Delayed_Aspect_Present return Boolean;
3340 -- If the declaration has an expression that is an aggregate, and it
3341 -- has aspects that require delayed analysis, the resolution of the
3342 -- aggregate must be deferred to the freeze point of the objet. This
3343 -- special processing was created for address clauses, but it must
3344 -- also apply to Alignment. This must be done before the aspect
3345 -- specifications are analyzed because we must handle the aggregate
3346 -- before the analysis of the object declaration is complete.
3348 -- Any other relevant delayed aspects on object declarations ???
3350 -----------------
3351 -- Count_Tasks --
3352 -----------------
3354 function Count_Tasks (T : Entity_Id) return Uint is
3355 C : Entity_Id;
3356 X : Node_Id;
3357 V : Uint;
3359 begin
3360 if Is_Task_Type (T) then
3361 return Uint_1;
3363 elsif Is_Record_Type (T) then
3364 if Has_Discriminants (T) then
3365 Check_Restriction (Max_Tasks, N);
3366 return Uint_0;
3368 else
3369 V := Uint_0;
3370 C := First_Component (T);
3371 while Present (C) loop
3372 V := V + Count_Tasks (Etype (C));
3373 Next_Component (C);
3374 end loop;
3376 return V;
3377 end if;
3379 elsif Is_Array_Type (T) then
3380 X := First_Index (T);
3381 V := Count_Tasks (Component_Type (T));
3382 while Present (X) loop
3383 C := Etype (X);
3385 if not Is_OK_Static_Subtype (C) then
3386 Check_Restriction (Max_Tasks, N);
3387 return Uint_0;
3388 else
3389 V := V * (UI_Max (Uint_0,
3390 Expr_Value (Type_High_Bound (C)) -
3391 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3392 end if;
3394 Next_Index (X);
3395 end loop;
3397 return V;
3399 else
3400 return Uint_0;
3401 end if;
3402 end Count_Tasks;
3404 ----------------------------
3405 -- Delayed_Aspect_Present --
3406 ----------------------------
3408 function Delayed_Aspect_Present return Boolean is
3409 A : Node_Id;
3410 A_Id : Aspect_Id;
3412 begin
3413 if Present (Aspect_Specifications (N)) then
3414 A := First (Aspect_Specifications (N));
3415 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3416 while Present (A) loop
3417 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3418 return True;
3419 end if;
3421 Next (A);
3422 end loop;
3423 end if;
3425 return False;
3426 end Delayed_Aspect_Present;
3428 -- Start of processing for Analyze_Object_Declaration
3430 begin
3431 -- There are three kinds of implicit types generated by an
3432 -- object declaration:
3434 -- 1. Those generated by the original Object Definition
3436 -- 2. Those generated by the Expression
3438 -- 3. Those used to constrain the Object Definition with the
3439 -- expression constraints when the definition is unconstrained.
3441 -- They must be generated in this order to avoid order of elaboration
3442 -- issues. Thus the first step (after entering the name) is to analyze
3443 -- the object definition.
3445 if Constant_Present (N) then
3446 Prev_Entity := Current_Entity_In_Scope (Id);
3448 if Present (Prev_Entity)
3449 and then
3450 -- If the homograph is an implicit subprogram, it is overridden
3451 -- by the current declaration.
3453 ((Is_Overloadable (Prev_Entity)
3454 and then Is_Inherited_Operation (Prev_Entity))
3456 -- The current object is a discriminal generated for an entry
3457 -- family index. Even though the index is a constant, in this
3458 -- particular context there is no true constant redeclaration.
3459 -- Enter_Name will handle the visibility.
3461 or else
3462 (Is_Discriminal (Id)
3463 and then Ekind (Discriminal_Link (Id)) =
3464 E_Entry_Index_Parameter)
3466 -- The current object is the renaming for a generic declared
3467 -- within the instance.
3469 or else
3470 (Ekind (Prev_Entity) = E_Package
3471 and then Nkind (Parent (Prev_Entity)) =
3472 N_Package_Renaming_Declaration
3473 and then not Comes_From_Source (Prev_Entity)
3474 and then
3475 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3476 then
3477 Prev_Entity := Empty;
3478 end if;
3479 end if;
3481 -- The object declaration may be subject to pragma Ghost with policy
3482 -- Ignore. Set the mode now to ensure that any nodes generated during
3483 -- analysis and expansion are properly flagged as ignored Ghost.
3485 Set_Ghost_Mode (N, Prev_Entity);
3487 if Present (Prev_Entity) then
3488 Constant_Redeclaration (Id, N, T);
3490 Generate_Reference (Prev_Entity, Id, 'c');
3491 Set_Completion_Referenced (Id);
3493 if Error_Posted (N) then
3495 -- Type mismatch or illegal redeclaration, Do not analyze
3496 -- expression to avoid cascaded errors.
3498 T := Find_Type_Of_Object (Object_Definition (N), N);
3499 Set_Etype (Id, T);
3500 Set_Ekind (Id, E_Variable);
3501 goto Leave;
3502 end if;
3504 -- In the normal case, enter identifier at the start to catch premature
3505 -- usage in the initialization expression.
3507 else
3508 Generate_Definition (Id);
3509 Enter_Name (Id);
3511 Mark_Coextensions (N, Object_Definition (N));
3513 T := Find_Type_Of_Object (Object_Definition (N), N);
3515 if Nkind (Object_Definition (N)) = N_Access_Definition
3516 and then Present
3517 (Access_To_Subprogram_Definition (Object_Definition (N)))
3518 and then Protected_Present
3519 (Access_To_Subprogram_Definition (Object_Definition (N)))
3520 then
3521 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3522 end if;
3524 if Error_Posted (Id) then
3525 Set_Etype (Id, T);
3526 Set_Ekind (Id, E_Variable);
3527 goto Leave;
3528 end if;
3529 end if;
3531 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3532 -- out some static checks
3534 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3536 -- In case of aggregates we must also take care of the correct
3537 -- initialization of nested aggregates bug this is done at the
3538 -- point of the analysis of the aggregate (see sem_aggr.adb).
3540 if Present (Expression (N))
3541 and then Nkind (Expression (N)) = N_Aggregate
3542 then
3543 null;
3545 else
3546 declare
3547 Save_Typ : constant Entity_Id := Etype (Id);
3548 begin
3549 Set_Etype (Id, T); -- Temp. decoration for static checks
3550 Null_Exclusion_Static_Checks (N);
3551 Set_Etype (Id, Save_Typ);
3552 end;
3553 end if;
3554 end if;
3556 -- Object is marked pure if it is in a pure scope
3558 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3560 -- If deferred constant, make sure context is appropriate. We detect
3561 -- a deferred constant as a constant declaration with no expression.
3562 -- A deferred constant can appear in a package body if its completion
3563 -- is by means of an interface pragma.
3565 if Constant_Present (N) and then No (E) then
3567 -- A deferred constant may appear in the declarative part of the
3568 -- following constructs:
3570 -- blocks
3571 -- entry bodies
3572 -- extended return statements
3573 -- package specs
3574 -- package bodies
3575 -- subprogram bodies
3576 -- task bodies
3578 -- When declared inside a package spec, a deferred constant must be
3579 -- completed by a full constant declaration or pragma Import. In all
3580 -- other cases, the only proper completion is pragma Import. Extended
3581 -- return statements are flagged as invalid contexts because they do
3582 -- not have a declarative part and so cannot accommodate the pragma.
3584 if Ekind (Current_Scope) = E_Return_Statement then
3585 Error_Msg_N
3586 ("invalid context for deferred constant declaration (RM 7.4)",
3588 Error_Msg_N
3589 ("\declaration requires an initialization expression",
3591 Set_Constant_Present (N, False);
3593 -- In Ada 83, deferred constant must be of private type
3595 elsif not Is_Private_Type (T) then
3596 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3597 Error_Msg_N
3598 ("(Ada 83) deferred constant must be private type", N);
3599 end if;
3600 end if;
3602 -- If not a deferred constant, then the object declaration freezes
3603 -- its type, unless the object is of an anonymous type and has delayed
3604 -- aspects. In that case the type is frozen when the object itself is.
3606 else
3607 Check_Fully_Declared (T, N);
3609 if Has_Delayed_Aspects (Id)
3610 and then Is_Array_Type (T)
3611 and then Is_Itype (T)
3612 then
3613 Set_Has_Delayed_Freeze (T);
3614 else
3615 Freeze_Before (N, T);
3616 end if;
3617 end if;
3619 -- If the object was created by a constrained array definition, then
3620 -- set the link in both the anonymous base type and anonymous subtype
3621 -- that are built to represent the array type to point to the object.
3623 if Nkind (Object_Definition (Declaration_Node (Id))) =
3624 N_Constrained_Array_Definition
3625 then
3626 Set_Related_Array_Object (T, Id);
3627 Set_Related_Array_Object (Base_Type (T), Id);
3628 end if;
3630 -- Special checks for protected objects not at library level
3632 if Is_Protected_Type (T)
3633 and then not Is_Library_Level_Entity (Id)
3634 then
3635 Check_Restriction (No_Local_Protected_Objects, Id);
3637 -- Protected objects with interrupt handlers must be at library level
3639 -- Ada 2005: This test is not needed (and the corresponding clause
3640 -- in the RM is removed) because accessibility checks are sufficient
3641 -- to make handlers not at the library level illegal.
3643 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3644 -- applies to the '95 version of the language as well.
3646 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3647 Error_Msg_N
3648 ("interrupt object can only be declared at library level", Id);
3649 end if;
3650 end if;
3652 -- The actual subtype of the object is the nominal subtype, unless
3653 -- the nominal one is unconstrained and obtained from the expression.
3655 Act_T := T;
3657 -- These checks should be performed before the initialization expression
3658 -- is considered, so that the Object_Definition node is still the same
3659 -- as in source code.
3661 -- In SPARK, the nominal subtype is always given by a subtype mark
3662 -- and must not be unconstrained. (The only exception to this is the
3663 -- acceptance of declarations of constants of type String.)
3665 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3666 then
3667 Check_SPARK_05_Restriction
3668 ("subtype mark required", Object_Definition (N));
3670 elsif Is_Array_Type (T)
3671 and then not Is_Constrained (T)
3672 and then T /= Standard_String
3673 then
3674 Check_SPARK_05_Restriction
3675 ("subtype mark of constrained type expected",
3676 Object_Definition (N));
3677 end if;
3679 -- There are no aliased objects in SPARK
3681 if Aliased_Present (N) then
3682 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3683 end if;
3685 -- Process initialization expression if present and not in error
3687 if Present (E) and then E /= Error then
3689 -- Generate an error in case of CPP class-wide object initialization.
3690 -- Required because otherwise the expansion of the class-wide
3691 -- assignment would try to use 'size to initialize the object
3692 -- (primitive that is not available in CPP tagged types).
3694 if Is_Class_Wide_Type (Act_T)
3695 and then
3696 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3697 or else
3698 (Present (Full_View (Root_Type (Etype (Act_T))))
3699 and then
3700 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3701 then
3702 Error_Msg_N
3703 ("predefined assignment not available for 'C'P'P tagged types",
3705 end if;
3707 Mark_Coextensions (N, E);
3708 Analyze (E);
3710 -- In case of errors detected in the analysis of the expression,
3711 -- decorate it with the expected type to avoid cascaded errors
3713 if No (Etype (E)) then
3714 Set_Etype (E, T);
3715 end if;
3717 -- If an initialization expression is present, then we set the
3718 -- Is_True_Constant flag. It will be reset if this is a variable
3719 -- and it is indeed modified.
3721 Set_Is_True_Constant (Id, True);
3723 -- If we are analyzing a constant declaration, set its completion
3724 -- flag after analyzing and resolving the expression.
3726 if Constant_Present (N) then
3727 Set_Has_Completion (Id);
3728 end if;
3730 -- Set type and resolve (type may be overridden later on). Note:
3731 -- Ekind (Id) must still be E_Void at this point so that incorrect
3732 -- early usage within E is properly diagnosed.
3734 Set_Etype (Id, T);
3736 -- If the expression is an aggregate we must look ahead to detect
3737 -- the possible presence of an address clause, and defer resolution
3738 -- and expansion of the aggregate to the freeze point of the entity.
3740 if Comes_From_Source (N)
3741 and then Expander_Active
3742 and then Nkind (E) = N_Aggregate
3743 and then (Present (Following_Address_Clause (N))
3744 or else Delayed_Aspect_Present)
3745 then
3746 Set_Etype (E, T);
3748 else
3749 Resolve (E, T);
3750 end if;
3752 -- No further action needed if E is a call to an inlined function
3753 -- which returns an unconstrained type and it has been expanded into
3754 -- a procedure call. In that case N has been replaced by an object
3755 -- declaration without initializing expression and it has been
3756 -- analyzed (see Expand_Inlined_Call).
3758 if Back_End_Inlining
3759 and then Expander_Active
3760 and then Nkind (E) = N_Function_Call
3761 and then Nkind (Name (E)) in N_Has_Entity
3762 and then Is_Inlined (Entity (Name (E)))
3763 and then not Is_Constrained (Etype (E))
3764 and then Analyzed (N)
3765 and then No (Expression (N))
3766 then
3767 return;
3768 end if;
3770 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3771 -- node (which was marked already-analyzed), we need to set the type
3772 -- to something other than Any_Access in order to keep gigi happy.
3774 if Etype (E) = Any_Access then
3775 Set_Etype (E, T);
3776 end if;
3778 -- If the object is an access to variable, the initialization
3779 -- expression cannot be an access to constant.
3781 if Is_Access_Type (T)
3782 and then not Is_Access_Constant (T)
3783 and then Is_Access_Type (Etype (E))
3784 and then Is_Access_Constant (Etype (E))
3785 then
3786 Error_Msg_N
3787 ("access to variable cannot be initialized with an "
3788 & "access-to-constant expression", E);
3789 end if;
3791 if not Assignment_OK (N) then
3792 Check_Initialization (T, E);
3793 end if;
3795 Check_Unset_Reference (E);
3797 -- If this is a variable, then set current value. If this is a
3798 -- declared constant of a scalar type with a static expression,
3799 -- indicate that it is always valid.
3801 if not Constant_Present (N) then
3802 if Compile_Time_Known_Value (E) then
3803 Set_Current_Value (Id, E);
3804 end if;
3806 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3807 Set_Is_Known_Valid (Id);
3808 end if;
3810 -- Deal with setting of null flags
3812 if Is_Access_Type (T) then
3813 if Known_Non_Null (E) then
3814 Set_Is_Known_Non_Null (Id, True);
3815 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3816 Set_Is_Known_Null (Id, True);
3817 end if;
3818 end if;
3820 -- Check incorrect use of dynamically tagged expressions
3822 if Is_Tagged_Type (T) then
3823 Check_Dynamically_Tagged_Expression
3824 (Expr => E,
3825 Typ => T,
3826 Related_Nod => N);
3827 end if;
3829 Apply_Scalar_Range_Check (E, T);
3830 Apply_Static_Length_Check (E, T);
3832 if Nkind (Original_Node (N)) = N_Object_Declaration
3833 and then Comes_From_Source (Original_Node (N))
3835 -- Only call test if needed
3837 and then Restriction_Check_Required (SPARK_05)
3838 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3839 then
3840 Check_SPARK_05_Restriction
3841 ("initialization expression is not appropriate", E);
3842 end if;
3844 -- A formal parameter of a specific tagged type whose related
3845 -- subprogram is subject to pragma Extensions_Visible with value
3846 -- "False" cannot be implicitly converted to a class-wide type by
3847 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3849 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3850 Error_Msg_N
3851 ("formal parameter with Extensions_Visible False cannot be "
3852 & "implicitly converted to class-wide type", E);
3853 end if;
3854 end if;
3856 -- If the No_Streams restriction is set, check that the type of the
3857 -- object is not, and does not contain, any subtype derived from
3858 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3859 -- Has_Stream just for efficiency reasons. There is no point in
3860 -- spending time on a Has_Stream check if the restriction is not set.
3862 if Restriction_Check_Required (No_Streams) then
3863 if Has_Stream (T) then
3864 Check_Restriction (No_Streams, N);
3865 end if;
3866 end if;
3868 -- Deal with predicate check before we start to do major rewriting. It
3869 -- is OK to initialize and then check the initialized value, since the
3870 -- object goes out of scope if we get a predicate failure. Note that we
3871 -- do this in the analyzer and not the expander because the analyzer
3872 -- does some substantial rewriting in some cases.
3874 -- We need a predicate check if the type has predicates, and if either
3875 -- there is an initializing expression, or for default initialization
3876 -- when we have at least one case of an explicit default initial value
3877 -- and then this is not an internal declaration whose initialization
3878 -- comes later (as for an aggregate expansion).
3880 if not Suppress_Assignment_Checks (N)
3881 and then Present (Predicate_Function (T))
3882 and then not No_Initialization (N)
3883 and then
3884 (Present (E)
3885 or else
3886 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3887 then
3888 -- If the type has a static predicate and the expression is known at
3889 -- compile time, see if the expression satisfies the predicate.
3891 if Present (E) then
3892 Check_Expression_Against_Static_Predicate (E, T);
3893 end if;
3895 Insert_After (N,
3896 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3897 end if;
3899 -- Case of unconstrained type
3901 if Is_Indefinite_Subtype (T) then
3903 -- In SPARK, a declaration of unconstrained type is allowed
3904 -- only for constants of type string.
3906 if Is_String_Type (T) and then not Constant_Present (N) then
3907 Check_SPARK_05_Restriction
3908 ("declaration of object of unconstrained type not allowed", N);
3909 end if;
3911 -- Nothing to do in deferred constant case
3913 if Constant_Present (N) and then No (E) then
3914 null;
3916 -- Case of no initialization present
3918 elsif No (E) then
3919 if No_Initialization (N) then
3920 null;
3922 elsif Is_Class_Wide_Type (T) then
3923 Error_Msg_N
3924 ("initialization required in class-wide declaration ", N);
3926 else
3927 Error_Msg_N
3928 ("unconstrained subtype not allowed (need initialization)",
3929 Object_Definition (N));
3931 if Is_Record_Type (T) and then Has_Discriminants (T) then
3932 Error_Msg_N
3933 ("\provide initial value or explicit discriminant values",
3934 Object_Definition (N));
3936 Error_Msg_NE
3937 ("\or give default discriminant values for type&",
3938 Object_Definition (N), T);
3940 elsif Is_Array_Type (T) then
3941 Error_Msg_N
3942 ("\provide initial value or explicit array bounds",
3943 Object_Definition (N));
3944 end if;
3945 end if;
3947 -- Case of initialization present but in error. Set initial
3948 -- expression as absent (but do not make above complaints)
3950 elsif E = Error then
3951 Set_Expression (N, Empty);
3952 E := Empty;
3954 -- Case of initialization present
3956 else
3957 -- Check restrictions in Ada 83
3959 if not Constant_Present (N) then
3961 -- Unconstrained variables not allowed in Ada 83 mode
3963 if Ada_Version = Ada_83
3964 and then Comes_From_Source (Object_Definition (N))
3965 then
3966 Error_Msg_N
3967 ("(Ada 83) unconstrained variable not allowed",
3968 Object_Definition (N));
3969 end if;
3970 end if;
3972 -- Now we constrain the variable from the initializing expression
3974 -- If the expression is an aggregate, it has been expanded into
3975 -- individual assignments. Retrieve the actual type from the
3976 -- expanded construct.
3978 if Is_Array_Type (T)
3979 and then No_Initialization (N)
3980 and then Nkind (Original_Node (E)) = N_Aggregate
3981 then
3982 Act_T := Etype (E);
3984 -- In case of class-wide interface object declarations we delay
3985 -- the generation of the equivalent record type declarations until
3986 -- its expansion because there are cases in they are not required.
3988 elsif Is_Interface (T) then
3989 null;
3991 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3992 -- we should prevent the generation of another Itype with the
3993 -- same name as the one already generated, or we end up with
3994 -- two identical types in GNATprove.
3996 elsif GNATprove_Mode then
3997 null;
3999 -- If the type is an unchecked union, no subtype can be built from
4000 -- the expression. Rewrite declaration as a renaming, which the
4001 -- back-end can handle properly. This is a rather unusual case,
4002 -- because most unchecked_union declarations have default values
4003 -- for discriminants and are thus not indefinite.
4005 elsif Is_Unchecked_Union (T) then
4006 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4007 Set_Ekind (Id, E_Constant);
4008 else
4009 Set_Ekind (Id, E_Variable);
4010 end if;
4012 -- An object declared within a Ghost region is automatically
4013 -- Ghost (SPARK RM 6.9(2)).
4015 if Comes_From_Source (Id) and then Ghost_Mode > None then
4016 Set_Is_Ghost_Entity (Id);
4018 -- The Ghost policy in effect at the point of declaration
4019 -- and at the point of completion must match
4020 -- (SPARK RM 6.9(15)).
4022 if Present (Prev_Entity)
4023 and then Is_Ghost_Entity (Prev_Entity)
4024 then
4025 Check_Ghost_Completion (Prev_Entity, Id);
4026 end if;
4027 end if;
4029 Rewrite (N,
4030 Make_Object_Renaming_Declaration (Loc,
4031 Defining_Identifier => Id,
4032 Subtype_Mark => New_Occurrence_Of (T, Loc),
4033 Name => E));
4035 Set_Renamed_Object (Id, E);
4036 Freeze_Before (N, T);
4037 Set_Is_Frozen (Id);
4038 return;
4040 else
4041 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
4042 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4043 end if;
4045 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4047 if Aliased_Present (N) then
4048 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4049 end if;
4051 Freeze_Before (N, Act_T);
4052 Freeze_Before (N, T);
4053 end if;
4055 elsif Is_Array_Type (T)
4056 and then No_Initialization (N)
4057 and then Nkind (Original_Node (E)) = N_Aggregate
4058 then
4059 if not Is_Entity_Name (Object_Definition (N)) then
4060 Act_T := Etype (E);
4061 Check_Compile_Time_Size (Act_T);
4063 if Aliased_Present (N) then
4064 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4065 end if;
4066 end if;
4068 -- When the given object definition and the aggregate are specified
4069 -- independently, and their lengths might differ do a length check.
4070 -- This cannot happen if the aggregate is of the form (others =>...)
4072 if not Is_Constrained (T) then
4073 null;
4075 elsif Nkind (E) = N_Raise_Constraint_Error then
4077 -- Aggregate is statically illegal. Place back in declaration
4079 Set_Expression (N, E);
4080 Set_No_Initialization (N, False);
4082 elsif T = Etype (E) then
4083 null;
4085 elsif Nkind (E) = N_Aggregate
4086 and then Present (Component_Associations (E))
4087 and then Present (Choices (First (Component_Associations (E))))
4088 and then Nkind (First
4089 (Choices (First (Component_Associations (E))))) = N_Others_Choice
4090 then
4091 null;
4093 else
4094 Apply_Length_Check (E, T);
4095 end if;
4097 -- If the type is limited unconstrained with defaulted discriminants and
4098 -- there is no expression, then the object is constrained by the
4099 -- defaults, so it is worthwhile building the corresponding subtype.
4101 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4102 and then not Is_Constrained (T)
4103 and then Has_Discriminants (T)
4104 then
4105 if No (E) then
4106 Act_T := Build_Default_Subtype (T, N);
4107 else
4108 -- Ada 2005: A limited object may be initialized by means of an
4109 -- aggregate. If the type has default discriminants it has an
4110 -- unconstrained nominal type, Its actual subtype will be obtained
4111 -- from the aggregate, and not from the default discriminants.
4113 Act_T := Etype (E);
4114 end if;
4116 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4118 elsif Nkind (E) = N_Function_Call
4119 and then Constant_Present (N)
4120 and then Has_Unconstrained_Elements (Etype (E))
4121 then
4122 -- The back-end has problems with constants of a discriminated type
4123 -- with defaults, if the initial value is a function call. We
4124 -- generate an intermediate temporary that will receive a reference
4125 -- to the result of the call. The initialization expression then
4126 -- becomes a dereference of that temporary.
4128 Remove_Side_Effects (E);
4130 -- If this is a constant declaration of an unconstrained type and
4131 -- the initialization is an aggregate, we can use the subtype of the
4132 -- aggregate for the declared entity because it is immutable.
4134 elsif not Is_Constrained (T)
4135 and then Has_Discriminants (T)
4136 and then Constant_Present (N)
4137 and then not Has_Unchecked_Union (T)
4138 and then Nkind (E) = N_Aggregate
4139 then
4140 Act_T := Etype (E);
4141 end if;
4143 -- Check No_Wide_Characters restriction
4145 Check_Wide_Character_Restriction (T, Object_Definition (N));
4147 -- Indicate this is not set in source. Certainly true for constants, and
4148 -- true for variables so far (will be reset for a variable if and when
4149 -- we encounter a modification in the source).
4151 Set_Never_Set_In_Source (Id);
4153 -- Now establish the proper kind and type of the object
4155 if Constant_Present (N) then
4156 Set_Ekind (Id, E_Constant);
4157 Set_Is_True_Constant (Id);
4159 else
4160 Set_Ekind (Id, E_Variable);
4162 -- A variable is set as shared passive if it appears in a shared
4163 -- passive package, and is at the outer level. This is not done for
4164 -- entities generated during expansion, because those are always
4165 -- manipulated locally.
4167 if Is_Shared_Passive (Current_Scope)
4168 and then Is_Library_Level_Entity (Id)
4169 and then Comes_From_Source (Id)
4170 then
4171 Set_Is_Shared_Passive (Id);
4172 Check_Shared_Var (Id, T, N);
4173 end if;
4175 -- Set Has_Initial_Value if initializing expression present. Note
4176 -- that if there is no initializing expression, we leave the state
4177 -- of this flag unchanged (usually it will be False, but notably in
4178 -- the case of exception choice variables, it will already be true).
4180 if Present (E) then
4181 Set_Has_Initial_Value (Id);
4182 end if;
4183 end if;
4185 -- Initialize alignment and size and capture alignment setting
4187 Init_Alignment (Id);
4188 Init_Esize (Id);
4189 Set_Optimize_Alignment_Flags (Id);
4191 -- An object declared within a Ghost region is automatically Ghost
4192 -- (SPARK RM 6.9(2)).
4194 if Comes_From_Source (Id)
4195 and then (Ghost_Mode > None
4196 or else (Present (Prev_Entity)
4197 and then Is_Ghost_Entity (Prev_Entity)))
4198 then
4199 Set_Is_Ghost_Entity (Id);
4201 -- The Ghost policy in effect at the point of declaration and at the
4202 -- point of completion must match (SPARK RM 6.9(16)).
4204 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4205 Check_Ghost_Completion (Prev_Entity, Id);
4206 end if;
4207 end if;
4209 -- Deal with aliased case
4211 if Aliased_Present (N) then
4212 Set_Is_Aliased (Id);
4214 -- If the object is aliased and the type is unconstrained with
4215 -- defaulted discriminants and there is no expression, then the
4216 -- object is constrained by the defaults, so it is worthwhile
4217 -- building the corresponding subtype.
4219 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4220 -- unconstrained, then only establish an actual subtype if the
4221 -- nominal subtype is indefinite. In definite cases the object is
4222 -- unconstrained in Ada 2005.
4224 if No (E)
4225 and then Is_Record_Type (T)
4226 and then not Is_Constrained (T)
4227 and then Has_Discriminants (T)
4228 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4229 then
4230 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4231 end if;
4232 end if;
4234 -- Now we can set the type of the object
4236 Set_Etype (Id, Act_T);
4238 -- Non-constant object is marked to be treated as volatile if type is
4239 -- volatile and we clear the Current_Value setting that may have been
4240 -- set above. Doing so for constants isn't required and might interfere
4241 -- with possible uses of the object as a static expression in contexts
4242 -- incompatible with volatility (e.g. as a case-statement alternative).
4244 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4245 Set_Treat_As_Volatile (Id);
4246 Set_Current_Value (Id, Empty);
4247 end if;
4249 -- Deal with controlled types
4251 if Has_Controlled_Component (Etype (Id))
4252 or else Is_Controlled (Etype (Id))
4253 then
4254 if not Is_Library_Level_Entity (Id) then
4255 Check_Restriction (No_Nested_Finalization, N);
4256 else
4257 Validate_Controlled_Object (Id);
4258 end if;
4259 end if;
4261 if Has_Task (Etype (Id)) then
4262 Check_Restriction (No_Tasking, N);
4264 -- Deal with counting max tasks
4266 -- Nothing to do if inside a generic
4268 if Inside_A_Generic then
4269 null;
4271 -- If library level entity, then count tasks
4273 elsif Is_Library_Level_Entity (Id) then
4274 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4276 -- If not library level entity, then indicate we don't know max
4277 -- tasks and also check task hierarchy restriction and blocking
4278 -- operation (since starting a task is definitely blocking).
4280 else
4281 Check_Restriction (Max_Tasks, N);
4282 Check_Restriction (No_Task_Hierarchy, N);
4283 Check_Potentially_Blocking_Operation (N);
4284 end if;
4286 -- A rather specialized test. If we see two tasks being declared
4287 -- of the same type in the same object declaration, and the task
4288 -- has an entry with an address clause, we know that program error
4289 -- will be raised at run time since we can't have two tasks with
4290 -- entries at the same address.
4292 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4293 declare
4294 E : Entity_Id;
4296 begin
4297 E := First_Entity (Etype (Id));
4298 while Present (E) loop
4299 if Ekind (E) = E_Entry
4300 and then Present (Get_Attribute_Definition_Clause
4301 (E, Attribute_Address))
4302 then
4303 Error_Msg_Warn := SPARK_Mode /= On;
4304 Error_Msg_N
4305 ("more than one task with same entry address<<", N);
4306 Error_Msg_N ("\Program_Error [<<", N);
4307 Insert_Action (N,
4308 Make_Raise_Program_Error (Loc,
4309 Reason => PE_Duplicated_Entry_Address));
4310 exit;
4311 end if;
4313 Next_Entity (E);
4314 end loop;
4315 end;
4316 end if;
4317 end if;
4319 -- Some simple constant-propagation: if the expression is a constant
4320 -- string initialized with a literal, share the literal. This avoids
4321 -- a run-time copy.
4323 if Present (E)
4324 and then Is_Entity_Name (E)
4325 and then Ekind (Entity (E)) = E_Constant
4326 and then Base_Type (Etype (E)) = Standard_String
4327 then
4328 declare
4329 Val : constant Node_Id := Constant_Value (Entity (E));
4330 begin
4331 if Present (Val) and then Nkind (Val) = N_String_Literal then
4332 Rewrite (E, New_Copy (Val));
4333 end if;
4334 end;
4335 end if;
4337 -- Another optimization: if the nominal subtype is unconstrained and
4338 -- the expression is a function call that returns an unconstrained
4339 -- type, rewrite the declaration as a renaming of the result of the
4340 -- call. The exceptions below are cases where the copy is expected,
4341 -- either by the back end (Aliased case) or by the semantics, as for
4342 -- initializing controlled types or copying tags for classwide types.
4344 if Present (E)
4345 and then Nkind (E) = N_Explicit_Dereference
4346 and then Nkind (Original_Node (E)) = N_Function_Call
4347 and then not Is_Library_Level_Entity (Id)
4348 and then not Is_Constrained (Underlying_Type (T))
4349 and then not Is_Aliased (Id)
4350 and then not Is_Class_Wide_Type (T)
4351 and then not Is_Controlled (T)
4352 and then not Has_Controlled_Component (Base_Type (T))
4353 and then Expander_Active
4354 then
4355 Rewrite (N,
4356 Make_Object_Renaming_Declaration (Loc,
4357 Defining_Identifier => Id,
4358 Access_Definition => Empty,
4359 Subtype_Mark => New_Occurrence_Of
4360 (Base_Type (Etype (Id)), Loc),
4361 Name => E));
4363 Set_Renamed_Object (Id, E);
4365 -- Force generation of debugging information for the constant and for
4366 -- the renamed function call.
4368 Set_Debug_Info_Needed (Id);
4369 Set_Debug_Info_Needed (Entity (Prefix (E)));
4370 end if;
4372 if Present (Prev_Entity)
4373 and then Is_Frozen (Prev_Entity)
4374 and then not Error_Posted (Id)
4375 then
4376 Error_Msg_N ("full constant declaration appears too late", N);
4377 end if;
4379 Check_Eliminated (Id);
4381 -- Deal with setting In_Private_Part flag if in private part
4383 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4384 then
4385 Set_In_Private_Part (Id);
4386 end if;
4388 -- Check for violation of No_Local_Timing_Events
4390 if Restriction_Check_Required (No_Local_Timing_Events)
4391 and then not Is_Library_Level_Entity (Id)
4392 and then Is_RTE (Etype (Id), RE_Timing_Event)
4393 then
4394 Check_Restriction (No_Local_Timing_Events, N);
4395 end if;
4397 <<Leave>>
4398 -- Initialize the refined state of a variable here because this is a
4399 -- common destination for legal and illegal object declarations.
4401 if Ekind (Id) = E_Variable then
4402 Set_Encapsulating_State (Id, Empty);
4403 end if;
4405 if Has_Aspects (N) then
4406 Analyze_Aspect_Specifications (N, Id);
4407 end if;
4409 Analyze_Dimension (N);
4411 -- Verify whether the object declaration introduces an illegal hidden
4412 -- state within a package subject to a null abstract state.
4414 if Ekind (Id) = E_Variable then
4415 Check_No_Hidden_State (Id);
4416 end if;
4417 end Analyze_Object_Declaration;
4419 ---------------------------
4420 -- Analyze_Others_Choice --
4421 ---------------------------
4423 -- Nothing to do for the others choice node itself, the semantic analysis
4424 -- of the others choice will occur as part of the processing of the parent
4426 procedure Analyze_Others_Choice (N : Node_Id) is
4427 pragma Warnings (Off, N);
4428 begin
4429 null;
4430 end Analyze_Others_Choice;
4432 -------------------------------------------
4433 -- Analyze_Private_Extension_Declaration --
4434 -------------------------------------------
4436 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4437 T : constant Entity_Id := Defining_Identifier (N);
4438 Indic : constant Node_Id := Subtype_Indication (N);
4439 Parent_Type : Entity_Id;
4440 Parent_Base : Entity_Id;
4442 begin
4443 -- The private extension declaration may be subject to pragma Ghost with
4444 -- policy Ignore. Set the mode now to ensure that any nodes generated
4445 -- during analysis and expansion are properly flagged as ignored Ghost.
4447 Set_Ghost_Mode (N);
4449 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4451 if Is_Non_Empty_List (Interface_List (N)) then
4452 declare
4453 Intf : Node_Id;
4454 T : Entity_Id;
4456 begin
4457 Intf := First (Interface_List (N));
4458 while Present (Intf) loop
4459 T := Find_Type_Of_Subtype_Indic (Intf);
4461 Diagnose_Interface (Intf, T);
4462 Next (Intf);
4463 end loop;
4464 end;
4465 end if;
4467 Generate_Definition (T);
4469 -- For other than Ada 2012, just enter the name in the current scope
4471 if Ada_Version < Ada_2012 then
4472 Enter_Name (T);
4474 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4475 -- case of private type that completes an incomplete type.
4477 else
4478 declare
4479 Prev : Entity_Id;
4481 begin
4482 Prev := Find_Type_Name (N);
4484 pragma Assert (Prev = T
4485 or else (Ekind (Prev) = E_Incomplete_Type
4486 and then Present (Full_View (Prev))
4487 and then Full_View (Prev) = T));
4488 end;
4489 end if;
4491 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4492 Parent_Base := Base_Type (Parent_Type);
4494 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4495 Set_Ekind (T, Ekind (Parent_Type));
4496 Set_Etype (T, Any_Type);
4497 goto Leave;
4499 elsif not Is_Tagged_Type (Parent_Type) then
4500 Error_Msg_N
4501 ("parent of type extension must be a tagged type ", Indic);
4502 goto Leave;
4504 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4505 Error_Msg_N ("premature derivation of incomplete type", Indic);
4506 goto Leave;
4508 elsif Is_Concurrent_Type (Parent_Type) then
4509 Error_Msg_N
4510 ("parent type of a private extension cannot be "
4511 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4513 Set_Etype (T, Any_Type);
4514 Set_Ekind (T, E_Limited_Private_Type);
4515 Set_Private_Dependents (T, New_Elmt_List);
4516 Set_Error_Posted (T);
4517 goto Leave;
4518 end if;
4520 -- Perhaps the parent type should be changed to the class-wide type's
4521 -- specific type in this case to prevent cascading errors ???
4523 if Is_Class_Wide_Type (Parent_Type) then
4524 Error_Msg_N
4525 ("parent of type extension must not be a class-wide type", Indic);
4526 goto Leave;
4527 end if;
4529 if (not Is_Package_Or_Generic_Package (Current_Scope)
4530 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4531 or else In_Private_Part (Current_Scope)
4533 then
4534 Error_Msg_N ("invalid context for private extension", N);
4535 end if;
4537 -- Set common attributes
4539 Set_Is_Pure (T, Is_Pure (Current_Scope));
4540 Set_Scope (T, Current_Scope);
4541 Set_Ekind (T, E_Record_Type_With_Private);
4542 Init_Size_Align (T);
4543 Set_Default_SSO (T);
4545 Set_Etype (T, Parent_Base);
4546 Set_Has_Task (T, Has_Task (Parent_Base));
4547 Set_Has_Protected (T, Has_Task (Parent_Base));
4549 Set_Convention (T, Convention (Parent_Type));
4550 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4551 Set_Is_First_Subtype (T);
4552 Make_Class_Wide_Type (T);
4554 if Unknown_Discriminants_Present (N) then
4555 Set_Discriminant_Constraint (T, No_Elist);
4556 end if;
4558 Build_Derived_Record_Type (N, Parent_Type, T);
4560 -- Propagate inherited invariant information. The new type has
4561 -- invariants, if the parent type has inheritable invariants,
4562 -- and these invariants can in turn be inherited.
4564 if Has_Inheritable_Invariants (Parent_Type) then
4565 Set_Has_Inheritable_Invariants (T);
4566 Set_Has_Invariants (T);
4567 end if;
4569 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4570 -- synchronized formal derived type.
4572 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4573 Set_Is_Limited_Record (T);
4575 -- Formal derived type case
4577 if Is_Generic_Type (T) then
4579 -- The parent must be a tagged limited type or a synchronized
4580 -- interface.
4582 if (not Is_Tagged_Type (Parent_Type)
4583 or else not Is_Limited_Type (Parent_Type))
4584 and then
4585 (not Is_Interface (Parent_Type)
4586 or else not Is_Synchronized_Interface (Parent_Type))
4587 then
4588 Error_Msg_NE ("parent type of & must be tagged limited " &
4589 "or synchronized", N, T);
4590 end if;
4592 -- The progenitors (if any) must be limited or synchronized
4593 -- interfaces.
4595 if Present (Interfaces (T)) then
4596 declare
4597 Iface : Entity_Id;
4598 Iface_Elmt : Elmt_Id;
4600 begin
4601 Iface_Elmt := First_Elmt (Interfaces (T));
4602 while Present (Iface_Elmt) loop
4603 Iface := Node (Iface_Elmt);
4605 if not Is_Limited_Interface (Iface)
4606 and then not Is_Synchronized_Interface (Iface)
4607 then
4608 Error_Msg_NE ("progenitor & must be limited " &
4609 "or synchronized", N, Iface);
4610 end if;
4612 Next_Elmt (Iface_Elmt);
4613 end loop;
4614 end;
4615 end if;
4617 -- Regular derived extension, the parent must be a limited or
4618 -- synchronized interface.
4620 else
4621 if not Is_Interface (Parent_Type)
4622 or else (not Is_Limited_Interface (Parent_Type)
4623 and then not Is_Synchronized_Interface (Parent_Type))
4624 then
4625 Error_Msg_NE
4626 ("parent type of & must be limited interface", N, T);
4627 end if;
4628 end if;
4630 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4631 -- extension with a synchronized parent must be explicitly declared
4632 -- synchronized, because the full view will be a synchronized type.
4633 -- This must be checked before the check for limited types below,
4634 -- to ensure that types declared limited are not allowed to extend
4635 -- synchronized interfaces.
4637 elsif Is_Interface (Parent_Type)
4638 and then Is_Synchronized_Interface (Parent_Type)
4639 and then not Synchronized_Present (N)
4640 then
4641 Error_Msg_NE
4642 ("private extension of& must be explicitly synchronized",
4643 N, Parent_Type);
4645 elsif Limited_Present (N) then
4646 Set_Is_Limited_Record (T);
4648 if not Is_Limited_Type (Parent_Type)
4649 and then
4650 (not Is_Interface (Parent_Type)
4651 or else not Is_Limited_Interface (Parent_Type))
4652 then
4653 Error_Msg_NE ("parent type& of limited extension must be limited",
4654 N, Parent_Type);
4655 end if;
4656 end if;
4658 <<Leave>>
4659 if Has_Aspects (N) then
4660 Analyze_Aspect_Specifications (N, T);
4661 end if;
4662 end Analyze_Private_Extension_Declaration;
4664 ---------------------------------
4665 -- Analyze_Subtype_Declaration --
4666 ---------------------------------
4668 procedure Analyze_Subtype_Declaration
4669 (N : Node_Id;
4670 Skip : Boolean := False)
4672 Id : constant Entity_Id := Defining_Identifier (N);
4673 T : Entity_Id;
4674 R_Checks : Check_Result;
4676 begin
4677 -- The subtype declaration may be subject to pragma Ghost with policy
4678 -- Ignore. Set the mode now to ensure that any nodes generated during
4679 -- analysis and expansion are properly flagged as ignored Ghost.
4681 Set_Ghost_Mode (N);
4683 Generate_Definition (Id);
4684 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4685 Init_Size_Align (Id);
4687 -- The following guard condition on Enter_Name is to handle cases where
4688 -- the defining identifier has already been entered into the scope but
4689 -- the declaration as a whole needs to be analyzed.
4691 -- This case in particular happens for derived enumeration types. The
4692 -- derived enumeration type is processed as an inserted enumeration type
4693 -- declaration followed by a rewritten subtype declaration. The defining
4694 -- identifier, however, is entered into the name scope very early in the
4695 -- processing of the original type declaration and therefore needs to be
4696 -- avoided here, when the created subtype declaration is analyzed. (See
4697 -- Build_Derived_Types)
4699 -- This also happens when the full view of a private type is derived
4700 -- type with constraints. In this case the entity has been introduced
4701 -- in the private declaration.
4703 -- Finally this happens in some complex cases when validity checks are
4704 -- enabled, where the same subtype declaration may be analyzed twice.
4705 -- This can happen if the subtype is created by the pre-analysis of
4706 -- an attribute tht gives the range of a loop statement, and the loop
4707 -- itself appears within an if_statement that will be rewritten during
4708 -- expansion.
4710 if Skip
4711 or else (Present (Etype (Id))
4712 and then (Is_Private_Type (Etype (Id))
4713 or else Is_Task_Type (Etype (Id))
4714 or else Is_Rewrite_Substitution (N)))
4715 then
4716 null;
4718 elsif Current_Entity (Id) = Id then
4719 null;
4721 else
4722 Enter_Name (Id);
4723 end if;
4725 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4727 -- Class-wide equivalent types of records with unknown discriminants
4728 -- involve the generation of an itype which serves as the private view
4729 -- of a constrained record subtype. In such cases the base type of the
4730 -- current subtype we are processing is the private itype. Use the full
4731 -- of the private itype when decorating various attributes.
4733 if Is_Itype (T)
4734 and then Is_Private_Type (T)
4735 and then Present (Full_View (T))
4736 then
4737 T := Full_View (T);
4738 end if;
4740 -- Inherit common attributes
4742 Set_Is_Volatile (Id, Is_Volatile (T));
4743 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4744 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4745 Set_Convention (Id, Convention (T));
4747 -- If ancestor has predicates then so does the subtype, and in addition
4748 -- we must delay the freeze to properly arrange predicate inheritance.
4750 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4751 -- in which T = ID, so the above tests and assignments do nothing???
4753 if Has_Predicates (T)
4754 or else (Present (Ancestor_Subtype (T))
4755 and then Has_Predicates (Ancestor_Subtype (T)))
4756 then
4757 Set_Has_Predicates (Id);
4758 Set_Has_Delayed_Freeze (Id);
4759 end if;
4761 -- Subtype of Boolean cannot have a constraint in SPARK
4763 if Is_Boolean_Type (T)
4764 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4765 then
4766 Check_SPARK_05_Restriction
4767 ("subtype of Boolean cannot have constraint", N);
4768 end if;
4770 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4771 declare
4772 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4773 One_Cstr : Node_Id;
4774 Low : Node_Id;
4775 High : Node_Id;
4777 begin
4778 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4779 One_Cstr := First (Constraints (Cstr));
4780 while Present (One_Cstr) loop
4782 -- Index or discriminant constraint in SPARK must be a
4783 -- subtype mark.
4785 if not
4786 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4787 then
4788 Check_SPARK_05_Restriction
4789 ("subtype mark required", One_Cstr);
4791 -- String subtype must have a lower bound of 1 in SPARK.
4792 -- Note that we do not need to test for the non-static case
4793 -- here, since that was already taken care of in
4794 -- Process_Range_Expr_In_Decl.
4796 elsif Base_Type (T) = Standard_String then
4797 Get_Index_Bounds (One_Cstr, Low, High);
4799 if Is_OK_Static_Expression (Low)
4800 and then Expr_Value (Low) /= 1
4801 then
4802 Check_SPARK_05_Restriction
4803 ("String subtype must have lower bound of 1", N);
4804 end if;
4805 end if;
4807 Next (One_Cstr);
4808 end loop;
4809 end if;
4810 end;
4811 end if;
4813 -- In the case where there is no constraint given in the subtype
4814 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4815 -- semantic attributes must be established here.
4817 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4818 Set_Etype (Id, Base_Type (T));
4820 -- Subtype of unconstrained array without constraint is not allowed
4821 -- in SPARK.
4823 if Is_Array_Type (T) and then not Is_Constrained (T) then
4824 Check_SPARK_05_Restriction
4825 ("subtype of unconstrained array must have constraint", N);
4826 end if;
4828 case Ekind (T) is
4829 when Array_Kind =>
4830 Set_Ekind (Id, E_Array_Subtype);
4831 Copy_Array_Subtype_Attributes (Id, T);
4833 when Decimal_Fixed_Point_Kind =>
4834 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4835 Set_Digits_Value (Id, Digits_Value (T));
4836 Set_Delta_Value (Id, Delta_Value (T));
4837 Set_Scale_Value (Id, Scale_Value (T));
4838 Set_Small_Value (Id, Small_Value (T));
4839 Set_Scalar_Range (Id, Scalar_Range (T));
4840 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4841 Set_Is_Constrained (Id, Is_Constrained (T));
4842 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4843 Set_RM_Size (Id, RM_Size (T));
4845 when Enumeration_Kind =>
4846 Set_Ekind (Id, E_Enumeration_Subtype);
4847 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4848 Set_Scalar_Range (Id, Scalar_Range (T));
4849 Set_Is_Character_Type (Id, Is_Character_Type (T));
4850 Set_Is_Constrained (Id, Is_Constrained (T));
4851 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4852 Set_RM_Size (Id, RM_Size (T));
4853 Inherit_Predicate_Flags (Id, T);
4855 when Ordinary_Fixed_Point_Kind =>
4856 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4857 Set_Scalar_Range (Id, Scalar_Range (T));
4858 Set_Small_Value (Id, Small_Value (T));
4859 Set_Delta_Value (Id, Delta_Value (T));
4860 Set_Is_Constrained (Id, Is_Constrained (T));
4861 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4862 Set_RM_Size (Id, RM_Size (T));
4864 when Float_Kind =>
4865 Set_Ekind (Id, E_Floating_Point_Subtype);
4866 Set_Scalar_Range (Id, Scalar_Range (T));
4867 Set_Digits_Value (Id, Digits_Value (T));
4868 Set_Is_Constrained (Id, Is_Constrained (T));
4870 when Signed_Integer_Kind =>
4871 Set_Ekind (Id, E_Signed_Integer_Subtype);
4872 Set_Scalar_Range (Id, Scalar_Range (T));
4873 Set_Is_Constrained (Id, Is_Constrained (T));
4874 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4875 Set_RM_Size (Id, RM_Size (T));
4876 Inherit_Predicate_Flags (Id, T);
4878 when Modular_Integer_Kind =>
4879 Set_Ekind (Id, E_Modular_Integer_Subtype);
4880 Set_Scalar_Range (Id, Scalar_Range (T));
4881 Set_Is_Constrained (Id, Is_Constrained (T));
4882 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4883 Set_RM_Size (Id, RM_Size (T));
4884 Inherit_Predicate_Flags (Id, T);
4886 when Class_Wide_Kind =>
4887 Set_Ekind (Id, E_Class_Wide_Subtype);
4888 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4889 Set_Cloned_Subtype (Id, T);
4890 Set_Is_Tagged_Type (Id, True);
4891 Set_Has_Unknown_Discriminants
4892 (Id, True);
4893 Set_No_Tagged_Streams_Pragma
4894 (Id, No_Tagged_Streams_Pragma (T));
4896 if Ekind (T) = E_Class_Wide_Subtype then
4897 Set_Equivalent_Type (Id, Equivalent_Type (T));
4898 end if;
4900 when E_Record_Type | E_Record_Subtype =>
4901 Set_Ekind (Id, E_Record_Subtype);
4903 if Ekind (T) = E_Record_Subtype
4904 and then Present (Cloned_Subtype (T))
4905 then
4906 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4907 else
4908 Set_Cloned_Subtype (Id, T);
4909 end if;
4911 Set_First_Entity (Id, First_Entity (T));
4912 Set_Last_Entity (Id, Last_Entity (T));
4913 Set_Has_Discriminants (Id, Has_Discriminants (T));
4914 Set_Is_Constrained (Id, Is_Constrained (T));
4915 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4916 Set_Has_Implicit_Dereference
4917 (Id, Has_Implicit_Dereference (T));
4918 Set_Has_Unknown_Discriminants
4919 (Id, Has_Unknown_Discriminants (T));
4921 if Has_Discriminants (T) then
4922 Set_Discriminant_Constraint
4923 (Id, Discriminant_Constraint (T));
4924 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4926 elsif Has_Unknown_Discriminants (Id) then
4927 Set_Discriminant_Constraint (Id, No_Elist);
4928 end if;
4930 if Is_Tagged_Type (T) then
4931 Set_Is_Tagged_Type (Id, True);
4932 Set_No_Tagged_Streams_Pragma
4933 (Id, No_Tagged_Streams_Pragma (T));
4934 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4935 Set_Direct_Primitive_Operations
4936 (Id, Direct_Primitive_Operations (T));
4937 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4939 if Is_Interface (T) then
4940 Set_Is_Interface (Id);
4941 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4942 end if;
4943 end if;
4945 when Private_Kind =>
4946 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4947 Set_Has_Discriminants (Id, Has_Discriminants (T));
4948 Set_Is_Constrained (Id, Is_Constrained (T));
4949 Set_First_Entity (Id, First_Entity (T));
4950 Set_Last_Entity (Id, Last_Entity (T));
4951 Set_Private_Dependents (Id, New_Elmt_List);
4952 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4953 Set_Has_Implicit_Dereference
4954 (Id, Has_Implicit_Dereference (T));
4955 Set_Has_Unknown_Discriminants
4956 (Id, Has_Unknown_Discriminants (T));
4957 Set_Known_To_Have_Preelab_Init
4958 (Id, Known_To_Have_Preelab_Init (T));
4960 if Is_Tagged_Type (T) then
4961 Set_Is_Tagged_Type (Id);
4962 Set_No_Tagged_Streams_Pragma (Id,
4963 No_Tagged_Streams_Pragma (T));
4964 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4965 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4966 Set_Direct_Primitive_Operations (Id,
4967 Direct_Primitive_Operations (T));
4968 end if;
4970 -- In general the attributes of the subtype of a private type
4971 -- are the attributes of the partial view of parent. However,
4972 -- the full view may be a discriminated type, and the subtype
4973 -- must share the discriminant constraint to generate correct
4974 -- calls to initialization procedures.
4976 if Has_Discriminants (T) then
4977 Set_Discriminant_Constraint
4978 (Id, Discriminant_Constraint (T));
4979 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4981 elsif Present (Full_View (T))
4982 and then Has_Discriminants (Full_View (T))
4983 then
4984 Set_Discriminant_Constraint
4985 (Id, Discriminant_Constraint (Full_View (T)));
4986 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4988 -- This would seem semantically correct, but apparently
4989 -- generates spurious errors about missing components ???
4991 -- Set_Has_Discriminants (Id);
4992 end if;
4994 Prepare_Private_Subtype_Completion (Id, N);
4996 -- If this is the subtype of a constrained private type with
4997 -- discriminants that has got a full view and we also have
4998 -- built a completion just above, show that the completion
4999 -- is a clone of the full view to the back-end.
5001 if Has_Discriminants (T)
5002 and then not Has_Unknown_Discriminants (T)
5003 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5004 and then Present (Full_View (T))
5005 and then Present (Full_View (Id))
5006 then
5007 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5008 end if;
5010 when Access_Kind =>
5011 Set_Ekind (Id, E_Access_Subtype);
5012 Set_Is_Constrained (Id, Is_Constrained (T));
5013 Set_Is_Access_Constant
5014 (Id, Is_Access_Constant (T));
5015 Set_Directly_Designated_Type
5016 (Id, Designated_Type (T));
5017 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5019 -- A Pure library_item must not contain the declaration of a
5020 -- named access type, except within a subprogram, generic
5021 -- subprogram, task unit, or protected unit, or if it has
5022 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5024 if Comes_From_Source (Id)
5025 and then In_Pure_Unit
5026 and then not In_Subprogram_Task_Protected_Unit
5027 and then not No_Pool_Assigned (Id)
5028 then
5029 Error_Msg_N
5030 ("named access types not allowed in pure unit", N);
5031 end if;
5033 when Concurrent_Kind =>
5034 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5035 Set_Corresponding_Record_Type (Id,
5036 Corresponding_Record_Type (T));
5037 Set_First_Entity (Id, First_Entity (T));
5038 Set_First_Private_Entity (Id, First_Private_Entity (T));
5039 Set_Has_Discriminants (Id, Has_Discriminants (T));
5040 Set_Is_Constrained (Id, Is_Constrained (T));
5041 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5042 Set_Last_Entity (Id, Last_Entity (T));
5044 if Is_Tagged_Type (T) then
5045 Set_No_Tagged_Streams_Pragma
5046 (Id, No_Tagged_Streams_Pragma (T));
5047 end if;
5049 if Has_Discriminants (T) then
5050 Set_Discriminant_Constraint
5051 (Id, Discriminant_Constraint (T));
5052 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5053 end if;
5055 when Incomplete_Kind =>
5056 if Ada_Version >= Ada_2005 then
5058 -- In Ada 2005 an incomplete type can be explicitly tagged:
5059 -- propagate indication. Note that we also have to include
5060 -- subtypes for Ada 2012 extended use of incomplete types.
5062 Set_Ekind (Id, E_Incomplete_Subtype);
5063 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5064 Set_Private_Dependents (Id, New_Elmt_List);
5066 if Is_Tagged_Type (Id) then
5067 Set_No_Tagged_Streams_Pragma
5068 (Id, No_Tagged_Streams_Pragma (T));
5069 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5070 end if;
5072 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5073 -- incomplete type visible through a limited with clause.
5075 if From_Limited_With (T)
5076 and then Present (Non_Limited_View (T))
5077 then
5078 Set_From_Limited_With (Id);
5079 Set_Non_Limited_View (Id, Non_Limited_View (T));
5081 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5082 -- to the private dependents of the original incomplete
5083 -- type for future transformation.
5085 else
5086 Append_Elmt (Id, Private_Dependents (T));
5087 end if;
5089 -- If the subtype name denotes an incomplete type an error
5090 -- was already reported by Process_Subtype.
5092 else
5093 Set_Etype (Id, Any_Type);
5094 end if;
5096 when others =>
5097 raise Program_Error;
5098 end case;
5099 end if;
5101 if Etype (Id) = Any_Type then
5102 goto Leave;
5103 end if;
5105 -- Some common processing on all types
5107 Set_Size_Info (Id, T);
5108 Set_First_Rep_Item (Id, First_Rep_Item (T));
5110 -- If the parent type is a generic actual, so is the subtype. This may
5111 -- happen in a nested instance. Why Comes_From_Source test???
5113 if not Comes_From_Source (N) then
5114 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5115 end if;
5117 T := Etype (Id);
5119 Set_Is_Immediately_Visible (Id, True);
5120 Set_Depends_On_Private (Id, Has_Private_Component (T));
5121 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
5123 if Is_Interface (T) then
5124 Set_Is_Interface (Id);
5125 end if;
5127 if Present (Generic_Parent_Type (N))
5128 and then
5129 (Nkind (Parent (Generic_Parent_Type (N))) /=
5130 N_Formal_Type_Declaration
5131 or else Nkind (Formal_Type_Definition
5132 (Parent (Generic_Parent_Type (N)))) /=
5133 N_Formal_Private_Type_Definition)
5134 then
5135 if Is_Tagged_Type (Id) then
5137 -- If this is a generic actual subtype for a synchronized type,
5138 -- the primitive operations are those of the corresponding record
5139 -- for which there is a separate subtype declaration.
5141 if Is_Concurrent_Type (Id) then
5142 null;
5143 elsif Is_Class_Wide_Type (Id) then
5144 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5145 else
5146 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5147 end if;
5149 elsif Scope (Etype (Id)) /= Standard_Standard then
5150 Derive_Subprograms (Generic_Parent_Type (N), Id);
5151 end if;
5152 end if;
5154 if Is_Private_Type (T) and then Present (Full_View (T)) then
5155 Conditional_Delay (Id, Full_View (T));
5157 -- The subtypes of components or subcomponents of protected types
5158 -- do not need freeze nodes, which would otherwise appear in the
5159 -- wrong scope (before the freeze node for the protected type). The
5160 -- proper subtypes are those of the subcomponents of the corresponding
5161 -- record.
5163 elsif Ekind (Scope (Id)) /= E_Protected_Type
5164 and then Present (Scope (Scope (Id))) -- error defense
5165 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5166 then
5167 Conditional_Delay (Id, T);
5168 end if;
5170 -- Check that Constraint_Error is raised for a scalar subtype indication
5171 -- when the lower or upper bound of a non-null range lies outside the
5172 -- range of the type mark.
5174 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5175 if Is_Scalar_Type (Etype (Id))
5176 and then Scalar_Range (Id) /=
5177 Scalar_Range (Etype (Subtype_Mark
5178 (Subtype_Indication (N))))
5179 then
5180 Apply_Range_Check
5181 (Scalar_Range (Id),
5182 Etype (Subtype_Mark (Subtype_Indication (N))));
5184 -- In the array case, check compatibility for each index
5186 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5187 then
5188 -- This really should be a subprogram that finds the indications
5189 -- to check???
5191 declare
5192 Subt_Index : Node_Id := First_Index (Id);
5193 Target_Index : Node_Id :=
5194 First_Index (Etype
5195 (Subtype_Mark (Subtype_Indication (N))));
5196 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5198 begin
5199 while Present (Subt_Index) loop
5200 if ((Nkind (Subt_Index) = N_Identifier
5201 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5202 or else Nkind (Subt_Index) = N_Subtype_Indication)
5203 and then
5204 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5205 then
5206 declare
5207 Target_Typ : constant Entity_Id :=
5208 Etype (Target_Index);
5209 begin
5210 R_Checks :=
5211 Get_Range_Checks
5212 (Scalar_Range (Etype (Subt_Index)),
5213 Target_Typ,
5214 Etype (Subt_Index),
5215 Defining_Identifier (N));
5217 -- Reset Has_Dynamic_Range_Check on the subtype to
5218 -- prevent elision of the index check due to a dynamic
5219 -- check generated for a preceding index (needed since
5220 -- Insert_Range_Checks tries to avoid generating
5221 -- redundant checks on a given declaration).
5223 Set_Has_Dynamic_Range_Check (N, False);
5225 Insert_Range_Checks
5226 (R_Checks,
5228 Target_Typ,
5229 Sloc (Defining_Identifier (N)));
5231 -- Record whether this index involved a dynamic check
5233 Has_Dyn_Chk :=
5234 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5235 end;
5236 end if;
5238 Next_Index (Subt_Index);
5239 Next_Index (Target_Index);
5240 end loop;
5242 -- Finally, mark whether the subtype involves dynamic checks
5244 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5245 end;
5246 end if;
5247 end if;
5249 -- A type invariant applies to any subtype in its scope, in particular
5250 -- to a generic actual.
5252 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5253 Set_Has_Invariants (Id);
5254 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5255 end if;
5257 -- Make sure that generic actual types are properly frozen. The subtype
5258 -- is marked as a generic actual type when the enclosing instance is
5259 -- analyzed, so here we identify the subtype from the tree structure.
5261 if Expander_Active
5262 and then Is_Generic_Actual_Type (Id)
5263 and then In_Instance
5264 and then not Comes_From_Source (N)
5265 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5266 and then Is_Frozen (T)
5267 then
5268 Freeze_Before (N, Id);
5269 end if;
5271 Set_Optimize_Alignment_Flags (Id);
5272 Check_Eliminated (Id);
5274 <<Leave>>
5275 if Has_Aspects (N) then
5276 Analyze_Aspect_Specifications (N, Id);
5277 end if;
5279 Analyze_Dimension (N);
5280 end Analyze_Subtype_Declaration;
5282 --------------------------------
5283 -- Analyze_Subtype_Indication --
5284 --------------------------------
5286 procedure Analyze_Subtype_Indication (N : Node_Id) is
5287 T : constant Entity_Id := Subtype_Mark (N);
5288 R : constant Node_Id := Range_Expression (Constraint (N));
5290 begin
5291 Analyze (T);
5293 if R /= Error then
5294 Analyze (R);
5295 Set_Etype (N, Etype (R));
5296 Resolve (R, Entity (T));
5297 else
5298 Set_Error_Posted (R);
5299 Set_Error_Posted (T);
5300 end if;
5301 end Analyze_Subtype_Indication;
5303 --------------------------
5304 -- Analyze_Variant_Part --
5305 --------------------------
5307 procedure Analyze_Variant_Part (N : Node_Id) is
5308 Discr_Name : Node_Id;
5309 Discr_Type : Entity_Id;
5311 procedure Process_Variant (A : Node_Id);
5312 -- Analyze declarations for a single variant
5314 package Analyze_Variant_Choices is
5315 new Generic_Analyze_Choices (Process_Variant);
5316 use Analyze_Variant_Choices;
5318 ---------------------
5319 -- Process_Variant --
5320 ---------------------
5322 procedure Process_Variant (A : Node_Id) is
5323 CL : constant Node_Id := Component_List (A);
5324 begin
5325 if not Null_Present (CL) then
5326 Analyze_Declarations (Component_Items (CL));
5328 if Present (Variant_Part (CL)) then
5329 Analyze (Variant_Part (CL));
5330 end if;
5331 end if;
5332 end Process_Variant;
5334 -- Start of processing for Analyze_Variant_Part
5336 begin
5337 Discr_Name := Name (N);
5338 Analyze (Discr_Name);
5340 -- If Discr_Name bad, get out (prevent cascaded errors)
5342 if Etype (Discr_Name) = Any_Type then
5343 return;
5344 end if;
5346 -- Check invalid discriminant in variant part
5348 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5349 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5350 end if;
5352 Discr_Type := Etype (Entity (Discr_Name));
5354 if not Is_Discrete_Type (Discr_Type) then
5355 Error_Msg_N
5356 ("discriminant in a variant part must be of a discrete type",
5357 Name (N));
5358 return;
5359 end if;
5361 -- Now analyze the choices, which also analyzes the declarations that
5362 -- are associated with each choice.
5364 Analyze_Choices (Variants (N), Discr_Type);
5366 -- Note: we used to instantiate and call Check_Choices here to check
5367 -- that the choices covered the discriminant, but it's too early to do
5368 -- that because of statically predicated subtypes, whose analysis may
5369 -- be deferred to their freeze point which may be as late as the freeze
5370 -- point of the containing record. So this call is now to be found in
5371 -- Freeze_Record_Declaration.
5373 end Analyze_Variant_Part;
5375 ----------------------------
5376 -- Array_Type_Declaration --
5377 ----------------------------
5379 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5380 Component_Def : constant Node_Id := Component_Definition (Def);
5381 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5382 Element_Type : Entity_Id;
5383 Implicit_Base : Entity_Id;
5384 Index : Node_Id;
5385 Related_Id : Entity_Id := Empty;
5386 Nb_Index : Nat;
5387 P : constant Node_Id := Parent (Def);
5388 Priv : Entity_Id;
5390 begin
5391 if Nkind (Def) = N_Constrained_Array_Definition then
5392 Index := First (Discrete_Subtype_Definitions (Def));
5393 else
5394 Index := First (Subtype_Marks (Def));
5395 end if;
5397 -- Find proper names for the implicit types which may be public. In case
5398 -- of anonymous arrays we use the name of the first object of that type
5399 -- as prefix.
5401 if No (T) then
5402 Related_Id := Defining_Identifier (P);
5403 else
5404 Related_Id := T;
5405 end if;
5407 Nb_Index := 1;
5408 while Present (Index) loop
5409 Analyze (Index);
5411 -- Test for odd case of trying to index a type by the type itself
5413 if Is_Entity_Name (Index) and then Entity (Index) = T then
5414 Error_Msg_N ("type& cannot be indexed by itself", Index);
5415 Set_Entity (Index, Standard_Boolean);
5416 Set_Etype (Index, Standard_Boolean);
5417 end if;
5419 -- Check SPARK restriction requiring a subtype mark
5421 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5422 Check_SPARK_05_Restriction ("subtype mark required", Index);
5423 end if;
5425 -- Add a subtype declaration for each index of private array type
5426 -- declaration whose etype is also private. For example:
5428 -- package Pkg is
5429 -- type Index is private;
5430 -- private
5431 -- type Table is array (Index) of ...
5432 -- end;
5434 -- This is currently required by the expander for the internally
5435 -- generated equality subprogram of records with variant parts in
5436 -- which the etype of some component is such private type.
5438 if Ekind (Current_Scope) = E_Package
5439 and then In_Private_Part (Current_Scope)
5440 and then Has_Private_Declaration (Etype (Index))
5441 then
5442 declare
5443 Loc : constant Source_Ptr := Sloc (Def);
5444 New_E : Entity_Id;
5445 Decl : Entity_Id;
5447 begin
5448 New_E := Make_Temporary (Loc, 'T');
5449 Set_Is_Internal (New_E);
5451 Decl :=
5452 Make_Subtype_Declaration (Loc,
5453 Defining_Identifier => New_E,
5454 Subtype_Indication =>
5455 New_Occurrence_Of (Etype (Index), Loc));
5457 Insert_Before (Parent (Def), Decl);
5458 Analyze (Decl);
5459 Set_Etype (Index, New_E);
5461 -- If the index is a range the Entity attribute is not
5462 -- available. Example:
5464 -- package Pkg is
5465 -- type T is private;
5466 -- private
5467 -- type T is new Natural;
5468 -- Table : array (T(1) .. T(10)) of Boolean;
5469 -- end Pkg;
5471 if Nkind (Index) /= N_Range then
5472 Set_Entity (Index, New_E);
5473 end if;
5474 end;
5475 end if;
5477 Make_Index (Index, P, Related_Id, Nb_Index);
5479 -- Check error of subtype with predicate for index type
5481 Bad_Predicated_Subtype_Use
5482 ("subtype& has predicate, not allowed as index subtype",
5483 Index, Etype (Index));
5485 -- Move to next index
5487 Next_Index (Index);
5488 Nb_Index := Nb_Index + 1;
5489 end loop;
5491 -- Process subtype indication if one is present
5493 if Present (Component_Typ) then
5494 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5496 Set_Etype (Component_Typ, Element_Type);
5498 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5499 Check_SPARK_05_Restriction
5500 ("subtype mark required", Component_Typ);
5501 end if;
5503 -- Ada 2005 (AI-230): Access Definition case
5505 else pragma Assert (Present (Access_Definition (Component_Def)));
5507 -- Indicate that the anonymous access type is created by the
5508 -- array type declaration.
5510 Element_Type := Access_Definition
5511 (Related_Nod => P,
5512 N => Access_Definition (Component_Def));
5513 Set_Is_Local_Anonymous_Access (Element_Type);
5515 -- Propagate the parent. This field is needed if we have to generate
5516 -- the master_id associated with an anonymous access to task type
5517 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5519 Set_Parent (Element_Type, Parent (T));
5521 -- Ada 2005 (AI-230): In case of components that are anonymous access
5522 -- types the level of accessibility depends on the enclosing type
5523 -- declaration
5525 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5527 -- Ada 2005 (AI-254)
5529 declare
5530 CD : constant Node_Id :=
5531 Access_To_Subprogram_Definition
5532 (Access_Definition (Component_Def));
5533 begin
5534 if Present (CD) and then Protected_Present (CD) then
5535 Element_Type :=
5536 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5537 end if;
5538 end;
5539 end if;
5541 -- Constrained array case
5543 if No (T) then
5544 T := Create_Itype (E_Void, P, Related_Id, 'T');
5545 end if;
5547 if Nkind (Def) = N_Constrained_Array_Definition then
5549 -- Establish Implicit_Base as unconstrained base type
5551 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5553 Set_Etype (Implicit_Base, Implicit_Base);
5554 Set_Scope (Implicit_Base, Current_Scope);
5555 Set_Has_Delayed_Freeze (Implicit_Base);
5556 Set_Default_SSO (Implicit_Base);
5558 -- The constrained array type is a subtype of the unconstrained one
5560 Set_Ekind (T, E_Array_Subtype);
5561 Init_Size_Align (T);
5562 Set_Etype (T, Implicit_Base);
5563 Set_Scope (T, Current_Scope);
5564 Set_Is_Constrained (T);
5565 Set_First_Index (T,
5566 First (Discrete_Subtype_Definitions (Def)));
5567 Set_Has_Delayed_Freeze (T);
5569 -- Complete setup of implicit base type
5571 Set_First_Index (Implicit_Base, First_Index (T));
5572 Set_Component_Type (Implicit_Base, Element_Type);
5573 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5574 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5575 Set_Component_Size (Implicit_Base, Uint_0);
5576 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5577 Set_Has_Controlled_Component (Implicit_Base,
5578 Has_Controlled_Component (Element_Type)
5579 or else Is_Controlled (Element_Type));
5580 Set_Finalize_Storage_Only (Implicit_Base,
5581 Finalize_Storage_Only (Element_Type));
5583 -- Inherit the "ghostness" from the constrained array type
5585 if Is_Ghost_Entity (T) or else Ghost_Mode > None then
5586 Set_Is_Ghost_Entity (Implicit_Base);
5587 end if;
5589 -- Unconstrained array case
5591 else
5592 Set_Ekind (T, E_Array_Type);
5593 Init_Size_Align (T);
5594 Set_Etype (T, T);
5595 Set_Scope (T, Current_Scope);
5596 Set_Component_Size (T, Uint_0);
5597 Set_Is_Constrained (T, False);
5598 Set_First_Index (T, First (Subtype_Marks (Def)));
5599 Set_Has_Delayed_Freeze (T, True);
5600 Set_Has_Task (T, Has_Task (Element_Type));
5601 Set_Has_Protected (T, Has_Protected (Element_Type));
5602 Set_Has_Controlled_Component (T, Has_Controlled_Component
5603 (Element_Type)
5604 or else
5605 Is_Controlled (Element_Type));
5606 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5607 (Element_Type));
5608 Set_Default_SSO (T);
5609 end if;
5611 -- Common attributes for both cases
5613 Set_Component_Type (Base_Type (T), Element_Type);
5614 Set_Packed_Array_Impl_Type (T, Empty);
5616 if Aliased_Present (Component_Definition (Def)) then
5617 Check_SPARK_05_Restriction
5618 ("aliased is not allowed", Component_Definition (Def));
5619 Set_Has_Aliased_Components (Etype (T));
5620 end if;
5622 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5623 -- array type to ensure that objects of this type are initialized.
5625 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5626 Set_Can_Never_Be_Null (T);
5628 if Null_Exclusion_Present (Component_Definition (Def))
5630 -- No need to check itypes because in their case this check was
5631 -- done at their point of creation
5633 and then not Is_Itype (Element_Type)
5634 then
5635 Error_Msg_N
5636 ("`NOT NULL` not allowed (null already excluded)",
5637 Subtype_Indication (Component_Definition (Def)));
5638 end if;
5639 end if;
5641 Priv := Private_Component (Element_Type);
5643 if Present (Priv) then
5645 -- Check for circular definitions
5647 if Priv = Any_Type then
5648 Set_Component_Type (Etype (T), Any_Type);
5650 -- There is a gap in the visibility of operations on the composite
5651 -- type only if the component type is defined in a different scope.
5653 elsif Scope (Priv) = Current_Scope then
5654 null;
5656 elsif Is_Limited_Type (Priv) then
5657 Set_Is_Limited_Composite (Etype (T));
5658 Set_Is_Limited_Composite (T);
5659 else
5660 Set_Is_Private_Composite (Etype (T));
5661 Set_Is_Private_Composite (T);
5662 end if;
5663 end if;
5665 -- A syntax error in the declaration itself may lead to an empty index
5666 -- list, in which case do a minimal patch.
5668 if No (First_Index (T)) then
5669 Error_Msg_N ("missing index definition in array type declaration", T);
5671 declare
5672 Indexes : constant List_Id :=
5673 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5674 begin
5675 Set_Discrete_Subtype_Definitions (Def, Indexes);
5676 Set_First_Index (T, First (Indexes));
5677 return;
5678 end;
5679 end if;
5681 -- Create a concatenation operator for the new type. Internal array
5682 -- types created for packed entities do not need such, they are
5683 -- compatible with the user-defined type.
5685 if Number_Dimensions (T) = 1
5686 and then not Is_Packed_Array_Impl_Type (T)
5687 then
5688 New_Concatenation_Op (T);
5689 end if;
5691 -- In the case of an unconstrained array the parser has already verified
5692 -- that all the indexes are unconstrained but we still need to make sure
5693 -- that the element type is constrained.
5695 if Is_Indefinite_Subtype (Element_Type) then
5696 Error_Msg_N
5697 ("unconstrained element type in array declaration",
5698 Subtype_Indication (Component_Def));
5700 elsif Is_Abstract_Type (Element_Type) then
5701 Error_Msg_N
5702 ("the type of a component cannot be abstract",
5703 Subtype_Indication (Component_Def));
5704 end if;
5706 -- There may be an invariant declared for the component type, but
5707 -- the construction of the component invariant checking procedure
5708 -- takes place during expansion.
5709 end Array_Type_Declaration;
5711 ------------------------------------------------------
5712 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5713 ------------------------------------------------------
5715 function Replace_Anonymous_Access_To_Protected_Subprogram
5716 (N : Node_Id) return Entity_Id
5718 Loc : constant Source_Ptr := Sloc (N);
5720 Curr_Scope : constant Scope_Stack_Entry :=
5721 Scope_Stack.Table (Scope_Stack.Last);
5723 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5725 Acc : Node_Id;
5726 -- Access definition in declaration
5728 Comp : Node_Id;
5729 -- Object definition or formal definition with an access definition
5731 Decl : Node_Id;
5732 -- Declaration of anonymous access to subprogram type
5734 Spec : Node_Id;
5735 -- Original specification in access to subprogram
5737 P : Node_Id;
5739 begin
5740 Set_Is_Internal (Anon);
5742 case Nkind (N) is
5743 when N_Component_Declaration |
5744 N_Unconstrained_Array_Definition |
5745 N_Constrained_Array_Definition =>
5746 Comp := Component_Definition (N);
5747 Acc := Access_Definition (Comp);
5749 when N_Discriminant_Specification =>
5750 Comp := Discriminant_Type (N);
5751 Acc := Comp;
5753 when N_Parameter_Specification =>
5754 Comp := Parameter_Type (N);
5755 Acc := Comp;
5757 when N_Access_Function_Definition =>
5758 Comp := Result_Definition (N);
5759 Acc := Comp;
5761 when N_Object_Declaration =>
5762 Comp := Object_Definition (N);
5763 Acc := Comp;
5765 when N_Function_Specification =>
5766 Comp := Result_Definition (N);
5767 Acc := Comp;
5769 when others =>
5770 raise Program_Error;
5771 end case;
5773 Spec := Access_To_Subprogram_Definition (Acc);
5775 Decl :=
5776 Make_Full_Type_Declaration (Loc,
5777 Defining_Identifier => Anon,
5778 Type_Definition => Copy_Separate_Tree (Spec));
5780 Mark_Rewrite_Insertion (Decl);
5782 -- In ASIS mode, analyze the profile on the original node, because
5783 -- the separate copy does not provide enough links to recover the
5784 -- original tree. Analysis is limited to type annotations, within
5785 -- a temporary scope that serves as an anonymous subprogram to collect
5786 -- otherwise useless temporaries and itypes.
5788 if ASIS_Mode then
5789 declare
5790 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5792 begin
5793 if Nkind (Spec) = N_Access_Function_Definition then
5794 Set_Ekind (Typ, E_Function);
5795 else
5796 Set_Ekind (Typ, E_Procedure);
5797 end if;
5799 Set_Parent (Typ, N);
5800 Set_Scope (Typ, Current_Scope);
5801 Push_Scope (Typ);
5803 Process_Formals (Parameter_Specifications (Spec), Spec);
5805 if Nkind (Spec) = N_Access_Function_Definition then
5806 declare
5807 Def : constant Node_Id := Result_Definition (Spec);
5809 begin
5810 -- The result might itself be an anonymous access type, so
5811 -- have to recurse.
5813 if Nkind (Def) = N_Access_Definition then
5814 if Present (Access_To_Subprogram_Definition (Def)) then
5815 Set_Etype
5816 (Def,
5817 Replace_Anonymous_Access_To_Protected_Subprogram
5818 (Spec));
5819 else
5820 Find_Type (Subtype_Mark (Def));
5821 end if;
5823 else
5824 Find_Type (Def);
5825 end if;
5826 end;
5827 end if;
5829 End_Scope;
5830 end;
5831 end if;
5833 -- Insert the new declaration in the nearest enclosing scope. If the
5834 -- node is a body and N is its return type, the declaration belongs in
5835 -- the enclosing scope.
5837 P := Parent (N);
5839 if Nkind (P) = N_Subprogram_Body
5840 and then Nkind (N) = N_Function_Specification
5841 then
5842 P := Parent (P);
5843 end if;
5845 while Present (P) and then not Has_Declarations (P) loop
5846 P := Parent (P);
5847 end loop;
5849 pragma Assert (Present (P));
5851 if Nkind (P) = N_Package_Specification then
5852 Prepend (Decl, Visible_Declarations (P));
5853 else
5854 Prepend (Decl, Declarations (P));
5855 end if;
5857 -- Replace the anonymous type with an occurrence of the new declaration.
5858 -- In all cases the rewritten node does not have the null-exclusion
5859 -- attribute because (if present) it was already inherited by the
5860 -- anonymous entity (Anon). Thus, in case of components we do not
5861 -- inherit this attribute.
5863 if Nkind (N) = N_Parameter_Specification then
5864 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5865 Set_Etype (Defining_Identifier (N), Anon);
5866 Set_Null_Exclusion_Present (N, False);
5868 elsif Nkind (N) = N_Object_Declaration then
5869 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5870 Set_Etype (Defining_Identifier (N), Anon);
5872 elsif Nkind (N) = N_Access_Function_Definition then
5873 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5875 elsif Nkind (N) = N_Function_Specification then
5876 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5877 Set_Etype (Defining_Unit_Name (N), Anon);
5879 else
5880 Rewrite (Comp,
5881 Make_Component_Definition (Loc,
5882 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5883 end if;
5885 Mark_Rewrite_Insertion (Comp);
5887 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5888 Analyze (Decl);
5890 else
5891 -- Temporarily remove the current scope (record or subprogram) from
5892 -- the stack to add the new declarations to the enclosing scope.
5894 Scope_Stack.Decrement_Last;
5895 Analyze (Decl);
5896 Set_Is_Itype (Anon);
5897 Scope_Stack.Append (Curr_Scope);
5898 end if;
5900 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5901 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5902 return Anon;
5903 end Replace_Anonymous_Access_To_Protected_Subprogram;
5905 -------------------------------
5906 -- Build_Derived_Access_Type --
5907 -------------------------------
5909 procedure Build_Derived_Access_Type
5910 (N : Node_Id;
5911 Parent_Type : Entity_Id;
5912 Derived_Type : Entity_Id)
5914 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5916 Desig_Type : Entity_Id;
5917 Discr : Entity_Id;
5918 Discr_Con_Elist : Elist_Id;
5919 Discr_Con_El : Elmt_Id;
5920 Subt : Entity_Id;
5922 begin
5923 -- Set the designated type so it is available in case this is an access
5924 -- to a self-referential type, e.g. a standard list type with a next
5925 -- pointer. Will be reset after subtype is built.
5927 Set_Directly_Designated_Type
5928 (Derived_Type, Designated_Type (Parent_Type));
5930 Subt := Process_Subtype (S, N);
5932 if Nkind (S) /= N_Subtype_Indication
5933 and then Subt /= Base_Type (Subt)
5934 then
5935 Set_Ekind (Derived_Type, E_Access_Subtype);
5936 end if;
5938 if Ekind (Derived_Type) = E_Access_Subtype then
5939 declare
5940 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5941 Ibase : constant Entity_Id :=
5942 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5943 Svg_Chars : constant Name_Id := Chars (Ibase);
5944 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5946 begin
5947 Copy_Node (Pbase, Ibase);
5949 Set_Chars (Ibase, Svg_Chars);
5950 Set_Next_Entity (Ibase, Svg_Next_E);
5951 Set_Sloc (Ibase, Sloc (Derived_Type));
5952 Set_Scope (Ibase, Scope (Derived_Type));
5953 Set_Freeze_Node (Ibase, Empty);
5954 Set_Is_Frozen (Ibase, False);
5955 Set_Comes_From_Source (Ibase, False);
5956 Set_Is_First_Subtype (Ibase, False);
5958 Set_Etype (Ibase, Pbase);
5959 Set_Etype (Derived_Type, Ibase);
5960 end;
5961 end if;
5963 Set_Directly_Designated_Type
5964 (Derived_Type, Designated_Type (Subt));
5966 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5967 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5968 Set_Size_Info (Derived_Type, Parent_Type);
5969 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5970 Set_Depends_On_Private (Derived_Type,
5971 Has_Private_Component (Derived_Type));
5972 Conditional_Delay (Derived_Type, Subt);
5974 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5975 -- that it is not redundant.
5977 if Null_Exclusion_Present (Type_Definition (N)) then
5978 Set_Can_Never_Be_Null (Derived_Type);
5980 -- What is with the "AND THEN FALSE" here ???
5982 if Can_Never_Be_Null (Parent_Type)
5983 and then False
5984 then
5985 Error_Msg_NE
5986 ("`NOT NULL` not allowed (& already excludes null)",
5987 N, Parent_Type);
5988 end if;
5990 elsif Can_Never_Be_Null (Parent_Type) then
5991 Set_Can_Never_Be_Null (Derived_Type);
5992 end if;
5994 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5995 -- the root type for this information.
5997 -- Apply range checks to discriminants for derived record case
5998 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6000 Desig_Type := Designated_Type (Derived_Type);
6001 if Is_Composite_Type (Desig_Type)
6002 and then (not Is_Array_Type (Desig_Type))
6003 and then Has_Discriminants (Desig_Type)
6004 and then Base_Type (Desig_Type) /= Desig_Type
6005 then
6006 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6007 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6009 Discr := First_Discriminant (Base_Type (Desig_Type));
6010 while Present (Discr_Con_El) loop
6011 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6012 Next_Elmt (Discr_Con_El);
6013 Next_Discriminant (Discr);
6014 end loop;
6015 end if;
6016 end Build_Derived_Access_Type;
6018 ------------------------------
6019 -- Build_Derived_Array_Type --
6020 ------------------------------
6022 procedure Build_Derived_Array_Type
6023 (N : Node_Id;
6024 Parent_Type : Entity_Id;
6025 Derived_Type : Entity_Id)
6027 Loc : constant Source_Ptr := Sloc (N);
6028 Tdef : constant Node_Id := Type_Definition (N);
6029 Indic : constant Node_Id := Subtype_Indication (Tdef);
6030 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6031 Implicit_Base : Entity_Id;
6032 New_Indic : Node_Id;
6034 procedure Make_Implicit_Base;
6035 -- If the parent subtype is constrained, the derived type is a subtype
6036 -- of an implicit base type derived from the parent base.
6038 ------------------------
6039 -- Make_Implicit_Base --
6040 ------------------------
6042 procedure Make_Implicit_Base is
6043 begin
6044 Implicit_Base :=
6045 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6047 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6048 Set_Etype (Implicit_Base, Parent_Base);
6050 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6051 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6053 Set_Has_Delayed_Freeze (Implicit_Base, True);
6055 -- Inherit the "ghostness" from the parent base type
6057 if Is_Ghost_Entity (Parent_Base) or else Ghost_Mode > None then
6058 Set_Is_Ghost_Entity (Implicit_Base);
6059 end if;
6060 end Make_Implicit_Base;
6062 -- Start of processing for Build_Derived_Array_Type
6064 begin
6065 if not Is_Constrained (Parent_Type) then
6066 if Nkind (Indic) /= N_Subtype_Indication then
6067 Set_Ekind (Derived_Type, E_Array_Type);
6069 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6070 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6072 Set_Has_Delayed_Freeze (Derived_Type, True);
6074 else
6075 Make_Implicit_Base;
6076 Set_Etype (Derived_Type, Implicit_Base);
6078 New_Indic :=
6079 Make_Subtype_Declaration (Loc,
6080 Defining_Identifier => Derived_Type,
6081 Subtype_Indication =>
6082 Make_Subtype_Indication (Loc,
6083 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6084 Constraint => Constraint (Indic)));
6086 Rewrite (N, New_Indic);
6087 Analyze (N);
6088 end if;
6090 else
6091 if Nkind (Indic) /= N_Subtype_Indication then
6092 Make_Implicit_Base;
6094 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6095 Set_Etype (Derived_Type, Implicit_Base);
6096 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6098 else
6099 Error_Msg_N ("illegal constraint on constrained type", Indic);
6100 end if;
6101 end if;
6103 -- If parent type is not a derived type itself, and is declared in
6104 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6105 -- the new type's concatenation operator since Derive_Subprograms
6106 -- will not inherit the parent's operator. If the parent type is
6107 -- unconstrained, the operator is of the unconstrained base type.
6109 if Number_Dimensions (Parent_Type) = 1
6110 and then not Is_Limited_Type (Parent_Type)
6111 and then not Is_Derived_Type (Parent_Type)
6112 and then not Is_Package_Or_Generic_Package
6113 (Scope (Base_Type (Parent_Type)))
6114 then
6115 if not Is_Constrained (Parent_Type)
6116 and then Is_Constrained (Derived_Type)
6117 then
6118 New_Concatenation_Op (Implicit_Base);
6119 else
6120 New_Concatenation_Op (Derived_Type);
6121 end if;
6122 end if;
6123 end Build_Derived_Array_Type;
6125 -----------------------------------
6126 -- Build_Derived_Concurrent_Type --
6127 -----------------------------------
6129 procedure Build_Derived_Concurrent_Type
6130 (N : Node_Id;
6131 Parent_Type : Entity_Id;
6132 Derived_Type : Entity_Id)
6134 Loc : constant Source_Ptr := Sloc (N);
6136 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6137 Corr_Decl : Node_Id;
6138 Corr_Decl_Needed : Boolean;
6139 -- If the derived type has fewer discriminants than its parent, the
6140 -- corresponding record is also a derived type, in order to account for
6141 -- the bound discriminants. We create a full type declaration for it in
6142 -- this case.
6144 Constraint_Present : constant Boolean :=
6145 Nkind (Subtype_Indication (Type_Definition (N))) =
6146 N_Subtype_Indication;
6148 D_Constraint : Node_Id;
6149 New_Constraint : Elist_Id;
6150 Old_Disc : Entity_Id;
6151 New_Disc : Entity_Id;
6152 New_N : Node_Id;
6154 begin
6155 Set_Stored_Constraint (Derived_Type, No_Elist);
6156 Corr_Decl_Needed := False;
6157 Old_Disc := Empty;
6159 if Present (Discriminant_Specifications (N))
6160 and then Constraint_Present
6161 then
6162 Old_Disc := First_Discriminant (Parent_Type);
6163 New_Disc := First (Discriminant_Specifications (N));
6164 while Present (New_Disc) and then Present (Old_Disc) loop
6165 Next_Discriminant (Old_Disc);
6166 Next (New_Disc);
6167 end loop;
6168 end if;
6170 if Present (Old_Disc) and then Expander_Active then
6172 -- The new type has fewer discriminants, so we need to create a new
6173 -- corresponding record, which is derived from the corresponding
6174 -- record of the parent, and has a stored constraint that captures
6175 -- the values of the discriminant constraints. The corresponding
6176 -- record is needed only if expander is active and code generation is
6177 -- enabled.
6179 -- The type declaration for the derived corresponding record has the
6180 -- same discriminant part and constraints as the current declaration.
6181 -- Copy the unanalyzed tree to build declaration.
6183 Corr_Decl_Needed := True;
6184 New_N := Copy_Separate_Tree (N);
6186 Corr_Decl :=
6187 Make_Full_Type_Declaration (Loc,
6188 Defining_Identifier => Corr_Record,
6189 Discriminant_Specifications =>
6190 Discriminant_Specifications (New_N),
6191 Type_Definition =>
6192 Make_Derived_Type_Definition (Loc,
6193 Subtype_Indication =>
6194 Make_Subtype_Indication (Loc,
6195 Subtype_Mark =>
6196 New_Occurrence_Of
6197 (Corresponding_Record_Type (Parent_Type), Loc),
6198 Constraint =>
6199 Constraint
6200 (Subtype_Indication (Type_Definition (New_N))))));
6201 end if;
6203 -- Copy Storage_Size and Relative_Deadline variables if task case
6205 if Is_Task_Type (Parent_Type) then
6206 Set_Storage_Size_Variable (Derived_Type,
6207 Storage_Size_Variable (Parent_Type));
6208 Set_Relative_Deadline_Variable (Derived_Type,
6209 Relative_Deadline_Variable (Parent_Type));
6210 end if;
6212 if Present (Discriminant_Specifications (N)) then
6213 Push_Scope (Derived_Type);
6214 Check_Or_Process_Discriminants (N, Derived_Type);
6216 if Constraint_Present then
6217 New_Constraint :=
6218 Expand_To_Stored_Constraint
6219 (Parent_Type,
6220 Build_Discriminant_Constraints
6221 (Parent_Type,
6222 Subtype_Indication (Type_Definition (N)), True));
6223 end if;
6225 End_Scope;
6227 elsif Constraint_Present then
6229 -- Build constrained subtype, copying the constraint, and derive
6230 -- from it to create a derived constrained type.
6232 declare
6233 Loc : constant Source_Ptr := Sloc (N);
6234 Anon : constant Entity_Id :=
6235 Make_Defining_Identifier (Loc,
6236 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6237 Decl : Node_Id;
6239 begin
6240 Decl :=
6241 Make_Subtype_Declaration (Loc,
6242 Defining_Identifier => Anon,
6243 Subtype_Indication =>
6244 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6245 Insert_Before (N, Decl);
6246 Analyze (Decl);
6248 Rewrite (Subtype_Indication (Type_Definition (N)),
6249 New_Occurrence_Of (Anon, Loc));
6250 Set_Analyzed (Derived_Type, False);
6251 Analyze (N);
6252 return;
6253 end;
6254 end if;
6256 -- By default, operations and private data are inherited from parent.
6257 -- However, in the presence of bound discriminants, a new corresponding
6258 -- record will be created, see below.
6260 Set_Has_Discriminants
6261 (Derived_Type, Has_Discriminants (Parent_Type));
6262 Set_Corresponding_Record_Type
6263 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6265 -- Is_Constrained is set according the parent subtype, but is set to
6266 -- False if the derived type is declared with new discriminants.
6268 Set_Is_Constrained
6269 (Derived_Type,
6270 (Is_Constrained (Parent_Type) or else Constraint_Present)
6271 and then not Present (Discriminant_Specifications (N)));
6273 if Constraint_Present then
6274 if not Has_Discriminants (Parent_Type) then
6275 Error_Msg_N ("untagged parent must have discriminants", N);
6277 elsif Present (Discriminant_Specifications (N)) then
6279 -- Verify that new discriminants are used to constrain old ones
6281 D_Constraint :=
6282 First
6283 (Constraints
6284 (Constraint (Subtype_Indication (Type_Definition (N)))));
6286 Old_Disc := First_Discriminant (Parent_Type);
6288 while Present (D_Constraint) loop
6289 if Nkind (D_Constraint) /= N_Discriminant_Association then
6291 -- Positional constraint. If it is a reference to a new
6292 -- discriminant, it constrains the corresponding old one.
6294 if Nkind (D_Constraint) = N_Identifier then
6295 New_Disc := First_Discriminant (Derived_Type);
6296 while Present (New_Disc) loop
6297 exit when Chars (New_Disc) = Chars (D_Constraint);
6298 Next_Discriminant (New_Disc);
6299 end loop;
6301 if Present (New_Disc) then
6302 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6303 end if;
6304 end if;
6306 Next_Discriminant (Old_Disc);
6308 -- if this is a named constraint, search by name for the old
6309 -- discriminants constrained by the new one.
6311 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6313 -- Find new discriminant with that name
6315 New_Disc := First_Discriminant (Derived_Type);
6316 while Present (New_Disc) loop
6317 exit when
6318 Chars (New_Disc) = Chars (Expression (D_Constraint));
6319 Next_Discriminant (New_Disc);
6320 end loop;
6322 if Present (New_Disc) then
6324 -- Verify that new discriminant renames some discriminant
6325 -- of the parent type, and associate the new discriminant
6326 -- with one or more old ones that it renames.
6328 declare
6329 Selector : Node_Id;
6331 begin
6332 Selector := First (Selector_Names (D_Constraint));
6333 while Present (Selector) loop
6334 Old_Disc := First_Discriminant (Parent_Type);
6335 while Present (Old_Disc) loop
6336 exit when Chars (Old_Disc) = Chars (Selector);
6337 Next_Discriminant (Old_Disc);
6338 end loop;
6340 if Present (Old_Disc) then
6341 Set_Corresponding_Discriminant
6342 (New_Disc, Old_Disc);
6343 end if;
6345 Next (Selector);
6346 end loop;
6347 end;
6348 end if;
6349 end if;
6351 Next (D_Constraint);
6352 end loop;
6354 New_Disc := First_Discriminant (Derived_Type);
6355 while Present (New_Disc) loop
6356 if No (Corresponding_Discriminant (New_Disc)) then
6357 Error_Msg_NE
6358 ("new discriminant& must constrain old one", N, New_Disc);
6360 elsif not
6361 Subtypes_Statically_Compatible
6362 (Etype (New_Disc),
6363 Etype (Corresponding_Discriminant (New_Disc)))
6364 then
6365 Error_Msg_NE
6366 ("& not statically compatible with parent discriminant",
6367 N, New_Disc);
6368 end if;
6370 Next_Discriminant (New_Disc);
6371 end loop;
6372 end if;
6374 elsif Present (Discriminant_Specifications (N)) then
6375 Error_Msg_N
6376 ("missing discriminant constraint in untagged derivation", N);
6377 end if;
6379 -- The entity chain of the derived type includes the new discriminants
6380 -- but shares operations with the parent.
6382 if Present (Discriminant_Specifications (N)) then
6383 Old_Disc := First_Discriminant (Parent_Type);
6384 while Present (Old_Disc) loop
6385 if No (Next_Entity (Old_Disc))
6386 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6387 then
6388 Set_Next_Entity
6389 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6390 exit;
6391 end if;
6393 Next_Discriminant (Old_Disc);
6394 end loop;
6396 else
6397 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6398 if Has_Discriminants (Parent_Type) then
6399 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6400 Set_Discriminant_Constraint (
6401 Derived_Type, Discriminant_Constraint (Parent_Type));
6402 end if;
6403 end if;
6405 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6407 Set_Has_Completion (Derived_Type);
6409 if Corr_Decl_Needed then
6410 Set_Stored_Constraint (Derived_Type, New_Constraint);
6411 Insert_After (N, Corr_Decl);
6412 Analyze (Corr_Decl);
6413 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6414 end if;
6415 end Build_Derived_Concurrent_Type;
6417 ------------------------------------
6418 -- Build_Derived_Enumeration_Type --
6419 ------------------------------------
6421 procedure Build_Derived_Enumeration_Type
6422 (N : Node_Id;
6423 Parent_Type : Entity_Id;
6424 Derived_Type : Entity_Id)
6426 Loc : constant Source_Ptr := Sloc (N);
6427 Def : constant Node_Id := Type_Definition (N);
6428 Indic : constant Node_Id := Subtype_Indication (Def);
6429 Implicit_Base : Entity_Id;
6430 Literal : Entity_Id;
6431 New_Lit : Entity_Id;
6432 Literals_List : List_Id;
6433 Type_Decl : Node_Id;
6434 Hi, Lo : Node_Id;
6435 Rang_Expr : Node_Id;
6437 begin
6438 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6439 -- not have explicit literals lists we need to process types derived
6440 -- from them specially. This is handled by Derived_Standard_Character.
6441 -- If the parent type is a generic type, there are no literals either,
6442 -- and we construct the same skeletal representation as for the generic
6443 -- parent type.
6445 if Is_Standard_Character_Type (Parent_Type) then
6446 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6448 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6449 declare
6450 Lo : Node_Id;
6451 Hi : Node_Id;
6453 begin
6454 if Nkind (Indic) /= N_Subtype_Indication then
6455 Lo :=
6456 Make_Attribute_Reference (Loc,
6457 Attribute_Name => Name_First,
6458 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6459 Set_Etype (Lo, Derived_Type);
6461 Hi :=
6462 Make_Attribute_Reference (Loc,
6463 Attribute_Name => Name_Last,
6464 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6465 Set_Etype (Hi, Derived_Type);
6467 Set_Scalar_Range (Derived_Type,
6468 Make_Range (Loc,
6469 Low_Bound => Lo,
6470 High_Bound => Hi));
6471 else
6473 -- Analyze subtype indication and verify compatibility
6474 -- with parent type.
6476 if Base_Type (Process_Subtype (Indic, N)) /=
6477 Base_Type (Parent_Type)
6478 then
6479 Error_Msg_N
6480 ("illegal constraint for formal discrete type", N);
6481 end if;
6482 end if;
6483 end;
6485 else
6486 -- If a constraint is present, analyze the bounds to catch
6487 -- premature usage of the derived literals.
6489 if Nkind (Indic) = N_Subtype_Indication
6490 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6491 then
6492 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6493 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6494 end if;
6496 -- Introduce an implicit base type for the derived type even if there
6497 -- is no constraint attached to it, since this seems closer to the
6498 -- Ada semantics. Build a full type declaration tree for the derived
6499 -- type using the implicit base type as the defining identifier. The
6500 -- build a subtype declaration tree which applies the constraint (if
6501 -- any) have it replace the derived type declaration.
6503 Literal := First_Literal (Parent_Type);
6504 Literals_List := New_List;
6505 while Present (Literal)
6506 and then Ekind (Literal) = E_Enumeration_Literal
6507 loop
6508 -- Literals of the derived type have the same representation as
6509 -- those of the parent type, but this representation can be
6510 -- overridden by an explicit representation clause. Indicate
6511 -- that there is no explicit representation given yet. These
6512 -- derived literals are implicit operations of the new type,
6513 -- and can be overridden by explicit ones.
6515 if Nkind (Literal) = N_Defining_Character_Literal then
6516 New_Lit :=
6517 Make_Defining_Character_Literal (Loc, Chars (Literal));
6518 else
6519 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6520 end if;
6522 Set_Ekind (New_Lit, E_Enumeration_Literal);
6523 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6524 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6525 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6526 Set_Alias (New_Lit, Literal);
6527 Set_Is_Known_Valid (New_Lit, True);
6529 Append (New_Lit, Literals_List);
6530 Next_Literal (Literal);
6531 end loop;
6533 Implicit_Base :=
6534 Make_Defining_Identifier (Sloc (Derived_Type),
6535 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6537 -- Indicate the proper nature of the derived type. This must be done
6538 -- before analysis of the literals, to recognize cases when a literal
6539 -- may be hidden by a previous explicit function definition (cf.
6540 -- c83031a).
6542 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6543 Set_Etype (Derived_Type, Implicit_Base);
6545 Type_Decl :=
6546 Make_Full_Type_Declaration (Loc,
6547 Defining_Identifier => Implicit_Base,
6548 Discriminant_Specifications => No_List,
6549 Type_Definition =>
6550 Make_Enumeration_Type_Definition (Loc, Literals_List));
6552 Mark_Rewrite_Insertion (Type_Decl);
6553 Insert_Before (N, Type_Decl);
6554 Analyze (Type_Decl);
6556 -- The anonymous base now has a full declaration, but this base
6557 -- is not a first subtype.
6559 Set_Is_First_Subtype (Implicit_Base, False);
6561 -- After the implicit base is analyzed its Etype needs to be changed
6562 -- to reflect the fact that it is derived from the parent type which
6563 -- was ignored during analysis. We also set the size at this point.
6565 Set_Etype (Implicit_Base, Parent_Type);
6567 Set_Size_Info (Implicit_Base, Parent_Type);
6568 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6569 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6571 -- Copy other flags from parent type
6573 Set_Has_Non_Standard_Rep
6574 (Implicit_Base, Has_Non_Standard_Rep
6575 (Parent_Type));
6576 Set_Has_Pragma_Ordered
6577 (Implicit_Base, Has_Pragma_Ordered
6578 (Parent_Type));
6579 Set_Has_Delayed_Freeze (Implicit_Base);
6581 -- Process the subtype indication including a validation check on the
6582 -- constraint, if any. If a constraint is given, its bounds must be
6583 -- implicitly converted to the new type.
6585 if Nkind (Indic) = N_Subtype_Indication then
6586 declare
6587 R : constant Node_Id :=
6588 Range_Expression (Constraint (Indic));
6590 begin
6591 if Nkind (R) = N_Range then
6592 Hi := Build_Scalar_Bound
6593 (High_Bound (R), Parent_Type, Implicit_Base);
6594 Lo := Build_Scalar_Bound
6595 (Low_Bound (R), Parent_Type, Implicit_Base);
6597 else
6598 -- Constraint is a Range attribute. Replace with explicit
6599 -- mention of the bounds of the prefix, which must be a
6600 -- subtype.
6602 Analyze (Prefix (R));
6603 Hi :=
6604 Convert_To (Implicit_Base,
6605 Make_Attribute_Reference (Loc,
6606 Attribute_Name => Name_Last,
6607 Prefix =>
6608 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6610 Lo :=
6611 Convert_To (Implicit_Base,
6612 Make_Attribute_Reference (Loc,
6613 Attribute_Name => Name_First,
6614 Prefix =>
6615 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6616 end if;
6617 end;
6619 else
6620 Hi :=
6621 Build_Scalar_Bound
6622 (Type_High_Bound (Parent_Type),
6623 Parent_Type, Implicit_Base);
6624 Lo :=
6625 Build_Scalar_Bound
6626 (Type_Low_Bound (Parent_Type),
6627 Parent_Type, Implicit_Base);
6628 end if;
6630 Rang_Expr :=
6631 Make_Range (Loc,
6632 Low_Bound => Lo,
6633 High_Bound => Hi);
6635 -- If we constructed a default range for the case where no range
6636 -- was given, then the expressions in the range must not freeze
6637 -- since they do not correspond to expressions in the source.
6639 if Nkind (Indic) /= N_Subtype_Indication then
6640 Set_Must_Not_Freeze (Lo);
6641 Set_Must_Not_Freeze (Hi);
6642 Set_Must_Not_Freeze (Rang_Expr);
6643 end if;
6645 Rewrite (N,
6646 Make_Subtype_Declaration (Loc,
6647 Defining_Identifier => Derived_Type,
6648 Subtype_Indication =>
6649 Make_Subtype_Indication (Loc,
6650 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6651 Constraint =>
6652 Make_Range_Constraint (Loc,
6653 Range_Expression => Rang_Expr))));
6655 Analyze (N);
6657 -- Propagate the aspects from the original type declaration to the
6658 -- declaration of the implicit base.
6660 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6662 -- Apply a range check. Since this range expression doesn't have an
6663 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6664 -- this right???
6666 if Nkind (Indic) = N_Subtype_Indication then
6667 Apply_Range_Check
6668 (Range_Expression (Constraint (Indic)), Parent_Type,
6669 Source_Typ => Entity (Subtype_Mark (Indic)));
6670 end if;
6671 end if;
6672 end Build_Derived_Enumeration_Type;
6674 --------------------------------
6675 -- Build_Derived_Numeric_Type --
6676 --------------------------------
6678 procedure Build_Derived_Numeric_Type
6679 (N : Node_Id;
6680 Parent_Type : Entity_Id;
6681 Derived_Type : Entity_Id)
6683 Loc : constant Source_Ptr := Sloc (N);
6684 Tdef : constant Node_Id := Type_Definition (N);
6685 Indic : constant Node_Id := Subtype_Indication (Tdef);
6686 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6687 No_Constraint : constant Boolean := Nkind (Indic) /=
6688 N_Subtype_Indication;
6689 Implicit_Base : Entity_Id;
6691 Lo : Node_Id;
6692 Hi : Node_Id;
6694 begin
6695 -- Process the subtype indication including a validation check on
6696 -- the constraint if any.
6698 Discard_Node (Process_Subtype (Indic, N));
6700 -- Introduce an implicit base type for the derived type even if there
6701 -- is no constraint attached to it, since this seems closer to the Ada
6702 -- semantics.
6704 Implicit_Base :=
6705 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6707 Set_Etype (Implicit_Base, Parent_Base);
6708 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6709 Set_Size_Info (Implicit_Base, Parent_Base);
6710 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6711 Set_Parent (Implicit_Base, Parent (Derived_Type));
6712 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6714 -- Set RM Size for discrete type or decimal fixed-point type
6715 -- Ordinary fixed-point is excluded, why???
6717 if Is_Discrete_Type (Parent_Base)
6718 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6719 then
6720 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6721 end if;
6723 Set_Has_Delayed_Freeze (Implicit_Base);
6725 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6726 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6728 Set_Scalar_Range (Implicit_Base,
6729 Make_Range (Loc,
6730 Low_Bound => Lo,
6731 High_Bound => Hi));
6733 if Has_Infinities (Parent_Base) then
6734 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6735 end if;
6737 -- The Derived_Type, which is the entity of the declaration, is a
6738 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6739 -- absence of an explicit constraint.
6741 Set_Etype (Derived_Type, Implicit_Base);
6743 -- If we did not have a constraint, then the Ekind is set from the
6744 -- parent type (otherwise Process_Subtype has set the bounds)
6746 if No_Constraint then
6747 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6748 end if;
6750 -- If we did not have a range constraint, then set the range from the
6751 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6753 if No_Constraint or else not Has_Range_Constraint (Indic) then
6754 Set_Scalar_Range (Derived_Type,
6755 Make_Range (Loc,
6756 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6757 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6758 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6760 if Has_Infinities (Parent_Type) then
6761 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6762 end if;
6764 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6765 end if;
6767 Set_Is_Descendent_Of_Address (Derived_Type,
6768 Is_Descendent_Of_Address (Parent_Type));
6769 Set_Is_Descendent_Of_Address (Implicit_Base,
6770 Is_Descendent_Of_Address (Parent_Type));
6772 -- Set remaining type-specific fields, depending on numeric type
6774 if Is_Modular_Integer_Type (Parent_Type) then
6775 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6777 Set_Non_Binary_Modulus
6778 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6780 Set_Is_Known_Valid
6781 (Implicit_Base, Is_Known_Valid (Parent_Base));
6783 elsif Is_Floating_Point_Type (Parent_Type) then
6785 -- Digits of base type is always copied from the digits value of
6786 -- the parent base type, but the digits of the derived type will
6787 -- already have been set if there was a constraint present.
6789 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6790 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6792 if No_Constraint then
6793 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6794 end if;
6796 elsif Is_Fixed_Point_Type (Parent_Type) then
6798 -- Small of base type and derived type are always copied from the
6799 -- parent base type, since smalls never change. The delta of the
6800 -- base type is also copied from the parent base type. However the
6801 -- delta of the derived type will have been set already if a
6802 -- constraint was present.
6804 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6805 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6806 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6808 if No_Constraint then
6809 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6810 end if;
6812 -- The scale and machine radix in the decimal case are always
6813 -- copied from the parent base type.
6815 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6816 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6817 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6819 Set_Machine_Radix_10
6820 (Derived_Type, Machine_Radix_10 (Parent_Base));
6821 Set_Machine_Radix_10
6822 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6824 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6826 if No_Constraint then
6827 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6829 else
6830 -- the analysis of the subtype_indication sets the
6831 -- digits value of the derived type.
6833 null;
6834 end if;
6835 end if;
6836 end if;
6838 if Is_Integer_Type (Parent_Type) then
6839 Set_Has_Shift_Operator
6840 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6841 end if;
6843 -- The type of the bounds is that of the parent type, and they
6844 -- must be converted to the derived type.
6846 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6848 -- The implicit_base should be frozen when the derived type is frozen,
6849 -- but note that it is used in the conversions of the bounds. For fixed
6850 -- types we delay the determination of the bounds until the proper
6851 -- freezing point. For other numeric types this is rejected by GCC, for
6852 -- reasons that are currently unclear (???), so we choose to freeze the
6853 -- implicit base now. In the case of integers and floating point types
6854 -- this is harmless because subsequent representation clauses cannot
6855 -- affect anything, but it is still baffling that we cannot use the
6856 -- same mechanism for all derived numeric types.
6858 -- There is a further complication: actually some representation
6859 -- clauses can affect the implicit base type. For example, attribute
6860 -- definition clauses for stream-oriented attributes need to set the
6861 -- corresponding TSS entries on the base type, and this normally
6862 -- cannot be done after the base type is frozen, so the circuitry in
6863 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6864 -- and not use Set_TSS in this case.
6866 -- There are also consequences for the case of delayed representation
6867 -- aspects for some cases. For example, a Size aspect is delayed and
6868 -- should not be evaluated to the freeze point. This early freezing
6869 -- means that the size attribute evaluation happens too early???
6871 if Is_Fixed_Point_Type (Parent_Type) then
6872 Conditional_Delay (Implicit_Base, Parent_Type);
6873 else
6874 Freeze_Before (N, Implicit_Base);
6875 end if;
6876 end Build_Derived_Numeric_Type;
6878 --------------------------------
6879 -- Build_Derived_Private_Type --
6880 --------------------------------
6882 procedure Build_Derived_Private_Type
6883 (N : Node_Id;
6884 Parent_Type : Entity_Id;
6885 Derived_Type : Entity_Id;
6886 Is_Completion : Boolean;
6887 Derive_Subps : Boolean := True)
6889 Loc : constant Source_Ptr := Sloc (N);
6890 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6891 Par_Scope : constant Entity_Id := Scope (Par_Base);
6892 Full_N : constant Node_Id := New_Copy_Tree (N);
6893 Full_Der : Entity_Id := New_Copy (Derived_Type);
6894 Full_P : Entity_Id;
6896 procedure Build_Full_Derivation;
6897 -- Build full derivation, i.e. derive from the full view
6899 procedure Copy_And_Build;
6900 -- Copy derived type declaration, replace parent with its full view,
6901 -- and build derivation
6903 ---------------------------
6904 -- Build_Full_Derivation --
6905 ---------------------------
6907 procedure Build_Full_Derivation is
6908 begin
6909 -- If parent scope is not open, install the declarations
6911 if not In_Open_Scopes (Par_Scope) then
6912 Install_Private_Declarations (Par_Scope);
6913 Install_Visible_Declarations (Par_Scope);
6914 Copy_And_Build;
6915 Uninstall_Declarations (Par_Scope);
6917 -- If parent scope is open and in another unit, and parent has a
6918 -- completion, then the derivation is taking place in the visible
6919 -- part of a child unit. In that case retrieve the full view of
6920 -- the parent momentarily.
6922 elsif not In_Same_Source_Unit (N, Parent_Type) then
6923 Full_P := Full_View (Parent_Type);
6924 Exchange_Declarations (Parent_Type);
6925 Copy_And_Build;
6926 Exchange_Declarations (Full_P);
6928 -- Otherwise it is a local derivation
6930 else
6931 Copy_And_Build;
6932 end if;
6933 end Build_Full_Derivation;
6935 --------------------
6936 -- Copy_And_Build --
6937 --------------------
6939 procedure Copy_And_Build is
6940 Full_Parent : Entity_Id := Parent_Type;
6942 begin
6943 -- If the parent is itself derived from another private type,
6944 -- installing the private declarations has not affected its
6945 -- privacy status, so use its own full view explicitly.
6947 if Is_Private_Type (Full_Parent)
6948 and then Present (Full_View (Full_Parent))
6949 then
6950 Full_Parent := Full_View (Full_Parent);
6951 end if;
6953 -- And its underlying full view if necessary
6955 if Is_Private_Type (Full_Parent)
6956 and then Present (Underlying_Full_View (Full_Parent))
6957 then
6958 Full_Parent := Underlying_Full_View (Full_Parent);
6959 end if;
6961 -- For record, access and most enumeration types, derivation from
6962 -- the full view requires a fully-fledged declaration. In the other
6963 -- cases, just use an itype.
6965 if Ekind (Full_Parent) in Record_Kind
6966 or else Ekind (Full_Parent) in Access_Kind
6967 or else
6968 (Ekind (Full_Parent) in Enumeration_Kind
6969 and then not Is_Standard_Character_Type (Full_Parent)
6970 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6971 then
6972 -- Copy and adjust declaration to provide a completion for what
6973 -- is originally a private declaration. Indicate that full view
6974 -- is internally generated.
6976 Set_Comes_From_Source (Full_N, False);
6977 Set_Comes_From_Source (Full_Der, False);
6978 Set_Parent (Full_Der, Full_N);
6979 Set_Defining_Identifier (Full_N, Full_Der);
6981 -- If there are no constraints, adjust the subtype mark
6983 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6984 N_Subtype_Indication
6985 then
6986 Set_Subtype_Indication
6987 (Type_Definition (Full_N),
6988 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6989 end if;
6991 Insert_After (N, Full_N);
6993 -- Build full view of derived type from full view of parent which
6994 -- is now installed. Subprograms have been derived on the partial
6995 -- view, the completion does not derive them anew.
6997 if Ekind (Full_Parent) in Record_Kind then
6999 -- If parent type is tagged, the completion inherits the proper
7000 -- primitive operations.
7002 if Is_Tagged_Type (Parent_Type) then
7003 Build_Derived_Record_Type
7004 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7005 else
7006 Build_Derived_Record_Type
7007 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7008 end if;
7010 else
7011 Build_Derived_Type
7012 (Full_N, Full_Parent, Full_Der,
7013 Is_Completion => False, Derive_Subps => False);
7014 end if;
7016 -- The full declaration has been introduced into the tree and
7017 -- processed in the step above. It should not be analyzed again
7018 -- (when encountered later in the current list of declarations)
7019 -- to prevent spurious name conflicts. The full entity remains
7020 -- invisible.
7022 Set_Analyzed (Full_N);
7024 else
7025 Full_Der :=
7026 Make_Defining_Identifier (Sloc (Derived_Type),
7027 Chars => Chars (Derived_Type));
7028 Set_Is_Itype (Full_Der);
7029 Set_Associated_Node_For_Itype (Full_Der, N);
7030 Set_Parent (Full_Der, N);
7031 Build_Derived_Type
7032 (N, Full_Parent, Full_Der,
7033 Is_Completion => False, Derive_Subps => False);
7034 end if;
7036 Set_Has_Private_Declaration (Full_Der);
7037 Set_Has_Private_Declaration (Derived_Type);
7039 Set_Scope (Full_Der, Scope (Derived_Type));
7040 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7041 Set_Has_Size_Clause (Full_Der, False);
7042 Set_Has_Alignment_Clause (Full_Der, False);
7043 Set_Has_Delayed_Freeze (Full_Der);
7044 Set_Is_Frozen (Full_Der, False);
7045 Set_Freeze_Node (Full_Der, Empty);
7046 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7047 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7049 -- The convention on the base type may be set in the private part
7050 -- and not propagated to the subtype until later, so we obtain the
7051 -- convention from the base type of the parent.
7053 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7054 end Copy_And_Build;
7056 -- Start of processing for Build_Derived_Private_Type
7058 begin
7059 if Is_Tagged_Type (Parent_Type) then
7060 Full_P := Full_View (Parent_Type);
7062 -- A type extension of a type with unknown discriminants is an
7063 -- indefinite type that the back-end cannot handle directly.
7064 -- We treat it as a private type, and build a completion that is
7065 -- derived from the full view of the parent, and hopefully has
7066 -- known discriminants.
7068 -- If the full view of the parent type has an underlying record view,
7069 -- use it to generate the underlying record view of this derived type
7070 -- (required for chains of derivations with unknown discriminants).
7072 -- Minor optimization: we avoid the generation of useless underlying
7073 -- record view entities if the private type declaration has unknown
7074 -- discriminants but its corresponding full view has no
7075 -- discriminants.
7077 if Has_Unknown_Discriminants (Parent_Type)
7078 and then Present (Full_P)
7079 and then (Has_Discriminants (Full_P)
7080 or else Present (Underlying_Record_View (Full_P)))
7081 and then not In_Open_Scopes (Par_Scope)
7082 and then Expander_Active
7083 then
7084 declare
7085 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7086 New_Ext : constant Node_Id :=
7087 Copy_Separate_Tree
7088 (Record_Extension_Part (Type_Definition (N)));
7089 Decl : Node_Id;
7091 begin
7092 Build_Derived_Record_Type
7093 (N, Parent_Type, Derived_Type, Derive_Subps);
7095 -- Build anonymous completion, as a derivation from the full
7096 -- view of the parent. This is not a completion in the usual
7097 -- sense, because the current type is not private.
7099 Decl :=
7100 Make_Full_Type_Declaration (Loc,
7101 Defining_Identifier => Full_Der,
7102 Type_Definition =>
7103 Make_Derived_Type_Definition (Loc,
7104 Subtype_Indication =>
7105 New_Copy_Tree
7106 (Subtype_Indication (Type_Definition (N))),
7107 Record_Extension_Part => New_Ext));
7109 -- If the parent type has an underlying record view, use it
7110 -- here to build the new underlying record view.
7112 if Present (Underlying_Record_View (Full_P)) then
7113 pragma Assert
7114 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7115 = N_Identifier);
7116 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7117 Underlying_Record_View (Full_P));
7118 end if;
7120 Install_Private_Declarations (Par_Scope);
7121 Install_Visible_Declarations (Par_Scope);
7122 Insert_Before (N, Decl);
7124 -- Mark entity as an underlying record view before analysis,
7125 -- to avoid generating the list of its primitive operations
7126 -- (which is not really required for this entity) and thus
7127 -- prevent spurious errors associated with missing overriding
7128 -- of abstract primitives (overridden only for Derived_Type).
7130 Set_Ekind (Full_Der, E_Record_Type);
7131 Set_Is_Underlying_Record_View (Full_Der);
7132 Set_Default_SSO (Full_Der);
7134 Analyze (Decl);
7136 pragma Assert (Has_Discriminants (Full_Der)
7137 and then not Has_Unknown_Discriminants (Full_Der));
7139 Uninstall_Declarations (Par_Scope);
7141 -- Freeze the underlying record view, to prevent generation of
7142 -- useless dispatching information, which is simply shared with
7143 -- the real derived type.
7145 Set_Is_Frozen (Full_Der);
7147 -- If the derived type has access discriminants, create
7148 -- references to their anonymous types now, to prevent
7149 -- back-end problems when their first use is in generated
7150 -- bodies of primitives.
7152 declare
7153 E : Entity_Id;
7155 begin
7156 E := First_Entity (Full_Der);
7158 while Present (E) loop
7159 if Ekind (E) = E_Discriminant
7160 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7161 then
7162 Build_Itype_Reference (Etype (E), Decl);
7163 end if;
7165 Next_Entity (E);
7166 end loop;
7167 end;
7169 -- Set up links between real entity and underlying record view
7171 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7172 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7173 end;
7175 -- If discriminants are known, build derived record
7177 else
7178 Build_Derived_Record_Type
7179 (N, Parent_Type, Derived_Type, Derive_Subps);
7180 end if;
7182 return;
7184 elsif Has_Discriminants (Parent_Type) then
7186 -- Build partial view of derived type from partial view of parent.
7187 -- This must be done before building the full derivation because the
7188 -- second derivation will modify the discriminants of the first and
7189 -- the discriminants are chained with the rest of the components in
7190 -- the full derivation.
7192 Build_Derived_Record_Type
7193 (N, Parent_Type, Derived_Type, Derive_Subps);
7195 -- Build the full derivation if this is not the anonymous derived
7196 -- base type created by Build_Derived_Record_Type in the constrained
7197 -- case (see point 5. of its head comment) since we build it for the
7198 -- derived subtype. And skip it for protected types altogether, as
7199 -- gigi does not use these types directly.
7201 if Present (Full_View (Parent_Type))
7202 and then not Is_Itype (Derived_Type)
7203 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7204 then
7205 declare
7206 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7207 Discr : Entity_Id;
7208 Last_Discr : Entity_Id;
7210 begin
7211 -- If this is not a completion, construct the implicit full
7212 -- view by deriving from the full view of the parent type.
7213 -- But if this is a completion, the derived private type
7214 -- being built is a full view and the full derivation can
7215 -- only be its underlying full view.
7217 Build_Full_Derivation;
7219 if not Is_Completion then
7220 Set_Full_View (Derived_Type, Full_Der);
7221 else
7222 Set_Underlying_Full_View (Derived_Type, Full_Der);
7223 end if;
7225 if not Is_Base_Type (Derived_Type) then
7226 Set_Full_View (Der_Base, Base_Type (Full_Der));
7227 end if;
7229 -- Copy the discriminant list from full view to the partial
7230 -- view (base type and its subtype). Gigi requires that the
7231 -- partial and full views have the same discriminants.
7233 -- Note that since the partial view points to discriminants
7234 -- in the full view, their scope will be that of the full
7235 -- view. This might cause some front end problems and need
7236 -- adjustment???
7238 Discr := First_Discriminant (Base_Type (Full_Der));
7239 Set_First_Entity (Der_Base, Discr);
7241 loop
7242 Last_Discr := Discr;
7243 Next_Discriminant (Discr);
7244 exit when No (Discr);
7245 end loop;
7247 Set_Last_Entity (Der_Base, Last_Discr);
7248 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7249 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7251 Set_Stored_Constraint
7252 (Full_Der, Stored_Constraint (Derived_Type));
7253 end;
7254 end if;
7256 elsif Present (Full_View (Parent_Type))
7257 and then Has_Discriminants (Full_View (Parent_Type))
7258 then
7259 if Has_Unknown_Discriminants (Parent_Type)
7260 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7261 N_Subtype_Indication
7262 then
7263 Error_Msg_N
7264 ("cannot constrain type with unknown discriminants",
7265 Subtype_Indication (Type_Definition (N)));
7266 return;
7267 end if;
7269 -- If this is not a completion, construct the implicit full view by
7270 -- deriving from the full view of the parent type. But if this is a
7271 -- completion, the derived private type being built is a full view
7272 -- and the full derivation can only be its underlying full view.
7274 Build_Full_Derivation;
7276 if not Is_Completion then
7277 Set_Full_View (Derived_Type, Full_Der);
7278 else
7279 Set_Underlying_Full_View (Derived_Type, Full_Der);
7280 end if;
7282 -- In any case, the primitive operations are inherited from the
7283 -- parent type, not from the internal full view.
7285 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7287 if Derive_Subps then
7288 Derive_Subprograms (Parent_Type, Derived_Type);
7289 end if;
7291 Set_Stored_Constraint (Derived_Type, No_Elist);
7292 Set_Is_Constrained
7293 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7295 else
7296 -- Untagged type, No discriminants on either view
7298 if Nkind (Subtype_Indication (Type_Definition (N))) =
7299 N_Subtype_Indication
7300 then
7301 Error_Msg_N
7302 ("illegal constraint on type without discriminants", N);
7303 end if;
7305 if Present (Discriminant_Specifications (N))
7306 and then Present (Full_View (Parent_Type))
7307 and then not Is_Tagged_Type (Full_View (Parent_Type))
7308 then
7309 Error_Msg_N ("cannot add discriminants to untagged type", N);
7310 end if;
7312 Set_Stored_Constraint (Derived_Type, No_Elist);
7313 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7314 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7315 Set_Has_Controlled_Component
7316 (Derived_Type, Has_Controlled_Component
7317 (Parent_Type));
7319 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7321 if not Is_Controlled (Parent_Type) then
7322 Set_Finalize_Storage_Only
7323 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7324 end if;
7326 -- If this is not a completion, construct the implicit full view by
7327 -- deriving from the full view of the parent type.
7329 -- ??? If the parent is untagged private and its completion is
7330 -- tagged, this mechanism will not work because we cannot derive from
7331 -- the tagged full view unless we have an extension.
7333 if Present (Full_View (Parent_Type))
7334 and then not Is_Tagged_Type (Full_View (Parent_Type))
7335 and then not Is_Completion
7336 then
7337 Build_Full_Derivation;
7338 Set_Full_View (Derived_Type, Full_Der);
7339 end if;
7340 end if;
7342 Set_Has_Unknown_Discriminants (Derived_Type,
7343 Has_Unknown_Discriminants (Parent_Type));
7345 if Is_Private_Type (Derived_Type) then
7346 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7347 end if;
7349 -- If the parent base type is in scope, add the derived type to its
7350 -- list of private dependents, because its full view may become
7351 -- visible subsequently (in a nested private part, a body, or in a
7352 -- further child unit).
7354 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7355 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7357 -- Check for unusual case where a type completed by a private
7358 -- derivation occurs within a package nested in a child unit, and
7359 -- the parent is declared in an ancestor.
7361 if Is_Child_Unit (Scope (Current_Scope))
7362 and then Is_Completion
7363 and then In_Private_Part (Current_Scope)
7364 and then Scope (Parent_Type) /= Current_Scope
7366 -- Note that if the parent has a completion in the private part,
7367 -- (which is itself a derivation from some other private type)
7368 -- it is that completion that is visible, there is no full view
7369 -- available, and no special processing is needed.
7371 and then Present (Full_View (Parent_Type))
7372 then
7373 -- In this case, the full view of the parent type will become
7374 -- visible in the body of the enclosing child, and only then will
7375 -- the current type be possibly non-private. Build an underlying
7376 -- full view that will be installed when the enclosing child body
7377 -- is compiled.
7379 if Present (Underlying_Full_View (Derived_Type)) then
7380 Full_Der := Underlying_Full_View (Derived_Type);
7381 else
7382 Build_Full_Derivation;
7383 Set_Underlying_Full_View (Derived_Type, Full_Der);
7384 end if;
7386 -- The full view will be used to swap entities on entry/exit to
7387 -- the body, and must appear in the entity list for the package.
7389 Append_Entity (Full_Der, Scope (Derived_Type));
7390 end if;
7391 end if;
7392 end Build_Derived_Private_Type;
7394 -------------------------------
7395 -- Build_Derived_Record_Type --
7396 -------------------------------
7398 -- 1. INTRODUCTION
7400 -- Ideally we would like to use the same model of type derivation for
7401 -- tagged and untagged record types. Unfortunately this is not quite
7402 -- possible because the semantics of representation clauses is different
7403 -- for tagged and untagged records under inheritance. Consider the
7404 -- following:
7406 -- type R (...) is [tagged] record ... end record;
7407 -- type T (...) is new R (...) [with ...];
7409 -- The representation clauses for T can specify a completely different
7410 -- record layout from R's. Hence the same component can be placed in two
7411 -- very different positions in objects of type T and R. If R and T are
7412 -- tagged types, representation clauses for T can only specify the layout
7413 -- of non inherited components, thus components that are common in R and T
7414 -- have the same position in objects of type R and T.
7416 -- This has two implications. The first is that the entire tree for R's
7417 -- declaration needs to be copied for T in the untagged case, so that T
7418 -- can be viewed as a record type of its own with its own representation
7419 -- clauses. The second implication is the way we handle discriminants.
7420 -- Specifically, in the untagged case we need a way to communicate to Gigi
7421 -- what are the real discriminants in the record, while for the semantics
7422 -- we need to consider those introduced by the user to rename the
7423 -- discriminants in the parent type. This is handled by introducing the
7424 -- notion of stored discriminants. See below for more.
7426 -- Fortunately the way regular components are inherited can be handled in
7427 -- the same way in tagged and untagged types.
7429 -- To complicate things a bit more the private view of a private extension
7430 -- cannot be handled in the same way as the full view (for one thing the
7431 -- semantic rules are somewhat different). We will explain what differs
7432 -- below.
7434 -- 2. DISCRIMINANTS UNDER INHERITANCE
7436 -- The semantic rules governing the discriminants of derived types are
7437 -- quite subtle.
7439 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7440 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7442 -- If parent type has discriminants, then the discriminants that are
7443 -- declared in the derived type are [3.4 (11)]:
7445 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7446 -- there is one;
7448 -- o Otherwise, each discriminant of the parent type (implicitly declared
7449 -- in the same order with the same specifications). In this case, the
7450 -- discriminants are said to be "inherited", or if unknown in the parent
7451 -- are also unknown in the derived type.
7453 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7455 -- o The parent subtype must be constrained;
7457 -- o If the parent type is not a tagged type, then each discriminant of
7458 -- the derived type must be used in the constraint defining a parent
7459 -- subtype. [Implementation note: This ensures that the new discriminant
7460 -- can share storage with an existing discriminant.]
7462 -- For the derived type each discriminant of the parent type is either
7463 -- inherited, constrained to equal some new discriminant of the derived
7464 -- type, or constrained to the value of an expression.
7466 -- When inherited or constrained to equal some new discriminant, the
7467 -- parent discriminant and the discriminant of the derived type are said
7468 -- to "correspond".
7470 -- If a discriminant of the parent type is constrained to a specific value
7471 -- in the derived type definition, then the discriminant is said to be
7472 -- "specified" by that derived type definition.
7474 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7476 -- We have spoken about stored discriminants in point 1 (introduction)
7477 -- above. There are two sort of stored discriminants: implicit and
7478 -- explicit. As long as the derived type inherits the same discriminants as
7479 -- the root record type, stored discriminants are the same as regular
7480 -- discriminants, and are said to be implicit. However, if any discriminant
7481 -- in the root type was renamed in the derived type, then the derived
7482 -- type will contain explicit stored discriminants. Explicit stored
7483 -- discriminants are discriminants in addition to the semantically visible
7484 -- discriminants defined for the derived type. Stored discriminants are
7485 -- used by Gigi to figure out what are the physical discriminants in
7486 -- objects of the derived type (see precise definition in einfo.ads).
7487 -- As an example, consider the following:
7489 -- type R (D1, D2, D3 : Int) is record ... end record;
7490 -- type T1 is new R;
7491 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7492 -- type T3 is new T2;
7493 -- type T4 (Y : Int) is new T3 (Y, 99);
7495 -- The following table summarizes the discriminants and stored
7496 -- discriminants in R and T1 through T4.
7498 -- Type Discrim Stored Discrim Comment
7499 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7500 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7501 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7502 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7503 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7505 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7506 -- find the corresponding discriminant in the parent type, while
7507 -- Original_Record_Component (abbreviated ORC below), the actual physical
7508 -- component that is renamed. Finally the field Is_Completely_Hidden
7509 -- (abbreviated ICH below) is set for all explicit stored discriminants
7510 -- (see einfo.ads for more info). For the above example this gives:
7512 -- Discrim CD ORC ICH
7513 -- ^^^^^^^ ^^ ^^^ ^^^
7514 -- D1 in R empty itself no
7515 -- D2 in R empty itself no
7516 -- D3 in R empty itself no
7518 -- D1 in T1 D1 in R itself no
7519 -- D2 in T1 D2 in R itself no
7520 -- D3 in T1 D3 in R itself no
7522 -- X1 in T2 D3 in T1 D3 in T2 no
7523 -- X2 in T2 D1 in T1 D1 in T2 no
7524 -- D1 in T2 empty itself yes
7525 -- D2 in T2 empty itself yes
7526 -- D3 in T2 empty itself yes
7528 -- X1 in T3 X1 in T2 D3 in T3 no
7529 -- X2 in T3 X2 in T2 D1 in T3 no
7530 -- D1 in T3 empty itself yes
7531 -- D2 in T3 empty itself yes
7532 -- D3 in T3 empty itself yes
7534 -- Y in T4 X1 in T3 D3 in T3 no
7535 -- D1 in T3 empty itself yes
7536 -- D2 in T3 empty itself yes
7537 -- D3 in T3 empty itself yes
7539 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7541 -- Type derivation for tagged types is fairly straightforward. If no
7542 -- discriminants are specified by the derived type, these are inherited
7543 -- from the parent. No explicit stored discriminants are ever necessary.
7544 -- The only manipulation that is done to the tree is that of adding a
7545 -- _parent field with parent type and constrained to the same constraint
7546 -- specified for the parent in the derived type definition. For instance:
7548 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7549 -- type T1 is new R with null record;
7550 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7552 -- are changed into:
7554 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7555 -- _parent : R (D1, D2, D3);
7556 -- end record;
7558 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7559 -- _parent : T1 (X2, 88, X1);
7560 -- end record;
7562 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7563 -- ORC and ICH fields are:
7565 -- Discrim CD ORC ICH
7566 -- ^^^^^^^ ^^ ^^^ ^^^
7567 -- D1 in R empty itself no
7568 -- D2 in R empty itself no
7569 -- D3 in R empty itself no
7571 -- D1 in T1 D1 in R D1 in R no
7572 -- D2 in T1 D2 in R D2 in R no
7573 -- D3 in T1 D3 in R D3 in R no
7575 -- X1 in T2 D3 in T1 D3 in R no
7576 -- X2 in T2 D1 in T1 D1 in R no
7578 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7580 -- Regardless of whether we dealing with a tagged or untagged type
7581 -- we will transform all derived type declarations of the form
7583 -- type T is new R (...) [with ...];
7584 -- or
7585 -- subtype S is R (...);
7586 -- type T is new S [with ...];
7587 -- into
7588 -- type BT is new R [with ...];
7589 -- subtype T is BT (...);
7591 -- That is, the base derived type is constrained only if it has no
7592 -- discriminants. The reason for doing this is that GNAT's semantic model
7593 -- assumes that a base type with discriminants is unconstrained.
7595 -- Note that, strictly speaking, the above transformation is not always
7596 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7598 -- procedure B34011A is
7599 -- type REC (D : integer := 0) is record
7600 -- I : Integer;
7601 -- end record;
7603 -- package P is
7604 -- type T6 is new Rec;
7605 -- function F return T6;
7606 -- end P;
7608 -- use P;
7609 -- package Q6 is
7610 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7611 -- end Q6;
7613 -- The definition of Q6.U is illegal. However transforming Q6.U into
7615 -- type BaseU is new T6;
7616 -- subtype U is BaseU (Q6.F.I)
7618 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7619 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7620 -- the transformation described above.
7622 -- There is another instance where the above transformation is incorrect.
7623 -- Consider:
7625 -- package Pack is
7626 -- type Base (D : Integer) is tagged null record;
7627 -- procedure P (X : Base);
7629 -- type Der is new Base (2) with null record;
7630 -- procedure P (X : Der);
7631 -- end Pack;
7633 -- Then the above transformation turns this into
7635 -- type Der_Base is new Base with null record;
7636 -- -- procedure P (X : Base) is implicitly inherited here
7637 -- -- as procedure P (X : Der_Base).
7639 -- subtype Der is Der_Base (2);
7640 -- procedure P (X : Der);
7641 -- -- The overriding of P (X : Der_Base) is illegal since we
7642 -- -- have a parameter conformance problem.
7644 -- To get around this problem, after having semantically processed Der_Base
7645 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7646 -- Discriminant_Constraint from Der so that when parameter conformance is
7647 -- checked when P is overridden, no semantic errors are flagged.
7649 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7651 -- Regardless of whether we are dealing with a tagged or untagged type
7652 -- we will transform all derived type declarations of the form
7654 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7655 -- type T is new R [with ...];
7656 -- into
7657 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7659 -- The reason for such transformation is that it allows us to implement a
7660 -- very clean form of component inheritance as explained below.
7662 -- Note that this transformation is not achieved by direct tree rewriting
7663 -- and manipulation, but rather by redoing the semantic actions that the
7664 -- above transformation will entail. This is done directly in routine
7665 -- Inherit_Components.
7667 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7669 -- In both tagged and untagged derived types, regular non discriminant
7670 -- components are inherited in the derived type from the parent type. In
7671 -- the absence of discriminants component, inheritance is straightforward
7672 -- as components can simply be copied from the parent.
7674 -- If the parent has discriminants, inheriting components constrained with
7675 -- these discriminants requires caution. Consider the following example:
7677 -- type R (D1, D2 : Positive) is [tagged] record
7678 -- S : String (D1 .. D2);
7679 -- end record;
7681 -- type T1 is new R [with null record];
7682 -- type T2 (X : positive) is new R (1, X) [with null record];
7684 -- As explained in 6. above, T1 is rewritten as
7685 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7686 -- which makes the treatment for T1 and T2 identical.
7688 -- What we want when inheriting S, is that references to D1 and D2 in R are
7689 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7690 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7691 -- with either discriminant references in the derived type or expressions.
7692 -- This replacement is achieved as follows: before inheriting R's
7693 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7694 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7695 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7696 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7697 -- by String (1 .. X).
7699 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7701 -- We explain here the rules governing private type extensions relevant to
7702 -- type derivation. These rules are explained on the following example:
7704 -- type D [(...)] is new A [(...)] with private; <-- partial view
7705 -- type D [(...)] is new P [(...)] with null record; <-- full view
7707 -- Type A is called the ancestor subtype of the private extension.
7708 -- Type P is the parent type of the full view of the private extension. It
7709 -- must be A or a type derived from A.
7711 -- The rules concerning the discriminants of private type extensions are
7712 -- [7.3(10-13)]:
7714 -- o If a private extension inherits known discriminants from the ancestor
7715 -- subtype, then the full view must also inherit its discriminants from
7716 -- the ancestor subtype and the parent subtype of the full view must be
7717 -- constrained if and only if the ancestor subtype is constrained.
7719 -- o If a partial view has unknown discriminants, then the full view may
7720 -- define a definite or an indefinite subtype, with or without
7721 -- discriminants.
7723 -- o If a partial view has neither known nor unknown discriminants, then
7724 -- the full view must define a definite subtype.
7726 -- o If the ancestor subtype of a private extension has constrained
7727 -- discriminants, then the parent subtype of the full view must impose a
7728 -- statically matching constraint on those discriminants.
7730 -- This means that only the following forms of private extensions are
7731 -- allowed:
7733 -- type D is new A with private; <-- partial view
7734 -- type D is new P with null record; <-- full view
7736 -- If A has no discriminants than P has no discriminants, otherwise P must
7737 -- inherit A's discriminants.
7739 -- type D is new A (...) with private; <-- partial view
7740 -- type D is new P (:::) with null record; <-- full view
7742 -- P must inherit A's discriminants and (...) and (:::) must statically
7743 -- match.
7745 -- subtype A is R (...);
7746 -- type D is new A with private; <-- partial view
7747 -- type D is new P with null record; <-- full view
7749 -- P must have inherited R's discriminants and must be derived from A or
7750 -- any of its subtypes.
7752 -- type D (..) is new A with private; <-- partial view
7753 -- type D (..) is new P [(:::)] with null record; <-- full view
7755 -- No specific constraints on P's discriminants or constraint (:::).
7756 -- Note that A can be unconstrained, but the parent subtype P must either
7757 -- be constrained or (:::) must be present.
7759 -- type D (..) is new A [(...)] with private; <-- partial view
7760 -- type D (..) is new P [(:::)] with null record; <-- full view
7762 -- P's constraints on A's discriminants must statically match those
7763 -- imposed by (...).
7765 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7767 -- The full view of a private extension is handled exactly as described
7768 -- above. The model chose for the private view of a private extension is
7769 -- the same for what concerns discriminants (i.e. they receive the same
7770 -- treatment as in the tagged case). However, the private view of the
7771 -- private extension always inherits the components of the parent base,
7772 -- without replacing any discriminant reference. Strictly speaking this is
7773 -- incorrect. However, Gigi never uses this view to generate code so this
7774 -- is a purely semantic issue. In theory, a set of transformations similar
7775 -- to those given in 5. and 6. above could be applied to private views of
7776 -- private extensions to have the same model of component inheritance as
7777 -- for non private extensions. However, this is not done because it would
7778 -- further complicate private type processing. Semantically speaking, this
7779 -- leaves us in an uncomfortable situation. As an example consider:
7781 -- package Pack is
7782 -- type R (D : integer) is tagged record
7783 -- S : String (1 .. D);
7784 -- end record;
7785 -- procedure P (X : R);
7786 -- type T is new R (1) with private;
7787 -- private
7788 -- type T is new R (1) with null record;
7789 -- end;
7791 -- This is transformed into:
7793 -- package Pack is
7794 -- type R (D : integer) is tagged record
7795 -- S : String (1 .. D);
7796 -- end record;
7797 -- procedure P (X : R);
7798 -- type T is new R (1) with private;
7799 -- private
7800 -- type BaseT is new R with null record;
7801 -- subtype T is BaseT (1);
7802 -- end;
7804 -- (strictly speaking the above is incorrect Ada)
7806 -- From the semantic standpoint the private view of private extension T
7807 -- should be flagged as constrained since one can clearly have
7809 -- Obj : T;
7811 -- in a unit withing Pack. However, when deriving subprograms for the
7812 -- private view of private extension T, T must be seen as unconstrained
7813 -- since T has discriminants (this is a constraint of the current
7814 -- subprogram derivation model). Thus, when processing the private view of
7815 -- a private extension such as T, we first mark T as unconstrained, we
7816 -- process it, we perform program derivation and just before returning from
7817 -- Build_Derived_Record_Type we mark T as constrained.
7819 -- ??? Are there are other uncomfortable cases that we will have to
7820 -- deal with.
7822 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7824 -- Types that are derived from a visible record type and have a private
7825 -- extension present other peculiarities. They behave mostly like private
7826 -- types, but if they have primitive operations defined, these will not
7827 -- have the proper signatures for further inheritance, because other
7828 -- primitive operations will use the implicit base that we define for
7829 -- private derivations below. This affect subprogram inheritance (see
7830 -- Derive_Subprograms for details). We also derive the implicit base from
7831 -- the base type of the full view, so that the implicit base is a record
7832 -- type and not another private type, This avoids infinite loops.
7834 procedure Build_Derived_Record_Type
7835 (N : Node_Id;
7836 Parent_Type : Entity_Id;
7837 Derived_Type : Entity_Id;
7838 Derive_Subps : Boolean := True)
7840 Discriminant_Specs : constant Boolean :=
7841 Present (Discriminant_Specifications (N));
7842 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7843 Loc : constant Source_Ptr := Sloc (N);
7844 Private_Extension : constant Boolean :=
7845 Nkind (N) = N_Private_Extension_Declaration;
7846 Assoc_List : Elist_Id;
7847 Constraint_Present : Boolean;
7848 Constrs : Elist_Id;
7849 Discrim : Entity_Id;
7850 Indic : Node_Id;
7851 Inherit_Discrims : Boolean := False;
7852 Last_Discrim : Entity_Id;
7853 New_Base : Entity_Id;
7854 New_Decl : Node_Id;
7855 New_Discrs : Elist_Id;
7856 New_Indic : Node_Id;
7857 Parent_Base : Entity_Id;
7858 Save_Etype : Entity_Id;
7859 Save_Discr_Constr : Elist_Id;
7860 Save_Next_Entity : Entity_Id;
7861 Type_Def : Node_Id;
7863 Discs : Elist_Id := New_Elmt_List;
7864 -- An empty Discs list means that there were no constraints in the
7865 -- subtype indication or that there was an error processing it.
7867 begin
7868 if Ekind (Parent_Type) = E_Record_Type_With_Private
7869 and then Present (Full_View (Parent_Type))
7870 and then Has_Discriminants (Parent_Type)
7871 then
7872 Parent_Base := Base_Type (Full_View (Parent_Type));
7873 else
7874 Parent_Base := Base_Type (Parent_Type);
7875 end if;
7877 -- AI05-0115 : if this is a derivation from a private type in some
7878 -- other scope that may lead to invisible components for the derived
7879 -- type, mark it accordingly.
7881 if Is_Private_Type (Parent_Type) then
7882 if Scope (Parent_Type) = Scope (Derived_Type) then
7883 null;
7885 elsif In_Open_Scopes (Scope (Parent_Type))
7886 and then In_Private_Part (Scope (Parent_Type))
7887 then
7888 null;
7890 else
7891 Set_Has_Private_Ancestor (Derived_Type);
7892 end if;
7894 else
7895 Set_Has_Private_Ancestor
7896 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7897 end if;
7899 -- Before we start the previously documented transformations, here is
7900 -- little fix for size and alignment of tagged types. Normally when we
7901 -- derive type D from type P, we copy the size and alignment of P as the
7902 -- default for D, and in the absence of explicit representation clauses
7903 -- for D, the size and alignment are indeed the same as the parent.
7905 -- But this is wrong for tagged types, since fields may be added, and
7906 -- the default size may need to be larger, and the default alignment may
7907 -- need to be larger.
7909 -- We therefore reset the size and alignment fields in the tagged case.
7910 -- Note that the size and alignment will in any case be at least as
7911 -- large as the parent type (since the derived type has a copy of the
7912 -- parent type in the _parent field)
7914 -- The type is also marked as being tagged here, which is needed when
7915 -- processing components with a self-referential anonymous access type
7916 -- in the call to Check_Anonymous_Access_Components below. Note that
7917 -- this flag is also set later on for completeness.
7919 if Is_Tagged then
7920 Set_Is_Tagged_Type (Derived_Type);
7921 Init_Size_Align (Derived_Type);
7922 end if;
7924 -- STEP 0a: figure out what kind of derived type declaration we have
7926 if Private_Extension then
7927 Type_Def := N;
7928 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7929 Set_Default_SSO (Derived_Type);
7931 else
7932 Type_Def := Type_Definition (N);
7934 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7935 -- Parent_Base can be a private type or private extension. However,
7936 -- for tagged types with an extension the newly added fields are
7937 -- visible and hence the Derived_Type is always an E_Record_Type.
7938 -- (except that the parent may have its own private fields).
7939 -- For untagged types we preserve the Ekind of the Parent_Base.
7941 if Present (Record_Extension_Part (Type_Def)) then
7942 Set_Ekind (Derived_Type, E_Record_Type);
7943 Set_Default_SSO (Derived_Type);
7945 -- Create internal access types for components with anonymous
7946 -- access types.
7948 if Ada_Version >= Ada_2005 then
7949 Check_Anonymous_Access_Components
7950 (N, Derived_Type, Derived_Type,
7951 Component_List (Record_Extension_Part (Type_Def)));
7952 end if;
7954 else
7955 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7956 end if;
7957 end if;
7959 -- Indic can either be an N_Identifier if the subtype indication
7960 -- contains no constraint or an N_Subtype_Indication if the subtype
7961 -- indication has a constraint.
7963 Indic := Subtype_Indication (Type_Def);
7964 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7966 -- Check that the type has visible discriminants. The type may be
7967 -- a private type with unknown discriminants whose full view has
7968 -- discriminants which are invisible.
7970 if Constraint_Present then
7971 if not Has_Discriminants (Parent_Base)
7972 or else
7973 (Has_Unknown_Discriminants (Parent_Base)
7974 and then Is_Private_Type (Parent_Base))
7975 then
7976 Error_Msg_N
7977 ("invalid constraint: type has no discriminant",
7978 Constraint (Indic));
7980 Constraint_Present := False;
7981 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7983 elsif Is_Constrained (Parent_Type) then
7984 Error_Msg_N
7985 ("invalid constraint: parent type is already constrained",
7986 Constraint (Indic));
7988 Constraint_Present := False;
7989 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7990 end if;
7991 end if;
7993 -- STEP 0b: If needed, apply transformation given in point 5. above
7995 if not Private_Extension
7996 and then Has_Discriminants (Parent_Type)
7997 and then not Discriminant_Specs
7998 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7999 then
8000 -- First, we must analyze the constraint (see comment in point 5.)
8001 -- The constraint may come from the subtype indication of the full
8002 -- declaration.
8004 if Constraint_Present then
8005 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8007 -- If there is no explicit constraint, there might be one that is
8008 -- inherited from a constrained parent type. In that case verify that
8009 -- it conforms to the constraint in the partial view. In perverse
8010 -- cases the parent subtypes of the partial and full view can have
8011 -- different constraints.
8013 elsif Present (Stored_Constraint (Parent_Type)) then
8014 New_Discrs := Stored_Constraint (Parent_Type);
8016 else
8017 New_Discrs := No_Elist;
8018 end if;
8020 if Has_Discriminants (Derived_Type)
8021 and then Has_Private_Declaration (Derived_Type)
8022 and then Present (Discriminant_Constraint (Derived_Type))
8023 and then Present (New_Discrs)
8024 then
8025 -- Verify that constraints of the full view statically match
8026 -- those given in the partial view.
8028 declare
8029 C1, C2 : Elmt_Id;
8031 begin
8032 C1 := First_Elmt (New_Discrs);
8033 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8034 while Present (C1) and then Present (C2) loop
8035 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8036 or else
8037 (Is_OK_Static_Expression (Node (C1))
8038 and then Is_OK_Static_Expression (Node (C2))
8039 and then
8040 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8041 then
8042 null;
8044 else
8045 if Constraint_Present then
8046 Error_Msg_N
8047 ("constraint not conformant to previous declaration",
8048 Node (C1));
8049 else
8050 Error_Msg_N
8051 ("constraint of full view is incompatible "
8052 & "with partial view", N);
8053 end if;
8054 end if;
8056 Next_Elmt (C1);
8057 Next_Elmt (C2);
8058 end loop;
8059 end;
8060 end if;
8062 -- Insert and analyze the declaration for the unconstrained base type
8064 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8066 New_Decl :=
8067 Make_Full_Type_Declaration (Loc,
8068 Defining_Identifier => New_Base,
8069 Type_Definition =>
8070 Make_Derived_Type_Definition (Loc,
8071 Abstract_Present => Abstract_Present (Type_Def),
8072 Limited_Present => Limited_Present (Type_Def),
8073 Subtype_Indication =>
8074 New_Occurrence_Of (Parent_Base, Loc),
8075 Record_Extension_Part =>
8076 Relocate_Node (Record_Extension_Part (Type_Def)),
8077 Interface_List => Interface_List (Type_Def)));
8079 Set_Parent (New_Decl, Parent (N));
8080 Mark_Rewrite_Insertion (New_Decl);
8081 Insert_Before (N, New_Decl);
8083 -- In the extension case, make sure ancestor is frozen appropriately
8084 -- (see also non-discriminated case below).
8086 if Present (Record_Extension_Part (Type_Def))
8087 or else Is_Interface (Parent_Base)
8088 then
8089 Freeze_Before (New_Decl, Parent_Type);
8090 end if;
8092 -- Note that this call passes False for the Derive_Subps parameter
8093 -- because subprogram derivation is deferred until after creating
8094 -- the subtype (see below).
8096 Build_Derived_Type
8097 (New_Decl, Parent_Base, New_Base,
8098 Is_Completion => False, Derive_Subps => False);
8100 -- ??? This needs re-examination to determine whether the
8101 -- above call can simply be replaced by a call to Analyze.
8103 Set_Analyzed (New_Decl);
8105 -- Insert and analyze the declaration for the constrained subtype
8107 if Constraint_Present then
8108 New_Indic :=
8109 Make_Subtype_Indication (Loc,
8110 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8111 Constraint => Relocate_Node (Constraint (Indic)));
8113 else
8114 declare
8115 Constr_List : constant List_Id := New_List;
8116 C : Elmt_Id;
8117 Expr : Node_Id;
8119 begin
8120 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8121 while Present (C) loop
8122 Expr := Node (C);
8124 -- It is safe here to call New_Copy_Tree since we called
8125 -- Force_Evaluation on each constraint previously
8126 -- in Build_Discriminant_Constraints.
8128 Append (New_Copy_Tree (Expr), To => Constr_List);
8130 Next_Elmt (C);
8131 end loop;
8133 New_Indic :=
8134 Make_Subtype_Indication (Loc,
8135 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8136 Constraint =>
8137 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8138 end;
8139 end if;
8141 Rewrite (N,
8142 Make_Subtype_Declaration (Loc,
8143 Defining_Identifier => Derived_Type,
8144 Subtype_Indication => New_Indic));
8146 Analyze (N);
8148 -- Derivation of subprograms must be delayed until the full subtype
8149 -- has been established, to ensure proper overriding of subprograms
8150 -- inherited by full types. If the derivations occurred as part of
8151 -- the call to Build_Derived_Type above, then the check for type
8152 -- conformance would fail because earlier primitive subprograms
8153 -- could still refer to the full type prior the change to the new
8154 -- subtype and hence would not match the new base type created here.
8155 -- Subprograms are not derived, however, when Derive_Subps is False
8156 -- (since otherwise there could be redundant derivations).
8158 if Derive_Subps then
8159 Derive_Subprograms (Parent_Type, Derived_Type);
8160 end if;
8162 -- For tagged types the Discriminant_Constraint of the new base itype
8163 -- is inherited from the first subtype so that no subtype conformance
8164 -- problem arise when the first subtype overrides primitive
8165 -- operations inherited by the implicit base type.
8167 if Is_Tagged then
8168 Set_Discriminant_Constraint
8169 (New_Base, Discriminant_Constraint (Derived_Type));
8170 end if;
8172 return;
8173 end if;
8175 -- If we get here Derived_Type will have no discriminants or it will be
8176 -- a discriminated unconstrained base type.
8178 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8180 if Is_Tagged then
8182 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8183 -- The declaration of a specific descendant of an interface type
8184 -- freezes the interface type (RM 13.14).
8186 if not Private_Extension or else Is_Interface (Parent_Base) then
8187 Freeze_Before (N, Parent_Type);
8188 end if;
8190 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8191 -- cannot be declared at a deeper level than its parent type is
8192 -- removed. The check on derivation within a generic body is also
8193 -- relaxed, but there's a restriction that a derived tagged type
8194 -- cannot be declared in a generic body if it's derived directly
8195 -- or indirectly from a formal type of that generic.
8197 if Ada_Version >= Ada_2005 then
8198 if Present (Enclosing_Generic_Body (Derived_Type)) then
8199 declare
8200 Ancestor_Type : Entity_Id;
8202 begin
8203 -- Check to see if any ancestor of the derived type is a
8204 -- formal type.
8206 Ancestor_Type := Parent_Type;
8207 while not Is_Generic_Type (Ancestor_Type)
8208 and then Etype (Ancestor_Type) /= Ancestor_Type
8209 loop
8210 Ancestor_Type := Etype (Ancestor_Type);
8211 end loop;
8213 -- If the derived type does have a formal type as an
8214 -- ancestor, then it's an error if the derived type is
8215 -- declared within the body of the generic unit that
8216 -- declares the formal type in its generic formal part. It's
8217 -- sufficient to check whether the ancestor type is declared
8218 -- inside the same generic body as the derived type (such as
8219 -- within a nested generic spec), in which case the
8220 -- derivation is legal. If the formal type is declared
8221 -- outside of that generic body, then it's guaranteed that
8222 -- the derived type is declared within the generic body of
8223 -- the generic unit declaring the formal type.
8225 if Is_Generic_Type (Ancestor_Type)
8226 and then Enclosing_Generic_Body (Ancestor_Type) /=
8227 Enclosing_Generic_Body (Derived_Type)
8228 then
8229 Error_Msg_NE
8230 ("parent type of& must not be descendant of formal type"
8231 & " of an enclosing generic body",
8232 Indic, Derived_Type);
8233 end if;
8234 end;
8235 end if;
8237 elsif Type_Access_Level (Derived_Type) /=
8238 Type_Access_Level (Parent_Type)
8239 and then not Is_Generic_Type (Derived_Type)
8240 then
8241 if Is_Controlled (Parent_Type) then
8242 Error_Msg_N
8243 ("controlled type must be declared at the library level",
8244 Indic);
8245 else
8246 Error_Msg_N
8247 ("type extension at deeper accessibility level than parent",
8248 Indic);
8249 end if;
8251 else
8252 declare
8253 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8254 begin
8255 if Present (GB)
8256 and then GB /= Enclosing_Generic_Body (Parent_Base)
8257 then
8258 Error_Msg_NE
8259 ("parent type of& must not be outside generic body"
8260 & " (RM 3.9.1(4))",
8261 Indic, Derived_Type);
8262 end if;
8263 end;
8264 end if;
8265 end if;
8267 -- Ada 2005 (AI-251)
8269 if Ada_Version >= Ada_2005 and then Is_Tagged then
8271 -- "The declaration of a specific descendant of an interface type
8272 -- freezes the interface type" (RM 13.14).
8274 declare
8275 Iface : Node_Id;
8276 begin
8277 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8278 Iface := First (Interface_List (Type_Def));
8279 while Present (Iface) loop
8280 Freeze_Before (N, Etype (Iface));
8281 Next (Iface);
8282 end loop;
8283 end if;
8284 end;
8285 end if;
8287 -- STEP 1b : preliminary cleanup of the full view of private types
8289 -- If the type is already marked as having discriminants, then it's the
8290 -- completion of a private type or private extension and we need to
8291 -- retain the discriminants from the partial view if the current
8292 -- declaration has Discriminant_Specifications so that we can verify
8293 -- conformance. However, we must remove any existing components that
8294 -- were inherited from the parent (and attached in Copy_And_Swap)
8295 -- because the full type inherits all appropriate components anyway, and
8296 -- we do not want the partial view's components interfering.
8298 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8299 Discrim := First_Discriminant (Derived_Type);
8300 loop
8301 Last_Discrim := Discrim;
8302 Next_Discriminant (Discrim);
8303 exit when No (Discrim);
8304 end loop;
8306 Set_Last_Entity (Derived_Type, Last_Discrim);
8308 -- In all other cases wipe out the list of inherited components (even
8309 -- inherited discriminants), it will be properly rebuilt here.
8311 else
8312 Set_First_Entity (Derived_Type, Empty);
8313 Set_Last_Entity (Derived_Type, Empty);
8314 end if;
8316 -- STEP 1c: Initialize some flags for the Derived_Type
8318 -- The following flags must be initialized here so that
8319 -- Process_Discriminants can check that discriminants of tagged types do
8320 -- not have a default initial value and that access discriminants are
8321 -- only specified for limited records. For completeness, these flags are
8322 -- also initialized along with all the other flags below.
8324 -- AI-419: Limitedness is not inherited from an interface parent, so to
8325 -- be limited in that case the type must be explicitly declared as
8326 -- limited. However, task and protected interfaces are always limited.
8328 if Limited_Present (Type_Def) then
8329 Set_Is_Limited_Record (Derived_Type);
8331 elsif Is_Limited_Record (Parent_Type)
8332 or else (Present (Full_View (Parent_Type))
8333 and then Is_Limited_Record (Full_View (Parent_Type)))
8334 then
8335 if not Is_Interface (Parent_Type)
8336 or else Is_Synchronized_Interface (Parent_Type)
8337 or else Is_Protected_Interface (Parent_Type)
8338 or else Is_Task_Interface (Parent_Type)
8339 then
8340 Set_Is_Limited_Record (Derived_Type);
8341 end if;
8342 end if;
8344 -- STEP 2a: process discriminants of derived type if any
8346 Push_Scope (Derived_Type);
8348 if Discriminant_Specs then
8349 Set_Has_Unknown_Discriminants (Derived_Type, False);
8351 -- The following call initializes fields Has_Discriminants and
8352 -- Discriminant_Constraint, unless we are processing the completion
8353 -- of a private type declaration.
8355 Check_Or_Process_Discriminants (N, Derived_Type);
8357 -- For untagged types, the constraint on the Parent_Type must be
8358 -- present and is used to rename the discriminants.
8360 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8361 Error_Msg_N ("untagged parent must have discriminants", Indic);
8363 elsif not Is_Tagged and then not Constraint_Present then
8364 Error_Msg_N
8365 ("discriminant constraint needed for derived untagged records",
8366 Indic);
8368 -- Otherwise the parent subtype must be constrained unless we have a
8369 -- private extension.
8371 elsif not Constraint_Present
8372 and then not Private_Extension
8373 and then not Is_Constrained (Parent_Type)
8374 then
8375 Error_Msg_N
8376 ("unconstrained type not allowed in this context", Indic);
8378 elsif Constraint_Present then
8379 -- The following call sets the field Corresponding_Discriminant
8380 -- for the discriminants in the Derived_Type.
8382 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8384 -- For untagged types all new discriminants must rename
8385 -- discriminants in the parent. For private extensions new
8386 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8388 Discrim := First_Discriminant (Derived_Type);
8389 while Present (Discrim) loop
8390 if not Is_Tagged
8391 and then No (Corresponding_Discriminant (Discrim))
8392 then
8393 Error_Msg_N
8394 ("new discriminants must constrain old ones", Discrim);
8396 elsif Private_Extension
8397 and then Present (Corresponding_Discriminant (Discrim))
8398 then
8399 Error_Msg_N
8400 ("only static constraints allowed for parent"
8401 & " discriminants in the partial view", Indic);
8402 exit;
8403 end if;
8405 -- If a new discriminant is used in the constraint, then its
8406 -- subtype must be statically compatible with the parent
8407 -- discriminant's subtype (3.7(15)).
8409 -- However, if the record contains an array constrained by
8410 -- the discriminant but with some different bound, the compiler
8411 -- attemps to create a smaller range for the discriminant type.
8412 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8413 -- the discriminant type is a scalar type, the check must use
8414 -- the original discriminant type in the parent declaration.
8416 declare
8417 Corr_Disc : constant Entity_Id :=
8418 Corresponding_Discriminant (Discrim);
8419 Disc_Type : constant Entity_Id := Etype (Discrim);
8420 Corr_Type : Entity_Id;
8422 begin
8423 if Present (Corr_Disc) then
8424 if Is_Scalar_Type (Disc_Type) then
8425 Corr_Type :=
8426 Entity (Discriminant_Type (Parent (Corr_Disc)));
8427 else
8428 Corr_Type := Etype (Corr_Disc);
8429 end if;
8431 if not
8432 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8433 then
8434 Error_Msg_N
8435 ("subtype must be compatible "
8436 & "with parent discriminant",
8437 Discrim);
8438 end if;
8439 end if;
8440 end;
8442 Next_Discriminant (Discrim);
8443 end loop;
8445 -- Check whether the constraints of the full view statically
8446 -- match those imposed by the parent subtype [7.3(13)].
8448 if Present (Stored_Constraint (Derived_Type)) then
8449 declare
8450 C1, C2 : Elmt_Id;
8452 begin
8453 C1 := First_Elmt (Discs);
8454 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8455 while Present (C1) and then Present (C2) loop
8456 if not
8457 Fully_Conformant_Expressions (Node (C1), Node (C2))
8458 then
8459 Error_Msg_N
8460 ("not conformant with previous declaration",
8461 Node (C1));
8462 end if;
8464 Next_Elmt (C1);
8465 Next_Elmt (C2);
8466 end loop;
8467 end;
8468 end if;
8469 end if;
8471 -- STEP 2b: No new discriminants, inherit discriminants if any
8473 else
8474 if Private_Extension then
8475 Set_Has_Unknown_Discriminants
8476 (Derived_Type,
8477 Has_Unknown_Discriminants (Parent_Type)
8478 or else Unknown_Discriminants_Present (N));
8480 -- The partial view of the parent may have unknown discriminants,
8481 -- but if the full view has discriminants and the parent type is
8482 -- in scope they must be inherited.
8484 elsif Has_Unknown_Discriminants (Parent_Type)
8485 and then
8486 (not Has_Discriminants (Parent_Type)
8487 or else not In_Open_Scopes (Scope (Parent_Type)))
8488 then
8489 Set_Has_Unknown_Discriminants (Derived_Type);
8490 end if;
8492 if not Has_Unknown_Discriminants (Derived_Type)
8493 and then not Has_Unknown_Discriminants (Parent_Base)
8494 and then Has_Discriminants (Parent_Type)
8495 then
8496 Inherit_Discrims := True;
8497 Set_Has_Discriminants
8498 (Derived_Type, True);
8499 Set_Discriminant_Constraint
8500 (Derived_Type, Discriminant_Constraint (Parent_Base));
8501 end if;
8503 -- The following test is true for private types (remember
8504 -- transformation 5. is not applied to those) and in an error
8505 -- situation.
8507 if Constraint_Present then
8508 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8509 end if;
8511 -- For now mark a new derived type as constrained only if it has no
8512 -- discriminants. At the end of Build_Derived_Record_Type we properly
8513 -- set this flag in the case of private extensions. See comments in
8514 -- point 9. just before body of Build_Derived_Record_Type.
8516 Set_Is_Constrained
8517 (Derived_Type,
8518 not (Inherit_Discrims
8519 or else Has_Unknown_Discriminants (Derived_Type)));
8520 end if;
8522 -- STEP 3: initialize fields of derived type
8524 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8525 Set_Stored_Constraint (Derived_Type, No_Elist);
8527 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8528 -- but cannot be interfaces
8530 if not Private_Extension
8531 and then Ekind (Derived_Type) /= E_Private_Type
8532 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8533 then
8534 if Interface_Present (Type_Def) then
8535 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8536 end if;
8538 Set_Interfaces (Derived_Type, No_Elist);
8539 end if;
8541 -- Fields inherited from the Parent_Type
8543 Set_Has_Specified_Layout
8544 (Derived_Type, Has_Specified_Layout (Parent_Type));
8545 Set_Is_Limited_Composite
8546 (Derived_Type, Is_Limited_Composite (Parent_Type));
8547 Set_Is_Private_Composite
8548 (Derived_Type, Is_Private_Composite (Parent_Type));
8550 if Is_Tagged_Type (Parent_Type) then
8551 Set_No_Tagged_Streams_Pragma
8552 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8553 end if;
8555 -- Fields inherited from the Parent_Base
8557 Set_Has_Controlled_Component
8558 (Derived_Type, Has_Controlled_Component (Parent_Base));
8559 Set_Has_Non_Standard_Rep
8560 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8561 Set_Has_Primitive_Operations
8562 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8564 -- Fields inherited from the Parent_Base in the non-private case
8566 if Ekind (Derived_Type) = E_Record_Type then
8567 Set_Has_Complex_Representation
8568 (Derived_Type, Has_Complex_Representation (Parent_Base));
8569 end if;
8571 -- Fields inherited from the Parent_Base for record types
8573 if Is_Record_Type (Derived_Type) then
8574 declare
8575 Parent_Full : Entity_Id;
8577 begin
8578 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8579 -- Parent_Base can be a private type or private extension. Go
8580 -- to the full view here to get the E_Record_Type specific flags.
8582 if Present (Full_View (Parent_Base)) then
8583 Parent_Full := Full_View (Parent_Base);
8584 else
8585 Parent_Full := Parent_Base;
8586 end if;
8588 Set_OK_To_Reorder_Components
8589 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8590 end;
8591 end if;
8593 -- Set fields for private derived types
8595 if Is_Private_Type (Derived_Type) then
8596 Set_Depends_On_Private (Derived_Type, True);
8597 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8599 -- Inherit fields from non private record types. If this is the
8600 -- completion of a derivation from a private type, the parent itself
8601 -- is private, and the attributes come from its full view, which must
8602 -- be present.
8604 else
8605 if Is_Private_Type (Parent_Base)
8606 and then not Is_Record_Type (Parent_Base)
8607 then
8608 Set_Component_Alignment
8609 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8610 Set_C_Pass_By_Copy
8611 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8612 else
8613 Set_Component_Alignment
8614 (Derived_Type, Component_Alignment (Parent_Base));
8615 Set_C_Pass_By_Copy
8616 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8617 end if;
8618 end if;
8620 -- Set fields for tagged types
8622 if Is_Tagged then
8623 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8625 -- All tagged types defined in Ada.Finalization are controlled
8627 if Chars (Scope (Derived_Type)) = Name_Finalization
8628 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8629 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8630 then
8631 Set_Is_Controlled (Derived_Type);
8632 else
8633 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8634 end if;
8636 -- Minor optimization: there is no need to generate the class-wide
8637 -- entity associated with an underlying record view.
8639 if not Is_Underlying_Record_View (Derived_Type) then
8640 Make_Class_Wide_Type (Derived_Type);
8641 end if;
8643 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8645 if Has_Discriminants (Derived_Type)
8646 and then Constraint_Present
8647 then
8648 Set_Stored_Constraint
8649 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8650 end if;
8652 if Ada_Version >= Ada_2005 then
8653 declare
8654 Ifaces_List : Elist_Id;
8656 begin
8657 -- Checks rules 3.9.4 (13/2 and 14/2)
8659 if Comes_From_Source (Derived_Type)
8660 and then not Is_Private_Type (Derived_Type)
8661 and then Is_Interface (Parent_Type)
8662 and then not Is_Interface (Derived_Type)
8663 then
8664 if Is_Task_Interface (Parent_Type) then
8665 Error_Msg_N
8666 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8667 Derived_Type);
8669 elsif Is_Protected_Interface (Parent_Type) then
8670 Error_Msg_N
8671 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8672 Derived_Type);
8673 end if;
8674 end if;
8676 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8678 Check_Interfaces (N, Type_Def);
8680 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8681 -- not already in the parents.
8683 Collect_Interfaces
8684 (T => Derived_Type,
8685 Ifaces_List => Ifaces_List,
8686 Exclude_Parents => True);
8688 Set_Interfaces (Derived_Type, Ifaces_List);
8690 -- If the derived type is the anonymous type created for
8691 -- a declaration whose parent has a constraint, propagate
8692 -- the interface list to the source type. This must be done
8693 -- prior to the completion of the analysis of the source type
8694 -- because the components in the extension may contain current
8695 -- instances whose legality depends on some ancestor.
8697 if Is_Itype (Derived_Type) then
8698 declare
8699 Def : constant Node_Id :=
8700 Associated_Node_For_Itype (Derived_Type);
8701 begin
8702 if Present (Def)
8703 and then Nkind (Def) = N_Full_Type_Declaration
8704 then
8705 Set_Interfaces
8706 (Defining_Identifier (Def), Ifaces_List);
8707 end if;
8708 end;
8709 end if;
8711 -- Propagate inherited invariant information of parents
8712 -- and progenitors
8714 if Ada_Version >= Ada_2012
8715 and then not Is_Interface (Derived_Type)
8716 then
8717 if Has_Inheritable_Invariants (Parent_Type) then
8718 Set_Has_Invariants (Derived_Type);
8719 Set_Has_Inheritable_Invariants (Derived_Type);
8721 elsif not Is_Empty_Elmt_List (Ifaces_List) then
8722 declare
8723 AI : Elmt_Id;
8725 begin
8726 AI := First_Elmt (Ifaces_List);
8727 while Present (AI) loop
8728 if Has_Inheritable_Invariants (Node (AI)) then
8729 Set_Has_Invariants (Derived_Type);
8730 Set_Has_Inheritable_Invariants (Derived_Type);
8732 exit;
8733 end if;
8735 Next_Elmt (AI);
8736 end loop;
8737 end;
8738 end if;
8739 end if;
8741 -- A type extension is automatically Ghost when one of its
8742 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8743 -- also inherited when the parent type is Ghost, but this is
8744 -- done in Build_Derived_Type as the mechanism also handles
8745 -- untagged derivations.
8747 if Implements_Ghost_Interface (Derived_Type) then
8748 Set_Is_Ghost_Entity (Derived_Type);
8749 end if;
8750 end;
8751 end if;
8753 else
8754 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8755 Set_Has_Non_Standard_Rep
8756 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8757 end if;
8759 -- STEP 4: Inherit components from the parent base and constrain them.
8760 -- Apply the second transformation described in point 6. above.
8762 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8763 or else not Has_Discriminants (Parent_Type)
8764 or else not Is_Constrained (Parent_Type)
8765 then
8766 Constrs := Discs;
8767 else
8768 Constrs := Discriminant_Constraint (Parent_Type);
8769 end if;
8771 Assoc_List :=
8772 Inherit_Components
8773 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8775 -- STEP 5a: Copy the parent record declaration for untagged types
8777 if not Is_Tagged then
8779 -- Discriminant_Constraint (Derived_Type) has been properly
8780 -- constructed. Save it and temporarily set it to Empty because we
8781 -- do not want the call to New_Copy_Tree below to mess this list.
8783 if Has_Discriminants (Derived_Type) then
8784 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8785 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8786 else
8787 Save_Discr_Constr := No_Elist;
8788 end if;
8790 -- Save the Etype field of Derived_Type. It is correctly set now,
8791 -- but the call to New_Copy tree may remap it to point to itself,
8792 -- which is not what we want. Ditto for the Next_Entity field.
8794 Save_Etype := Etype (Derived_Type);
8795 Save_Next_Entity := Next_Entity (Derived_Type);
8797 -- Assoc_List maps all stored discriminants in the Parent_Base to
8798 -- stored discriminants in the Derived_Type. It is fundamental that
8799 -- no types or itypes with discriminants other than the stored
8800 -- discriminants appear in the entities declared inside
8801 -- Derived_Type, since the back end cannot deal with it.
8803 New_Decl :=
8804 New_Copy_Tree
8805 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8807 -- Restore the fields saved prior to the New_Copy_Tree call
8808 -- and compute the stored constraint.
8810 Set_Etype (Derived_Type, Save_Etype);
8811 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8813 if Has_Discriminants (Derived_Type) then
8814 Set_Discriminant_Constraint
8815 (Derived_Type, Save_Discr_Constr);
8816 Set_Stored_Constraint
8817 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8818 Replace_Components (Derived_Type, New_Decl);
8819 Set_Has_Implicit_Dereference
8820 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8821 end if;
8823 -- Insert the new derived type declaration
8825 Rewrite (N, New_Decl);
8827 -- STEP 5b: Complete the processing for record extensions in generics
8829 -- There is no completion for record extensions declared in the
8830 -- parameter part of a generic, so we need to complete processing for
8831 -- these generic record extensions here. The Record_Type_Definition call
8832 -- will change the Ekind of the components from E_Void to E_Component.
8834 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8835 Record_Type_Definition (Empty, Derived_Type);
8837 -- STEP 5c: Process the record extension for non private tagged types
8839 elsif not Private_Extension then
8840 Expand_Record_Extension (Derived_Type, Type_Def);
8842 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8843 -- derived type to propagate some semantic information. This led
8844 -- to other ASIS failures and has been removed.
8846 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8847 -- implemented interfaces if we are in expansion mode
8849 if Expander_Active
8850 and then Has_Interfaces (Derived_Type)
8851 then
8852 Add_Interface_Tag_Components (N, Derived_Type);
8853 end if;
8855 -- Analyze the record extension
8857 Record_Type_Definition
8858 (Record_Extension_Part (Type_Def), Derived_Type);
8859 end if;
8861 End_Scope;
8863 -- Nothing else to do if there is an error in the derivation.
8864 -- An unusual case: the full view may be derived from a type in an
8865 -- instance, when the partial view was used illegally as an actual
8866 -- in that instance, leading to a circular definition.
8868 if Etype (Derived_Type) = Any_Type
8869 or else Etype (Parent_Type) = Derived_Type
8870 then
8871 return;
8872 end if;
8874 -- Set delayed freeze and then derive subprograms, we need to do
8875 -- this in this order so that derived subprograms inherit the
8876 -- derived freeze if necessary.
8878 Set_Has_Delayed_Freeze (Derived_Type);
8880 if Derive_Subps then
8881 Derive_Subprograms (Parent_Type, Derived_Type);
8882 end if;
8884 -- If we have a private extension which defines a constrained derived
8885 -- type mark as constrained here after we have derived subprograms. See
8886 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8888 if Private_Extension and then Inherit_Discrims then
8889 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8890 Set_Is_Constrained (Derived_Type, True);
8891 Set_Discriminant_Constraint (Derived_Type, Discs);
8893 elsif Is_Constrained (Parent_Type) then
8894 Set_Is_Constrained
8895 (Derived_Type, True);
8896 Set_Discriminant_Constraint
8897 (Derived_Type, Discriminant_Constraint (Parent_Type));
8898 end if;
8899 end if;
8901 -- Update the class-wide type, which shares the now-completed entity
8902 -- list with its specific type. In case of underlying record views,
8903 -- we do not generate the corresponding class wide entity.
8905 if Is_Tagged
8906 and then not Is_Underlying_Record_View (Derived_Type)
8907 then
8908 Set_First_Entity
8909 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8910 Set_Last_Entity
8911 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8912 end if;
8914 Check_Function_Writable_Actuals (N);
8915 end Build_Derived_Record_Type;
8917 ------------------------
8918 -- Build_Derived_Type --
8919 ------------------------
8921 procedure Build_Derived_Type
8922 (N : Node_Id;
8923 Parent_Type : Entity_Id;
8924 Derived_Type : Entity_Id;
8925 Is_Completion : Boolean;
8926 Derive_Subps : Boolean := True)
8928 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8930 begin
8931 -- Set common attributes
8933 Set_Scope (Derived_Type, Current_Scope);
8935 Set_Etype (Derived_Type, Parent_Base);
8936 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8937 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8938 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8940 Set_Size_Info (Derived_Type, Parent_Type);
8941 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8942 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8943 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8944 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
8946 if Is_Tagged_Type (Derived_Type) then
8947 Set_No_Tagged_Streams_Pragma
8948 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8949 end if;
8951 -- If the parent has primitive routines, set the derived type link
8953 if Has_Primitive_Operations (Parent_Type) then
8954 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8955 end if;
8957 -- If the parent type is a private subtype, the convention on the base
8958 -- type may be set in the private part, and not propagated to the
8959 -- subtype until later, so we obtain the convention from the base type.
8961 Set_Convention (Derived_Type, Convention (Parent_Base));
8963 -- Set SSO default for record or array type
8965 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8966 and then Is_Base_Type (Derived_Type)
8967 then
8968 Set_Default_SSO (Derived_Type);
8969 end if;
8971 -- Propagate invariant information. The new type has invariants if
8972 -- they are inherited from the parent type, and these invariants can
8973 -- be further inherited, so both flags are set.
8975 -- We similarly inherit predicates
8977 if Has_Predicates (Parent_Type) then
8978 Set_Has_Predicates (Derived_Type);
8979 end if;
8981 -- The derived type inherits the representation clauses of the parent
8983 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8985 -- Propagate the attributes related to pragma Default_Initial_Condition
8986 -- from the parent type to the private extension. A derived type always
8987 -- inherits the default initial condition flag from the parent type. If
8988 -- the derived type carries its own Default_Initial_Condition pragma,
8989 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8990 -- mutually exclusive.
8992 Propagate_Default_Init_Cond_Attributes
8993 (From_Typ => Parent_Type,
8994 To_Typ => Derived_Type,
8995 Parent_To_Derivation => True);
8997 -- If the parent type has delayed rep aspects, then mark the derived
8998 -- type as possibly inheriting a delayed rep aspect.
9000 if Has_Delayed_Rep_Aspects (Parent_Type) then
9001 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9002 end if;
9004 -- Propagate the attributes related to pragma Ghost from the parent type
9005 -- to the derived type or type extension (SPARK RM 6.9(9)).
9007 if Is_Ghost_Entity (Parent_Type) then
9008 Set_Is_Ghost_Entity (Derived_Type);
9009 end if;
9011 -- Type dependent processing
9013 case Ekind (Parent_Type) is
9014 when Numeric_Kind =>
9015 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9017 when Array_Kind =>
9018 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9020 when E_Record_Type
9021 | E_Record_Subtype
9022 | Class_Wide_Kind =>
9023 Build_Derived_Record_Type
9024 (N, Parent_Type, Derived_Type, Derive_Subps);
9025 return;
9027 when Enumeration_Kind =>
9028 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9030 when Access_Kind =>
9031 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9033 when Incomplete_Or_Private_Kind =>
9034 Build_Derived_Private_Type
9035 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9037 -- For discriminated types, the derivation includes deriving
9038 -- primitive operations. For others it is done below.
9040 if Is_Tagged_Type (Parent_Type)
9041 or else Has_Discriminants (Parent_Type)
9042 or else (Present (Full_View (Parent_Type))
9043 and then Has_Discriminants (Full_View (Parent_Type)))
9044 then
9045 return;
9046 end if;
9048 when Concurrent_Kind =>
9049 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9051 when others =>
9052 raise Program_Error;
9053 end case;
9055 -- Nothing more to do if some error occurred
9057 if Etype (Derived_Type) = Any_Type then
9058 return;
9059 end if;
9061 -- Set delayed freeze and then derive subprograms, we need to do this
9062 -- in this order so that derived subprograms inherit the derived freeze
9063 -- if necessary.
9065 Set_Has_Delayed_Freeze (Derived_Type);
9067 if Derive_Subps then
9068 Derive_Subprograms (Parent_Type, Derived_Type);
9069 end if;
9071 Set_Has_Primitive_Operations
9072 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9073 end Build_Derived_Type;
9075 -----------------------
9076 -- Build_Discriminal --
9077 -----------------------
9079 procedure Build_Discriminal (Discrim : Entity_Id) is
9080 D_Minal : Entity_Id;
9081 CR_Disc : Entity_Id;
9083 begin
9084 -- A discriminal has the same name as the discriminant
9086 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9088 Set_Ekind (D_Minal, E_In_Parameter);
9089 Set_Mechanism (D_Minal, Default_Mechanism);
9090 Set_Etype (D_Minal, Etype (Discrim));
9091 Set_Scope (D_Minal, Current_Scope);
9093 Set_Discriminal (Discrim, D_Minal);
9094 Set_Discriminal_Link (D_Minal, Discrim);
9096 -- For task types, build at once the discriminants of the corresponding
9097 -- record, which are needed if discriminants are used in entry defaults
9098 -- and in family bounds.
9100 if Is_Concurrent_Type (Current_Scope)
9101 or else
9102 Is_Limited_Type (Current_Scope)
9103 then
9104 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9106 Set_Ekind (CR_Disc, E_In_Parameter);
9107 Set_Mechanism (CR_Disc, Default_Mechanism);
9108 Set_Etype (CR_Disc, Etype (Discrim));
9109 Set_Scope (CR_Disc, Current_Scope);
9110 Set_Discriminal_Link (CR_Disc, Discrim);
9111 Set_CR_Discriminant (Discrim, CR_Disc);
9112 end if;
9113 end Build_Discriminal;
9115 ------------------------------------
9116 -- Build_Discriminant_Constraints --
9117 ------------------------------------
9119 function Build_Discriminant_Constraints
9120 (T : Entity_Id;
9121 Def : Node_Id;
9122 Derived_Def : Boolean := False) return Elist_Id
9124 C : constant Node_Id := Constraint (Def);
9125 Nb_Discr : constant Nat := Number_Discriminants (T);
9127 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9128 -- Saves the expression corresponding to a given discriminant in T
9130 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9131 -- Return the Position number within array Discr_Expr of a discriminant
9132 -- D within the discriminant list of the discriminated type T.
9134 procedure Process_Discriminant_Expression
9135 (Expr : Node_Id;
9136 D : Entity_Id);
9137 -- If this is a discriminant constraint on a partial view, do not
9138 -- generate an overflow check on the discriminant expression. The check
9139 -- will be generated when constraining the full view. Otherwise the
9140 -- backend creates duplicate symbols for the temporaries corresponding
9141 -- to the expressions to be checked, causing spurious assembler errors.
9143 ------------------
9144 -- Pos_Of_Discr --
9145 ------------------
9147 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9148 Disc : Entity_Id;
9150 begin
9151 Disc := First_Discriminant (T);
9152 for J in Discr_Expr'Range loop
9153 if Disc = D then
9154 return J;
9155 end if;
9157 Next_Discriminant (Disc);
9158 end loop;
9160 -- Note: Since this function is called on discriminants that are
9161 -- known to belong to the discriminated type, falling through the
9162 -- loop with no match signals an internal compiler error.
9164 raise Program_Error;
9165 end Pos_Of_Discr;
9167 -------------------------------------
9168 -- Process_Discriminant_Expression --
9169 -------------------------------------
9171 procedure Process_Discriminant_Expression
9172 (Expr : Node_Id;
9173 D : Entity_Id)
9175 BDT : constant Entity_Id := Base_Type (Etype (D));
9177 begin
9178 -- If this is a discriminant constraint on a partial view, do
9179 -- not generate an overflow on the discriminant expression. The
9180 -- check will be generated when constraining the full view.
9182 if Is_Private_Type (T)
9183 and then Present (Full_View (T))
9184 then
9185 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9186 else
9187 Analyze_And_Resolve (Expr, BDT);
9188 end if;
9189 end Process_Discriminant_Expression;
9191 -- Declarations local to Build_Discriminant_Constraints
9193 Discr : Entity_Id;
9194 E : Entity_Id;
9195 Elist : constant Elist_Id := New_Elmt_List;
9197 Constr : Node_Id;
9198 Expr : Node_Id;
9199 Id : Node_Id;
9200 Position : Nat;
9201 Found : Boolean;
9203 Discrim_Present : Boolean := False;
9205 -- Start of processing for Build_Discriminant_Constraints
9207 begin
9208 -- The following loop will process positional associations only.
9209 -- For a positional association, the (single) discriminant is
9210 -- implicitly specified by position, in textual order (RM 3.7.2).
9212 Discr := First_Discriminant (T);
9213 Constr := First (Constraints (C));
9214 for D in Discr_Expr'Range loop
9215 exit when Nkind (Constr) = N_Discriminant_Association;
9217 if No (Constr) then
9218 Error_Msg_N ("too few discriminants given in constraint", C);
9219 return New_Elmt_List;
9221 elsif Nkind (Constr) = N_Range
9222 or else (Nkind (Constr) = N_Attribute_Reference
9223 and then Attribute_Name (Constr) = Name_Range)
9224 then
9225 Error_Msg_N
9226 ("a range is not a valid discriminant constraint", Constr);
9227 Discr_Expr (D) := Error;
9229 else
9230 Process_Discriminant_Expression (Constr, Discr);
9231 Discr_Expr (D) := Constr;
9232 end if;
9234 Next_Discriminant (Discr);
9235 Next (Constr);
9236 end loop;
9238 if No (Discr) and then Present (Constr) then
9239 Error_Msg_N ("too many discriminants given in constraint", Constr);
9240 return New_Elmt_List;
9241 end if;
9243 -- Named associations can be given in any order, but if both positional
9244 -- and named associations are used in the same discriminant constraint,
9245 -- then positional associations must occur first, at their normal
9246 -- position. Hence once a named association is used, the rest of the
9247 -- discriminant constraint must use only named associations.
9249 while Present (Constr) loop
9251 -- Positional association forbidden after a named association
9253 if Nkind (Constr) /= N_Discriminant_Association then
9254 Error_Msg_N ("positional association follows named one", Constr);
9255 return New_Elmt_List;
9257 -- Otherwise it is a named association
9259 else
9260 -- E records the type of the discriminants in the named
9261 -- association. All the discriminants specified in the same name
9262 -- association must have the same type.
9264 E := Empty;
9266 -- Search the list of discriminants in T to see if the simple name
9267 -- given in the constraint matches any of them.
9269 Id := First (Selector_Names (Constr));
9270 while Present (Id) loop
9271 Found := False;
9273 -- If Original_Discriminant is present, we are processing a
9274 -- generic instantiation and this is an instance node. We need
9275 -- to find the name of the corresponding discriminant in the
9276 -- actual record type T and not the name of the discriminant in
9277 -- the generic formal. Example:
9279 -- generic
9280 -- type G (D : int) is private;
9281 -- package P is
9282 -- subtype W is G (D => 1);
9283 -- end package;
9284 -- type Rec (X : int) is record ... end record;
9285 -- package Q is new P (G => Rec);
9287 -- At the point of the instantiation, formal type G is Rec
9288 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9289 -- which really looks like "subtype W is Rec (D => 1);" at
9290 -- the point of instantiation, we want to find the discriminant
9291 -- that corresponds to D in Rec, i.e. X.
9293 if Present (Original_Discriminant (Id))
9294 and then In_Instance
9295 then
9296 Discr := Find_Corresponding_Discriminant (Id, T);
9297 Found := True;
9299 else
9300 Discr := First_Discriminant (T);
9301 while Present (Discr) loop
9302 if Chars (Discr) = Chars (Id) then
9303 Found := True;
9304 exit;
9305 end if;
9307 Next_Discriminant (Discr);
9308 end loop;
9310 if not Found then
9311 Error_Msg_N ("& does not match any discriminant", Id);
9312 return New_Elmt_List;
9314 -- If the parent type is a generic formal, preserve the
9315 -- name of the discriminant for subsequent instances.
9316 -- see comment at the beginning of this if statement.
9318 elsif Is_Generic_Type (Root_Type (T)) then
9319 Set_Original_Discriminant (Id, Discr);
9320 end if;
9321 end if;
9323 Position := Pos_Of_Discr (T, Discr);
9325 if Present (Discr_Expr (Position)) then
9326 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9328 else
9329 -- Each discriminant specified in the same named association
9330 -- must be associated with a separate copy of the
9331 -- corresponding expression.
9333 if Present (Next (Id)) then
9334 Expr := New_Copy_Tree (Expression (Constr));
9335 Set_Parent (Expr, Parent (Expression (Constr)));
9336 else
9337 Expr := Expression (Constr);
9338 end if;
9340 Discr_Expr (Position) := Expr;
9341 Process_Discriminant_Expression (Expr, Discr);
9342 end if;
9344 -- A discriminant association with more than one discriminant
9345 -- name is only allowed if the named discriminants are all of
9346 -- the same type (RM 3.7.1(8)).
9348 if E = Empty then
9349 E := Base_Type (Etype (Discr));
9351 elsif Base_Type (Etype (Discr)) /= E then
9352 Error_Msg_N
9353 ("all discriminants in an association " &
9354 "must have the same type", Id);
9355 end if;
9357 Next (Id);
9358 end loop;
9359 end if;
9361 Next (Constr);
9362 end loop;
9364 -- A discriminant constraint must provide exactly one value for each
9365 -- discriminant of the type (RM 3.7.1(8)).
9367 for J in Discr_Expr'Range loop
9368 if No (Discr_Expr (J)) then
9369 Error_Msg_N ("too few discriminants given in constraint", C);
9370 return New_Elmt_List;
9371 end if;
9372 end loop;
9374 -- Determine if there are discriminant expressions in the constraint
9376 for J in Discr_Expr'Range loop
9377 if Denotes_Discriminant
9378 (Discr_Expr (J), Check_Concurrent => True)
9379 then
9380 Discrim_Present := True;
9381 end if;
9382 end loop;
9384 -- Build an element list consisting of the expressions given in the
9385 -- discriminant constraint and apply the appropriate checks. The list
9386 -- is constructed after resolving any named discriminant associations
9387 -- and therefore the expressions appear in the textual order of the
9388 -- discriminants.
9390 Discr := First_Discriminant (T);
9391 for J in Discr_Expr'Range loop
9392 if Discr_Expr (J) /= Error then
9393 Append_Elmt (Discr_Expr (J), Elist);
9395 -- If any of the discriminant constraints is given by a
9396 -- discriminant and we are in a derived type declaration we
9397 -- have a discriminant renaming. Establish link between new
9398 -- and old discriminant.
9400 if Denotes_Discriminant (Discr_Expr (J)) then
9401 if Derived_Def then
9402 Set_Corresponding_Discriminant
9403 (Entity (Discr_Expr (J)), Discr);
9404 end if;
9406 -- Force the evaluation of non-discriminant expressions.
9407 -- If we have found a discriminant in the constraint 3.4(26)
9408 -- and 3.8(18) demand that no range checks are performed are
9409 -- after evaluation. If the constraint is for a component
9410 -- definition that has a per-object constraint, expressions are
9411 -- evaluated but not checked either. In all other cases perform
9412 -- a range check.
9414 else
9415 if Discrim_Present then
9416 null;
9418 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9419 and then
9420 Has_Per_Object_Constraint
9421 (Defining_Identifier (Parent (Parent (Def))))
9422 then
9423 null;
9425 elsif Is_Access_Type (Etype (Discr)) then
9426 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9428 else
9429 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9430 end if;
9432 Force_Evaluation (Discr_Expr (J));
9433 end if;
9435 -- Check that the designated type of an access discriminant's
9436 -- expression is not a class-wide type unless the discriminant's
9437 -- designated type is also class-wide.
9439 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9440 and then not Is_Class_Wide_Type
9441 (Designated_Type (Etype (Discr)))
9442 and then Etype (Discr_Expr (J)) /= Any_Type
9443 and then Is_Class_Wide_Type
9444 (Designated_Type (Etype (Discr_Expr (J))))
9445 then
9446 Wrong_Type (Discr_Expr (J), Etype (Discr));
9448 elsif Is_Access_Type (Etype (Discr))
9449 and then not Is_Access_Constant (Etype (Discr))
9450 and then Is_Access_Type (Etype (Discr_Expr (J)))
9451 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9452 then
9453 Error_Msg_NE
9454 ("constraint for discriminant& must be access to variable",
9455 Def, Discr);
9456 end if;
9457 end if;
9459 Next_Discriminant (Discr);
9460 end loop;
9462 return Elist;
9463 end Build_Discriminant_Constraints;
9465 ---------------------------------
9466 -- Build_Discriminated_Subtype --
9467 ---------------------------------
9469 procedure Build_Discriminated_Subtype
9470 (T : Entity_Id;
9471 Def_Id : Entity_Id;
9472 Elist : Elist_Id;
9473 Related_Nod : Node_Id;
9474 For_Access : Boolean := False)
9476 Has_Discrs : constant Boolean := Has_Discriminants (T);
9477 Constrained : constant Boolean :=
9478 (Has_Discrs
9479 and then not Is_Empty_Elmt_List (Elist)
9480 and then not Is_Class_Wide_Type (T))
9481 or else Is_Constrained (T);
9483 begin
9484 if Ekind (T) = E_Record_Type then
9485 if For_Access then
9486 Set_Ekind (Def_Id, E_Private_Subtype);
9487 Set_Is_For_Access_Subtype (Def_Id, True);
9488 else
9489 Set_Ekind (Def_Id, E_Record_Subtype);
9490 end if;
9492 -- Inherit preelaboration flag from base, for types for which it
9493 -- may have been set: records, private types, protected types.
9495 Set_Known_To_Have_Preelab_Init
9496 (Def_Id, Known_To_Have_Preelab_Init (T));
9498 elsif Ekind (T) = E_Task_Type then
9499 Set_Ekind (Def_Id, E_Task_Subtype);
9501 elsif Ekind (T) = E_Protected_Type then
9502 Set_Ekind (Def_Id, E_Protected_Subtype);
9503 Set_Known_To_Have_Preelab_Init
9504 (Def_Id, Known_To_Have_Preelab_Init (T));
9506 elsif Is_Private_Type (T) then
9507 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9508 Set_Known_To_Have_Preelab_Init
9509 (Def_Id, Known_To_Have_Preelab_Init (T));
9511 -- Private subtypes may have private dependents
9513 Set_Private_Dependents (Def_Id, New_Elmt_List);
9515 elsif Is_Class_Wide_Type (T) then
9516 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9518 else
9519 -- Incomplete type. Attach subtype to list of dependents, to be
9520 -- completed with full view of parent type, unless is it the
9521 -- designated subtype of a record component within an init_proc.
9522 -- This last case arises for a component of an access type whose
9523 -- designated type is incomplete (e.g. a Taft Amendment type).
9524 -- The designated subtype is within an inner scope, and needs no
9525 -- elaboration, because only the access type is needed in the
9526 -- initialization procedure.
9528 Set_Ekind (Def_Id, Ekind (T));
9530 if For_Access and then Within_Init_Proc then
9531 null;
9532 else
9533 Append_Elmt (Def_Id, Private_Dependents (T));
9534 end if;
9535 end if;
9537 Set_Etype (Def_Id, T);
9538 Init_Size_Align (Def_Id);
9539 Set_Has_Discriminants (Def_Id, Has_Discrs);
9540 Set_Is_Constrained (Def_Id, Constrained);
9542 Set_First_Entity (Def_Id, First_Entity (T));
9543 Set_Last_Entity (Def_Id, Last_Entity (T));
9544 Set_Has_Implicit_Dereference
9545 (Def_Id, Has_Implicit_Dereference (T));
9547 -- If the subtype is the completion of a private declaration, there may
9548 -- have been representation clauses for the partial view, and they must
9549 -- be preserved. Build_Derived_Type chains the inherited clauses with
9550 -- the ones appearing on the extension. If this comes from a subtype
9551 -- declaration, all clauses are inherited.
9553 if No (First_Rep_Item (Def_Id)) then
9554 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9555 end if;
9557 if Is_Tagged_Type (T) then
9558 Set_Is_Tagged_Type (Def_Id);
9559 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9560 Make_Class_Wide_Type (Def_Id);
9561 end if;
9563 Set_Stored_Constraint (Def_Id, No_Elist);
9565 if Has_Discrs then
9566 Set_Discriminant_Constraint (Def_Id, Elist);
9567 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9568 end if;
9570 if Is_Tagged_Type (T) then
9572 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9573 -- concurrent record type (which has the list of primitive
9574 -- operations).
9576 if Ada_Version >= Ada_2005
9577 and then Is_Concurrent_Type (T)
9578 then
9579 Set_Corresponding_Record_Type (Def_Id,
9580 Corresponding_Record_Type (T));
9581 else
9582 Set_Direct_Primitive_Operations (Def_Id,
9583 Direct_Primitive_Operations (T));
9584 end if;
9586 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9587 end if;
9589 -- Subtypes introduced by component declarations do not need to be
9590 -- marked as delayed, and do not get freeze nodes, because the semantics
9591 -- verifies that the parents of the subtypes are frozen before the
9592 -- enclosing record is frozen.
9594 if not Is_Type (Scope (Def_Id)) then
9595 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9597 if Is_Private_Type (T)
9598 and then Present (Full_View (T))
9599 then
9600 Conditional_Delay (Def_Id, Full_View (T));
9601 else
9602 Conditional_Delay (Def_Id, T);
9603 end if;
9604 end if;
9606 if Is_Record_Type (T) then
9607 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9609 if Has_Discrs
9610 and then not Is_Empty_Elmt_List (Elist)
9611 and then not For_Access
9612 then
9613 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9614 elsif not For_Access then
9615 Set_Cloned_Subtype (Def_Id, T);
9616 end if;
9617 end if;
9618 end Build_Discriminated_Subtype;
9620 ---------------------------
9621 -- Build_Itype_Reference --
9622 ---------------------------
9624 procedure Build_Itype_Reference
9625 (Ityp : Entity_Id;
9626 Nod : Node_Id)
9628 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9629 begin
9631 -- Itype references are only created for use by the back-end
9633 if Inside_A_Generic then
9634 return;
9635 else
9636 Set_Itype (IR, Ityp);
9637 Insert_After (Nod, IR);
9638 end if;
9639 end Build_Itype_Reference;
9641 ------------------------
9642 -- Build_Scalar_Bound --
9643 ------------------------
9645 function Build_Scalar_Bound
9646 (Bound : Node_Id;
9647 Par_T : Entity_Id;
9648 Der_T : Entity_Id) return Node_Id
9650 New_Bound : Entity_Id;
9652 begin
9653 -- Note: not clear why this is needed, how can the original bound
9654 -- be unanalyzed at this point? and if it is, what business do we
9655 -- have messing around with it? and why is the base type of the
9656 -- parent type the right type for the resolution. It probably is
9657 -- not. It is OK for the new bound we are creating, but not for
9658 -- the old one??? Still if it never happens, no problem.
9660 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9662 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9663 New_Bound := New_Copy (Bound);
9664 Set_Etype (New_Bound, Der_T);
9665 Set_Analyzed (New_Bound);
9667 elsif Is_Entity_Name (Bound) then
9668 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9670 -- The following is almost certainly wrong. What business do we have
9671 -- relocating a node (Bound) that is presumably still attached to
9672 -- the tree elsewhere???
9674 else
9675 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9676 end if;
9678 Set_Etype (New_Bound, Der_T);
9679 return New_Bound;
9680 end Build_Scalar_Bound;
9682 --------------------------------
9683 -- Build_Underlying_Full_View --
9684 --------------------------------
9686 procedure Build_Underlying_Full_View
9687 (N : Node_Id;
9688 Typ : Entity_Id;
9689 Par : Entity_Id)
9691 Loc : constant Source_Ptr := Sloc (N);
9692 Subt : constant Entity_Id :=
9693 Make_Defining_Identifier
9694 (Loc, New_External_Name (Chars (Typ), 'S'));
9696 Constr : Node_Id;
9697 Indic : Node_Id;
9698 C : Node_Id;
9699 Id : Node_Id;
9701 procedure Set_Discriminant_Name (Id : Node_Id);
9702 -- If the derived type has discriminants, they may rename discriminants
9703 -- of the parent. When building the full view of the parent, we need to
9704 -- recover the names of the original discriminants if the constraint is
9705 -- given by named associations.
9707 ---------------------------
9708 -- Set_Discriminant_Name --
9709 ---------------------------
9711 procedure Set_Discriminant_Name (Id : Node_Id) is
9712 Disc : Entity_Id;
9714 begin
9715 Set_Original_Discriminant (Id, Empty);
9717 if Has_Discriminants (Typ) then
9718 Disc := First_Discriminant (Typ);
9719 while Present (Disc) loop
9720 if Chars (Disc) = Chars (Id)
9721 and then Present (Corresponding_Discriminant (Disc))
9722 then
9723 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9724 end if;
9725 Next_Discriminant (Disc);
9726 end loop;
9727 end if;
9728 end Set_Discriminant_Name;
9730 -- Start of processing for Build_Underlying_Full_View
9732 begin
9733 if Nkind (N) = N_Full_Type_Declaration then
9734 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9736 elsif Nkind (N) = N_Subtype_Declaration then
9737 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9739 elsif Nkind (N) = N_Component_Declaration then
9740 Constr :=
9741 New_Copy_Tree
9742 (Constraint (Subtype_Indication (Component_Definition (N))));
9744 else
9745 raise Program_Error;
9746 end if;
9748 C := First (Constraints (Constr));
9749 while Present (C) loop
9750 if Nkind (C) = N_Discriminant_Association then
9751 Id := First (Selector_Names (C));
9752 while Present (Id) loop
9753 Set_Discriminant_Name (Id);
9754 Next (Id);
9755 end loop;
9756 end if;
9758 Next (C);
9759 end loop;
9761 Indic :=
9762 Make_Subtype_Declaration (Loc,
9763 Defining_Identifier => Subt,
9764 Subtype_Indication =>
9765 Make_Subtype_Indication (Loc,
9766 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9767 Constraint => New_Copy_Tree (Constr)));
9769 -- If this is a component subtype for an outer itype, it is not
9770 -- a list member, so simply set the parent link for analysis: if
9771 -- the enclosing type does not need to be in a declarative list,
9772 -- neither do the components.
9774 if Is_List_Member (N)
9775 and then Nkind (N) /= N_Component_Declaration
9776 then
9777 Insert_Before (N, Indic);
9778 else
9779 Set_Parent (Indic, Parent (N));
9780 end if;
9782 Analyze (Indic);
9783 Set_Underlying_Full_View (Typ, Full_View (Subt));
9784 end Build_Underlying_Full_View;
9786 -------------------------------
9787 -- Check_Abstract_Overriding --
9788 -------------------------------
9790 procedure Check_Abstract_Overriding (T : Entity_Id) is
9791 Alias_Subp : Entity_Id;
9792 Elmt : Elmt_Id;
9793 Op_List : Elist_Id;
9794 Subp : Entity_Id;
9795 Type_Def : Node_Id;
9797 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9798 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9799 -- which has pragma Implemented already set. Check whether Subp's entity
9800 -- kind conforms to the implementation kind of the overridden routine.
9802 procedure Check_Pragma_Implemented
9803 (Subp : Entity_Id;
9804 Iface_Subp : Entity_Id);
9805 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9806 -- Iface_Subp and both entities have pragma Implemented already set on
9807 -- them. Check whether the two implementation kinds are conforming.
9809 procedure Inherit_Pragma_Implemented
9810 (Subp : Entity_Id;
9811 Iface_Subp : Entity_Id);
9812 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9813 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9814 -- Propagate the implementation kind of Iface_Subp to Subp.
9816 ------------------------------
9817 -- Check_Pragma_Implemented --
9818 ------------------------------
9820 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9821 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9822 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9823 Subp_Alias : constant Entity_Id := Alias (Subp);
9824 Contr_Typ : Entity_Id;
9825 Impl_Subp : Entity_Id;
9827 begin
9828 -- Subp must have an alias since it is a hidden entity used to link
9829 -- an interface subprogram to its overriding counterpart.
9831 pragma Assert (Present (Subp_Alias));
9833 -- Handle aliases to synchronized wrappers
9835 Impl_Subp := Subp_Alias;
9837 if Is_Primitive_Wrapper (Impl_Subp) then
9838 Impl_Subp := Wrapped_Entity (Impl_Subp);
9839 end if;
9841 -- Extract the type of the controlling formal
9843 Contr_Typ := Etype (First_Formal (Subp_Alias));
9845 if Is_Concurrent_Record_Type (Contr_Typ) then
9846 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9847 end if;
9849 -- An interface subprogram whose implementation kind is By_Entry must
9850 -- be implemented by an entry.
9852 if Impl_Kind = Name_By_Entry
9853 and then Ekind (Impl_Subp) /= E_Entry
9854 then
9855 Error_Msg_Node_2 := Iface_Alias;
9856 Error_Msg_NE
9857 ("type & must implement abstract subprogram & with an entry",
9858 Subp_Alias, Contr_Typ);
9860 elsif Impl_Kind = Name_By_Protected_Procedure then
9862 -- An interface subprogram whose implementation kind is By_
9863 -- Protected_Procedure cannot be implemented by a primitive
9864 -- procedure of a task type.
9866 if Ekind (Contr_Typ) /= E_Protected_Type then
9867 Error_Msg_Node_2 := Contr_Typ;
9868 Error_Msg_NE
9869 ("interface subprogram & cannot be implemented by a " &
9870 "primitive procedure of task type &", Subp_Alias,
9871 Iface_Alias);
9873 -- An interface subprogram whose implementation kind is By_
9874 -- Protected_Procedure must be implemented by a procedure.
9876 elsif Ekind (Impl_Subp) /= E_Procedure then
9877 Error_Msg_Node_2 := Iface_Alias;
9878 Error_Msg_NE
9879 ("type & must implement abstract subprogram & with a " &
9880 "procedure", Subp_Alias, Contr_Typ);
9882 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9883 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9884 then
9885 Error_Msg_Name_1 := Impl_Kind;
9886 Error_Msg_N
9887 ("overriding operation& must have synchronization%",
9888 Subp_Alias);
9889 end if;
9891 -- If primitive has Optional synchronization, overriding operation
9892 -- must match if it has an explicit synchronization..
9894 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9895 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9896 then
9897 Error_Msg_Name_1 := Impl_Kind;
9898 Error_Msg_N
9899 ("overriding operation& must have syncrhonization%",
9900 Subp_Alias);
9901 end if;
9902 end Check_Pragma_Implemented;
9904 ------------------------------
9905 -- Check_Pragma_Implemented --
9906 ------------------------------
9908 procedure Check_Pragma_Implemented
9909 (Subp : Entity_Id;
9910 Iface_Subp : Entity_Id)
9912 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9913 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9915 begin
9916 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9917 -- and overriding subprogram are different. In general this is an
9918 -- error except when the implementation kind of the overridden
9919 -- subprograms is By_Any or Optional.
9921 if Iface_Kind /= Subp_Kind
9922 and then Iface_Kind /= Name_By_Any
9923 and then Iface_Kind /= Name_Optional
9924 then
9925 if Iface_Kind = Name_By_Entry then
9926 Error_Msg_N
9927 ("incompatible implementation kind, overridden subprogram " &
9928 "is marked By_Entry", Subp);
9929 else
9930 Error_Msg_N
9931 ("incompatible implementation kind, overridden subprogram " &
9932 "is marked By_Protected_Procedure", Subp);
9933 end if;
9934 end if;
9935 end Check_Pragma_Implemented;
9937 --------------------------------
9938 -- Inherit_Pragma_Implemented --
9939 --------------------------------
9941 procedure Inherit_Pragma_Implemented
9942 (Subp : Entity_Id;
9943 Iface_Subp : Entity_Id)
9945 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9946 Loc : constant Source_Ptr := Sloc (Subp);
9947 Impl_Prag : Node_Id;
9949 begin
9950 -- Since the implementation kind is stored as a representation item
9951 -- rather than a flag, create a pragma node.
9953 Impl_Prag :=
9954 Make_Pragma (Loc,
9955 Chars => Name_Implemented,
9956 Pragma_Argument_Associations => New_List (
9957 Make_Pragma_Argument_Association (Loc,
9958 Expression => New_Occurrence_Of (Subp, Loc)),
9960 Make_Pragma_Argument_Association (Loc,
9961 Expression => Make_Identifier (Loc, Iface_Kind))));
9963 -- The pragma doesn't need to be analyzed because it is internally
9964 -- built. It is safe to directly register it as a rep item since we
9965 -- are only interested in the characters of the implementation kind.
9967 Record_Rep_Item (Subp, Impl_Prag);
9968 end Inherit_Pragma_Implemented;
9970 -- Start of processing for Check_Abstract_Overriding
9972 begin
9973 Op_List := Primitive_Operations (T);
9975 -- Loop to check primitive operations
9977 Elmt := First_Elmt (Op_List);
9978 while Present (Elmt) loop
9979 Subp := Node (Elmt);
9980 Alias_Subp := Alias (Subp);
9982 -- Inherited subprograms are identified by the fact that they do not
9983 -- come from source, and the associated source location is the
9984 -- location of the first subtype of the derived type.
9986 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9987 -- subprograms that "require overriding".
9989 -- Special exception, do not complain about failure to override the
9990 -- stream routines _Input and _Output, as well as the primitive
9991 -- operations used in dispatching selects since we always provide
9992 -- automatic overridings for these subprograms.
9994 -- Also ignore this rule for convention CIL since .NET libraries
9995 -- do bizarre things with interfaces???
9997 -- The partial view of T may have been a private extension, for
9998 -- which inherited functions dispatching on result are abstract.
9999 -- If the full view is a null extension, there is no need for
10000 -- overriding in Ada 2005, but wrappers need to be built for them
10001 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10003 if Is_Null_Extension (T)
10004 and then Has_Controlling_Result (Subp)
10005 and then Ada_Version >= Ada_2005
10006 and then Present (Alias_Subp)
10007 and then not Comes_From_Source (Subp)
10008 and then not Is_Abstract_Subprogram (Alias_Subp)
10009 and then not Is_Access_Type (Etype (Subp))
10010 then
10011 null;
10013 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10014 -- processing because this check is done with the aliased
10015 -- entity
10017 elsif Present (Interface_Alias (Subp)) then
10018 null;
10020 elsif (Is_Abstract_Subprogram (Subp)
10021 or else Requires_Overriding (Subp)
10022 or else
10023 (Has_Controlling_Result (Subp)
10024 and then Present (Alias_Subp)
10025 and then not Comes_From_Source (Subp)
10026 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10027 and then not Is_TSS (Subp, TSS_Stream_Input)
10028 and then not Is_TSS (Subp, TSS_Stream_Output)
10029 and then not Is_Abstract_Type (T)
10030 and then Convention (T) /= Convention_CIL
10031 and then not Is_Predefined_Interface_Primitive (Subp)
10033 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10034 -- with abstract interface types because the check will be done
10035 -- with the aliased entity (otherwise we generate a duplicated
10036 -- error message).
10038 and then not Present (Interface_Alias (Subp))
10039 then
10040 if Present (Alias_Subp) then
10042 -- Only perform the check for a derived subprogram when the
10043 -- type has an explicit record extension. This avoids incorrect
10044 -- flagging of abstract subprograms for the case of a type
10045 -- without an extension that is derived from a formal type
10046 -- with a tagged actual (can occur within a private part).
10048 -- Ada 2005 (AI-391): In the case of an inherited function with
10049 -- a controlling result of the type, the rule does not apply if
10050 -- the type is a null extension (unless the parent function
10051 -- itself is abstract, in which case the function must still be
10052 -- be overridden). The expander will generate an overriding
10053 -- wrapper function calling the parent subprogram (see
10054 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10056 Type_Def := Type_Definition (Parent (T));
10058 if Nkind (Type_Def) = N_Derived_Type_Definition
10059 and then Present (Record_Extension_Part (Type_Def))
10060 and then
10061 (Ada_Version < Ada_2005
10062 or else not Is_Null_Extension (T)
10063 or else Ekind (Subp) = E_Procedure
10064 or else not Has_Controlling_Result (Subp)
10065 or else Is_Abstract_Subprogram (Alias_Subp)
10066 or else Requires_Overriding (Subp)
10067 or else Is_Access_Type (Etype (Subp)))
10068 then
10069 -- Avoid reporting error in case of abstract predefined
10070 -- primitive inherited from interface type because the
10071 -- body of internally generated predefined primitives
10072 -- of tagged types are generated later by Freeze_Type
10074 if Is_Interface (Root_Type (T))
10075 and then Is_Abstract_Subprogram (Subp)
10076 and then Is_Predefined_Dispatching_Operation (Subp)
10077 and then not Comes_From_Source (Ultimate_Alias (Subp))
10078 then
10079 null;
10081 -- A null extension is not obliged to override an inherited
10082 -- procedure subject to pragma Extensions_Visible with value
10083 -- False and at least one controlling OUT parameter
10084 -- (SPARK RM 6.1.7(6)).
10086 elsif Is_Null_Extension (T)
10087 and then Is_EVF_Procedure (Subp)
10088 then
10089 null;
10091 else
10092 Error_Msg_NE
10093 ("type must be declared abstract or & overridden",
10094 T, Subp);
10096 -- Traverse the whole chain of aliased subprograms to
10097 -- complete the error notification. This is especially
10098 -- useful for traceability of the chain of entities when
10099 -- the subprogram corresponds with an interface
10100 -- subprogram (which may be defined in another package).
10102 if Present (Alias_Subp) then
10103 declare
10104 E : Entity_Id;
10106 begin
10107 E := Subp;
10108 while Present (Alias (E)) loop
10110 -- Avoid reporting redundant errors on entities
10111 -- inherited from interfaces
10113 if Sloc (E) /= Sloc (T) then
10114 Error_Msg_Sloc := Sloc (E);
10115 Error_Msg_NE
10116 ("\& has been inherited #", T, Subp);
10117 end if;
10119 E := Alias (E);
10120 end loop;
10122 Error_Msg_Sloc := Sloc (E);
10124 -- AI05-0068: report if there is an overriding
10125 -- non-abstract subprogram that is invisible.
10127 if Is_Hidden (E)
10128 and then not Is_Abstract_Subprogram (E)
10129 then
10130 Error_Msg_NE
10131 ("\& subprogram# is not visible",
10132 T, Subp);
10134 -- Clarify the case where a non-null extension must
10135 -- override inherited procedure subject to pragma
10136 -- Extensions_Visible with value False and at least
10137 -- one controlling OUT param.
10139 elsif Is_EVF_Procedure (E) then
10140 Error_Msg_NE
10141 ("\& # is subject to Extensions_Visible False",
10142 T, Subp);
10144 else
10145 Error_Msg_NE
10146 ("\& has been inherited from subprogram #",
10147 T, Subp);
10148 end if;
10149 end;
10150 end if;
10151 end if;
10153 -- Ada 2005 (AI-345): Protected or task type implementing
10154 -- abstract interfaces.
10156 elsif Is_Concurrent_Record_Type (T)
10157 and then Present (Interfaces (T))
10158 then
10159 -- There is no need to check here RM 9.4(11.9/3) since we
10160 -- are processing the corresponding record type and the
10161 -- mode of the overriding subprograms was verified by
10162 -- Check_Conformance when the corresponding concurrent
10163 -- type declaration was analyzed.
10165 Error_Msg_NE
10166 ("interface subprogram & must be overridden", T, Subp);
10168 -- Examine primitive operations of synchronized type to find
10169 -- homonyms that have the wrong profile.
10171 declare
10172 Prim : Entity_Id;
10174 begin
10175 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10176 while Present (Prim) loop
10177 if Chars (Prim) = Chars (Subp) then
10178 Error_Msg_NE
10179 ("profile is not type conformant with prefixed "
10180 & "view profile of inherited operation&",
10181 Prim, Subp);
10182 end if;
10184 Next_Entity (Prim);
10185 end loop;
10186 end;
10187 end if;
10189 else
10190 Error_Msg_Node_2 := T;
10191 Error_Msg_N
10192 ("abstract subprogram& not allowed for type&", Subp);
10194 -- Also post unconditional warning on the type (unconditional
10195 -- so that if there are more than one of these cases, we get
10196 -- them all, and not just the first one).
10198 Error_Msg_Node_2 := Subp;
10199 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10200 end if;
10202 -- A subprogram subject to pragma Extensions_Visible with value
10203 -- "True" cannot override a subprogram subject to the same pragma
10204 -- with value "False" (SPARK RM 6.1.7(5)).
10206 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10207 and then Present (Overridden_Operation (Subp))
10208 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10209 Extensions_Visible_False
10210 then
10211 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10212 Error_Msg_N
10213 ("subprogram & with Extensions_Visible True cannot override "
10214 & "subprogram # with Extensions_Visible False", Subp);
10215 end if;
10217 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10219 -- Subp is an expander-generated procedure which maps an interface
10220 -- alias to a protected wrapper. The interface alias is flagged by
10221 -- pragma Implemented. Ensure that Subp is a procedure when the
10222 -- implementation kind is By_Protected_Procedure or an entry when
10223 -- By_Entry.
10225 if Ada_Version >= Ada_2012
10226 and then Is_Hidden (Subp)
10227 and then Present (Interface_Alias (Subp))
10228 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10229 then
10230 Check_Pragma_Implemented (Subp);
10231 end if;
10233 -- Subp is an interface primitive which overrides another interface
10234 -- primitive marked with pragma Implemented.
10236 if Ada_Version >= Ada_2012
10237 and then Present (Overridden_Operation (Subp))
10238 and then Has_Rep_Pragma
10239 (Overridden_Operation (Subp), Name_Implemented)
10240 then
10241 -- If the overriding routine is also marked by Implemented, check
10242 -- that the two implementation kinds are conforming.
10244 if Has_Rep_Pragma (Subp, Name_Implemented) then
10245 Check_Pragma_Implemented
10246 (Subp => Subp,
10247 Iface_Subp => Overridden_Operation (Subp));
10249 -- Otherwise the overriding routine inherits the implementation
10250 -- kind from the overridden subprogram.
10252 else
10253 Inherit_Pragma_Implemented
10254 (Subp => Subp,
10255 Iface_Subp => Overridden_Operation (Subp));
10256 end if;
10257 end if;
10259 -- If the operation is a wrapper for a synchronized primitive, it
10260 -- may be called indirectly through a dispatching select. We assume
10261 -- that it will be referenced elsewhere indirectly, and suppress
10262 -- warnings about an unused entity.
10264 if Is_Primitive_Wrapper (Subp)
10265 and then Present (Wrapped_Entity (Subp))
10266 then
10267 Set_Referenced (Wrapped_Entity (Subp));
10268 end if;
10270 Next_Elmt (Elmt);
10271 end loop;
10272 end Check_Abstract_Overriding;
10274 ------------------------------------------------
10275 -- Check_Access_Discriminant_Requires_Limited --
10276 ------------------------------------------------
10278 procedure Check_Access_Discriminant_Requires_Limited
10279 (D : Node_Id;
10280 Loc : Node_Id)
10282 begin
10283 -- A discriminant_specification for an access discriminant shall appear
10284 -- only in the declaration for a task or protected type, or for a type
10285 -- with the reserved word 'limited' in its definition or in one of its
10286 -- ancestors (RM 3.7(10)).
10288 -- AI-0063: The proper condition is that type must be immutably limited,
10289 -- or else be a partial view.
10291 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10292 if Is_Limited_View (Current_Scope)
10293 or else
10294 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10295 and then Limited_Present (Parent (Current_Scope)))
10296 then
10297 null;
10299 else
10300 Error_Msg_N
10301 ("access discriminants allowed only for limited types", Loc);
10302 end if;
10303 end if;
10304 end Check_Access_Discriminant_Requires_Limited;
10306 -----------------------------------
10307 -- Check_Aliased_Component_Types --
10308 -----------------------------------
10310 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10311 C : Entity_Id;
10313 begin
10314 -- ??? Also need to check components of record extensions, but not
10315 -- components of protected types (which are always limited).
10317 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10318 -- types to be unconstrained. This is safe because it is illegal to
10319 -- create access subtypes to such types with explicit discriminant
10320 -- constraints.
10322 if not Is_Limited_Type (T) then
10323 if Ekind (T) = E_Record_Type then
10324 C := First_Component (T);
10325 while Present (C) loop
10326 if Is_Aliased (C)
10327 and then Has_Discriminants (Etype (C))
10328 and then not Is_Constrained (Etype (C))
10329 and then not In_Instance_Body
10330 and then Ada_Version < Ada_2005
10331 then
10332 Error_Msg_N
10333 ("aliased component must be constrained (RM 3.6(11))",
10335 end if;
10337 Next_Component (C);
10338 end loop;
10340 elsif Ekind (T) = E_Array_Type then
10341 if Has_Aliased_Components (T)
10342 and then Has_Discriminants (Component_Type (T))
10343 and then not Is_Constrained (Component_Type (T))
10344 and then not In_Instance_Body
10345 and then Ada_Version < Ada_2005
10346 then
10347 Error_Msg_N
10348 ("aliased component type must be constrained (RM 3.6(11))",
10350 end if;
10351 end if;
10352 end if;
10353 end Check_Aliased_Component_Types;
10355 ---------------------------------------
10356 -- Check_Anonymous_Access_Components --
10357 ---------------------------------------
10359 procedure Check_Anonymous_Access_Components
10360 (Typ_Decl : Node_Id;
10361 Typ : Entity_Id;
10362 Prev : Entity_Id;
10363 Comp_List : Node_Id)
10365 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10366 Anon_Access : Entity_Id;
10367 Acc_Def : Node_Id;
10368 Comp : Node_Id;
10369 Comp_Def : Node_Id;
10370 Decl : Node_Id;
10371 Type_Def : Node_Id;
10373 procedure Build_Incomplete_Type_Declaration;
10374 -- If the record type contains components that include an access to the
10375 -- current record, then create an incomplete type declaration for the
10376 -- record, to be used as the designated type of the anonymous access.
10377 -- This is done only once, and only if there is no previous partial
10378 -- view of the type.
10380 function Designates_T (Subt : Node_Id) return Boolean;
10381 -- Check whether a node designates the enclosing record type, or 'Class
10382 -- of that type
10384 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10385 -- Check whether an access definition includes a reference to
10386 -- the enclosing record type. The reference can be a subtype mark
10387 -- in the access definition itself, a 'Class attribute reference, or
10388 -- recursively a reference appearing in a parameter specification
10389 -- or result definition of an access_to_subprogram definition.
10391 --------------------------------------
10392 -- Build_Incomplete_Type_Declaration --
10393 --------------------------------------
10395 procedure Build_Incomplete_Type_Declaration is
10396 Decl : Node_Id;
10397 Inc_T : Entity_Id;
10398 H : Entity_Id;
10400 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10401 -- it's "is new ... with record" or else "is tagged record ...".
10403 Is_Tagged : constant Boolean :=
10404 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10405 and then
10406 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10407 or else
10408 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10409 and then Tagged_Present (Type_Definition (Typ_Decl)));
10411 begin
10412 -- If there is a previous partial view, no need to create a new one
10413 -- If the partial view, given by Prev, is incomplete, If Prev is
10414 -- a private declaration, full declaration is flagged accordingly.
10416 if Prev /= Typ then
10417 if Is_Tagged then
10418 Make_Class_Wide_Type (Prev);
10419 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10420 Set_Etype (Class_Wide_Type (Typ), Typ);
10421 end if;
10423 return;
10425 elsif Has_Private_Declaration (Typ) then
10427 -- If we refer to T'Class inside T, and T is the completion of a
10428 -- private type, then make sure the class-wide type exists.
10430 if Is_Tagged then
10431 Make_Class_Wide_Type (Typ);
10432 end if;
10434 return;
10436 -- If there was a previous anonymous access type, the incomplete
10437 -- type declaration will have been created already.
10439 elsif Present (Current_Entity (Typ))
10440 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10441 and then Full_View (Current_Entity (Typ)) = Typ
10442 then
10443 if Is_Tagged
10444 and then Comes_From_Source (Current_Entity (Typ))
10445 and then not Is_Tagged_Type (Current_Entity (Typ))
10446 then
10447 Make_Class_Wide_Type (Typ);
10448 Error_Msg_N
10449 ("incomplete view of tagged type should be declared tagged??",
10450 Parent (Current_Entity (Typ)));
10451 end if;
10452 return;
10454 else
10455 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10456 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10458 -- Type has already been inserted into the current scope. Remove
10459 -- it, and add incomplete declaration for type, so that subsequent
10460 -- anonymous access types can use it. The entity is unchained from
10461 -- the homonym list and from immediate visibility. After analysis,
10462 -- the entity in the incomplete declaration becomes immediately
10463 -- visible in the record declaration that follows.
10465 H := Current_Entity (Typ);
10467 if H = Typ then
10468 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10469 else
10470 while Present (H)
10471 and then Homonym (H) /= Typ
10472 loop
10473 H := Homonym (Typ);
10474 end loop;
10476 Set_Homonym (H, Homonym (Typ));
10477 end if;
10479 Insert_Before (Typ_Decl, Decl);
10480 Analyze (Decl);
10481 Set_Full_View (Inc_T, Typ);
10483 if Is_Tagged then
10485 -- Create a common class-wide type for both views, and set the
10486 -- Etype of the class-wide type to the full view.
10488 Make_Class_Wide_Type (Inc_T);
10489 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10490 Set_Etype (Class_Wide_Type (Typ), Typ);
10491 end if;
10492 end if;
10493 end Build_Incomplete_Type_Declaration;
10495 ------------------
10496 -- Designates_T --
10497 ------------------
10499 function Designates_T (Subt : Node_Id) return Boolean is
10500 Type_Id : constant Name_Id := Chars (Typ);
10502 function Names_T (Nam : Node_Id) return Boolean;
10503 -- The record type has not been introduced in the current scope
10504 -- yet, so we must examine the name of the type itself, either
10505 -- an identifier T, or an expanded name of the form P.T, where
10506 -- P denotes the current scope.
10508 -------------
10509 -- Names_T --
10510 -------------
10512 function Names_T (Nam : Node_Id) return Boolean is
10513 begin
10514 if Nkind (Nam) = N_Identifier then
10515 return Chars (Nam) = Type_Id;
10517 elsif Nkind (Nam) = N_Selected_Component then
10518 if Chars (Selector_Name (Nam)) = Type_Id then
10519 if Nkind (Prefix (Nam)) = N_Identifier then
10520 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10522 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10523 return Chars (Selector_Name (Prefix (Nam))) =
10524 Chars (Current_Scope);
10525 else
10526 return False;
10527 end if;
10529 else
10530 return False;
10531 end if;
10533 else
10534 return False;
10535 end if;
10536 end Names_T;
10538 -- Start of processing for Designates_T
10540 begin
10541 if Nkind (Subt) = N_Identifier then
10542 return Chars (Subt) = Type_Id;
10544 -- Reference can be through an expanded name which has not been
10545 -- analyzed yet, and which designates enclosing scopes.
10547 elsif Nkind (Subt) = N_Selected_Component then
10548 if Names_T (Subt) then
10549 return True;
10551 -- Otherwise it must denote an entity that is already visible.
10552 -- The access definition may name a subtype of the enclosing
10553 -- type, if there is a previous incomplete declaration for it.
10555 else
10556 Find_Selected_Component (Subt);
10557 return
10558 Is_Entity_Name (Subt)
10559 and then Scope (Entity (Subt)) = Current_Scope
10560 and then
10561 (Chars (Base_Type (Entity (Subt))) = Type_Id
10562 or else
10563 (Is_Class_Wide_Type (Entity (Subt))
10564 and then
10565 Chars (Etype (Base_Type (Entity (Subt)))) =
10566 Type_Id));
10567 end if;
10569 -- A reference to the current type may appear as the prefix of
10570 -- a 'Class attribute.
10572 elsif Nkind (Subt) = N_Attribute_Reference
10573 and then Attribute_Name (Subt) = Name_Class
10574 then
10575 return Names_T (Prefix (Subt));
10577 else
10578 return False;
10579 end if;
10580 end Designates_T;
10582 ----------------
10583 -- Mentions_T --
10584 ----------------
10586 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10587 Param_Spec : Node_Id;
10589 Acc_Subprg : constant Node_Id :=
10590 Access_To_Subprogram_Definition (Acc_Def);
10592 begin
10593 if No (Acc_Subprg) then
10594 return Designates_T (Subtype_Mark (Acc_Def));
10595 end if;
10597 -- Component is an access_to_subprogram: examine its formals,
10598 -- and result definition in the case of an access_to_function.
10600 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10601 while Present (Param_Spec) loop
10602 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10603 and then Mentions_T (Parameter_Type (Param_Spec))
10604 then
10605 return True;
10607 elsif Designates_T (Parameter_Type (Param_Spec)) then
10608 return True;
10609 end if;
10611 Next (Param_Spec);
10612 end loop;
10614 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10615 if Nkind (Result_Definition (Acc_Subprg)) =
10616 N_Access_Definition
10617 then
10618 return Mentions_T (Result_Definition (Acc_Subprg));
10619 else
10620 return Designates_T (Result_Definition (Acc_Subprg));
10621 end if;
10622 end if;
10624 return False;
10625 end Mentions_T;
10627 -- Start of processing for Check_Anonymous_Access_Components
10629 begin
10630 if No (Comp_List) then
10631 return;
10632 end if;
10634 Comp := First (Component_Items (Comp_List));
10635 while Present (Comp) loop
10636 if Nkind (Comp) = N_Component_Declaration
10637 and then Present
10638 (Access_Definition (Component_Definition (Comp)))
10639 and then
10640 Mentions_T (Access_Definition (Component_Definition (Comp)))
10641 then
10642 Comp_Def := Component_Definition (Comp);
10643 Acc_Def :=
10644 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10646 Build_Incomplete_Type_Declaration;
10647 Anon_Access := Make_Temporary (Loc, 'S');
10649 -- Create a declaration for the anonymous access type: either
10650 -- an access_to_object or an access_to_subprogram.
10652 if Present (Acc_Def) then
10653 if Nkind (Acc_Def) = N_Access_Function_Definition then
10654 Type_Def :=
10655 Make_Access_Function_Definition (Loc,
10656 Parameter_Specifications =>
10657 Parameter_Specifications (Acc_Def),
10658 Result_Definition => Result_Definition (Acc_Def));
10659 else
10660 Type_Def :=
10661 Make_Access_Procedure_Definition (Loc,
10662 Parameter_Specifications =>
10663 Parameter_Specifications (Acc_Def));
10664 end if;
10666 else
10667 Type_Def :=
10668 Make_Access_To_Object_Definition (Loc,
10669 Subtype_Indication =>
10670 Relocate_Node
10671 (Subtype_Mark (Access_Definition (Comp_Def))));
10673 Set_Constant_Present
10674 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10675 Set_All_Present
10676 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10677 end if;
10679 Set_Null_Exclusion_Present
10680 (Type_Def,
10681 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10683 Decl :=
10684 Make_Full_Type_Declaration (Loc,
10685 Defining_Identifier => Anon_Access,
10686 Type_Definition => Type_Def);
10688 Insert_Before (Typ_Decl, Decl);
10689 Analyze (Decl);
10691 -- If an access to subprogram, create the extra formals
10693 if Present (Acc_Def) then
10694 Create_Extra_Formals (Designated_Type (Anon_Access));
10696 -- If an access to object, preserve entity of designated type,
10697 -- for ASIS use, before rewriting the component definition.
10699 else
10700 declare
10701 Desig : Entity_Id;
10703 begin
10704 Desig := Entity (Subtype_Indication (Type_Def));
10706 -- If the access definition is to the current record,
10707 -- the visible entity at this point is an incomplete
10708 -- type. Retrieve the full view to simplify ASIS queries
10710 if Ekind (Desig) = E_Incomplete_Type then
10711 Desig := Full_View (Desig);
10712 end if;
10714 Set_Entity
10715 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10716 end;
10717 end if;
10719 Rewrite (Comp_Def,
10720 Make_Component_Definition (Loc,
10721 Subtype_Indication =>
10722 New_Occurrence_Of (Anon_Access, Loc)));
10724 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10725 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10726 else
10727 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10728 end if;
10730 Set_Is_Local_Anonymous_Access (Anon_Access);
10731 end if;
10733 Next (Comp);
10734 end loop;
10736 if Present (Variant_Part (Comp_List)) then
10737 declare
10738 V : Node_Id;
10739 begin
10740 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10741 while Present (V) loop
10742 Check_Anonymous_Access_Components
10743 (Typ_Decl, Typ, Prev, Component_List (V));
10744 Next_Non_Pragma (V);
10745 end loop;
10746 end;
10747 end if;
10748 end Check_Anonymous_Access_Components;
10750 ----------------------
10751 -- Check_Completion --
10752 ----------------------
10754 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10755 E : Entity_Id;
10757 procedure Post_Error;
10758 -- Post error message for lack of completion for entity E
10760 ----------------
10761 -- Post_Error --
10762 ----------------
10764 procedure Post_Error is
10766 procedure Missing_Body;
10767 -- Output missing body message
10769 ------------------
10770 -- Missing_Body --
10771 ------------------
10773 procedure Missing_Body is
10774 begin
10775 -- Spec is in same unit, so we can post on spec
10777 if In_Same_Source_Unit (Body_Id, E) then
10778 Error_Msg_N ("missing body for &", E);
10780 -- Spec is in a separate unit, so we have to post on the body
10782 else
10783 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10784 end if;
10785 end Missing_Body;
10787 -- Start of processing for Post_Error
10789 begin
10790 if not Comes_From_Source (E) then
10792 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10794 -- It may be an anonymous protected type created for a
10795 -- single variable. Post error on variable, if present.
10797 declare
10798 Var : Entity_Id;
10800 begin
10801 Var := First_Entity (Current_Scope);
10802 while Present (Var) loop
10803 exit when Etype (Var) = E
10804 and then Comes_From_Source (Var);
10806 Next_Entity (Var);
10807 end loop;
10809 if Present (Var) then
10810 E := Var;
10811 end if;
10812 end;
10813 end if;
10814 end if;
10816 -- If a generated entity has no completion, then either previous
10817 -- semantic errors have disabled the expansion phase, or else we had
10818 -- missing subunits, or else we are compiling without expansion,
10819 -- or else something is very wrong.
10821 if not Comes_From_Source (E) then
10822 pragma Assert
10823 (Serious_Errors_Detected > 0
10824 or else Configurable_Run_Time_Violations > 0
10825 or else Subunits_Missing
10826 or else not Expander_Active);
10827 return;
10829 -- Here for source entity
10831 else
10832 -- Here if no body to post the error message, so we post the error
10833 -- on the declaration that has no completion. This is not really
10834 -- the right place to post it, think about this later ???
10836 if No (Body_Id) then
10837 if Is_Type (E) then
10838 Error_Msg_NE
10839 ("missing full declaration for }", Parent (E), E);
10840 else
10841 Error_Msg_NE ("missing body for &", Parent (E), E);
10842 end if;
10844 -- Package body has no completion for a declaration that appears
10845 -- in the corresponding spec. Post error on the body, with a
10846 -- reference to the non-completed declaration.
10848 else
10849 Error_Msg_Sloc := Sloc (E);
10851 if Is_Type (E) then
10852 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10854 elsif Is_Overloadable (E)
10855 and then Current_Entity_In_Scope (E) /= E
10856 then
10857 -- It may be that the completion is mistyped and appears as
10858 -- a distinct overloading of the entity.
10860 declare
10861 Candidate : constant Entity_Id :=
10862 Current_Entity_In_Scope (E);
10863 Decl : constant Node_Id :=
10864 Unit_Declaration_Node (Candidate);
10866 begin
10867 if Is_Overloadable (Candidate)
10868 and then Ekind (Candidate) = Ekind (E)
10869 and then Nkind (Decl) = N_Subprogram_Body
10870 and then Acts_As_Spec (Decl)
10871 then
10872 Check_Type_Conformant (Candidate, E);
10874 else
10875 Missing_Body;
10876 end if;
10877 end;
10879 else
10880 Missing_Body;
10881 end if;
10882 end if;
10883 end if;
10884 end Post_Error;
10886 -- Local variables
10888 Pack_Id : constant Entity_Id := Current_Scope;
10890 -- Start of processing for Check_Completion
10892 begin
10893 E := First_Entity (Pack_Id);
10894 while Present (E) loop
10895 if Is_Intrinsic_Subprogram (E) then
10896 null;
10898 -- A Ghost entity declared in a non-Ghost package does not force the
10899 -- need for a body (SPARK RM 6.9(11)).
10901 elsif not Is_Ghost_Entity (Pack_Id) and then Is_Ghost_Entity (E) then
10902 null;
10904 -- The following situation requires special handling: a child unit
10905 -- that appears in the context clause of the body of its parent:
10907 -- procedure Parent.Child (...);
10909 -- with Parent.Child;
10910 -- package body Parent is
10912 -- Here Parent.Child appears as a local entity, but should not be
10913 -- flagged as requiring completion, because it is a compilation
10914 -- unit.
10916 -- Ignore missing completion for a subprogram that does not come from
10917 -- source (including the _Call primitive operation of RAS types,
10918 -- which has to have the flag Comes_From_Source for other purposes):
10919 -- we assume that the expander will provide the missing completion.
10920 -- In case of previous errors, other expansion actions that provide
10921 -- bodies for null procedures with not be invoked, so inhibit message
10922 -- in those cases.
10924 -- Note that E_Operator is not in the list that follows, because
10925 -- this kind is reserved for predefined operators, that are
10926 -- intrinsic and do not need completion.
10928 elsif Ekind_In (E, E_Function,
10929 E_Procedure,
10930 E_Generic_Function,
10931 E_Generic_Procedure)
10932 then
10933 if Has_Completion (E) then
10934 null;
10936 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10937 null;
10939 elsif Is_Subprogram (E)
10940 and then (not Comes_From_Source (E)
10941 or else Chars (E) = Name_uCall)
10942 then
10943 null;
10945 elsif
10946 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10947 then
10948 null;
10950 elsif Nkind (Parent (E)) = N_Procedure_Specification
10951 and then Null_Present (Parent (E))
10952 and then Serious_Errors_Detected > 0
10953 then
10954 null;
10956 else
10957 Post_Error;
10958 end if;
10960 elsif Is_Entry (E) then
10961 if not Has_Completion (E) and then
10962 (Ekind (Scope (E)) = E_Protected_Object
10963 or else Ekind (Scope (E)) = E_Protected_Type)
10964 then
10965 Post_Error;
10966 end if;
10968 elsif Is_Package_Or_Generic_Package (E) then
10969 if Unit_Requires_Body (E) then
10970 if not Has_Completion (E)
10971 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10972 N_Compilation_Unit
10973 then
10974 Post_Error;
10975 end if;
10977 elsif not Is_Child_Unit (E) then
10978 May_Need_Implicit_Body (E);
10979 end if;
10981 -- A formal incomplete type (Ada 2012) does not require a completion;
10982 -- other incomplete type declarations do.
10984 elsif Ekind (E) = E_Incomplete_Type
10985 and then No (Underlying_Type (E))
10986 and then not Is_Generic_Type (E)
10987 then
10988 Post_Error;
10990 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10991 and then not Has_Completion (E)
10992 then
10993 Post_Error;
10995 -- A single task declared in the current scope is a constant, verify
10996 -- that the body of its anonymous type is in the same scope. If the
10997 -- task is defined elsewhere, this may be a renaming declaration for
10998 -- which no completion is needed.
11000 elsif Ekind (E) = E_Constant
11001 and then Ekind (Etype (E)) = E_Task_Type
11002 and then not Has_Completion (Etype (E))
11003 and then Scope (Etype (E)) = Current_Scope
11004 then
11005 Post_Error;
11007 elsif Ekind (E) = E_Protected_Object
11008 and then not Has_Completion (Etype (E))
11009 then
11010 Post_Error;
11012 elsif Ekind (E) = E_Record_Type then
11013 if Is_Tagged_Type (E) then
11014 Check_Abstract_Overriding (E);
11015 Check_Conventions (E);
11016 end if;
11018 Check_Aliased_Component_Types (E);
11020 elsif Ekind (E) = E_Array_Type then
11021 Check_Aliased_Component_Types (E);
11023 end if;
11025 Next_Entity (E);
11026 end loop;
11027 end Check_Completion;
11029 ------------------------------------
11030 -- Check_CPP_Type_Has_No_Defaults --
11031 ------------------------------------
11033 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11034 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11035 Clist : Node_Id;
11036 Comp : Node_Id;
11038 begin
11039 -- Obtain the component list
11041 if Nkind (Tdef) = N_Record_Definition then
11042 Clist := Component_List (Tdef);
11043 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11044 Clist := Component_List (Record_Extension_Part (Tdef));
11045 end if;
11047 -- Check all components to ensure no default expressions
11049 if Present (Clist) then
11050 Comp := First (Component_Items (Clist));
11051 while Present (Comp) loop
11052 if Present (Expression (Comp)) then
11053 Error_Msg_N
11054 ("component of imported 'C'P'P type cannot have "
11055 & "default expression", Expression (Comp));
11056 end if;
11058 Next (Comp);
11059 end loop;
11060 end if;
11061 end Check_CPP_Type_Has_No_Defaults;
11063 ----------------------------
11064 -- Check_Delta_Expression --
11065 ----------------------------
11067 procedure Check_Delta_Expression (E : Node_Id) is
11068 begin
11069 if not (Is_Real_Type (Etype (E))) then
11070 Wrong_Type (E, Any_Real);
11072 elsif not Is_OK_Static_Expression (E) then
11073 Flag_Non_Static_Expr
11074 ("non-static expression used for delta value!", E);
11076 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11077 Error_Msg_N ("delta expression must be positive", E);
11079 else
11080 return;
11081 end if;
11083 -- If any of above errors occurred, then replace the incorrect
11084 -- expression by the real 0.1, which should prevent further errors.
11086 Rewrite (E,
11087 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11088 Analyze_And_Resolve (E, Standard_Float);
11089 end Check_Delta_Expression;
11091 -----------------------------
11092 -- Check_Digits_Expression --
11093 -----------------------------
11095 procedure Check_Digits_Expression (E : Node_Id) is
11096 begin
11097 if not (Is_Integer_Type (Etype (E))) then
11098 Wrong_Type (E, Any_Integer);
11100 elsif not Is_OK_Static_Expression (E) then
11101 Flag_Non_Static_Expr
11102 ("non-static expression used for digits value!", E);
11104 elsif Expr_Value (E) <= 0 then
11105 Error_Msg_N ("digits value must be greater than zero", E);
11107 else
11108 return;
11109 end if;
11111 -- If any of above errors occurred, then replace the incorrect
11112 -- expression by the integer 1, which should prevent further errors.
11114 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11115 Analyze_And_Resolve (E, Standard_Integer);
11117 end Check_Digits_Expression;
11119 --------------------------
11120 -- Check_Initialization --
11121 --------------------------
11123 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11124 begin
11125 -- Special processing for limited types
11127 if Is_Limited_Type (T)
11128 and then not In_Instance
11129 and then not In_Inlined_Body
11130 then
11131 if not OK_For_Limited_Init (T, Exp) then
11133 -- In GNAT mode, this is just a warning, to allow it to be evilly
11134 -- turned off. Otherwise it is a real error.
11136 if GNAT_Mode then
11137 Error_Msg_N
11138 ("??cannot initialize entities of limited type!", Exp);
11140 elsif Ada_Version < Ada_2005 then
11142 -- The side effect removal machinery may generate illegal Ada
11143 -- code to avoid the usage of access types and 'reference in
11144 -- SPARK mode. Since this is legal code with respect to theorem
11145 -- proving, do not emit the error.
11147 if GNATprove_Mode
11148 and then Nkind (Exp) = N_Function_Call
11149 and then Nkind (Parent (Exp)) = N_Object_Declaration
11150 and then not Comes_From_Source
11151 (Defining_Identifier (Parent (Exp)))
11152 then
11153 null;
11155 else
11156 Error_Msg_N
11157 ("cannot initialize entities of limited type", Exp);
11158 Explain_Limited_Type (T, Exp);
11159 end if;
11161 else
11162 -- Specialize error message according to kind of illegal
11163 -- initial expression.
11165 if Nkind (Exp) = N_Type_Conversion
11166 and then Nkind (Expression (Exp)) = N_Function_Call
11167 then
11168 Error_Msg_N
11169 ("illegal context for call"
11170 & " to function with limited result", Exp);
11172 else
11173 Error_Msg_N
11174 ("initialization of limited object requires aggregate "
11175 & "or function call", Exp);
11176 end if;
11177 end if;
11178 end if;
11179 end if;
11181 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11182 -- set unless we can be sure that no range check is required.
11184 if (GNATprove_Mode or not Expander_Active)
11185 and then Is_Scalar_Type (T)
11186 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11187 then
11188 Set_Do_Range_Check (Exp);
11189 end if;
11190 end Check_Initialization;
11192 ----------------------
11193 -- Check_Interfaces --
11194 ----------------------
11196 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11197 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11199 Iface : Node_Id;
11200 Iface_Def : Node_Id;
11201 Iface_Typ : Entity_Id;
11202 Parent_Node : Node_Id;
11204 Is_Task : Boolean := False;
11205 -- Set True if parent type or any progenitor is a task interface
11207 Is_Protected : Boolean := False;
11208 -- Set True if parent type or any progenitor is a protected interface
11210 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11211 -- Check that a progenitor is compatible with declaration. If an error
11212 -- message is output, it is posted on Error_Node.
11214 ------------------
11215 -- Check_Ifaces --
11216 ------------------
11218 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11219 Iface_Id : constant Entity_Id :=
11220 Defining_Identifier (Parent (Iface_Def));
11221 Type_Def : Node_Id;
11223 begin
11224 if Nkind (N) = N_Private_Extension_Declaration then
11225 Type_Def := N;
11226 else
11227 Type_Def := Type_Definition (N);
11228 end if;
11230 if Is_Task_Interface (Iface_Id) then
11231 Is_Task := True;
11233 elsif Is_Protected_Interface (Iface_Id) then
11234 Is_Protected := True;
11235 end if;
11237 if Is_Synchronized_Interface (Iface_Id) then
11239 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11240 -- extension derived from a synchronized interface must explicitly
11241 -- be declared synchronized, because the full view will be a
11242 -- synchronized type.
11244 if Nkind (N) = N_Private_Extension_Declaration then
11245 if not Synchronized_Present (N) then
11246 Error_Msg_NE
11247 ("private extension of& must be explicitly synchronized",
11248 N, Iface_Id);
11249 end if;
11251 -- However, by 3.9.4(16/2), a full type that is a record extension
11252 -- is never allowed to derive from a synchronized interface (note
11253 -- that interfaces must be excluded from this check, because those
11254 -- are represented by derived type definitions in some cases).
11256 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11257 and then not Interface_Present (Type_Definition (N))
11258 then
11259 Error_Msg_N ("record extension cannot derive from synchronized "
11260 & "interface", Error_Node);
11261 end if;
11262 end if;
11264 -- Check that the characteristics of the progenitor are compatible
11265 -- with the explicit qualifier in the declaration.
11266 -- The check only applies to qualifiers that come from source.
11267 -- Limited_Present also appears in the declaration of corresponding
11268 -- records, and the check does not apply to them.
11270 if Limited_Present (Type_Def)
11271 and then not
11272 Is_Concurrent_Record_Type (Defining_Identifier (N))
11273 then
11274 if Is_Limited_Interface (Parent_Type)
11275 and then not Is_Limited_Interface (Iface_Id)
11276 then
11277 Error_Msg_NE
11278 ("progenitor & must be limited interface",
11279 Error_Node, Iface_Id);
11281 elsif
11282 (Task_Present (Iface_Def)
11283 or else Protected_Present (Iface_Def)
11284 or else Synchronized_Present (Iface_Def))
11285 and then Nkind (N) /= N_Private_Extension_Declaration
11286 and then not Error_Posted (N)
11287 then
11288 Error_Msg_NE
11289 ("progenitor & must be limited interface",
11290 Error_Node, Iface_Id);
11291 end if;
11293 -- Protected interfaces can only inherit from limited, synchronized
11294 -- or protected interfaces.
11296 elsif Nkind (N) = N_Full_Type_Declaration
11297 and then Protected_Present (Type_Def)
11298 then
11299 if Limited_Present (Iface_Def)
11300 or else Synchronized_Present (Iface_Def)
11301 or else Protected_Present (Iface_Def)
11302 then
11303 null;
11305 elsif Task_Present (Iface_Def) then
11306 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11307 & "from task interface", Error_Node);
11309 else
11310 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11311 & "from non-limited interface", Error_Node);
11312 end if;
11314 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11315 -- limited and synchronized.
11317 elsif Synchronized_Present (Type_Def) then
11318 if Limited_Present (Iface_Def)
11319 or else Synchronized_Present (Iface_Def)
11320 then
11321 null;
11323 elsif Protected_Present (Iface_Def)
11324 and then Nkind (N) /= N_Private_Extension_Declaration
11325 then
11326 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11327 & "from protected interface", Error_Node);
11329 elsif Task_Present (Iface_Def)
11330 and then Nkind (N) /= N_Private_Extension_Declaration
11331 then
11332 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11333 & "from task interface", Error_Node);
11335 elsif not Is_Limited_Interface (Iface_Id) then
11336 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11337 & "from non-limited interface", Error_Node);
11338 end if;
11340 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11341 -- synchronized or task interfaces.
11343 elsif Nkind (N) = N_Full_Type_Declaration
11344 and then Task_Present (Type_Def)
11345 then
11346 if Limited_Present (Iface_Def)
11347 or else Synchronized_Present (Iface_Def)
11348 or else Task_Present (Iface_Def)
11349 then
11350 null;
11352 elsif Protected_Present (Iface_Def) then
11353 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11354 & "protected interface", Error_Node);
11356 else
11357 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11358 & "non-limited interface", Error_Node);
11359 end if;
11360 end if;
11361 end Check_Ifaces;
11363 -- Start of processing for Check_Interfaces
11365 begin
11366 if Is_Interface (Parent_Type) then
11367 if Is_Task_Interface (Parent_Type) then
11368 Is_Task := True;
11370 elsif Is_Protected_Interface (Parent_Type) then
11371 Is_Protected := True;
11372 end if;
11373 end if;
11375 if Nkind (N) = N_Private_Extension_Declaration then
11377 -- Check that progenitors are compatible with declaration
11379 Iface := First (Interface_List (Def));
11380 while Present (Iface) loop
11381 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11383 Parent_Node := Parent (Base_Type (Iface_Typ));
11384 Iface_Def := Type_Definition (Parent_Node);
11386 if not Is_Interface (Iface_Typ) then
11387 Diagnose_Interface (Iface, Iface_Typ);
11388 else
11389 Check_Ifaces (Iface_Def, Iface);
11390 end if;
11392 Next (Iface);
11393 end loop;
11395 if Is_Task and Is_Protected then
11396 Error_Msg_N
11397 ("type cannot derive from task and protected interface", N);
11398 end if;
11400 return;
11401 end if;
11403 -- Full type declaration of derived type.
11404 -- Check compatibility with parent if it is interface type
11406 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11407 and then Is_Interface (Parent_Type)
11408 then
11409 Parent_Node := Parent (Parent_Type);
11411 -- More detailed checks for interface varieties
11413 Check_Ifaces
11414 (Iface_Def => Type_Definition (Parent_Node),
11415 Error_Node => Subtype_Indication (Type_Definition (N)));
11416 end if;
11418 Iface := First (Interface_List (Def));
11419 while Present (Iface) loop
11420 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11422 Parent_Node := Parent (Base_Type (Iface_Typ));
11423 Iface_Def := Type_Definition (Parent_Node);
11425 if not Is_Interface (Iface_Typ) then
11426 Diagnose_Interface (Iface, Iface_Typ);
11428 else
11429 -- "The declaration of a specific descendant of an interface
11430 -- type freezes the interface type" RM 13.14
11432 Freeze_Before (N, Iface_Typ);
11433 Check_Ifaces (Iface_Def, Error_Node => Iface);
11434 end if;
11436 Next (Iface);
11437 end loop;
11439 if Is_Task and Is_Protected then
11440 Error_Msg_N
11441 ("type cannot derive from task and protected interface", N);
11442 end if;
11443 end Check_Interfaces;
11445 ------------------------------------
11446 -- Check_Or_Process_Discriminants --
11447 ------------------------------------
11449 -- If an incomplete or private type declaration was already given for the
11450 -- type, the discriminants may have already been processed if they were
11451 -- present on the incomplete declaration. In this case a full conformance
11452 -- check has been performed in Find_Type_Name, and we then recheck here
11453 -- some properties that can't be checked on the partial view alone.
11454 -- Otherwise we call Process_Discriminants.
11456 procedure Check_Or_Process_Discriminants
11457 (N : Node_Id;
11458 T : Entity_Id;
11459 Prev : Entity_Id := Empty)
11461 begin
11462 if Has_Discriminants (T) then
11464 -- Discriminants are already set on T if they were already present
11465 -- on the partial view. Make them visible to component declarations.
11467 declare
11468 D : Entity_Id;
11469 -- Discriminant on T (full view) referencing expr on partial view
11471 Prev_D : Entity_Id;
11472 -- Entity of corresponding discriminant on partial view
11474 New_D : Node_Id;
11475 -- Discriminant specification for full view, expression is
11476 -- the syntactic copy on full view (which has been checked for
11477 -- conformance with partial view), only used here to post error
11478 -- message.
11480 begin
11481 D := First_Discriminant (T);
11482 New_D := First (Discriminant_Specifications (N));
11483 while Present (D) loop
11484 Prev_D := Current_Entity (D);
11485 Set_Current_Entity (D);
11486 Set_Is_Immediately_Visible (D);
11487 Set_Homonym (D, Prev_D);
11489 -- Handle the case where there is an untagged partial view and
11490 -- the full view is tagged: must disallow discriminants with
11491 -- defaults, unless compiling for Ada 2012, which allows a
11492 -- limited tagged type to have defaulted discriminants (see
11493 -- AI05-0214). However, suppress error here if it was already
11494 -- reported on the default expression of the partial view.
11496 if Is_Tagged_Type (T)
11497 and then Present (Expression (Parent (D)))
11498 and then (not Is_Limited_Type (Current_Scope)
11499 or else Ada_Version < Ada_2012)
11500 and then not Error_Posted (Expression (Parent (D)))
11501 then
11502 if Ada_Version >= Ada_2012 then
11503 Error_Msg_N
11504 ("discriminants of nonlimited tagged type cannot have "
11505 & "defaults",
11506 Expression (New_D));
11507 else
11508 Error_Msg_N
11509 ("discriminants of tagged type cannot have defaults",
11510 Expression (New_D));
11511 end if;
11512 end if;
11514 -- Ada 2005 (AI-230): Access discriminant allowed in
11515 -- non-limited record types.
11517 if Ada_Version < Ada_2005 then
11519 -- This restriction gets applied to the full type here. It
11520 -- has already been applied earlier to the partial view.
11522 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11523 end if;
11525 Next_Discriminant (D);
11526 Next (New_D);
11527 end loop;
11528 end;
11530 elsif Present (Discriminant_Specifications (N)) then
11531 Process_Discriminants (N, Prev);
11532 end if;
11533 end Check_Or_Process_Discriminants;
11535 ----------------------
11536 -- Check_Real_Bound --
11537 ----------------------
11539 procedure Check_Real_Bound (Bound : Node_Id) is
11540 begin
11541 if not Is_Real_Type (Etype (Bound)) then
11542 Error_Msg_N
11543 ("bound in real type definition must be of real type", Bound);
11545 elsif not Is_OK_Static_Expression (Bound) then
11546 Flag_Non_Static_Expr
11547 ("non-static expression used for real type bound!", Bound);
11549 else
11550 return;
11551 end if;
11553 Rewrite
11554 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11555 Analyze (Bound);
11556 Resolve (Bound, Standard_Float);
11557 end Check_Real_Bound;
11559 ------------------------------
11560 -- Complete_Private_Subtype --
11561 ------------------------------
11563 procedure Complete_Private_Subtype
11564 (Priv : Entity_Id;
11565 Full : Entity_Id;
11566 Full_Base : Entity_Id;
11567 Related_Nod : Node_Id)
11569 Save_Next_Entity : Entity_Id;
11570 Save_Homonym : Entity_Id;
11572 begin
11573 -- Set semantic attributes for (implicit) private subtype completion.
11574 -- If the full type has no discriminants, then it is a copy of the
11575 -- full view of the base. Otherwise, it is a subtype of the base with
11576 -- a possible discriminant constraint. Save and restore the original
11577 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11578 -- not corrupt the entity chain.
11580 -- Note that the type of the full view is the same entity as the type
11581 -- of the partial view. In this fashion, the subtype has access to the
11582 -- correct view of the parent.
11584 Save_Next_Entity := Next_Entity (Full);
11585 Save_Homonym := Homonym (Priv);
11587 case Ekind (Full_Base) is
11588 when E_Record_Type |
11589 E_Record_Subtype |
11590 Class_Wide_Kind |
11591 Private_Kind |
11592 Task_Kind |
11593 Protected_Kind =>
11594 Copy_Node (Priv, Full);
11596 Set_Has_Discriminants
11597 (Full, Has_Discriminants (Full_Base));
11598 Set_Has_Unknown_Discriminants
11599 (Full, Has_Unknown_Discriminants (Full_Base));
11600 Set_First_Entity (Full, First_Entity (Full_Base));
11601 Set_Last_Entity (Full, Last_Entity (Full_Base));
11603 -- If the underlying base type is constrained, we know that the
11604 -- full view of the subtype is constrained as well (the converse
11605 -- is not necessarily true).
11607 if Is_Constrained (Full_Base) then
11608 Set_Is_Constrained (Full);
11609 end if;
11611 when others =>
11612 Copy_Node (Full_Base, Full);
11614 Set_Chars (Full, Chars (Priv));
11615 Conditional_Delay (Full, Priv);
11616 Set_Sloc (Full, Sloc (Priv));
11617 end case;
11619 Set_Next_Entity (Full, Save_Next_Entity);
11620 Set_Homonym (Full, Save_Homonym);
11621 Set_Associated_Node_For_Itype (Full, Related_Nod);
11623 -- Set common attributes for all subtypes: kind, convention, etc.
11625 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11626 Set_Convention (Full, Convention (Full_Base));
11628 -- The Etype of the full view is inconsistent. Gigi needs to see the
11629 -- structural full view, which is what the current scheme gives: the
11630 -- Etype of the full view is the etype of the full base. However, if the
11631 -- full base is a derived type, the full view then looks like a subtype
11632 -- of the parent, not a subtype of the full base. If instead we write:
11634 -- Set_Etype (Full, Full_Base);
11636 -- then we get inconsistencies in the front-end (confusion between
11637 -- views). Several outstanding bugs are related to this ???
11639 Set_Is_First_Subtype (Full, False);
11640 Set_Scope (Full, Scope (Priv));
11641 Set_Size_Info (Full, Full_Base);
11642 Set_RM_Size (Full, RM_Size (Full_Base));
11643 Set_Is_Itype (Full);
11645 -- A subtype of a private-type-without-discriminants, whose full-view
11646 -- has discriminants with default expressions, is not constrained.
11648 if not Has_Discriminants (Priv) then
11649 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11651 if Has_Discriminants (Full_Base) then
11652 Set_Discriminant_Constraint
11653 (Full, Discriminant_Constraint (Full_Base));
11655 -- The partial view may have been indefinite, the full view
11656 -- might not be.
11658 Set_Has_Unknown_Discriminants
11659 (Full, Has_Unknown_Discriminants (Full_Base));
11660 end if;
11661 end if;
11663 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11664 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11666 -- Freeze the private subtype entity if its parent is delayed, and not
11667 -- already frozen. We skip this processing if the type is an anonymous
11668 -- subtype of a record component, or is the corresponding record of a
11669 -- protected type, since these are processed when the enclosing type
11670 -- is frozen.
11672 if not Is_Type (Scope (Full)) then
11673 Set_Has_Delayed_Freeze (Full,
11674 Has_Delayed_Freeze (Full_Base)
11675 and then (not Is_Frozen (Full_Base)));
11676 end if;
11678 Set_Freeze_Node (Full, Empty);
11679 Set_Is_Frozen (Full, False);
11680 Set_Full_View (Priv, Full);
11682 if Has_Discriminants (Full) then
11683 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11684 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11686 if Has_Unknown_Discriminants (Full) then
11687 Set_Discriminant_Constraint (Full, No_Elist);
11688 end if;
11689 end if;
11691 if Ekind (Full_Base) = E_Record_Type
11692 and then Has_Discriminants (Full_Base)
11693 and then Has_Discriminants (Priv) -- might not, if errors
11694 and then not Has_Unknown_Discriminants (Priv)
11695 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11696 then
11697 Create_Constrained_Components
11698 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11700 -- If the full base is itself derived from private, build a congruent
11701 -- subtype of its underlying type, for use by the back end. For a
11702 -- constrained record component, the declaration cannot be placed on
11703 -- the component list, but it must nevertheless be built an analyzed, to
11704 -- supply enough information for Gigi to compute the size of component.
11706 elsif Ekind (Full_Base) in Private_Kind
11707 and then Is_Derived_Type (Full_Base)
11708 and then Has_Discriminants (Full_Base)
11709 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11710 then
11711 if not Is_Itype (Priv)
11712 and then
11713 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11714 then
11715 Build_Underlying_Full_View
11716 (Parent (Priv), Full, Etype (Full_Base));
11718 elsif Nkind (Related_Nod) = N_Component_Declaration then
11719 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11720 end if;
11722 elsif Is_Record_Type (Full_Base) then
11724 -- Show Full is simply a renaming of Full_Base
11726 Set_Cloned_Subtype (Full, Full_Base);
11727 end if;
11729 -- It is unsafe to share the bounds of a scalar type, because the Itype
11730 -- is elaborated on demand, and if a bound is non-static then different
11731 -- orders of elaboration in different units will lead to different
11732 -- external symbols.
11734 if Is_Scalar_Type (Full_Base) then
11735 Set_Scalar_Range (Full,
11736 Make_Range (Sloc (Related_Nod),
11737 Low_Bound =>
11738 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11739 High_Bound =>
11740 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11742 -- This completion inherits the bounds of the full parent, but if
11743 -- the parent is an unconstrained floating point type, so is the
11744 -- completion.
11746 if Is_Floating_Point_Type (Full_Base) then
11747 Set_Includes_Infinities
11748 (Scalar_Range (Full), Has_Infinities (Full_Base));
11749 end if;
11750 end if;
11752 -- ??? It seems that a lot of fields are missing that should be copied
11753 -- from Full_Base to Full. Here are some that are introduced in a
11754 -- non-disruptive way but a cleanup is necessary.
11756 if Is_Tagged_Type (Full_Base) then
11757 Set_Is_Tagged_Type (Full);
11758 Set_Direct_Primitive_Operations
11759 (Full, Direct_Primitive_Operations (Full_Base));
11760 Set_No_Tagged_Streams_Pragma
11761 (Full, No_Tagged_Streams_Pragma (Full_Base));
11763 -- Inherit class_wide type of full_base in case the partial view was
11764 -- not tagged. Otherwise it has already been created when the private
11765 -- subtype was analyzed.
11767 if No (Class_Wide_Type (Full)) then
11768 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11769 end if;
11771 -- If this is a subtype of a protected or task type, constrain its
11772 -- corresponding record, unless this is a subtype without constraints,
11773 -- i.e. a simple renaming as with an actual subtype in an instance.
11775 elsif Is_Concurrent_Type (Full_Base) then
11776 if Has_Discriminants (Full)
11777 and then Present (Corresponding_Record_Type (Full_Base))
11778 and then
11779 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11780 then
11781 Set_Corresponding_Record_Type (Full,
11782 Constrain_Corresponding_Record
11783 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11785 else
11786 Set_Corresponding_Record_Type (Full,
11787 Corresponding_Record_Type (Full_Base));
11788 end if;
11789 end if;
11791 -- Link rep item chain, and also setting of Has_Predicates from private
11792 -- subtype to full subtype, since we will need these on the full subtype
11793 -- to create the predicate function. Note that the full subtype may
11794 -- already have rep items, inherited from the full view of the base
11795 -- type, so we must be sure not to overwrite these entries.
11797 declare
11798 Append : Boolean;
11799 Item : Node_Id;
11800 Next_Item : Node_Id;
11802 begin
11803 Item := First_Rep_Item (Full);
11805 -- If no existing rep items on full type, we can just link directly
11806 -- to the list of items on the private type, if any exist.. Same if
11807 -- the rep items are only those inherited from the base
11809 if (No (Item)
11810 or else Nkind (Item) /= N_Aspect_Specification
11811 or else Entity (Item) = Full_Base)
11812 and then Present (First_Rep_Item (Priv))
11813 then
11814 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11816 -- Otherwise, search to the end of items currently linked to the full
11817 -- subtype and append the private items to the end. However, if Priv
11818 -- and Full already have the same list of rep items, then the append
11819 -- is not done, as that would create a circularity.
11821 elsif Item /= First_Rep_Item (Priv) then
11822 Append := True;
11823 loop
11824 Next_Item := Next_Rep_Item (Item);
11825 exit when No (Next_Item);
11826 Item := Next_Item;
11828 -- If the private view has aspect specifications, the full view
11829 -- inherits them. Since these aspects may already have been
11830 -- attached to the full view during derivation, do not append
11831 -- them if already present.
11833 if Item = First_Rep_Item (Priv) then
11834 Append := False;
11835 exit;
11836 end if;
11837 end loop;
11839 -- And link the private type items at the end of the chain
11841 if Append then
11842 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11843 end if;
11844 end if;
11845 end;
11847 -- Make sure Has_Predicates is set on full type if it is set on the
11848 -- private type. Note that it may already be set on the full type and
11849 -- if so, we don't want to unset it. Similarly, propagate information
11850 -- about delayed aspects, because the corresponding pragmas must be
11851 -- analyzed when one of the views is frozen. This last step is needed
11852 -- in particular when the full type is a scalar type for which an
11853 -- anonymous base type is constructed.
11855 if Has_Predicates (Priv) then
11856 Set_Has_Predicates (Full);
11857 end if;
11859 if Has_Delayed_Aspects (Priv) then
11860 Set_Has_Delayed_Aspects (Full);
11861 end if;
11862 end Complete_Private_Subtype;
11864 ----------------------------
11865 -- Constant_Redeclaration --
11866 ----------------------------
11868 procedure Constant_Redeclaration
11869 (Id : Entity_Id;
11870 N : Node_Id;
11871 T : out Entity_Id)
11873 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11874 Obj_Def : constant Node_Id := Object_Definition (N);
11875 New_T : Entity_Id;
11877 procedure Check_Possible_Deferred_Completion
11878 (Prev_Id : Entity_Id;
11879 Prev_Obj_Def : Node_Id;
11880 Curr_Obj_Def : Node_Id);
11881 -- Determine whether the two object definitions describe the partial
11882 -- and the full view of a constrained deferred constant. Generate
11883 -- a subtype for the full view and verify that it statically matches
11884 -- the subtype of the partial view.
11886 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11887 -- If deferred constant is an access type initialized with an allocator,
11888 -- check whether there is an illegal recursion in the definition,
11889 -- through a default value of some record subcomponent. This is normally
11890 -- detected when generating init procs, but requires this additional
11891 -- mechanism when expansion is disabled.
11893 ----------------------------------------
11894 -- Check_Possible_Deferred_Completion --
11895 ----------------------------------------
11897 procedure Check_Possible_Deferred_Completion
11898 (Prev_Id : Entity_Id;
11899 Prev_Obj_Def : Node_Id;
11900 Curr_Obj_Def : Node_Id)
11902 begin
11903 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11904 and then Present (Constraint (Prev_Obj_Def))
11905 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11906 and then Present (Constraint (Curr_Obj_Def))
11907 then
11908 declare
11909 Loc : constant Source_Ptr := Sloc (N);
11910 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11911 Decl : constant Node_Id :=
11912 Make_Subtype_Declaration (Loc,
11913 Defining_Identifier => Def_Id,
11914 Subtype_Indication =>
11915 Relocate_Node (Curr_Obj_Def));
11917 begin
11918 Insert_Before_And_Analyze (N, Decl);
11919 Set_Etype (Id, Def_Id);
11921 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11922 Error_Msg_Sloc := Sloc (Prev_Id);
11923 Error_Msg_N ("subtype does not statically match deferred "
11924 & "declaration #", N);
11925 end if;
11926 end;
11927 end if;
11928 end Check_Possible_Deferred_Completion;
11930 ---------------------------------
11931 -- Check_Recursive_Declaration --
11932 ---------------------------------
11934 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11935 Comp : Entity_Id;
11937 begin
11938 if Is_Record_Type (Typ) then
11939 Comp := First_Component (Typ);
11940 while Present (Comp) loop
11941 if Comes_From_Source (Comp) then
11942 if Present (Expression (Parent (Comp)))
11943 and then Is_Entity_Name (Expression (Parent (Comp)))
11944 and then Entity (Expression (Parent (Comp))) = Prev
11945 then
11946 Error_Msg_Sloc := Sloc (Parent (Comp));
11947 Error_Msg_NE
11948 ("illegal circularity with declaration for & #",
11949 N, Comp);
11950 return;
11952 elsif Is_Record_Type (Etype (Comp)) then
11953 Check_Recursive_Declaration (Etype (Comp));
11954 end if;
11955 end if;
11957 Next_Component (Comp);
11958 end loop;
11959 end if;
11960 end Check_Recursive_Declaration;
11962 -- Start of processing for Constant_Redeclaration
11964 begin
11965 if Nkind (Parent (Prev)) = N_Object_Declaration then
11966 if Nkind (Object_Definition
11967 (Parent (Prev))) = N_Subtype_Indication
11968 then
11969 -- Find type of new declaration. The constraints of the two
11970 -- views must match statically, but there is no point in
11971 -- creating an itype for the full view.
11973 if Nkind (Obj_Def) = N_Subtype_Indication then
11974 Find_Type (Subtype_Mark (Obj_Def));
11975 New_T := Entity (Subtype_Mark (Obj_Def));
11977 else
11978 Find_Type (Obj_Def);
11979 New_T := Entity (Obj_Def);
11980 end if;
11982 T := Etype (Prev);
11984 else
11985 -- The full view may impose a constraint, even if the partial
11986 -- view does not, so construct the subtype.
11988 New_T := Find_Type_Of_Object (Obj_Def, N);
11989 T := New_T;
11990 end if;
11992 else
11993 -- Current declaration is illegal, diagnosed below in Enter_Name
11995 T := Empty;
11996 New_T := Any_Type;
11997 end if;
11999 -- If previous full declaration or a renaming declaration exists, or if
12000 -- a homograph is present, let Enter_Name handle it, either with an
12001 -- error or with the removal of an overridden implicit subprogram.
12002 -- The previous one is a full declaration if it has an expression
12003 -- (which in the case of an aggregate is indicated by the Init flag).
12005 if Ekind (Prev) /= E_Constant
12006 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12007 or else Present (Expression (Parent (Prev)))
12008 or else Has_Init_Expression (Parent (Prev))
12009 or else Present (Full_View (Prev))
12010 then
12011 Enter_Name (Id);
12013 -- Verify that types of both declarations match, or else that both types
12014 -- are anonymous access types whose designated subtypes statically match
12015 -- (as allowed in Ada 2005 by AI-385).
12017 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12018 and then
12019 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12020 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12021 or else Is_Access_Constant (Etype (New_T)) /=
12022 Is_Access_Constant (Etype (Prev))
12023 or else Can_Never_Be_Null (Etype (New_T)) /=
12024 Can_Never_Be_Null (Etype (Prev))
12025 or else Null_Exclusion_Present (Parent (Prev)) /=
12026 Null_Exclusion_Present (Parent (Id))
12027 or else not Subtypes_Statically_Match
12028 (Designated_Type (Etype (Prev)),
12029 Designated_Type (Etype (New_T))))
12030 then
12031 Error_Msg_Sloc := Sloc (Prev);
12032 Error_Msg_N ("type does not match declaration#", N);
12033 Set_Full_View (Prev, Id);
12034 Set_Etype (Id, Any_Type);
12036 -- A deferred constant whose type is an anonymous array is always
12037 -- illegal (unless imported). A detailed error message might be
12038 -- helpful for Ada beginners.
12040 if Nkind (Object_Definition (Parent (Prev)))
12041 = N_Constrained_Array_Definition
12042 and then Nkind (Object_Definition (N))
12043 = N_Constrained_Array_Definition
12044 then
12045 Error_Msg_N ("\each anonymous array is a distinct type", N);
12046 Error_Msg_N ("a deferred constant must have a named type",
12047 Object_Definition (Parent (Prev)));
12048 end if;
12050 elsif
12051 Null_Exclusion_Present (Parent (Prev))
12052 and then not Null_Exclusion_Present (N)
12053 then
12054 Error_Msg_Sloc := Sloc (Prev);
12055 Error_Msg_N ("null-exclusion does not match declaration#", N);
12056 Set_Full_View (Prev, Id);
12057 Set_Etype (Id, Any_Type);
12059 -- If so, process the full constant declaration
12061 else
12062 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12063 -- the deferred declaration is constrained, then the subtype defined
12064 -- by the subtype_indication in the full declaration shall match it
12065 -- statically.
12067 Check_Possible_Deferred_Completion
12068 (Prev_Id => Prev,
12069 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12070 Curr_Obj_Def => Obj_Def);
12072 Set_Full_View (Prev, Id);
12073 Set_Is_Public (Id, Is_Public (Prev));
12074 Set_Is_Internal (Id);
12075 Append_Entity (Id, Current_Scope);
12077 -- Check ALIASED present if present before (RM 7.4(7))
12079 if Is_Aliased (Prev)
12080 and then not Aliased_Present (N)
12081 then
12082 Error_Msg_Sloc := Sloc (Prev);
12083 Error_Msg_N ("ALIASED required (see declaration #)", N);
12084 end if;
12086 -- Check that placement is in private part and that the incomplete
12087 -- declaration appeared in the visible part.
12089 if Ekind (Current_Scope) = E_Package
12090 and then not In_Private_Part (Current_Scope)
12091 then
12092 Error_Msg_Sloc := Sloc (Prev);
12093 Error_Msg_N
12094 ("full constant for declaration # must be in private part", N);
12096 elsif Ekind (Current_Scope) = E_Package
12097 and then
12098 List_Containing (Parent (Prev)) /=
12099 Visible_Declarations (Package_Specification (Current_Scope))
12100 then
12101 Error_Msg_N
12102 ("deferred constant must be declared in visible part",
12103 Parent (Prev));
12104 end if;
12106 if Is_Access_Type (T)
12107 and then Nkind (Expression (N)) = N_Allocator
12108 then
12109 Check_Recursive_Declaration (Designated_Type (T));
12110 end if;
12112 -- A deferred constant is a visible entity. If type has invariants,
12113 -- verify that the initial value satisfies them.
12115 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12116 Insert_After (N,
12117 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12118 end if;
12119 end if;
12120 end Constant_Redeclaration;
12122 ----------------------
12123 -- Constrain_Access --
12124 ----------------------
12126 procedure Constrain_Access
12127 (Def_Id : in out Entity_Id;
12128 S : Node_Id;
12129 Related_Nod : Node_Id)
12131 T : constant Entity_Id := Entity (Subtype_Mark (S));
12132 Desig_Type : constant Entity_Id := Designated_Type (T);
12133 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12134 Constraint_OK : Boolean := True;
12136 begin
12137 if Is_Array_Type (Desig_Type) then
12138 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12140 elsif (Is_Record_Type (Desig_Type)
12141 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12142 and then not Is_Constrained (Desig_Type)
12143 then
12144 -- ??? The following code is a temporary bypass to ignore a
12145 -- discriminant constraint on access type if it is constraining
12146 -- the current record. Avoid creating the implicit subtype of the
12147 -- record we are currently compiling since right now, we cannot
12148 -- handle these. For now, just return the access type itself.
12150 if Desig_Type = Current_Scope
12151 and then No (Def_Id)
12152 then
12153 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12154 Def_Id := Entity (Subtype_Mark (S));
12156 -- This call added to ensure that the constraint is analyzed
12157 -- (needed for a B test). Note that we still return early from
12158 -- this procedure to avoid recursive processing. ???
12160 Constrain_Discriminated_Type
12161 (Desig_Subtype, S, Related_Nod, For_Access => True);
12162 return;
12163 end if;
12165 -- Enforce rule that the constraint is illegal if there is an
12166 -- unconstrained view of the designated type. This means that the
12167 -- partial view (either a private type declaration or a derivation
12168 -- from a private type) has no discriminants. (Defect Report
12169 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12171 -- Rule updated for Ada 2005: The private type is said to have
12172 -- a constrained partial view, given that objects of the type
12173 -- can be declared. Furthermore, the rule applies to all access
12174 -- types, unlike the rule concerning default discriminants (see
12175 -- RM 3.7.1(7/3))
12177 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12178 and then Has_Private_Declaration (Desig_Type)
12179 and then In_Open_Scopes (Scope (Desig_Type))
12180 and then Has_Discriminants (Desig_Type)
12181 then
12182 declare
12183 Pack : constant Node_Id :=
12184 Unit_Declaration_Node (Scope (Desig_Type));
12185 Decls : List_Id;
12186 Decl : Node_Id;
12188 begin
12189 if Nkind (Pack) = N_Package_Declaration then
12190 Decls := Visible_Declarations (Specification (Pack));
12191 Decl := First (Decls);
12192 while Present (Decl) loop
12193 if (Nkind (Decl) = N_Private_Type_Declaration
12194 and then Chars (Defining_Identifier (Decl)) =
12195 Chars (Desig_Type))
12197 or else
12198 (Nkind (Decl) = N_Full_Type_Declaration
12199 and then
12200 Chars (Defining_Identifier (Decl)) =
12201 Chars (Desig_Type)
12202 and then Is_Derived_Type (Desig_Type)
12203 and then
12204 Has_Private_Declaration (Etype (Desig_Type)))
12205 then
12206 if No (Discriminant_Specifications (Decl)) then
12207 Error_Msg_N
12208 ("cannot constrain access type if designated "
12209 & "type has constrained partial view", S);
12210 end if;
12212 exit;
12213 end if;
12215 Next (Decl);
12216 end loop;
12217 end if;
12218 end;
12219 end if;
12221 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12222 For_Access => True);
12224 elsif Is_Concurrent_Type (Desig_Type)
12225 and then not Is_Constrained (Desig_Type)
12226 then
12227 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12229 else
12230 Error_Msg_N ("invalid constraint on access type", S);
12232 -- We simply ignore an invalid constraint
12234 Desig_Subtype := Desig_Type;
12235 Constraint_OK := False;
12236 end if;
12238 if No (Def_Id) then
12239 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12240 else
12241 Set_Ekind (Def_Id, E_Access_Subtype);
12242 end if;
12244 if Constraint_OK then
12245 Set_Etype (Def_Id, Base_Type (T));
12247 if Is_Private_Type (Desig_Type) then
12248 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12249 end if;
12250 else
12251 Set_Etype (Def_Id, Any_Type);
12252 end if;
12254 Set_Size_Info (Def_Id, T);
12255 Set_Is_Constrained (Def_Id, Constraint_OK);
12256 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12257 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12258 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12260 Conditional_Delay (Def_Id, T);
12262 -- AI-363 : Subtypes of general access types whose designated types have
12263 -- default discriminants are disallowed. In instances, the rule has to
12264 -- be checked against the actual, of which T is the subtype. In a
12265 -- generic body, the rule is checked assuming that the actual type has
12266 -- defaulted discriminants.
12268 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12269 if Ekind (Base_Type (T)) = E_General_Access_Type
12270 and then Has_Defaulted_Discriminants (Desig_Type)
12271 then
12272 if Ada_Version < Ada_2005 then
12273 Error_Msg_N
12274 ("access subtype of general access type would not " &
12275 "be allowed in Ada 2005?y?", S);
12276 else
12277 Error_Msg_N
12278 ("access subtype of general access type not allowed", S);
12279 end if;
12281 Error_Msg_N ("\discriminants have defaults", S);
12283 elsif Is_Access_Type (T)
12284 and then Is_Generic_Type (Desig_Type)
12285 and then Has_Discriminants (Desig_Type)
12286 and then In_Package_Body (Current_Scope)
12287 then
12288 if Ada_Version < Ada_2005 then
12289 Error_Msg_N
12290 ("access subtype would not be allowed in generic body "
12291 & "in Ada 2005?y?", S);
12292 else
12293 Error_Msg_N
12294 ("access subtype not allowed in generic body", S);
12295 end if;
12297 Error_Msg_N
12298 ("\designated type is a discriminated formal", S);
12299 end if;
12300 end if;
12301 end Constrain_Access;
12303 ---------------------
12304 -- Constrain_Array --
12305 ---------------------
12307 procedure Constrain_Array
12308 (Def_Id : in out Entity_Id;
12309 SI : Node_Id;
12310 Related_Nod : Node_Id;
12311 Related_Id : Entity_Id;
12312 Suffix : Character)
12314 C : constant Node_Id := Constraint (SI);
12315 Number_Of_Constraints : Nat := 0;
12316 Index : Node_Id;
12317 S, T : Entity_Id;
12318 Constraint_OK : Boolean := True;
12320 begin
12321 T := Entity (Subtype_Mark (SI));
12323 if Is_Access_Type (T) then
12324 T := Designated_Type (T);
12325 end if;
12327 -- If an index constraint follows a subtype mark in a subtype indication
12328 -- then the type or subtype denoted by the subtype mark must not already
12329 -- impose an index constraint. The subtype mark must denote either an
12330 -- unconstrained array type or an access type whose designated type
12331 -- is such an array type... (RM 3.6.1)
12333 if Is_Constrained (T) then
12334 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12335 Constraint_OK := False;
12337 else
12338 S := First (Constraints (C));
12339 while Present (S) loop
12340 Number_Of_Constraints := Number_Of_Constraints + 1;
12341 Next (S);
12342 end loop;
12344 -- In either case, the index constraint must provide a discrete
12345 -- range for each index of the array type and the type of each
12346 -- discrete range must be the same as that of the corresponding
12347 -- index. (RM 3.6.1)
12349 if Number_Of_Constraints /= Number_Dimensions (T) then
12350 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12351 Constraint_OK := False;
12353 else
12354 S := First (Constraints (C));
12355 Index := First_Index (T);
12356 Analyze (Index);
12358 -- Apply constraints to each index type
12360 for J in 1 .. Number_Of_Constraints loop
12361 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12362 Next (Index);
12363 Next (S);
12364 end loop;
12366 end if;
12367 end if;
12369 if No (Def_Id) then
12370 Def_Id :=
12371 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12372 Set_Parent (Def_Id, Related_Nod);
12374 else
12375 Set_Ekind (Def_Id, E_Array_Subtype);
12376 end if;
12378 Set_Size_Info (Def_Id, (T));
12379 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12380 Set_Etype (Def_Id, Base_Type (T));
12382 if Constraint_OK then
12383 Set_First_Index (Def_Id, First (Constraints (C)));
12384 else
12385 Set_First_Index (Def_Id, First_Index (T));
12386 end if;
12388 Set_Is_Constrained (Def_Id, True);
12389 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12390 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12392 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12393 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12395 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12396 -- We need to initialize the attribute because if Def_Id is previously
12397 -- analyzed through a limited_with clause, it will have the attributes
12398 -- of an incomplete type, one of which is an Elist that overlaps the
12399 -- Packed_Array_Impl_Type field.
12401 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12403 -- Build a freeze node if parent still needs one. Also make sure that
12404 -- the Depends_On_Private status is set because the subtype will need
12405 -- reprocessing at the time the base type does, and also we must set a
12406 -- conditional delay.
12408 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12409 Conditional_Delay (Def_Id, T);
12410 end Constrain_Array;
12412 ------------------------------
12413 -- Constrain_Component_Type --
12414 ------------------------------
12416 function Constrain_Component_Type
12417 (Comp : Entity_Id;
12418 Constrained_Typ : Entity_Id;
12419 Related_Node : Node_Id;
12420 Typ : Entity_Id;
12421 Constraints : Elist_Id) return Entity_Id
12423 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12424 Compon_Type : constant Entity_Id := Etype (Comp);
12426 function Build_Constrained_Array_Type
12427 (Old_Type : Entity_Id) return Entity_Id;
12428 -- If Old_Type is an array type, one of whose indexes is constrained
12429 -- by a discriminant, build an Itype whose constraint replaces the
12430 -- discriminant with its value in the constraint.
12432 function Build_Constrained_Discriminated_Type
12433 (Old_Type : Entity_Id) return Entity_Id;
12434 -- Ditto for record components
12436 function Build_Constrained_Access_Type
12437 (Old_Type : Entity_Id) return Entity_Id;
12438 -- Ditto for access types. Makes use of previous two functions, to
12439 -- constrain designated type.
12441 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12442 -- T is an array or discriminated type, C is a list of constraints
12443 -- that apply to T. This routine builds the constrained subtype.
12445 function Is_Discriminant (Expr : Node_Id) return Boolean;
12446 -- Returns True if Expr is a discriminant
12448 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12449 -- Find the value of discriminant Discrim in Constraint
12451 -----------------------------------
12452 -- Build_Constrained_Access_Type --
12453 -----------------------------------
12455 function Build_Constrained_Access_Type
12456 (Old_Type : Entity_Id) return Entity_Id
12458 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12459 Itype : Entity_Id;
12460 Desig_Subtype : Entity_Id;
12461 Scop : Entity_Id;
12463 begin
12464 -- if the original access type was not embedded in the enclosing
12465 -- type definition, there is no need to produce a new access
12466 -- subtype. In fact every access type with an explicit constraint
12467 -- generates an itype whose scope is the enclosing record.
12469 if not Is_Type (Scope (Old_Type)) then
12470 return Old_Type;
12472 elsif Is_Array_Type (Desig_Type) then
12473 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12475 elsif Has_Discriminants (Desig_Type) then
12477 -- This may be an access type to an enclosing record type for
12478 -- which we are constructing the constrained components. Return
12479 -- the enclosing record subtype. This is not always correct,
12480 -- but avoids infinite recursion. ???
12482 Desig_Subtype := Any_Type;
12484 for J in reverse 0 .. Scope_Stack.Last loop
12485 Scop := Scope_Stack.Table (J).Entity;
12487 if Is_Type (Scop)
12488 and then Base_Type (Scop) = Base_Type (Desig_Type)
12489 then
12490 Desig_Subtype := Scop;
12491 end if;
12493 exit when not Is_Type (Scop);
12494 end loop;
12496 if Desig_Subtype = Any_Type then
12497 Desig_Subtype :=
12498 Build_Constrained_Discriminated_Type (Desig_Type);
12499 end if;
12501 else
12502 return Old_Type;
12503 end if;
12505 if Desig_Subtype /= Desig_Type then
12507 -- The Related_Node better be here or else we won't be able
12508 -- to attach new itypes to a node in the tree.
12510 pragma Assert (Present (Related_Node));
12512 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12514 Set_Etype (Itype, Base_Type (Old_Type));
12515 Set_Size_Info (Itype, (Old_Type));
12516 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12517 Set_Depends_On_Private (Itype, Has_Private_Component
12518 (Old_Type));
12519 Set_Is_Access_Constant (Itype, Is_Access_Constant
12520 (Old_Type));
12522 -- The new itype needs freezing when it depends on a not frozen
12523 -- type and the enclosing subtype needs freezing.
12525 if Has_Delayed_Freeze (Constrained_Typ)
12526 and then not Is_Frozen (Constrained_Typ)
12527 then
12528 Conditional_Delay (Itype, Base_Type (Old_Type));
12529 end if;
12531 return Itype;
12533 else
12534 return Old_Type;
12535 end if;
12536 end Build_Constrained_Access_Type;
12538 ----------------------------------
12539 -- Build_Constrained_Array_Type --
12540 ----------------------------------
12542 function Build_Constrained_Array_Type
12543 (Old_Type : Entity_Id) return Entity_Id
12545 Lo_Expr : Node_Id;
12546 Hi_Expr : Node_Id;
12547 Old_Index : Node_Id;
12548 Range_Node : Node_Id;
12549 Constr_List : List_Id;
12551 Need_To_Create_Itype : Boolean := False;
12553 begin
12554 Old_Index := First_Index (Old_Type);
12555 while Present (Old_Index) loop
12556 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12558 if Is_Discriminant (Lo_Expr)
12559 or else
12560 Is_Discriminant (Hi_Expr)
12561 then
12562 Need_To_Create_Itype := True;
12563 end if;
12565 Next_Index (Old_Index);
12566 end loop;
12568 if Need_To_Create_Itype then
12569 Constr_List := New_List;
12571 Old_Index := First_Index (Old_Type);
12572 while Present (Old_Index) loop
12573 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12575 if Is_Discriminant (Lo_Expr) then
12576 Lo_Expr := Get_Discr_Value (Lo_Expr);
12577 end if;
12579 if Is_Discriminant (Hi_Expr) then
12580 Hi_Expr := Get_Discr_Value (Hi_Expr);
12581 end if;
12583 Range_Node :=
12584 Make_Range
12585 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12587 Append (Range_Node, To => Constr_List);
12589 Next_Index (Old_Index);
12590 end loop;
12592 return Build_Subtype (Old_Type, Constr_List);
12594 else
12595 return Old_Type;
12596 end if;
12597 end Build_Constrained_Array_Type;
12599 ------------------------------------------
12600 -- Build_Constrained_Discriminated_Type --
12601 ------------------------------------------
12603 function Build_Constrained_Discriminated_Type
12604 (Old_Type : Entity_Id) return Entity_Id
12606 Expr : Node_Id;
12607 Constr_List : List_Id;
12608 Old_Constraint : Elmt_Id;
12610 Need_To_Create_Itype : Boolean := False;
12612 begin
12613 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12614 while Present (Old_Constraint) loop
12615 Expr := Node (Old_Constraint);
12617 if Is_Discriminant (Expr) then
12618 Need_To_Create_Itype := True;
12619 end if;
12621 Next_Elmt (Old_Constraint);
12622 end loop;
12624 if Need_To_Create_Itype then
12625 Constr_List := New_List;
12627 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12628 while Present (Old_Constraint) loop
12629 Expr := Node (Old_Constraint);
12631 if Is_Discriminant (Expr) then
12632 Expr := Get_Discr_Value (Expr);
12633 end if;
12635 Append (New_Copy_Tree (Expr), To => Constr_List);
12637 Next_Elmt (Old_Constraint);
12638 end loop;
12640 return Build_Subtype (Old_Type, Constr_List);
12642 else
12643 return Old_Type;
12644 end if;
12645 end Build_Constrained_Discriminated_Type;
12647 -------------------
12648 -- Build_Subtype --
12649 -------------------
12651 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12652 Indic : Node_Id;
12653 Subtyp_Decl : Node_Id;
12654 Def_Id : Entity_Id;
12655 Btyp : Entity_Id := Base_Type (T);
12657 begin
12658 -- The Related_Node better be here or else we won't be able to
12659 -- attach new itypes to a node in the tree.
12661 pragma Assert (Present (Related_Node));
12663 -- If the view of the component's type is incomplete or private
12664 -- with unknown discriminants, then the constraint must be applied
12665 -- to the full type.
12667 if Has_Unknown_Discriminants (Btyp)
12668 and then Present (Underlying_Type (Btyp))
12669 then
12670 Btyp := Underlying_Type (Btyp);
12671 end if;
12673 Indic :=
12674 Make_Subtype_Indication (Loc,
12675 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12676 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12678 Def_Id := Create_Itype (Ekind (T), Related_Node);
12680 Subtyp_Decl :=
12681 Make_Subtype_Declaration (Loc,
12682 Defining_Identifier => Def_Id,
12683 Subtype_Indication => Indic);
12685 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12687 -- Itypes must be analyzed with checks off (see package Itypes)
12689 Analyze (Subtyp_Decl, Suppress => All_Checks);
12691 return Def_Id;
12692 end Build_Subtype;
12694 ---------------------
12695 -- Get_Discr_Value --
12696 ---------------------
12698 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12699 D : Entity_Id;
12700 E : Elmt_Id;
12702 begin
12703 -- The discriminant may be declared for the type, in which case we
12704 -- find it by iterating over the list of discriminants. If the
12705 -- discriminant is inherited from a parent type, it appears as the
12706 -- corresponding discriminant of the current type. This will be the
12707 -- case when constraining an inherited component whose constraint is
12708 -- given by a discriminant of the parent.
12710 D := First_Discriminant (Typ);
12711 E := First_Elmt (Constraints);
12713 while Present (D) loop
12714 if D = Entity (Discrim)
12715 or else D = CR_Discriminant (Entity (Discrim))
12716 or else Corresponding_Discriminant (D) = Entity (Discrim)
12717 then
12718 return Node (E);
12719 end if;
12721 Next_Discriminant (D);
12722 Next_Elmt (E);
12723 end loop;
12725 -- The Corresponding_Discriminant mechanism is incomplete, because
12726 -- the correspondence between new and old discriminants is not one
12727 -- to one: one new discriminant can constrain several old ones. In
12728 -- that case, scan sequentially the stored_constraint, the list of
12729 -- discriminants of the parents, and the constraints.
12731 -- Previous code checked for the present of the Stored_Constraint
12732 -- list for the derived type, but did not use it at all. Should it
12733 -- be present when the component is a discriminated task type?
12735 if Is_Derived_Type (Typ)
12736 and then Scope (Entity (Discrim)) = Etype (Typ)
12737 then
12738 D := First_Discriminant (Etype (Typ));
12739 E := First_Elmt (Constraints);
12740 while Present (D) loop
12741 if D = Entity (Discrim) then
12742 return Node (E);
12743 end if;
12745 Next_Discriminant (D);
12746 Next_Elmt (E);
12747 end loop;
12748 end if;
12750 -- Something is wrong if we did not find the value
12752 raise Program_Error;
12753 end Get_Discr_Value;
12755 ---------------------
12756 -- Is_Discriminant --
12757 ---------------------
12759 function Is_Discriminant (Expr : Node_Id) return Boolean is
12760 Discrim_Scope : Entity_Id;
12762 begin
12763 if Denotes_Discriminant (Expr) then
12764 Discrim_Scope := Scope (Entity (Expr));
12766 -- Either we have a reference to one of Typ's discriminants,
12768 pragma Assert (Discrim_Scope = Typ
12770 -- or to the discriminants of the parent type, in the case
12771 -- of a derivation of a tagged type with variants.
12773 or else Discrim_Scope = Etype (Typ)
12774 or else Full_View (Discrim_Scope) = Etype (Typ)
12776 -- or same as above for the case where the discriminants
12777 -- were declared in Typ's private view.
12779 or else (Is_Private_Type (Discrim_Scope)
12780 and then Chars (Discrim_Scope) = Chars (Typ))
12782 -- or else we are deriving from the full view and the
12783 -- discriminant is declared in the private entity.
12785 or else (Is_Private_Type (Typ)
12786 and then Chars (Discrim_Scope) = Chars (Typ))
12788 -- Or we are constrained the corresponding record of a
12789 -- synchronized type that completes a private declaration.
12791 or else (Is_Concurrent_Record_Type (Typ)
12792 and then
12793 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12795 -- or we have a class-wide type, in which case make sure the
12796 -- discriminant found belongs to the root type.
12798 or else (Is_Class_Wide_Type (Typ)
12799 and then Etype (Typ) = Discrim_Scope));
12801 return True;
12802 end if;
12804 -- In all other cases we have something wrong
12806 return False;
12807 end Is_Discriminant;
12809 -- Start of processing for Constrain_Component_Type
12811 begin
12812 if Nkind (Parent (Comp)) = N_Component_Declaration
12813 and then Comes_From_Source (Parent (Comp))
12814 and then Comes_From_Source
12815 (Subtype_Indication (Component_Definition (Parent (Comp))))
12816 and then
12817 Is_Entity_Name
12818 (Subtype_Indication (Component_Definition (Parent (Comp))))
12819 then
12820 return Compon_Type;
12822 elsif Is_Array_Type (Compon_Type) then
12823 return Build_Constrained_Array_Type (Compon_Type);
12825 elsif Has_Discriminants (Compon_Type) then
12826 return Build_Constrained_Discriminated_Type (Compon_Type);
12828 elsif Is_Access_Type (Compon_Type) then
12829 return Build_Constrained_Access_Type (Compon_Type);
12831 else
12832 return Compon_Type;
12833 end if;
12834 end Constrain_Component_Type;
12836 --------------------------
12837 -- Constrain_Concurrent --
12838 --------------------------
12840 -- For concurrent types, the associated record value type carries the same
12841 -- discriminants, so when we constrain a concurrent type, we must constrain
12842 -- the corresponding record type as well.
12844 procedure Constrain_Concurrent
12845 (Def_Id : in out Entity_Id;
12846 SI : Node_Id;
12847 Related_Nod : Node_Id;
12848 Related_Id : Entity_Id;
12849 Suffix : Character)
12851 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12852 -- case of a private subtype (needed when only doing semantic analysis).
12854 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12855 T_Val : Entity_Id;
12857 begin
12858 if Is_Access_Type (T_Ent) then
12859 T_Ent := Designated_Type (T_Ent);
12860 end if;
12862 T_Val := Corresponding_Record_Type (T_Ent);
12864 if Present (T_Val) then
12866 if No (Def_Id) then
12867 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12868 end if;
12870 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12872 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12873 Set_Corresponding_Record_Type (Def_Id,
12874 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12876 else
12877 -- If there is no associated record, expansion is disabled and this
12878 -- is a generic context. Create a subtype in any case, so that
12879 -- semantic analysis can proceed.
12881 if No (Def_Id) then
12882 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12883 end if;
12885 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12886 end if;
12887 end Constrain_Concurrent;
12889 ------------------------------------
12890 -- Constrain_Corresponding_Record --
12891 ------------------------------------
12893 function Constrain_Corresponding_Record
12894 (Prot_Subt : Entity_Id;
12895 Corr_Rec : Entity_Id;
12896 Related_Nod : Node_Id) return Entity_Id
12898 T_Sub : constant Entity_Id :=
12899 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12901 begin
12902 Set_Etype (T_Sub, Corr_Rec);
12903 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12904 Set_Is_Constrained (T_Sub, True);
12905 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12906 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12908 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12909 Set_Discriminant_Constraint
12910 (T_Sub, Discriminant_Constraint (Prot_Subt));
12911 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12912 Create_Constrained_Components
12913 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12914 end if;
12916 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12918 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12919 Conditional_Delay (T_Sub, Corr_Rec);
12921 else
12922 -- This is a component subtype: it will be frozen in the context of
12923 -- the enclosing record's init_proc, so that discriminant references
12924 -- are resolved to discriminals. (Note: we used to skip freezing
12925 -- altogether in that case, which caused errors downstream for
12926 -- components of a bit packed array type).
12928 Set_Has_Delayed_Freeze (T_Sub);
12929 end if;
12931 return T_Sub;
12932 end Constrain_Corresponding_Record;
12934 -----------------------
12935 -- Constrain_Decimal --
12936 -----------------------
12938 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12939 T : constant Entity_Id := Entity (Subtype_Mark (S));
12940 C : constant Node_Id := Constraint (S);
12941 Loc : constant Source_Ptr := Sloc (C);
12942 Range_Expr : Node_Id;
12943 Digits_Expr : Node_Id;
12944 Digits_Val : Uint;
12945 Bound_Val : Ureal;
12947 begin
12948 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12950 if Nkind (C) = N_Range_Constraint then
12951 Range_Expr := Range_Expression (C);
12952 Digits_Val := Digits_Value (T);
12954 else
12955 pragma Assert (Nkind (C) = N_Digits_Constraint);
12957 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12959 Digits_Expr := Digits_Expression (C);
12960 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12962 Check_Digits_Expression (Digits_Expr);
12963 Digits_Val := Expr_Value (Digits_Expr);
12965 if Digits_Val > Digits_Value (T) then
12966 Error_Msg_N
12967 ("digits expression is incompatible with subtype", C);
12968 Digits_Val := Digits_Value (T);
12969 end if;
12971 if Present (Range_Constraint (C)) then
12972 Range_Expr := Range_Expression (Range_Constraint (C));
12973 else
12974 Range_Expr := Empty;
12975 end if;
12976 end if;
12978 Set_Etype (Def_Id, Base_Type (T));
12979 Set_Size_Info (Def_Id, (T));
12980 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12981 Set_Delta_Value (Def_Id, Delta_Value (T));
12982 Set_Scale_Value (Def_Id, Scale_Value (T));
12983 Set_Small_Value (Def_Id, Small_Value (T));
12984 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12985 Set_Digits_Value (Def_Id, Digits_Val);
12987 -- Manufacture range from given digits value if no range present
12989 if No (Range_Expr) then
12990 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12991 Range_Expr :=
12992 Make_Range (Loc,
12993 Low_Bound =>
12994 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12995 High_Bound =>
12996 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12997 end if;
12999 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13000 Set_Discrete_RM_Size (Def_Id);
13002 -- Unconditionally delay the freeze, since we cannot set size
13003 -- information in all cases correctly until the freeze point.
13005 Set_Has_Delayed_Freeze (Def_Id);
13006 end Constrain_Decimal;
13008 ----------------------------------
13009 -- Constrain_Discriminated_Type --
13010 ----------------------------------
13012 procedure Constrain_Discriminated_Type
13013 (Def_Id : Entity_Id;
13014 S : Node_Id;
13015 Related_Nod : Node_Id;
13016 For_Access : Boolean := False)
13018 E : constant Entity_Id := Entity (Subtype_Mark (S));
13019 T : Entity_Id;
13020 C : Node_Id;
13021 Elist : Elist_Id := New_Elmt_List;
13023 procedure Fixup_Bad_Constraint;
13024 -- This is called after finding a bad constraint, and after having
13025 -- posted an appropriate error message. The mission is to leave the
13026 -- entity T in as reasonable state as possible.
13028 --------------------------
13029 -- Fixup_Bad_Constraint --
13030 --------------------------
13032 procedure Fixup_Bad_Constraint is
13033 begin
13034 -- Set a reasonable Ekind for the entity. For an incomplete type,
13035 -- we can't do much, but for other types, we can set the proper
13036 -- corresponding subtype kind.
13038 if Ekind (T) = E_Incomplete_Type then
13039 Set_Ekind (Def_Id, Ekind (T));
13040 else
13041 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13042 end if;
13044 -- Set Etype to the known type, to reduce chances of cascaded errors
13046 Set_Etype (Def_Id, E);
13047 Set_Error_Posted (Def_Id);
13048 end Fixup_Bad_Constraint;
13050 -- Start of processing for Constrain_Discriminated_Type
13052 begin
13053 C := Constraint (S);
13055 -- A discriminant constraint is only allowed in a subtype indication,
13056 -- after a subtype mark. This subtype mark must denote either a type
13057 -- with discriminants, or an access type whose designated type is a
13058 -- type with discriminants. A discriminant constraint specifies the
13059 -- values of these discriminants (RM 3.7.2(5)).
13061 T := Base_Type (Entity (Subtype_Mark (S)));
13063 if Is_Access_Type (T) then
13064 T := Designated_Type (T);
13065 end if;
13067 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13068 -- Avoid generating an error for access-to-incomplete subtypes.
13070 if Ada_Version >= Ada_2005
13071 and then Ekind (T) = E_Incomplete_Type
13072 and then Nkind (Parent (S)) = N_Subtype_Declaration
13073 and then not Is_Itype (Def_Id)
13074 then
13075 -- A little sanity check, emit an error message if the type
13076 -- has discriminants to begin with. Type T may be a regular
13077 -- incomplete type or imported via a limited with clause.
13079 if Has_Discriminants (T)
13080 or else (From_Limited_With (T)
13081 and then Present (Non_Limited_View (T))
13082 and then Nkind (Parent (Non_Limited_View (T))) =
13083 N_Full_Type_Declaration
13084 and then Present (Discriminant_Specifications
13085 (Parent (Non_Limited_View (T)))))
13086 then
13087 Error_Msg_N
13088 ("(Ada 2005) incomplete subtype may not be constrained", C);
13089 else
13090 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13091 end if;
13093 Fixup_Bad_Constraint;
13094 return;
13096 -- Check that the type has visible discriminants. The type may be
13097 -- a private type with unknown discriminants whose full view has
13098 -- discriminants which are invisible.
13100 elsif not Has_Discriminants (T)
13101 or else
13102 (Has_Unknown_Discriminants (T)
13103 and then Is_Private_Type (T))
13104 then
13105 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13106 Fixup_Bad_Constraint;
13107 return;
13109 elsif Is_Constrained (E)
13110 or else (Ekind (E) = E_Class_Wide_Subtype
13111 and then Present (Discriminant_Constraint (E)))
13112 then
13113 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13114 Fixup_Bad_Constraint;
13115 return;
13116 end if;
13118 -- T may be an unconstrained subtype (e.g. a generic actual).
13119 -- Constraint applies to the base type.
13121 T := Base_Type (T);
13123 Elist := Build_Discriminant_Constraints (T, S);
13125 -- If the list returned was empty we had an error in building the
13126 -- discriminant constraint. We have also already signalled an error
13127 -- in the incomplete type case
13129 if Is_Empty_Elmt_List (Elist) then
13130 Fixup_Bad_Constraint;
13131 return;
13132 end if;
13134 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13135 end Constrain_Discriminated_Type;
13137 ---------------------------
13138 -- Constrain_Enumeration --
13139 ---------------------------
13141 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13142 T : constant Entity_Id := Entity (Subtype_Mark (S));
13143 C : constant Node_Id := Constraint (S);
13145 begin
13146 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13148 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13150 Set_Etype (Def_Id, Base_Type (T));
13151 Set_Size_Info (Def_Id, (T));
13152 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13153 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13155 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13157 Set_Discrete_RM_Size (Def_Id);
13158 end Constrain_Enumeration;
13160 ----------------------
13161 -- Constrain_Float --
13162 ----------------------
13164 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13165 T : constant Entity_Id := Entity (Subtype_Mark (S));
13166 C : Node_Id;
13167 D : Node_Id;
13168 Rais : Node_Id;
13170 begin
13171 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13173 Set_Etype (Def_Id, Base_Type (T));
13174 Set_Size_Info (Def_Id, (T));
13175 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13177 -- Process the constraint
13179 C := Constraint (S);
13181 -- Digits constraint present
13183 if Nkind (C) = N_Digits_Constraint then
13185 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13186 Check_Restriction (No_Obsolescent_Features, C);
13188 if Warn_On_Obsolescent_Feature then
13189 Error_Msg_N
13190 ("subtype digits constraint is an " &
13191 "obsolescent feature (RM J.3(8))?j?", C);
13192 end if;
13194 D := Digits_Expression (C);
13195 Analyze_And_Resolve (D, Any_Integer);
13196 Check_Digits_Expression (D);
13197 Set_Digits_Value (Def_Id, Expr_Value (D));
13199 -- Check that digits value is in range. Obviously we can do this
13200 -- at compile time, but it is strictly a runtime check, and of
13201 -- course there is an ACVC test that checks this.
13203 if Digits_Value (Def_Id) > Digits_Value (T) then
13204 Error_Msg_Uint_1 := Digits_Value (T);
13205 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13206 Rais :=
13207 Make_Raise_Constraint_Error (Sloc (D),
13208 Reason => CE_Range_Check_Failed);
13209 Insert_Action (Declaration_Node (Def_Id), Rais);
13210 end if;
13212 C := Range_Constraint (C);
13214 -- No digits constraint present
13216 else
13217 Set_Digits_Value (Def_Id, Digits_Value (T));
13218 end if;
13220 -- Range constraint present
13222 if Nkind (C) = N_Range_Constraint then
13223 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13225 -- No range constraint present
13227 else
13228 pragma Assert (No (C));
13229 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13230 end if;
13232 Set_Is_Constrained (Def_Id);
13233 end Constrain_Float;
13235 ---------------------
13236 -- Constrain_Index --
13237 ---------------------
13239 procedure Constrain_Index
13240 (Index : Node_Id;
13241 S : Node_Id;
13242 Related_Nod : Node_Id;
13243 Related_Id : Entity_Id;
13244 Suffix : Character;
13245 Suffix_Index : Nat)
13247 Def_Id : Entity_Id;
13248 R : Node_Id := Empty;
13249 T : constant Entity_Id := Etype (Index);
13251 begin
13252 Def_Id :=
13253 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13254 Set_Etype (Def_Id, Base_Type (T));
13256 if Nkind (S) = N_Range
13257 or else
13258 (Nkind (S) = N_Attribute_Reference
13259 and then Attribute_Name (S) = Name_Range)
13260 then
13261 -- A Range attribute will be transformed into N_Range by Resolve
13263 Analyze (S);
13264 Set_Etype (S, T);
13265 R := S;
13267 Process_Range_Expr_In_Decl (R, T);
13269 if not Error_Posted (S)
13270 and then
13271 (Nkind (S) /= N_Range
13272 or else not Covers (T, (Etype (Low_Bound (S))))
13273 or else not Covers (T, (Etype (High_Bound (S)))))
13274 then
13275 if Base_Type (T) /= Any_Type
13276 and then Etype (Low_Bound (S)) /= Any_Type
13277 and then Etype (High_Bound (S)) /= Any_Type
13278 then
13279 Error_Msg_N ("range expected", S);
13280 end if;
13281 end if;
13283 elsif Nkind (S) = N_Subtype_Indication then
13285 -- The parser has verified that this is a discrete indication
13287 Resolve_Discrete_Subtype_Indication (S, T);
13288 Bad_Predicated_Subtype_Use
13289 ("subtype& has predicate, not allowed in index constraint",
13290 S, Entity (Subtype_Mark (S)));
13292 R := Range_Expression (Constraint (S));
13294 -- Capture values of bounds and generate temporaries for them if
13295 -- needed, since checks may cause duplication of the expressions
13296 -- which must not be reevaluated.
13298 -- The forced evaluation removes side effects from expressions, which
13299 -- should occur also in GNATprove mode. Otherwise, we end up with
13300 -- unexpected insertions of actions at places where this is not
13301 -- supposed to occur, e.g. on default parameters of a call.
13303 if Expander_Active or GNATprove_Mode then
13304 Force_Evaluation
13305 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13306 Force_Evaluation
13307 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13308 end if;
13310 elsif Nkind (S) = N_Discriminant_Association then
13312 -- Syntactically valid in subtype indication
13314 Error_Msg_N ("invalid index constraint", S);
13315 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13316 return;
13318 -- Subtype_Mark case, no anonymous subtypes to construct
13320 else
13321 Analyze (S);
13323 if Is_Entity_Name (S) then
13324 if not Is_Type (Entity (S)) then
13325 Error_Msg_N ("expect subtype mark for index constraint", S);
13327 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13328 Wrong_Type (S, Base_Type (T));
13330 -- Check error of subtype with predicate in index constraint
13332 else
13333 Bad_Predicated_Subtype_Use
13334 ("subtype& has predicate, not allowed in index constraint",
13335 S, Entity (S));
13336 end if;
13338 return;
13340 else
13341 Error_Msg_N ("invalid index constraint", S);
13342 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13343 return;
13344 end if;
13345 end if;
13347 -- Complete construction of the Itype
13349 if Is_Modular_Integer_Type (T) then
13350 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13352 elsif Is_Integer_Type (T) then
13353 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13355 else
13356 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13357 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13358 Set_First_Literal (Def_Id, First_Literal (T));
13359 end if;
13361 Set_Size_Info (Def_Id, (T));
13362 Set_RM_Size (Def_Id, RM_Size (T));
13363 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13365 Set_Scalar_Range (Def_Id, R);
13367 Set_Etype (S, Def_Id);
13368 Set_Discrete_RM_Size (Def_Id);
13369 end Constrain_Index;
13371 -----------------------
13372 -- Constrain_Integer --
13373 -----------------------
13375 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13376 T : constant Entity_Id := Entity (Subtype_Mark (S));
13377 C : constant Node_Id := Constraint (S);
13379 begin
13380 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13382 if Is_Modular_Integer_Type (T) then
13383 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13384 else
13385 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13386 end if;
13388 Set_Etype (Def_Id, Base_Type (T));
13389 Set_Size_Info (Def_Id, (T));
13390 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13391 Set_Discrete_RM_Size (Def_Id);
13392 end Constrain_Integer;
13394 ------------------------------
13395 -- Constrain_Ordinary_Fixed --
13396 ------------------------------
13398 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13399 T : constant Entity_Id := Entity (Subtype_Mark (S));
13400 C : Node_Id;
13401 D : Node_Id;
13402 Rais : Node_Id;
13404 begin
13405 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13406 Set_Etype (Def_Id, Base_Type (T));
13407 Set_Size_Info (Def_Id, (T));
13408 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13409 Set_Small_Value (Def_Id, Small_Value (T));
13411 -- Process the constraint
13413 C := Constraint (S);
13415 -- Delta constraint present
13417 if Nkind (C) = N_Delta_Constraint then
13419 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13420 Check_Restriction (No_Obsolescent_Features, C);
13422 if Warn_On_Obsolescent_Feature then
13423 Error_Msg_S
13424 ("subtype delta constraint is an " &
13425 "obsolescent feature (RM J.3(7))?j?");
13426 end if;
13428 D := Delta_Expression (C);
13429 Analyze_And_Resolve (D, Any_Real);
13430 Check_Delta_Expression (D);
13431 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13433 -- Check that delta value is in range. Obviously we can do this
13434 -- at compile time, but it is strictly a runtime check, and of
13435 -- course there is an ACVC test that checks this.
13437 if Delta_Value (Def_Id) < Delta_Value (T) then
13438 Error_Msg_N ("??delta value is too small", D);
13439 Rais :=
13440 Make_Raise_Constraint_Error (Sloc (D),
13441 Reason => CE_Range_Check_Failed);
13442 Insert_Action (Declaration_Node (Def_Id), Rais);
13443 end if;
13445 C := Range_Constraint (C);
13447 -- No delta constraint present
13449 else
13450 Set_Delta_Value (Def_Id, Delta_Value (T));
13451 end if;
13453 -- Range constraint present
13455 if Nkind (C) = N_Range_Constraint then
13456 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13458 -- No range constraint present
13460 else
13461 pragma Assert (No (C));
13462 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13463 end if;
13465 Set_Discrete_RM_Size (Def_Id);
13467 -- Unconditionally delay the freeze, since we cannot set size
13468 -- information in all cases correctly until the freeze point.
13470 Set_Has_Delayed_Freeze (Def_Id);
13471 end Constrain_Ordinary_Fixed;
13473 -----------------------
13474 -- Contain_Interface --
13475 -----------------------
13477 function Contain_Interface
13478 (Iface : Entity_Id;
13479 Ifaces : Elist_Id) return Boolean
13481 Iface_Elmt : Elmt_Id;
13483 begin
13484 if Present (Ifaces) then
13485 Iface_Elmt := First_Elmt (Ifaces);
13486 while Present (Iface_Elmt) loop
13487 if Node (Iface_Elmt) = Iface then
13488 return True;
13489 end if;
13491 Next_Elmt (Iface_Elmt);
13492 end loop;
13493 end if;
13495 return False;
13496 end Contain_Interface;
13498 ---------------------------
13499 -- Convert_Scalar_Bounds --
13500 ---------------------------
13502 procedure Convert_Scalar_Bounds
13503 (N : Node_Id;
13504 Parent_Type : Entity_Id;
13505 Derived_Type : Entity_Id;
13506 Loc : Source_Ptr)
13508 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13510 Lo : Node_Id;
13511 Hi : Node_Id;
13512 Rng : Node_Id;
13514 begin
13515 -- Defend against previous errors
13517 if No (Scalar_Range (Derived_Type)) then
13518 Check_Error_Detected;
13519 return;
13520 end if;
13522 Lo := Build_Scalar_Bound
13523 (Type_Low_Bound (Derived_Type),
13524 Parent_Type, Implicit_Base);
13526 Hi := Build_Scalar_Bound
13527 (Type_High_Bound (Derived_Type),
13528 Parent_Type, Implicit_Base);
13530 Rng :=
13531 Make_Range (Loc,
13532 Low_Bound => Lo,
13533 High_Bound => Hi);
13535 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13537 Set_Parent (Rng, N);
13538 Set_Scalar_Range (Derived_Type, Rng);
13540 -- Analyze the bounds
13542 Analyze_And_Resolve (Lo, Implicit_Base);
13543 Analyze_And_Resolve (Hi, Implicit_Base);
13545 -- Analyze the range itself, except that we do not analyze it if
13546 -- the bounds are real literals, and we have a fixed-point type.
13547 -- The reason for this is that we delay setting the bounds in this
13548 -- case till we know the final Small and Size values (see circuit
13549 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13551 if Is_Fixed_Point_Type (Parent_Type)
13552 and then Nkind (Lo) = N_Real_Literal
13553 and then Nkind (Hi) = N_Real_Literal
13554 then
13555 return;
13557 -- Here we do the analysis of the range
13559 -- Note: we do this manually, since if we do a normal Analyze and
13560 -- Resolve call, there are problems with the conversions used for
13561 -- the derived type range.
13563 else
13564 Set_Etype (Rng, Implicit_Base);
13565 Set_Analyzed (Rng, True);
13566 end if;
13567 end Convert_Scalar_Bounds;
13569 -------------------
13570 -- Copy_And_Swap --
13571 -------------------
13573 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13574 begin
13575 -- Initialize new full declaration entity by copying the pertinent
13576 -- fields of the corresponding private declaration entity.
13578 -- We temporarily set Ekind to a value appropriate for a type to
13579 -- avoid assert failures in Einfo from checking for setting type
13580 -- attributes on something that is not a type. Ekind (Priv) is an
13581 -- appropriate choice, since it allowed the attributes to be set
13582 -- in the first place. This Ekind value will be modified later.
13584 Set_Ekind (Full, Ekind (Priv));
13586 -- Also set Etype temporarily to Any_Type, again, in the absence
13587 -- of errors, it will be properly reset, and if there are errors,
13588 -- then we want a value of Any_Type to remain.
13590 Set_Etype (Full, Any_Type);
13592 -- Now start copying attributes
13594 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13596 if Has_Discriminants (Full) then
13597 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13598 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13599 end if;
13601 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13602 Set_Homonym (Full, Homonym (Priv));
13603 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13604 Set_Is_Public (Full, Is_Public (Priv));
13605 Set_Is_Pure (Full, Is_Pure (Priv));
13606 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13607 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13608 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13609 Set_Has_Pragma_Unreferenced_Objects
13610 (Full, Has_Pragma_Unreferenced_Objects
13611 (Priv));
13613 Conditional_Delay (Full, Priv);
13615 if Is_Tagged_Type (Full) then
13616 Set_Direct_Primitive_Operations
13617 (Full, Direct_Primitive_Operations (Priv));
13618 Set_No_Tagged_Streams_Pragma
13619 (Full, No_Tagged_Streams_Pragma (Priv));
13621 if Is_Base_Type (Priv) then
13622 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13623 end if;
13624 end if;
13626 Set_Is_Volatile (Full, Is_Volatile (Priv));
13627 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13628 Set_Scope (Full, Scope (Priv));
13629 Set_Next_Entity (Full, Next_Entity (Priv));
13630 Set_First_Entity (Full, First_Entity (Priv));
13631 Set_Last_Entity (Full, Last_Entity (Priv));
13633 -- If access types have been recorded for later handling, keep them in
13634 -- the full view so that they get handled when the full view freeze
13635 -- node is expanded.
13637 if Present (Freeze_Node (Priv))
13638 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13639 then
13640 Ensure_Freeze_Node (Full);
13641 Set_Access_Types_To_Process
13642 (Freeze_Node (Full),
13643 Access_Types_To_Process (Freeze_Node (Priv)));
13644 end if;
13646 -- Swap the two entities. Now Private is the full type entity and Full
13647 -- is the private one. They will be swapped back at the end of the
13648 -- private part. This swapping ensures that the entity that is visible
13649 -- in the private part is the full declaration.
13651 Exchange_Entities (Priv, Full);
13652 Append_Entity (Full, Scope (Full));
13653 end Copy_And_Swap;
13655 -------------------------------------
13656 -- Copy_Array_Base_Type_Attributes --
13657 -------------------------------------
13659 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13660 begin
13661 Set_Component_Alignment (T1, Component_Alignment (T2));
13662 Set_Component_Type (T1, Component_Type (T2));
13663 Set_Component_Size (T1, Component_Size (T2));
13664 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13665 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13666 Set_Has_Protected (T1, Has_Protected (T2));
13667 Set_Has_Task (T1, Has_Task (T2));
13668 Set_Is_Packed (T1, Is_Packed (T2));
13669 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13670 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13671 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13672 end Copy_Array_Base_Type_Attributes;
13674 -----------------------------------
13675 -- Copy_Array_Subtype_Attributes --
13676 -----------------------------------
13678 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13679 begin
13680 Set_Size_Info (T1, T2);
13682 Set_First_Index (T1, First_Index (T2));
13683 Set_Is_Aliased (T1, Is_Aliased (T2));
13684 Set_Is_Volatile (T1, Is_Volatile (T2));
13685 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13686 Set_Is_Constrained (T1, Is_Constrained (T2));
13687 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13688 Inherit_Rep_Item_Chain (T1, T2);
13689 Set_Convention (T1, Convention (T2));
13690 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13691 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13692 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13693 end Copy_Array_Subtype_Attributes;
13695 -----------------------------------
13696 -- Create_Constrained_Components --
13697 -----------------------------------
13699 procedure Create_Constrained_Components
13700 (Subt : Entity_Id;
13701 Decl_Node : Node_Id;
13702 Typ : Entity_Id;
13703 Constraints : Elist_Id)
13705 Loc : constant Source_Ptr := Sloc (Subt);
13706 Comp_List : constant Elist_Id := New_Elmt_List;
13707 Parent_Type : constant Entity_Id := Etype (Typ);
13708 Assoc_List : constant List_Id := New_List;
13709 Discr_Val : Elmt_Id;
13710 Errors : Boolean;
13711 New_C : Entity_Id;
13712 Old_C : Entity_Id;
13713 Is_Static : Boolean := True;
13715 procedure Collect_Fixed_Components (Typ : Entity_Id);
13716 -- Collect parent type components that do not appear in a variant part
13718 procedure Create_All_Components;
13719 -- Iterate over Comp_List to create the components of the subtype
13721 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13722 -- Creates a new component from Old_Compon, copying all the fields from
13723 -- it, including its Etype, inserts the new component in the Subt entity
13724 -- chain and returns the new component.
13726 function Is_Variant_Record (T : Entity_Id) return Boolean;
13727 -- If true, and discriminants are static, collect only components from
13728 -- variants selected by discriminant values.
13730 ------------------------------
13731 -- Collect_Fixed_Components --
13732 ------------------------------
13734 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13735 begin
13736 -- Build association list for discriminants, and find components of the
13737 -- variant part selected by the values of the discriminants.
13739 Old_C := First_Discriminant (Typ);
13740 Discr_Val := First_Elmt (Constraints);
13741 while Present (Old_C) loop
13742 Append_To (Assoc_List,
13743 Make_Component_Association (Loc,
13744 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13745 Expression => New_Copy (Node (Discr_Val))));
13747 Next_Elmt (Discr_Val);
13748 Next_Discriminant (Old_C);
13749 end loop;
13751 -- The tag and the possible parent component are unconditionally in
13752 -- the subtype.
13754 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13755 Old_C := First_Component (Typ);
13756 while Present (Old_C) loop
13757 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13758 Append_Elmt (Old_C, Comp_List);
13759 end if;
13761 Next_Component (Old_C);
13762 end loop;
13763 end if;
13764 end Collect_Fixed_Components;
13766 ---------------------------
13767 -- Create_All_Components --
13768 ---------------------------
13770 procedure Create_All_Components is
13771 Comp : Elmt_Id;
13773 begin
13774 Comp := First_Elmt (Comp_List);
13775 while Present (Comp) loop
13776 Old_C := Node (Comp);
13777 New_C := Create_Component (Old_C);
13779 Set_Etype
13780 (New_C,
13781 Constrain_Component_Type
13782 (Old_C, Subt, Decl_Node, Typ, Constraints));
13783 Set_Is_Public (New_C, Is_Public (Subt));
13785 Next_Elmt (Comp);
13786 end loop;
13787 end Create_All_Components;
13789 ----------------------
13790 -- Create_Component --
13791 ----------------------
13793 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13794 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13796 begin
13797 if Ekind (Old_Compon) = E_Discriminant
13798 and then Is_Completely_Hidden (Old_Compon)
13799 then
13800 -- This is a shadow discriminant created for a discriminant of
13801 -- the parent type, which needs to be present in the subtype.
13802 -- Give the shadow discriminant an internal name that cannot
13803 -- conflict with that of visible components.
13805 Set_Chars (New_Compon, New_Internal_Name ('C'));
13806 end if;
13808 -- Set the parent so we have a proper link for freezing etc. This is
13809 -- not a real parent pointer, since of course our parent does not own
13810 -- up to us and reference us, we are an illegitimate child of the
13811 -- original parent.
13813 Set_Parent (New_Compon, Parent (Old_Compon));
13815 -- If the old component's Esize was already determined and is a
13816 -- static value, then the new component simply inherits it. Otherwise
13817 -- the old component's size may require run-time determination, but
13818 -- the new component's size still might be statically determinable
13819 -- (if, for example it has a static constraint). In that case we want
13820 -- Layout_Type to recompute the component's size, so we reset its
13821 -- size and positional fields.
13823 if Frontend_Layout_On_Target
13824 and then not Known_Static_Esize (Old_Compon)
13825 then
13826 Set_Esize (New_Compon, Uint_0);
13827 Init_Normalized_First_Bit (New_Compon);
13828 Init_Normalized_Position (New_Compon);
13829 Init_Normalized_Position_Max (New_Compon);
13830 end if;
13832 -- We do not want this node marked as Comes_From_Source, since
13833 -- otherwise it would get first class status and a separate cross-
13834 -- reference line would be generated. Illegitimate children do not
13835 -- rate such recognition.
13837 Set_Comes_From_Source (New_Compon, False);
13839 -- But it is a real entity, and a birth certificate must be properly
13840 -- registered by entering it into the entity list.
13842 Enter_Name (New_Compon);
13844 return New_Compon;
13845 end Create_Component;
13847 -----------------------
13848 -- Is_Variant_Record --
13849 -----------------------
13851 function Is_Variant_Record (T : Entity_Id) return Boolean is
13852 begin
13853 return Nkind (Parent (T)) = N_Full_Type_Declaration
13854 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13855 and then Present (Component_List (Type_Definition (Parent (T))))
13856 and then
13857 Present
13858 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13859 end Is_Variant_Record;
13861 -- Start of processing for Create_Constrained_Components
13863 begin
13864 pragma Assert (Subt /= Base_Type (Subt));
13865 pragma Assert (Typ = Base_Type (Typ));
13867 Set_First_Entity (Subt, Empty);
13868 Set_Last_Entity (Subt, Empty);
13870 -- Check whether constraint is fully static, in which case we can
13871 -- optimize the list of components.
13873 Discr_Val := First_Elmt (Constraints);
13874 while Present (Discr_Val) loop
13875 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13876 Is_Static := False;
13877 exit;
13878 end if;
13880 Next_Elmt (Discr_Val);
13881 end loop;
13883 Set_Has_Static_Discriminants (Subt, Is_Static);
13885 Push_Scope (Subt);
13887 -- Inherit the discriminants of the parent type
13889 Add_Discriminants : declare
13890 Num_Disc : Int;
13891 Num_Gird : Int;
13893 begin
13894 Num_Disc := 0;
13895 Old_C := First_Discriminant (Typ);
13897 while Present (Old_C) loop
13898 Num_Disc := Num_Disc + 1;
13899 New_C := Create_Component (Old_C);
13900 Set_Is_Public (New_C, Is_Public (Subt));
13901 Next_Discriminant (Old_C);
13902 end loop;
13904 -- For an untagged derived subtype, the number of discriminants may
13905 -- be smaller than the number of inherited discriminants, because
13906 -- several of them may be renamed by a single new discriminant or
13907 -- constrained. In this case, add the hidden discriminants back into
13908 -- the subtype, because they need to be present if the optimizer of
13909 -- the GCC 4.x back-end decides to break apart assignments between
13910 -- objects using the parent view into member-wise assignments.
13912 Num_Gird := 0;
13914 if Is_Derived_Type (Typ)
13915 and then not Is_Tagged_Type (Typ)
13916 then
13917 Old_C := First_Stored_Discriminant (Typ);
13919 while Present (Old_C) loop
13920 Num_Gird := Num_Gird + 1;
13921 Next_Stored_Discriminant (Old_C);
13922 end loop;
13923 end if;
13925 if Num_Gird > Num_Disc then
13927 -- Find out multiple uses of new discriminants, and add hidden
13928 -- components for the extra renamed discriminants. We recognize
13929 -- multiple uses through the Corresponding_Discriminant of a
13930 -- new discriminant: if it constrains several old discriminants,
13931 -- this field points to the last one in the parent type. The
13932 -- stored discriminants of the derived type have the same name
13933 -- as those of the parent.
13935 declare
13936 Constr : Elmt_Id;
13937 New_Discr : Entity_Id;
13938 Old_Discr : Entity_Id;
13940 begin
13941 Constr := First_Elmt (Stored_Constraint (Typ));
13942 Old_Discr := First_Stored_Discriminant (Typ);
13943 while Present (Constr) loop
13944 if Is_Entity_Name (Node (Constr))
13945 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13946 then
13947 New_Discr := Entity (Node (Constr));
13949 if Chars (Corresponding_Discriminant (New_Discr)) /=
13950 Chars (Old_Discr)
13951 then
13952 -- The new discriminant has been used to rename a
13953 -- subsequent old discriminant. Introduce a shadow
13954 -- component for the current old discriminant.
13956 New_C := Create_Component (Old_Discr);
13957 Set_Original_Record_Component (New_C, Old_Discr);
13958 end if;
13960 else
13961 -- The constraint has eliminated the old discriminant.
13962 -- Introduce a shadow component.
13964 New_C := Create_Component (Old_Discr);
13965 Set_Original_Record_Component (New_C, Old_Discr);
13966 end if;
13968 Next_Elmt (Constr);
13969 Next_Stored_Discriminant (Old_Discr);
13970 end loop;
13971 end;
13972 end if;
13973 end Add_Discriminants;
13975 if Is_Static
13976 and then Is_Variant_Record (Typ)
13977 then
13978 Collect_Fixed_Components (Typ);
13980 Gather_Components (
13981 Typ,
13982 Component_List (Type_Definition (Parent (Typ))),
13983 Governed_By => Assoc_List,
13984 Into => Comp_List,
13985 Report_Errors => Errors);
13986 pragma Assert (not Errors);
13988 Create_All_Components;
13990 -- If the subtype declaration is created for a tagged type derivation
13991 -- with constraints, we retrieve the record definition of the parent
13992 -- type to select the components of the proper variant.
13994 elsif Is_Static
13995 and then Is_Tagged_Type (Typ)
13996 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13997 and then
13998 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13999 and then Is_Variant_Record (Parent_Type)
14000 then
14001 Collect_Fixed_Components (Typ);
14003 Gather_Components
14004 (Typ,
14005 Component_List (Type_Definition (Parent (Parent_Type))),
14006 Governed_By => Assoc_List,
14007 Into => Comp_List,
14008 Report_Errors => Errors);
14010 -- Note: previously there was a check at this point that no errors
14011 -- were detected. As a consequence of AI05-220 there may be an error
14012 -- if an inherited discriminant that controls a variant has a non-
14013 -- static constraint.
14015 -- If the tagged derivation has a type extension, collect all the
14016 -- new components therein.
14018 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14019 then
14020 Old_C := First_Component (Typ);
14021 while Present (Old_C) loop
14022 if Original_Record_Component (Old_C) = Old_C
14023 and then Chars (Old_C) /= Name_uTag
14024 and then Chars (Old_C) /= Name_uParent
14025 then
14026 Append_Elmt (Old_C, Comp_List);
14027 end if;
14029 Next_Component (Old_C);
14030 end loop;
14031 end if;
14033 Create_All_Components;
14035 else
14036 -- If discriminants are not static, or if this is a multi-level type
14037 -- extension, we have to include all components of the parent type.
14039 Old_C := First_Component (Typ);
14040 while Present (Old_C) loop
14041 New_C := Create_Component (Old_C);
14043 Set_Etype
14044 (New_C,
14045 Constrain_Component_Type
14046 (Old_C, Subt, Decl_Node, Typ, Constraints));
14047 Set_Is_Public (New_C, Is_Public (Subt));
14049 Next_Component (Old_C);
14050 end loop;
14051 end if;
14053 End_Scope;
14054 end Create_Constrained_Components;
14056 ------------------------------------------
14057 -- Decimal_Fixed_Point_Type_Declaration --
14058 ------------------------------------------
14060 procedure Decimal_Fixed_Point_Type_Declaration
14061 (T : Entity_Id;
14062 Def : Node_Id)
14064 Loc : constant Source_Ptr := Sloc (Def);
14065 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14066 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14067 Implicit_Base : Entity_Id;
14068 Digs_Val : Uint;
14069 Delta_Val : Ureal;
14070 Scale_Val : Uint;
14071 Bound_Val : Ureal;
14073 begin
14074 Check_SPARK_05_Restriction
14075 ("decimal fixed point type is not allowed", Def);
14076 Check_Restriction (No_Fixed_Point, Def);
14078 -- Create implicit base type
14080 Implicit_Base :=
14081 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14082 Set_Etype (Implicit_Base, Implicit_Base);
14084 -- Analyze and process delta expression
14086 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14088 Check_Delta_Expression (Delta_Expr);
14089 Delta_Val := Expr_Value_R (Delta_Expr);
14091 -- Check delta is power of 10, and determine scale value from it
14093 declare
14094 Val : Ureal;
14096 begin
14097 Scale_Val := Uint_0;
14098 Val := Delta_Val;
14100 if Val < Ureal_1 then
14101 while Val < Ureal_1 loop
14102 Val := Val * Ureal_10;
14103 Scale_Val := Scale_Val + 1;
14104 end loop;
14106 if Scale_Val > 18 then
14107 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14108 Scale_Val := UI_From_Int (+18);
14109 end if;
14111 else
14112 while Val > Ureal_1 loop
14113 Val := Val / Ureal_10;
14114 Scale_Val := Scale_Val - 1;
14115 end loop;
14117 if Scale_Val < -18 then
14118 Error_Msg_N ("scale is less than minimum value of -18", Def);
14119 Scale_Val := UI_From_Int (-18);
14120 end if;
14121 end if;
14123 if Val /= Ureal_1 then
14124 Error_Msg_N ("delta expression must be a power of 10", Def);
14125 Delta_Val := Ureal_10 ** (-Scale_Val);
14126 end if;
14127 end;
14129 -- Set delta, scale and small (small = delta for decimal type)
14131 Set_Delta_Value (Implicit_Base, Delta_Val);
14132 Set_Scale_Value (Implicit_Base, Scale_Val);
14133 Set_Small_Value (Implicit_Base, Delta_Val);
14135 -- Analyze and process digits expression
14137 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14138 Check_Digits_Expression (Digs_Expr);
14139 Digs_Val := Expr_Value (Digs_Expr);
14141 if Digs_Val > 18 then
14142 Digs_Val := UI_From_Int (+18);
14143 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14144 end if;
14146 Set_Digits_Value (Implicit_Base, Digs_Val);
14147 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14149 -- Set range of base type from digits value for now. This will be
14150 -- expanded to represent the true underlying base range by Freeze.
14152 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14154 -- Note: We leave size as zero for now, size will be set at freeze
14155 -- time. We have to do this for ordinary fixed-point, because the size
14156 -- depends on the specified small, and we might as well do the same for
14157 -- decimal fixed-point.
14159 pragma Assert (Esize (Implicit_Base) = Uint_0);
14161 -- If there are bounds given in the declaration use them as the
14162 -- bounds of the first named subtype.
14164 if Present (Real_Range_Specification (Def)) then
14165 declare
14166 RRS : constant Node_Id := Real_Range_Specification (Def);
14167 Low : constant Node_Id := Low_Bound (RRS);
14168 High : constant Node_Id := High_Bound (RRS);
14169 Low_Val : Ureal;
14170 High_Val : Ureal;
14172 begin
14173 Analyze_And_Resolve (Low, Any_Real);
14174 Analyze_And_Resolve (High, Any_Real);
14175 Check_Real_Bound (Low);
14176 Check_Real_Bound (High);
14177 Low_Val := Expr_Value_R (Low);
14178 High_Val := Expr_Value_R (High);
14180 if Low_Val < (-Bound_Val) then
14181 Error_Msg_N
14182 ("range low bound too small for digits value", Low);
14183 Low_Val := -Bound_Val;
14184 end if;
14186 if High_Val > Bound_Val then
14187 Error_Msg_N
14188 ("range high bound too large for digits value", High);
14189 High_Val := Bound_Val;
14190 end if;
14192 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14193 end;
14195 -- If no explicit range, use range that corresponds to given
14196 -- digits value. This will end up as the final range for the
14197 -- first subtype.
14199 else
14200 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14201 end if;
14203 -- Complete entity for first subtype. The inheritance of the rep item
14204 -- chain ensures that SPARK-related pragmas are not clobbered when the
14205 -- decimal fixed point type acts as a full view of a private type.
14207 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14208 Set_Etype (T, Implicit_Base);
14209 Set_Size_Info (T, Implicit_Base);
14210 Inherit_Rep_Item_Chain (T, Implicit_Base);
14211 Set_Digits_Value (T, Digs_Val);
14212 Set_Delta_Value (T, Delta_Val);
14213 Set_Small_Value (T, Delta_Val);
14214 Set_Scale_Value (T, Scale_Val);
14215 Set_Is_Constrained (T);
14216 end Decimal_Fixed_Point_Type_Declaration;
14218 -----------------------------------
14219 -- Derive_Progenitor_Subprograms --
14220 -----------------------------------
14222 procedure Derive_Progenitor_Subprograms
14223 (Parent_Type : Entity_Id;
14224 Tagged_Type : Entity_Id)
14226 E : Entity_Id;
14227 Elmt : Elmt_Id;
14228 Iface : Entity_Id;
14229 Iface_Elmt : Elmt_Id;
14230 Iface_Subp : Entity_Id;
14231 New_Subp : Entity_Id := Empty;
14232 Prim_Elmt : Elmt_Id;
14233 Subp : Entity_Id;
14234 Typ : Entity_Id;
14236 begin
14237 pragma Assert (Ada_Version >= Ada_2005
14238 and then Is_Record_Type (Tagged_Type)
14239 and then Is_Tagged_Type (Tagged_Type)
14240 and then Has_Interfaces (Tagged_Type));
14242 -- Step 1: Transfer to the full-view primitives associated with the
14243 -- partial-view that cover interface primitives. Conceptually this
14244 -- work should be done later by Process_Full_View; done here to
14245 -- simplify its implementation at later stages. It can be safely
14246 -- done here because interfaces must be visible in the partial and
14247 -- private view (RM 7.3(7.3/2)).
14249 -- Small optimization: This work is only required if the parent may
14250 -- have entities whose Alias attribute reference an interface primitive.
14251 -- Such a situation may occur if the parent is an abstract type and the
14252 -- primitive has not been yet overridden or if the parent is a generic
14253 -- formal type covering interfaces.
14255 -- If the tagged type is not abstract, it cannot have abstract
14256 -- primitives (the only entities in the list of primitives of
14257 -- non-abstract tagged types that can reference abstract primitives
14258 -- through its Alias attribute are the internal entities that have
14259 -- attribute Interface_Alias, and these entities are generated later
14260 -- by Add_Internal_Interface_Entities).
14262 if In_Private_Part (Current_Scope)
14263 and then (Is_Abstract_Type (Parent_Type)
14264 or else
14265 Is_Generic_Type (Parent_Type))
14266 then
14267 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14268 while Present (Elmt) loop
14269 Subp := Node (Elmt);
14271 -- At this stage it is not possible to have entities in the list
14272 -- of primitives that have attribute Interface_Alias.
14274 pragma Assert (No (Interface_Alias (Subp)));
14276 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14278 if Is_Interface (Typ) then
14279 E := Find_Primitive_Covering_Interface
14280 (Tagged_Type => Tagged_Type,
14281 Iface_Prim => Subp);
14283 if Present (E)
14284 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14285 then
14286 Replace_Elmt (Elmt, E);
14287 Remove_Homonym (Subp);
14288 end if;
14289 end if;
14291 Next_Elmt (Elmt);
14292 end loop;
14293 end if;
14295 -- Step 2: Add primitives of progenitors that are not implemented by
14296 -- parents of Tagged_Type.
14298 if Present (Interfaces (Base_Type (Tagged_Type))) then
14299 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14300 while Present (Iface_Elmt) loop
14301 Iface := Node (Iface_Elmt);
14303 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14304 while Present (Prim_Elmt) loop
14305 Iface_Subp := Node (Prim_Elmt);
14307 -- Exclude derivation of predefined primitives except those
14308 -- that come from source, or are inherited from one that comes
14309 -- from source. Required to catch declarations of equality
14310 -- operators of interfaces. For example:
14312 -- type Iface is interface;
14313 -- function "=" (Left, Right : Iface) return Boolean;
14315 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14316 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14317 then
14318 E := Find_Primitive_Covering_Interface
14319 (Tagged_Type => Tagged_Type,
14320 Iface_Prim => Iface_Subp);
14322 -- If not found we derive a new primitive leaving its alias
14323 -- attribute referencing the interface primitive.
14325 if No (E) then
14326 Derive_Subprogram
14327 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14329 -- Ada 2012 (AI05-0197): If the covering primitive's name
14330 -- differs from the name of the interface primitive then it
14331 -- is a private primitive inherited from a parent type. In
14332 -- such case, given that Tagged_Type covers the interface,
14333 -- the inherited private primitive becomes visible. For such
14334 -- purpose we add a new entity that renames the inherited
14335 -- private primitive.
14337 elsif Chars (E) /= Chars (Iface_Subp) then
14338 pragma Assert (Has_Suffix (E, 'P'));
14339 Derive_Subprogram
14340 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14341 Set_Alias (New_Subp, E);
14342 Set_Is_Abstract_Subprogram (New_Subp,
14343 Is_Abstract_Subprogram (E));
14345 -- Propagate to the full view interface entities associated
14346 -- with the partial view.
14348 elsif In_Private_Part (Current_Scope)
14349 and then Present (Alias (E))
14350 and then Alias (E) = Iface_Subp
14351 and then
14352 List_Containing (Parent (E)) /=
14353 Private_Declarations
14354 (Specification
14355 (Unit_Declaration_Node (Current_Scope)))
14356 then
14357 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14358 end if;
14359 end if;
14361 Next_Elmt (Prim_Elmt);
14362 end loop;
14364 Next_Elmt (Iface_Elmt);
14365 end loop;
14366 end if;
14367 end Derive_Progenitor_Subprograms;
14369 -----------------------
14370 -- Derive_Subprogram --
14371 -----------------------
14373 procedure Derive_Subprogram
14374 (New_Subp : in out Entity_Id;
14375 Parent_Subp : Entity_Id;
14376 Derived_Type : Entity_Id;
14377 Parent_Type : Entity_Id;
14378 Actual_Subp : Entity_Id := Empty)
14380 Formal : Entity_Id;
14381 -- Formal parameter of parent primitive operation
14383 Formal_Of_Actual : Entity_Id;
14384 -- Formal parameter of actual operation, when the derivation is to
14385 -- create a renaming for a primitive operation of an actual in an
14386 -- instantiation.
14388 New_Formal : Entity_Id;
14389 -- Formal of inherited operation
14391 Visible_Subp : Entity_Id := Parent_Subp;
14393 function Is_Private_Overriding return Boolean;
14394 -- If Subp is a private overriding of a visible operation, the inherited
14395 -- operation derives from the overridden op (even though its body is the
14396 -- overriding one) and the inherited operation is visible now. See
14397 -- sem_disp to see the full details of the handling of the overridden
14398 -- subprogram, which is removed from the list of primitive operations of
14399 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14400 -- and used to diagnose abstract operations that need overriding in the
14401 -- derived type.
14403 procedure Replace_Type (Id, New_Id : Entity_Id);
14404 -- When the type is an anonymous access type, create a new access type
14405 -- designating the derived type.
14407 procedure Set_Derived_Name;
14408 -- This procedure sets the appropriate Chars name for New_Subp. This
14409 -- is normally just a copy of the parent name. An exception arises for
14410 -- type support subprograms, where the name is changed to reflect the
14411 -- name of the derived type, e.g. if type foo is derived from type bar,
14412 -- then a procedure barDA is derived with a name fooDA.
14414 ---------------------------
14415 -- Is_Private_Overriding --
14416 ---------------------------
14418 function Is_Private_Overriding return Boolean is
14419 Prev : Entity_Id;
14421 begin
14422 -- If the parent is not a dispatching operation there is no
14423 -- need to investigate overridings
14425 if not Is_Dispatching_Operation (Parent_Subp) then
14426 return False;
14427 end if;
14429 -- The visible operation that is overridden is a homonym of the
14430 -- parent subprogram. We scan the homonym chain to find the one
14431 -- whose alias is the subprogram we are deriving.
14433 Prev := Current_Entity (Parent_Subp);
14434 while Present (Prev) loop
14435 if Ekind (Prev) = Ekind (Parent_Subp)
14436 and then Alias (Prev) = Parent_Subp
14437 and then Scope (Parent_Subp) = Scope (Prev)
14438 and then not Is_Hidden (Prev)
14439 then
14440 Visible_Subp := Prev;
14441 return True;
14442 end if;
14444 Prev := Homonym (Prev);
14445 end loop;
14447 return False;
14448 end Is_Private_Overriding;
14450 ------------------
14451 -- Replace_Type --
14452 ------------------
14454 procedure Replace_Type (Id, New_Id : Entity_Id) is
14455 Id_Type : constant Entity_Id := Etype (Id);
14456 Acc_Type : Entity_Id;
14457 Par : constant Node_Id := Parent (Derived_Type);
14459 begin
14460 -- When the type is an anonymous access type, create a new access
14461 -- type designating the derived type. This itype must be elaborated
14462 -- at the point of the derivation, not on subsequent calls that may
14463 -- be out of the proper scope for Gigi, so we insert a reference to
14464 -- it after the derivation.
14466 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14467 declare
14468 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14470 begin
14471 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14472 and then Present (Full_View (Desig_Typ))
14473 and then not Is_Private_Type (Parent_Type)
14474 then
14475 Desig_Typ := Full_View (Desig_Typ);
14476 end if;
14478 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14480 -- Ada 2005 (AI-251): Handle also derivations of abstract
14481 -- interface primitives.
14483 or else (Is_Interface (Desig_Typ)
14484 and then not Is_Class_Wide_Type (Desig_Typ))
14485 then
14486 Acc_Type := New_Copy (Id_Type);
14487 Set_Etype (Acc_Type, Acc_Type);
14488 Set_Scope (Acc_Type, New_Subp);
14490 -- Set size of anonymous access type. If we have an access
14491 -- to an unconstrained array, this is a fat pointer, so it
14492 -- is sizes at twice addtress size.
14494 if Is_Array_Type (Desig_Typ)
14495 and then not Is_Constrained (Desig_Typ)
14496 then
14497 Init_Size (Acc_Type, 2 * System_Address_Size);
14499 -- Other cases use a thin pointer
14501 else
14502 Init_Size (Acc_Type, System_Address_Size);
14503 end if;
14505 -- Set remaining characterstics of anonymous access type
14507 Init_Alignment (Acc_Type);
14508 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14510 Set_Etype (New_Id, Acc_Type);
14511 Set_Scope (New_Id, New_Subp);
14513 -- Create a reference to it
14515 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14517 else
14518 Set_Etype (New_Id, Id_Type);
14519 end if;
14520 end;
14522 -- In Ada2012, a formal may have an incomplete type but the type
14523 -- derivation that inherits the primitive follows the full view.
14525 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14526 or else
14527 (Ekind (Id_Type) = E_Record_Type_With_Private
14528 and then Present (Full_View (Id_Type))
14529 and then
14530 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14531 or else
14532 (Ada_Version >= Ada_2012
14533 and then Ekind (Id_Type) = E_Incomplete_Type
14534 and then Full_View (Id_Type) = Parent_Type)
14535 then
14536 -- Constraint checks on formals are generated during expansion,
14537 -- based on the signature of the original subprogram. The bounds
14538 -- of the derived type are not relevant, and thus we can use
14539 -- the base type for the formals. However, the return type may be
14540 -- used in a context that requires that the proper static bounds
14541 -- be used (a case statement, for example) and for those cases
14542 -- we must use the derived type (first subtype), not its base.
14544 -- If the derived_type_definition has no constraints, we know that
14545 -- the derived type has the same constraints as the first subtype
14546 -- of the parent, and we can also use it rather than its base,
14547 -- which can lead to more efficient code.
14549 if Etype (Id) = Parent_Type then
14550 if Is_Scalar_Type (Parent_Type)
14551 and then
14552 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14553 then
14554 Set_Etype (New_Id, Derived_Type);
14556 elsif Nkind (Par) = N_Full_Type_Declaration
14557 and then
14558 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14559 and then
14560 Is_Entity_Name
14561 (Subtype_Indication (Type_Definition (Par)))
14562 then
14563 Set_Etype (New_Id, Derived_Type);
14565 else
14566 Set_Etype (New_Id, Base_Type (Derived_Type));
14567 end if;
14569 else
14570 Set_Etype (New_Id, Base_Type (Derived_Type));
14571 end if;
14573 else
14574 Set_Etype (New_Id, Etype (Id));
14575 end if;
14576 end Replace_Type;
14578 ----------------------
14579 -- Set_Derived_Name --
14580 ----------------------
14582 procedure Set_Derived_Name is
14583 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14584 begin
14585 if Nm = TSS_Null then
14586 Set_Chars (New_Subp, Chars (Parent_Subp));
14587 else
14588 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14589 end if;
14590 end Set_Derived_Name;
14592 -- Start of processing for Derive_Subprogram
14594 begin
14595 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14596 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14598 -- Check whether the inherited subprogram is a private operation that
14599 -- should be inherited but not yet made visible. Such subprograms can
14600 -- become visible at a later point (e.g., the private part of a public
14601 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14602 -- following predicate is true, then this is not such a private
14603 -- operation and the subprogram simply inherits the name of the parent
14604 -- subprogram. Note the special check for the names of controlled
14605 -- operations, which are currently exempted from being inherited with
14606 -- a hidden name because they must be findable for generation of
14607 -- implicit run-time calls.
14609 if not Is_Hidden (Parent_Subp)
14610 or else Is_Internal (Parent_Subp)
14611 or else Is_Private_Overriding
14612 or else Is_Internal_Name (Chars (Parent_Subp))
14613 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14614 Name_Adjust,
14615 Name_Finalize)
14616 then
14617 Set_Derived_Name;
14619 -- An inherited dispatching equality will be overridden by an internally
14620 -- generated one, or by an explicit one, so preserve its name and thus
14621 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14622 -- private operation it may become invisible if the full view has
14623 -- progenitors, and the dispatch table will be malformed.
14624 -- We check that the type is limited to handle the anomalous declaration
14625 -- of Limited_Controlled, which is derived from a non-limited type, and
14626 -- which is handled specially elsewhere as well.
14628 elsif Chars (Parent_Subp) = Name_Op_Eq
14629 and then Is_Dispatching_Operation (Parent_Subp)
14630 and then Etype (Parent_Subp) = Standard_Boolean
14631 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14632 and then
14633 Etype (First_Formal (Parent_Subp)) =
14634 Etype (Next_Formal (First_Formal (Parent_Subp)))
14635 then
14636 Set_Derived_Name;
14638 -- If parent is hidden, this can be a regular derivation if the
14639 -- parent is immediately visible in a non-instantiating context,
14640 -- or if we are in the private part of an instance. This test
14641 -- should still be refined ???
14643 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14644 -- operation as a non-visible operation in cases where the parent
14645 -- subprogram might not be visible now, but was visible within the
14646 -- original generic, so it would be wrong to make the inherited
14647 -- subprogram non-visible now. (Not clear if this test is fully
14648 -- correct; are there any cases where we should declare the inherited
14649 -- operation as not visible to avoid it being overridden, e.g., when
14650 -- the parent type is a generic actual with private primitives ???)
14652 -- (they should be treated the same as other private inherited
14653 -- subprograms, but it's not clear how to do this cleanly). ???
14655 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14656 and then Is_Immediately_Visible (Parent_Subp)
14657 and then not In_Instance)
14658 or else In_Instance_Not_Visible
14659 then
14660 Set_Derived_Name;
14662 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14663 -- overrides an interface primitive because interface primitives
14664 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14666 elsif Ada_Version >= Ada_2005
14667 and then Is_Dispatching_Operation (Parent_Subp)
14668 and then Covers_Some_Interface (Parent_Subp)
14669 then
14670 Set_Derived_Name;
14672 -- Otherwise, the type is inheriting a private operation, so enter
14673 -- it with a special name so it can't be overridden.
14675 else
14676 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14677 end if;
14679 Set_Parent (New_Subp, Parent (Derived_Type));
14681 if Present (Actual_Subp) then
14682 Replace_Type (Actual_Subp, New_Subp);
14683 else
14684 Replace_Type (Parent_Subp, New_Subp);
14685 end if;
14687 Conditional_Delay (New_Subp, Parent_Subp);
14689 -- If we are creating a renaming for a primitive operation of an
14690 -- actual of a generic derived type, we must examine the signature
14691 -- of the actual primitive, not that of the generic formal, which for
14692 -- example may be an interface. However the name and initial value
14693 -- of the inherited operation are those of the formal primitive.
14695 Formal := First_Formal (Parent_Subp);
14697 if Present (Actual_Subp) then
14698 Formal_Of_Actual := First_Formal (Actual_Subp);
14699 else
14700 Formal_Of_Actual := Empty;
14701 end if;
14703 while Present (Formal) loop
14704 New_Formal := New_Copy (Formal);
14706 -- Normally we do not go copying parents, but in the case of
14707 -- formals, we need to link up to the declaration (which is the
14708 -- parameter specification), and it is fine to link up to the
14709 -- original formal's parameter specification in this case.
14711 Set_Parent (New_Formal, Parent (Formal));
14712 Append_Entity (New_Formal, New_Subp);
14714 if Present (Formal_Of_Actual) then
14715 Replace_Type (Formal_Of_Actual, New_Formal);
14716 Next_Formal (Formal_Of_Actual);
14717 else
14718 Replace_Type (Formal, New_Formal);
14719 end if;
14721 Next_Formal (Formal);
14722 end loop;
14724 -- If this derivation corresponds to a tagged generic actual, then
14725 -- primitive operations rename those of the actual. Otherwise the
14726 -- primitive operations rename those of the parent type, If the parent
14727 -- renames an intrinsic operator, so does the new subprogram. We except
14728 -- concatenation, which is always properly typed, and does not get
14729 -- expanded as other intrinsic operations.
14731 if No (Actual_Subp) then
14732 if Is_Intrinsic_Subprogram (Parent_Subp) then
14733 Set_Is_Intrinsic_Subprogram (New_Subp);
14735 if Present (Alias (Parent_Subp))
14736 and then Chars (Parent_Subp) /= Name_Op_Concat
14737 then
14738 Set_Alias (New_Subp, Alias (Parent_Subp));
14739 else
14740 Set_Alias (New_Subp, Parent_Subp);
14741 end if;
14743 else
14744 Set_Alias (New_Subp, Parent_Subp);
14745 end if;
14747 else
14748 Set_Alias (New_Subp, Actual_Subp);
14749 end if;
14751 -- Inherit the "ghostness" from the parent subprogram
14753 if Is_Ghost_Entity (Alias (New_Subp)) then
14754 Set_Is_Ghost_Entity (New_Subp);
14755 end if;
14757 -- Derived subprograms of a tagged type must inherit the convention
14758 -- of the parent subprogram (a requirement of AI-117). Derived
14759 -- subprograms of untagged types simply get convention Ada by default.
14761 -- If the derived type is a tagged generic formal type with unknown
14762 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14764 -- However, if the type is derived from a generic formal, the further
14765 -- inherited subprogram has the convention of the non-generic ancestor.
14766 -- Otherwise there would be no way to override the operation.
14767 -- (This is subject to forthcoming ARG discussions).
14769 if Is_Tagged_Type (Derived_Type) then
14770 if Is_Generic_Type (Derived_Type)
14771 and then Has_Unknown_Discriminants (Derived_Type)
14772 then
14773 Set_Convention (New_Subp, Convention_Intrinsic);
14775 else
14776 if Is_Generic_Type (Parent_Type)
14777 and then Has_Unknown_Discriminants (Parent_Type)
14778 then
14779 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14780 else
14781 Set_Convention (New_Subp, Convention (Parent_Subp));
14782 end if;
14783 end if;
14784 end if;
14786 -- Predefined controlled operations retain their name even if the parent
14787 -- is hidden (see above), but they are not primitive operations if the
14788 -- ancestor is not visible, for example if the parent is a private
14789 -- extension completed with a controlled extension. Note that a full
14790 -- type that is controlled can break privacy: the flag Is_Controlled is
14791 -- set on both views of the type.
14793 if Is_Controlled (Parent_Type)
14794 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14795 Name_Adjust,
14796 Name_Finalize)
14797 and then Is_Hidden (Parent_Subp)
14798 and then not Is_Visibly_Controlled (Parent_Type)
14799 then
14800 Set_Is_Hidden (New_Subp);
14801 end if;
14803 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14804 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14806 if Ekind (Parent_Subp) = E_Procedure then
14807 Set_Is_Valued_Procedure
14808 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14809 else
14810 Set_Has_Controlling_Result
14811 (New_Subp, Has_Controlling_Result (Parent_Subp));
14812 end if;
14814 -- No_Return must be inherited properly. If this is overridden in the
14815 -- case of a dispatching operation, then a check is made in Sem_Disp
14816 -- that the overriding operation is also No_Return (no such check is
14817 -- required for the case of non-dispatching operation.
14819 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14821 -- A derived function with a controlling result is abstract. If the
14822 -- Derived_Type is a nonabstract formal generic derived type, then
14823 -- inherited operations are not abstract: the required check is done at
14824 -- instantiation time. If the derivation is for a generic actual, the
14825 -- function is not abstract unless the actual is.
14827 if Is_Generic_Type (Derived_Type)
14828 and then not Is_Abstract_Type (Derived_Type)
14829 then
14830 null;
14832 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14833 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14835 -- A subprogram subject to pragma Extensions_Visible with value False
14836 -- requires overriding if the subprogram has at least one controlling
14837 -- OUT parameter (SPARK RM 6.1.7(6)).
14839 elsif Ada_Version >= Ada_2005
14840 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14841 or else (Is_Tagged_Type (Derived_Type)
14842 and then Etype (New_Subp) = Derived_Type
14843 and then not Is_Null_Extension (Derived_Type))
14844 or else (Is_Tagged_Type (Derived_Type)
14845 and then Ekind (Etype (New_Subp)) =
14846 E_Anonymous_Access_Type
14847 and then Designated_Type (Etype (New_Subp)) =
14848 Derived_Type
14849 and then not Is_Null_Extension (Derived_Type))
14850 or else (Comes_From_Source (Alias (New_Subp))
14851 and then Is_EVF_Procedure (Alias (New_Subp))))
14852 and then No (Actual_Subp)
14853 then
14854 if not Is_Tagged_Type (Derived_Type)
14855 or else Is_Abstract_Type (Derived_Type)
14856 or else Is_Abstract_Subprogram (Alias (New_Subp))
14857 then
14858 Set_Is_Abstract_Subprogram (New_Subp);
14859 else
14860 Set_Requires_Overriding (New_Subp);
14861 end if;
14863 elsif Ada_Version < Ada_2005
14864 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14865 or else (Is_Tagged_Type (Derived_Type)
14866 and then Etype (New_Subp) = Derived_Type
14867 and then No (Actual_Subp)))
14868 then
14869 Set_Is_Abstract_Subprogram (New_Subp);
14871 -- AI05-0097 : an inherited operation that dispatches on result is
14872 -- abstract if the derived type is abstract, even if the parent type
14873 -- is concrete and the derived type is a null extension.
14875 elsif Has_Controlling_Result (Alias (New_Subp))
14876 and then Is_Abstract_Type (Etype (New_Subp))
14877 then
14878 Set_Is_Abstract_Subprogram (New_Subp);
14880 -- Finally, if the parent type is abstract we must verify that all
14881 -- inherited operations are either non-abstract or overridden, or that
14882 -- the derived type itself is abstract (this check is performed at the
14883 -- end of a package declaration, in Check_Abstract_Overriding). A
14884 -- private overriding in the parent type will not be visible in the
14885 -- derivation if we are not in an inner package or in a child unit of
14886 -- the parent type, in which case the abstractness of the inherited
14887 -- operation is carried to the new subprogram.
14889 elsif Is_Abstract_Type (Parent_Type)
14890 and then not In_Open_Scopes (Scope (Parent_Type))
14891 and then Is_Private_Overriding
14892 and then Is_Abstract_Subprogram (Visible_Subp)
14893 then
14894 if No (Actual_Subp) then
14895 Set_Alias (New_Subp, Visible_Subp);
14896 Set_Is_Abstract_Subprogram (New_Subp, True);
14898 else
14899 -- If this is a derivation for an instance of a formal derived
14900 -- type, abstractness comes from the primitive operation of the
14901 -- actual, not from the operation inherited from the ancestor.
14903 Set_Is_Abstract_Subprogram
14904 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14905 end if;
14906 end if;
14908 New_Overloaded_Entity (New_Subp, Derived_Type);
14910 -- Check for case of a derived subprogram for the instantiation of a
14911 -- formal derived tagged type, if so mark the subprogram as dispatching
14912 -- and inherit the dispatching attributes of the actual subprogram. The
14913 -- derived subprogram is effectively renaming of the actual subprogram,
14914 -- so it needs to have the same attributes as the actual.
14916 if Present (Actual_Subp)
14917 and then Is_Dispatching_Operation (Actual_Subp)
14918 then
14919 Set_Is_Dispatching_Operation (New_Subp);
14921 if Present (DTC_Entity (Actual_Subp)) then
14922 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14923 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
14924 end if;
14925 end if;
14927 -- Indicate that a derived subprogram does not require a body and that
14928 -- it does not require processing of default expressions.
14930 Set_Has_Completion (New_Subp);
14931 Set_Default_Expressions_Processed (New_Subp);
14933 if Ekind (New_Subp) = E_Function then
14934 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14935 end if;
14936 end Derive_Subprogram;
14938 ------------------------
14939 -- Derive_Subprograms --
14940 ------------------------
14942 procedure Derive_Subprograms
14943 (Parent_Type : Entity_Id;
14944 Derived_Type : Entity_Id;
14945 Generic_Actual : Entity_Id := Empty)
14947 Op_List : constant Elist_Id :=
14948 Collect_Primitive_Operations (Parent_Type);
14950 function Check_Derived_Type return Boolean;
14951 -- Check that all the entities derived from Parent_Type are found in
14952 -- the list of primitives of Derived_Type exactly in the same order.
14954 procedure Derive_Interface_Subprogram
14955 (New_Subp : in out Entity_Id;
14956 Subp : Entity_Id;
14957 Actual_Subp : Entity_Id);
14958 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14959 -- (which is an interface primitive). If Generic_Actual is present then
14960 -- Actual_Subp is the actual subprogram corresponding with the generic
14961 -- subprogram Subp.
14963 function Check_Derived_Type return Boolean is
14964 E : Entity_Id;
14965 Elmt : Elmt_Id;
14966 List : Elist_Id;
14967 New_Subp : Entity_Id;
14968 Op_Elmt : Elmt_Id;
14969 Subp : Entity_Id;
14971 begin
14972 -- Traverse list of entities in the current scope searching for
14973 -- an incomplete type whose full-view is derived type
14975 E := First_Entity (Scope (Derived_Type));
14976 while Present (E) and then E /= Derived_Type loop
14977 if Ekind (E) = E_Incomplete_Type
14978 and then Present (Full_View (E))
14979 and then Full_View (E) = Derived_Type
14980 then
14981 -- Disable this test if Derived_Type completes an incomplete
14982 -- type because in such case more primitives can be added
14983 -- later to the list of primitives of Derived_Type by routine
14984 -- Process_Incomplete_Dependents
14986 return True;
14987 end if;
14989 E := Next_Entity (E);
14990 end loop;
14992 List := Collect_Primitive_Operations (Derived_Type);
14993 Elmt := First_Elmt (List);
14995 Op_Elmt := First_Elmt (Op_List);
14996 while Present (Op_Elmt) loop
14997 Subp := Node (Op_Elmt);
14998 New_Subp := Node (Elmt);
15000 -- At this early stage Derived_Type has no entities with attribute
15001 -- Interface_Alias. In addition, such primitives are always
15002 -- located at the end of the list of primitives of Parent_Type.
15003 -- Therefore, if found we can safely stop processing pending
15004 -- entities.
15006 exit when Present (Interface_Alias (Subp));
15008 -- Handle hidden entities
15010 if not Is_Predefined_Dispatching_Operation (Subp)
15011 and then Is_Hidden (Subp)
15012 then
15013 if Present (New_Subp)
15014 and then Primitive_Names_Match (Subp, New_Subp)
15015 then
15016 Next_Elmt (Elmt);
15017 end if;
15019 else
15020 if not Present (New_Subp)
15021 or else Ekind (Subp) /= Ekind (New_Subp)
15022 or else not Primitive_Names_Match (Subp, New_Subp)
15023 then
15024 return False;
15025 end if;
15027 Next_Elmt (Elmt);
15028 end if;
15030 Next_Elmt (Op_Elmt);
15031 end loop;
15033 return True;
15034 end Check_Derived_Type;
15036 ---------------------------------
15037 -- Derive_Interface_Subprogram --
15038 ---------------------------------
15040 procedure Derive_Interface_Subprogram
15041 (New_Subp : in out Entity_Id;
15042 Subp : Entity_Id;
15043 Actual_Subp : Entity_Id)
15045 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15046 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15048 begin
15049 pragma Assert (Is_Interface (Iface_Type));
15051 Derive_Subprogram
15052 (New_Subp => New_Subp,
15053 Parent_Subp => Iface_Subp,
15054 Derived_Type => Derived_Type,
15055 Parent_Type => Iface_Type,
15056 Actual_Subp => Actual_Subp);
15058 -- Given that this new interface entity corresponds with a primitive
15059 -- of the parent that was not overridden we must leave it associated
15060 -- with its parent primitive to ensure that it will share the same
15061 -- dispatch table slot when overridden.
15063 if No (Actual_Subp) then
15064 Set_Alias (New_Subp, Subp);
15066 -- For instantiations this is not needed since the previous call to
15067 -- Derive_Subprogram leaves the entity well decorated.
15069 else
15070 pragma Assert (Alias (New_Subp) = Actual_Subp);
15071 null;
15072 end if;
15073 end Derive_Interface_Subprogram;
15075 -- Local variables
15077 Alias_Subp : Entity_Id;
15078 Act_List : Elist_Id;
15079 Act_Elmt : Elmt_Id;
15080 Act_Subp : Entity_Id := Empty;
15081 Elmt : Elmt_Id;
15082 Need_Search : Boolean := False;
15083 New_Subp : Entity_Id := Empty;
15084 Parent_Base : Entity_Id;
15085 Subp : Entity_Id;
15087 -- Start of processing for Derive_Subprograms
15089 begin
15090 if Ekind (Parent_Type) = E_Record_Type_With_Private
15091 and then Has_Discriminants (Parent_Type)
15092 and then Present (Full_View (Parent_Type))
15093 then
15094 Parent_Base := Full_View (Parent_Type);
15095 else
15096 Parent_Base := Parent_Type;
15097 end if;
15099 if Present (Generic_Actual) then
15100 Act_List := Collect_Primitive_Operations (Generic_Actual);
15101 Act_Elmt := First_Elmt (Act_List);
15102 else
15103 Act_List := No_Elist;
15104 Act_Elmt := No_Elmt;
15105 end if;
15107 -- Derive primitives inherited from the parent. Note that if the generic
15108 -- actual is present, this is not really a type derivation, it is a
15109 -- completion within an instance.
15111 -- Case 1: Derived_Type does not implement interfaces
15113 if not Is_Tagged_Type (Derived_Type)
15114 or else (not Has_Interfaces (Derived_Type)
15115 and then not (Present (Generic_Actual)
15116 and then Has_Interfaces (Generic_Actual)))
15117 then
15118 Elmt := First_Elmt (Op_List);
15119 while Present (Elmt) loop
15120 Subp := Node (Elmt);
15122 -- Literals are derived earlier in the process of building the
15123 -- derived type, and are skipped here.
15125 if Ekind (Subp) = E_Enumeration_Literal then
15126 null;
15128 -- The actual is a direct descendant and the common primitive
15129 -- operations appear in the same order.
15131 -- If the generic parent type is present, the derived type is an
15132 -- instance of a formal derived type, and within the instance its
15133 -- operations are those of the actual. We derive from the formal
15134 -- type but make the inherited operations aliases of the
15135 -- corresponding operations of the actual.
15137 else
15138 pragma Assert (No (Node (Act_Elmt))
15139 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15140 and then
15141 Type_Conformant
15142 (Subp, Node (Act_Elmt),
15143 Skip_Controlling_Formals => True)));
15145 Derive_Subprogram
15146 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15148 if Present (Act_Elmt) then
15149 Next_Elmt (Act_Elmt);
15150 end if;
15151 end if;
15153 Next_Elmt (Elmt);
15154 end loop;
15156 -- Case 2: Derived_Type implements interfaces
15158 else
15159 -- If the parent type has no predefined primitives we remove
15160 -- predefined primitives from the list of primitives of generic
15161 -- actual to simplify the complexity of this algorithm.
15163 if Present (Generic_Actual) then
15164 declare
15165 Has_Predefined_Primitives : Boolean := False;
15167 begin
15168 -- Check if the parent type has predefined primitives
15170 Elmt := First_Elmt (Op_List);
15171 while Present (Elmt) loop
15172 Subp := Node (Elmt);
15174 if Is_Predefined_Dispatching_Operation (Subp)
15175 and then not Comes_From_Source (Ultimate_Alias (Subp))
15176 then
15177 Has_Predefined_Primitives := True;
15178 exit;
15179 end if;
15181 Next_Elmt (Elmt);
15182 end loop;
15184 -- Remove predefined primitives of Generic_Actual. We must use
15185 -- an auxiliary list because in case of tagged types the value
15186 -- returned by Collect_Primitive_Operations is the value stored
15187 -- in its Primitive_Operations attribute (and we don't want to
15188 -- modify its current contents).
15190 if not Has_Predefined_Primitives then
15191 declare
15192 Aux_List : constant Elist_Id := New_Elmt_List;
15194 begin
15195 Elmt := First_Elmt (Act_List);
15196 while Present (Elmt) loop
15197 Subp := Node (Elmt);
15199 if not Is_Predefined_Dispatching_Operation (Subp)
15200 or else Comes_From_Source (Subp)
15201 then
15202 Append_Elmt (Subp, Aux_List);
15203 end if;
15205 Next_Elmt (Elmt);
15206 end loop;
15208 Act_List := Aux_List;
15209 end;
15210 end if;
15212 Act_Elmt := First_Elmt (Act_List);
15213 Act_Subp := Node (Act_Elmt);
15214 end;
15215 end if;
15217 -- Stage 1: If the generic actual is not present we derive the
15218 -- primitives inherited from the parent type. If the generic parent
15219 -- type is present, the derived type is an instance of a formal
15220 -- derived type, and within the instance its operations are those of
15221 -- the actual. We derive from the formal type but make the inherited
15222 -- operations aliases of the corresponding operations of the actual.
15224 Elmt := First_Elmt (Op_List);
15225 while Present (Elmt) loop
15226 Subp := Node (Elmt);
15227 Alias_Subp := Ultimate_Alias (Subp);
15229 -- Do not derive internal entities of the parent that link
15230 -- interface primitives with their covering primitive. These
15231 -- entities will be added to this type when frozen.
15233 if Present (Interface_Alias (Subp)) then
15234 goto Continue;
15235 end if;
15237 -- If the generic actual is present find the corresponding
15238 -- operation in the generic actual. If the parent type is a
15239 -- direct ancestor of the derived type then, even if it is an
15240 -- interface, the operations are inherited from the primary
15241 -- dispatch table and are in the proper order. If we detect here
15242 -- that primitives are not in the same order we traverse the list
15243 -- of primitive operations of the actual to find the one that
15244 -- implements the interface primitive.
15246 if Need_Search
15247 or else
15248 (Present (Generic_Actual)
15249 and then Present (Act_Subp)
15250 and then not
15251 (Primitive_Names_Match (Subp, Act_Subp)
15252 and then
15253 Type_Conformant (Subp, Act_Subp,
15254 Skip_Controlling_Formals => True)))
15255 then
15256 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15257 Use_Full_View => True));
15259 -- Remember that we need searching for all pending primitives
15261 Need_Search := True;
15263 -- Handle entities associated with interface primitives
15265 if Present (Alias_Subp)
15266 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15267 and then not Is_Predefined_Dispatching_Operation (Subp)
15268 then
15269 -- Search for the primitive in the homonym chain
15271 Act_Subp :=
15272 Find_Primitive_Covering_Interface
15273 (Tagged_Type => Generic_Actual,
15274 Iface_Prim => Alias_Subp);
15276 -- Previous search may not locate primitives covering
15277 -- interfaces defined in generics units or instantiations.
15278 -- (it fails if the covering primitive has formals whose
15279 -- type is also defined in generics or instantiations).
15280 -- In such case we search in the list of primitives of the
15281 -- generic actual for the internal entity that links the
15282 -- interface primitive and the covering primitive.
15284 if No (Act_Subp)
15285 and then Is_Generic_Type (Parent_Type)
15286 then
15287 -- This code has been designed to handle only generic
15288 -- formals that implement interfaces that are defined
15289 -- in a generic unit or instantiation. If this code is
15290 -- needed for other cases we must review it because
15291 -- (given that it relies on Original_Location to locate
15292 -- the primitive of Generic_Actual that covers the
15293 -- interface) it could leave linked through attribute
15294 -- Alias entities of unrelated instantiations).
15296 pragma Assert
15297 (Is_Generic_Unit
15298 (Scope (Find_Dispatching_Type (Alias_Subp)))
15299 or else
15300 Instantiation_Depth
15301 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15303 declare
15304 Iface_Prim_Loc : constant Source_Ptr :=
15305 Original_Location (Sloc (Alias_Subp));
15307 Elmt : Elmt_Id;
15308 Prim : Entity_Id;
15310 begin
15311 Elmt :=
15312 First_Elmt (Primitive_Operations (Generic_Actual));
15314 Search : while Present (Elmt) loop
15315 Prim := Node (Elmt);
15317 if Present (Interface_Alias (Prim))
15318 and then Original_Location
15319 (Sloc (Interface_Alias (Prim))) =
15320 Iface_Prim_Loc
15321 then
15322 Act_Subp := Alias (Prim);
15323 exit Search;
15324 end if;
15326 Next_Elmt (Elmt);
15327 end loop Search;
15328 end;
15329 end if;
15331 pragma Assert (Present (Act_Subp)
15332 or else Is_Abstract_Type (Generic_Actual)
15333 or else Serious_Errors_Detected > 0);
15335 -- Handle predefined primitives plus the rest of user-defined
15336 -- primitives
15338 else
15339 Act_Elmt := First_Elmt (Act_List);
15340 while Present (Act_Elmt) loop
15341 Act_Subp := Node (Act_Elmt);
15343 exit when Primitive_Names_Match (Subp, Act_Subp)
15344 and then Type_Conformant
15345 (Subp, Act_Subp,
15346 Skip_Controlling_Formals => True)
15347 and then No (Interface_Alias (Act_Subp));
15349 Next_Elmt (Act_Elmt);
15350 end loop;
15352 if No (Act_Elmt) then
15353 Act_Subp := Empty;
15354 end if;
15355 end if;
15356 end if;
15358 -- Case 1: If the parent is a limited interface then it has the
15359 -- predefined primitives of synchronized interfaces. However, the
15360 -- actual type may be a non-limited type and hence it does not
15361 -- have such primitives.
15363 if Present (Generic_Actual)
15364 and then not Present (Act_Subp)
15365 and then Is_Limited_Interface (Parent_Base)
15366 and then Is_Predefined_Interface_Primitive (Subp)
15367 then
15368 null;
15370 -- Case 2: Inherit entities associated with interfaces that were
15371 -- not covered by the parent type. We exclude here null interface
15372 -- primitives because they do not need special management.
15374 -- We also exclude interface operations that are renamings. If the
15375 -- subprogram is an explicit renaming of an interface primitive,
15376 -- it is a regular primitive operation, and the presence of its
15377 -- alias is not relevant: it has to be derived like any other
15378 -- primitive.
15380 elsif Present (Alias (Subp))
15381 and then Nkind (Unit_Declaration_Node (Subp)) /=
15382 N_Subprogram_Renaming_Declaration
15383 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15384 and then not
15385 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15386 and then Null_Present (Parent (Alias_Subp)))
15387 then
15388 -- If this is an abstract private type then we transfer the
15389 -- derivation of the interface primitive from the partial view
15390 -- to the full view. This is safe because all the interfaces
15391 -- must be visible in the partial view. Done to avoid adding
15392 -- a new interface derivation to the private part of the
15393 -- enclosing package; otherwise this new derivation would be
15394 -- decorated as hidden when the analysis of the enclosing
15395 -- package completes.
15397 if Is_Abstract_Type (Derived_Type)
15398 and then In_Private_Part (Current_Scope)
15399 and then Has_Private_Declaration (Derived_Type)
15400 then
15401 declare
15402 Partial_View : Entity_Id;
15403 Elmt : Elmt_Id;
15404 Ent : Entity_Id;
15406 begin
15407 Partial_View := First_Entity (Current_Scope);
15408 loop
15409 exit when No (Partial_View)
15410 or else (Has_Private_Declaration (Partial_View)
15411 and then
15412 Full_View (Partial_View) = Derived_Type);
15414 Next_Entity (Partial_View);
15415 end loop;
15417 -- If the partial view was not found then the source code
15418 -- has errors and the derivation is not needed.
15420 if Present (Partial_View) then
15421 Elmt :=
15422 First_Elmt (Primitive_Operations (Partial_View));
15423 while Present (Elmt) loop
15424 Ent := Node (Elmt);
15426 if Present (Alias (Ent))
15427 and then Ultimate_Alias (Ent) = Alias (Subp)
15428 then
15429 Append_Elmt
15430 (Ent, Primitive_Operations (Derived_Type));
15431 exit;
15432 end if;
15434 Next_Elmt (Elmt);
15435 end loop;
15437 -- If the interface primitive was not found in the
15438 -- partial view then this interface primitive was
15439 -- overridden. We add a derivation to activate in
15440 -- Derive_Progenitor_Subprograms the machinery to
15441 -- search for it.
15443 if No (Elmt) then
15444 Derive_Interface_Subprogram
15445 (New_Subp => New_Subp,
15446 Subp => Subp,
15447 Actual_Subp => Act_Subp);
15448 end if;
15449 end if;
15450 end;
15451 else
15452 Derive_Interface_Subprogram
15453 (New_Subp => New_Subp,
15454 Subp => Subp,
15455 Actual_Subp => Act_Subp);
15456 end if;
15458 -- Case 3: Common derivation
15460 else
15461 Derive_Subprogram
15462 (New_Subp => New_Subp,
15463 Parent_Subp => Subp,
15464 Derived_Type => Derived_Type,
15465 Parent_Type => Parent_Base,
15466 Actual_Subp => Act_Subp);
15467 end if;
15469 -- No need to update Act_Elm if we must search for the
15470 -- corresponding operation in the generic actual
15472 if not Need_Search
15473 and then Present (Act_Elmt)
15474 then
15475 Next_Elmt (Act_Elmt);
15476 Act_Subp := Node (Act_Elmt);
15477 end if;
15479 <<Continue>>
15480 Next_Elmt (Elmt);
15481 end loop;
15483 -- Inherit additional operations from progenitors. If the derived
15484 -- type is a generic actual, there are not new primitive operations
15485 -- for the type because it has those of the actual, and therefore
15486 -- nothing needs to be done. The renamings generated above are not
15487 -- primitive operations, and their purpose is simply to make the
15488 -- proper operations visible within an instantiation.
15490 if No (Generic_Actual) then
15491 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15492 end if;
15493 end if;
15495 -- Final check: Direct descendants must have their primitives in the
15496 -- same order. We exclude from this test untagged types and instances
15497 -- of formal derived types. We skip this test if we have already
15498 -- reported serious errors in the sources.
15500 pragma Assert (not Is_Tagged_Type (Derived_Type)
15501 or else Present (Generic_Actual)
15502 or else Serious_Errors_Detected > 0
15503 or else Check_Derived_Type);
15504 end Derive_Subprograms;
15506 --------------------------------
15507 -- Derived_Standard_Character --
15508 --------------------------------
15510 procedure Derived_Standard_Character
15511 (N : Node_Id;
15512 Parent_Type : Entity_Id;
15513 Derived_Type : Entity_Id)
15515 Loc : constant Source_Ptr := Sloc (N);
15516 Def : constant Node_Id := Type_Definition (N);
15517 Indic : constant Node_Id := Subtype_Indication (Def);
15518 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15519 Implicit_Base : constant Entity_Id :=
15520 Create_Itype
15521 (E_Enumeration_Type, N, Derived_Type, 'B');
15523 Lo : Node_Id;
15524 Hi : Node_Id;
15526 begin
15527 Discard_Node (Process_Subtype (Indic, N));
15529 Set_Etype (Implicit_Base, Parent_Base);
15530 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15531 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15533 Set_Is_Character_Type (Implicit_Base, True);
15534 Set_Has_Delayed_Freeze (Implicit_Base);
15536 -- The bounds of the implicit base are the bounds of the parent base.
15537 -- Note that their type is the parent base.
15539 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15540 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15542 Set_Scalar_Range (Implicit_Base,
15543 Make_Range (Loc,
15544 Low_Bound => Lo,
15545 High_Bound => Hi));
15547 Conditional_Delay (Derived_Type, Parent_Type);
15549 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15550 Set_Etype (Derived_Type, Implicit_Base);
15551 Set_Size_Info (Derived_Type, Parent_Type);
15553 if Unknown_RM_Size (Derived_Type) then
15554 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15555 end if;
15557 Set_Is_Character_Type (Derived_Type, True);
15559 if Nkind (Indic) /= N_Subtype_Indication then
15561 -- If no explicit constraint, the bounds are those
15562 -- of the parent type.
15564 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15565 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15566 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15567 end if;
15569 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15571 -- Because the implicit base is used in the conversion of the bounds, we
15572 -- have to freeze it now. This is similar to what is done for numeric
15573 -- types, and it equally suspicious, but otherwise a non-static bound
15574 -- will have a reference to an unfrozen type, which is rejected by Gigi
15575 -- (???). This requires specific care for definition of stream
15576 -- attributes. For details, see comments at the end of
15577 -- Build_Derived_Numeric_Type.
15579 Freeze_Before (N, Implicit_Base);
15580 end Derived_Standard_Character;
15582 ------------------------------
15583 -- Derived_Type_Declaration --
15584 ------------------------------
15586 procedure Derived_Type_Declaration
15587 (T : Entity_Id;
15588 N : Node_Id;
15589 Is_Completion : Boolean)
15591 Parent_Type : Entity_Id;
15593 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15594 -- Check whether the parent type is a generic formal, or derives
15595 -- directly or indirectly from one.
15597 ------------------------
15598 -- Comes_From_Generic --
15599 ------------------------
15601 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15602 begin
15603 if Is_Generic_Type (Typ) then
15604 return True;
15606 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15607 return True;
15609 elsif Is_Private_Type (Typ)
15610 and then Present (Full_View (Typ))
15611 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15612 then
15613 return True;
15615 elsif Is_Generic_Actual_Type (Typ) then
15616 return True;
15618 else
15619 return False;
15620 end if;
15621 end Comes_From_Generic;
15623 -- Local variables
15625 Def : constant Node_Id := Type_Definition (N);
15626 Iface_Def : Node_Id;
15627 Indic : constant Node_Id := Subtype_Indication (Def);
15628 Extension : constant Node_Id := Record_Extension_Part (Def);
15629 Parent_Node : Node_Id;
15630 Taggd : Boolean;
15632 -- Start of processing for Derived_Type_Declaration
15634 begin
15635 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15637 -- Ada 2005 (AI-251): In case of interface derivation check that the
15638 -- parent is also an interface.
15640 if Interface_Present (Def) then
15641 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15643 if not Is_Interface (Parent_Type) then
15644 Diagnose_Interface (Indic, Parent_Type);
15646 else
15647 Parent_Node := Parent (Base_Type (Parent_Type));
15648 Iface_Def := Type_Definition (Parent_Node);
15650 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15651 -- other limited interfaces.
15653 if Limited_Present (Def) then
15654 if Limited_Present (Iface_Def) then
15655 null;
15657 elsif Protected_Present (Iface_Def) then
15658 Error_Msg_NE
15659 ("descendant of& must be declared"
15660 & " as a protected interface",
15661 N, Parent_Type);
15663 elsif Synchronized_Present (Iface_Def) then
15664 Error_Msg_NE
15665 ("descendant of& must be declared"
15666 & " as a synchronized interface",
15667 N, Parent_Type);
15669 elsif Task_Present (Iface_Def) then
15670 Error_Msg_NE
15671 ("descendant of& must be declared as a task interface",
15672 N, Parent_Type);
15674 else
15675 Error_Msg_N
15676 ("(Ada 2005) limited interface cannot "
15677 & "inherit from non-limited interface", Indic);
15678 end if;
15680 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15681 -- from non-limited or limited interfaces.
15683 elsif not Protected_Present (Def)
15684 and then not Synchronized_Present (Def)
15685 and then not Task_Present (Def)
15686 then
15687 if Limited_Present (Iface_Def) then
15688 null;
15690 elsif Protected_Present (Iface_Def) then
15691 Error_Msg_NE
15692 ("descendant of& must be declared"
15693 & " as a protected interface",
15694 N, Parent_Type);
15696 elsif Synchronized_Present (Iface_Def) then
15697 Error_Msg_NE
15698 ("descendant of& must be declared"
15699 & " as a synchronized interface",
15700 N, Parent_Type);
15702 elsif Task_Present (Iface_Def) then
15703 Error_Msg_NE
15704 ("descendant of& must be declared as a task interface",
15705 N, Parent_Type);
15706 else
15707 null;
15708 end if;
15709 end if;
15710 end if;
15711 end if;
15713 if Is_Tagged_Type (Parent_Type)
15714 and then Is_Concurrent_Type (Parent_Type)
15715 and then not Is_Interface (Parent_Type)
15716 then
15717 Error_Msg_N
15718 ("parent type of a record extension cannot be "
15719 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15720 Set_Etype (T, Any_Type);
15721 return;
15722 end if;
15724 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15725 -- interfaces
15727 if Is_Tagged_Type (Parent_Type)
15728 and then Is_Non_Empty_List (Interface_List (Def))
15729 then
15730 declare
15731 Intf : Node_Id;
15732 T : Entity_Id;
15734 begin
15735 Intf := First (Interface_List (Def));
15736 while Present (Intf) loop
15737 T := Find_Type_Of_Subtype_Indic (Intf);
15739 if not Is_Interface (T) then
15740 Diagnose_Interface (Intf, T);
15742 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15743 -- a limited type from having a nonlimited progenitor.
15745 elsif (Limited_Present (Def)
15746 or else (not Is_Interface (Parent_Type)
15747 and then Is_Limited_Type (Parent_Type)))
15748 and then not Is_Limited_Interface (T)
15749 then
15750 Error_Msg_NE
15751 ("progenitor interface& of limited type must be limited",
15752 N, T);
15753 end if;
15755 Next (Intf);
15756 end loop;
15757 end;
15758 end if;
15760 if Parent_Type = Any_Type
15761 or else Etype (Parent_Type) = Any_Type
15762 or else (Is_Class_Wide_Type (Parent_Type)
15763 and then Etype (Parent_Type) = T)
15764 then
15765 -- If Parent_Type is undefined or illegal, make new type into a
15766 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15767 -- errors. If this is a self-definition, emit error now.
15769 if T = Parent_Type or else T = Etype (Parent_Type) then
15770 Error_Msg_N ("type cannot be used in its own definition", Indic);
15771 end if;
15773 Set_Ekind (T, Ekind (Parent_Type));
15774 Set_Etype (T, Any_Type);
15775 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15777 if Is_Tagged_Type (T)
15778 and then Is_Record_Type (T)
15779 then
15780 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15781 end if;
15783 return;
15784 end if;
15786 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15787 -- an interface is special because the list of interfaces in the full
15788 -- view can be given in any order. For example:
15790 -- type A is interface;
15791 -- type B is interface and A;
15792 -- type D is new B with private;
15793 -- private
15794 -- type D is new A and B with null record; -- 1 --
15796 -- In this case we perform the following transformation of -1-:
15798 -- type D is new B and A with null record;
15800 -- If the parent of the full-view covers the parent of the partial-view
15801 -- we have two possible cases:
15803 -- 1) They have the same parent
15804 -- 2) The parent of the full-view implements some further interfaces
15806 -- In both cases we do not need to perform the transformation. In the
15807 -- first case the source program is correct and the transformation is
15808 -- not needed; in the second case the source program does not fulfill
15809 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15810 -- later.
15812 -- This transformation not only simplifies the rest of the analysis of
15813 -- this type declaration but also simplifies the correct generation of
15814 -- the object layout to the expander.
15816 if In_Private_Part (Current_Scope)
15817 and then Is_Interface (Parent_Type)
15818 then
15819 declare
15820 Iface : Node_Id;
15821 Partial_View : Entity_Id;
15822 Partial_View_Parent : Entity_Id;
15823 New_Iface : Node_Id;
15825 begin
15826 -- Look for the associated private type declaration
15828 Partial_View := First_Entity (Current_Scope);
15829 loop
15830 exit when No (Partial_View)
15831 or else (Has_Private_Declaration (Partial_View)
15832 and then Full_View (Partial_View) = T);
15834 Next_Entity (Partial_View);
15835 end loop;
15837 -- If the partial view was not found then the source code has
15838 -- errors and the transformation is not needed.
15840 if Present (Partial_View) then
15841 Partial_View_Parent := Etype (Partial_View);
15843 -- If the parent of the full-view covers the parent of the
15844 -- partial-view we have nothing else to do.
15846 if Interface_Present_In_Ancestor
15847 (Parent_Type, Partial_View_Parent)
15848 then
15849 null;
15851 -- Traverse the list of interfaces of the full-view to look
15852 -- for the parent of the partial-view and perform the tree
15853 -- transformation.
15855 else
15856 Iface := First (Interface_List (Def));
15857 while Present (Iface) loop
15858 if Etype (Iface) = Etype (Partial_View) then
15859 Rewrite (Subtype_Indication (Def),
15860 New_Copy (Subtype_Indication
15861 (Parent (Partial_View))));
15863 New_Iface :=
15864 Make_Identifier (Sloc (N), Chars (Parent_Type));
15865 Append (New_Iface, Interface_List (Def));
15867 -- Analyze the transformed code
15869 Derived_Type_Declaration (T, N, Is_Completion);
15870 return;
15871 end if;
15873 Next (Iface);
15874 end loop;
15875 end if;
15876 end if;
15877 end;
15878 end if;
15880 -- Only composite types other than array types are allowed to have
15881 -- discriminants.
15883 if Present (Discriminant_Specifications (N)) then
15884 if (Is_Elementary_Type (Parent_Type)
15885 or else
15886 Is_Array_Type (Parent_Type))
15887 and then not Error_Posted (N)
15888 then
15889 Error_Msg_N
15890 ("elementary or array type cannot have discriminants",
15891 Defining_Identifier (First (Discriminant_Specifications (N))));
15892 Set_Has_Discriminants (T, False);
15894 -- The type is allowed to have discriminants
15896 else
15897 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15898 end if;
15899 end if;
15901 -- In Ada 83, a derived type defined in a package specification cannot
15902 -- be used for further derivation until the end of its visible part.
15903 -- Note that derivation in the private part of the package is allowed.
15905 if Ada_Version = Ada_83
15906 and then Is_Derived_Type (Parent_Type)
15907 and then In_Visible_Part (Scope (Parent_Type))
15908 then
15909 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15910 Error_Msg_N
15911 ("(Ada 83): premature use of type for derivation", Indic);
15912 end if;
15913 end if;
15915 -- Check for early use of incomplete or private type
15917 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15918 Error_Msg_N ("premature derivation of incomplete type", Indic);
15919 return;
15921 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15922 and then not Comes_From_Generic (Parent_Type))
15923 or else Has_Private_Component (Parent_Type)
15924 then
15925 -- The ancestor type of a formal type can be incomplete, in which
15926 -- case only the operations of the partial view are available in the
15927 -- generic. Subsequent checks may be required when the full view is
15928 -- analyzed to verify that a derivation from a tagged type has an
15929 -- extension.
15931 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15932 null;
15934 elsif No (Underlying_Type (Parent_Type))
15935 or else Has_Private_Component (Parent_Type)
15936 then
15937 Error_Msg_N
15938 ("premature derivation of derived or private type", Indic);
15940 -- Flag the type itself as being in error, this prevents some
15941 -- nasty problems with subsequent uses of the malformed type.
15943 Set_Error_Posted (T);
15945 -- Check that within the immediate scope of an untagged partial
15946 -- view it's illegal to derive from the partial view if the
15947 -- full view is tagged. (7.3(7))
15949 -- We verify that the Parent_Type is a partial view by checking
15950 -- that it is not a Full_Type_Declaration (i.e. a private type or
15951 -- private extension declaration), to distinguish a partial view
15952 -- from a derivation from a private type which also appears as
15953 -- E_Private_Type. If the parent base type is not declared in an
15954 -- enclosing scope there is no need to check.
15956 elsif Present (Full_View (Parent_Type))
15957 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15958 and then not Is_Tagged_Type (Parent_Type)
15959 and then Is_Tagged_Type (Full_View (Parent_Type))
15960 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15961 then
15962 Error_Msg_N
15963 ("premature derivation from type with tagged full view",
15964 Indic);
15965 end if;
15966 end if;
15968 -- Check that form of derivation is appropriate
15970 Taggd := Is_Tagged_Type (Parent_Type);
15972 -- Set the parent type to the class-wide type's specific type in this
15973 -- case to prevent cascading errors
15975 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15976 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15977 Set_Etype (T, Etype (Parent_Type));
15978 return;
15979 end if;
15981 if Present (Extension) and then not Taggd then
15982 Error_Msg_N
15983 ("type derived from untagged type cannot have extension", Indic);
15985 elsif No (Extension) and then Taggd then
15987 -- If this declaration is within a private part (or body) of a
15988 -- generic instantiation then the derivation is allowed (the parent
15989 -- type can only appear tagged in this case if it's a generic actual
15990 -- type, since it would otherwise have been rejected in the analysis
15991 -- of the generic template).
15993 if not Is_Generic_Actual_Type (Parent_Type)
15994 or else In_Visible_Part (Scope (Parent_Type))
15995 then
15996 if Is_Class_Wide_Type (Parent_Type) then
15997 Error_Msg_N
15998 ("parent type must not be a class-wide type", Indic);
16000 -- Use specific type to prevent cascaded errors.
16002 Parent_Type := Etype (Parent_Type);
16004 else
16005 Error_Msg_N
16006 ("type derived from tagged type must have extension", Indic);
16007 end if;
16008 end if;
16009 end if;
16011 -- AI-443: Synchronized formal derived types require a private
16012 -- extension. There is no point in checking the ancestor type or
16013 -- the progenitors since the construct is wrong to begin with.
16015 if Ada_Version >= Ada_2005
16016 and then Is_Generic_Type (T)
16017 and then Present (Original_Node (N))
16018 then
16019 declare
16020 Decl : constant Node_Id := Original_Node (N);
16022 begin
16023 if Nkind (Decl) = N_Formal_Type_Declaration
16024 and then Nkind (Formal_Type_Definition (Decl)) =
16025 N_Formal_Derived_Type_Definition
16026 and then Synchronized_Present (Formal_Type_Definition (Decl))
16027 and then No (Extension)
16029 -- Avoid emitting a duplicate error message
16031 and then not Error_Posted (Indic)
16032 then
16033 Error_Msg_N
16034 ("synchronized derived type must have extension", N);
16035 end if;
16036 end;
16037 end if;
16039 if Null_Exclusion_Present (Def)
16040 and then not Is_Access_Type (Parent_Type)
16041 then
16042 Error_Msg_N ("null exclusion can only apply to an access type", N);
16043 end if;
16045 -- Avoid deriving parent primitives of underlying record views
16047 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16048 Derive_Subps => not Is_Underlying_Record_View (T));
16050 -- AI-419: The parent type of an explicitly limited derived type must
16051 -- be a limited type or a limited interface.
16053 if Limited_Present (Def) then
16054 Set_Is_Limited_Record (T);
16056 if Is_Interface (T) then
16057 Set_Is_Limited_Interface (T);
16058 end if;
16060 if not Is_Limited_Type (Parent_Type)
16061 and then
16062 (not Is_Interface (Parent_Type)
16063 or else not Is_Limited_Interface (Parent_Type))
16064 then
16065 -- AI05-0096: a derivation in the private part of an instance is
16066 -- legal if the generic formal is untagged limited, and the actual
16067 -- is non-limited.
16069 if Is_Generic_Actual_Type (Parent_Type)
16070 and then In_Private_Part (Current_Scope)
16071 and then
16072 not Is_Tagged_Type
16073 (Generic_Parent_Type (Parent (Parent_Type)))
16074 then
16075 null;
16077 else
16078 Error_Msg_NE
16079 ("parent type& of limited type must be limited",
16080 N, Parent_Type);
16081 end if;
16082 end if;
16083 end if;
16085 -- In SPARK, there are no derived type definitions other than type
16086 -- extensions of tagged record types.
16088 if No (Extension) then
16089 Check_SPARK_05_Restriction
16090 ("derived type is not allowed", Original_Node (N));
16091 end if;
16092 end Derived_Type_Declaration;
16094 ------------------------
16095 -- Diagnose_Interface --
16096 ------------------------
16098 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16099 begin
16100 if not Is_Interface (E) and then E /= Any_Type then
16101 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16102 end if;
16103 end Diagnose_Interface;
16105 ----------------------------------
16106 -- Enumeration_Type_Declaration --
16107 ----------------------------------
16109 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16110 Ev : Uint;
16111 L : Node_Id;
16112 R_Node : Node_Id;
16113 B_Node : Node_Id;
16115 begin
16116 -- Create identifier node representing lower bound
16118 B_Node := New_Node (N_Identifier, Sloc (Def));
16119 L := First (Literals (Def));
16120 Set_Chars (B_Node, Chars (L));
16121 Set_Entity (B_Node, L);
16122 Set_Etype (B_Node, T);
16123 Set_Is_Static_Expression (B_Node, True);
16125 R_Node := New_Node (N_Range, Sloc (Def));
16126 Set_Low_Bound (R_Node, B_Node);
16128 Set_Ekind (T, E_Enumeration_Type);
16129 Set_First_Literal (T, L);
16130 Set_Etype (T, T);
16131 Set_Is_Constrained (T);
16133 Ev := Uint_0;
16135 -- Loop through literals of enumeration type setting pos and rep values
16136 -- except that if the Ekind is already set, then it means the literal
16137 -- was already constructed (case of a derived type declaration and we
16138 -- should not disturb the Pos and Rep values.
16140 while Present (L) loop
16141 if Ekind (L) /= E_Enumeration_Literal then
16142 Set_Ekind (L, E_Enumeration_Literal);
16143 Set_Enumeration_Pos (L, Ev);
16144 Set_Enumeration_Rep (L, Ev);
16145 Set_Is_Known_Valid (L, True);
16146 end if;
16148 Set_Etype (L, T);
16149 New_Overloaded_Entity (L);
16150 Generate_Definition (L);
16151 Set_Convention (L, Convention_Intrinsic);
16153 -- Case of character literal
16155 if Nkind (L) = N_Defining_Character_Literal then
16156 Set_Is_Character_Type (T, True);
16158 -- Check violation of No_Wide_Characters
16160 if Restriction_Check_Required (No_Wide_Characters) then
16161 Get_Name_String (Chars (L));
16163 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16164 Check_Restriction (No_Wide_Characters, L);
16165 end if;
16166 end if;
16167 end if;
16169 Ev := Ev + 1;
16170 Next (L);
16171 end loop;
16173 -- Now create a node representing upper bound
16175 B_Node := New_Node (N_Identifier, Sloc (Def));
16176 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16177 Set_Entity (B_Node, Last (Literals (Def)));
16178 Set_Etype (B_Node, T);
16179 Set_Is_Static_Expression (B_Node, True);
16181 Set_High_Bound (R_Node, B_Node);
16183 -- Initialize various fields of the type. Some of this information
16184 -- may be overwritten later through rep.clauses.
16186 Set_Scalar_Range (T, R_Node);
16187 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16188 Set_Enum_Esize (T);
16189 Set_Enum_Pos_To_Rep (T, Empty);
16191 -- Set Discard_Names if configuration pragma set, or if there is
16192 -- a parameterless pragma in the current declarative region
16194 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16195 Set_Discard_Names (T);
16196 end if;
16198 -- Process end label if there is one
16200 if Present (Def) then
16201 Process_End_Label (Def, 'e', T);
16202 end if;
16203 end Enumeration_Type_Declaration;
16205 ---------------------------------
16206 -- Expand_To_Stored_Constraint --
16207 ---------------------------------
16209 function Expand_To_Stored_Constraint
16210 (Typ : Entity_Id;
16211 Constraint : Elist_Id) return Elist_Id
16213 Explicitly_Discriminated_Type : Entity_Id;
16214 Expansion : Elist_Id;
16215 Discriminant : Entity_Id;
16217 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16218 -- Find the nearest type that actually specifies discriminants
16220 ---------------------------------
16221 -- Type_With_Explicit_Discrims --
16222 ---------------------------------
16224 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16225 Typ : constant E := Base_Type (Id);
16227 begin
16228 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16229 if Present (Full_View (Typ)) then
16230 return Type_With_Explicit_Discrims (Full_View (Typ));
16231 end if;
16233 else
16234 if Has_Discriminants (Typ) then
16235 return Typ;
16236 end if;
16237 end if;
16239 if Etype (Typ) = Typ then
16240 return Empty;
16241 elsif Has_Discriminants (Typ) then
16242 return Typ;
16243 else
16244 return Type_With_Explicit_Discrims (Etype (Typ));
16245 end if;
16247 end Type_With_Explicit_Discrims;
16249 -- Start of processing for Expand_To_Stored_Constraint
16251 begin
16252 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16253 return No_Elist;
16254 end if;
16256 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16258 if No (Explicitly_Discriminated_Type) then
16259 return No_Elist;
16260 end if;
16262 Expansion := New_Elmt_List;
16264 Discriminant :=
16265 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16266 while Present (Discriminant) loop
16267 Append_Elmt
16268 (Get_Discriminant_Value
16269 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16270 To => Expansion);
16271 Next_Stored_Discriminant (Discriminant);
16272 end loop;
16274 return Expansion;
16275 end Expand_To_Stored_Constraint;
16277 ---------------------------
16278 -- Find_Hidden_Interface --
16279 ---------------------------
16281 function Find_Hidden_Interface
16282 (Src : Elist_Id;
16283 Dest : Elist_Id) return Entity_Id
16285 Iface : Entity_Id;
16286 Iface_Elmt : Elmt_Id;
16288 begin
16289 if Present (Src) and then Present (Dest) then
16290 Iface_Elmt := First_Elmt (Src);
16291 while Present (Iface_Elmt) loop
16292 Iface := Node (Iface_Elmt);
16294 if Is_Interface (Iface)
16295 and then not Contain_Interface (Iface, Dest)
16296 then
16297 return Iface;
16298 end if;
16300 Next_Elmt (Iface_Elmt);
16301 end loop;
16302 end if;
16304 return Empty;
16305 end Find_Hidden_Interface;
16307 --------------------
16308 -- Find_Type_Name --
16309 --------------------
16311 function Find_Type_Name (N : Node_Id) return Entity_Id is
16312 Id : constant Entity_Id := Defining_Identifier (N);
16313 Prev : Entity_Id;
16314 New_Id : Entity_Id;
16315 Prev_Par : Node_Id;
16317 procedure Check_Duplicate_Aspects;
16318 -- Check that aspects specified in a completion have not been specified
16319 -- already in the partial view. Type_Invariant and others can be
16320 -- specified on either view but never on both.
16322 procedure Tag_Mismatch;
16323 -- Diagnose a tagged partial view whose full view is untagged.
16324 -- We post the message on the full view, with a reference to
16325 -- the previous partial view. The partial view can be private
16326 -- or incomplete, and these are handled in a different manner,
16327 -- so we determine the position of the error message from the
16328 -- respective slocs of both.
16330 -----------------------------
16331 -- Check_Duplicate_Aspects --
16332 -----------------------------
16333 procedure Check_Duplicate_Aspects is
16334 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16335 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16336 F_Spec, P_Spec : Node_Id;
16338 begin
16339 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16340 F_Spec := First (Full_Aspects);
16341 while Present (F_Spec) loop
16342 P_Spec := First (Prev_Aspects);
16343 while Present (P_Spec) loop
16344 if Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16345 then
16346 Error_Msg_N
16347 ("aspect already specified in private declaration",
16348 F_Spec);
16349 Remove (F_Spec);
16350 return;
16351 end if;
16353 Next (P_Spec);
16354 end loop;
16356 Next (F_Spec);
16357 end loop;
16358 end if;
16359 end Check_Duplicate_Aspects;
16361 ------------------
16362 -- Tag_Mismatch --
16363 ------------------
16365 procedure Tag_Mismatch is
16366 begin
16367 if Sloc (Prev) < Sloc (Id) then
16368 if Ada_Version >= Ada_2012
16369 and then Nkind (N) = N_Private_Type_Declaration
16370 then
16371 Error_Msg_NE
16372 ("declaration of private } must be a tagged type ", Id, Prev);
16373 else
16374 Error_Msg_NE
16375 ("full declaration of } must be a tagged type ", Id, Prev);
16376 end if;
16378 else
16379 if Ada_Version >= Ada_2012
16380 and then Nkind (N) = N_Private_Type_Declaration
16381 then
16382 Error_Msg_NE
16383 ("declaration of private } must be a tagged type ", Prev, Id);
16384 else
16385 Error_Msg_NE
16386 ("full declaration of } must be a tagged type ", Prev, Id);
16387 end if;
16388 end if;
16389 end Tag_Mismatch;
16391 -- Start of processing for Find_Type_Name
16393 begin
16394 -- Find incomplete declaration, if one was given
16396 Prev := Current_Entity_In_Scope (Id);
16398 -- New type declaration
16400 if No (Prev) then
16401 Enter_Name (Id);
16402 return Id;
16404 -- Previous declaration exists
16406 else
16407 Prev_Par := Parent (Prev);
16409 -- Error if not incomplete/private case except if previous
16410 -- declaration is implicit, etc. Enter_Name will emit error if
16411 -- appropriate.
16413 if not Is_Incomplete_Or_Private_Type (Prev) then
16414 Enter_Name (Id);
16415 New_Id := Id;
16417 -- Check invalid completion of private or incomplete type
16419 elsif not Nkind_In (N, N_Full_Type_Declaration,
16420 N_Task_Type_Declaration,
16421 N_Protected_Type_Declaration)
16422 and then
16423 (Ada_Version < Ada_2012
16424 or else not Is_Incomplete_Type (Prev)
16425 or else not Nkind_In (N, N_Private_Type_Declaration,
16426 N_Private_Extension_Declaration))
16427 then
16428 -- Completion must be a full type declarations (RM 7.3(4))
16430 Error_Msg_Sloc := Sloc (Prev);
16431 Error_Msg_NE ("invalid completion of }", Id, Prev);
16433 -- Set scope of Id to avoid cascaded errors. Entity is never
16434 -- examined again, except when saving globals in generics.
16436 Set_Scope (Id, Current_Scope);
16437 New_Id := Id;
16439 -- If this is a repeated incomplete declaration, no further
16440 -- checks are possible.
16442 if Nkind (N) = N_Incomplete_Type_Declaration then
16443 return Prev;
16444 end if;
16446 -- Case of full declaration of incomplete type
16448 elsif Ekind (Prev) = E_Incomplete_Type
16449 and then (Ada_Version < Ada_2012
16450 or else No (Full_View (Prev))
16451 or else not Is_Private_Type (Full_View (Prev)))
16452 then
16453 -- Indicate that the incomplete declaration has a matching full
16454 -- declaration. The defining occurrence of the incomplete
16455 -- declaration remains the visible one, and the procedure
16456 -- Get_Full_View dereferences it whenever the type is used.
16458 if Present (Full_View (Prev)) then
16459 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16460 end if;
16462 Set_Full_View (Prev, Id);
16463 Append_Entity (Id, Current_Scope);
16464 Set_Is_Public (Id, Is_Public (Prev));
16465 Set_Is_Internal (Id);
16466 New_Id := Prev;
16468 -- If the incomplete view is tagged, a class_wide type has been
16469 -- created already. Use it for the private type as well, in order
16470 -- to prevent multiple incompatible class-wide types that may be
16471 -- created for self-referential anonymous access components.
16473 if Is_Tagged_Type (Prev)
16474 and then Present (Class_Wide_Type (Prev))
16475 then
16476 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16477 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16479 -- The type of the classwide type is the current Id. Previously
16480 -- this was not done for private declarations because of order-
16481 -- of elaboration issues in the back-end, but gigi now handles
16482 -- this properly.
16484 Set_Etype (Class_Wide_Type (Id), Id);
16485 end if;
16487 -- Case of full declaration of private type
16489 else
16490 -- If the private type was a completion of an incomplete type then
16491 -- update Prev to reference the private type
16493 if Ada_Version >= Ada_2012
16494 and then Ekind (Prev) = E_Incomplete_Type
16495 and then Present (Full_View (Prev))
16496 and then Is_Private_Type (Full_View (Prev))
16497 then
16498 Prev := Full_View (Prev);
16499 Prev_Par := Parent (Prev);
16500 end if;
16502 if Nkind (N) = N_Full_Type_Declaration
16503 and then Nkind_In
16504 (Type_Definition (N), N_Record_Definition,
16505 N_Derived_Type_Definition)
16506 and then Interface_Present (Type_Definition (N))
16507 then
16508 Error_Msg_N
16509 ("completion of private type cannot be an interface", N);
16510 end if;
16512 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16513 if Etype (Prev) /= Prev then
16515 -- Prev is a private subtype or a derived type, and needs
16516 -- no completion.
16518 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16519 New_Id := Id;
16521 elsif Ekind (Prev) = E_Private_Type
16522 and then Nkind_In (N, N_Task_Type_Declaration,
16523 N_Protected_Type_Declaration)
16524 then
16525 Error_Msg_N
16526 ("completion of nonlimited type cannot be limited", N);
16528 elsif Ekind (Prev) = E_Record_Type_With_Private
16529 and then Nkind_In (N, N_Task_Type_Declaration,
16530 N_Protected_Type_Declaration)
16531 then
16532 if not Is_Limited_Record (Prev) then
16533 Error_Msg_N
16534 ("completion of nonlimited type cannot be limited", N);
16536 elsif No (Interface_List (N)) then
16537 Error_Msg_N
16538 ("completion of tagged private type must be tagged",
16540 end if;
16541 end if;
16543 -- Ada 2005 (AI-251): Private extension declaration of a task
16544 -- type or a protected type. This case arises when covering
16545 -- interface types.
16547 elsif Nkind_In (N, N_Task_Type_Declaration,
16548 N_Protected_Type_Declaration)
16549 then
16550 null;
16552 elsif Nkind (N) /= N_Full_Type_Declaration
16553 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16554 then
16555 Error_Msg_N
16556 ("full view of private extension must be an extension", N);
16558 elsif not (Abstract_Present (Parent (Prev)))
16559 and then Abstract_Present (Type_Definition (N))
16560 then
16561 Error_Msg_N
16562 ("full view of non-abstract extension cannot be abstract", N);
16563 end if;
16565 if not In_Private_Part (Current_Scope) then
16566 Error_Msg_N
16567 ("declaration of full view must appear in private part", N);
16568 end if;
16570 if Ada_Version >= Ada_2012 then
16571 Check_Duplicate_Aspects;
16572 end if;
16574 Copy_And_Swap (Prev, Id);
16575 Set_Has_Private_Declaration (Prev);
16576 Set_Has_Private_Declaration (Id);
16578 -- AI12-0133: Indicate whether we have a partial view with
16579 -- unknown discriminants, in which case initialization of objects
16580 -- of the type do not receive an invariant check.
16582 Set_Partial_View_Has_Unknown_Discr
16583 (Prev, Has_Unknown_Discriminants (Id));
16585 -- Preserve aspect and iterator flags that may have been set on
16586 -- the partial view.
16588 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16589 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16591 -- If no error, propagate freeze_node from private to full view.
16592 -- It may have been generated for an early operational item.
16594 if Present (Freeze_Node (Id))
16595 and then Serious_Errors_Detected = 0
16596 and then No (Full_View (Id))
16597 then
16598 Set_Freeze_Node (Prev, Freeze_Node (Id));
16599 Set_Freeze_Node (Id, Empty);
16600 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16601 end if;
16603 Set_Full_View (Id, Prev);
16604 New_Id := Prev;
16605 end if;
16607 -- Verify that full declaration conforms to partial one
16609 if Is_Incomplete_Or_Private_Type (Prev)
16610 and then Present (Discriminant_Specifications (Prev_Par))
16611 then
16612 if Present (Discriminant_Specifications (N)) then
16613 if Ekind (Prev) = E_Incomplete_Type then
16614 Check_Discriminant_Conformance (N, Prev, Prev);
16615 else
16616 Check_Discriminant_Conformance (N, Prev, Id);
16617 end if;
16619 else
16620 Error_Msg_N
16621 ("missing discriminants in full type declaration", N);
16623 -- To avoid cascaded errors on subsequent use, share the
16624 -- discriminants of the partial view.
16626 Set_Discriminant_Specifications (N,
16627 Discriminant_Specifications (Prev_Par));
16628 end if;
16629 end if;
16631 -- A prior untagged partial view can have an associated class-wide
16632 -- type due to use of the class attribute, and in this case the full
16633 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16634 -- of incomplete tagged declarations, but we check for it.
16636 if Is_Type (Prev)
16637 and then (Is_Tagged_Type (Prev)
16638 or else Present (Class_Wide_Type (Prev)))
16639 then
16640 -- Ada 2012 (AI05-0162): A private type may be the completion of
16641 -- an incomplete type.
16643 if Ada_Version >= Ada_2012
16644 and then Is_Incomplete_Type (Prev)
16645 and then Nkind_In (N, N_Private_Type_Declaration,
16646 N_Private_Extension_Declaration)
16647 then
16648 -- No need to check private extensions since they are tagged
16650 if Nkind (N) = N_Private_Type_Declaration
16651 and then not Tagged_Present (N)
16652 then
16653 Tag_Mismatch;
16654 end if;
16656 -- The full declaration is either a tagged type (including
16657 -- a synchronized type that implements interfaces) or a
16658 -- type extension, otherwise this is an error.
16660 elsif Nkind_In (N, N_Task_Type_Declaration,
16661 N_Protected_Type_Declaration)
16662 then
16663 if No (Interface_List (N)) and then not Error_Posted (N) then
16664 Tag_Mismatch;
16665 end if;
16667 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16669 -- Indicate that the previous declaration (tagged incomplete
16670 -- or private declaration) requires the same on the full one.
16672 if not Tagged_Present (Type_Definition (N)) then
16673 Tag_Mismatch;
16674 Set_Is_Tagged_Type (Id);
16675 end if;
16677 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16678 if No (Record_Extension_Part (Type_Definition (N))) then
16679 Error_Msg_NE
16680 ("full declaration of } must be a record extension",
16681 Prev, Id);
16683 -- Set some attributes to produce a usable full view
16685 Set_Is_Tagged_Type (Id);
16686 end if;
16688 else
16689 Tag_Mismatch;
16690 end if;
16691 end if;
16693 if Present (Prev)
16694 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16695 and then Present (Premature_Use (Parent (Prev)))
16696 then
16697 Error_Msg_Sloc := Sloc (N);
16698 Error_Msg_N
16699 ("\full declaration #", Premature_Use (Parent (Prev)));
16700 end if;
16702 return New_Id;
16703 end if;
16704 end Find_Type_Name;
16706 -------------------------
16707 -- Find_Type_Of_Object --
16708 -------------------------
16710 function Find_Type_Of_Object
16711 (Obj_Def : Node_Id;
16712 Related_Nod : Node_Id) return Entity_Id
16714 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16715 P : Node_Id := Parent (Obj_Def);
16716 T : Entity_Id;
16717 Nam : Name_Id;
16719 begin
16720 -- If the parent is a component_definition node we climb to the
16721 -- component_declaration node
16723 if Nkind (P) = N_Component_Definition then
16724 P := Parent (P);
16725 end if;
16727 -- Case of an anonymous array subtype
16729 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16730 N_Unconstrained_Array_Definition)
16731 then
16732 T := Empty;
16733 Array_Type_Declaration (T, Obj_Def);
16735 -- Create an explicit subtype whenever possible
16737 elsif Nkind (P) /= N_Component_Declaration
16738 and then Def_Kind = N_Subtype_Indication
16739 then
16740 -- Base name of subtype on object name, which will be unique in
16741 -- the current scope.
16743 -- If this is a duplicate declaration, return base type, to avoid
16744 -- generating duplicate anonymous types.
16746 if Error_Posted (P) then
16747 Analyze (Subtype_Mark (Obj_Def));
16748 return Entity (Subtype_Mark (Obj_Def));
16749 end if;
16751 Nam :=
16752 New_External_Name
16753 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16755 T := Make_Defining_Identifier (Sloc (P), Nam);
16757 Insert_Action (Obj_Def,
16758 Make_Subtype_Declaration (Sloc (P),
16759 Defining_Identifier => T,
16760 Subtype_Indication => Relocate_Node (Obj_Def)));
16762 -- This subtype may need freezing, and this will not be done
16763 -- automatically if the object declaration is not in declarative
16764 -- part. Since this is an object declaration, the type cannot always
16765 -- be frozen here. Deferred constants do not freeze their type
16766 -- (which often enough will be private).
16768 if Nkind (P) = N_Object_Declaration
16769 and then Constant_Present (P)
16770 and then No (Expression (P))
16771 then
16772 null;
16774 -- Here we freeze the base type of object type to catch premature use
16775 -- of discriminated private type without a full view.
16777 else
16778 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16779 end if;
16781 -- Ada 2005 AI-406: the object definition in an object declaration
16782 -- can be an access definition.
16784 elsif Def_Kind = N_Access_Definition then
16785 T := Access_Definition (Related_Nod, Obj_Def);
16787 Set_Is_Local_Anonymous_Access
16789 V => (Ada_Version < Ada_2012)
16790 or else (Nkind (P) /= N_Object_Declaration)
16791 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16793 -- Otherwise, the object definition is just a subtype_mark
16795 else
16796 T := Process_Subtype (Obj_Def, Related_Nod);
16798 -- If expansion is disabled an object definition that is an aggregate
16799 -- will not get expanded and may lead to scoping problems in the back
16800 -- end, if the object is referenced in an inner scope. In that case
16801 -- create an itype reference for the object definition now. This
16802 -- may be redundant in some cases, but harmless.
16804 if Is_Itype (T)
16805 and then Nkind (Related_Nod) = N_Object_Declaration
16806 and then ASIS_Mode
16807 then
16808 Build_Itype_Reference (T, Related_Nod);
16809 end if;
16810 end if;
16812 return T;
16813 end Find_Type_Of_Object;
16815 --------------------------------
16816 -- Find_Type_Of_Subtype_Indic --
16817 --------------------------------
16819 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16820 Typ : Entity_Id;
16822 begin
16823 -- Case of subtype mark with a constraint
16825 if Nkind (S) = N_Subtype_Indication then
16826 Find_Type (Subtype_Mark (S));
16827 Typ := Entity (Subtype_Mark (S));
16829 if not
16830 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16831 then
16832 Error_Msg_N
16833 ("incorrect constraint for this kind of type", Constraint (S));
16834 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16835 end if;
16837 -- Otherwise we have a subtype mark without a constraint
16839 elsif Error_Posted (S) then
16840 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16841 return Any_Type;
16843 else
16844 Find_Type (S);
16845 Typ := Entity (S);
16846 end if;
16848 -- Check No_Wide_Characters restriction
16850 Check_Wide_Character_Restriction (Typ, S);
16852 return Typ;
16853 end Find_Type_Of_Subtype_Indic;
16855 -------------------------------------
16856 -- Floating_Point_Type_Declaration --
16857 -------------------------------------
16859 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16860 Digs : constant Node_Id := Digits_Expression (Def);
16861 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16862 Digs_Val : Uint;
16863 Base_Typ : Entity_Id;
16864 Implicit_Base : Entity_Id;
16865 Bound : Node_Id;
16867 function Can_Derive_From (E : Entity_Id) return Boolean;
16868 -- Find if given digits value, and possibly a specified range, allows
16869 -- derivation from specified type
16871 function Find_Base_Type return Entity_Id;
16872 -- Find a predefined base type that Def can derive from, or generate
16873 -- an error and substitute Long_Long_Float if none exists.
16875 ---------------------
16876 -- Can_Derive_From --
16877 ---------------------
16879 function Can_Derive_From (E : Entity_Id) return Boolean is
16880 Spec : constant Entity_Id := Real_Range_Specification (Def);
16882 begin
16883 -- Check specified "digits" constraint
16885 if Digs_Val > Digits_Value (E) then
16886 return False;
16887 end if;
16889 -- Check for matching range, if specified
16891 if Present (Spec) then
16892 if Expr_Value_R (Type_Low_Bound (E)) >
16893 Expr_Value_R (Low_Bound (Spec))
16894 then
16895 return False;
16896 end if;
16898 if Expr_Value_R (Type_High_Bound (E)) <
16899 Expr_Value_R (High_Bound (Spec))
16900 then
16901 return False;
16902 end if;
16903 end if;
16905 return True;
16906 end Can_Derive_From;
16908 --------------------
16909 -- Find_Base_Type --
16910 --------------------
16912 function Find_Base_Type return Entity_Id is
16913 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16915 begin
16916 -- Iterate over the predefined types in order, returning the first
16917 -- one that Def can derive from.
16919 while Present (Choice) loop
16920 if Can_Derive_From (Node (Choice)) then
16921 return Node (Choice);
16922 end if;
16924 Next_Elmt (Choice);
16925 end loop;
16927 -- If we can't derive from any existing type, use Long_Long_Float
16928 -- and give appropriate message explaining the problem.
16930 if Digs_Val > Max_Digs_Val then
16931 -- It might be the case that there is a type with the requested
16932 -- range, just not the combination of digits and range.
16934 Error_Msg_N
16935 ("no predefined type has requested range and precision",
16936 Real_Range_Specification (Def));
16938 else
16939 Error_Msg_N
16940 ("range too large for any predefined type",
16941 Real_Range_Specification (Def));
16942 end if;
16944 return Standard_Long_Long_Float;
16945 end Find_Base_Type;
16947 -- Start of processing for Floating_Point_Type_Declaration
16949 begin
16950 Check_Restriction (No_Floating_Point, Def);
16952 -- Create an implicit base type
16954 Implicit_Base :=
16955 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16957 -- Analyze and verify digits value
16959 Analyze_And_Resolve (Digs, Any_Integer);
16960 Check_Digits_Expression (Digs);
16961 Digs_Val := Expr_Value (Digs);
16963 -- Process possible range spec and find correct type to derive from
16965 Process_Real_Range_Specification (Def);
16967 -- Check that requested number of digits is not too high.
16969 if Digs_Val > Max_Digs_Val then
16971 -- The check for Max_Base_Digits may be somewhat expensive, as it
16972 -- requires reading System, so only do it when necessary.
16974 declare
16975 Max_Base_Digits : constant Uint :=
16976 Expr_Value
16977 (Expression
16978 (Parent (RTE (RE_Max_Base_Digits))));
16980 begin
16981 if Digs_Val > Max_Base_Digits then
16982 Error_Msg_Uint_1 := Max_Base_Digits;
16983 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16985 elsif No (Real_Range_Specification (Def)) then
16986 Error_Msg_Uint_1 := Max_Digs_Val;
16987 Error_Msg_N ("types with more than ^ digits need range spec "
16988 & "(RM 3.5.7(6))", Digs);
16989 end if;
16990 end;
16991 end if;
16993 -- Find a suitable type to derive from or complain and use a substitute
16995 Base_Typ := Find_Base_Type;
16997 -- If there are bounds given in the declaration use them as the bounds
16998 -- of the type, otherwise use the bounds of the predefined base type
16999 -- that was chosen based on the Digits value.
17001 if Present (Real_Range_Specification (Def)) then
17002 Set_Scalar_Range (T, Real_Range_Specification (Def));
17003 Set_Is_Constrained (T);
17005 -- The bounds of this range must be converted to machine numbers
17006 -- in accordance with RM 4.9(38).
17008 Bound := Type_Low_Bound (T);
17010 if Nkind (Bound) = N_Real_Literal then
17011 Set_Realval
17012 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17013 Set_Is_Machine_Number (Bound);
17014 end if;
17016 Bound := Type_High_Bound (T);
17018 if Nkind (Bound) = N_Real_Literal then
17019 Set_Realval
17020 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17021 Set_Is_Machine_Number (Bound);
17022 end if;
17024 else
17025 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17026 end if;
17028 -- Complete definition of implicit base and declared first subtype. The
17029 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17030 -- are not clobbered when the floating point type acts as a full view of
17031 -- a private type.
17033 Set_Etype (Implicit_Base, Base_Typ);
17034 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17035 Set_Size_Info (Implicit_Base, Base_Typ);
17036 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17037 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17038 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17039 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17041 Set_Ekind (T, E_Floating_Point_Subtype);
17042 Set_Etype (T, Implicit_Base);
17043 Set_Size_Info (T, Implicit_Base);
17044 Set_RM_Size (T, RM_Size (Implicit_Base));
17045 Inherit_Rep_Item_Chain (T, Implicit_Base);
17046 Set_Digits_Value (T, Digs_Val);
17047 end Floating_Point_Type_Declaration;
17049 ----------------------------
17050 -- Get_Discriminant_Value --
17051 ----------------------------
17053 -- This is the situation:
17055 -- There is a non-derived type
17057 -- type T0 (Dx, Dy, Dz...)
17059 -- There are zero or more levels of derivation, with each derivation
17060 -- either purely inheriting the discriminants, or defining its own.
17062 -- type Ti is new Ti-1
17063 -- or
17064 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17065 -- or
17066 -- subtype Ti is ...
17068 -- The subtype issue is avoided by the use of Original_Record_Component,
17069 -- and the fact that derived subtypes also derive the constraints.
17071 -- This chain leads back from
17073 -- Typ_For_Constraint
17075 -- Typ_For_Constraint has discriminants, and the value for each
17076 -- discriminant is given by its corresponding Elmt of Constraints.
17078 -- Discriminant is some discriminant in this hierarchy
17080 -- We need to return its value
17082 -- We do this by recursively searching each level, and looking for
17083 -- Discriminant. Once we get to the bottom, we start backing up
17084 -- returning the value for it which may in turn be a discriminant
17085 -- further up, so on the backup we continue the substitution.
17087 function Get_Discriminant_Value
17088 (Discriminant : Entity_Id;
17089 Typ_For_Constraint : Entity_Id;
17090 Constraint : Elist_Id) return Node_Id
17092 function Root_Corresponding_Discriminant
17093 (Discr : Entity_Id) return Entity_Id;
17094 -- Given a discriminant, traverse the chain of inherited discriminants
17095 -- and return the topmost discriminant.
17097 function Search_Derivation_Levels
17098 (Ti : Entity_Id;
17099 Discrim_Values : Elist_Id;
17100 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17101 -- This is the routine that performs the recursive search of levels
17102 -- as described above.
17104 -------------------------------------
17105 -- Root_Corresponding_Discriminant --
17106 -------------------------------------
17108 function Root_Corresponding_Discriminant
17109 (Discr : Entity_Id) return Entity_Id
17111 D : Entity_Id;
17113 begin
17114 D := Discr;
17115 while Present (Corresponding_Discriminant (D)) loop
17116 D := Corresponding_Discriminant (D);
17117 end loop;
17119 return D;
17120 end Root_Corresponding_Discriminant;
17122 ------------------------------
17123 -- Search_Derivation_Levels --
17124 ------------------------------
17126 function Search_Derivation_Levels
17127 (Ti : Entity_Id;
17128 Discrim_Values : Elist_Id;
17129 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17131 Assoc : Elmt_Id;
17132 Disc : Entity_Id;
17133 Result : Node_Or_Entity_Id;
17134 Result_Entity : Node_Id;
17136 begin
17137 -- If inappropriate type, return Error, this happens only in
17138 -- cascaded error situations, and we want to avoid a blow up.
17140 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17141 return Error;
17142 end if;
17144 -- Look deeper if possible. Use Stored_Constraints only for
17145 -- untagged types. For tagged types use the given constraint.
17146 -- This asymmetry needs explanation???
17148 if not Stored_Discrim_Values
17149 and then Present (Stored_Constraint (Ti))
17150 and then not Is_Tagged_Type (Ti)
17151 then
17152 Result :=
17153 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17154 else
17155 declare
17156 Td : constant Entity_Id := Etype (Ti);
17158 begin
17159 if Td = Ti then
17160 Result := Discriminant;
17162 else
17163 if Present (Stored_Constraint (Ti)) then
17164 Result :=
17165 Search_Derivation_Levels
17166 (Td, Stored_Constraint (Ti), True);
17167 else
17168 Result :=
17169 Search_Derivation_Levels
17170 (Td, Discrim_Values, Stored_Discrim_Values);
17171 end if;
17172 end if;
17173 end;
17174 end if;
17176 -- Extra underlying places to search, if not found above. For
17177 -- concurrent types, the relevant discriminant appears in the
17178 -- corresponding record. For a type derived from a private type
17179 -- without discriminant, the full view inherits the discriminants
17180 -- of the full view of the parent.
17182 if Result = Discriminant then
17183 if Is_Concurrent_Type (Ti)
17184 and then Present (Corresponding_Record_Type (Ti))
17185 then
17186 Result :=
17187 Search_Derivation_Levels (
17188 Corresponding_Record_Type (Ti),
17189 Discrim_Values,
17190 Stored_Discrim_Values);
17192 elsif Is_Private_Type (Ti)
17193 and then not Has_Discriminants (Ti)
17194 and then Present (Full_View (Ti))
17195 and then Etype (Full_View (Ti)) /= Ti
17196 then
17197 Result :=
17198 Search_Derivation_Levels (
17199 Full_View (Ti),
17200 Discrim_Values,
17201 Stored_Discrim_Values);
17202 end if;
17203 end if;
17205 -- If Result is not a (reference to a) discriminant, return it,
17206 -- otherwise set Result_Entity to the discriminant.
17208 if Nkind (Result) = N_Defining_Identifier then
17209 pragma Assert (Result = Discriminant);
17210 Result_Entity := Result;
17212 else
17213 if not Denotes_Discriminant (Result) then
17214 return Result;
17215 end if;
17217 Result_Entity := Entity (Result);
17218 end if;
17220 -- See if this level of derivation actually has discriminants because
17221 -- tagged derivations can add them, hence the lower levels need not
17222 -- have any.
17224 if not Has_Discriminants (Ti) then
17225 return Result;
17226 end if;
17228 -- Scan Ti's discriminants for Result_Entity, and return its
17229 -- corresponding value, if any.
17231 Result_Entity := Original_Record_Component (Result_Entity);
17233 Assoc := First_Elmt (Discrim_Values);
17235 if Stored_Discrim_Values then
17236 Disc := First_Stored_Discriminant (Ti);
17237 else
17238 Disc := First_Discriminant (Ti);
17239 end if;
17241 while Present (Disc) loop
17242 pragma Assert (Present (Assoc));
17244 if Original_Record_Component (Disc) = Result_Entity then
17245 return Node (Assoc);
17246 end if;
17248 Next_Elmt (Assoc);
17250 if Stored_Discrim_Values then
17251 Next_Stored_Discriminant (Disc);
17252 else
17253 Next_Discriminant (Disc);
17254 end if;
17255 end loop;
17257 -- Could not find it
17259 return Result;
17260 end Search_Derivation_Levels;
17262 -- Local Variables
17264 Result : Node_Or_Entity_Id;
17266 -- Start of processing for Get_Discriminant_Value
17268 begin
17269 -- ??? This routine is a gigantic mess and will be deleted. For the
17270 -- time being just test for the trivial case before calling recurse.
17272 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17273 declare
17274 D : Entity_Id;
17275 E : Elmt_Id;
17277 begin
17278 D := First_Discriminant (Typ_For_Constraint);
17279 E := First_Elmt (Constraint);
17280 while Present (D) loop
17281 if Chars (D) = Chars (Discriminant) then
17282 return Node (E);
17283 end if;
17285 Next_Discriminant (D);
17286 Next_Elmt (E);
17287 end loop;
17288 end;
17289 end if;
17291 Result := Search_Derivation_Levels
17292 (Typ_For_Constraint, Constraint, False);
17294 -- ??? hack to disappear when this routine is gone
17296 if Nkind (Result) = N_Defining_Identifier then
17297 declare
17298 D : Entity_Id;
17299 E : Elmt_Id;
17301 begin
17302 D := First_Discriminant (Typ_For_Constraint);
17303 E := First_Elmt (Constraint);
17304 while Present (D) loop
17305 if Root_Corresponding_Discriminant (D) = Discriminant then
17306 return Node (E);
17307 end if;
17309 Next_Discriminant (D);
17310 Next_Elmt (E);
17311 end loop;
17312 end;
17313 end if;
17315 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17316 return Result;
17317 end Get_Discriminant_Value;
17319 --------------------------
17320 -- Has_Range_Constraint --
17321 --------------------------
17323 function Has_Range_Constraint (N : Node_Id) return Boolean is
17324 C : constant Node_Id := Constraint (N);
17326 begin
17327 if Nkind (C) = N_Range_Constraint then
17328 return True;
17330 elsif Nkind (C) = N_Digits_Constraint then
17331 return
17332 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17333 or else Present (Range_Constraint (C));
17335 elsif Nkind (C) = N_Delta_Constraint then
17336 return Present (Range_Constraint (C));
17338 else
17339 return False;
17340 end if;
17341 end Has_Range_Constraint;
17343 ------------------------
17344 -- Inherit_Components --
17345 ------------------------
17347 function Inherit_Components
17348 (N : Node_Id;
17349 Parent_Base : Entity_Id;
17350 Derived_Base : Entity_Id;
17351 Is_Tagged : Boolean;
17352 Inherit_Discr : Boolean;
17353 Discs : Elist_Id) return Elist_Id
17355 Assoc_List : constant Elist_Id := New_Elmt_List;
17357 procedure Inherit_Component
17358 (Old_C : Entity_Id;
17359 Plain_Discrim : Boolean := False;
17360 Stored_Discrim : Boolean := False);
17361 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17362 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17363 -- True, Old_C is a stored discriminant. If they are both false then
17364 -- Old_C is a regular component.
17366 -----------------------
17367 -- Inherit_Component --
17368 -----------------------
17370 procedure Inherit_Component
17371 (Old_C : Entity_Id;
17372 Plain_Discrim : Boolean := False;
17373 Stored_Discrim : Boolean := False)
17375 procedure Set_Anonymous_Type (Id : Entity_Id);
17376 -- Id denotes the entity of an access discriminant or anonymous
17377 -- access component. Set the type of Id to either the same type of
17378 -- Old_C or create a new one depending on whether the parent and
17379 -- the child types are in the same scope.
17381 ------------------------
17382 -- Set_Anonymous_Type --
17383 ------------------------
17385 procedure Set_Anonymous_Type (Id : Entity_Id) is
17386 Old_Typ : constant Entity_Id := Etype (Old_C);
17388 begin
17389 if Scope (Parent_Base) = Scope (Derived_Base) then
17390 Set_Etype (Id, Old_Typ);
17392 -- The parent and the derived type are in two different scopes.
17393 -- Reuse the type of the original discriminant / component by
17394 -- copying it in order to preserve all attributes.
17396 else
17397 declare
17398 Typ : constant Entity_Id := New_Copy (Old_Typ);
17400 begin
17401 Set_Etype (Id, Typ);
17403 -- Since we do not generate component declarations for
17404 -- inherited components, associate the itype with the
17405 -- derived type.
17407 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17408 Set_Scope (Typ, Derived_Base);
17409 end;
17410 end if;
17411 end Set_Anonymous_Type;
17413 -- Local variables and constants
17415 New_C : constant Entity_Id := New_Copy (Old_C);
17417 Corr_Discrim : Entity_Id;
17418 Discrim : Entity_Id;
17420 -- Start of processing for Inherit_Component
17422 begin
17423 pragma Assert (not Is_Tagged or not Stored_Discrim);
17425 Set_Parent (New_C, Parent (Old_C));
17427 -- Regular discriminants and components must be inserted in the scope
17428 -- of the Derived_Base. Do it here.
17430 if not Stored_Discrim then
17431 Enter_Name (New_C);
17432 end if;
17434 -- For tagged types the Original_Record_Component must point to
17435 -- whatever this field was pointing to in the parent type. This has
17436 -- already been achieved by the call to New_Copy above.
17438 if not Is_Tagged then
17439 Set_Original_Record_Component (New_C, New_C);
17440 end if;
17442 -- Set the proper type of an access discriminant
17444 if Ekind (New_C) = E_Discriminant
17445 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17446 then
17447 Set_Anonymous_Type (New_C);
17448 end if;
17450 -- If we have inherited a component then see if its Etype contains
17451 -- references to Parent_Base discriminants. In this case, replace
17452 -- these references with the constraints given in Discs. We do not
17453 -- do this for the partial view of private types because this is
17454 -- not needed (only the components of the full view will be used
17455 -- for code generation) and cause problem. We also avoid this
17456 -- transformation in some error situations.
17458 if Ekind (New_C) = E_Component then
17460 -- Set the proper type of an anonymous access component
17462 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17463 Set_Anonymous_Type (New_C);
17465 elsif (Is_Private_Type (Derived_Base)
17466 and then not Is_Generic_Type (Derived_Base))
17467 or else (Is_Empty_Elmt_List (Discs)
17468 and then not Expander_Active)
17469 then
17470 Set_Etype (New_C, Etype (Old_C));
17472 else
17473 -- The current component introduces a circularity of the
17474 -- following kind:
17476 -- limited with Pack_2;
17477 -- package Pack_1 is
17478 -- type T_1 is tagged record
17479 -- Comp : access Pack_2.T_2;
17480 -- ...
17481 -- end record;
17482 -- end Pack_1;
17484 -- with Pack_1;
17485 -- package Pack_2 is
17486 -- type T_2 is new Pack_1.T_1 with ...;
17487 -- end Pack_2;
17489 Set_Etype
17490 (New_C,
17491 Constrain_Component_Type
17492 (Old_C, Derived_Base, N, Parent_Base, Discs));
17493 end if;
17494 end if;
17496 -- In derived tagged types it is illegal to reference a non
17497 -- discriminant component in the parent type. To catch this, mark
17498 -- these components with an Ekind of E_Void. This will be reset in
17499 -- Record_Type_Definition after processing the record extension of
17500 -- the derived type.
17502 -- If the declaration is a private extension, there is no further
17503 -- record extension to process, and the components retain their
17504 -- current kind, because they are visible at this point.
17506 if Is_Tagged and then Ekind (New_C) = E_Component
17507 and then Nkind (N) /= N_Private_Extension_Declaration
17508 then
17509 Set_Ekind (New_C, E_Void);
17510 end if;
17512 if Plain_Discrim then
17513 Set_Corresponding_Discriminant (New_C, Old_C);
17514 Build_Discriminal (New_C);
17516 -- If we are explicitly inheriting a stored discriminant it will be
17517 -- completely hidden.
17519 elsif Stored_Discrim then
17520 Set_Corresponding_Discriminant (New_C, Empty);
17521 Set_Discriminal (New_C, Empty);
17522 Set_Is_Completely_Hidden (New_C);
17524 -- Set the Original_Record_Component of each discriminant in the
17525 -- derived base to point to the corresponding stored that we just
17526 -- created.
17528 Discrim := First_Discriminant (Derived_Base);
17529 while Present (Discrim) loop
17530 Corr_Discrim := Corresponding_Discriminant (Discrim);
17532 -- Corr_Discrim could be missing in an error situation
17534 if Present (Corr_Discrim)
17535 and then Original_Record_Component (Corr_Discrim) = Old_C
17536 then
17537 Set_Original_Record_Component (Discrim, New_C);
17538 end if;
17540 Next_Discriminant (Discrim);
17541 end loop;
17543 Append_Entity (New_C, Derived_Base);
17544 end if;
17546 if not Is_Tagged then
17547 Append_Elmt (Old_C, Assoc_List);
17548 Append_Elmt (New_C, Assoc_List);
17549 end if;
17550 end Inherit_Component;
17552 -- Variables local to Inherit_Component
17554 Loc : constant Source_Ptr := Sloc (N);
17556 Parent_Discrim : Entity_Id;
17557 Stored_Discrim : Entity_Id;
17558 D : Entity_Id;
17559 Component : Entity_Id;
17561 -- Start of processing for Inherit_Components
17563 begin
17564 if not Is_Tagged then
17565 Append_Elmt (Parent_Base, Assoc_List);
17566 Append_Elmt (Derived_Base, Assoc_List);
17567 end if;
17569 -- Inherit parent discriminants if needed
17571 if Inherit_Discr then
17572 Parent_Discrim := First_Discriminant (Parent_Base);
17573 while Present (Parent_Discrim) loop
17574 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17575 Next_Discriminant (Parent_Discrim);
17576 end loop;
17577 end if;
17579 -- Create explicit stored discrims for untagged types when necessary
17581 if not Has_Unknown_Discriminants (Derived_Base)
17582 and then Has_Discriminants (Parent_Base)
17583 and then not Is_Tagged
17584 and then
17585 (not Inherit_Discr
17586 or else First_Discriminant (Parent_Base) /=
17587 First_Stored_Discriminant (Parent_Base))
17588 then
17589 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17590 while Present (Stored_Discrim) loop
17591 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17592 Next_Stored_Discriminant (Stored_Discrim);
17593 end loop;
17594 end if;
17596 -- See if we can apply the second transformation for derived types, as
17597 -- explained in point 6. in the comments above Build_Derived_Record_Type
17598 -- This is achieved by appending Derived_Base discriminants into Discs,
17599 -- which has the side effect of returning a non empty Discs list to the
17600 -- caller of Inherit_Components, which is what we want. This must be
17601 -- done for private derived types if there are explicit stored
17602 -- discriminants, to ensure that we can retrieve the values of the
17603 -- constraints provided in the ancestors.
17605 if Inherit_Discr
17606 and then Is_Empty_Elmt_List (Discs)
17607 and then Present (First_Discriminant (Derived_Base))
17608 and then
17609 (not Is_Private_Type (Derived_Base)
17610 or else Is_Completely_Hidden
17611 (First_Stored_Discriminant (Derived_Base))
17612 or else Is_Generic_Type (Derived_Base))
17613 then
17614 D := First_Discriminant (Derived_Base);
17615 while Present (D) loop
17616 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17617 Next_Discriminant (D);
17618 end loop;
17619 end if;
17621 -- Finally, inherit non-discriminant components unless they are not
17622 -- visible because defined or inherited from the full view of the
17623 -- parent. Don't inherit the _parent field of the parent type.
17625 Component := First_Entity (Parent_Base);
17626 while Present (Component) loop
17628 -- Ada 2005 (AI-251): Do not inherit components associated with
17629 -- secondary tags of the parent.
17631 if Ekind (Component) = E_Component
17632 and then Present (Related_Type (Component))
17633 then
17634 null;
17636 elsif Ekind (Component) /= E_Component
17637 or else Chars (Component) = Name_uParent
17638 then
17639 null;
17641 -- If the derived type is within the parent type's declarative
17642 -- region, then the components can still be inherited even though
17643 -- they aren't visible at this point. This can occur for cases
17644 -- such as within public child units where the components must
17645 -- become visible upon entering the child unit's private part.
17647 elsif not Is_Visible_Component (Component)
17648 and then not In_Open_Scopes (Scope (Parent_Base))
17649 then
17650 null;
17652 elsif Ekind_In (Derived_Base, E_Private_Type,
17653 E_Limited_Private_Type)
17654 then
17655 null;
17657 else
17658 Inherit_Component (Component);
17659 end if;
17661 Next_Entity (Component);
17662 end loop;
17664 -- For tagged derived types, inherited discriminants cannot be used in
17665 -- component declarations of the record extension part. To achieve this
17666 -- we mark the inherited discriminants as not visible.
17668 if Is_Tagged and then Inherit_Discr then
17669 D := First_Discriminant (Derived_Base);
17670 while Present (D) loop
17671 Set_Is_Immediately_Visible (D, False);
17672 Next_Discriminant (D);
17673 end loop;
17674 end if;
17676 return Assoc_List;
17677 end Inherit_Components;
17679 -----------------------------
17680 -- Inherit_Predicate_Flags --
17681 -----------------------------
17683 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17684 begin
17685 Set_Has_Predicates (Subt, Has_Predicates (Par));
17686 Set_Has_Static_Predicate_Aspect
17687 (Subt, Has_Static_Predicate_Aspect (Par));
17688 Set_Has_Dynamic_Predicate_Aspect
17689 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17690 end Inherit_Predicate_Flags;
17692 ----------------------
17693 -- Is_EVF_Procedure --
17694 ----------------------
17696 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17697 Formal : Entity_Id;
17699 begin
17700 -- Examine the formals of an Extensions_Visible False procedure looking
17701 -- for a controlling OUT parameter.
17703 if Ekind (Subp) = E_Procedure
17704 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17705 then
17706 Formal := First_Formal (Subp);
17707 while Present (Formal) loop
17708 if Ekind (Formal) = E_Out_Parameter
17709 and then Is_Controlling_Formal (Formal)
17710 then
17711 return True;
17712 end if;
17714 Next_Formal (Formal);
17715 end loop;
17716 end if;
17718 return False;
17719 end Is_EVF_Procedure;
17721 -----------------------
17722 -- Is_Null_Extension --
17723 -----------------------
17725 function Is_Null_Extension (T : Entity_Id) return Boolean is
17726 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17727 Comp_List : Node_Id;
17728 Comp : Node_Id;
17730 begin
17731 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17732 or else not Is_Tagged_Type (T)
17733 or else Nkind (Type_Definition (Type_Decl)) /=
17734 N_Derived_Type_Definition
17735 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17736 then
17737 return False;
17738 end if;
17740 Comp_List :=
17741 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17743 if Present (Discriminant_Specifications (Type_Decl)) then
17744 return False;
17746 elsif Present (Comp_List)
17747 and then Is_Non_Empty_List (Component_Items (Comp_List))
17748 then
17749 Comp := First (Component_Items (Comp_List));
17751 -- Only user-defined components are relevant. The component list
17752 -- may also contain a parent component and internal components
17753 -- corresponding to secondary tags, but these do not determine
17754 -- whether this is a null extension.
17756 while Present (Comp) loop
17757 if Comes_From_Source (Comp) then
17758 return False;
17759 end if;
17761 Next (Comp);
17762 end loop;
17764 return True;
17766 else
17767 return True;
17768 end if;
17769 end Is_Null_Extension;
17771 ------------------------------
17772 -- Is_Valid_Constraint_Kind --
17773 ------------------------------
17775 function Is_Valid_Constraint_Kind
17776 (T_Kind : Type_Kind;
17777 Constraint_Kind : Node_Kind) return Boolean
17779 begin
17780 case T_Kind is
17781 when Enumeration_Kind |
17782 Integer_Kind =>
17783 return Constraint_Kind = N_Range_Constraint;
17785 when Decimal_Fixed_Point_Kind =>
17786 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17787 N_Range_Constraint);
17789 when Ordinary_Fixed_Point_Kind =>
17790 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17791 N_Range_Constraint);
17793 when Float_Kind =>
17794 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17795 N_Range_Constraint);
17797 when Access_Kind |
17798 Array_Kind |
17799 E_Record_Type |
17800 E_Record_Subtype |
17801 Class_Wide_Kind |
17802 E_Incomplete_Type |
17803 Private_Kind |
17804 Concurrent_Kind =>
17805 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17807 when others =>
17808 return True; -- Error will be detected later
17809 end case;
17810 end Is_Valid_Constraint_Kind;
17812 --------------------------
17813 -- Is_Visible_Component --
17814 --------------------------
17816 function Is_Visible_Component
17817 (C : Entity_Id;
17818 N : Node_Id := Empty) return Boolean
17820 Original_Comp : Entity_Id := Empty;
17821 Original_Scope : Entity_Id;
17822 Type_Scope : Entity_Id;
17824 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17825 -- Check whether parent type of inherited component is declared locally,
17826 -- possibly within a nested package or instance. The current scope is
17827 -- the derived record itself.
17829 -------------------
17830 -- Is_Local_Type --
17831 -------------------
17833 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17834 Scop : Entity_Id;
17836 begin
17837 Scop := Scope (Typ);
17838 while Present (Scop)
17839 and then Scop /= Standard_Standard
17840 loop
17841 if Scop = Scope (Current_Scope) then
17842 return True;
17843 end if;
17845 Scop := Scope (Scop);
17846 end loop;
17848 return False;
17849 end Is_Local_Type;
17851 -- Start of processing for Is_Visible_Component
17853 begin
17854 if Ekind_In (C, E_Component, E_Discriminant) then
17855 Original_Comp := Original_Record_Component (C);
17856 end if;
17858 if No (Original_Comp) then
17860 -- Premature usage, or previous error
17862 return False;
17864 else
17865 Original_Scope := Scope (Original_Comp);
17866 Type_Scope := Scope (Base_Type (Scope (C)));
17867 end if;
17869 -- This test only concerns tagged types
17871 if not Is_Tagged_Type (Original_Scope) then
17872 return True;
17874 -- If it is _Parent or _Tag, there is no visibility issue
17876 elsif not Comes_From_Source (Original_Comp) then
17877 return True;
17879 -- Discriminants are visible unless the (private) type has unknown
17880 -- discriminants. If the discriminant reference is inserted for a
17881 -- discriminant check on a full view it is also visible.
17883 elsif Ekind (Original_Comp) = E_Discriminant
17884 and then
17885 (not Has_Unknown_Discriminants (Original_Scope)
17886 or else (Present (N)
17887 and then Nkind (N) = N_Selected_Component
17888 and then Nkind (Prefix (N)) = N_Type_Conversion
17889 and then not Comes_From_Source (Prefix (N))))
17890 then
17891 return True;
17893 -- In the body of an instantiation, no need to check for the visibility
17894 -- of a component.
17896 elsif In_Instance_Body then
17897 return True;
17899 -- If the component has been declared in an ancestor which is currently
17900 -- a private type, then it is not visible. The same applies if the
17901 -- component's containing type is not in an open scope and the original
17902 -- component's enclosing type is a visible full view of a private type
17903 -- (which can occur in cases where an attempt is being made to reference
17904 -- a component in a sibling package that is inherited from a visible
17905 -- component of a type in an ancestor package; the component in the
17906 -- sibling package should not be visible even though the component it
17907 -- inherited from is visible). This does not apply however in the case
17908 -- where the scope of the type is a private child unit, or when the
17909 -- parent comes from a local package in which the ancestor is currently
17910 -- visible. The latter suppression of visibility is needed for cases
17911 -- that are tested in B730006.
17913 elsif Is_Private_Type (Original_Scope)
17914 or else
17915 (not Is_Private_Descendant (Type_Scope)
17916 and then not In_Open_Scopes (Type_Scope)
17917 and then Has_Private_Declaration (Original_Scope))
17918 then
17919 -- If the type derives from an entity in a formal package, there
17920 -- are no additional visible components.
17922 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17923 N_Formal_Package_Declaration
17924 then
17925 return False;
17927 -- if we are not in the private part of the current package, there
17928 -- are no additional visible components.
17930 elsif Ekind (Scope (Current_Scope)) = E_Package
17931 and then not In_Private_Part (Scope (Current_Scope))
17932 then
17933 return False;
17934 else
17935 return
17936 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17937 and then In_Open_Scopes (Scope (Original_Scope))
17938 and then Is_Local_Type (Type_Scope);
17939 end if;
17941 -- There is another weird way in which a component may be invisible when
17942 -- the private and the full view are not derived from the same ancestor.
17943 -- Here is an example :
17945 -- type A1 is tagged record F1 : integer; end record;
17946 -- type A2 is new A1 with record F2 : integer; end record;
17947 -- type T is new A1 with private;
17948 -- private
17949 -- type T is new A2 with null record;
17951 -- In this case, the full view of T inherits F1 and F2 but the private
17952 -- view inherits only F1
17954 else
17955 declare
17956 Ancestor : Entity_Id := Scope (C);
17958 begin
17959 loop
17960 if Ancestor = Original_Scope then
17961 return True;
17962 elsif Ancestor = Etype (Ancestor) then
17963 return False;
17964 end if;
17966 Ancestor := Etype (Ancestor);
17967 end loop;
17968 end;
17969 end if;
17970 end Is_Visible_Component;
17972 --------------------------
17973 -- Make_Class_Wide_Type --
17974 --------------------------
17976 procedure Make_Class_Wide_Type (T : Entity_Id) is
17977 CW_Type : Entity_Id;
17978 CW_Name : Name_Id;
17979 Next_E : Entity_Id;
17981 begin
17982 if Present (Class_Wide_Type (T)) then
17984 -- The class-wide type is a partially decorated entity created for a
17985 -- unanalyzed tagged type referenced through a limited with clause.
17986 -- When the tagged type is analyzed, its class-wide type needs to be
17987 -- redecorated. Note that we reuse the entity created by Decorate_
17988 -- Tagged_Type in order to preserve all links.
17990 if Materialize_Entity (Class_Wide_Type (T)) then
17991 CW_Type := Class_Wide_Type (T);
17992 Set_Materialize_Entity (CW_Type, False);
17994 -- The class wide type can have been defined by the partial view, in
17995 -- which case everything is already done.
17997 else
17998 return;
17999 end if;
18001 -- Default case, we need to create a new class-wide type
18003 else
18004 CW_Type :=
18005 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18006 end if;
18008 -- Inherit root type characteristics
18010 CW_Name := Chars (CW_Type);
18011 Next_E := Next_Entity (CW_Type);
18012 Copy_Node (T, CW_Type);
18013 Set_Comes_From_Source (CW_Type, False);
18014 Set_Chars (CW_Type, CW_Name);
18015 Set_Parent (CW_Type, Parent (T));
18016 Set_Next_Entity (CW_Type, Next_E);
18018 -- Ensure we have a new freeze node for the class-wide type. The partial
18019 -- view may have freeze action of its own, requiring a proper freeze
18020 -- node, and the same freeze node cannot be shared between the two
18021 -- types.
18023 Set_Has_Delayed_Freeze (CW_Type);
18024 Set_Freeze_Node (CW_Type, Empty);
18026 -- Customize the class-wide type: It has no prim. op., it cannot be
18027 -- abstract and its Etype points back to the specific root type.
18029 Set_Ekind (CW_Type, E_Class_Wide_Type);
18030 Set_Is_Tagged_Type (CW_Type, True);
18031 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18032 Set_Is_Abstract_Type (CW_Type, False);
18033 Set_Is_Constrained (CW_Type, False);
18034 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18035 Set_Default_SSO (CW_Type);
18037 if Ekind (T) = E_Class_Wide_Subtype then
18038 Set_Etype (CW_Type, Etype (Base_Type (T)));
18039 else
18040 Set_Etype (CW_Type, T);
18041 end if;
18043 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18045 -- If this is the class_wide type of a constrained subtype, it does
18046 -- not have discriminants.
18048 Set_Has_Discriminants (CW_Type,
18049 Has_Discriminants (T) and then not Is_Constrained (T));
18051 Set_Has_Unknown_Discriminants (CW_Type, True);
18052 Set_Class_Wide_Type (T, CW_Type);
18053 Set_Equivalent_Type (CW_Type, Empty);
18055 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18057 Set_Class_Wide_Type (CW_Type, CW_Type);
18058 end Make_Class_Wide_Type;
18060 ----------------
18061 -- Make_Index --
18062 ----------------
18064 procedure Make_Index
18065 (N : Node_Id;
18066 Related_Nod : Node_Id;
18067 Related_Id : Entity_Id := Empty;
18068 Suffix_Index : Nat := 1;
18069 In_Iter_Schm : Boolean := False)
18071 R : Node_Id;
18072 T : Entity_Id;
18073 Def_Id : Entity_Id := Empty;
18074 Found : Boolean := False;
18076 begin
18077 -- For a discrete range used in a constrained array definition and
18078 -- defined by a range, an implicit conversion to the predefined type
18079 -- INTEGER is assumed if each bound is either a numeric literal, a named
18080 -- number, or an attribute, and the type of both bounds (prior to the
18081 -- implicit conversion) is the type universal_integer. Otherwise, both
18082 -- bounds must be of the same discrete type, other than universal
18083 -- integer; this type must be determinable independently of the
18084 -- context, but using the fact that the type must be discrete and that
18085 -- both bounds must have the same type.
18087 -- Character literals also have a universal type in the absence of
18088 -- of additional context, and are resolved to Standard_Character.
18090 if Nkind (N) = N_Range then
18092 -- The index is given by a range constraint. The bounds are known
18093 -- to be of a consistent type.
18095 if not Is_Overloaded (N) then
18096 T := Etype (N);
18098 -- For universal bounds, choose the specific predefined type
18100 if T = Universal_Integer then
18101 T := Standard_Integer;
18103 elsif T = Any_Character then
18104 Ambiguous_Character (Low_Bound (N));
18106 T := Standard_Character;
18107 end if;
18109 -- The node may be overloaded because some user-defined operators
18110 -- are available, but if a universal interpretation exists it is
18111 -- also the selected one.
18113 elsif Universal_Interpretation (N) = Universal_Integer then
18114 T := Standard_Integer;
18116 else
18117 T := Any_Type;
18119 declare
18120 Ind : Interp_Index;
18121 It : Interp;
18123 begin
18124 Get_First_Interp (N, Ind, It);
18125 while Present (It.Typ) loop
18126 if Is_Discrete_Type (It.Typ) then
18128 if Found
18129 and then not Covers (It.Typ, T)
18130 and then not Covers (T, It.Typ)
18131 then
18132 Error_Msg_N ("ambiguous bounds in discrete range", N);
18133 exit;
18134 else
18135 T := It.Typ;
18136 Found := True;
18137 end if;
18138 end if;
18140 Get_Next_Interp (Ind, It);
18141 end loop;
18143 if T = Any_Type then
18144 Error_Msg_N ("discrete type required for range", N);
18145 Set_Etype (N, Any_Type);
18146 return;
18148 elsif T = Universal_Integer then
18149 T := Standard_Integer;
18150 end if;
18151 end;
18152 end if;
18154 if not Is_Discrete_Type (T) then
18155 Error_Msg_N ("discrete type required for range", N);
18156 Set_Etype (N, Any_Type);
18157 return;
18158 end if;
18160 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18161 and then Attribute_Name (Low_Bound (N)) = Name_First
18162 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18163 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18164 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18165 then
18166 -- The type of the index will be the type of the prefix, as long
18167 -- as the upper bound is 'Last of the same type.
18169 Def_Id := Entity (Prefix (Low_Bound (N)));
18171 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18172 or else Attribute_Name (High_Bound (N)) /= Name_Last
18173 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18174 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18175 then
18176 Def_Id := Empty;
18177 end if;
18178 end if;
18180 R := N;
18181 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18183 elsif Nkind (N) = N_Subtype_Indication then
18185 -- The index is given by a subtype with a range constraint
18187 T := Base_Type (Entity (Subtype_Mark (N)));
18189 if not Is_Discrete_Type (T) then
18190 Error_Msg_N ("discrete type required for range", N);
18191 Set_Etype (N, Any_Type);
18192 return;
18193 end if;
18195 R := Range_Expression (Constraint (N));
18197 Resolve (R, T);
18198 Process_Range_Expr_In_Decl
18199 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18201 elsif Nkind (N) = N_Attribute_Reference then
18203 -- Catch beginner's error (use of attribute other than 'Range)
18205 if Attribute_Name (N) /= Name_Range then
18206 Error_Msg_N ("expect attribute ''Range", N);
18207 Set_Etype (N, Any_Type);
18208 return;
18209 end if;
18211 -- If the node denotes the range of a type mark, that is also the
18212 -- resulting type, and we do not need to create an Itype for it.
18214 if Is_Entity_Name (Prefix (N))
18215 and then Comes_From_Source (N)
18216 and then Is_Type (Entity (Prefix (N)))
18217 and then Is_Discrete_Type (Entity (Prefix (N)))
18218 then
18219 Def_Id := Entity (Prefix (N));
18220 end if;
18222 Analyze_And_Resolve (N);
18223 T := Etype (N);
18224 R := N;
18226 -- If none of the above, must be a subtype. We convert this to a
18227 -- range attribute reference because in the case of declared first
18228 -- named subtypes, the types in the range reference can be different
18229 -- from the type of the entity. A range attribute normalizes the
18230 -- reference and obtains the correct types for the bounds.
18232 -- This transformation is in the nature of an expansion, is only
18233 -- done if expansion is active. In particular, it is not done on
18234 -- formal generic types, because we need to retain the name of the
18235 -- original index for instantiation purposes.
18237 else
18238 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18239 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18240 Set_Etype (N, Any_Integer);
18241 return;
18243 else
18244 -- The type mark may be that of an incomplete type. It is only
18245 -- now that we can get the full view, previous analysis does
18246 -- not look specifically for a type mark.
18248 Set_Entity (N, Get_Full_View (Entity (N)));
18249 Set_Etype (N, Entity (N));
18250 Def_Id := Entity (N);
18252 if not Is_Discrete_Type (Def_Id) then
18253 Error_Msg_N ("discrete type required for index", N);
18254 Set_Etype (N, Any_Type);
18255 return;
18256 end if;
18257 end if;
18259 if Expander_Active then
18260 Rewrite (N,
18261 Make_Attribute_Reference (Sloc (N),
18262 Attribute_Name => Name_Range,
18263 Prefix => Relocate_Node (N)));
18265 -- The original was a subtype mark that does not freeze. This
18266 -- means that the rewritten version must not freeze either.
18268 Set_Must_Not_Freeze (N);
18269 Set_Must_Not_Freeze (Prefix (N));
18270 Analyze_And_Resolve (N);
18271 T := Etype (N);
18272 R := N;
18274 -- If expander is inactive, type is legal, nothing else to construct
18276 else
18277 return;
18278 end if;
18279 end if;
18281 if not Is_Discrete_Type (T) then
18282 Error_Msg_N ("discrete type required for range", N);
18283 Set_Etype (N, Any_Type);
18284 return;
18286 elsif T = Any_Type then
18287 Set_Etype (N, Any_Type);
18288 return;
18289 end if;
18291 -- We will now create the appropriate Itype to describe the range, but
18292 -- first a check. If we originally had a subtype, then we just label
18293 -- the range with this subtype. Not only is there no need to construct
18294 -- a new subtype, but it is wrong to do so for two reasons:
18296 -- 1. A legality concern, if we have a subtype, it must not freeze,
18297 -- and the Itype would cause freezing incorrectly
18299 -- 2. An efficiency concern, if we created an Itype, it would not be
18300 -- recognized as the same type for the purposes of eliminating
18301 -- checks in some circumstances.
18303 -- We signal this case by setting the subtype entity in Def_Id
18305 if No (Def_Id) then
18306 Def_Id :=
18307 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18308 Set_Etype (Def_Id, Base_Type (T));
18310 if Is_Signed_Integer_Type (T) then
18311 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18313 elsif Is_Modular_Integer_Type (T) then
18314 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18316 else
18317 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18318 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18319 Set_First_Literal (Def_Id, First_Literal (T));
18320 end if;
18322 Set_Size_Info (Def_Id, (T));
18323 Set_RM_Size (Def_Id, RM_Size (T));
18324 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18326 Set_Scalar_Range (Def_Id, R);
18327 Conditional_Delay (Def_Id, T);
18329 if Nkind (N) = N_Subtype_Indication then
18330 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18331 end if;
18333 -- In the subtype indication case, if the immediate parent of the
18334 -- new subtype is non-static, then the subtype we create is non-
18335 -- static, even if its bounds are static.
18337 if Nkind (N) = N_Subtype_Indication
18338 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18339 then
18340 Set_Is_Non_Static_Subtype (Def_Id);
18341 end if;
18342 end if;
18344 -- Final step is to label the index with this constructed type
18346 Set_Etype (N, Def_Id);
18347 end Make_Index;
18349 ------------------------------
18350 -- Modular_Type_Declaration --
18351 ------------------------------
18353 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18354 Mod_Expr : constant Node_Id := Expression (Def);
18355 M_Val : Uint;
18357 procedure Set_Modular_Size (Bits : Int);
18358 -- Sets RM_Size to Bits, and Esize to normal word size above this
18360 ----------------------
18361 -- Set_Modular_Size --
18362 ----------------------
18364 procedure Set_Modular_Size (Bits : Int) is
18365 begin
18366 Set_RM_Size (T, UI_From_Int (Bits));
18368 if Bits <= 8 then
18369 Init_Esize (T, 8);
18371 elsif Bits <= 16 then
18372 Init_Esize (T, 16);
18374 elsif Bits <= 32 then
18375 Init_Esize (T, 32);
18377 else
18378 Init_Esize (T, System_Max_Binary_Modulus_Power);
18379 end if;
18381 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18382 Set_Is_Known_Valid (T);
18383 end if;
18384 end Set_Modular_Size;
18386 -- Start of processing for Modular_Type_Declaration
18388 begin
18389 -- If the mod expression is (exactly) 2 * literal, where literal is
18390 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18392 if Warn_On_Suspicious_Modulus_Value
18393 and then Nkind (Mod_Expr) = N_Op_Multiply
18394 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18395 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18396 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18397 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18398 then
18399 Error_Msg_N
18400 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18401 end if;
18403 -- Proceed with analysis of mod expression
18405 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18406 Set_Etype (T, T);
18407 Set_Ekind (T, E_Modular_Integer_Type);
18408 Init_Alignment (T);
18409 Set_Is_Constrained (T);
18411 if not Is_OK_Static_Expression (Mod_Expr) then
18412 Flag_Non_Static_Expr
18413 ("non-static expression used for modular type bound!", Mod_Expr);
18414 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18415 else
18416 M_Val := Expr_Value (Mod_Expr);
18417 end if;
18419 if M_Val < 1 then
18420 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18421 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18422 end if;
18424 if M_Val > 2 ** Standard_Long_Integer_Size then
18425 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18426 end if;
18428 Set_Modulus (T, M_Val);
18430 -- Create bounds for the modular type based on the modulus given in
18431 -- the type declaration and then analyze and resolve those bounds.
18433 Set_Scalar_Range (T,
18434 Make_Range (Sloc (Mod_Expr),
18435 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18436 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18438 -- Properly analyze the literals for the range. We do this manually
18439 -- because we can't go calling Resolve, since we are resolving these
18440 -- bounds with the type, and this type is certainly not complete yet.
18442 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18443 Set_Etype (High_Bound (Scalar_Range (T)), T);
18444 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18445 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18447 -- Loop through powers of two to find number of bits required
18449 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18451 -- Binary case
18453 if M_Val = 2 ** Bits then
18454 Set_Modular_Size (Bits);
18455 return;
18457 -- Non-binary case
18459 elsif M_Val < 2 ** Bits then
18460 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18461 Set_Non_Binary_Modulus (T);
18463 if Bits > System_Max_Nonbinary_Modulus_Power then
18464 Error_Msg_Uint_1 :=
18465 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18466 Error_Msg_F
18467 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18468 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18469 return;
18471 else
18472 -- In the non-binary case, set size as per RM 13.3(55)
18474 Set_Modular_Size (Bits);
18475 return;
18476 end if;
18477 end if;
18479 end loop;
18481 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18482 -- so we just signal an error and set the maximum size.
18484 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18485 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18487 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18488 Init_Alignment (T);
18490 end Modular_Type_Declaration;
18492 --------------------------
18493 -- New_Concatenation_Op --
18494 --------------------------
18496 procedure New_Concatenation_Op (Typ : Entity_Id) is
18497 Loc : constant Source_Ptr := Sloc (Typ);
18498 Op : Entity_Id;
18500 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18501 -- Create abbreviated declaration for the formal of a predefined
18502 -- Operator 'Op' of type 'Typ'
18504 --------------------
18505 -- Make_Op_Formal --
18506 --------------------
18508 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18509 Formal : Entity_Id;
18510 begin
18511 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18512 Set_Etype (Formal, Typ);
18513 Set_Mechanism (Formal, Default_Mechanism);
18514 return Formal;
18515 end Make_Op_Formal;
18517 -- Start of processing for New_Concatenation_Op
18519 begin
18520 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18522 Set_Ekind (Op, E_Operator);
18523 Set_Scope (Op, Current_Scope);
18524 Set_Etype (Op, Typ);
18525 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18526 Set_Is_Immediately_Visible (Op);
18527 Set_Is_Intrinsic_Subprogram (Op);
18528 Set_Has_Completion (Op);
18529 Append_Entity (Op, Current_Scope);
18531 Set_Name_Entity_Id (Name_Op_Concat, Op);
18533 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18534 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18535 end New_Concatenation_Op;
18537 -------------------------
18538 -- OK_For_Limited_Init --
18539 -------------------------
18541 -- ???Check all calls of this, and compare the conditions under which it's
18542 -- called.
18544 function OK_For_Limited_Init
18545 (Typ : Entity_Id;
18546 Exp : Node_Id) return Boolean
18548 begin
18549 return Is_CPP_Constructor_Call (Exp)
18550 or else (Ada_Version >= Ada_2005
18551 and then not Debug_Flag_Dot_L
18552 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18553 end OK_For_Limited_Init;
18555 -------------------------------
18556 -- OK_For_Limited_Init_In_05 --
18557 -------------------------------
18559 function OK_For_Limited_Init_In_05
18560 (Typ : Entity_Id;
18561 Exp : Node_Id) return Boolean
18563 begin
18564 -- An object of a limited interface type can be initialized with any
18565 -- expression of a nonlimited descendant type.
18567 if Is_Class_Wide_Type (Typ)
18568 and then Is_Limited_Interface (Typ)
18569 and then not Is_Limited_Type (Etype (Exp))
18570 then
18571 return True;
18572 end if;
18574 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18575 -- case of limited aggregates (including extension aggregates), and
18576 -- function calls. The function call may have been given in prefixed
18577 -- notation, in which case the original node is an indexed component.
18578 -- If the function is parameterless, the original node was an explicit
18579 -- dereference. The function may also be parameterless, in which case
18580 -- the source node is just an identifier.
18582 case Nkind (Original_Node (Exp)) is
18583 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18584 return True;
18586 when N_Identifier =>
18587 return Present (Entity (Original_Node (Exp)))
18588 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18590 when N_Qualified_Expression =>
18591 return
18592 OK_For_Limited_Init_In_05
18593 (Typ, Expression (Original_Node (Exp)));
18595 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18596 -- with a function call, the expander has rewritten the call into an
18597 -- N_Type_Conversion node to force displacement of the pointer to
18598 -- reference the component containing the secondary dispatch table.
18599 -- Otherwise a type conversion is not a legal context.
18600 -- A return statement for a build-in-place function returning a
18601 -- synchronized type also introduces an unchecked conversion.
18603 when N_Type_Conversion |
18604 N_Unchecked_Type_Conversion =>
18605 return not Comes_From_Source (Exp)
18606 and then
18607 OK_For_Limited_Init_In_05
18608 (Typ, Expression (Original_Node (Exp)));
18610 when N_Indexed_Component |
18611 N_Selected_Component |
18612 N_Explicit_Dereference =>
18613 return Nkind (Exp) = N_Function_Call;
18615 -- A use of 'Input is a function call, hence allowed. Normally the
18616 -- attribute will be changed to a call, but the attribute by itself
18617 -- can occur with -gnatc.
18619 when N_Attribute_Reference =>
18620 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18622 -- For a case expression, all dependent expressions must be legal
18624 when N_Case_Expression =>
18625 declare
18626 Alt : Node_Id;
18628 begin
18629 Alt := First (Alternatives (Original_Node (Exp)));
18630 while Present (Alt) loop
18631 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18632 return False;
18633 end if;
18635 Next (Alt);
18636 end loop;
18638 return True;
18639 end;
18641 -- For an if expression, all dependent expressions must be legal
18643 when N_If_Expression =>
18644 declare
18645 Then_Expr : constant Node_Id :=
18646 Next (First (Expressions (Original_Node (Exp))));
18647 Else_Expr : constant Node_Id := Next (Then_Expr);
18648 begin
18649 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18650 and then
18651 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18652 end;
18654 when others =>
18655 return False;
18656 end case;
18657 end OK_For_Limited_Init_In_05;
18659 -------------------------------------------
18660 -- Ordinary_Fixed_Point_Type_Declaration --
18661 -------------------------------------------
18663 procedure Ordinary_Fixed_Point_Type_Declaration
18664 (T : Entity_Id;
18665 Def : Node_Id)
18667 Loc : constant Source_Ptr := Sloc (Def);
18668 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18669 RRS : constant Node_Id := Real_Range_Specification (Def);
18670 Implicit_Base : Entity_Id;
18671 Delta_Val : Ureal;
18672 Small_Val : Ureal;
18673 Low_Val : Ureal;
18674 High_Val : Ureal;
18676 begin
18677 Check_Restriction (No_Fixed_Point, Def);
18679 -- Create implicit base type
18681 Implicit_Base :=
18682 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18683 Set_Etype (Implicit_Base, Implicit_Base);
18685 -- Analyze and process delta expression
18687 Analyze_And_Resolve (Delta_Expr, Any_Real);
18689 Check_Delta_Expression (Delta_Expr);
18690 Delta_Val := Expr_Value_R (Delta_Expr);
18692 Set_Delta_Value (Implicit_Base, Delta_Val);
18694 -- Compute default small from given delta, which is the largest power
18695 -- of two that does not exceed the given delta value.
18697 declare
18698 Tmp : Ureal;
18699 Scale : Int;
18701 begin
18702 Tmp := Ureal_1;
18703 Scale := 0;
18705 if Delta_Val < Ureal_1 then
18706 while Delta_Val < Tmp loop
18707 Tmp := Tmp / Ureal_2;
18708 Scale := Scale + 1;
18709 end loop;
18711 else
18712 loop
18713 Tmp := Tmp * Ureal_2;
18714 exit when Tmp > Delta_Val;
18715 Scale := Scale - 1;
18716 end loop;
18717 end if;
18719 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18720 end;
18722 Set_Small_Value (Implicit_Base, Small_Val);
18724 -- If no range was given, set a dummy range
18726 if RRS <= Empty_Or_Error then
18727 Low_Val := -Small_Val;
18728 High_Val := Small_Val;
18730 -- Otherwise analyze and process given range
18732 else
18733 declare
18734 Low : constant Node_Id := Low_Bound (RRS);
18735 High : constant Node_Id := High_Bound (RRS);
18737 begin
18738 Analyze_And_Resolve (Low, Any_Real);
18739 Analyze_And_Resolve (High, Any_Real);
18740 Check_Real_Bound (Low);
18741 Check_Real_Bound (High);
18743 -- Obtain and set the range
18745 Low_Val := Expr_Value_R (Low);
18746 High_Val := Expr_Value_R (High);
18748 if Low_Val > High_Val then
18749 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18750 end if;
18751 end;
18752 end if;
18754 -- The range for both the implicit base and the declared first subtype
18755 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18756 -- set a temporary range in place. Note that the bounds of the base
18757 -- type will be widened to be symmetrical and to fill the available
18758 -- bits when the type is frozen.
18760 -- We could do this with all discrete types, and probably should, but
18761 -- we absolutely have to do it for fixed-point, since the end-points
18762 -- of the range and the size are determined by the small value, which
18763 -- could be reset before the freeze point.
18765 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18766 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18768 -- Complete definition of first subtype. The inheritance of the rep item
18769 -- chain ensures that SPARK-related pragmas are not clobbered when the
18770 -- ordinary fixed point type acts as a full view of a private type.
18772 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18773 Set_Etype (T, Implicit_Base);
18774 Init_Size_Align (T);
18775 Inherit_Rep_Item_Chain (T, Implicit_Base);
18776 Set_Small_Value (T, Small_Val);
18777 Set_Delta_Value (T, Delta_Val);
18778 Set_Is_Constrained (T);
18779 end Ordinary_Fixed_Point_Type_Declaration;
18781 ----------------------------------
18782 -- Preanalyze_Assert_Expression --
18783 ----------------------------------
18785 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18786 begin
18787 In_Assertion_Expr := In_Assertion_Expr + 1;
18788 Preanalyze_Spec_Expression (N, T);
18789 In_Assertion_Expr := In_Assertion_Expr - 1;
18790 end Preanalyze_Assert_Expression;
18792 -----------------------------------
18793 -- Preanalyze_Default_Expression --
18794 -----------------------------------
18796 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18797 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18798 begin
18799 In_Default_Expr := True;
18800 Preanalyze_Spec_Expression (N, T);
18801 In_Default_Expr := Save_In_Default_Expr;
18802 end Preanalyze_Default_Expression;
18804 --------------------------------
18805 -- Preanalyze_Spec_Expression --
18806 --------------------------------
18808 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18809 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18810 begin
18811 In_Spec_Expression := True;
18812 Preanalyze_And_Resolve (N, T);
18813 In_Spec_Expression := Save_In_Spec_Expression;
18814 end Preanalyze_Spec_Expression;
18816 ----------------------------------------
18817 -- Prepare_Private_Subtype_Completion --
18818 ----------------------------------------
18820 procedure Prepare_Private_Subtype_Completion
18821 (Id : Entity_Id;
18822 Related_Nod : Node_Id)
18824 Id_B : constant Entity_Id := Base_Type (Id);
18825 Full_B : Entity_Id := Full_View (Id_B);
18826 Full : Entity_Id;
18828 begin
18829 if Present (Full_B) then
18831 -- Get to the underlying full view if necessary
18833 if Is_Private_Type (Full_B)
18834 and then Present (Underlying_Full_View (Full_B))
18835 then
18836 Full_B := Underlying_Full_View (Full_B);
18837 end if;
18839 -- The Base_Type is already completed, we can complete the subtype
18840 -- now. We have to create a new entity with the same name, Thus we
18841 -- can't use Create_Itype.
18843 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18844 Set_Is_Itype (Full);
18845 Set_Associated_Node_For_Itype (Full, Related_Nod);
18846 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18847 end if;
18849 -- The parent subtype may be private, but the base might not, in some
18850 -- nested instances. In that case, the subtype does not need to be
18851 -- exchanged. It would still be nice to make private subtypes and their
18852 -- bases consistent at all times ???
18854 if Is_Private_Type (Id_B) then
18855 Append_Elmt (Id, Private_Dependents (Id_B));
18856 end if;
18857 end Prepare_Private_Subtype_Completion;
18859 ---------------------------
18860 -- Process_Discriminants --
18861 ---------------------------
18863 procedure Process_Discriminants
18864 (N : Node_Id;
18865 Prev : Entity_Id := Empty)
18867 Elist : constant Elist_Id := New_Elmt_List;
18868 Id : Node_Id;
18869 Discr : Node_Id;
18870 Discr_Number : Uint;
18871 Discr_Type : Entity_Id;
18872 Default_Present : Boolean := False;
18873 Default_Not_Present : Boolean := False;
18875 begin
18876 -- A composite type other than an array type can have discriminants.
18877 -- On entry, the current scope is the composite type.
18879 -- The discriminants are initially entered into the scope of the type
18880 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18881 -- use, as explained at the end of this procedure.
18883 Discr := First (Discriminant_Specifications (N));
18884 while Present (Discr) loop
18885 Enter_Name (Defining_Identifier (Discr));
18887 -- For navigation purposes we add a reference to the discriminant
18888 -- in the entity for the type. If the current declaration is a
18889 -- completion, place references on the partial view. Otherwise the
18890 -- type is the current scope.
18892 if Present (Prev) then
18894 -- The references go on the partial view, if present. If the
18895 -- partial view has discriminants, the references have been
18896 -- generated already.
18898 if not Has_Discriminants (Prev) then
18899 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18900 end if;
18901 else
18902 Generate_Reference
18903 (Current_Scope, Defining_Identifier (Discr), 'd');
18904 end if;
18906 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18907 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18909 -- Ada 2005 (AI-254)
18911 if Present (Access_To_Subprogram_Definition
18912 (Discriminant_Type (Discr)))
18913 and then Protected_Present (Access_To_Subprogram_Definition
18914 (Discriminant_Type (Discr)))
18915 then
18916 Discr_Type :=
18917 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18918 end if;
18920 else
18921 Find_Type (Discriminant_Type (Discr));
18922 Discr_Type := Etype (Discriminant_Type (Discr));
18924 if Error_Posted (Discriminant_Type (Discr)) then
18925 Discr_Type := Any_Type;
18926 end if;
18927 end if;
18929 -- Handling of discriminants that are access types
18931 if Is_Access_Type (Discr_Type) then
18933 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18934 -- limited record types
18936 if Ada_Version < Ada_2005 then
18937 Check_Access_Discriminant_Requires_Limited
18938 (Discr, Discriminant_Type (Discr));
18939 end if;
18941 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18942 Error_Msg_N
18943 ("(Ada 83) access discriminant not allowed", Discr);
18944 end if;
18946 -- If not access type, must be a discrete type
18948 elsif not Is_Discrete_Type (Discr_Type) then
18949 Error_Msg_N
18950 ("discriminants must have a discrete or access type",
18951 Discriminant_Type (Discr));
18952 end if;
18954 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18956 -- If a discriminant specification includes the assignment compound
18957 -- delimiter followed by an expression, the expression is the default
18958 -- expression of the discriminant; the default expression must be of
18959 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18960 -- a default expression, we do the special preanalysis, since this
18961 -- expression does not freeze (see section "Handling of Default and
18962 -- Per-Object Expressions" in spec of package Sem).
18964 if Present (Expression (Discr)) then
18965 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18967 -- Legaity checks
18969 if Nkind (N) = N_Formal_Type_Declaration then
18970 Error_Msg_N
18971 ("discriminant defaults not allowed for formal type",
18972 Expression (Discr));
18974 -- Flag an error for a tagged type with defaulted discriminants,
18975 -- excluding limited tagged types when compiling for Ada 2012
18976 -- (see AI05-0214).
18978 elsif Is_Tagged_Type (Current_Scope)
18979 and then (not Is_Limited_Type (Current_Scope)
18980 or else Ada_Version < Ada_2012)
18981 and then Comes_From_Source (N)
18982 then
18983 -- Note: see similar test in Check_Or_Process_Discriminants, to
18984 -- handle the (illegal) case of the completion of an untagged
18985 -- view with discriminants with defaults by a tagged full view.
18986 -- We skip the check if Discr does not come from source, to
18987 -- account for the case of an untagged derived type providing
18988 -- defaults for a renamed discriminant from a private untagged
18989 -- ancestor with a tagged full view (ACATS B460006).
18991 if Ada_Version >= Ada_2012 then
18992 Error_Msg_N
18993 ("discriminants of nonlimited tagged type cannot have"
18994 & " defaults",
18995 Expression (Discr));
18996 else
18997 Error_Msg_N
18998 ("discriminants of tagged type cannot have defaults",
18999 Expression (Discr));
19000 end if;
19002 else
19003 Default_Present := True;
19004 Append_Elmt (Expression (Discr), Elist);
19006 -- Tag the defining identifiers for the discriminants with
19007 -- their corresponding default expressions from the tree.
19009 Set_Discriminant_Default_Value
19010 (Defining_Identifier (Discr), Expression (Discr));
19011 end if;
19013 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19014 -- gets set unless we can be sure that no range check is required.
19016 if (GNATprove_Mode or not Expander_Active)
19017 and then not
19018 Is_In_Range
19019 (Expression (Discr), Discr_Type, Assume_Valid => True)
19020 then
19021 Set_Do_Range_Check (Expression (Discr));
19022 end if;
19024 -- No default discriminant value given
19026 else
19027 Default_Not_Present := True;
19028 end if;
19030 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19031 -- Discr_Type but with the null-exclusion attribute
19033 if Ada_Version >= Ada_2005 then
19035 -- Ada 2005 (AI-231): Static checks
19037 if Can_Never_Be_Null (Discr_Type) then
19038 Null_Exclusion_Static_Checks (Discr);
19040 elsif Is_Access_Type (Discr_Type)
19041 and then Null_Exclusion_Present (Discr)
19043 -- No need to check itypes because in their case this check
19044 -- was done at their point of creation
19046 and then not Is_Itype (Discr_Type)
19047 then
19048 if Can_Never_Be_Null (Discr_Type) then
19049 Error_Msg_NE
19050 ("`NOT NULL` not allowed (& already excludes null)",
19051 Discr,
19052 Discr_Type);
19053 end if;
19055 Set_Etype (Defining_Identifier (Discr),
19056 Create_Null_Excluding_Itype
19057 (T => Discr_Type,
19058 Related_Nod => Discr));
19060 -- Check for improper null exclusion if the type is otherwise
19061 -- legal for a discriminant.
19063 elsif Null_Exclusion_Present (Discr)
19064 and then Is_Discrete_Type (Discr_Type)
19065 then
19066 Error_Msg_N
19067 ("null exclusion can only apply to an access type", Discr);
19068 end if;
19070 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19071 -- can't have defaults. Synchronized types, or types that are
19072 -- explicitly limited are fine, but special tests apply to derived
19073 -- types in generics: in a generic body we have to assume the
19074 -- worst, and therefore defaults are not allowed if the parent is
19075 -- a generic formal private type (see ACATS B370001).
19077 if Is_Access_Type (Discr_Type) and then Default_Present then
19078 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19079 or else Is_Limited_Record (Current_Scope)
19080 or else Is_Concurrent_Type (Current_Scope)
19081 or else Is_Concurrent_Record_Type (Current_Scope)
19082 or else Ekind (Current_Scope) = E_Limited_Private_Type
19083 then
19084 if not Is_Derived_Type (Current_Scope)
19085 or else not Is_Generic_Type (Etype (Current_Scope))
19086 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19087 or else Limited_Present
19088 (Type_Definition (Parent (Current_Scope)))
19089 then
19090 null;
19092 else
19093 Error_Msg_N
19094 ("access discriminants of nonlimited types cannot "
19095 & "have defaults", Expression (Discr));
19096 end if;
19098 elsif Present (Expression (Discr)) then
19099 Error_Msg_N
19100 ("(Ada 2005) access discriminants of nonlimited types "
19101 & "cannot have defaults", Expression (Discr));
19102 end if;
19103 end if;
19104 end if;
19106 -- A discriminant cannot be effectively volatile. This check is only
19107 -- relevant when SPARK_Mode is on as it is not standard Ada legality
19108 -- rule (SPARK RM 7.1.3(6)).
19110 if SPARK_Mode = On
19111 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19112 then
19113 Error_Msg_N ("discriminant cannot be volatile", Discr);
19114 end if;
19116 Next (Discr);
19117 end loop;
19119 -- An element list consisting of the default expressions of the
19120 -- discriminants is constructed in the above loop and used to set
19121 -- the Discriminant_Constraint attribute for the type. If an object
19122 -- is declared of this (record or task) type without any explicit
19123 -- discriminant constraint given, this element list will form the
19124 -- actual parameters for the corresponding initialization procedure
19125 -- for the type.
19127 Set_Discriminant_Constraint (Current_Scope, Elist);
19128 Set_Stored_Constraint (Current_Scope, No_Elist);
19130 -- Default expressions must be provided either for all or for none
19131 -- of the discriminants of a discriminant part. (RM 3.7.1)
19133 if Default_Present and then Default_Not_Present then
19134 Error_Msg_N
19135 ("incomplete specification of defaults for discriminants", N);
19136 end if;
19138 -- The use of the name of a discriminant is not allowed in default
19139 -- expressions of a discriminant part if the specification of the
19140 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19142 -- To detect this, the discriminant names are entered initially with an
19143 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19144 -- attempt to use a void entity (for example in an expression that is
19145 -- type-checked) produces the error message: premature usage. Now after
19146 -- completing the semantic analysis of the discriminant part, we can set
19147 -- the Ekind of all the discriminants appropriately.
19149 Discr := First (Discriminant_Specifications (N));
19150 Discr_Number := Uint_1;
19151 while Present (Discr) loop
19152 Id := Defining_Identifier (Discr);
19153 Set_Ekind (Id, E_Discriminant);
19154 Init_Component_Location (Id);
19155 Init_Esize (Id);
19156 Set_Discriminant_Number (Id, Discr_Number);
19158 -- Make sure this is always set, even in illegal programs
19160 Set_Corresponding_Discriminant (Id, Empty);
19162 -- Initialize the Original_Record_Component to the entity itself.
19163 -- Inherit_Components will propagate the right value to
19164 -- discriminants in derived record types.
19166 Set_Original_Record_Component (Id, Id);
19168 -- Create the discriminal for the discriminant
19170 Build_Discriminal (Id);
19172 Next (Discr);
19173 Discr_Number := Discr_Number + 1;
19174 end loop;
19176 Set_Has_Discriminants (Current_Scope);
19177 end Process_Discriminants;
19179 -----------------------
19180 -- Process_Full_View --
19181 -----------------------
19183 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19184 procedure Collect_Implemented_Interfaces
19185 (Typ : Entity_Id;
19186 Ifaces : Elist_Id);
19187 -- Ada 2005: Gather all the interfaces that Typ directly or
19188 -- inherently implements. Duplicate entries are not added to
19189 -- the list Ifaces.
19191 ------------------------------------
19192 -- Collect_Implemented_Interfaces --
19193 ------------------------------------
19195 procedure Collect_Implemented_Interfaces
19196 (Typ : Entity_Id;
19197 Ifaces : Elist_Id)
19199 Iface : Entity_Id;
19200 Iface_Elmt : Elmt_Id;
19202 begin
19203 -- Abstract interfaces are only associated with tagged record types
19205 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19206 return;
19207 end if;
19209 -- Recursively climb to the ancestors
19211 if Etype (Typ) /= Typ
19213 -- Protect the frontend against wrong cyclic declarations like:
19215 -- type B is new A with private;
19216 -- type C is new A with private;
19217 -- private
19218 -- type B is new C with null record;
19219 -- type C is new B with null record;
19221 and then Etype (Typ) /= Priv_T
19222 and then Etype (Typ) /= Full_T
19223 then
19224 -- Keep separate the management of private type declarations
19226 if Ekind (Typ) = E_Record_Type_With_Private then
19228 -- Handle the following illegal usage:
19229 -- type Private_Type is tagged private;
19230 -- private
19231 -- type Private_Type is new Type_Implementing_Iface;
19233 if Present (Full_View (Typ))
19234 and then Etype (Typ) /= Full_View (Typ)
19235 then
19236 if Is_Interface (Etype (Typ)) then
19237 Append_Unique_Elmt (Etype (Typ), Ifaces);
19238 end if;
19240 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19241 end if;
19243 -- Non-private types
19245 else
19246 if Is_Interface (Etype (Typ)) then
19247 Append_Unique_Elmt (Etype (Typ), Ifaces);
19248 end if;
19250 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19251 end if;
19252 end if;
19254 -- Handle entities in the list of abstract interfaces
19256 if Present (Interfaces (Typ)) then
19257 Iface_Elmt := First_Elmt (Interfaces (Typ));
19258 while Present (Iface_Elmt) loop
19259 Iface := Node (Iface_Elmt);
19261 pragma Assert (Is_Interface (Iface));
19263 if not Contain_Interface (Iface, Ifaces) then
19264 Append_Elmt (Iface, Ifaces);
19265 Collect_Implemented_Interfaces (Iface, Ifaces);
19266 end if;
19268 Next_Elmt (Iface_Elmt);
19269 end loop;
19270 end if;
19271 end Collect_Implemented_Interfaces;
19273 -- Local variables
19275 Full_Indic : Node_Id;
19276 Full_Parent : Entity_Id;
19277 Priv_Parent : Entity_Id;
19279 -- Start of processing for Process_Full_View
19281 begin
19282 -- First some sanity checks that must be done after semantic
19283 -- decoration of the full view and thus cannot be placed with other
19284 -- similar checks in Find_Type_Name
19286 if not Is_Limited_Type (Priv_T)
19287 and then (Is_Limited_Type (Full_T)
19288 or else Is_Limited_Composite (Full_T))
19289 then
19290 if In_Instance then
19291 null;
19292 else
19293 Error_Msg_N
19294 ("completion of nonlimited type cannot be limited", Full_T);
19295 Explain_Limited_Type (Full_T, Full_T);
19296 end if;
19298 elsif Is_Abstract_Type (Full_T)
19299 and then not Is_Abstract_Type (Priv_T)
19300 then
19301 Error_Msg_N
19302 ("completion of nonabstract type cannot be abstract", Full_T);
19304 elsif Is_Tagged_Type (Priv_T)
19305 and then Is_Limited_Type (Priv_T)
19306 and then not Is_Limited_Type (Full_T)
19307 then
19308 -- If pragma CPP_Class was applied to the private declaration
19309 -- propagate the limitedness to the full-view
19311 if Is_CPP_Class (Priv_T) then
19312 Set_Is_Limited_Record (Full_T);
19314 -- GNAT allow its own definition of Limited_Controlled to disobey
19315 -- this rule in order in ease the implementation. This test is safe
19316 -- because Root_Controlled is defined in a child of System that
19317 -- normal programs are not supposed to use.
19319 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19320 Set_Is_Limited_Composite (Full_T);
19321 else
19322 Error_Msg_N
19323 ("completion of limited tagged type must be limited", Full_T);
19324 end if;
19326 elsif Is_Generic_Type (Priv_T) then
19327 Error_Msg_N ("generic type cannot have a completion", Full_T);
19328 end if;
19330 -- Check that ancestor interfaces of private and full views are
19331 -- consistent. We omit this check for synchronized types because
19332 -- they are performed on the corresponding record type when frozen.
19334 if Ada_Version >= Ada_2005
19335 and then Is_Tagged_Type (Priv_T)
19336 and then Is_Tagged_Type (Full_T)
19337 and then not Is_Concurrent_Type (Full_T)
19338 then
19339 declare
19340 Iface : Entity_Id;
19341 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19342 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19344 begin
19345 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19346 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19348 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19349 -- an interface type if and only if the full type is descendant
19350 -- of the interface type (AARM 7.3 (7.3/2)).
19352 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19354 if Present (Iface) then
19355 Error_Msg_NE
19356 ("interface in partial view& not implemented by full type "
19357 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19358 end if;
19360 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19362 if Present (Iface) then
19363 Error_Msg_NE
19364 ("interface & not implemented by partial view "
19365 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19366 end if;
19367 end;
19368 end if;
19370 if Is_Tagged_Type (Priv_T)
19371 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19372 and then Is_Derived_Type (Full_T)
19373 then
19374 Priv_Parent := Etype (Priv_T);
19376 -- The full view of a private extension may have been transformed
19377 -- into an unconstrained derived type declaration and a subtype
19378 -- declaration (see build_derived_record_type for details).
19380 if Nkind (N) = N_Subtype_Declaration then
19381 Full_Indic := Subtype_Indication (N);
19382 Full_Parent := Etype (Base_Type (Full_T));
19383 else
19384 Full_Indic := Subtype_Indication (Type_Definition (N));
19385 Full_Parent := Etype (Full_T);
19386 end if;
19388 -- Check that the parent type of the full type is a descendant of
19389 -- the ancestor subtype given in the private extension. If either
19390 -- entity has an Etype equal to Any_Type then we had some previous
19391 -- error situation [7.3(8)].
19393 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19394 return;
19396 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19397 -- any order. Therefore we don't have to check that its parent must
19398 -- be a descendant of the parent of the private type declaration.
19400 elsif Is_Interface (Priv_Parent)
19401 and then Is_Interface (Full_Parent)
19402 then
19403 null;
19405 -- Ada 2005 (AI-251): If the parent of the private type declaration
19406 -- is an interface there is no need to check that it is an ancestor
19407 -- of the associated full type declaration. The required tests for
19408 -- this case are performed by Build_Derived_Record_Type.
19410 elsif not Is_Interface (Base_Type (Priv_Parent))
19411 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19412 then
19413 Error_Msg_N
19414 ("parent of full type must descend from parent"
19415 & " of private extension", Full_Indic);
19417 -- First check a formal restriction, and then proceed with checking
19418 -- Ada rules. Since the formal restriction is not a serious error, we
19419 -- don't prevent further error detection for this check, hence the
19420 -- ELSE.
19422 else
19423 -- In formal mode, when completing a private extension the type
19424 -- named in the private part must be exactly the same as that
19425 -- named in the visible part.
19427 if Priv_Parent /= Full_Parent then
19428 Error_Msg_Name_1 := Chars (Priv_Parent);
19429 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19430 end if;
19432 -- Check the rules of 7.3(10): if the private extension inherits
19433 -- known discriminants, then the full type must also inherit those
19434 -- discriminants from the same (ancestor) type, and the parent
19435 -- subtype of the full type must be constrained if and only if
19436 -- the ancestor subtype of the private extension is constrained.
19438 if No (Discriminant_Specifications (Parent (Priv_T)))
19439 and then not Has_Unknown_Discriminants (Priv_T)
19440 and then Has_Discriminants (Base_Type (Priv_Parent))
19441 then
19442 declare
19443 Priv_Indic : constant Node_Id :=
19444 Subtype_Indication (Parent (Priv_T));
19446 Priv_Constr : constant Boolean :=
19447 Is_Constrained (Priv_Parent)
19448 or else
19449 Nkind (Priv_Indic) = N_Subtype_Indication
19450 or else
19451 Is_Constrained (Entity (Priv_Indic));
19453 Full_Constr : constant Boolean :=
19454 Is_Constrained (Full_Parent)
19455 or else
19456 Nkind (Full_Indic) = N_Subtype_Indication
19457 or else
19458 Is_Constrained (Entity (Full_Indic));
19460 Priv_Discr : Entity_Id;
19461 Full_Discr : Entity_Id;
19463 begin
19464 Priv_Discr := First_Discriminant (Priv_Parent);
19465 Full_Discr := First_Discriminant (Full_Parent);
19466 while Present (Priv_Discr) and then Present (Full_Discr) loop
19467 if Original_Record_Component (Priv_Discr) =
19468 Original_Record_Component (Full_Discr)
19469 or else
19470 Corresponding_Discriminant (Priv_Discr) =
19471 Corresponding_Discriminant (Full_Discr)
19472 then
19473 null;
19474 else
19475 exit;
19476 end if;
19478 Next_Discriminant (Priv_Discr);
19479 Next_Discriminant (Full_Discr);
19480 end loop;
19482 if Present (Priv_Discr) or else Present (Full_Discr) then
19483 Error_Msg_N
19484 ("full view must inherit discriminants of the parent"
19485 & " type used in the private extension", Full_Indic);
19487 elsif Priv_Constr and then not Full_Constr then
19488 Error_Msg_N
19489 ("parent subtype of full type must be constrained",
19490 Full_Indic);
19492 elsif Full_Constr and then not Priv_Constr then
19493 Error_Msg_N
19494 ("parent subtype of full type must be unconstrained",
19495 Full_Indic);
19496 end if;
19497 end;
19499 -- Check the rules of 7.3(12): if a partial view has neither
19500 -- known or unknown discriminants, then the full type
19501 -- declaration shall define a definite subtype.
19503 elsif not Has_Unknown_Discriminants (Priv_T)
19504 and then not Has_Discriminants (Priv_T)
19505 and then not Is_Constrained (Full_T)
19506 then
19507 Error_Msg_N
19508 ("full view must define a constrained type if partial view"
19509 & " has no discriminants", Full_T);
19510 end if;
19512 -- ??????? Do we implement the following properly ?????
19513 -- If the ancestor subtype of a private extension has constrained
19514 -- discriminants, then the parent subtype of the full view shall
19515 -- impose a statically matching constraint on those discriminants
19516 -- [7.3(13)].
19517 end if;
19519 else
19520 -- For untagged types, verify that a type without discriminants is
19521 -- not completed with an unconstrained type. A separate error message
19522 -- is produced if the full type has defaulted discriminants.
19524 if not Is_Indefinite_Subtype (Priv_T)
19525 and then Is_Indefinite_Subtype (Full_T)
19526 then
19527 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19528 Error_Msg_NE
19529 ("full view of& not compatible with declaration#",
19530 Full_T, Priv_T);
19532 if not Is_Tagged_Type (Full_T) then
19533 Error_Msg_N
19534 ("\one is constrained, the other unconstrained", Full_T);
19535 end if;
19536 end if;
19537 end if;
19539 -- AI-419: verify that the use of "limited" is consistent
19541 declare
19542 Orig_Decl : constant Node_Id := Original_Node (N);
19544 begin
19545 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19546 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19547 and then Nkind
19548 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19549 then
19550 if not Limited_Present (Parent (Priv_T))
19551 and then not Synchronized_Present (Parent (Priv_T))
19552 and then Limited_Present (Type_Definition (Orig_Decl))
19553 then
19554 Error_Msg_N
19555 ("full view of non-limited extension cannot be limited", N);
19557 -- Conversely, if the partial view carries the limited keyword,
19558 -- the full view must as well, even if it may be redundant.
19560 elsif Limited_Present (Parent (Priv_T))
19561 and then not Limited_Present (Type_Definition (Orig_Decl))
19562 then
19563 Error_Msg_N
19564 ("full view of limited extension must be explicitly limited",
19566 end if;
19567 end if;
19568 end;
19570 -- Ada 2005 (AI-443): A synchronized private extension must be
19571 -- completed by a task or protected type.
19573 if Ada_Version >= Ada_2005
19574 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19575 and then Synchronized_Present (Parent (Priv_T))
19576 and then not Is_Concurrent_Type (Full_T)
19577 then
19578 Error_Msg_N ("full view of synchronized extension must " &
19579 "be synchronized type", N);
19580 end if;
19582 -- Ada 2005 AI-363: if the full view has discriminants with
19583 -- defaults, it is illegal to declare constrained access subtypes
19584 -- whose designated type is the current type. This allows objects
19585 -- of the type that are declared in the heap to be unconstrained.
19587 if not Has_Unknown_Discriminants (Priv_T)
19588 and then not Has_Discriminants (Priv_T)
19589 and then Has_Discriminants (Full_T)
19590 and then
19591 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19592 then
19593 Set_Has_Constrained_Partial_View (Full_T);
19594 Set_Has_Constrained_Partial_View (Priv_T);
19595 end if;
19597 -- Create a full declaration for all its subtypes recorded in
19598 -- Private_Dependents and swap them similarly to the base type. These
19599 -- are subtypes that have been define before the full declaration of
19600 -- the private type. We also swap the entry in Private_Dependents list
19601 -- so we can properly restore the private view on exit from the scope.
19603 declare
19604 Priv_Elmt : Elmt_Id;
19605 Priv_Scop : Entity_Id;
19606 Priv : Entity_Id;
19607 Full : Entity_Id;
19609 begin
19610 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19611 while Present (Priv_Elmt) loop
19612 Priv := Node (Priv_Elmt);
19613 Priv_Scop := Scope (Priv);
19615 if Ekind_In (Priv, E_Private_Subtype,
19616 E_Limited_Private_Subtype,
19617 E_Record_Subtype_With_Private)
19618 then
19619 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19620 Set_Is_Itype (Full);
19621 Set_Parent (Full, Parent (Priv));
19622 Set_Associated_Node_For_Itype (Full, N);
19624 -- Now we need to complete the private subtype, but since the
19625 -- base type has already been swapped, we must also swap the
19626 -- subtypes (and thus, reverse the arguments in the call to
19627 -- Complete_Private_Subtype). Also note that we may need to
19628 -- re-establish the scope of the private subtype.
19630 Copy_And_Swap (Priv, Full);
19632 if not In_Open_Scopes (Priv_Scop) then
19633 Push_Scope (Priv_Scop);
19635 else
19636 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19638 Priv_Scop := Empty;
19639 end if;
19641 Complete_Private_Subtype (Full, Priv, Full_T, N);
19643 if Present (Priv_Scop) then
19644 Pop_Scope;
19645 end if;
19647 Replace_Elmt (Priv_Elmt, Full);
19648 end if;
19650 Next_Elmt (Priv_Elmt);
19651 end loop;
19652 end;
19654 -- If the private view was tagged, copy the new primitive operations
19655 -- from the private view to the full view.
19657 if Is_Tagged_Type (Full_T) then
19658 declare
19659 Disp_Typ : Entity_Id;
19660 Full_List : Elist_Id;
19661 Prim : Entity_Id;
19662 Prim_Elmt : Elmt_Id;
19663 Priv_List : Elist_Id;
19665 function Contains
19666 (E : Entity_Id;
19667 L : Elist_Id) return Boolean;
19668 -- Determine whether list L contains element E
19670 --------------
19671 -- Contains --
19672 --------------
19674 function Contains
19675 (E : Entity_Id;
19676 L : Elist_Id) return Boolean
19678 List_Elmt : Elmt_Id;
19680 begin
19681 List_Elmt := First_Elmt (L);
19682 while Present (List_Elmt) loop
19683 if Node (List_Elmt) = E then
19684 return True;
19685 end if;
19687 Next_Elmt (List_Elmt);
19688 end loop;
19690 return False;
19691 end Contains;
19693 -- Start of processing
19695 begin
19696 if Is_Tagged_Type (Priv_T) then
19697 Priv_List := Primitive_Operations (Priv_T);
19698 Prim_Elmt := First_Elmt (Priv_List);
19700 -- In the case of a concurrent type completing a private tagged
19701 -- type, primitives may have been declared in between the two
19702 -- views. These subprograms need to be wrapped the same way
19703 -- entries and protected procedures are handled because they
19704 -- cannot be directly shared by the two views.
19706 if Is_Concurrent_Type (Full_T) then
19707 declare
19708 Conc_Typ : constant Entity_Id :=
19709 Corresponding_Record_Type (Full_T);
19710 Curr_Nod : Node_Id := Parent (Conc_Typ);
19711 Wrap_Spec : Node_Id;
19713 begin
19714 while Present (Prim_Elmt) loop
19715 Prim := Node (Prim_Elmt);
19717 if Comes_From_Source (Prim)
19718 and then not Is_Abstract_Subprogram (Prim)
19719 then
19720 Wrap_Spec :=
19721 Make_Subprogram_Declaration (Sloc (Prim),
19722 Specification =>
19723 Build_Wrapper_Spec
19724 (Subp_Id => Prim,
19725 Obj_Typ => Conc_Typ,
19726 Formals =>
19727 Parameter_Specifications (
19728 Parent (Prim))));
19730 Insert_After (Curr_Nod, Wrap_Spec);
19731 Curr_Nod := Wrap_Spec;
19733 Analyze (Wrap_Spec);
19734 end if;
19736 Next_Elmt (Prim_Elmt);
19737 end loop;
19739 return;
19740 end;
19742 -- For non-concurrent types, transfer explicit primitives, but
19743 -- omit those inherited from the parent of the private view
19744 -- since they will be re-inherited later on.
19746 else
19747 Full_List := Primitive_Operations (Full_T);
19749 while Present (Prim_Elmt) loop
19750 Prim := Node (Prim_Elmt);
19752 if Comes_From_Source (Prim)
19753 and then not Contains (Prim, Full_List)
19754 then
19755 Append_Elmt (Prim, Full_List);
19756 end if;
19758 Next_Elmt (Prim_Elmt);
19759 end loop;
19760 end if;
19762 -- Untagged private view
19764 else
19765 Full_List := Primitive_Operations (Full_T);
19767 -- In this case the partial view is untagged, so here we locate
19768 -- all of the earlier primitives that need to be treated as
19769 -- dispatching (those that appear between the two views). Note
19770 -- that these additional operations must all be new operations
19771 -- (any earlier operations that override inherited operations
19772 -- of the full view will already have been inserted in the
19773 -- primitives list, marked by Check_Operation_From_Private_View
19774 -- as dispatching. Note that implicit "/=" operators are
19775 -- excluded from being added to the primitives list since they
19776 -- shouldn't be treated as dispatching (tagged "/=" is handled
19777 -- specially).
19779 Prim := Next_Entity (Full_T);
19780 while Present (Prim) and then Prim /= Priv_T loop
19781 if Ekind_In (Prim, E_Procedure, E_Function) then
19782 Disp_Typ := Find_Dispatching_Type (Prim);
19784 if Disp_Typ = Full_T
19785 and then (Chars (Prim) /= Name_Op_Ne
19786 or else Comes_From_Source (Prim))
19787 then
19788 Check_Controlling_Formals (Full_T, Prim);
19790 if not Is_Dispatching_Operation (Prim) then
19791 Append_Elmt (Prim, Full_List);
19792 Set_Is_Dispatching_Operation (Prim, True);
19793 Set_DT_Position_Value (Prim, No_Uint);
19794 end if;
19796 elsif Is_Dispatching_Operation (Prim)
19797 and then Disp_Typ /= Full_T
19798 then
19800 -- Verify that it is not otherwise controlled by a
19801 -- formal or a return value of type T.
19803 Check_Controlling_Formals (Disp_Typ, Prim);
19804 end if;
19805 end if;
19807 Next_Entity (Prim);
19808 end loop;
19809 end if;
19811 -- For the tagged case, the two views can share the same primitive
19812 -- operations list and the same class-wide type. Update attributes
19813 -- of the class-wide type which depend on the full declaration.
19815 if Is_Tagged_Type (Priv_T) then
19816 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19817 Set_Class_Wide_Type
19818 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19820 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19821 Set_Has_Protected
19822 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19823 end if;
19824 end;
19825 end if;
19827 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19829 if Known_To_Have_Preelab_Init (Priv_T) then
19831 -- Case where there is a pragma Preelaborable_Initialization. We
19832 -- always allow this in predefined units, which is cheating a bit,
19833 -- but it means we don't have to struggle to meet the requirements in
19834 -- the RM for having Preelaborable Initialization. Otherwise we
19835 -- require that the type meets the RM rules. But we can't check that
19836 -- yet, because of the rule about overriding Initialize, so we simply
19837 -- set a flag that will be checked at freeze time.
19839 if not In_Predefined_Unit (Full_T) then
19840 Set_Must_Have_Preelab_Init (Full_T);
19841 end if;
19842 end if;
19844 -- If pragma CPP_Class was applied to the private type declaration,
19845 -- propagate it now to the full type declaration.
19847 if Is_CPP_Class (Priv_T) then
19848 Set_Is_CPP_Class (Full_T);
19849 Set_Convention (Full_T, Convention_CPP);
19851 -- Check that components of imported CPP types do not have default
19852 -- expressions.
19854 Check_CPP_Type_Has_No_Defaults (Full_T);
19855 end if;
19857 -- If the private view has user specified stream attributes, then so has
19858 -- the full view.
19860 -- Why the test, how could these flags be already set in Full_T ???
19862 if Has_Specified_Stream_Read (Priv_T) then
19863 Set_Has_Specified_Stream_Read (Full_T);
19864 end if;
19866 if Has_Specified_Stream_Write (Priv_T) then
19867 Set_Has_Specified_Stream_Write (Full_T);
19868 end if;
19870 if Has_Specified_Stream_Input (Priv_T) then
19871 Set_Has_Specified_Stream_Input (Full_T);
19872 end if;
19874 if Has_Specified_Stream_Output (Priv_T) then
19875 Set_Has_Specified_Stream_Output (Full_T);
19876 end if;
19878 -- Propagate the attributes related to pragma Default_Initial_Condition
19879 -- from the private to the full view. Note that both flags are mutually
19880 -- exclusive.
19882 if Has_Default_Init_Cond (Priv_T)
19883 or else Has_Inherited_Default_Init_Cond (Priv_T)
19884 then
19885 Propagate_Default_Init_Cond_Attributes
19886 (From_Typ => Priv_T,
19887 To_Typ => Full_T,
19888 Private_To_Full_View => True);
19890 -- In the case where the full view is derived from another private type,
19891 -- the attributes related to pragma Default_Initial_Condition must be
19892 -- propagated from the full to the private view to maintain consistency
19893 -- of views.
19895 -- package Pack is
19896 -- type Parent_Typ is private
19897 -- with Default_Initial_Condition ...;
19898 -- private
19899 -- type Parent_Typ is ...;
19900 -- end Pack;
19902 -- with Pack; use Pack;
19903 -- package Pack_2 is
19904 -- type Deriv_Typ is private; -- must inherit
19905 -- private
19906 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19907 -- end Pack_2;
19909 elsif Has_Default_Init_Cond (Full_T)
19910 or else Has_Inherited_Default_Init_Cond (Full_T)
19911 then
19912 Propagate_Default_Init_Cond_Attributes
19913 (From_Typ => Full_T,
19914 To_Typ => Priv_T,
19915 Private_To_Full_View => True);
19916 end if;
19918 -- Propagate the attributes related to pragma Ghost from the private to
19919 -- the full view.
19921 if Is_Ghost_Entity (Priv_T) then
19922 Set_Is_Ghost_Entity (Full_T);
19924 -- The Ghost policy in effect at the point of declaration and at the
19925 -- point of completion must match (SPARK RM 6.9(15)).
19927 Check_Ghost_Completion (Priv_T, Full_T);
19929 -- In the case where the private view of a tagged type lacks a parent
19930 -- type and is subject to pragma Ghost, ensure that the parent type
19931 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19933 if Is_Derived_Type (Full_T) then
19934 Check_Ghost_Derivation (Full_T);
19935 end if;
19936 end if;
19938 -- Propagate invariants to full type
19940 if Has_Invariants (Priv_T) then
19941 Set_Has_Invariants (Full_T);
19942 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19943 end if;
19945 if Has_Inheritable_Invariants (Priv_T) then
19946 Set_Has_Inheritable_Invariants (Full_T);
19947 end if;
19949 -- Check hidden inheritance of class-wide type invariants
19951 if Ada_Version >= Ada_2012
19952 and then not Has_Inheritable_Invariants (Full_T)
19953 and then In_Private_Part (Current_Scope)
19954 and then Has_Interfaces (Full_T)
19955 then
19956 declare
19957 Ifaces : Elist_Id;
19958 AI : Elmt_Id;
19960 begin
19961 Collect_Interfaces (Full_T, Ifaces, Exclude_Parents => True);
19963 AI := First_Elmt (Ifaces);
19964 while Present (AI) loop
19965 if Has_Inheritable_Invariants (Node (AI)) then
19966 Error_Msg_N
19967 ("hidden inheritance of class-wide type invariants " &
19968 "not allowed", N);
19969 exit;
19970 end if;
19972 Next_Elmt (AI);
19973 end loop;
19974 end;
19975 end if;
19977 -- Propagate predicates to full type, and predicate function if already
19978 -- defined. It is not clear that this can actually happen? the partial
19979 -- view cannot be frozen yet, and the predicate function has not been
19980 -- built. Still it is a cheap check and seems safer to make it.
19982 if Has_Predicates (Priv_T) then
19983 if Present (Predicate_Function (Priv_T)) then
19984 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19985 end if;
19987 Set_Has_Predicates (Full_T);
19988 end if;
19989 end Process_Full_View;
19991 -----------------------------------
19992 -- Process_Incomplete_Dependents --
19993 -----------------------------------
19995 procedure Process_Incomplete_Dependents
19996 (N : Node_Id;
19997 Full_T : Entity_Id;
19998 Inc_T : Entity_Id)
20000 Inc_Elmt : Elmt_Id;
20001 Priv_Dep : Entity_Id;
20002 New_Subt : Entity_Id;
20004 Disc_Constraint : Elist_Id;
20006 begin
20007 if No (Private_Dependents (Inc_T)) then
20008 return;
20009 end if;
20011 -- Itypes that may be generated by the completion of an incomplete
20012 -- subtype are not used by the back-end and not attached to the tree.
20013 -- They are created only for constraint-checking purposes.
20015 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20016 while Present (Inc_Elmt) loop
20017 Priv_Dep := Node (Inc_Elmt);
20019 if Ekind (Priv_Dep) = E_Subprogram_Type then
20021 -- An Access_To_Subprogram type may have a return type or a
20022 -- parameter type that is incomplete. Replace with the full view.
20024 if Etype (Priv_Dep) = Inc_T then
20025 Set_Etype (Priv_Dep, Full_T);
20026 end if;
20028 declare
20029 Formal : Entity_Id;
20031 begin
20032 Formal := First_Formal (Priv_Dep);
20033 while Present (Formal) loop
20034 if Etype (Formal) = Inc_T then
20035 Set_Etype (Formal, Full_T);
20036 end if;
20038 Next_Formal (Formal);
20039 end loop;
20040 end;
20042 elsif Is_Overloadable (Priv_Dep) then
20044 -- If a subprogram in the incomplete dependents list is primitive
20045 -- for a tagged full type then mark it as a dispatching operation,
20046 -- check whether it overrides an inherited subprogram, and check
20047 -- restrictions on its controlling formals. Note that a protected
20048 -- operation is never dispatching: only its wrapper operation
20049 -- (which has convention Ada) is.
20051 if Is_Tagged_Type (Full_T)
20052 and then Is_Primitive (Priv_Dep)
20053 and then Convention (Priv_Dep) /= Convention_Protected
20054 then
20055 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20056 Set_Is_Dispatching_Operation (Priv_Dep);
20057 Check_Controlling_Formals (Full_T, Priv_Dep);
20058 end if;
20060 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20062 -- Can happen during processing of a body before the completion
20063 -- of a TA type. Ignore, because spec is also on dependent list.
20065 return;
20067 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20068 -- corresponding subtype of the full view.
20070 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
20071 Set_Subtype_Indication
20072 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20073 Set_Etype (Priv_Dep, Full_T);
20074 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20075 Set_Analyzed (Parent (Priv_Dep), False);
20077 -- Reanalyze the declaration, suppressing the call to
20078 -- Enter_Name to avoid duplicate names.
20080 Analyze_Subtype_Declaration
20081 (N => Parent (Priv_Dep),
20082 Skip => True);
20084 -- Dependent is a subtype
20086 else
20087 -- We build a new subtype indication using the full view of the
20088 -- incomplete parent. The discriminant constraints have been
20089 -- elaborated already at the point of the subtype declaration.
20091 New_Subt := Create_Itype (E_Void, N);
20093 if Has_Discriminants (Full_T) then
20094 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20095 else
20096 Disc_Constraint := No_Elist;
20097 end if;
20099 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20100 Set_Full_View (Priv_Dep, New_Subt);
20101 end if;
20103 Next_Elmt (Inc_Elmt);
20104 end loop;
20105 end Process_Incomplete_Dependents;
20107 --------------------------------
20108 -- Process_Range_Expr_In_Decl --
20109 --------------------------------
20111 procedure Process_Range_Expr_In_Decl
20112 (R : Node_Id;
20113 T : Entity_Id;
20114 Subtyp : Entity_Id := Empty;
20115 Check_List : List_Id := Empty_List;
20116 R_Check_Off : Boolean := False;
20117 In_Iter_Schm : Boolean := False)
20119 Lo, Hi : Node_Id;
20120 R_Checks : Check_Result;
20121 Insert_Node : Node_Id;
20122 Def_Id : Entity_Id;
20124 begin
20125 Analyze_And_Resolve (R, Base_Type (T));
20127 if Nkind (R) = N_Range then
20129 -- In SPARK, all ranges should be static, with the exception of the
20130 -- discrete type definition of a loop parameter specification.
20132 if not In_Iter_Schm
20133 and then not Is_OK_Static_Range (R)
20134 then
20135 Check_SPARK_05_Restriction ("range should be static", R);
20136 end if;
20138 Lo := Low_Bound (R);
20139 Hi := High_Bound (R);
20141 -- Validity checks on the range of a quantified expression are
20142 -- delayed until the construct is transformed into a loop.
20144 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20145 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20146 then
20147 null;
20149 -- We need to ensure validity of the bounds here, because if we
20150 -- go ahead and do the expansion, then the expanded code will get
20151 -- analyzed with range checks suppressed and we miss the check.
20153 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20154 -- the temporaries generated by routine Remove_Side_Effects by means
20155 -- of validity checks must use the same names. When a range appears
20156 -- in the parent of a generic, the range is processed with checks
20157 -- disabled as part of the generic context and with checks enabled
20158 -- for code generation purposes. This leads to link issues as the
20159 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20160 -- template sees the temporaries generated by Remove_Side_Effects.
20162 else
20163 Validity_Check_Range (R, Subtyp);
20164 end if;
20166 -- If there were errors in the declaration, try and patch up some
20167 -- common mistakes in the bounds. The cases handled are literals
20168 -- which are Integer where the expected type is Real and vice versa.
20169 -- These corrections allow the compilation process to proceed further
20170 -- along since some basic assumptions of the format of the bounds
20171 -- are guaranteed.
20173 if Etype (R) = Any_Type then
20174 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20175 Rewrite (Lo,
20176 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20178 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20179 Rewrite (Hi,
20180 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20182 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20183 Rewrite (Lo,
20184 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20186 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20187 Rewrite (Hi,
20188 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20189 end if;
20191 Set_Etype (Lo, T);
20192 Set_Etype (Hi, T);
20193 end if;
20195 -- If the bounds of the range have been mistakenly given as string
20196 -- literals (perhaps in place of character literals), then an error
20197 -- has already been reported, but we rewrite the string literal as a
20198 -- bound of the range's type to avoid blowups in later processing
20199 -- that looks at static values.
20201 if Nkind (Lo) = N_String_Literal then
20202 Rewrite (Lo,
20203 Make_Attribute_Reference (Sloc (Lo),
20204 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20205 Attribute_Name => Name_First));
20206 Analyze_And_Resolve (Lo);
20207 end if;
20209 if Nkind (Hi) = N_String_Literal then
20210 Rewrite (Hi,
20211 Make_Attribute_Reference (Sloc (Hi),
20212 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20213 Attribute_Name => Name_First));
20214 Analyze_And_Resolve (Hi);
20215 end if;
20217 -- If bounds aren't scalar at this point then exit, avoiding
20218 -- problems with further processing of the range in this procedure.
20220 if not Is_Scalar_Type (Etype (Lo)) then
20221 return;
20222 end if;
20224 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20225 -- then range of the base type. Here we check whether the bounds
20226 -- are in the range of the subtype itself. Note that if the bounds
20227 -- represent the null range the Constraint_Error exception should
20228 -- not be raised.
20230 -- ??? The following code should be cleaned up as follows
20232 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20233 -- is done in the call to Range_Check (R, T); below
20235 -- 2. The use of R_Check_Off should be investigated and possibly
20236 -- removed, this would clean up things a bit.
20238 if Is_Null_Range (Lo, Hi) then
20239 null;
20241 else
20242 -- Capture values of bounds and generate temporaries for them
20243 -- if needed, before applying checks, since checks may cause
20244 -- duplication of the expression without forcing evaluation.
20246 -- The forced evaluation removes side effects from expressions,
20247 -- which should occur also in GNATprove mode. Otherwise, we end up
20248 -- with unexpected insertions of actions at places where this is
20249 -- not supposed to occur, e.g. on default parameters of a call.
20251 if Expander_Active or GNATprove_Mode then
20253 -- Call Force_Evaluation to create declarations as needed to
20254 -- deal with side effects, and also create typ_FIRST/LAST
20255 -- entities for bounds if we have a subtype name.
20257 -- Note: we do this transformation even if expansion is not
20258 -- active if we are in GNATprove_Mode since the transformation
20259 -- is in general required to ensure that the resulting tree has
20260 -- proper Ada semantics.
20262 Force_Evaluation
20263 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20264 Force_Evaluation
20265 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
20266 end if;
20268 -- We use a flag here instead of suppressing checks on the type
20269 -- because the type we check against isn't necessarily the place
20270 -- where we put the check.
20272 if not R_Check_Off then
20273 R_Checks := Get_Range_Checks (R, T);
20275 -- Look up tree to find an appropriate insertion point. We
20276 -- can't just use insert_actions because later processing
20277 -- depends on the insertion node. Prior to Ada 2012 the
20278 -- insertion point could only be a declaration or a loop, but
20279 -- quantified expressions can appear within any context in an
20280 -- expression, and the insertion point can be any statement,
20281 -- pragma, or declaration.
20283 Insert_Node := Parent (R);
20284 while Present (Insert_Node) loop
20285 exit when
20286 Nkind (Insert_Node) in N_Declaration
20287 and then
20288 not Nkind_In
20289 (Insert_Node, N_Component_Declaration,
20290 N_Loop_Parameter_Specification,
20291 N_Function_Specification,
20292 N_Procedure_Specification);
20294 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20295 or else Nkind (Insert_Node) in
20296 N_Statement_Other_Than_Procedure_Call
20297 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20298 N_Pragma);
20300 Insert_Node := Parent (Insert_Node);
20301 end loop;
20303 -- Why would Type_Decl not be present??? Without this test,
20304 -- short regression tests fail.
20306 if Present (Insert_Node) then
20308 -- Case of loop statement. Verify that the range is part
20309 -- of the subtype indication of the iteration scheme.
20311 if Nkind (Insert_Node) = N_Loop_Statement then
20312 declare
20313 Indic : Node_Id;
20315 begin
20316 Indic := Parent (R);
20317 while Present (Indic)
20318 and then Nkind (Indic) /= N_Subtype_Indication
20319 loop
20320 Indic := Parent (Indic);
20321 end loop;
20323 if Present (Indic) then
20324 Def_Id := Etype (Subtype_Mark (Indic));
20326 Insert_Range_Checks
20327 (R_Checks,
20328 Insert_Node,
20329 Def_Id,
20330 Sloc (Insert_Node),
20332 Do_Before => True);
20333 end if;
20334 end;
20336 -- Insertion before a declaration. If the declaration
20337 -- includes discriminants, the list of applicable checks
20338 -- is given by the caller.
20340 elsif Nkind (Insert_Node) in N_Declaration then
20341 Def_Id := Defining_Identifier (Insert_Node);
20343 if (Ekind (Def_Id) = E_Record_Type
20344 and then Depends_On_Discriminant (R))
20345 or else
20346 (Ekind (Def_Id) = E_Protected_Type
20347 and then Has_Discriminants (Def_Id))
20348 then
20349 Append_Range_Checks
20350 (R_Checks,
20351 Check_List, Def_Id, Sloc (Insert_Node), R);
20353 else
20354 Insert_Range_Checks
20355 (R_Checks,
20356 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20358 end if;
20360 -- Insertion before a statement. Range appears in the
20361 -- context of a quantified expression. Insertion will
20362 -- take place when expression is expanded.
20364 else
20365 null;
20366 end if;
20367 end if;
20368 end if;
20369 end if;
20371 -- Case of other than an explicit N_Range node
20373 -- The forced evaluation removes side effects from expressions, which
20374 -- should occur also in GNATprove mode. Otherwise, we end up with
20375 -- unexpected insertions of actions at places where this is not
20376 -- supposed to occur, e.g. on default parameters of a call.
20378 elsif Expander_Active or GNATprove_Mode then
20379 Get_Index_Bounds (R, Lo, Hi);
20380 Force_Evaluation (Lo);
20381 Force_Evaluation (Hi);
20382 end if;
20383 end Process_Range_Expr_In_Decl;
20385 --------------------------------------
20386 -- Process_Real_Range_Specification --
20387 --------------------------------------
20389 procedure Process_Real_Range_Specification (Def : Node_Id) is
20390 Spec : constant Node_Id := Real_Range_Specification (Def);
20391 Lo : Node_Id;
20392 Hi : Node_Id;
20393 Err : Boolean := False;
20395 procedure Analyze_Bound (N : Node_Id);
20396 -- Analyze and check one bound
20398 -------------------
20399 -- Analyze_Bound --
20400 -------------------
20402 procedure Analyze_Bound (N : Node_Id) is
20403 begin
20404 Analyze_And_Resolve (N, Any_Real);
20406 if not Is_OK_Static_Expression (N) then
20407 Flag_Non_Static_Expr
20408 ("bound in real type definition is not static!", N);
20409 Err := True;
20410 end if;
20411 end Analyze_Bound;
20413 -- Start of processing for Process_Real_Range_Specification
20415 begin
20416 if Present (Spec) then
20417 Lo := Low_Bound (Spec);
20418 Hi := High_Bound (Spec);
20419 Analyze_Bound (Lo);
20420 Analyze_Bound (Hi);
20422 -- If error, clear away junk range specification
20424 if Err then
20425 Set_Real_Range_Specification (Def, Empty);
20426 end if;
20427 end if;
20428 end Process_Real_Range_Specification;
20430 ---------------------
20431 -- Process_Subtype --
20432 ---------------------
20434 function Process_Subtype
20435 (S : Node_Id;
20436 Related_Nod : Node_Id;
20437 Related_Id : Entity_Id := Empty;
20438 Suffix : Character := ' ') return Entity_Id
20440 P : Node_Id;
20441 Def_Id : Entity_Id;
20442 Error_Node : Node_Id;
20443 Full_View_Id : Entity_Id;
20444 Subtype_Mark_Id : Entity_Id;
20446 May_Have_Null_Exclusion : Boolean;
20448 procedure Check_Incomplete (T : Entity_Id);
20449 -- Called to verify that an incomplete type is not used prematurely
20451 ----------------------
20452 -- Check_Incomplete --
20453 ----------------------
20455 procedure Check_Incomplete (T : Entity_Id) is
20456 begin
20457 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20459 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20460 and then
20461 not (Ada_Version >= Ada_2005
20462 and then
20463 (Nkind (Parent (T)) = N_Subtype_Declaration
20464 or else (Nkind (Parent (T)) = N_Subtype_Indication
20465 and then Nkind (Parent (Parent (T))) =
20466 N_Subtype_Declaration)))
20467 then
20468 Error_Msg_N ("invalid use of type before its full declaration", T);
20469 end if;
20470 end Check_Incomplete;
20472 -- Start of processing for Process_Subtype
20474 begin
20475 -- Case of no constraints present
20477 if Nkind (S) /= N_Subtype_Indication then
20478 Find_Type (S);
20479 Check_Incomplete (S);
20480 P := Parent (S);
20482 -- Ada 2005 (AI-231): Static check
20484 if Ada_Version >= Ada_2005
20485 and then Present (P)
20486 and then Null_Exclusion_Present (P)
20487 and then Nkind (P) /= N_Access_To_Object_Definition
20488 and then not Is_Access_Type (Entity (S))
20489 then
20490 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20491 end if;
20493 -- The following is ugly, can't we have a range or even a flag???
20495 May_Have_Null_Exclusion :=
20496 Nkind_In (P, N_Access_Definition,
20497 N_Access_Function_Definition,
20498 N_Access_Procedure_Definition,
20499 N_Access_To_Object_Definition,
20500 N_Allocator,
20501 N_Component_Definition)
20502 or else
20503 Nkind_In (P, N_Derived_Type_Definition,
20504 N_Discriminant_Specification,
20505 N_Formal_Object_Declaration,
20506 N_Object_Declaration,
20507 N_Object_Renaming_Declaration,
20508 N_Parameter_Specification,
20509 N_Subtype_Declaration);
20511 -- Create an Itype that is a duplicate of Entity (S) but with the
20512 -- null-exclusion attribute.
20514 if May_Have_Null_Exclusion
20515 and then Is_Access_Type (Entity (S))
20516 and then Null_Exclusion_Present (P)
20518 -- No need to check the case of an access to object definition.
20519 -- It is correct to define double not-null pointers.
20521 -- Example:
20522 -- type Not_Null_Int_Ptr is not null access Integer;
20523 -- type Acc is not null access Not_Null_Int_Ptr;
20525 and then Nkind (P) /= N_Access_To_Object_Definition
20526 then
20527 if Can_Never_Be_Null (Entity (S)) then
20528 case Nkind (Related_Nod) is
20529 when N_Full_Type_Declaration =>
20530 if Nkind (Type_Definition (Related_Nod))
20531 in N_Array_Type_Definition
20532 then
20533 Error_Node :=
20534 Subtype_Indication
20535 (Component_Definition
20536 (Type_Definition (Related_Nod)));
20537 else
20538 Error_Node :=
20539 Subtype_Indication (Type_Definition (Related_Nod));
20540 end if;
20542 when N_Subtype_Declaration =>
20543 Error_Node := Subtype_Indication (Related_Nod);
20545 when N_Object_Declaration =>
20546 Error_Node := Object_Definition (Related_Nod);
20548 when N_Component_Declaration =>
20549 Error_Node :=
20550 Subtype_Indication (Component_Definition (Related_Nod));
20552 when N_Allocator =>
20553 Error_Node := Expression (Related_Nod);
20555 when others =>
20556 pragma Assert (False);
20557 Error_Node := Related_Nod;
20558 end case;
20560 Error_Msg_NE
20561 ("`NOT NULL` not allowed (& already excludes null)",
20562 Error_Node,
20563 Entity (S));
20564 end if;
20566 Set_Etype (S,
20567 Create_Null_Excluding_Itype
20568 (T => Entity (S),
20569 Related_Nod => P));
20570 Set_Entity (S, Etype (S));
20571 end if;
20573 return Entity (S);
20575 -- Case of constraint present, so that we have an N_Subtype_Indication
20576 -- node (this node is created only if constraints are present).
20578 else
20579 Find_Type (Subtype_Mark (S));
20581 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20582 and then not
20583 (Nkind (Parent (S)) = N_Subtype_Declaration
20584 and then Is_Itype (Defining_Identifier (Parent (S))))
20585 then
20586 Check_Incomplete (Subtype_Mark (S));
20587 end if;
20589 P := Parent (S);
20590 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20592 -- Explicit subtype declaration case
20594 if Nkind (P) = N_Subtype_Declaration then
20595 Def_Id := Defining_Identifier (P);
20597 -- Explicit derived type definition case
20599 elsif Nkind (P) = N_Derived_Type_Definition then
20600 Def_Id := Defining_Identifier (Parent (P));
20602 -- Implicit case, the Def_Id must be created as an implicit type.
20603 -- The one exception arises in the case of concurrent types, array
20604 -- and access types, where other subsidiary implicit types may be
20605 -- created and must appear before the main implicit type. In these
20606 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20607 -- has not yet been called to create Def_Id.
20609 else
20610 if Is_Array_Type (Subtype_Mark_Id)
20611 or else Is_Concurrent_Type (Subtype_Mark_Id)
20612 or else Is_Access_Type (Subtype_Mark_Id)
20613 then
20614 Def_Id := Empty;
20616 -- For the other cases, we create a new unattached Itype,
20617 -- and set the indication to ensure it gets attached later.
20619 else
20620 Def_Id :=
20621 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20622 end if;
20623 end if;
20625 -- If the kind of constraint is invalid for this kind of type,
20626 -- then give an error, and then pretend no constraint was given.
20628 if not Is_Valid_Constraint_Kind
20629 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20630 then
20631 Error_Msg_N
20632 ("incorrect constraint for this kind of type", Constraint (S));
20634 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20636 -- Set Ekind of orphan itype, to prevent cascaded errors
20638 if Present (Def_Id) then
20639 Set_Ekind (Def_Id, Ekind (Any_Type));
20640 end if;
20642 -- Make recursive call, having got rid of the bogus constraint
20644 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20645 end if;
20647 -- Remaining processing depends on type. Select on Base_Type kind to
20648 -- ensure getting to the concrete type kind in the case of a private
20649 -- subtype (needed when only doing semantic analysis).
20651 case Ekind (Base_Type (Subtype_Mark_Id)) is
20652 when Access_Kind =>
20654 -- If this is a constraint on a class-wide type, discard it.
20655 -- There is currently no way to express a partial discriminant
20656 -- constraint on a type with unknown discriminants. This is
20657 -- a pathology that the ACATS wisely decides not to test.
20659 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20660 if Comes_From_Source (S) then
20661 Error_Msg_N
20662 ("constraint on class-wide type ignored??",
20663 Constraint (S));
20664 end if;
20666 if Nkind (P) = N_Subtype_Declaration then
20667 Set_Subtype_Indication (P,
20668 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20669 end if;
20671 return Subtype_Mark_Id;
20672 end if;
20674 Constrain_Access (Def_Id, S, Related_Nod);
20676 if Expander_Active
20677 and then Is_Itype (Designated_Type (Def_Id))
20678 and then Nkind (Related_Nod) = N_Subtype_Declaration
20679 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20680 then
20681 Build_Itype_Reference
20682 (Designated_Type (Def_Id), Related_Nod);
20683 end if;
20685 when Array_Kind =>
20686 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20688 when Decimal_Fixed_Point_Kind =>
20689 Constrain_Decimal (Def_Id, S);
20691 when Enumeration_Kind =>
20692 Constrain_Enumeration (Def_Id, S);
20693 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20695 when Ordinary_Fixed_Point_Kind =>
20696 Constrain_Ordinary_Fixed (Def_Id, S);
20698 when Float_Kind =>
20699 Constrain_Float (Def_Id, S);
20701 when Integer_Kind =>
20702 Constrain_Integer (Def_Id, S);
20703 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20705 when E_Record_Type |
20706 E_Record_Subtype |
20707 Class_Wide_Kind |
20708 E_Incomplete_Type =>
20709 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20711 if Ekind (Def_Id) = E_Incomplete_Type then
20712 Set_Private_Dependents (Def_Id, New_Elmt_List);
20713 end if;
20715 when Private_Kind =>
20716 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20717 Set_Private_Dependents (Def_Id, New_Elmt_List);
20719 -- In case of an invalid constraint prevent further processing
20720 -- since the type constructed is missing expected fields.
20722 if Etype (Def_Id) = Any_Type then
20723 return Def_Id;
20724 end if;
20726 -- If the full view is that of a task with discriminants,
20727 -- we must constrain both the concurrent type and its
20728 -- corresponding record type. Otherwise we will just propagate
20729 -- the constraint to the full view, if available.
20731 if Present (Full_View (Subtype_Mark_Id))
20732 and then Has_Discriminants (Subtype_Mark_Id)
20733 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20734 then
20735 Full_View_Id :=
20736 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20738 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20739 Constrain_Concurrent (Full_View_Id, S,
20740 Related_Nod, Related_Id, Suffix);
20741 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20742 Set_Full_View (Def_Id, Full_View_Id);
20744 -- Introduce an explicit reference to the private subtype,
20745 -- to prevent scope anomalies in gigi if first use appears
20746 -- in a nested context, e.g. a later function body.
20747 -- Should this be generated in other contexts than a full
20748 -- type declaration?
20750 if Is_Itype (Def_Id)
20751 and then
20752 Nkind (Parent (P)) = N_Full_Type_Declaration
20753 then
20754 Build_Itype_Reference (Def_Id, Parent (P));
20755 end if;
20757 else
20758 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20759 end if;
20761 when Concurrent_Kind =>
20762 Constrain_Concurrent (Def_Id, S,
20763 Related_Nod, Related_Id, Suffix);
20765 when others =>
20766 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20767 end case;
20769 -- Size and Convention are always inherited from the base type
20771 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20772 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20774 return Def_Id;
20775 end if;
20776 end Process_Subtype;
20778 --------------------------------------------
20779 -- Propagate_Default_Init_Cond_Attributes --
20780 --------------------------------------------
20782 procedure Propagate_Default_Init_Cond_Attributes
20783 (From_Typ : Entity_Id;
20784 To_Typ : Entity_Id;
20785 Parent_To_Derivation : Boolean := False;
20786 Private_To_Full_View : Boolean := False)
20788 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20789 -- Remove the default initial procedure (if any) from the rep chain of
20790 -- type Typ.
20792 ----------------------------------------
20793 -- Remove_Default_Init_Cond_Procedure --
20794 ----------------------------------------
20796 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20797 Found : Boolean := False;
20798 Prev : Entity_Id;
20799 Subp : Entity_Id;
20801 begin
20802 Prev := Typ;
20803 Subp := Subprograms_For_Type (Typ);
20804 while Present (Subp) loop
20805 if Is_Default_Init_Cond_Procedure (Subp) then
20806 Found := True;
20807 exit;
20808 end if;
20810 Prev := Subp;
20811 Subp := Subprograms_For_Type (Subp);
20812 end loop;
20814 if Found then
20815 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20816 Set_Subprograms_For_Type (Subp, Empty);
20817 end if;
20818 end Remove_Default_Init_Cond_Procedure;
20820 -- Local variables
20822 Inherit_Procedure : Boolean := False;
20824 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20826 begin
20827 if Has_Default_Init_Cond (From_Typ) then
20829 -- A derived type inherits the attributes from its parent type
20831 if Parent_To_Derivation then
20832 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20834 -- A full view shares the attributes with its private view
20836 else
20837 Set_Has_Default_Init_Cond (To_Typ);
20838 end if;
20840 Inherit_Procedure := True;
20842 -- Due to the order of expansion, a derived private type is processed
20843 -- by two routines which both attempt to set the attributes related
20844 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20845 -- Process_Full_View.
20847 -- package Pack is
20848 -- type Parent_Typ is private
20849 -- with Default_Initial_Condition ...;
20850 -- private
20851 -- type Parent_Typ is ...;
20852 -- end Pack;
20854 -- with Pack; use Pack;
20855 -- package Pack_2 is
20856 -- type Deriv_Typ is private
20857 -- with Default_Initial_Condition ...;
20858 -- private
20859 -- type Deriv_Typ is new Parent_Typ;
20860 -- end Pack_2;
20862 -- When Build_Derived_Type operates, it sets the attributes on the
20863 -- full view without taking into account that the private view may
20864 -- define its own default initial condition procedure. This becomes
20865 -- apparent in Process_Full_View which must undo some of the work by
20866 -- Build_Derived_Type and propagate the attributes from the private
20867 -- to the full view.
20869 if Private_To_Full_View then
20870 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20871 Remove_Default_Init_Cond_Procedure (To_Typ);
20872 end if;
20874 -- A type must inherit the default initial condition procedure from a
20875 -- parent type when the parent itself is inheriting the procedure or
20876 -- when it is defining one. This circuitry is also used when dealing
20877 -- with the private / full view of a type.
20879 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20880 or (Parent_To_Derivation
20881 and Present (Get_Pragma
20882 (From_Typ, Pragma_Default_Initial_Condition)))
20883 then
20884 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20885 Inherit_Procedure := True;
20886 end if;
20888 if Inherit_Procedure
20889 and then No (Default_Init_Cond_Procedure (To_Typ))
20890 then
20891 Set_Default_Init_Cond_Procedure
20892 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20893 end if;
20894 end Propagate_Default_Init_Cond_Attributes;
20896 -----------------------------
20897 -- Record_Type_Declaration --
20898 -----------------------------
20900 procedure Record_Type_Declaration
20901 (T : Entity_Id;
20902 N : Node_Id;
20903 Prev : Entity_Id)
20905 Def : constant Node_Id := Type_Definition (N);
20906 Is_Tagged : Boolean;
20907 Tag_Comp : Entity_Id;
20909 begin
20910 -- These flags must be initialized before calling Process_Discriminants
20911 -- because this routine makes use of them.
20913 Set_Ekind (T, E_Record_Type);
20914 Set_Etype (T, T);
20915 Init_Size_Align (T);
20916 Set_Interfaces (T, No_Elist);
20917 Set_Stored_Constraint (T, No_Elist);
20918 Set_Default_SSO (T);
20920 -- Normal case
20922 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20923 if Limited_Present (Def) then
20924 Check_SPARK_05_Restriction ("limited is not allowed", N);
20925 end if;
20927 if Abstract_Present (Def) then
20928 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20929 end if;
20931 -- The flag Is_Tagged_Type might have already been set by
20932 -- Find_Type_Name if it detected an error for declaration T. This
20933 -- arises in the case of private tagged types where the full view
20934 -- omits the word tagged.
20936 Is_Tagged :=
20937 Tagged_Present (Def)
20938 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20940 Set_Is_Limited_Record (T, Limited_Present (Def));
20942 if Is_Tagged then
20943 Set_Is_Tagged_Type (T, True);
20944 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20945 end if;
20947 -- Type is abstract if full declaration carries keyword, or if
20948 -- previous partial view did.
20950 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20951 or else Abstract_Present (Def));
20953 else
20954 Check_SPARK_05_Restriction ("interface is not allowed", N);
20956 Is_Tagged := True;
20957 Analyze_Interface_Declaration (T, Def);
20959 if Present (Discriminant_Specifications (N)) then
20960 Error_Msg_N
20961 ("interface types cannot have discriminants",
20962 Defining_Identifier
20963 (First (Discriminant_Specifications (N))));
20964 end if;
20965 end if;
20967 -- First pass: if there are self-referential access components,
20968 -- create the required anonymous access type declarations, and if
20969 -- need be an incomplete type declaration for T itself.
20971 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20973 if Ada_Version >= Ada_2005
20974 and then Present (Interface_List (Def))
20975 then
20976 Check_Interfaces (N, Def);
20978 declare
20979 Ifaces_List : Elist_Id;
20981 begin
20982 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20983 -- already in the parents.
20985 Collect_Interfaces
20986 (T => T,
20987 Ifaces_List => Ifaces_List,
20988 Exclude_Parents => True);
20990 Set_Interfaces (T, Ifaces_List);
20991 end;
20992 end if;
20994 -- Records constitute a scope for the component declarations within.
20995 -- The scope is created prior to the processing of these declarations.
20996 -- Discriminants are processed first, so that they are visible when
20997 -- processing the other components. The Ekind of the record type itself
20998 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21000 -- Enter record scope
21002 Push_Scope (T);
21004 -- If an incomplete or private type declaration was already given for
21005 -- the type, then this scope already exists, and the discriminants have
21006 -- been declared within. We must verify that the full declaration
21007 -- matches the incomplete one.
21009 Check_Or_Process_Discriminants (N, T, Prev);
21011 Set_Is_Constrained (T, not Has_Discriminants (T));
21012 Set_Has_Delayed_Freeze (T, True);
21014 -- For tagged types add a manually analyzed component corresponding
21015 -- to the component _tag, the corresponding piece of tree will be
21016 -- expanded as part of the freezing actions if it is not a CPP_Class.
21018 if Is_Tagged then
21020 -- Do not add the tag unless we are in expansion mode
21022 if Expander_Active then
21023 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21024 Enter_Name (Tag_Comp);
21026 Set_Ekind (Tag_Comp, E_Component);
21027 Set_Is_Tag (Tag_Comp);
21028 Set_Is_Aliased (Tag_Comp);
21029 Set_Etype (Tag_Comp, RTE (RE_Tag));
21030 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21031 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21032 Init_Component_Location (Tag_Comp);
21034 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21035 -- implemented interfaces.
21037 if Has_Interfaces (T) then
21038 Add_Interface_Tag_Components (N, T);
21039 end if;
21040 end if;
21042 Make_Class_Wide_Type (T);
21043 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21044 end if;
21046 -- We must suppress range checks when processing record components in
21047 -- the presence of discriminants, since we don't want spurious checks to
21048 -- be generated during their analysis, but Suppress_Range_Checks flags
21049 -- must be reset the after processing the record definition.
21051 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21052 -- couldn't we just use the normal range check suppression method here.
21053 -- That would seem cleaner ???
21055 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21056 Set_Kill_Range_Checks (T, True);
21057 Record_Type_Definition (Def, Prev);
21058 Set_Kill_Range_Checks (T, False);
21059 else
21060 Record_Type_Definition (Def, Prev);
21061 end if;
21063 -- Exit from record scope
21065 End_Scope;
21067 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21068 -- the implemented interfaces and associate them an aliased entity.
21070 if Is_Tagged
21071 and then not Is_Empty_List (Interface_List (Def))
21072 then
21073 Derive_Progenitor_Subprograms (T, T);
21074 end if;
21076 Check_Function_Writable_Actuals (N);
21077 end Record_Type_Declaration;
21079 ----------------------------
21080 -- Record_Type_Definition --
21081 ----------------------------
21083 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21084 Component : Entity_Id;
21085 Ctrl_Components : Boolean := False;
21086 Final_Storage_Only : Boolean;
21087 T : Entity_Id;
21089 begin
21090 if Ekind (Prev_T) = E_Incomplete_Type then
21091 T := Full_View (Prev_T);
21092 else
21093 T := Prev_T;
21094 end if;
21096 -- In SPARK, tagged types and type extensions may only be declared in
21097 -- the specification of library unit packages.
21099 if Present (Def) and then Is_Tagged_Type (T) then
21100 declare
21101 Typ : Node_Id;
21102 Ctxt : Node_Id;
21104 begin
21105 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21106 Typ := Parent (Def);
21107 else
21108 pragma Assert
21109 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21110 Typ := Parent (Parent (Def));
21111 end if;
21113 Ctxt := Parent (Typ);
21115 if Nkind (Ctxt) = N_Package_Body
21116 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21117 then
21118 Check_SPARK_05_Restriction
21119 ("type should be defined in package specification", Typ);
21121 elsif Nkind (Ctxt) /= N_Package_Specification
21122 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21123 then
21124 Check_SPARK_05_Restriction
21125 ("type should be defined in library unit package", Typ);
21126 end if;
21127 end;
21128 end if;
21130 Final_Storage_Only := not Is_Controlled (T);
21132 -- Ada 2005: Check whether an explicit Limited is present in a derived
21133 -- type declaration.
21135 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21136 and then Limited_Present (Parent (Def))
21137 then
21138 Set_Is_Limited_Record (T);
21139 end if;
21141 -- If the component list of a record type is defined by the reserved
21142 -- word null and there is no discriminant part, then the record type has
21143 -- no components and all records of the type are null records (RM 3.7)
21144 -- This procedure is also called to process the extension part of a
21145 -- record extension, in which case the current scope may have inherited
21146 -- components.
21148 if No (Def)
21149 or else No (Component_List (Def))
21150 or else Null_Present (Component_List (Def))
21151 then
21152 if not Is_Tagged_Type (T) then
21153 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21154 end if;
21156 else
21157 Analyze_Declarations (Component_Items (Component_List (Def)));
21159 if Present (Variant_Part (Component_List (Def))) then
21160 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21161 Analyze (Variant_Part (Component_List (Def)));
21162 end if;
21163 end if;
21165 -- After completing the semantic analysis of the record definition,
21166 -- record components, both new and inherited, are accessible. Set their
21167 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21168 -- whose Ekind may be void.
21170 Component := First_Entity (Current_Scope);
21171 while Present (Component) loop
21172 if Ekind (Component) = E_Void
21173 and then not Is_Itype (Component)
21174 then
21175 Set_Ekind (Component, E_Component);
21176 Init_Component_Location (Component);
21177 end if;
21179 if Has_Task (Etype (Component)) then
21180 Set_Has_Task (T);
21181 end if;
21183 if Has_Protected (Etype (Component)) then
21184 Set_Has_Protected (T);
21185 end if;
21187 if Ekind (Component) /= E_Component then
21188 null;
21190 -- Do not set Has_Controlled_Component on a class-wide equivalent
21191 -- type. See Make_CW_Equivalent_Type.
21193 elsif not Is_Class_Wide_Equivalent_Type (T)
21194 and then (Has_Controlled_Component (Etype (Component))
21195 or else (Chars (Component) /= Name_uParent
21196 and then Is_Controlled (Etype (Component))))
21197 then
21198 Set_Has_Controlled_Component (T, True);
21199 Final_Storage_Only :=
21200 Final_Storage_Only
21201 and then Finalize_Storage_Only (Etype (Component));
21202 Ctrl_Components := True;
21203 end if;
21205 Next_Entity (Component);
21206 end loop;
21208 -- A Type is Finalize_Storage_Only only if all its controlled components
21209 -- are also.
21211 if Ctrl_Components then
21212 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21213 end if;
21215 -- Place reference to end record on the proper entity, which may
21216 -- be a partial view.
21218 if Present (Def) then
21219 Process_End_Label (Def, 'e', Prev_T);
21220 end if;
21221 end Record_Type_Definition;
21223 ------------------------
21224 -- Replace_Components --
21225 ------------------------
21227 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21228 function Process (N : Node_Id) return Traverse_Result;
21230 -------------
21231 -- Process --
21232 -------------
21234 function Process (N : Node_Id) return Traverse_Result is
21235 Comp : Entity_Id;
21237 begin
21238 if Nkind (N) = N_Discriminant_Specification then
21239 Comp := First_Discriminant (Typ);
21240 while Present (Comp) loop
21241 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21242 Set_Defining_Identifier (N, Comp);
21243 exit;
21244 end if;
21246 Next_Discriminant (Comp);
21247 end loop;
21249 elsif Nkind (N) = N_Component_Declaration then
21250 Comp := First_Component (Typ);
21251 while Present (Comp) loop
21252 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21253 Set_Defining_Identifier (N, Comp);
21254 exit;
21255 end if;
21257 Next_Component (Comp);
21258 end loop;
21259 end if;
21261 return OK;
21262 end Process;
21264 procedure Replace is new Traverse_Proc (Process);
21266 -- Start of processing for Replace_Components
21268 begin
21269 Replace (Decl);
21270 end Replace_Components;
21272 -------------------------------
21273 -- Set_Completion_Referenced --
21274 -------------------------------
21276 procedure Set_Completion_Referenced (E : Entity_Id) is
21277 begin
21278 -- If in main unit, mark entity that is a completion as referenced,
21279 -- warnings go on the partial view when needed.
21281 if In_Extended_Main_Source_Unit (E) then
21282 Set_Referenced (E);
21283 end if;
21284 end Set_Completion_Referenced;
21286 ---------------------
21287 -- Set_Default_SSO --
21288 ---------------------
21290 procedure Set_Default_SSO (T : Entity_Id) is
21291 begin
21292 case Opt.Default_SSO is
21293 when ' ' =>
21294 null;
21295 when 'L' =>
21296 Set_SSO_Set_Low_By_Default (T, True);
21297 when 'H' =>
21298 Set_SSO_Set_High_By_Default (T, True);
21299 when others =>
21300 raise Program_Error;
21301 end case;
21302 end Set_Default_SSO;
21304 ---------------------
21305 -- Set_Fixed_Range --
21306 ---------------------
21308 -- The range for fixed-point types is complicated by the fact that we
21309 -- do not know the exact end points at the time of the declaration. This
21310 -- is true for three reasons:
21312 -- A size clause may affect the fudging of the end-points.
21313 -- A small clause may affect the values of the end-points.
21314 -- We try to include the end-points if it does not affect the size.
21316 -- This means that the actual end-points must be established at the
21317 -- point when the type is frozen. Meanwhile, we first narrow the range
21318 -- as permitted (so that it will fit if necessary in a small specified
21319 -- size), and then build a range subtree with these narrowed bounds.
21320 -- Set_Fixed_Range constructs the range from real literal values, and
21321 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21323 -- The parent of this range is set to point to the entity so that it is
21324 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21325 -- other scalar types, which are just pointers to the range in the
21326 -- original tree, this would otherwise be an orphan).
21328 -- The tree is left unanalyzed. When the type is frozen, the processing
21329 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21330 -- analyzed, and uses this as an indication that it should complete
21331 -- work on the range (it will know the final small and size values).
21333 procedure Set_Fixed_Range
21334 (E : Entity_Id;
21335 Loc : Source_Ptr;
21336 Lo : Ureal;
21337 Hi : Ureal)
21339 S : constant Node_Id :=
21340 Make_Range (Loc,
21341 Low_Bound => Make_Real_Literal (Loc, Lo),
21342 High_Bound => Make_Real_Literal (Loc, Hi));
21343 begin
21344 Set_Scalar_Range (E, S);
21345 Set_Parent (S, E);
21347 -- Before the freeze point, the bounds of a fixed point are universal
21348 -- and carry the corresponding type.
21350 Set_Etype (Low_Bound (S), Universal_Real);
21351 Set_Etype (High_Bound (S), Universal_Real);
21352 end Set_Fixed_Range;
21354 ----------------------------------
21355 -- Set_Scalar_Range_For_Subtype --
21356 ----------------------------------
21358 procedure Set_Scalar_Range_For_Subtype
21359 (Def_Id : Entity_Id;
21360 R : Node_Id;
21361 Subt : Entity_Id)
21363 Kind : constant Entity_Kind := Ekind (Def_Id);
21365 begin
21366 -- Defend against previous error
21368 if Nkind (R) = N_Error then
21369 return;
21370 end if;
21372 Set_Scalar_Range (Def_Id, R);
21374 -- We need to link the range into the tree before resolving it so
21375 -- that types that are referenced, including importantly the subtype
21376 -- itself, are properly frozen (Freeze_Expression requires that the
21377 -- expression be properly linked into the tree). Of course if it is
21378 -- already linked in, then we do not disturb the current link.
21380 if No (Parent (R)) then
21381 Set_Parent (R, Def_Id);
21382 end if;
21384 -- Reset the kind of the subtype during analysis of the range, to
21385 -- catch possible premature use in the bounds themselves.
21387 Set_Ekind (Def_Id, E_Void);
21388 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21389 Set_Ekind (Def_Id, Kind);
21390 end Set_Scalar_Range_For_Subtype;
21392 --------------------------------------------------------
21393 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21394 --------------------------------------------------------
21396 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21397 (E : Entity_Id)
21399 begin
21400 -- Make sure set if encountered during Expand_To_Stored_Constraint
21402 Set_Stored_Constraint (E, No_Elist);
21404 -- Give it the right value
21406 if Is_Constrained (E) and then Has_Discriminants (E) then
21407 Set_Stored_Constraint (E,
21408 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21409 end if;
21410 end Set_Stored_Constraint_From_Discriminant_Constraint;
21412 -------------------------------------
21413 -- Signed_Integer_Type_Declaration --
21414 -------------------------------------
21416 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21417 Implicit_Base : Entity_Id;
21418 Base_Typ : Entity_Id;
21419 Lo_Val : Uint;
21420 Hi_Val : Uint;
21421 Errs : Boolean := False;
21422 Lo : Node_Id;
21423 Hi : Node_Id;
21425 function Can_Derive_From (E : Entity_Id) return Boolean;
21426 -- Determine whether given bounds allow derivation from specified type
21428 procedure Check_Bound (Expr : Node_Id);
21429 -- Check bound to make sure it is integral and static. If not, post
21430 -- appropriate error message and set Errs flag
21432 ---------------------
21433 -- Can_Derive_From --
21434 ---------------------
21436 -- Note we check both bounds against both end values, to deal with
21437 -- strange types like ones with a range of 0 .. -12341234.
21439 function Can_Derive_From (E : Entity_Id) return Boolean is
21440 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21441 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21442 begin
21443 return Lo <= Lo_Val and then Lo_Val <= Hi
21444 and then
21445 Lo <= Hi_Val and then Hi_Val <= Hi;
21446 end Can_Derive_From;
21448 -----------------
21449 -- Check_Bound --
21450 -----------------
21452 procedure Check_Bound (Expr : Node_Id) is
21453 begin
21454 -- If a range constraint is used as an integer type definition, each
21455 -- bound of the range must be defined by a static expression of some
21456 -- integer type, but the two bounds need not have the same integer
21457 -- type (Negative bounds are allowed.) (RM 3.5.4)
21459 if not Is_Integer_Type (Etype (Expr)) then
21460 Error_Msg_N
21461 ("integer type definition bounds must be of integer type", Expr);
21462 Errs := True;
21464 elsif not Is_OK_Static_Expression (Expr) then
21465 Flag_Non_Static_Expr
21466 ("non-static expression used for integer type bound!", Expr);
21467 Errs := True;
21469 -- The bounds are folded into literals, and we set their type to be
21470 -- universal, to avoid typing difficulties: we cannot set the type
21471 -- of the literal to the new type, because this would be a forward
21472 -- reference for the back end, and if the original type is user-
21473 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21475 else
21476 if Is_Entity_Name (Expr) then
21477 Fold_Uint (Expr, Expr_Value (Expr), True);
21478 end if;
21480 Set_Etype (Expr, Universal_Integer);
21481 end if;
21482 end Check_Bound;
21484 -- Start of processing for Signed_Integer_Type_Declaration
21486 begin
21487 -- Create an anonymous base type
21489 Implicit_Base :=
21490 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21492 -- Analyze and check the bounds, they can be of any integer type
21494 Lo := Low_Bound (Def);
21495 Hi := High_Bound (Def);
21497 -- Arbitrarily use Integer as the type if either bound had an error
21499 if Hi = Error or else Lo = Error then
21500 Base_Typ := Any_Integer;
21501 Set_Error_Posted (T, True);
21503 -- Here both bounds are OK expressions
21505 else
21506 Analyze_And_Resolve (Lo, Any_Integer);
21507 Analyze_And_Resolve (Hi, Any_Integer);
21509 Check_Bound (Lo);
21510 Check_Bound (Hi);
21512 if Errs then
21513 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21514 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21515 end if;
21517 -- Find type to derive from
21519 Lo_Val := Expr_Value (Lo);
21520 Hi_Val := Expr_Value (Hi);
21522 if Can_Derive_From (Standard_Short_Short_Integer) then
21523 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21525 elsif Can_Derive_From (Standard_Short_Integer) then
21526 Base_Typ := Base_Type (Standard_Short_Integer);
21528 elsif Can_Derive_From (Standard_Integer) then
21529 Base_Typ := Base_Type (Standard_Integer);
21531 elsif Can_Derive_From (Standard_Long_Integer) then
21532 Base_Typ := Base_Type (Standard_Long_Integer);
21534 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21535 Check_Restriction (No_Long_Long_Integers, Def);
21536 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21538 else
21539 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21540 Error_Msg_N ("integer type definition bounds out of range", Def);
21541 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21542 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21543 end if;
21544 end if;
21546 -- Complete both implicit base and declared first subtype entities. The
21547 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21548 -- are not clobbered when the signed integer type acts as a full view of
21549 -- a private type.
21551 Set_Etype (Implicit_Base, Base_Typ);
21552 Set_Size_Info (Implicit_Base, Base_Typ);
21553 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21554 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21555 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21557 Set_Ekind (T, E_Signed_Integer_Subtype);
21558 Set_Etype (T, Implicit_Base);
21559 Set_Size_Info (T, Implicit_Base);
21560 Inherit_Rep_Item_Chain (T, Implicit_Base);
21561 Set_Scalar_Range (T, Def);
21562 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21563 Set_Is_Constrained (T);
21564 end Signed_Integer_Type_Declaration;
21566 end Sem_Ch3;