2016-01-15 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ada / a-cforse.adb
blob42a8503f8a81a43bb07ec134fc0b990e5443a883
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . F O R M A L _ O R D E R E D _ S E T S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2010-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 ------------------------------------------------------------------------------
28 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
29 pragma Elaborate_All
30 (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
32 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
33 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
35 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations;
36 pragma Elaborate_All
37 (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations);
39 with System; use type System.Address;
41 package body Ada.Containers.Formal_Ordered_Sets with
42 SPARK_Mode => Off
45 ------------------------------
46 -- Access to Fields of Node --
47 ------------------------------
49 -- These subprograms provide functional notation for access to fields
50 -- of a node, and procedural notation for modifiying these fields.
52 function Color (Node : Node_Type) return Red_Black_Trees.Color_Type;
53 pragma Inline (Color);
55 function Left_Son (Node : Node_Type) return Count_Type;
56 pragma Inline (Left_Son);
58 function Parent (Node : Node_Type) return Count_Type;
59 pragma Inline (Parent);
61 function Right_Son (Node : Node_Type) return Count_Type;
62 pragma Inline (Right_Son);
64 procedure Set_Color
65 (Node : in out Node_Type;
66 Color : Red_Black_Trees.Color_Type);
67 pragma Inline (Set_Color);
69 procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
70 pragma Inline (Set_Left);
72 procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
73 pragma Inline (Set_Right);
75 procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
76 pragma Inline (Set_Parent);
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 -- Comments needed???
84 generic
85 with procedure Set_Element (Node : in out Node_Type);
86 procedure Generic_Allocate
87 (Tree : in out Tree_Types.Tree_Type'Class;
88 Node : out Count_Type);
90 procedure Free (Tree : in out Set; X : Count_Type);
92 procedure Insert_Sans_Hint
93 (Container : in out Set;
94 New_Item : Element_Type;
95 Node : out Count_Type;
96 Inserted : out Boolean);
98 procedure Insert_With_Hint
99 (Dst_Set : in out Set;
100 Dst_Hint : Count_Type;
101 Src_Node : Node_Type;
102 Dst_Node : out Count_Type);
104 function Is_Greater_Element_Node
105 (Left : Element_Type;
106 Right : Node_Type) return Boolean;
107 pragma Inline (Is_Greater_Element_Node);
109 function Is_Less_Element_Node
110 (Left : Element_Type;
111 Right : Node_Type) return Boolean;
112 pragma Inline (Is_Less_Element_Node);
114 function Is_Less_Node_Node (L, R : Node_Type) return Boolean;
115 pragma Inline (Is_Less_Node_Node);
117 procedure Replace_Element
118 (Tree : in out Set;
119 Node : Count_Type;
120 Item : Element_Type);
122 --------------------------
123 -- Local Instantiations --
124 --------------------------
126 package Tree_Operations is
127 new Red_Black_Trees.Generic_Bounded_Operations
128 (Tree_Types,
129 Left => Left_Son,
130 Right => Right_Son);
132 use Tree_Operations;
134 package Element_Keys is
135 new Red_Black_Trees.Generic_Bounded_Keys
136 (Tree_Operations => Tree_Operations,
137 Key_Type => Element_Type,
138 Is_Less_Key_Node => Is_Less_Element_Node,
139 Is_Greater_Key_Node => Is_Greater_Element_Node);
141 package Set_Ops is
142 new Red_Black_Trees.Generic_Bounded_Set_Operations
143 (Tree_Operations => Tree_Operations,
144 Set_Type => Set,
145 Assign => Assign,
146 Insert_With_Hint => Insert_With_Hint,
147 Is_Less => Is_Less_Node_Node);
149 ---------
150 -- "=" --
151 ---------
153 function "=" (Left, Right : Set) return Boolean is
154 Lst : Count_Type;
155 Node : Count_Type;
156 ENode : Count_Type;
158 begin
159 if Length (Left) /= Length (Right) then
160 return False;
161 end if;
163 if Is_Empty (Left) then
164 return True;
165 end if;
167 Lst := Next (Left, Last (Left).Node);
169 Node := First (Left).Node;
170 while Node /= Lst loop
171 ENode := Find (Right, Left.Nodes (Node).Element).Node;
172 if ENode = 0
173 or else Left.Nodes (Node).Element /= Right.Nodes (ENode).Element
174 then
175 return False;
176 end if;
178 Node := Next (Left, Node);
179 end loop;
181 return True;
182 end "=";
184 ------------
185 -- Assign --
186 ------------
188 procedure Assign (Target : in out Set; Source : Set) is
189 procedure Append_Element (Source_Node : Count_Type);
191 procedure Append_Elements is
192 new Tree_Operations.Generic_Iteration (Append_Element);
194 --------------------
195 -- Append_Element --
196 --------------------
198 procedure Append_Element (Source_Node : Count_Type) is
199 SN : Node_Type renames Source.Nodes (Source_Node);
201 procedure Set_Element (Node : in out Node_Type);
202 pragma Inline (Set_Element);
204 function New_Node return Count_Type;
205 pragma Inline (New_Node);
207 procedure Insert_Post is
208 new Element_Keys.Generic_Insert_Post (New_Node);
210 procedure Unconditional_Insert_Sans_Hint is
211 new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
213 procedure Unconditional_Insert_Avec_Hint is
214 new Element_Keys.Generic_Unconditional_Insert_With_Hint
215 (Insert_Post,
216 Unconditional_Insert_Sans_Hint);
218 procedure Allocate is new Generic_Allocate (Set_Element);
220 --------------
221 -- New_Node --
222 --------------
224 function New_Node return Count_Type is
225 Result : Count_Type;
226 begin
227 Allocate (Target, Result);
228 return Result;
229 end New_Node;
231 -----------------
232 -- Set_Element --
233 -----------------
235 procedure Set_Element (Node : in out Node_Type) is
236 begin
237 Node.Element := SN.Element;
238 end Set_Element;
240 -- Local variables
242 Target_Node : Count_Type;
244 -- Start of processing for Append_Element
246 begin
247 Unconditional_Insert_Avec_Hint
248 (Tree => Target,
249 Hint => 0,
250 Key => SN.Element,
251 Node => Target_Node);
252 end Append_Element;
254 -- Start of processing for Assign
256 begin
257 if Target'Address = Source'Address then
258 return;
259 end if;
261 if Target.Capacity < Source.Length then
262 raise Constraint_Error
263 with "Target capacity is less than Source length";
264 end if;
266 Tree_Operations.Clear_Tree (Target);
267 Append_Elements (Source);
268 end Assign;
270 -------------
271 -- Ceiling --
272 -------------
274 function Ceiling (Container : Set; Item : Element_Type) return Cursor is
275 Node : constant Count_Type := Element_Keys.Ceiling (Container, Item);
277 begin
278 if Node = 0 then
279 return No_Element;
280 end if;
282 return (Node => Node);
283 end Ceiling;
285 -----------
286 -- Clear --
287 -----------
289 procedure Clear (Container : in out Set) is
290 begin
291 Tree_Operations.Clear_Tree (Container);
292 end Clear;
294 -----------
295 -- Color --
296 -----------
298 function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
299 begin
300 return Node.Color;
301 end Color;
303 --------------
304 -- Contains --
305 --------------
307 function Contains
308 (Container : Set;
309 Item : Element_Type) return Boolean
311 begin
312 return Find (Container, Item) /= No_Element;
313 end Contains;
315 ----------
316 -- Copy --
317 ----------
319 function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
320 Node : Count_Type;
321 N : Count_Type;
322 Target : Set (Count_Type'Max (Source.Capacity, Capacity));
324 begin
325 if 0 < Capacity and then Capacity < Source.Capacity then
326 raise Capacity_Error;
327 end if;
329 if Length (Source) > 0 then
330 Target.Length := Source.Length;
331 Target.Root := Source.Root;
332 Target.First := Source.First;
333 Target.Last := Source.Last;
334 Target.Free := Source.Free;
336 Node := 1;
337 while Node <= Source.Capacity loop
338 Target.Nodes (Node).Element :=
339 Source.Nodes (Node).Element;
340 Target.Nodes (Node).Parent :=
341 Source.Nodes (Node).Parent;
342 Target.Nodes (Node).Left :=
343 Source.Nodes (Node).Left;
344 Target.Nodes (Node).Right :=
345 Source.Nodes (Node).Right;
346 Target.Nodes (Node).Color :=
347 Source.Nodes (Node).Color;
348 Target.Nodes (Node).Has_Element :=
349 Source.Nodes (Node).Has_Element;
350 Node := Node + 1;
351 end loop;
353 while Node <= Target.Capacity loop
354 N := Node;
355 Formal_Ordered_Sets.Free (Tree => Target, X => N);
356 Node := Node + 1;
357 end loop;
358 end if;
360 return Target;
361 end Copy;
363 ---------------------
364 -- Current_To_Last --
365 ---------------------
367 function Current_To_Last (Container : Set; Current : Cursor) return Set is
368 Curs : Cursor := First (Container);
369 C : Set (Container.Capacity) := Copy (Container, Container.Capacity);
370 Node : Count_Type;
372 begin
373 if Curs = No_Element then
374 Clear (C);
375 return C;
376 end if;
378 if Current /= No_Element and not Has_Element (Container, Current) then
379 raise Constraint_Error;
380 end if;
382 while Curs.Node /= Current.Node loop
383 Node := Curs.Node;
384 Delete (C, Curs);
385 Curs := Next (Container, (Node => Node));
386 end loop;
388 return C;
389 end Current_To_Last;
391 ------------
392 -- Delete --
393 ------------
395 procedure Delete (Container : in out Set; Position : in out Cursor) is
396 begin
397 if not Has_Element (Container, Position) then
398 raise Constraint_Error with "Position cursor has no element";
399 end if;
401 pragma Assert (Vet (Container, Position.Node),
402 "bad cursor in Delete");
404 Tree_Operations.Delete_Node_Sans_Free (Container,
405 Position.Node);
406 Formal_Ordered_Sets.Free (Container, Position.Node);
407 Position := No_Element;
408 end Delete;
410 procedure Delete (Container : in out Set; Item : Element_Type) is
411 X : constant Count_Type := Element_Keys.Find (Container, Item);
413 begin
414 if X = 0 then
415 raise Constraint_Error with "attempt to delete element not in set";
416 end if;
418 Tree_Operations.Delete_Node_Sans_Free (Container, X);
419 Formal_Ordered_Sets.Free (Container, X);
420 end Delete;
422 ------------------
423 -- Delete_First --
424 ------------------
426 procedure Delete_First (Container : in out Set) is
427 X : constant Count_Type := Container.First;
428 begin
429 if X /= 0 then
430 Tree_Operations.Delete_Node_Sans_Free (Container, X);
431 Formal_Ordered_Sets.Free (Container, X);
432 end if;
433 end Delete_First;
435 -----------------
436 -- Delete_Last --
437 -----------------
439 procedure Delete_Last (Container : in out Set) is
440 X : constant Count_Type := Container.Last;
441 begin
442 if X /= 0 then
443 Tree_Operations.Delete_Node_Sans_Free (Container, X);
444 Formal_Ordered_Sets.Free (Container, X);
445 end if;
446 end Delete_Last;
448 ----------------
449 -- Difference --
450 ----------------
452 procedure Difference (Target : in out Set; Source : Set) is
453 begin
454 Set_Ops.Set_Difference (Target, Source);
455 end Difference;
457 function Difference (Left, Right : Set) return Set is
458 begin
459 if Left'Address = Right'Address then
460 return Empty_Set;
461 end if;
463 if Length (Left) = 0 then
464 return Empty_Set;
465 end if;
467 if Length (Right) = 0 then
468 return Left.Copy;
469 end if;
471 return S : Set (Length (Left)) do
472 Assign (S, Set_Ops.Set_Difference (Left, Right));
473 end return;
474 end Difference;
476 -------------
477 -- Element --
478 -------------
480 function Element (Container : Set; Position : Cursor) return Element_Type is
481 begin
482 if not Has_Element (Container, Position) then
483 raise Constraint_Error with "Position cursor has no element";
484 end if;
486 pragma Assert (Vet (Container, Position.Node),
487 "bad cursor in Element");
489 return Container.Nodes (Position.Node).Element;
490 end Element;
492 -------------------------
493 -- Equivalent_Elements --
494 -------------------------
496 function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
497 begin
498 if Left < Right
499 or else Right < Left
500 then
501 return False;
502 else
503 return True;
504 end if;
505 end Equivalent_Elements;
507 ---------------------
508 -- Equivalent_Sets --
509 ---------------------
511 function Equivalent_Sets (Left, Right : Set) return Boolean is
512 function Is_Equivalent_Node_Node
513 (L, R : Node_Type) return Boolean;
514 pragma Inline (Is_Equivalent_Node_Node);
516 function Is_Equivalent is
517 new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
519 -----------------------------
520 -- Is_Equivalent_Node_Node --
521 -----------------------------
523 function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
524 begin
525 if L.Element < R.Element then
526 return False;
527 elsif R.Element < L.Element then
528 return False;
529 else
530 return True;
531 end if;
532 end Is_Equivalent_Node_Node;
534 -- Start of processing for Equivalent_Sets
536 begin
537 return Is_Equivalent (Left, Right);
538 end Equivalent_Sets;
540 -------------
541 -- Exclude --
542 -------------
544 procedure Exclude (Container : in out Set; Item : Element_Type) is
545 X : constant Count_Type := Element_Keys.Find (Container, Item);
546 begin
547 if X /= 0 then
548 Tree_Operations.Delete_Node_Sans_Free (Container, X);
549 Formal_Ordered_Sets.Free (Container, X);
550 end if;
551 end Exclude;
553 ----------
554 -- Find --
555 ----------
557 function Find (Container : Set; Item : Element_Type) return Cursor is
558 Node : constant Count_Type := Element_Keys.Find (Container, Item);
560 begin
561 if Node = 0 then
562 return No_Element;
563 end if;
565 return (Node => Node);
566 end Find;
568 -----------
569 -- First --
570 -----------
572 function First (Container : Set) return Cursor is
573 begin
574 if Length (Container) = 0 then
575 return No_Element;
576 end if;
578 return (Node => Container.First);
579 end First;
581 -------------------
582 -- First_Element --
583 -------------------
585 function First_Element (Container : Set) return Element_Type is
586 Fst : constant Count_Type := First (Container).Node;
587 begin
588 if Fst = 0 then
589 raise Constraint_Error with "set is empty";
590 end if;
592 declare
593 N : Tree_Types.Nodes_Type renames Container.Nodes;
594 begin
595 return N (Fst).Element;
596 end;
597 end First_Element;
599 -----------------------
600 -- First_To_Previous --
601 -----------------------
603 function First_To_Previous
604 (Container : Set;
605 Current : Cursor) return Set
607 Curs : Cursor := Current;
608 C : Set (Container.Capacity) := Copy (Container, Container.Capacity);
609 Node : Count_Type;
611 begin
612 if Curs = No_Element then
613 return C;
615 elsif not Has_Element (Container, Curs) then
616 raise Constraint_Error;
618 else
619 while Curs.Node /= 0 loop
620 Node := Curs.Node;
621 Delete (C, Curs);
622 Curs := Next (Container, (Node => Node));
623 end loop;
625 return C;
626 end if;
627 end First_To_Previous;
629 -----------
630 -- Floor --
631 -----------
633 function Floor (Container : Set; Item : Element_Type) return Cursor is
634 begin
635 declare
636 Node : constant Count_Type := Element_Keys.Floor (Container, Item);
638 begin
639 if Node = 0 then
640 return No_Element;
641 end if;
643 return (Node => Node);
644 end;
645 end Floor;
647 ----------
648 -- Free --
649 ----------
651 procedure Free (Tree : in out Set; X : Count_Type) is
652 begin
653 Tree.Nodes (X).Has_Element := False;
654 Tree_Operations.Free (Tree, X);
655 end Free;
657 ----------------------
658 -- Generic_Allocate --
659 ----------------------
661 procedure Generic_Allocate
662 (Tree : in out Tree_Types.Tree_Type'Class;
663 Node : out Count_Type)
665 procedure Allocate is
666 new Tree_Operations.Generic_Allocate (Set_Element);
667 begin
668 Allocate (Tree, Node);
669 Tree.Nodes (Node).Has_Element := True;
670 end Generic_Allocate;
672 ------------------
673 -- Generic_Keys --
674 ------------------
676 package body Generic_Keys with SPARK_Mode => Off is
678 -----------------------
679 -- Local Subprograms --
680 -----------------------
682 function Is_Greater_Key_Node
683 (Left : Key_Type;
684 Right : Node_Type) return Boolean;
685 pragma Inline (Is_Greater_Key_Node);
687 function Is_Less_Key_Node
688 (Left : Key_Type;
689 Right : Node_Type) return Boolean;
690 pragma Inline (Is_Less_Key_Node);
692 --------------------------
693 -- Local Instantiations --
694 --------------------------
696 package Key_Keys is
697 new Red_Black_Trees.Generic_Bounded_Keys
698 (Tree_Operations => Tree_Operations,
699 Key_Type => Key_Type,
700 Is_Less_Key_Node => Is_Less_Key_Node,
701 Is_Greater_Key_Node => Is_Greater_Key_Node);
703 -------------
704 -- Ceiling --
705 -------------
707 function Ceiling (Container : Set; Key : Key_Type) return Cursor is
708 Node : constant Count_Type := Key_Keys.Ceiling (Container, Key);
710 begin
711 if Node = 0 then
712 return No_Element;
713 end if;
715 return (Node => Node);
716 end Ceiling;
718 --------------
719 -- Contains --
720 --------------
722 function Contains (Container : Set; Key : Key_Type) return Boolean is
723 begin
724 return Find (Container, Key) /= No_Element;
725 end Contains;
727 ------------
728 -- Delete --
729 ------------
731 procedure Delete (Container : in out Set; Key : Key_Type) is
732 X : constant Count_Type := Key_Keys.Find (Container, Key);
734 begin
735 if X = 0 then
736 raise Constraint_Error with "attempt to delete key not in set";
737 end if;
739 Delete_Node_Sans_Free (Container, X);
740 Formal_Ordered_Sets.Free (Container, X);
741 end Delete;
743 -------------
744 -- Element --
745 -------------
747 function Element (Container : Set; Key : Key_Type) return Element_Type is
748 Node : constant Count_Type := Key_Keys.Find (Container, Key);
750 begin
751 if Node = 0 then
752 raise Constraint_Error with "key not in set";
753 end if;
755 declare
756 N : Tree_Types.Nodes_Type renames Container.Nodes;
757 begin
758 return N (Node).Element;
759 end;
760 end Element;
762 ---------------------
763 -- Equivalent_Keys --
764 ---------------------
766 function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
767 begin
768 if Left < Right
769 or else Right < Left
770 then
771 return False;
772 else
773 return True;
774 end if;
775 end Equivalent_Keys;
777 -------------
778 -- Exclude --
779 -------------
781 procedure Exclude (Container : in out Set; Key : Key_Type) is
782 X : constant Count_Type := Key_Keys.Find (Container, Key);
783 begin
784 if X /= 0 then
785 Delete_Node_Sans_Free (Container, X);
786 Formal_Ordered_Sets.Free (Container, X);
787 end if;
788 end Exclude;
790 ----------
791 -- Find --
792 ----------
794 function Find (Container : Set; Key : Key_Type) return Cursor is
795 Node : constant Count_Type := Key_Keys.Find (Container, Key);
796 begin
797 return (if Node = 0 then No_Element else (Node => Node));
798 end Find;
800 -----------
801 -- Floor --
802 -----------
804 function Floor (Container : Set; Key : Key_Type) return Cursor is
805 Node : constant Count_Type := Key_Keys.Floor (Container, Key);
806 begin
807 return (if Node = 0 then No_Element else (Node => Node));
808 end Floor;
810 -------------------------
811 -- Is_Greater_Key_Node --
812 -------------------------
814 function Is_Greater_Key_Node
815 (Left : Key_Type;
816 Right : Node_Type) return Boolean
818 begin
819 return Key (Right.Element) < Left;
820 end Is_Greater_Key_Node;
822 ----------------------
823 -- Is_Less_Key_Node --
824 ----------------------
826 function Is_Less_Key_Node
827 (Left : Key_Type;
828 Right : Node_Type) return Boolean
830 begin
831 return Left < Key (Right.Element);
832 end Is_Less_Key_Node;
834 ---------
835 -- Key --
836 ---------
838 function Key (Container : Set; Position : Cursor) return Key_Type is
839 begin
840 if not Has_Element (Container, Position) then
841 raise Constraint_Error with
842 "Position cursor has no element";
843 end if;
845 pragma Assert (Vet (Container, Position.Node),
846 "bad cursor in Key");
848 declare
849 N : Tree_Types.Nodes_Type renames Container.Nodes;
850 begin
851 return Key (N (Position.Node).Element);
852 end;
853 end Key;
855 -------------
856 -- Replace --
857 -------------
859 procedure Replace
860 (Container : in out Set;
861 Key : Key_Type;
862 New_Item : Element_Type)
864 Node : constant Count_Type := Key_Keys.Find (Container, Key);
865 begin
866 if not Has_Element (Container, (Node => Node)) then
867 raise Constraint_Error with
868 "attempt to replace key not in set";
869 else
870 Replace_Element (Container, Node, New_Item);
871 end if;
872 end Replace;
874 end Generic_Keys;
876 -----------------
877 -- Has_Element --
878 -----------------
880 function Has_Element (Container : Set; Position : Cursor) return Boolean is
881 begin
882 if Position.Node = 0 then
883 return False;
884 else
885 return Container.Nodes (Position.Node).Has_Element;
886 end if;
887 end Has_Element;
889 -------------
890 -- Include --
891 -------------
893 procedure Include (Container : in out Set; New_Item : Element_Type) is
894 Position : Cursor;
895 Inserted : Boolean;
897 begin
898 Insert (Container, New_Item, Position, Inserted);
900 if not Inserted then
901 declare
902 N : Tree_Types.Nodes_Type renames Container.Nodes;
903 begin
904 N (Position.Node).Element := New_Item;
905 end;
906 end if;
907 end Include;
909 ------------
910 -- Insert --
911 ------------
913 procedure Insert
914 (Container : in out Set;
915 New_Item : Element_Type;
916 Position : out Cursor;
917 Inserted : out Boolean)
919 begin
920 Insert_Sans_Hint (Container, New_Item, Position.Node, Inserted);
921 end Insert;
923 procedure Insert
924 (Container : in out Set;
925 New_Item : Element_Type)
927 Position : Cursor;
928 Inserted : Boolean;
930 begin
931 Insert (Container, New_Item, Position, Inserted);
933 if not Inserted then
934 raise Constraint_Error with
935 "attempt to insert element already in set";
936 end if;
937 end Insert;
939 ----------------------
940 -- Insert_Sans_Hint --
941 ----------------------
943 procedure Insert_Sans_Hint
944 (Container : in out Set;
945 New_Item : Element_Type;
946 Node : out Count_Type;
947 Inserted : out Boolean)
949 procedure Set_Element (Node : in out Node_Type);
951 function New_Node return Count_Type;
952 pragma Inline (New_Node);
954 procedure Insert_Post is
955 new Element_Keys.Generic_Insert_Post (New_Node);
957 procedure Conditional_Insert_Sans_Hint is
958 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
960 procedure Allocate is new Generic_Allocate (Set_Element);
962 --------------
963 -- New_Node --
964 --------------
966 function New_Node return Count_Type is
967 Result : Count_Type;
968 begin
969 Allocate (Container, Result);
970 return Result;
971 end New_Node;
973 -----------------
974 -- Set_Element --
975 -----------------
977 procedure Set_Element (Node : in out Node_Type) is
978 begin
979 Node.Element := New_Item;
980 end Set_Element;
982 -- Start of processing for Insert_Sans_Hint
984 begin
985 Conditional_Insert_Sans_Hint
986 (Container,
987 New_Item,
988 Node,
989 Inserted);
990 end Insert_Sans_Hint;
992 ----------------------
993 -- Insert_With_Hint --
994 ----------------------
996 procedure Insert_With_Hint
997 (Dst_Set : in out Set;
998 Dst_Hint : Count_Type;
999 Src_Node : Node_Type;
1000 Dst_Node : out Count_Type)
1002 Success : Boolean;
1003 pragma Unreferenced (Success);
1005 procedure Set_Element (Node : in out Node_Type);
1007 function New_Node return Count_Type;
1008 pragma Inline (New_Node);
1010 procedure Insert_Post is
1011 new Element_Keys.Generic_Insert_Post (New_Node);
1013 procedure Insert_Sans_Hint is
1014 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1016 procedure Local_Insert_With_Hint is
1017 new Element_Keys.Generic_Conditional_Insert_With_Hint
1018 (Insert_Post, Insert_Sans_Hint);
1020 procedure Allocate is new Generic_Allocate (Set_Element);
1022 --------------
1023 -- New_Node --
1024 --------------
1026 function New_Node return Count_Type is
1027 Result : Count_Type;
1028 begin
1029 Allocate (Dst_Set, Result);
1030 return Result;
1031 end New_Node;
1033 -----------------
1034 -- Set_Element --
1035 -----------------
1037 procedure Set_Element (Node : in out Node_Type) is
1038 begin
1039 Node.Element := Src_Node.Element;
1040 end Set_Element;
1042 -- Start of processing for Insert_With_Hint
1044 begin
1045 Local_Insert_With_Hint
1046 (Dst_Set,
1047 Dst_Hint,
1048 Src_Node.Element,
1049 Dst_Node,
1050 Success);
1051 end Insert_With_Hint;
1053 ------------------
1054 -- Intersection --
1055 ------------------
1057 procedure Intersection (Target : in out Set; Source : Set) is
1058 begin
1059 Set_Ops.Set_Intersection (Target, Source);
1060 end Intersection;
1062 function Intersection (Left, Right : Set) return Set is
1063 begin
1064 if Left'Address = Right'Address then
1065 return Left.Copy;
1066 end if;
1068 return S : Set (Count_Type'Min (Length (Left), Length (Right))) do
1069 Assign (S, Set_Ops.Set_Intersection (Left, Right));
1070 end return;
1071 end Intersection;
1073 --------------
1074 -- Is_Empty --
1075 --------------
1077 function Is_Empty (Container : Set) return Boolean is
1078 begin
1079 return Length (Container) = 0;
1080 end Is_Empty;
1082 -----------------------------
1083 -- Is_Greater_Element_Node --
1084 -----------------------------
1086 function Is_Greater_Element_Node
1087 (Left : Element_Type;
1088 Right : Node_Type) return Boolean
1090 begin
1091 -- Compute e > node same as node < e
1093 return Right.Element < Left;
1094 end Is_Greater_Element_Node;
1096 --------------------------
1097 -- Is_Less_Element_Node --
1098 --------------------------
1100 function Is_Less_Element_Node
1101 (Left : Element_Type;
1102 Right : Node_Type) return Boolean
1104 begin
1105 return Left < Right.Element;
1106 end Is_Less_Element_Node;
1108 -----------------------
1109 -- Is_Less_Node_Node --
1110 -----------------------
1112 function Is_Less_Node_Node (L, R : Node_Type) return Boolean is
1113 begin
1114 return L.Element < R.Element;
1115 end Is_Less_Node_Node;
1117 ---------------
1118 -- Is_Subset --
1119 ---------------
1121 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
1122 begin
1123 return Set_Ops.Set_Subset (Subset, Of_Set => Of_Set);
1124 end Is_Subset;
1126 ----------
1127 -- Last --
1128 ----------
1130 function Last (Container : Set) return Cursor is
1131 begin
1132 return (if Length (Container) = 0
1133 then No_Element
1134 else (Node => Container.Last));
1135 end Last;
1137 ------------------
1138 -- Last_Element --
1139 ------------------
1141 function Last_Element (Container : Set) return Element_Type is
1142 begin
1143 if Last (Container).Node = 0 then
1144 raise Constraint_Error with "set is empty";
1145 end if;
1147 declare
1148 N : Tree_Types.Nodes_Type renames Container.Nodes;
1149 begin
1150 return N (Last (Container).Node).Element;
1151 end;
1152 end Last_Element;
1154 --------------
1155 -- Left_Son --
1156 --------------
1158 function Left_Son (Node : Node_Type) return Count_Type is
1159 begin
1160 return Node.Left;
1161 end Left_Son;
1163 ------------
1164 -- Length --
1165 ------------
1167 function Length (Container : Set) return Count_Type is
1168 begin
1169 return Container.Length;
1170 end Length;
1172 ----------
1173 -- Move --
1174 ----------
1176 procedure Move (Target : in out Set; Source : in out Set) is
1177 N : Tree_Types.Nodes_Type renames Source.Nodes;
1178 X : Count_Type;
1180 begin
1181 if Target'Address = Source'Address then
1182 return;
1183 end if;
1185 if Target.Capacity < Length (Source) then
1186 raise Constraint_Error with -- ???
1187 "Source length exceeds Target capacity";
1188 end if;
1190 Clear (Target);
1192 loop
1193 X := Source.First;
1194 exit when X = 0;
1196 Insert (Target, N (X).Element); -- optimize???
1198 Tree_Operations.Delete_Node_Sans_Free (Source, X);
1199 Formal_Ordered_Sets.Free (Source, X);
1200 end loop;
1201 end Move;
1203 ----------
1204 -- Next --
1205 ----------
1207 function Next (Container : Set; Position : Cursor) return Cursor is
1208 begin
1209 if Position = No_Element then
1210 return No_Element;
1211 end if;
1213 if not Has_Element (Container, Position) then
1214 raise Constraint_Error;
1215 end if;
1217 pragma Assert (Vet (Container, Position.Node),
1218 "bad cursor in Next");
1219 return (Node => Tree_Operations.Next (Container, Position.Node));
1220 end Next;
1222 procedure Next (Container : Set; Position : in out Cursor) is
1223 begin
1224 Position := Next (Container, Position);
1225 end Next;
1227 -------------
1228 -- Overlap --
1229 -------------
1231 function Overlap (Left, Right : Set) return Boolean is
1232 begin
1233 return Set_Ops.Set_Overlap (Left, Right);
1234 end Overlap;
1236 ------------
1237 -- Parent --
1238 ------------
1240 function Parent (Node : Node_Type) return Count_Type is
1241 begin
1242 return Node.Parent;
1243 end Parent;
1245 --------------
1246 -- Previous --
1247 --------------
1249 function Previous (Container : Set; Position : Cursor) return Cursor is
1250 begin
1251 if Position = No_Element then
1252 return No_Element;
1253 end if;
1255 if not Has_Element (Container, Position) then
1256 raise Constraint_Error;
1257 end if;
1259 pragma Assert (Vet (Container, Position.Node),
1260 "bad cursor in Previous");
1262 declare
1263 Node : constant Count_Type :=
1264 Tree_Operations.Previous (Container, Position.Node);
1265 begin
1266 return (if Node = 0 then No_Element else (Node => Node));
1267 end;
1268 end Previous;
1270 procedure Previous (Container : Set; Position : in out Cursor) is
1271 begin
1272 Position := Previous (Container, Position);
1273 end Previous;
1275 -------------
1276 -- Replace --
1277 -------------
1279 procedure Replace (Container : in out Set; New_Item : Element_Type) is
1280 Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
1282 begin
1283 if Node = 0 then
1284 raise Constraint_Error with
1285 "attempt to replace element not in set";
1286 end if;
1288 Container.Nodes (Node).Element := New_Item;
1289 end Replace;
1291 ---------------------
1292 -- Replace_Element --
1293 ---------------------
1295 procedure Replace_Element
1296 (Tree : in out Set;
1297 Node : Count_Type;
1298 Item : Element_Type)
1300 pragma Assert (Node /= 0);
1302 function New_Node return Count_Type;
1303 pragma Inline (New_Node);
1305 procedure Local_Insert_Post is
1306 new Element_Keys.Generic_Insert_Post (New_Node);
1308 procedure Local_Insert_Sans_Hint is
1309 new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1311 procedure Local_Insert_With_Hint is
1312 new Element_Keys.Generic_Conditional_Insert_With_Hint
1313 (Local_Insert_Post,
1314 Local_Insert_Sans_Hint);
1316 NN : Tree_Types.Nodes_Type renames Tree.Nodes;
1318 --------------
1319 -- New_Node --
1320 --------------
1322 function New_Node return Count_Type is
1323 N : Node_Type renames NN (Node);
1324 begin
1325 N.Element := Item;
1326 N.Color := Red;
1327 N.Parent := 0;
1328 N.Right := 0;
1329 N.Left := 0;
1330 return Node;
1331 end New_Node;
1333 Hint : Count_Type;
1334 Result : Count_Type;
1335 Inserted : Boolean;
1337 -- Start of processing for Insert
1339 begin
1340 if Item < NN (Node).Element
1341 or else NN (Node).Element < Item
1342 then
1343 null;
1345 else
1346 NN (Node).Element := Item;
1347 return;
1348 end if;
1350 Hint := Element_Keys.Ceiling (Tree, Item);
1352 if Hint = 0 then
1353 null;
1355 elsif Item < NN (Hint).Element then
1356 if Hint = Node then
1357 NN (Node).Element := Item;
1358 return;
1359 end if;
1361 else
1362 pragma Assert (not (NN (Hint).Element < Item));
1363 raise Program_Error with "attempt to replace existing element";
1364 end if;
1366 Tree_Operations.Delete_Node_Sans_Free (Tree, Node);
1368 Local_Insert_With_Hint
1369 (Tree => Tree,
1370 Position => Hint,
1371 Key => Item,
1372 Node => Result,
1373 Inserted => Inserted);
1375 pragma Assert (Inserted);
1376 pragma Assert (Result = Node);
1377 end Replace_Element;
1379 procedure Replace_Element
1380 (Container : in out Set;
1381 Position : Cursor;
1382 New_Item : Element_Type)
1384 begin
1385 if not Has_Element (Container, Position) then
1386 raise Constraint_Error with
1387 "Position cursor has no element";
1388 end if;
1390 pragma Assert (Vet (Container, Position.Node),
1391 "bad cursor in Replace_Element");
1393 Replace_Element (Container, Position.Node, New_Item);
1394 end Replace_Element;
1396 ---------------
1397 -- Right_Son --
1398 ---------------
1400 function Right_Son (Node : Node_Type) return Count_Type is
1401 begin
1402 return Node.Right;
1403 end Right_Son;
1405 ---------------
1406 -- Set_Color --
1407 ---------------
1409 procedure Set_Color
1410 (Node : in out Node_Type;
1411 Color : Red_Black_Trees.Color_Type)
1413 begin
1414 Node.Color := Color;
1415 end Set_Color;
1417 --------------
1418 -- Set_Left --
1419 --------------
1421 procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
1422 begin
1423 Node.Left := Left;
1424 end Set_Left;
1426 ----------------
1427 -- Set_Parent --
1428 ----------------
1430 procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
1431 begin
1432 Node.Parent := Parent;
1433 end Set_Parent;
1435 ---------------
1436 -- Set_Right --
1437 ---------------
1439 procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
1440 begin
1441 Node.Right := Right;
1442 end Set_Right;
1444 ------------------
1445 -- Strict_Equal --
1446 ------------------
1448 function Strict_Equal (Left, Right : Set) return Boolean is
1449 LNode : Count_Type := First (Left).Node;
1450 RNode : Count_Type := First (Right).Node;
1452 begin
1453 if Length (Left) /= Length (Right) then
1454 return False;
1455 end if;
1457 while LNode = RNode loop
1458 if LNode = 0 then
1459 return True;
1460 end if;
1462 if Left.Nodes (LNode).Element /= Right.Nodes (RNode).Element then
1463 exit;
1464 end if;
1466 LNode := Next (Left, LNode);
1467 RNode := Next (Right, RNode);
1468 end loop;
1470 return False;
1471 end Strict_Equal;
1473 --------------------------
1474 -- Symmetric_Difference --
1475 --------------------------
1477 procedure Symmetric_Difference (Target : in out Set; Source : Set) is
1478 begin
1479 Set_Ops.Set_Symmetric_Difference (Target, Source);
1480 end Symmetric_Difference;
1482 function Symmetric_Difference (Left, Right : Set) return Set is
1483 begin
1484 if Left'Address = Right'Address then
1485 return Empty_Set;
1486 end if;
1488 if Length (Right) = 0 then
1489 return Left.Copy;
1490 end if;
1492 if Length (Left) = 0 then
1493 return Right.Copy;
1494 end if;
1496 return S : Set (Length (Left) + Length (Right)) do
1497 Assign (S, Set_Ops.Set_Symmetric_Difference (Left, Right));
1498 end return;
1499 end Symmetric_Difference;
1501 ------------
1502 -- To_Set --
1503 ------------
1505 function To_Set (New_Item : Element_Type) return Set is
1506 Node : Count_Type;
1507 Inserted : Boolean;
1508 begin
1509 return S : Set (Capacity => 1) do
1510 Insert_Sans_Hint (S, New_Item, Node, Inserted);
1511 pragma Assert (Inserted);
1512 end return;
1513 end To_Set;
1515 -----------
1516 -- Union --
1517 -----------
1519 procedure Union (Target : in out Set; Source : Set) is
1520 begin
1521 Set_Ops.Set_Union (Target, Source);
1522 end Union;
1524 function Union (Left, Right : Set) return Set is
1525 begin
1526 if Left'Address = Right'Address then
1527 return Left.Copy;
1528 end if;
1530 if Length (Left) = 0 then
1531 return Right.Copy;
1532 end if;
1534 if Length (Right) = 0 then
1535 return Left.Copy;
1536 end if;
1538 return S : Set (Length (Left) + Length (Right)) do
1539 Assign (S, Source => Left);
1540 Union (S, Right);
1541 end return;
1542 end Union;
1544 end Ada.Containers.Formal_Ordered_Sets;