1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Namet
; use Namet
;
27 with Types
; use Types
;
31 procedure Expand_N_Package_Body
(N
: Node_Id
);
32 procedure Expand_N_Package_Declaration
(N
: Node_Id
);
34 -----------------------------
35 -- Finalization Management --
36 -----------------------------
38 procedure Build_Controlling_Procs
(Typ
: Entity_Id
);
39 -- Typ is a record, and array type having controlled components.
40 -- Create the procedures Deep_Initialize, Deep_Adjust and Deep_Finalize
41 -- that take care of finalization management at run-time.
43 -- Support of exceptions from user finalization procedures
45 -- There is a specific mechanism to handle these exceptions, continue
46 -- finalization and then raise PE. This mechanism is used by this package
47 -- but also by exp_intr for Ada.Unchecked_Deallocation.
49 -- There are 3 subprograms to use this mechanism, and the type
50 -- Finalization_Exception_Data carries internal data between these
53 -- 1. Build_Object_Declaration: create the variables for the next two
55 -- 2. Build_Exception_Handler: create the exception handler for a call
56 -- to a user finalization procedure.
57 -- 3. Build_Raise_Stmt: create code to potentially raise a PE exception
58 -- if an exception was raise in a user finalization procedure.
60 type Finalization_Exception_Data
is record
62 -- Sloc for the added nodes
65 -- Boolean variable set to true if the finalization was triggered by
69 -- Variable containing the exception occurrence raised by user code
71 Raised_Id
: Entity_Id
;
72 -- Boolean variable set to true if an exception was raised in user code
75 function Build_Exception_Handler
76 (Data
: Finalization_Exception_Data
;
77 For_Library
: Boolean := False) return Node_Id
;
78 -- Subsidiary to Build_Finalizer, Make_Deep_Array_Body and Make_Deep_Record
79 -- _Body. Create an exception handler of the following form:
82 -- if not Raised_Id then
84 -- Save_Occurrence (E_Id, Get_Current_Excep.all.all);
87 -- If flag For_Library is set (and not in restricted profile):
90 -- if not Raised_Id then
92 -- Save_Library_Occurrence (Get_Current_Excep.all);
95 -- E_Id denotes the defining identifier of a local exception occurrence.
96 -- Raised_Id is the entity of a local boolean flag. Flag For_Library is
97 -- used when operating at the library level, when enabled the current
98 -- exception will be saved to a global location.
100 procedure Build_Finalization_Master
102 For_Anonymous
: Boolean := False;
103 For_Lib_Level
: Boolean := False;
104 For_Private
: Boolean := False;
105 Context_Scope
: Entity_Id
:= Empty
;
106 Insertion_Node
: Node_Id
:= Empty
);
107 -- Build a finalization master for an access type. The designated type may
108 -- not necessarely be controlled or need finalization actions depending on
109 -- the context. Flag For_Anonymous must be set when creating a master for
110 -- an anonymous access type. Flag For_Lib_Level must be set when creating
111 -- a master for a build-in-place function call access result type. Flag
112 -- For_Private must be set when the designated type contains a private
113 -- component. Parameters Context_Scope and Insertion_Node must be used in
114 -- conjunction with flags For_Anonymous and For_Private. Context_Scope is
115 -- the scope of the context where the finalization master must be analyzed.
116 -- Insertion_Node is the insertion point before which the master is to be
119 procedure Build_Late_Proc
(Typ
: Entity_Id
; Nam
: Name_Id
);
120 -- Build one controlling procedure when a late body overrides one of
121 -- the controlling operations.
123 procedure Build_Object_Declarations
124 (Data
: out Finalization_Exception_Data
;
127 For_Package
: Boolean := False);
128 -- Subsidiary to Make_Deep_Array_Body and Make_Deep_Record_Body. Create the
129 -- list List containing the object declarations of boolean flag Abort_Id,
130 -- the exception occurrence E_Id and boolean flag Raised_Id.
132 -- Abort_Id : constant Boolean :=
133 -- Exception_Identity (Get_Current_Excep.all) =
134 -- Standard'Abort_Signal'Identity;
136 -- Abort_Id : constant Boolean := False; -- no abort or For_Package
138 -- E_Id : Exception_Occurrence;
139 -- Raised_Id : Boolean := False;
141 function Build_Raise_Statement
142 (Data
: Finalization_Exception_Data
) return Node_Id
;
143 -- Subsidiary to routines Build_Finalizer, Make_Deep_Array_Body and Make_
144 -- Deep_Record_Body. Generate the following conditional raise statement:
146 -- if Raised_Id and then not Abort_Id then
147 -- Raise_From_Controlled_Operation (E_Id);
150 -- Abort_Id is a local boolean flag which is set when the finalization was
151 -- triggered by an abort, E_Id denotes the defining identifier of a local
152 -- exception occurrence, Raised_Id is the entity of a local boolean flag.
154 function CW_Or_Has_Controlled_Part
(T
: Entity_Id
) return Boolean;
155 -- True if T is a class-wide type, or if it has controlled parts ("part"
156 -- means T or any of its subcomponents). Same as Needs_Finalization, except
157 -- when pragma Restrictions (No_Finalization) applies, in which case we
158 -- know that class-wide objects do not contain controlled parts.
160 function Has_New_Controlled_Component
(E
: Entity_Id
) return Boolean;
161 -- E is a type entity. Give the same result as Has_Controlled_Component
162 -- except for tagged extensions where the result is True only if the
163 -- latest extension contains a controlled component.
165 function Make_Adjust_Call
168 Skip_Self
: Boolean := False) return Node_Id
;
169 -- Create a call to either Adjust or Deep_Adjust depending on the structure
170 -- of type Typ. Obj_Ref is an expression with no-side effect (not required
171 -- to have been previously analyzed) that references the object to be
172 -- adjusted. Typ is the expected type of Obj_Ref. When Skip_Self is set,
173 -- only the components (if any) are adjusted.
175 function Make_Detach_Call
(Obj_Ref
: Node_Id
) return Node_Id
;
176 -- Create a call to unhook an object from an arbitrary list. Obj_Ref is the
177 -- object. Generate the following:
179 -- Ada.Finalization.Heap_Management.Detach
180 -- (System.Finalization_Root.Root_Controlled_Ptr (Obj_Ref));
182 function Make_Final_Call
185 Skip_Self
: Boolean := False) return Node_Id
;
186 -- Create a call to either Finalize or Deep_Finalize depending on the
187 -- structure of type Typ. Obj_Ref is an expression (with no-side effect
188 -- and is not required to have been previously analyzed) that references
189 -- the object to be finalized. Typ is the expected type of Obj_Ref. When
190 -- Skip_Self is set, only the components (if any) are finalized.
192 procedure Make_Finalize_Address_Body
(Typ
: Entity_Id
);
193 -- Create the body of TSS routine Finalize_Address if Typ is controlled and
194 -- does not have a TSS entry for Finalize_Address. The procedure converts
195 -- an address into a pointer and subsequently calls Deep_Finalize on the
198 function Make_Init_Call
200 Typ
: Entity_Id
) return Node_Id
;
201 -- Obj_Ref is an expression with no-side effect (not required to have been
202 -- previously analyzed) that references the object to be initialized. Typ
203 -- is the expected type of Obj_Ref, which is either a controlled type
204 -- (Is_Controlled) or a type with controlled components (Has_Controlled_
207 function Make_Handler_For_Ctrl_Operation
(Loc
: Source_Ptr
) return Node_Id
;
208 -- Generate an implicit exception handler with an 'others' choice,
209 -- converting any occurrence to a raise of Program_Error.
211 function Make_Local_Deep_Finalize
213 Nam
: Entity_Id
) return Node_Id
;
214 -- Create a special version of Deep_Finalize with identifier Nam. The
215 -- routine has state information and can perform partial finalization.
217 function Make_Set_Finalize_Address_Call
219 Ptr_Typ
: Entity_Id
) return Node_Id
;
220 -- Associate the Finalize_Address primitive of the designated type with the
221 -- finalization master of access type Ptr_Typ. The returned call is:
223 -- Set_Finalize_Address
224 -- (<Ptr_Typ>FM, <Desig_Typ>FD'Unrestricted_Access);
226 --------------------------------------------
227 -- Task and Protected Object finalization --
228 --------------------------------------------
230 function Cleanup_Array
233 Typ
: Entity_Id
) return List_Id
;
234 -- Generate loops to finalize any tasks or simple protected objects that
235 -- are subcomponents of an array.
237 function Cleanup_Protected_Object
239 Ref
: Node_Id
) return Node_Id
;
240 -- Generate code to finalize a protected object without entries
242 function Cleanup_Record
245 Typ
: Entity_Id
) return List_Id
;
246 -- For each subcomponent of a record that contains tasks or simple
247 -- protected objects, generate the appropriate finalization call.
249 function Cleanup_Task
251 Ref
: Node_Id
) return Node_Id
;
252 -- Generate code to finalize a task
254 function Has_Simple_Protected_Object
(T
: Entity_Id
) return Boolean;
255 -- Check whether composite type contains a simple protected component
257 function Is_Simple_Protected_Type
(T
: Entity_Id
) return Boolean;
258 -- Determine whether T denotes a protected type without entries whose
259 -- _object field is of type System.Tasking.Protected_Objects.Protection.
260 -- Something wrong here, implementation was changed to test Lock_Free
261 -- but this spec does not mention that ???
263 --------------------------------
264 -- Transient Scope Management --
265 --------------------------------
267 procedure Expand_Cleanup_Actions
(N
: Node_Id
);
268 -- Expand the necessary stuff into a scope to enable finalization of local
269 -- objects and deallocation of transient data when exiting the scope. N is
270 -- a "scope node" that is to say one of the following: N_Block_Statement,
271 -- N_Subprogram_Body, N_Task_Body, N_Entry_Body.
273 procedure Establish_Transient_Scope
(N
: Node_Id
; Sec_Stack
: Boolean);
274 -- Push a new transient scope on the scope stack. N is the node responsible
275 -- for the need of a transient scope. If Sec_Stack is True then the
276 -- secondary stack is brought in, otherwise it isn't.
278 function Node_To_Be_Wrapped
return Node_Id
;
279 -- Return the node to be wrapped if the current scope is transient
281 procedure Store_Before_Actions_In_Scope
(L
: List_Id
);
282 -- Append the list L of actions to the end of the before-actions store in
283 -- the top of the scope stack (also analyzes these actions).
285 procedure Store_After_Actions_In_Scope
(L
: List_Id
);
286 -- Prepend the list L of actions to the beginning of the after-actions
287 -- stored in the top of the scope stack (also analyzes these actions).
289 -- Note that we are prepending here rather than appending. This means that
290 -- if several calls are made to this procedure for the same scope, the
291 -- actions will be executed in reverse order of the calls (actions for the
292 -- last call executed first). Within the list L for a single call, the
293 -- actions are executed in the order in which they appear in this list.
295 procedure Store_Cleanup_Actions_In_Scope
(L
: List_Id
);
296 -- Prepend the list L of actions to the beginning of the cleanup-actions
297 -- store in the top of the scope stack.
299 procedure Wrap_Transient_Declaration
(N
: Node_Id
);
300 -- N is an object declaration. Expand the finalization calls after the
301 -- declaration and make the outer scope being the transient one.
303 procedure Wrap_Transient_Expression
(N
: Node_Id
);
304 -- N is a sub-expression. Expand a transient block around an expression
306 procedure Wrap_Transient_Statement
(N
: Node_Id
);
307 -- N is a statement. Expand a transient block around an instruction