1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
38 #include "coretypes.h"
44 #include "tree-pass.h"
47 #include "gimple-pretty-print.h"
48 #include "fold-const.h"
49 #include "gimple-iterator.h"
50 #include "gimplify-me.h"
51 #include "stor-layout.h"
56 #include "tree-ssa-address.h"
57 #include "tree-affine.h"
60 /* Information about a strength reduction candidate. Each statement
61 in the candidate table represents an expression of one of the
62 following forms (the special case of CAND_REF will be described
65 (CAND_MULT) S1: X = (B + i) * S
66 (CAND_ADD) S1: X = B + (i * S)
68 Here X and B are SSA names, i is an integer constant, and S is
69 either an SSA name or a constant. We call B the "base," i the
70 "index", and S the "stride."
72 Any statement S0 that dominates S1 and is of the form:
74 (CAND_MULT) S0: Y = (B + i') * S
75 (CAND_ADD) S0: Y = B + (i' * S)
77 is called a "basis" for S1. In both cases, S1 may be replaced by
79 S1': X = Y + (i - i') * S,
81 where (i - i') * S is folded to the extent possible.
83 All gimple statements are visited in dominator order, and each
84 statement that may contribute to one of the forms of S1 above is
85 given at least one entry in the candidate table. Such statements
86 include addition, pointer addition, subtraction, multiplication,
87 negation, copies, and nontrivial type casts. If a statement may
88 represent more than one expression of the forms of S1 above,
89 multiple "interpretations" are stored in the table and chained
92 * An add of two SSA names may treat either operand as the base.
93 * A multiply of two SSA names, likewise.
94 * A copy or cast may be thought of as either a CAND_MULT with
95 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
97 Candidate records are allocated from an obstack. They are addressed
98 both from a hash table keyed on S1, and from a vector of candidate
99 pointers arranged in predominator order.
103 Currently we don't recognize:
108 as a strength reduction opportunity, even though this S1 would
109 also be replaceable by the S1' above. This can be added if it
110 comes up in practice.
112 Strength reduction in addressing
113 --------------------------------
114 There is another kind of candidate known as CAND_REF. A CAND_REF
115 describes a statement containing a memory reference having
116 complex addressing that might benefit from strength reduction.
117 Specifically, we are interested in references for which
118 get_inner_reference returns a base address, offset, and bitpos as
121 base: MEM_REF (T1, C1)
122 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
123 bitpos: C4 * BITS_PER_UNIT
125 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
126 arbitrary integer constants. Note that C2 may be zero, in which
127 case the offset will be MULT_EXPR (T2, C3).
129 When this pattern is recognized, the original memory reference
130 can be replaced with:
132 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
135 which distributes the multiply to allow constant folding. When
136 two or more addressing expressions can be represented by MEM_REFs
137 of this form, differing only in the constants C1, C2, and C4,
138 making this substitution produces more efficient addressing during
139 the RTL phases. When there are not at least two expressions with
140 the same values of T1, T2, and C3, there is nothing to be gained
143 Strength reduction of CAND_REFs uses the same infrastructure as
144 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
145 field, MULT_EXPR (T2, C3) in the stride (S) field, and
146 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
147 is thus another CAND_REF with the same B and S values. When at
148 least two CAND_REFs are chained together using the basis relation,
149 each of them is replaced as above, resulting in improved code
150 generation for addressing.
152 Conditional candidates
153 ======================
155 Conditional candidates are best illustrated with an example.
156 Consider the code sequence:
159 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
161 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
162 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
163 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
164 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
166 Here strength reduction is complicated by the uncertain value of x_2.
167 A legitimate transformation is:
176 (4) [x_2 = PHI <x_0, x_1>;]
177 (4a) t_2 = PHI <a_0, t_1>;
181 where the bracketed instructions may go dead.
183 To recognize this opportunity, we have to observe that statement (6)
184 has a "hidden basis" (2). The hidden basis is unlike a normal basis
185 in that the statement and the hidden basis have different base SSA
186 names (x_2 and x_0, respectively). The relationship is established
187 when a statement's base name (x_2) is defined by a phi statement (4),
188 each argument of which (x_0, x_1) has an identical "derived base name."
189 If the argument is defined by a candidate (as x_1 is by (3)) that is a
190 CAND_ADD having a stride of 1, the derived base name of the argument is
191 the base name of the candidate (x_0). Otherwise, the argument itself
192 is its derived base name (as is the case with argument x_0).
194 The hidden basis for statement (6) is the nearest dominating candidate
195 whose base name is the derived base name (x_0) of the feeding phi (4),
196 and whose stride is identical to that of the statement. We can then
197 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
198 allowing the final replacement of (6) by the strength-reduced (6r).
200 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
201 A CAND_PHI is not a candidate for replacement, but is maintained in the
202 candidate table to ease discovery of hidden bases. Any phi statement
203 whose arguments share a common derived base name is entered into the
204 table with the derived base name, an (arbitrary) index of zero, and a
205 stride of 1. A statement with a hidden basis can then be detected by
206 simply looking up its feeding phi definition in the candidate table,
207 extracting the derived base name, and searching for a basis in the
208 usual manner after substituting the derived base name.
210 Note that the transformation is only valid when the original phi and
211 the statements that define the phi's arguments are all at the same
212 position in the loop hierarchy. */
215 /* Index into the candidate vector, offset by 1. VECs are zero-based,
216 while cand_idx's are one-based, with zero indicating null. */
217 typedef unsigned cand_idx
;
219 /* The kind of candidate. */
230 /* The candidate statement S1. */
233 /* The base expression B: often an SSA name, but not always. */
239 /* The index constant i. */
242 /* The type of the candidate. This is normally the type of base_expr,
243 but casts may have occurred when combining feeding instructions.
244 A candidate can only be a basis for candidates of the same final type.
245 (For CAND_REFs, this is the type to be used for operand 1 of the
246 replacement MEM_REF.) */
249 /* The type to be used to interpret the stride field when the stride
250 is not a constant. Normally the same as the type of the recorded
251 stride, but when the stride has been cast we need to maintain that
252 knowledge in order to make legal substitutions without losing
253 precision. When the stride is a constant, this will be sizetype. */
256 /* The kind of candidate (CAND_MULT, etc.). */
259 /* Index of this candidate in the candidate vector. */
262 /* Index of the next candidate record for the same statement.
263 A statement may be useful in more than one way (e.g., due to
264 commutativity). So we can have multiple "interpretations"
266 cand_idx next_interp
;
268 /* Index of the basis statement S0, if any, in the candidate vector. */
271 /* First candidate for which this candidate is a basis, if one exists. */
274 /* Next candidate having the same basis as this one. */
277 /* If this is a conditional candidate, the CAND_PHI candidate
278 that defines the base SSA name B. */
281 /* Savings that can be expected from eliminating dead code if this
282 candidate is replaced. */
285 /* For PHI candidates, use a visited flag to keep from processing the
286 same PHI twice from multiple paths. */
289 /* We sometimes have to cache a phi basis with a phi candidate to
290 avoid processing it twice. Valid only if visited==1. */
294 typedef struct slsr_cand_d slsr_cand
, *slsr_cand_t
;
295 typedef const struct slsr_cand_d
*const_slsr_cand_t
;
297 /* Pointers to candidates are chained together as part of a mapping
298 from base expressions to the candidates that use them. */
302 /* Base expression for the chain of candidates: often, but not
303 always, an SSA name. */
306 /* Pointer to a candidate. */
310 struct cand_chain_d
*next
;
314 typedef struct cand_chain_d cand_chain
, *cand_chain_t
;
315 typedef const struct cand_chain_d
*const_cand_chain_t
;
317 /* Information about a unique "increment" associated with candidates
318 having an SSA name for a stride. An increment is the difference
319 between the index of the candidate and the index of its basis,
320 i.e., (i - i') as discussed in the module commentary.
322 When we are not going to generate address arithmetic we treat
323 increments that differ only in sign as the same, allowing sharing
324 of the cost of initializers. The absolute value of the increment
325 is stored in the incr_info. */
329 /* The increment that relates a candidate to its basis. */
332 /* How many times the increment occurs in the candidate tree. */
335 /* Cost of replacing candidates using this increment. Negative and
336 zero costs indicate replacement should be performed. */
339 /* If this increment is profitable but is not -1, 0, or 1, it requires
340 an initializer T_0 = stride * incr to be found or introduced in the
341 nearest common dominator of all candidates. This field holds T_0
342 for subsequent use. */
345 /* If the initializer was found to already exist, this is the block
346 where it was found. */
350 typedef struct incr_info_d incr_info
, *incr_info_t
;
352 /* Candidates are maintained in a vector. If candidate X dominates
353 candidate Y, then X appears before Y in the vector; but the
354 converse does not necessarily hold. */
355 static vec
<slsr_cand_t
> cand_vec
;
369 enum phi_adjust_status
375 enum count_phis_status
381 /* Constrain how many PHI nodes we will visit for a conditional
382 candidate (depth and breadth). */
383 const int MAX_SPREAD
= 16;
385 /* Pointer map embodying a mapping from statements to candidates. */
386 static hash_map
<gimple
*, slsr_cand_t
> *stmt_cand_map
;
388 /* Obstack for candidates. */
389 static struct obstack cand_obstack
;
391 /* Obstack for candidate chains. */
392 static struct obstack chain_obstack
;
394 /* An array INCR_VEC of incr_infos is used during analysis of related
395 candidates having an SSA name for a stride. INCR_VEC_LEN describes
396 its current length. MAX_INCR_VEC_LEN is used to avoid costly
397 pathological cases. */
398 static incr_info_t incr_vec
;
399 static unsigned incr_vec_len
;
400 const int MAX_INCR_VEC_LEN
= 16;
402 /* For a chain of candidates with unknown stride, indicates whether or not
403 we must generate pointer arithmetic when replacing statements. */
404 static bool address_arithmetic_p
;
406 /* Forward function declarations. */
407 static slsr_cand_t
base_cand_from_table (tree
);
408 static tree
introduce_cast_before_cand (slsr_cand_t
, tree
, tree
);
409 static bool legal_cast_p_1 (tree
, tree
);
411 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
414 lookup_cand (cand_idx idx
)
416 return cand_vec
[idx
- 1];
419 /* Helper for hashing a candidate chain header. */
421 struct cand_chain_hasher
: nofree_ptr_hash
<cand_chain
>
423 static inline hashval_t
hash (const cand_chain
*);
424 static inline bool equal (const cand_chain
*, const cand_chain
*);
428 cand_chain_hasher::hash (const cand_chain
*p
)
430 tree base_expr
= p
->base_expr
;
431 return iterative_hash_expr (base_expr
, 0);
435 cand_chain_hasher::equal (const cand_chain
*chain1
, const cand_chain
*chain2
)
437 return operand_equal_p (chain1
->base_expr
, chain2
->base_expr
, 0);
440 /* Hash table embodying a mapping from base exprs to chains of candidates. */
441 static hash_table
<cand_chain_hasher
> *base_cand_map
;
443 /* Pointer map used by tree_to_aff_combination_expand. */
444 static hash_map
<tree
, name_expansion
*> *name_expansions
;
445 /* Pointer map embodying a mapping from bases to alternative bases. */
446 static hash_map
<tree
, tree
> *alt_base_map
;
448 /* Given BASE, use the tree affine combiniation facilities to
449 find the underlying tree expression for BASE, with any
450 immediate offset excluded.
452 N.B. we should eliminate this backtracking with better forward
453 analysis in a future release. */
456 get_alternative_base (tree base
)
458 tree
*result
= alt_base_map
->get (base
);
465 tree_to_aff_combination_expand (base
, TREE_TYPE (base
),
466 &aff
, &name_expansions
);
468 expr
= aff_combination_to_tree (&aff
);
470 gcc_assert (!alt_base_map
->put (base
, base
== expr
? NULL
: expr
));
472 return expr
== base
? NULL
: expr
;
478 /* Look in the candidate table for a CAND_PHI that defines BASE and
479 return it if found; otherwise return NULL. */
482 find_phi_def (tree base
)
486 if (TREE_CODE (base
) != SSA_NAME
)
489 c
= base_cand_from_table (base
);
491 if (!c
|| c
->kind
!= CAND_PHI
492 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c
->cand_stmt
)))
498 /* Determine whether all uses of NAME are directly or indirectly
499 used by STMT. That is, we want to know whether if STMT goes
500 dead, the definition of NAME also goes dead. */
502 uses_consumed_by_stmt (tree name
, gimple
*stmt
, unsigned recurse
= 0)
505 imm_use_iterator iter
;
508 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, name
)
510 if (use_stmt
== stmt
|| is_gimple_debug (use_stmt
))
513 if (!is_gimple_assign (use_stmt
)
514 || !gimple_get_lhs (use_stmt
)
515 || !is_gimple_reg (gimple_get_lhs (use_stmt
))
517 || !uses_consumed_by_stmt (gimple_get_lhs (use_stmt
), stmt
,
521 BREAK_FROM_IMM_USE_STMT (iter
);
528 /* Helper routine for find_basis_for_candidate. May be called twice:
529 once for the candidate's base expr, and optionally again either for
530 the candidate's phi definition or for a CAND_REF's alternative base
534 find_basis_for_base_expr (slsr_cand_t c
, tree base_expr
)
536 cand_chain mapping_key
;
538 slsr_cand_t basis
= NULL
;
540 // Limit potential of N^2 behavior for long candidate chains.
542 int max_iters
= PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN
);
544 mapping_key
.base_expr
= base_expr
;
545 chain
= base_cand_map
->find (&mapping_key
);
547 for (; chain
&& iters
< max_iters
; chain
= chain
->next
, ++iters
)
549 slsr_cand_t one_basis
= chain
->cand
;
551 if (one_basis
->kind
!= c
->kind
552 || one_basis
->cand_stmt
== c
->cand_stmt
553 || !operand_equal_p (one_basis
->stride
, c
->stride
, 0)
554 || !types_compatible_p (one_basis
->cand_type
, c
->cand_type
)
555 || !types_compatible_p (one_basis
->stride_type
, c
->stride_type
)
556 || !dominated_by_p (CDI_DOMINATORS
,
557 gimple_bb (c
->cand_stmt
),
558 gimple_bb (one_basis
->cand_stmt
)))
561 tree lhs
= gimple_assign_lhs (one_basis
->cand_stmt
);
562 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
563 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
566 if (!basis
|| basis
->cand_num
< one_basis
->cand_num
)
573 /* Use the base expr from candidate C to look for possible candidates
574 that can serve as a basis for C. Each potential basis must also
575 appear in a block that dominates the candidate statement and have
576 the same stride and type. If more than one possible basis exists,
577 the one with highest index in the vector is chosen; this will be
578 the most immediately dominating basis. */
581 find_basis_for_candidate (slsr_cand_t c
)
583 slsr_cand_t basis
= find_basis_for_base_expr (c
, c
->base_expr
);
585 /* If a candidate doesn't have a basis using its base expression,
586 it may have a basis hidden by one or more intervening phis. */
587 if (!basis
&& c
->def_phi
)
589 basic_block basis_bb
, phi_bb
;
590 slsr_cand_t phi_cand
= lookup_cand (c
->def_phi
);
591 basis
= find_basis_for_base_expr (c
, phi_cand
->base_expr
);
595 /* A hidden basis must dominate the phi-definition of the
596 candidate's base name. */
597 phi_bb
= gimple_bb (phi_cand
->cand_stmt
);
598 basis_bb
= gimple_bb (basis
->cand_stmt
);
600 if (phi_bb
== basis_bb
601 || !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
607 /* If we found a hidden basis, estimate additional dead-code
608 savings if the phi and its feeding statements can be removed. */
609 tree feeding_var
= gimple_phi_result (phi_cand
->cand_stmt
);
610 if (basis
&& uses_consumed_by_stmt (feeding_var
, c
->cand_stmt
))
611 c
->dead_savings
+= phi_cand
->dead_savings
;
615 if (flag_expensive_optimizations
&& !basis
&& c
->kind
== CAND_REF
)
617 tree alt_base_expr
= get_alternative_base (c
->base_expr
);
619 basis
= find_basis_for_base_expr (c
, alt_base_expr
);
624 c
->sibling
= basis
->dependent
;
625 basis
->dependent
= c
->cand_num
;
626 return basis
->cand_num
;
632 /* Record a mapping from BASE to C, indicating that C may potentially serve
633 as a basis using that base expression. BASE may be the same as
634 C->BASE_EXPR; alternatively BASE can be a different tree that share the
635 underlining expression of C->BASE_EXPR. */
638 record_potential_basis (slsr_cand_t c
, tree base
)
645 node
= (cand_chain_t
) obstack_alloc (&chain_obstack
, sizeof (cand_chain
));
646 node
->base_expr
= base
;
649 slot
= base_cand_map
->find_slot (node
, INSERT
);
653 cand_chain_t head
= (cand_chain_t
) (*slot
);
654 node
->next
= head
->next
;
661 /* Allocate storage for a new candidate and initialize its fields.
662 Attempt to find a basis for the candidate.
664 For CAND_REF, an alternative base may also be recorded and used
665 to find a basis. This helps cases where the expression hidden
666 behind BASE (which is usually an SSA_NAME) has immediate offset,
670 a2[i + 20][j] = 2; */
673 alloc_cand_and_find_basis (enum cand_kind kind
, gimple
*gs
, tree base
,
674 const widest_int
&index
, tree stride
, tree ctype
,
675 tree stype
, unsigned savings
)
677 slsr_cand_t c
= (slsr_cand_t
) obstack_alloc (&cand_obstack
,
683 c
->cand_type
= ctype
;
684 c
->stride_type
= stype
;
686 c
->cand_num
= cand_vec
.length () + 1;
690 c
->def_phi
= kind
== CAND_MULT
? find_phi_def (base
) : 0;
691 c
->dead_savings
= savings
;
693 c
->cached_basis
= NULL_TREE
;
695 cand_vec
.safe_push (c
);
697 if (kind
== CAND_PHI
)
700 c
->basis
= find_basis_for_candidate (c
);
702 record_potential_basis (c
, base
);
703 if (flag_expensive_optimizations
&& kind
== CAND_REF
)
705 tree alt_base
= get_alternative_base (base
);
707 record_potential_basis (c
, alt_base
);
713 /* Determine the target cost of statement GS when compiling according
717 stmt_cost (gimple
*gs
, bool speed
)
719 tree lhs
, rhs1
, rhs2
;
720 machine_mode lhs_mode
;
722 gcc_assert (is_gimple_assign (gs
));
723 lhs
= gimple_assign_lhs (gs
);
724 rhs1
= gimple_assign_rhs1 (gs
);
725 lhs_mode
= TYPE_MODE (TREE_TYPE (lhs
));
727 switch (gimple_assign_rhs_code (gs
))
730 rhs2
= gimple_assign_rhs2 (gs
);
732 if (tree_fits_shwi_p (rhs2
))
733 return mult_by_coeff_cost (tree_to_shwi (rhs2
), lhs_mode
, speed
);
735 gcc_assert (TREE_CODE (rhs1
) != INTEGER_CST
);
736 return mul_cost (speed
, lhs_mode
);
739 case POINTER_PLUS_EXPR
:
741 return add_cost (speed
, lhs_mode
);
744 return neg_cost (speed
, lhs_mode
);
747 return convert_cost (lhs_mode
, TYPE_MODE (TREE_TYPE (rhs1
)), speed
);
749 /* Note that we don't assign costs to copies that in most cases
762 /* Look up the defining statement for BASE_IN and return a pointer
763 to its candidate in the candidate table, if any; otherwise NULL.
764 Only CAND_ADD and CAND_MULT candidates are returned. */
767 base_cand_from_table (tree base_in
)
771 gimple
*def
= SSA_NAME_DEF_STMT (base_in
);
773 return (slsr_cand_t
) NULL
;
775 result
= stmt_cand_map
->get (def
);
777 if (result
&& (*result
)->kind
!= CAND_REF
)
780 return (slsr_cand_t
) NULL
;
783 /* Add an entry to the statement-to-candidate mapping. */
786 add_cand_for_stmt (gimple
*gs
, slsr_cand_t c
)
788 gcc_assert (!stmt_cand_map
->put (gs
, c
));
791 /* Given PHI which contains a phi statement, determine whether it
792 satisfies all the requirements of a phi candidate. If so, create
793 a candidate. Note that a CAND_PHI never has a basis itself, but
794 is used to help find a basis for subsequent candidates. */
797 slsr_process_phi (gphi
*phi
, bool speed
)
800 tree arg0_base
= NULL_TREE
, base_type
;
802 struct loop
*cand_loop
= gimple_bb (phi
)->loop_father
;
803 unsigned savings
= 0;
805 /* A CAND_PHI requires each of its arguments to have the same
806 derived base name. (See the module header commentary for a
807 definition of derived base names.) Furthermore, all feeding
808 definitions must be in the same position in the loop hierarchy
811 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
813 slsr_cand_t arg_cand
;
814 tree arg
= gimple_phi_arg_def (phi
, i
);
815 tree derived_base_name
= NULL_TREE
;
816 gimple
*arg_stmt
= NULL
;
817 basic_block arg_bb
= NULL
;
819 if (TREE_CODE (arg
) != SSA_NAME
)
822 arg_cand
= base_cand_from_table (arg
);
826 while (arg_cand
->kind
!= CAND_ADD
&& arg_cand
->kind
!= CAND_PHI
)
828 if (!arg_cand
->next_interp
)
831 arg_cand
= lookup_cand (arg_cand
->next_interp
);
834 if (!integer_onep (arg_cand
->stride
))
837 derived_base_name
= arg_cand
->base_expr
;
838 arg_stmt
= arg_cand
->cand_stmt
;
839 arg_bb
= gimple_bb (arg_stmt
);
841 /* Gather potential dead code savings if the phi statement
842 can be removed later on. */
843 if (uses_consumed_by_stmt (arg
, phi
))
845 if (gimple_code (arg_stmt
) == GIMPLE_PHI
)
846 savings
+= arg_cand
->dead_savings
;
848 savings
+= stmt_cost (arg_stmt
, speed
);
851 else if (SSA_NAME_IS_DEFAULT_DEF (arg
))
853 derived_base_name
= arg
;
854 arg_bb
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
857 if (!arg_bb
|| arg_bb
->loop_father
!= cand_loop
)
861 arg0_base
= derived_base_name
;
862 else if (!operand_equal_p (derived_base_name
, arg0_base
, 0))
866 /* Create the candidate. "alloc_cand_and_find_basis" is named
867 misleadingly for this case, as no basis will be sought for a
869 base_type
= TREE_TYPE (arg0_base
);
871 c
= alloc_cand_and_find_basis (CAND_PHI
, phi
, arg0_base
,
872 0, integer_one_node
, base_type
,
875 /* Add the candidate to the statement-candidate mapping. */
876 add_cand_for_stmt (phi
, c
);
879 /* Given PBASE which is a pointer to tree, look up the defining
880 statement for it and check whether the candidate is in the
883 X = B + (1 * S), S is integer constant
884 X = B + (i * S), S is integer one
886 If so, set PBASE to the candidate's base_expr and return double
888 Otherwise, just return double int zero. */
891 backtrace_base_for_ref (tree
*pbase
)
893 tree base_in
= *pbase
;
894 slsr_cand_t base_cand
;
896 STRIP_NOPS (base_in
);
898 /* Strip off widening conversion(s) to handle cases where
899 e.g. 'B' is widened from an 'int' in order to calculate
901 if (CONVERT_EXPR_P (base_in
)
902 && legal_cast_p_1 (TREE_TYPE (base_in
),
903 TREE_TYPE (TREE_OPERAND (base_in
, 0))))
904 base_in
= get_unwidened (base_in
, NULL_TREE
);
906 if (TREE_CODE (base_in
) != SSA_NAME
)
909 base_cand
= base_cand_from_table (base_in
);
911 while (base_cand
&& base_cand
->kind
!= CAND_PHI
)
913 if (base_cand
->kind
== CAND_ADD
914 && base_cand
->index
== 1
915 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
917 /* X = B + (1 * S), S is integer constant. */
918 *pbase
= base_cand
->base_expr
;
919 return wi::to_widest (base_cand
->stride
);
921 else if (base_cand
->kind
== CAND_ADD
922 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
923 && integer_onep (base_cand
->stride
))
925 /* X = B + (i * S), S is integer one. */
926 *pbase
= base_cand
->base_expr
;
927 return base_cand
->index
;
930 if (base_cand
->next_interp
)
931 base_cand
= lookup_cand (base_cand
->next_interp
);
939 /* Look for the following pattern:
941 *PBASE: MEM_REF (T1, C1)
943 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
945 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
947 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
949 *PINDEX: C4 * BITS_PER_UNIT
951 If not present, leave the input values unchanged and return FALSE.
952 Otherwise, modify the input values as follows and return TRUE:
955 *POFFSET: MULT_EXPR (T2, C3)
956 *PINDEX: C1 + (C2 * C3) + C4
958 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
959 will be further restructured to:
962 *POFFSET: MULT_EXPR (T2', C3)
963 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
966 restructure_reference (tree
*pbase
, tree
*poffset
, widest_int
*pindex
,
969 tree base
= *pbase
, offset
= *poffset
;
970 widest_int index
= *pindex
;
971 tree mult_op0
, t1
, t2
, type
;
972 widest_int c1
, c2
, c3
, c4
, c5
;
976 || TREE_CODE (base
) != MEM_REF
977 || TREE_CODE (offset
) != MULT_EXPR
978 || TREE_CODE (TREE_OPERAND (offset
, 1)) != INTEGER_CST
979 || wi::umod_floor (index
, BITS_PER_UNIT
) != 0)
982 t1
= TREE_OPERAND (base
, 0);
983 c1
= widest_int::from (mem_ref_offset (base
), SIGNED
);
984 type
= TREE_TYPE (TREE_OPERAND (base
, 1));
986 mult_op0
= TREE_OPERAND (offset
, 0);
987 c3
= wi::to_widest (TREE_OPERAND (offset
, 1));
989 if (TREE_CODE (mult_op0
) == PLUS_EXPR
)
991 if (TREE_CODE (TREE_OPERAND (mult_op0
, 1)) == INTEGER_CST
)
993 t2
= TREE_OPERAND (mult_op0
, 0);
994 c2
= wi::to_widest (TREE_OPERAND (mult_op0
, 1));
999 else if (TREE_CODE (mult_op0
) == MINUS_EXPR
)
1001 if (TREE_CODE (TREE_OPERAND (mult_op0
, 1)) == INTEGER_CST
)
1003 t2
= TREE_OPERAND (mult_op0
, 0);
1004 c2
= -wi::to_widest (TREE_OPERAND (mult_op0
, 1));
1015 c4
= index
>> LOG2_BITS_PER_UNIT
;
1016 c5
= backtrace_base_for_ref (&t2
);
1019 *poffset
= fold_build2 (MULT_EXPR
, sizetype
, fold_convert (sizetype
, t2
),
1020 wide_int_to_tree (sizetype
, c3
));
1021 *pindex
= c1
+ c2
* c3
+ c4
+ c5
* c3
;
1027 /* Given GS which contains a data reference, create a CAND_REF entry in
1028 the candidate table and attempt to find a basis. */
1031 slsr_process_ref (gimple
*gs
)
1033 tree ref_expr
, base
, offset
, type
;
1034 poly_int64 bitsize
, bitpos
;
1036 int unsignedp
, reversep
, volatilep
;
1039 if (gimple_vdef (gs
))
1040 ref_expr
= gimple_assign_lhs (gs
);
1042 ref_expr
= gimple_assign_rhs1 (gs
);
1044 if (!handled_component_p (ref_expr
)
1045 || TREE_CODE (ref_expr
) == BIT_FIELD_REF
1046 || (TREE_CODE (ref_expr
) == COMPONENT_REF
1047 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr
, 1))))
1050 base
= get_inner_reference (ref_expr
, &bitsize
, &bitpos
, &offset
, &mode
,
1051 &unsignedp
, &reversep
, &volatilep
);
1052 HOST_WIDE_INT cbitpos
;
1053 if (reversep
|| !bitpos
.is_constant (&cbitpos
))
1055 widest_int index
= cbitpos
;
1057 if (!restructure_reference (&base
, &offset
, &index
, &type
))
1060 c
= alloc_cand_and_find_basis (CAND_REF
, gs
, base
, index
, offset
,
1063 /* Add the candidate to the statement-candidate mapping. */
1064 add_cand_for_stmt (gs
, c
);
1067 /* Create a candidate entry for a statement GS, where GS multiplies
1068 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1069 about the two SSA names into the new candidate. Return the new
1073 create_mul_ssa_cand (gimple
*gs
, tree base_in
, tree stride_in
, bool speed
)
1075 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1076 tree stype
= NULL_TREE
;
1078 unsigned savings
= 0;
1080 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1082 /* Look at all interpretations of the base candidate, if necessary,
1083 to find information to propagate into this candidate. */
1084 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1087 if (base_cand
->kind
== CAND_MULT
&& integer_onep (base_cand
->stride
))
1093 base
= base_cand
->base_expr
;
1094 index
= base_cand
->index
;
1096 ctype
= base_cand
->cand_type
;
1097 stype
= TREE_TYPE (stride_in
);
1098 if (has_single_use (base_in
))
1099 savings
= (base_cand
->dead_savings
1100 + stmt_cost (base_cand
->cand_stmt
, speed
));
1102 else if (base_cand
->kind
== CAND_ADD
1103 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1105 /* Y = B + (i' * S), S constant
1107 ============================
1108 X = B + ((i' * S) * Z) */
1109 base
= base_cand
->base_expr
;
1110 index
= base_cand
->index
* wi::to_widest (base_cand
->stride
);
1112 ctype
= base_cand
->cand_type
;
1113 stype
= TREE_TYPE (stride_in
);
1114 if (has_single_use (base_in
))
1115 savings
= (base_cand
->dead_savings
1116 + stmt_cost (base_cand
->cand_stmt
, speed
));
1119 if (base_cand
->next_interp
)
1120 base_cand
= lookup_cand (base_cand
->next_interp
);
1127 /* No interpretations had anything useful to propagate, so
1128 produce X = (Y + 0) * Z. */
1132 ctype
= TREE_TYPE (base_in
);
1133 stype
= TREE_TYPE (stride_in
);
1136 c
= alloc_cand_and_find_basis (CAND_MULT
, gs
, base
, index
, stride
,
1137 ctype
, stype
, savings
);
1141 /* Create a candidate entry for a statement GS, where GS multiplies
1142 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1143 information about BASE_IN into the new candidate. Return the new
1147 create_mul_imm_cand (gimple
*gs
, tree base_in
, tree stride_in
, bool speed
)
1149 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1150 widest_int index
, temp
;
1151 unsigned savings
= 0;
1153 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1155 /* Look at all interpretations of the base candidate, if necessary,
1156 to find information to propagate into this candidate. */
1157 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1159 if (base_cand
->kind
== CAND_MULT
1160 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1162 /* Y = (B + i') * S, S constant
1164 ============================
1165 X = (B + i') * (S * c) */
1166 temp
= wi::to_widest (base_cand
->stride
) * wi::to_widest (stride_in
);
1167 if (wi::fits_to_tree_p (temp
, TREE_TYPE (stride_in
)))
1169 base
= base_cand
->base_expr
;
1170 index
= base_cand
->index
;
1171 stride
= wide_int_to_tree (TREE_TYPE (stride_in
), temp
);
1172 ctype
= base_cand
->cand_type
;
1173 if (has_single_use (base_in
))
1174 savings
= (base_cand
->dead_savings
1175 + stmt_cost (base_cand
->cand_stmt
, speed
));
1178 else if (base_cand
->kind
== CAND_ADD
&& integer_onep (base_cand
->stride
))
1182 ===========================
1184 base
= base_cand
->base_expr
;
1185 index
= base_cand
->index
;
1187 ctype
= base_cand
->cand_type
;
1188 if (has_single_use (base_in
))
1189 savings
= (base_cand
->dead_savings
1190 + stmt_cost (base_cand
->cand_stmt
, speed
));
1192 else if (base_cand
->kind
== CAND_ADD
1193 && base_cand
->index
== 1
1194 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1196 /* Y = B + (1 * S), S constant
1198 ===========================
1200 base
= base_cand
->base_expr
;
1201 index
= wi::to_widest (base_cand
->stride
);
1203 ctype
= base_cand
->cand_type
;
1204 if (has_single_use (base_in
))
1205 savings
= (base_cand
->dead_savings
1206 + stmt_cost (base_cand
->cand_stmt
, speed
));
1209 if (base_cand
->next_interp
)
1210 base_cand
= lookup_cand (base_cand
->next_interp
);
1217 /* No interpretations had anything useful to propagate, so
1218 produce X = (Y + 0) * c. */
1222 ctype
= TREE_TYPE (base_in
);
1225 c
= alloc_cand_and_find_basis (CAND_MULT
, gs
, base
, index
, stride
,
1226 ctype
, sizetype
, savings
);
1230 /* Given GS which is a multiply of scalar integers, make an appropriate
1231 entry in the candidate table. If this is a multiply of two SSA names,
1232 create two CAND_MULT interpretations and attempt to find a basis for
1233 each of them. Otherwise, create a single CAND_MULT and attempt to
1237 slsr_process_mul (gimple
*gs
, tree rhs1
, tree rhs2
, bool speed
)
1241 /* If this is a multiply of an SSA name with itself, it is highly
1242 unlikely that we will get a strength reduction opportunity, so
1243 don't record it as a candidate. This simplifies the logic for
1244 finding a basis, so if this is removed that must be considered. */
1248 if (TREE_CODE (rhs2
) == SSA_NAME
)
1250 /* Record an interpretation of this statement in the candidate table
1251 assuming RHS1 is the base expression and RHS2 is the stride. */
1252 c
= create_mul_ssa_cand (gs
, rhs1
, rhs2
, speed
);
1254 /* Add the first interpretation to the statement-candidate mapping. */
1255 add_cand_for_stmt (gs
, c
);
1257 /* Record another interpretation of this statement assuming RHS1
1258 is the stride and RHS2 is the base expression. */
1259 c2
= create_mul_ssa_cand (gs
, rhs2
, rhs1
, speed
);
1260 c
->next_interp
= c2
->cand_num
;
1262 else if (TREE_CODE (rhs2
) == INTEGER_CST
)
1264 /* Record an interpretation for the multiply-immediate. */
1265 c
= create_mul_imm_cand (gs
, rhs1
, rhs2
, speed
);
1267 /* Add the interpretation to the statement-candidate mapping. */
1268 add_cand_for_stmt (gs
, c
);
1272 /* Create a candidate entry for a statement GS, where GS adds two
1273 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1274 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1275 information about the two SSA names into the new candidate.
1276 Return the new candidate. */
1279 create_add_ssa_cand (gimple
*gs
, tree base_in
, tree addend_in
,
1280 bool subtract_p
, bool speed
)
1282 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1283 tree stype
= NULL_TREE
;
1285 unsigned savings
= 0;
1287 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1288 slsr_cand_t addend_cand
= base_cand_from_table (addend_in
);
1290 /* The most useful transformation is a multiply-immediate feeding
1291 an add or subtract. Look for that first. */
1292 while (addend_cand
&& !base
&& addend_cand
->kind
!= CAND_PHI
)
1294 if (addend_cand
->kind
== CAND_MULT
1295 && addend_cand
->index
== 0
1296 && TREE_CODE (addend_cand
->stride
) == INTEGER_CST
)
1298 /* Z = (B + 0) * S, S constant
1300 ===========================
1301 X = Y + ((+/-1 * S) * B) */
1303 index
= wi::to_widest (addend_cand
->stride
);
1306 stride
= addend_cand
->base_expr
;
1307 ctype
= TREE_TYPE (base_in
);
1308 stype
= addend_cand
->cand_type
;
1309 if (has_single_use (addend_in
))
1310 savings
= (addend_cand
->dead_savings
1311 + stmt_cost (addend_cand
->cand_stmt
, speed
));
1314 if (addend_cand
->next_interp
)
1315 addend_cand
= lookup_cand (addend_cand
->next_interp
);
1320 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1322 if (base_cand
->kind
== CAND_ADD
1323 && (base_cand
->index
== 0
1324 || operand_equal_p (base_cand
->stride
,
1325 integer_zero_node
, 0)))
1327 /* Y = B + (i' * S), i' * S = 0
1329 ============================
1330 X = B + (+/-1 * Z) */
1331 base
= base_cand
->base_expr
;
1332 index
= subtract_p
? -1 : 1;
1334 ctype
= base_cand
->cand_type
;
1335 stype
= (TREE_CODE (addend_in
) == INTEGER_CST
? sizetype
1336 : TREE_TYPE (addend_in
));
1337 if (has_single_use (base_in
))
1338 savings
= (base_cand
->dead_savings
1339 + stmt_cost (base_cand
->cand_stmt
, speed
));
1341 else if (subtract_p
)
1343 slsr_cand_t subtrahend_cand
= base_cand_from_table (addend_in
);
1345 while (subtrahend_cand
&& !base
&& subtrahend_cand
->kind
!= CAND_PHI
)
1347 if (subtrahend_cand
->kind
== CAND_MULT
1348 && subtrahend_cand
->index
== 0
1349 && TREE_CODE (subtrahend_cand
->stride
) == INTEGER_CST
)
1351 /* Z = (B + 0) * S, S constant
1353 ===========================
1354 Value: X = Y + ((-1 * S) * B) */
1356 index
= wi::to_widest (subtrahend_cand
->stride
);
1358 stride
= subtrahend_cand
->base_expr
;
1359 ctype
= TREE_TYPE (base_in
);
1360 stype
= subtrahend_cand
->cand_type
;
1361 if (has_single_use (addend_in
))
1362 savings
= (subtrahend_cand
->dead_savings
1363 + stmt_cost (subtrahend_cand
->cand_stmt
, speed
));
1366 if (subtrahend_cand
->next_interp
)
1367 subtrahend_cand
= lookup_cand (subtrahend_cand
->next_interp
);
1369 subtrahend_cand
= NULL
;
1373 if (base_cand
->next_interp
)
1374 base_cand
= lookup_cand (base_cand
->next_interp
);
1381 /* No interpretations had anything useful to propagate, so
1382 produce X = Y + (1 * Z). */
1384 index
= subtract_p
? -1 : 1;
1386 ctype
= TREE_TYPE (base_in
);
1387 stype
= (TREE_CODE (addend_in
) == INTEGER_CST
? sizetype
1388 : TREE_TYPE (addend_in
));
1391 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, base
, index
, stride
,
1392 ctype
, stype
, savings
);
1396 /* Create a candidate entry for a statement GS, where GS adds SSA
1397 name BASE_IN to constant INDEX_IN. Propagate any known information
1398 about BASE_IN into the new candidate. Return the new candidate. */
1401 create_add_imm_cand (gimple
*gs
, tree base_in
, const widest_int
&index_in
,
1404 enum cand_kind kind
= CAND_ADD
;
1405 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1406 tree stype
= NULL_TREE
;
1407 widest_int index
, multiple
;
1408 unsigned savings
= 0;
1410 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1412 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1414 signop sign
= TYPE_SIGN (TREE_TYPE (base_cand
->stride
));
1416 if (TREE_CODE (base_cand
->stride
) == INTEGER_CST
1417 && wi::multiple_of_p (index_in
, wi::to_widest (base_cand
->stride
),
1420 /* Y = (B + i') * S, S constant, c = kS for some integer k
1422 ============================
1423 X = (B + (i'+ k)) * S
1425 Y = B + (i' * S), S constant, c = kS for some integer k
1427 ============================
1428 X = (B + (i'+ k)) * S */
1429 kind
= base_cand
->kind
;
1430 base
= base_cand
->base_expr
;
1431 index
= base_cand
->index
+ multiple
;
1432 stride
= base_cand
->stride
;
1433 ctype
= base_cand
->cand_type
;
1434 stype
= base_cand
->stride_type
;
1435 if (has_single_use (base_in
))
1436 savings
= (base_cand
->dead_savings
1437 + stmt_cost (base_cand
->cand_stmt
, speed
));
1440 if (base_cand
->next_interp
)
1441 base_cand
= lookup_cand (base_cand
->next_interp
);
1448 /* No interpretations had anything useful to propagate, so
1449 produce X = Y + (c * 1). */
1453 stride
= integer_one_node
;
1454 ctype
= TREE_TYPE (base_in
);
1458 c
= alloc_cand_and_find_basis (kind
, gs
, base
, index
, stride
,
1459 ctype
, stype
, savings
);
1463 /* Given GS which is an add or subtract of scalar integers or pointers,
1464 make at least one appropriate entry in the candidate table. */
1467 slsr_process_add (gimple
*gs
, tree rhs1
, tree rhs2
, bool speed
)
1469 bool subtract_p
= gimple_assign_rhs_code (gs
) == MINUS_EXPR
;
1470 slsr_cand_t c
= NULL
, c2
;
1472 if (TREE_CODE (rhs2
) == SSA_NAME
)
1474 /* First record an interpretation assuming RHS1 is the base expression
1475 and RHS2 is the stride. But it doesn't make sense for the
1476 stride to be a pointer, so don't record a candidate in that case. */
1477 if (!POINTER_TYPE_P (TREE_TYPE (rhs2
)))
1479 c
= create_add_ssa_cand (gs
, rhs1
, rhs2
, subtract_p
, speed
);
1481 /* Add the first interpretation to the statement-candidate
1483 add_cand_for_stmt (gs
, c
);
1486 /* If the two RHS operands are identical, or this is a subtract,
1488 if (operand_equal_p (rhs1
, rhs2
, 0) || subtract_p
)
1491 /* Otherwise, record another interpretation assuming RHS2 is the
1492 base expression and RHS1 is the stride, again provided that the
1493 stride is not a pointer. */
1494 if (!POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1496 c2
= create_add_ssa_cand (gs
, rhs2
, rhs1
, false, speed
);
1498 c
->next_interp
= c2
->cand_num
;
1500 add_cand_for_stmt (gs
, c2
);
1503 else if (TREE_CODE (rhs2
) == INTEGER_CST
)
1505 /* Record an interpretation for the add-immediate. */
1506 widest_int index
= wi::to_widest (rhs2
);
1510 c
= create_add_imm_cand (gs
, rhs1
, index
, speed
);
1512 /* Add the interpretation to the statement-candidate mapping. */
1513 add_cand_for_stmt (gs
, c
);
1517 /* Given GS which is a negate of a scalar integer, make an appropriate
1518 entry in the candidate table. A negate is equivalent to a multiply
1522 slsr_process_neg (gimple
*gs
, tree rhs1
, bool speed
)
1524 /* Record a CAND_MULT interpretation for the multiply by -1. */
1525 slsr_cand_t c
= create_mul_imm_cand (gs
, rhs1
, integer_minus_one_node
, speed
);
1527 /* Add the interpretation to the statement-candidate mapping. */
1528 add_cand_for_stmt (gs
, c
);
1531 /* Help function for legal_cast_p, operating on two trees. Checks
1532 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1533 for more details. */
1536 legal_cast_p_1 (tree lhs_type
, tree rhs_type
)
1538 unsigned lhs_size
, rhs_size
;
1539 bool lhs_wraps
, rhs_wraps
;
1541 lhs_size
= TYPE_PRECISION (lhs_type
);
1542 rhs_size
= TYPE_PRECISION (rhs_type
);
1543 lhs_wraps
= ANY_INTEGRAL_TYPE_P (lhs_type
) && TYPE_OVERFLOW_WRAPS (lhs_type
);
1544 rhs_wraps
= ANY_INTEGRAL_TYPE_P (rhs_type
) && TYPE_OVERFLOW_WRAPS (rhs_type
);
1546 if (lhs_size
< rhs_size
1547 || (rhs_wraps
&& !lhs_wraps
)
1548 || (rhs_wraps
&& lhs_wraps
&& rhs_size
!= lhs_size
))
1554 /* Return TRUE if GS is a statement that defines an SSA name from
1555 a conversion and is legal for us to combine with an add and multiply
1556 in the candidate table. For example, suppose we have:
1562 Without the type-cast, we would create a CAND_MULT for D with base B,
1563 index i, and stride S. We want to record this candidate only if it
1564 is equivalent to apply the type cast following the multiply:
1570 We will record the type with the candidate for D. This allows us
1571 to use a similar previous candidate as a basis. If we have earlier seen
1577 we can replace D with
1579 D = D' + (i - i') * S;
1581 But if moving the type-cast would change semantics, we mustn't do this.
1583 This is legitimate for casts from a non-wrapping integral type to
1584 any integral type of the same or larger size. It is not legitimate
1585 to convert a wrapping type to a non-wrapping type, or to a wrapping
1586 type of a different size. I.e., with a wrapping type, we must
1587 assume that the addition B + i could wrap, in which case performing
1588 the multiply before or after one of the "illegal" type casts will
1589 have different semantics. */
1592 legal_cast_p (gimple
*gs
, tree rhs
)
1594 if (!is_gimple_assign (gs
)
1595 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs
)))
1598 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs
)), TREE_TYPE (rhs
));
1601 /* Given GS which is a cast to a scalar integer type, determine whether
1602 the cast is legal for strength reduction. If so, make at least one
1603 appropriate entry in the candidate table. */
1606 slsr_process_cast (gimple
*gs
, tree rhs1
, bool speed
)
1609 slsr_cand_t base_cand
, c
= NULL
, c2
;
1610 unsigned savings
= 0;
1612 if (!legal_cast_p (gs
, rhs1
))
1615 lhs
= gimple_assign_lhs (gs
);
1616 base_cand
= base_cand_from_table (rhs1
);
1617 ctype
= TREE_TYPE (lhs
);
1619 if (base_cand
&& base_cand
->kind
!= CAND_PHI
)
1623 /* Propagate all data from the base candidate except the type,
1624 which comes from the cast, and the base candidate's cast,
1625 which is no longer applicable. */
1626 if (has_single_use (rhs1
))
1627 savings
= (base_cand
->dead_savings
1628 + stmt_cost (base_cand
->cand_stmt
, speed
));
1630 c
= alloc_cand_and_find_basis (base_cand
->kind
, gs
,
1631 base_cand
->base_expr
,
1632 base_cand
->index
, base_cand
->stride
,
1633 ctype
, base_cand
->stride_type
,
1635 if (base_cand
->next_interp
)
1636 base_cand
= lookup_cand (base_cand
->next_interp
);
1643 /* If nothing is known about the RHS, create fresh CAND_ADD and
1644 CAND_MULT interpretations:
1649 The first of these is somewhat arbitrary, but the choice of
1650 1 for the stride simplifies the logic for propagating casts
1652 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, rhs1
, 0,
1653 integer_one_node
, ctype
, sizetype
, 0);
1654 c2
= alloc_cand_and_find_basis (CAND_MULT
, gs
, rhs1
, 0,
1655 integer_one_node
, ctype
, sizetype
, 0);
1656 c
->next_interp
= c2
->cand_num
;
1659 /* Add the first (or only) interpretation to the statement-candidate
1661 add_cand_for_stmt (gs
, c
);
1664 /* Given GS which is a copy of a scalar integer type, make at least one
1665 appropriate entry in the candidate table.
1667 This interface is included for completeness, but is unnecessary
1668 if this pass immediately follows a pass that performs copy
1669 propagation, such as DOM. */
1672 slsr_process_copy (gimple
*gs
, tree rhs1
, bool speed
)
1674 slsr_cand_t base_cand
, c
= NULL
, c2
;
1675 unsigned savings
= 0;
1677 base_cand
= base_cand_from_table (rhs1
);
1679 if (base_cand
&& base_cand
->kind
!= CAND_PHI
)
1683 /* Propagate all data from the base candidate. */
1684 if (has_single_use (rhs1
))
1685 savings
= (base_cand
->dead_savings
1686 + stmt_cost (base_cand
->cand_stmt
, speed
));
1688 c
= alloc_cand_and_find_basis (base_cand
->kind
, gs
,
1689 base_cand
->base_expr
,
1690 base_cand
->index
, base_cand
->stride
,
1691 base_cand
->cand_type
,
1692 base_cand
->stride_type
, savings
);
1693 if (base_cand
->next_interp
)
1694 base_cand
= lookup_cand (base_cand
->next_interp
);
1701 /* If nothing is known about the RHS, create fresh CAND_ADD and
1702 CAND_MULT interpretations:
1707 The first of these is somewhat arbitrary, but the choice of
1708 1 for the stride simplifies the logic for propagating casts
1710 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, rhs1
, 0,
1711 integer_one_node
, TREE_TYPE (rhs1
),
1713 c2
= alloc_cand_and_find_basis (CAND_MULT
, gs
, rhs1
, 0,
1714 integer_one_node
, TREE_TYPE (rhs1
),
1716 c
->next_interp
= c2
->cand_num
;
1719 /* Add the first (or only) interpretation to the statement-candidate
1721 add_cand_for_stmt (gs
, c
);
1724 class find_candidates_dom_walker
: public dom_walker
1727 find_candidates_dom_walker (cdi_direction direction
)
1728 : dom_walker (direction
) {}
1729 virtual edge
before_dom_children (basic_block
);
1732 /* Find strength-reduction candidates in block BB. */
1735 find_candidates_dom_walker::before_dom_children (basic_block bb
)
1737 bool speed
= optimize_bb_for_speed_p (bb
);
1739 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
1741 slsr_process_phi (gsi
.phi (), speed
);
1743 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
1746 gimple
*gs
= gsi_stmt (gsi
);
1748 if (gimple_vuse (gs
) && gimple_assign_single_p (gs
))
1749 slsr_process_ref (gs
);
1751 else if (is_gimple_assign (gs
)
1752 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs
)))
1753 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs
)))))
1755 tree rhs1
= NULL_TREE
, rhs2
= NULL_TREE
;
1757 switch (gimple_assign_rhs_code (gs
))
1761 rhs1
= gimple_assign_rhs1 (gs
);
1762 rhs2
= gimple_assign_rhs2 (gs
);
1763 /* Should never happen, but currently some buggy situations
1764 in earlier phases put constants in rhs1. */
1765 if (TREE_CODE (rhs1
) != SSA_NAME
)
1769 /* Possible future opportunity: rhs1 of a ptr+ can be
1771 case POINTER_PLUS_EXPR
:
1773 rhs2
= gimple_assign_rhs2 (gs
);
1779 rhs1
= gimple_assign_rhs1 (gs
);
1780 if (TREE_CODE (rhs1
) != SSA_NAME
)
1788 switch (gimple_assign_rhs_code (gs
))
1791 slsr_process_mul (gs
, rhs1
, rhs2
, speed
);
1795 case POINTER_PLUS_EXPR
:
1797 slsr_process_add (gs
, rhs1
, rhs2
, speed
);
1801 slsr_process_neg (gs
, rhs1
, speed
);
1805 slsr_process_cast (gs
, rhs1
, speed
);
1809 slsr_process_copy (gs
, rhs1
, speed
);
1820 /* Dump a candidate for debug. */
1823 dump_candidate (slsr_cand_t c
)
1825 fprintf (dump_file
, "%3d [%d] ", c
->cand_num
,
1826 gimple_bb (c
->cand_stmt
)->index
);
1827 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
1831 fputs (" MULT : (", dump_file
);
1832 print_generic_expr (dump_file
, c
->base_expr
);
1833 fputs (" + ", dump_file
);
1834 print_decs (c
->index
, dump_file
);
1835 fputs (") * ", dump_file
);
1836 if (TREE_CODE (c
->stride
) != INTEGER_CST
1837 && c
->stride_type
!= TREE_TYPE (c
->stride
))
1839 fputs ("(", dump_file
);
1840 print_generic_expr (dump_file
, c
->stride_type
);
1841 fputs (")", dump_file
);
1843 print_generic_expr (dump_file
, c
->stride
);
1844 fputs (" : ", dump_file
);
1847 fputs (" ADD : ", dump_file
);
1848 print_generic_expr (dump_file
, c
->base_expr
);
1849 fputs (" + (", dump_file
);
1850 print_decs (c
->index
, dump_file
);
1851 fputs (" * ", dump_file
);
1852 if (TREE_CODE (c
->stride
) != INTEGER_CST
1853 && c
->stride_type
!= TREE_TYPE (c
->stride
))
1855 fputs ("(", dump_file
);
1856 print_generic_expr (dump_file
, c
->stride_type
);
1857 fputs (")", dump_file
);
1859 print_generic_expr (dump_file
, c
->stride
);
1860 fputs (") : ", dump_file
);
1863 fputs (" REF : ", dump_file
);
1864 print_generic_expr (dump_file
, c
->base_expr
);
1865 fputs (" + (", dump_file
);
1866 print_generic_expr (dump_file
, c
->stride
);
1867 fputs (") + ", dump_file
);
1868 print_decs (c
->index
, dump_file
);
1869 fputs (" : ", dump_file
);
1872 fputs (" PHI : ", dump_file
);
1873 print_generic_expr (dump_file
, c
->base_expr
);
1874 fputs (" + (unknown * ", dump_file
);
1875 print_generic_expr (dump_file
, c
->stride
);
1876 fputs (") : ", dump_file
);
1881 print_generic_expr (dump_file
, c
->cand_type
);
1882 fprintf (dump_file
, "\n basis: %d dependent: %d sibling: %d\n",
1883 c
->basis
, c
->dependent
, c
->sibling
);
1884 fprintf (dump_file
, " next-interp: %d dead-savings: %d\n",
1885 c
->next_interp
, c
->dead_savings
);
1887 fprintf (dump_file
, " phi: %d\n", c
->def_phi
);
1888 fputs ("\n", dump_file
);
1891 /* Dump the candidate vector for debug. */
1894 dump_cand_vec (void)
1899 fprintf (dump_file
, "\nStrength reduction candidate vector:\n\n");
1901 FOR_EACH_VEC_ELT (cand_vec
, i
, c
)
1905 /* Callback used to dump the candidate chains hash table. */
1908 ssa_base_cand_dump_callback (cand_chain
**slot
, void *ignored ATTRIBUTE_UNUSED
)
1910 const_cand_chain_t chain
= *slot
;
1913 print_generic_expr (dump_file
, chain
->base_expr
);
1914 fprintf (dump_file
, " -> %d", chain
->cand
->cand_num
);
1916 for (p
= chain
->next
; p
; p
= p
->next
)
1917 fprintf (dump_file
, " -> %d", p
->cand
->cand_num
);
1919 fputs ("\n", dump_file
);
1923 /* Dump the candidate chains. */
1926 dump_cand_chains (void)
1928 fprintf (dump_file
, "\nStrength reduction candidate chains:\n\n");
1929 base_cand_map
->traverse_noresize
<void *, ssa_base_cand_dump_callback
>
1931 fputs ("\n", dump_file
);
1934 /* Dump the increment vector for debug. */
1937 dump_incr_vec (void)
1939 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1943 fprintf (dump_file
, "\nIncrement vector:\n\n");
1945 for (i
= 0; i
< incr_vec_len
; i
++)
1947 fprintf (dump_file
, "%3d increment: ", i
);
1948 print_decs (incr_vec
[i
].incr
, dump_file
);
1949 fprintf (dump_file
, "\n count: %d", incr_vec
[i
].count
);
1950 fprintf (dump_file
, "\n cost: %d", incr_vec
[i
].cost
);
1951 fputs ("\n initializer: ", dump_file
);
1952 print_generic_expr (dump_file
, incr_vec
[i
].initializer
);
1953 fputs ("\n\n", dump_file
);
1958 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1962 replace_ref (tree
*expr
, slsr_cand_t c
)
1964 tree add_expr
, mem_ref
, acc_type
= TREE_TYPE (*expr
);
1965 unsigned HOST_WIDE_INT misalign
;
1968 /* Ensure the memory reference carries the minimum alignment
1969 requirement for the data type. See PR58041. */
1970 get_object_alignment_1 (*expr
, &align
, &misalign
);
1972 align
= least_bit_hwi (misalign
);
1973 if (align
< TYPE_ALIGN (acc_type
))
1974 acc_type
= build_aligned_type (acc_type
, align
);
1976 add_expr
= fold_build2 (POINTER_PLUS_EXPR
, c
->cand_type
,
1977 c
->base_expr
, c
->stride
);
1978 mem_ref
= fold_build2 (MEM_REF
, acc_type
, add_expr
,
1979 wide_int_to_tree (c
->cand_type
, c
->index
));
1981 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1982 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
1983 TREE_OPERAND (mem_ref
, 0)
1984 = force_gimple_operand_gsi (&gsi
, TREE_OPERAND (mem_ref
, 0),
1985 /*simple_p=*/true, NULL
,
1986 /*before=*/true, GSI_SAME_STMT
);
1987 copy_ref_info (mem_ref
, *expr
);
1989 update_stmt (c
->cand_stmt
);
1992 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
1993 dependent of candidate C with an equivalent strength-reduced data
1997 replace_refs (slsr_cand_t c
)
1999 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2001 fputs ("Replacing reference: ", dump_file
);
2002 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
2005 if (gimple_vdef (c
->cand_stmt
))
2007 tree
*lhs
= gimple_assign_lhs_ptr (c
->cand_stmt
);
2008 replace_ref (lhs
, c
);
2012 tree
*rhs
= gimple_assign_rhs1_ptr (c
->cand_stmt
);
2013 replace_ref (rhs
, c
);
2016 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2018 fputs ("With: ", dump_file
);
2019 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
2020 fputs ("\n", dump_file
);
2024 replace_refs (lookup_cand (c
->sibling
));
2027 replace_refs (lookup_cand (c
->dependent
));
2030 /* Return TRUE if candidate C is dependent upon a PHI. */
2033 phi_dependent_cand_p (slsr_cand_t c
)
2035 /* A candidate is not necessarily dependent upon a PHI just because
2036 it has a phi definition for its base name. It may have a basis
2037 that relies upon the same phi definition, in which case the PHI
2038 is irrelevant to this candidate. */
2041 && lookup_cand (c
->basis
)->def_phi
!= c
->def_phi
);
2044 /* Calculate the increment required for candidate C relative to
2048 cand_increment (slsr_cand_t c
)
2052 /* If the candidate doesn't have a basis, just return its own
2053 index. This is useful in record_increments to help us find
2054 an existing initializer. Also, if the candidate's basis is
2055 hidden by a phi, then its own index will be the increment
2056 from the newly introduced phi basis. */
2057 if (!c
->basis
|| phi_dependent_cand_p (c
))
2060 basis
= lookup_cand (c
->basis
);
2061 gcc_assert (operand_equal_p (c
->base_expr
, basis
->base_expr
, 0));
2062 return c
->index
- basis
->index
;
2065 /* Calculate the increment required for candidate C relative to
2066 its basis. If we aren't going to generate pointer arithmetic
2067 for this candidate, return the absolute value of that increment
2070 static inline widest_int
2071 cand_abs_increment (slsr_cand_t c
)
2073 widest_int increment
= cand_increment (c
);
2075 if (!address_arithmetic_p
&& wi::neg_p (increment
))
2076 increment
= -increment
;
2081 /* Return TRUE iff candidate C has already been replaced under
2082 another interpretation. */
2085 cand_already_replaced (slsr_cand_t c
)
2087 return (gimple_bb (c
->cand_stmt
) == 0);
2090 /* Common logic used by replace_unconditional_candidate and
2091 replace_conditional_candidate. */
2094 replace_mult_candidate (slsr_cand_t c
, tree basis_name
, widest_int bump
)
2096 tree target_type
= TREE_TYPE (gimple_assign_lhs (c
->cand_stmt
));
2097 enum tree_code cand_code
= gimple_assign_rhs_code (c
->cand_stmt
);
2099 /* It is not useful to replace casts, copies, negates, or adds of
2100 an SSA name and a constant. */
2101 if (cand_code
== SSA_NAME
2102 || CONVERT_EXPR_CODE_P (cand_code
)
2103 || cand_code
== PLUS_EXPR
2104 || cand_code
== POINTER_PLUS_EXPR
2105 || cand_code
== MINUS_EXPR
2106 || cand_code
== NEGATE_EXPR
)
2109 enum tree_code code
= PLUS_EXPR
;
2111 gimple
*stmt_to_print
= NULL
;
2113 if (wi::neg_p (bump
))
2119 /* It is possible that the resulting bump doesn't fit in target_type.
2120 Abandon the replacement in this case. This does not affect
2121 siblings or dependents of C. */
2122 if (bump
!= wi::ext (bump
, TYPE_PRECISION (target_type
),
2123 TYPE_SIGN (target_type
)))
2126 bump_tree
= wide_int_to_tree (target_type
, bump
);
2128 /* If the basis name and the candidate's LHS have incompatible types,
2129 introduce a cast. */
2130 if (!useless_type_conversion_p (target_type
, TREE_TYPE (basis_name
)))
2131 basis_name
= introduce_cast_before_cand (c
, target_type
, basis_name
);
2133 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2135 fputs ("Replacing: ", dump_file
);
2136 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
2141 tree lhs
= gimple_assign_lhs (c
->cand_stmt
);
2142 gassign
*copy_stmt
= gimple_build_assign (lhs
, basis_name
);
2143 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2145 gimple_set_location (copy_stmt
, gimple_location (c
->cand_stmt
));
2146 gsi_replace (&gsi
, copy_stmt
, false);
2147 c
->cand_stmt
= copy_stmt
;
2148 while (cc
->next_interp
)
2150 cc
= lookup_cand (cc
->next_interp
);
2151 cc
->cand_stmt
= copy_stmt
;
2153 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2154 stmt_to_print
= copy_stmt
;
2159 if (cand_code
!= NEGATE_EXPR
) {
2160 rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
2161 rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
2163 if (cand_code
!= NEGATE_EXPR
2164 && ((operand_equal_p (rhs1
, basis_name
, 0)
2165 && operand_equal_p (rhs2
, bump_tree
, 0))
2166 || (operand_equal_p (rhs1
, bump_tree
, 0)
2167 && operand_equal_p (rhs2
, basis_name
, 0))))
2169 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2171 fputs ("(duplicate, not actually replacing)", dump_file
);
2172 stmt_to_print
= c
->cand_stmt
;
2177 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2179 gimple_assign_set_rhs_with_ops (&gsi
, code
, basis_name
, bump_tree
);
2180 update_stmt (gsi_stmt (gsi
));
2181 c
->cand_stmt
= gsi_stmt (gsi
);
2182 while (cc
->next_interp
)
2184 cc
= lookup_cand (cc
->next_interp
);
2185 cc
->cand_stmt
= gsi_stmt (gsi
);
2187 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2188 stmt_to_print
= gsi_stmt (gsi
);
2192 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2194 fputs ("With: ", dump_file
);
2195 print_gimple_stmt (dump_file
, stmt_to_print
, 0);
2196 fputs ("\n", dump_file
);
2200 /* Replace candidate C with an add or subtract. Note that we only
2201 operate on CAND_MULTs with known strides, so we will never generate
2202 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2203 X = Y + ((i - i') * S), as described in the module commentary. The
2204 folded value ((i - i') * S) is referred to here as the "bump." */
2207 replace_unconditional_candidate (slsr_cand_t c
)
2211 if (cand_already_replaced (c
))
2214 basis
= lookup_cand (c
->basis
);
2215 widest_int bump
= cand_increment (c
) * wi::to_widest (c
->stride
);
2217 replace_mult_candidate (c
, gimple_assign_lhs (basis
->cand_stmt
), bump
);
2220 /* Return the index in the increment vector of the given INCREMENT,
2221 or -1 if not found. The latter can occur if more than
2222 MAX_INCR_VEC_LEN increments have been found. */
2225 incr_vec_index (const widest_int
&increment
)
2229 for (i
= 0; i
< incr_vec_len
&& increment
!= incr_vec
[i
].incr
; i
++)
2232 if (i
< incr_vec_len
)
2238 /* Create a new statement along edge E to add BASIS_NAME to the product
2239 of INCREMENT and the stride of candidate C. Create and return a new
2240 SSA name from *VAR to be used as the LHS of the new statement.
2241 KNOWN_STRIDE is true iff C's stride is a constant. */
2244 create_add_on_incoming_edge (slsr_cand_t c
, tree basis_name
,
2245 widest_int increment
, edge e
, location_t loc
,
2248 tree lhs
, basis_type
;
2249 gassign
*new_stmt
, *cast_stmt
= NULL
;
2251 /* If the add candidate along this incoming edge has the same
2252 index as C's hidden basis, the hidden basis represents this
2257 basis_type
= TREE_TYPE (basis_name
);
2258 lhs
= make_temp_ssa_name (basis_type
, NULL
, "slsr");
2260 /* Occasionally people convert integers to pointers without a
2261 cast, leading us into trouble if we aren't careful. */
2262 enum tree_code plus_code
2263 = POINTER_TYPE_P (basis_type
) ? POINTER_PLUS_EXPR
: PLUS_EXPR
;
2268 enum tree_code code
= plus_code
;
2269 widest_int bump
= increment
* wi::to_widest (c
->stride
);
2270 if (wi::neg_p (bump
) && !POINTER_TYPE_P (basis_type
))
2276 tree stride_type
= POINTER_TYPE_P (basis_type
) ? sizetype
: basis_type
;
2277 bump_tree
= wide_int_to_tree (stride_type
, bump
);
2278 new_stmt
= gimple_build_assign (lhs
, code
, basis_name
, bump_tree
);
2283 bool negate_incr
= !POINTER_TYPE_P (basis_type
) && wi::neg_p (increment
);
2284 i
= incr_vec_index (negate_incr
? -increment
: increment
);
2285 gcc_assert (i
>= 0);
2287 if (incr_vec
[i
].initializer
)
2289 enum tree_code code
= negate_incr
? MINUS_EXPR
: plus_code
;
2290 new_stmt
= gimple_build_assign (lhs
, code
, basis_name
,
2291 incr_vec
[i
].initializer
);
2296 if (!types_compatible_p (TREE_TYPE (c
->stride
), c
->stride_type
))
2298 tree cast_stride
= make_temp_ssa_name (c
->stride_type
, NULL
,
2300 cast_stmt
= gimple_build_assign (cast_stride
, NOP_EXPR
,
2302 stride
= cast_stride
;
2308 new_stmt
= gimple_build_assign (lhs
, plus_code
, basis_name
, stride
);
2309 else if (increment
== -1)
2310 new_stmt
= gimple_build_assign (lhs
, MINUS_EXPR
, basis_name
, stride
);
2318 gimple_set_location (cast_stmt
, loc
);
2319 gsi_insert_on_edge (e
, cast_stmt
);
2322 gimple_set_location (new_stmt
, loc
);
2323 gsi_insert_on_edge (e
, new_stmt
);
2325 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2329 fprintf (dump_file
, "Inserting cast on edge %d->%d: ",
2330 e
->src
->index
, e
->dest
->index
);
2331 print_gimple_stmt (dump_file
, cast_stmt
, 0);
2333 fprintf (dump_file
, "Inserting on edge %d->%d: ", e
->src
->index
,
2335 print_gimple_stmt (dump_file
, new_stmt
, 0);
2341 /* Clear the visited field for a tree of PHI candidates. */
2344 clear_visited (gphi
*phi
)
2347 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2349 if (phi_cand
->visited
)
2351 phi_cand
->visited
= 0;
2353 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2355 tree arg
= gimple_phi_arg_def (phi
, i
);
2356 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2357 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2358 clear_visited (as_a
<gphi
*> (arg_def
));
2363 /* Recursive helper function for create_phi_basis. */
2366 create_phi_basis_1 (slsr_cand_t c
, gimple
*from_phi
, tree basis_name
,
2367 location_t loc
, bool known_stride
)
2372 slsr_cand_t basis
= lookup_cand (c
->basis
);
2373 int nargs
= gimple_phi_num_args (from_phi
);
2374 basic_block phi_bb
= gimple_bb (from_phi
);
2375 slsr_cand_t phi_cand
= *stmt_cand_map
->get (from_phi
);
2376 auto_vec
<tree
> phi_args (nargs
);
2378 if (phi_cand
->visited
)
2379 return phi_cand
->cached_basis
;
2380 phi_cand
->visited
= 1;
2382 /* Process each argument of the existing phi that represents
2383 conditionally-executed add candidates. */
2384 for (i
= 0; i
< nargs
; i
++)
2386 edge e
= (*phi_bb
->preds
)[i
];
2387 tree arg
= gimple_phi_arg_def (from_phi
, i
);
2390 /* If the phi argument is the base name of the CAND_PHI, then
2391 this incoming arc should use the hidden basis. */
2392 if (operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2393 if (basis
->index
== 0)
2394 feeding_def
= gimple_assign_lhs (basis
->cand_stmt
);
2397 widest_int incr
= -basis
->index
;
2398 feeding_def
= create_add_on_incoming_edge (c
, basis_name
, incr
,
2399 e
, loc
, known_stride
);
2403 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2405 /* If there is another phi along this incoming edge, we must
2406 process it in the same fashion to ensure that all basis
2407 adjustments are made along its incoming edges. */
2408 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2409 feeding_def
= create_phi_basis_1 (c
, arg_def
, basis_name
,
2413 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2414 widest_int diff
= arg_cand
->index
- basis
->index
;
2415 feeding_def
= create_add_on_incoming_edge (c
, basis_name
, diff
,
2416 e
, loc
, known_stride
);
2420 /* Because of recursion, we need to save the arguments in a vector
2421 so we can create the PHI statement all at once. Otherwise the
2422 storage for the half-created PHI can be reclaimed. */
2423 phi_args
.safe_push (feeding_def
);
2426 /* Create the new phi basis. */
2427 name
= make_temp_ssa_name (TREE_TYPE (basis_name
), NULL
, "slsr");
2428 phi
= create_phi_node (name
, phi_bb
);
2429 SSA_NAME_DEF_STMT (name
) = phi
;
2431 FOR_EACH_VEC_ELT (phi_args
, i
, phi_arg
)
2433 edge e
= (*phi_bb
->preds
)[i
];
2434 add_phi_arg (phi
, phi_arg
, e
, loc
);
2439 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2441 fputs ("Introducing new phi basis: ", dump_file
);
2442 print_gimple_stmt (dump_file
, phi
, 0);
2445 phi_cand
->cached_basis
= name
;
2449 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2450 is hidden by the phi node FROM_PHI, create a new phi node in the same
2451 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2452 with its phi arguments representing conditional adjustments to the
2453 hidden basis along conditional incoming paths. Those adjustments are
2454 made by creating add statements (and sometimes recursively creating
2455 phis) along those incoming paths. LOC is the location to attach to
2456 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2460 create_phi_basis (slsr_cand_t c
, gimple
*from_phi
, tree basis_name
,
2461 location_t loc
, bool known_stride
)
2463 tree retval
= create_phi_basis_1 (c
, from_phi
, basis_name
, loc
,
2465 gcc_assert (retval
);
2466 clear_visited (as_a
<gphi
*> (from_phi
));
2470 /* Given a candidate C whose basis is hidden by at least one intervening
2471 phi, introduce a matching number of new phis to represent its basis
2472 adjusted by conditional increments along possible incoming paths. Then
2473 replace C as though it were an unconditional candidate, using the new
2477 replace_conditional_candidate (slsr_cand_t c
)
2479 tree basis_name
, name
;
2483 /* Look up the LHS SSA name from C's basis. This will be the
2484 RHS1 of the adds we will introduce to create new phi arguments. */
2485 basis
= lookup_cand (c
->basis
);
2486 basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
2488 /* Create a new phi statement which will represent C's true basis
2489 after the transformation is complete. */
2490 loc
= gimple_location (c
->cand_stmt
);
2491 name
= create_phi_basis (c
, lookup_cand (c
->def_phi
)->cand_stmt
,
2492 basis_name
, loc
, KNOWN_STRIDE
);
2494 /* Replace C with an add of the new basis phi and a constant. */
2495 widest_int bump
= c
->index
* wi::to_widest (c
->stride
);
2497 replace_mult_candidate (c
, name
, bump
);
2500 /* Recursive helper function for phi_add_costs. SPREAD is a measure of
2501 how many PHI nodes we have visited at this point in the tree walk. */
2504 phi_add_costs_1 (gimple
*phi
, slsr_cand_t c
, int one_add_cost
, int *spread
)
2508 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2510 if (phi_cand
->visited
)
2513 phi_cand
->visited
= 1;
2516 /* If we work our way back to a phi that isn't dominated by the hidden
2517 basis, this isn't a candidate for replacement. Indicate this by
2518 returning an unreasonably high cost. It's not easy to detect
2519 these situations when determining the basis, so we defer the
2520 decision until now. */
2521 basic_block phi_bb
= gimple_bb (phi
);
2522 slsr_cand_t basis
= lookup_cand (c
->basis
);
2523 basic_block basis_bb
= gimple_bb (basis
->cand_stmt
);
2525 if (phi_bb
== basis_bb
|| !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
2526 return COST_INFINITE
;
2528 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2530 tree arg
= gimple_phi_arg_def (phi
, i
);
2532 if (arg
!= phi_cand
->base_expr
)
2534 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2536 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2538 cost
+= phi_add_costs_1 (arg_def
, c
, one_add_cost
, spread
);
2540 if (cost
>= COST_INFINITE
|| *spread
> MAX_SPREAD
)
2541 return COST_INFINITE
;
2545 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2547 if (arg_cand
->index
!= c
->index
)
2548 cost
+= one_add_cost
;
2556 /* Compute the expected costs of inserting basis adjustments for
2557 candidate C with phi-definition PHI. The cost of inserting
2558 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2559 which are themselves phi results, recursively calculate costs
2560 for those phis as well. */
2563 phi_add_costs (gimple
*phi
, slsr_cand_t c
, int one_add_cost
)
2566 int retval
= phi_add_costs_1 (phi
, c
, one_add_cost
, &spread
);
2567 clear_visited (as_a
<gphi
*> (phi
));
2570 /* For candidate C, each sibling of candidate C, and each dependent of
2571 candidate C, determine whether the candidate is dependent upon a
2572 phi that hides its basis. If not, replace the candidate unconditionally.
2573 Otherwise, determine whether the cost of introducing compensation code
2574 for the candidate is offset by the gains from strength reduction. If
2575 so, replace the candidate and introduce the compensation code. */
2578 replace_uncond_cands_and_profitable_phis (slsr_cand_t c
)
2580 if (phi_dependent_cand_p (c
))
2582 /* A multiply candidate with a stride of 1 is just an artifice
2583 of a copy or cast; there is no value in replacing it. */
2584 if (c
->kind
== CAND_MULT
&& wi::to_widest (c
->stride
) != 1)
2586 /* A candidate dependent upon a phi will replace a multiply by
2587 a constant with an add, and will insert at most one add for
2588 each phi argument. Add these costs with the potential dead-code
2589 savings to determine profitability. */
2590 bool speed
= optimize_bb_for_speed_p (gimple_bb (c
->cand_stmt
));
2591 int mult_savings
= stmt_cost (c
->cand_stmt
, speed
);
2592 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2593 tree phi_result
= gimple_phi_result (phi
);
2594 int one_add_cost
= add_cost (speed
,
2595 TYPE_MODE (TREE_TYPE (phi_result
)));
2596 int add_costs
= one_add_cost
+ phi_add_costs (phi
, c
, one_add_cost
);
2597 int cost
= add_costs
- mult_savings
- c
->dead_savings
;
2599 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2601 fprintf (dump_file
, " Conditional candidate %d:\n", c
->cand_num
);
2602 fprintf (dump_file
, " add_costs = %d\n", add_costs
);
2603 fprintf (dump_file
, " mult_savings = %d\n", mult_savings
);
2604 fprintf (dump_file
, " dead_savings = %d\n", c
->dead_savings
);
2605 fprintf (dump_file
, " cost = %d\n", cost
);
2606 if (cost
<= COST_NEUTRAL
)
2607 fputs (" Replacing...\n", dump_file
);
2609 fputs (" Not replaced.\n", dump_file
);
2612 if (cost
<= COST_NEUTRAL
)
2613 replace_conditional_candidate (c
);
2617 replace_unconditional_candidate (c
);
2620 replace_uncond_cands_and_profitable_phis (lookup_cand (c
->sibling
));
2623 replace_uncond_cands_and_profitable_phis (lookup_cand (c
->dependent
));
2626 /* Count the number of candidates in the tree rooted at C that have
2627 not already been replaced under other interpretations. */
2630 count_candidates (slsr_cand_t c
)
2632 unsigned count
= cand_already_replaced (c
) ? 0 : 1;
2635 count
+= count_candidates (lookup_cand (c
->sibling
));
2638 count
+= count_candidates (lookup_cand (c
->dependent
));
2643 /* Increase the count of INCREMENT by one in the increment vector.
2644 INCREMENT is associated with candidate C. If INCREMENT is to be
2645 conditionally executed as part of a conditional candidate replacement,
2646 IS_PHI_ADJUST is true, otherwise false. If an initializer
2647 T_0 = stride * I is provided by a candidate that dominates all
2648 candidates with the same increment, also record T_0 for subsequent use. */
2651 record_increment (slsr_cand_t c
, widest_int increment
, bool is_phi_adjust
)
2656 /* Treat increments that differ only in sign as identical so as to
2657 share initializers, unless we are generating pointer arithmetic. */
2658 if (!address_arithmetic_p
&& wi::neg_p (increment
))
2659 increment
= -increment
;
2661 for (i
= 0; i
< incr_vec_len
; i
++)
2663 if (incr_vec
[i
].incr
== increment
)
2665 incr_vec
[i
].count
++;
2668 /* If we previously recorded an initializer that doesn't
2669 dominate this candidate, it's not going to be useful to
2671 if (incr_vec
[i
].initializer
2672 && !dominated_by_p (CDI_DOMINATORS
,
2673 gimple_bb (c
->cand_stmt
),
2674 incr_vec
[i
].init_bb
))
2676 incr_vec
[i
].initializer
= NULL_TREE
;
2677 incr_vec
[i
].init_bb
= NULL
;
2684 if (!found
&& incr_vec_len
< MAX_INCR_VEC_LEN
- 1)
2686 /* The first time we see an increment, create the entry for it.
2687 If this is the root candidate which doesn't have a basis, set
2688 the count to zero. We're only processing it so it can possibly
2689 provide an initializer for other candidates. */
2690 incr_vec
[incr_vec_len
].incr
= increment
;
2691 incr_vec
[incr_vec_len
].count
= c
->basis
|| is_phi_adjust
? 1 : 0;
2692 incr_vec
[incr_vec_len
].cost
= COST_INFINITE
;
2694 /* Optimistically record the first occurrence of this increment
2695 as providing an initializer (if it does); we will revise this
2696 opinion later if it doesn't dominate all other occurrences.
2697 Exception: increments of 0, 1 never need initializers;
2698 and phi adjustments don't ever provide initializers. */
2699 if (c
->kind
== CAND_ADD
2701 && c
->index
== increment
2702 && (increment
> 1 || increment
< 0)
2703 && (gimple_assign_rhs_code (c
->cand_stmt
) == PLUS_EXPR
2704 || gimple_assign_rhs_code (c
->cand_stmt
) == POINTER_PLUS_EXPR
))
2706 tree t0
= NULL_TREE
;
2707 tree rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
2708 tree rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
2709 if (operand_equal_p (rhs1
, c
->base_expr
, 0))
2711 else if (operand_equal_p (rhs2
, c
->base_expr
, 0))
2714 && SSA_NAME_DEF_STMT (t0
)
2715 && gimple_bb (SSA_NAME_DEF_STMT (t0
)))
2717 incr_vec
[incr_vec_len
].initializer
= t0
;
2718 incr_vec
[incr_vec_len
++].init_bb
2719 = gimple_bb (SSA_NAME_DEF_STMT (t0
));
2723 incr_vec
[incr_vec_len
].initializer
= NULL_TREE
;
2724 incr_vec
[incr_vec_len
++].init_bb
= NULL
;
2729 incr_vec
[incr_vec_len
].initializer
= NULL_TREE
;
2730 incr_vec
[incr_vec_len
++].init_bb
= NULL
;
2735 /* Recursive helper function for record_phi_increments. */
2738 record_phi_increments_1 (slsr_cand_t basis
, gimple
*phi
)
2741 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2743 if (phi_cand
->visited
)
2745 phi_cand
->visited
= 1;
2747 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2749 tree arg
= gimple_phi_arg_def (phi
, i
);
2751 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2753 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2755 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2756 record_phi_increments_1 (basis
, arg_def
);
2759 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2760 widest_int diff
= arg_cand
->index
- basis
->index
;
2761 record_increment (arg_cand
, diff
, PHI_ADJUST
);
2767 /* Given phi statement PHI that hides a candidate from its BASIS, find
2768 the increments along each incoming arc (recursively handling additional
2769 phis that may be present) and record them. These increments are the
2770 difference in index between the index-adjusting statements and the
2771 index of the basis. */
2774 record_phi_increments (slsr_cand_t basis
, gimple
*phi
)
2776 record_phi_increments_1 (basis
, phi
);
2777 clear_visited (as_a
<gphi
*> (phi
));
2780 /* Determine how many times each unique increment occurs in the set
2781 of candidates rooted at C's parent, recording the data in the
2782 increment vector. For each unique increment I, if an initializer
2783 T_0 = stride * I is provided by a candidate that dominates all
2784 candidates with the same increment, also record T_0 for subsequent
2788 record_increments (slsr_cand_t c
)
2790 if (!cand_already_replaced (c
))
2792 if (!phi_dependent_cand_p (c
))
2793 record_increment (c
, cand_increment (c
), NOT_PHI_ADJUST
);
2796 /* A candidate with a basis hidden by a phi will have one
2797 increment for its relationship to the index represented by
2798 the phi, and potentially additional increments along each
2799 incoming edge. For the root of the dependency tree (which
2800 has no basis), process just the initial index in case it has
2801 an initializer that can be used by subsequent candidates. */
2802 record_increment (c
, c
->index
, NOT_PHI_ADJUST
);
2805 record_phi_increments (lookup_cand (c
->basis
),
2806 lookup_cand (c
->def_phi
)->cand_stmt
);
2811 record_increments (lookup_cand (c
->sibling
));
2814 record_increments (lookup_cand (c
->dependent
));
2817 /* Recursive helper function for phi_incr_cost. */
2820 phi_incr_cost_1 (slsr_cand_t c
, const widest_int
&incr
, gimple
*phi
,
2825 slsr_cand_t basis
= lookup_cand (c
->basis
);
2826 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
2828 if (phi_cand
->visited
)
2830 phi_cand
->visited
= 1;
2832 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2834 tree arg
= gimple_phi_arg_def (phi
, i
);
2836 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2838 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
2840 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2842 int feeding_savings
= 0;
2843 tree feeding_var
= gimple_phi_result (arg_def
);
2844 cost
+= phi_incr_cost_1 (c
, incr
, arg_def
, &feeding_savings
);
2845 if (uses_consumed_by_stmt (feeding_var
, phi
))
2846 *savings
+= feeding_savings
;
2850 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2851 widest_int diff
= arg_cand
->index
- basis
->index
;
2855 tree basis_lhs
= gimple_assign_lhs (basis
->cand_stmt
);
2856 tree lhs
= gimple_assign_lhs (arg_cand
->cand_stmt
);
2857 cost
+= add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs
)));
2858 if (uses_consumed_by_stmt (lhs
, phi
))
2859 *savings
+= stmt_cost (arg_cand
->cand_stmt
, true);
2868 /* Add up and return the costs of introducing add statements that
2869 require the increment INCR on behalf of candidate C and phi
2870 statement PHI. Accumulate into *SAVINGS the potential savings
2871 from removing existing statements that feed PHI and have no other
2875 phi_incr_cost (slsr_cand_t c
, const widest_int
&incr
, gimple
*phi
,
2878 int retval
= phi_incr_cost_1 (c
, incr
, phi
, savings
);
2879 clear_visited (as_a
<gphi
*> (phi
));
2883 /* Return the first candidate in the tree rooted at C that has not
2884 already been replaced, favoring siblings over dependents. */
2887 unreplaced_cand_in_tree (slsr_cand_t c
)
2889 if (!cand_already_replaced (c
))
2894 slsr_cand_t sib
= unreplaced_cand_in_tree (lookup_cand (c
->sibling
));
2901 slsr_cand_t dep
= unreplaced_cand_in_tree (lookup_cand (c
->dependent
));
2909 /* Return TRUE if the candidates in the tree rooted at C should be
2910 optimized for speed, else FALSE. We estimate this based on the block
2911 containing the most dominant candidate in the tree that has not yet
2915 optimize_cands_for_speed_p (slsr_cand_t c
)
2917 slsr_cand_t c2
= unreplaced_cand_in_tree (c
);
2919 return optimize_bb_for_speed_p (gimple_bb (c2
->cand_stmt
));
2922 /* Add COST_IN to the lowest cost of any dependent path starting at
2923 candidate C or any of its siblings, counting only candidates along
2924 such paths with increment INCR. Assume that replacing a candidate
2925 reduces cost by REPL_SAVINGS. Also account for savings from any
2926 statements that would go dead. If COUNT_PHIS is true, include
2927 costs of introducing feeding statements for conditional candidates. */
2930 lowest_cost_path (int cost_in
, int repl_savings
, slsr_cand_t c
,
2931 const widest_int
&incr
, bool count_phis
)
2933 int local_cost
, sib_cost
, savings
= 0;
2934 widest_int cand_incr
= cand_abs_increment (c
);
2936 if (cand_already_replaced (c
))
2937 local_cost
= cost_in
;
2938 else if (incr
== cand_incr
)
2939 local_cost
= cost_in
- repl_savings
- c
->dead_savings
;
2941 local_cost
= cost_in
- c
->dead_savings
;
2944 && phi_dependent_cand_p (c
)
2945 && !cand_already_replaced (c
))
2947 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2948 local_cost
+= phi_incr_cost (c
, incr
, phi
, &savings
);
2950 if (uses_consumed_by_stmt (gimple_phi_result (phi
), c
->cand_stmt
))
2951 local_cost
-= savings
;
2955 local_cost
= lowest_cost_path (local_cost
, repl_savings
,
2956 lookup_cand (c
->dependent
), incr
,
2961 sib_cost
= lowest_cost_path (cost_in
, repl_savings
,
2962 lookup_cand (c
->sibling
), incr
,
2964 local_cost
= MIN (local_cost
, sib_cost
);
2970 /* Compute the total savings that would accrue from all replacements
2971 in the candidate tree rooted at C, counting only candidates with
2972 increment INCR. Assume that replacing a candidate reduces cost
2973 by REPL_SAVINGS. Also account for savings from statements that
2977 total_savings (int repl_savings
, slsr_cand_t c
, const widest_int
&incr
,
2981 widest_int cand_incr
= cand_abs_increment (c
);
2983 if (incr
== cand_incr
&& !cand_already_replaced (c
))
2984 savings
+= repl_savings
+ c
->dead_savings
;
2987 && phi_dependent_cand_p (c
)
2988 && !cand_already_replaced (c
))
2990 int phi_savings
= 0;
2991 gimple
*phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2992 savings
-= phi_incr_cost (c
, incr
, phi
, &phi_savings
);
2994 if (uses_consumed_by_stmt (gimple_phi_result (phi
), c
->cand_stmt
))
2995 savings
+= phi_savings
;
2999 savings
+= total_savings (repl_savings
, lookup_cand (c
->dependent
), incr
,
3003 savings
+= total_savings (repl_savings
, lookup_cand (c
->sibling
), incr
,
3009 /* Use target-specific costs to determine and record which increments
3010 in the current candidate tree are profitable to replace, assuming
3011 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3014 One slight limitation here is that we don't account for the possible
3015 introduction of casts in some cases. See replace_one_candidate for
3016 the cases where these are introduced. This should probably be cleaned
3020 analyze_increments (slsr_cand_t first_dep
, machine_mode mode
, bool speed
)
3024 for (i
= 0; i
< incr_vec_len
; i
++)
3026 HOST_WIDE_INT incr
= incr_vec
[i
].incr
.to_shwi ();
3028 /* If somehow this increment is bigger than a HWI, we won't
3029 be optimizing candidates that use it. And if the increment
3030 has a count of zero, nothing will be done with it. */
3031 if (!wi::fits_shwi_p (incr_vec
[i
].incr
) || !incr_vec
[i
].count
)
3032 incr_vec
[i
].cost
= COST_INFINITE
;
3034 /* Increments of 0, 1, and -1 are always profitable to replace,
3035 because they always replace a multiply or add with an add or
3036 copy, and may cause one or more existing instructions to go
3037 dead. Exception: -1 can't be assumed to be profitable for
3038 pointer addition. */
3042 && !POINTER_TYPE_P (first_dep
->cand_type
)))
3043 incr_vec
[i
].cost
= COST_NEUTRAL
;
3045 /* If we need to add an initializer, give up if a cast from the
3046 candidate's type to its stride's type can lose precision.
3047 Note that this already takes into account that the stride may
3048 have been cast to a wider type, in which case this test won't
3054 _4 = x + _3; ADD: x + (10 * (int)_1) : int
3056 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3058 Although the stride was a short int initially, the stride
3059 used in the analysis has been widened to an int, and such
3060 widening will be done in the initializer as well. */
3061 else if (!incr_vec
[i
].initializer
3062 && TREE_CODE (first_dep
->stride
) != INTEGER_CST
3063 && !legal_cast_p_1 (first_dep
->stride_type
,
3064 TREE_TYPE (gimple_assign_lhs
3065 (first_dep
->cand_stmt
))))
3066 incr_vec
[i
].cost
= COST_INFINITE
;
3068 /* If we need to add an initializer, make sure we don't introduce
3069 a multiply by a pointer type, which can happen in certain cast
3071 else if (!incr_vec
[i
].initializer
3072 && TREE_CODE (first_dep
->stride
) != INTEGER_CST
3073 && POINTER_TYPE_P (first_dep
->stride_type
))
3074 incr_vec
[i
].cost
= COST_INFINITE
;
3076 /* For any other increment, if this is a multiply candidate, we
3077 must introduce a temporary T and initialize it with
3078 T_0 = stride * increment. When optimizing for speed, walk the
3079 candidate tree to calculate the best cost reduction along any
3080 path; if it offsets the fixed cost of inserting the initializer,
3081 replacing the increment is profitable. When optimizing for
3082 size, instead calculate the total cost reduction from replacing
3083 all candidates with this increment. */
3084 else if (first_dep
->kind
== CAND_MULT
)
3086 int cost
= mult_by_coeff_cost (incr
, mode
, speed
);
3089 if (tree_fits_shwi_p (first_dep
->stride
))
3091 HOST_WIDE_INT hwi_stride
= tree_to_shwi (first_dep
->stride
);
3092 repl_savings
= mult_by_coeff_cost (hwi_stride
, mode
, speed
);
3095 repl_savings
= mul_cost (speed
, mode
);
3096 repl_savings
-= add_cost (speed
, mode
);
3099 cost
= lowest_cost_path (cost
, repl_savings
, first_dep
,
3100 incr_vec
[i
].incr
, COUNT_PHIS
);
3102 cost
-= total_savings (repl_savings
, first_dep
, incr_vec
[i
].incr
,
3105 incr_vec
[i
].cost
= cost
;
3108 /* If this is an add candidate, the initializer may already
3109 exist, so only calculate the cost of the initializer if it
3110 doesn't. We are replacing one add with another here, so the
3111 known replacement savings is zero. We will account for removal
3112 of dead instructions in lowest_cost_path or total_savings. */
3116 if (!incr_vec
[i
].initializer
)
3117 cost
= mult_by_coeff_cost (incr
, mode
, speed
);
3120 cost
= lowest_cost_path (cost
, 0, first_dep
, incr_vec
[i
].incr
,
3123 cost
-= total_savings (0, first_dep
, incr_vec
[i
].incr
,
3126 incr_vec
[i
].cost
= cost
;
3131 /* Return the nearest common dominator of BB1 and BB2. If the blocks
3132 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3133 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3134 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3135 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3138 ncd_for_two_cands (basic_block bb1
, basic_block bb2
,
3139 slsr_cand_t c1
, slsr_cand_t c2
, slsr_cand_t
*where
)
3155 ncd
= nearest_common_dominator (CDI_DOMINATORS
, bb1
, bb2
);
3157 /* If both candidates are in the same block, the earlier
3159 if (bb1
== ncd
&& bb2
== ncd
)
3161 if (!c1
|| (c2
&& c2
->cand_num
< c1
->cand_num
))
3167 /* Otherwise, if one of them produced a candidate in the
3168 dominator, that one wins. */
3169 else if (bb1
== ncd
)
3172 else if (bb2
== ncd
)
3175 /* If neither matches the dominator, neither wins. */
3182 /* Consider all candidates that feed PHI. Find the nearest common
3183 dominator of those candidates requiring the given increment INCR.
3184 Further find and return the nearest common dominator of this result
3185 with block NCD. If the returned block contains one or more of the
3186 candidates, return the earliest candidate in the block in *WHERE. */
3189 ncd_with_phi (slsr_cand_t c
, const widest_int
&incr
, gphi
*phi
,
3190 basic_block ncd
, slsr_cand_t
*where
)
3193 slsr_cand_t basis
= lookup_cand (c
->basis
);
3194 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
3196 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
3198 tree arg
= gimple_phi_arg_def (phi
, i
);
3200 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
3202 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
3204 if (gimple_code (arg_def
) == GIMPLE_PHI
)
3205 ncd
= ncd_with_phi (c
, incr
, as_a
<gphi
*> (arg_def
), ncd
,
3209 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
3210 widest_int diff
= arg_cand
->index
- basis
->index
;
3211 basic_block pred
= gimple_phi_arg_edge (phi
, i
)->src
;
3213 if ((incr
== diff
) || (!address_arithmetic_p
&& incr
== -diff
))
3214 ncd
= ncd_for_two_cands (ncd
, pred
, *where
, NULL
, where
);
3222 /* Consider the candidate C together with any candidates that feed
3223 C's phi dependence (if any). Find and return the nearest common
3224 dominator of those candidates requiring the given increment INCR.
3225 If the returned block contains one or more of the candidates,
3226 return the earliest candidate in the block in *WHERE. */
3229 ncd_of_cand_and_phis (slsr_cand_t c
, const widest_int
&incr
, slsr_cand_t
*where
)
3231 basic_block ncd
= NULL
;
3233 if (cand_abs_increment (c
) == incr
)
3235 ncd
= gimple_bb (c
->cand_stmt
);
3239 if (phi_dependent_cand_p (c
))
3240 ncd
= ncd_with_phi (c
, incr
,
3241 as_a
<gphi
*> (lookup_cand (c
->def_phi
)->cand_stmt
),
3247 /* Consider all candidates in the tree rooted at C for which INCR
3248 represents the required increment of C relative to its basis.
3249 Find and return the basic block that most nearly dominates all
3250 such candidates. If the returned block contains one or more of
3251 the candidates, return the earliest candidate in the block in
3255 nearest_common_dominator_for_cands (slsr_cand_t c
, const widest_int
&incr
,
3258 basic_block sib_ncd
= NULL
, dep_ncd
= NULL
, this_ncd
= NULL
, ncd
;
3259 slsr_cand_t sib_where
= NULL
, dep_where
= NULL
, this_where
= NULL
, new_where
;
3261 /* First find the NCD of all siblings and dependents. */
3263 sib_ncd
= nearest_common_dominator_for_cands (lookup_cand (c
->sibling
),
3266 dep_ncd
= nearest_common_dominator_for_cands (lookup_cand (c
->dependent
),
3268 if (!sib_ncd
&& !dep_ncd
)
3273 else if (sib_ncd
&& !dep_ncd
)
3275 new_where
= sib_where
;
3278 else if (dep_ncd
&& !sib_ncd
)
3280 new_where
= dep_where
;
3284 ncd
= ncd_for_two_cands (sib_ncd
, dep_ncd
, sib_where
,
3285 dep_where
, &new_where
);
3287 /* If the candidate's increment doesn't match the one we're interested
3288 in (and nor do any increments for feeding defs of a phi-dependence),
3289 then the result depends only on siblings and dependents. */
3290 this_ncd
= ncd_of_cand_and_phis (c
, incr
, &this_where
);
3292 if (!this_ncd
|| cand_already_replaced (c
))
3298 /* Otherwise, compare this candidate with the result from all siblings
3300 ncd
= ncd_for_two_cands (ncd
, this_ncd
, new_where
, this_where
, where
);
3305 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3308 profitable_increment_p (unsigned index
)
3310 return (incr_vec
[index
].cost
<= COST_NEUTRAL
);
3313 /* For each profitable increment in the increment vector not equal to
3314 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3315 dominator of all statements in the candidate chain rooted at C
3316 that require that increment, and insert an initializer
3317 T_0 = stride * increment at that location. Record T_0 with the
3318 increment record. */
3321 insert_initializers (slsr_cand_t c
)
3325 for (i
= 0; i
< incr_vec_len
; i
++)
3328 slsr_cand_t where
= NULL
;
3330 gassign
*cast_stmt
= NULL
;
3331 tree new_name
, incr_tree
, init_stride
;
3332 widest_int incr
= incr_vec
[i
].incr
;
3334 if (!profitable_increment_p (i
)
3337 && (!POINTER_TYPE_P (lookup_cand (c
->basis
)->cand_type
)))
3341 /* We may have already identified an existing initializer that
3343 if (incr_vec
[i
].initializer
)
3345 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3347 fputs ("Using existing initializer: ", dump_file
);
3348 print_gimple_stmt (dump_file
,
3349 SSA_NAME_DEF_STMT (incr_vec
[i
].initializer
),
3355 /* Find the block that most closely dominates all candidates
3356 with this increment. If there is at least one candidate in
3357 that block, the earliest one will be returned in WHERE. */
3358 bb
= nearest_common_dominator_for_cands (c
, incr
, &where
);
3360 /* If the NCD is not dominated by the block containing the
3361 definition of the stride, we can't legally insert a
3362 single initializer. Mark the increment as unprofitable
3363 so we don't make any replacements. FIXME: Multiple
3364 initializers could be placed with more analysis. */
3365 gimple
*stride_def
= SSA_NAME_DEF_STMT (c
->stride
);
3366 basic_block stride_bb
= gimple_bb (stride_def
);
3368 if (stride_bb
&& !dominated_by_p (CDI_DOMINATORS
, bb
, stride_bb
))
3370 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3372 "Initializer #%d cannot be legally placed\n", i
);
3373 incr_vec
[i
].cost
= COST_INFINITE
;
3377 /* If the nominal stride has a different type than the recorded
3378 stride type, build a cast from the nominal stride to that type. */
3379 if (!types_compatible_p (TREE_TYPE (c
->stride
), c
->stride_type
))
3381 init_stride
= make_temp_ssa_name (c
->stride_type
, NULL
, "slsr");
3382 cast_stmt
= gimple_build_assign (init_stride
, NOP_EXPR
, c
->stride
);
3385 init_stride
= c
->stride
;
3387 /* Create a new SSA name to hold the initializer's value. */
3388 new_name
= make_temp_ssa_name (c
->stride_type
, NULL
, "slsr");
3389 incr_vec
[i
].initializer
= new_name
;
3391 /* Create the initializer and insert it in the latest possible
3392 dominating position. */
3393 incr_tree
= wide_int_to_tree (c
->stride_type
, incr
);
3394 init_stmt
= gimple_build_assign (new_name
, MULT_EXPR
,
3395 init_stride
, incr_tree
);
3398 gimple_stmt_iterator gsi
= gsi_for_stmt (where
->cand_stmt
);
3399 location_t loc
= gimple_location (where
->cand_stmt
);
3403 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3404 gimple_set_location (cast_stmt
, loc
);
3407 gsi_insert_before (&gsi
, init_stmt
, GSI_SAME_STMT
);
3408 gimple_set_location (init_stmt
, loc
);
3412 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
3413 gimple
*basis_stmt
= lookup_cand (c
->basis
)->cand_stmt
;
3414 location_t loc
= gimple_location (basis_stmt
);
3416 if (!gsi_end_p (gsi
) && stmt_ends_bb_p (gsi_stmt (gsi
)))
3420 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3421 gimple_set_location (cast_stmt
, loc
);
3423 gsi_insert_before (&gsi
, init_stmt
, GSI_SAME_STMT
);
3429 gsi_insert_after (&gsi
, cast_stmt
, GSI_NEW_STMT
);
3430 gimple_set_location (cast_stmt
, loc
);
3432 gsi_insert_after (&gsi
, init_stmt
, GSI_NEW_STMT
);
3435 gimple_set_location (init_stmt
, gimple_location (basis_stmt
));
3438 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3442 fputs ("Inserting stride cast: ", dump_file
);
3443 print_gimple_stmt (dump_file
, cast_stmt
, 0);
3445 fputs ("Inserting initializer: ", dump_file
);
3446 print_gimple_stmt (dump_file
, init_stmt
, 0);
3451 /* Recursive helper function for all_phi_incrs_profitable. */
3454 all_phi_incrs_profitable_1 (slsr_cand_t c
, gphi
*phi
, int *spread
)
3457 slsr_cand_t basis
= lookup_cand (c
->basis
);
3458 slsr_cand_t phi_cand
= *stmt_cand_map
->get (phi
);
3460 if (phi_cand
->visited
)
3463 phi_cand
->visited
= 1;
3466 /* If the basis doesn't dominate the PHI (including when the PHI is
3467 in the same block as the basis), we won't be able to create a PHI
3468 using the basis here. */
3469 basic_block basis_bb
= gimple_bb (basis
->cand_stmt
);
3470 basic_block phi_bb
= gimple_bb (phi
);
3472 if (phi_bb
== basis_bb
3473 || !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
3476 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
3478 /* If the PHI arg resides in a block not dominated by the basis,
3479 we won't be able to create a PHI using the basis here. */
3480 basic_block pred_bb
= gimple_phi_arg_edge (phi
, i
)->src
;
3482 if (!dominated_by_p (CDI_DOMINATORS
, pred_bb
, basis_bb
))
3485 tree arg
= gimple_phi_arg_def (phi
, i
);
3487 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
3489 gimple
*arg_def
= SSA_NAME_DEF_STMT (arg
);
3491 if (gimple_code (arg_def
) == GIMPLE_PHI
)
3493 if (!all_phi_incrs_profitable_1 (c
, as_a
<gphi
*> (arg_def
),
3495 || *spread
> MAX_SPREAD
)
3501 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
3502 widest_int increment
= arg_cand
->index
- basis
->index
;
3504 if (!address_arithmetic_p
&& wi::neg_p (increment
))
3505 increment
= -increment
;
3507 j
= incr_vec_index (increment
);
3509 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3511 fprintf (dump_file
, " Conditional candidate %d, phi: ",
3513 print_gimple_stmt (dump_file
, phi
, 0);
3514 fputs (" increment: ", dump_file
);
3515 print_decs (increment
, dump_file
);
3518 "\n Not replaced; incr_vec overflow.\n");
3520 fprintf (dump_file
, "\n cost: %d\n", incr_vec
[j
].cost
);
3521 if (profitable_increment_p (j
))
3522 fputs (" Replacing...\n", dump_file
);
3524 fputs (" Not replaced.\n", dump_file
);
3528 if (j
< 0 || !profitable_increment_p (j
))
3537 /* Return TRUE iff all required increments for candidates feeding PHI
3538 are profitable (and legal!) to replace on behalf of candidate C. */
3541 all_phi_incrs_profitable (slsr_cand_t c
, gphi
*phi
)
3544 bool retval
= all_phi_incrs_profitable_1 (c
, phi
, &spread
);
3545 clear_visited (phi
);
3549 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3550 type TO_TYPE, and insert it in front of the statement represented
3551 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3552 the new SSA name. */
3555 introduce_cast_before_cand (slsr_cand_t c
, tree to_type
, tree from_expr
)
3559 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3561 cast_lhs
= make_temp_ssa_name (to_type
, NULL
, "slsr");
3562 cast_stmt
= gimple_build_assign (cast_lhs
, NOP_EXPR
, from_expr
);
3563 gimple_set_location (cast_stmt
, gimple_location (c
->cand_stmt
));
3564 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3566 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3568 fputs (" Inserting: ", dump_file
);
3569 print_gimple_stmt (dump_file
, cast_stmt
, 0);
3575 /* Replace the RHS of the statement represented by candidate C with
3576 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3577 leave C unchanged or just interchange its operands. The original
3578 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3579 If the replacement was made and we are doing a details dump,
3580 return the revised statement, else NULL. */
3583 replace_rhs_if_not_dup (enum tree_code new_code
, tree new_rhs1
, tree new_rhs2
,
3584 enum tree_code old_code
, tree old_rhs1
, tree old_rhs2
,
3587 if (new_code
!= old_code
3588 || ((!operand_equal_p (new_rhs1
, old_rhs1
, 0)
3589 || !operand_equal_p (new_rhs2
, old_rhs2
, 0))
3590 && (!operand_equal_p (new_rhs1
, old_rhs2
, 0)
3591 || !operand_equal_p (new_rhs2
, old_rhs1
, 0))))
3593 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3595 gimple_assign_set_rhs_with_ops (&gsi
, new_code
, new_rhs1
, new_rhs2
);
3596 update_stmt (gsi_stmt (gsi
));
3597 c
->cand_stmt
= gsi_stmt (gsi
);
3598 while (cc
->next_interp
)
3600 cc
= lookup_cand (cc
->next_interp
);
3601 cc
->cand_stmt
= gsi_stmt (gsi
);
3604 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3605 return gsi_stmt (gsi
);
3608 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3609 fputs (" (duplicate, not actually replacing)\n", dump_file
);
3614 /* Strength-reduce the statement represented by candidate C by replacing
3615 it with an equivalent addition or subtraction. I is the index into
3616 the increment vector identifying C's increment. NEW_VAR is used to
3617 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3618 is the rhs1 to use in creating the add/subtract. */
3621 replace_one_candidate (slsr_cand_t c
, unsigned i
, tree basis_name
)
3623 gimple
*stmt_to_print
= NULL
;
3624 tree orig_rhs1
, orig_rhs2
;
3626 enum tree_code orig_code
, repl_code
;
3627 widest_int cand_incr
;
3629 orig_code
= gimple_assign_rhs_code (c
->cand_stmt
);
3630 orig_rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
3631 orig_rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
3632 cand_incr
= cand_increment (c
);
3634 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3636 fputs ("Replacing: ", dump_file
);
3637 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0);
3638 stmt_to_print
= c
->cand_stmt
;
3641 if (address_arithmetic_p
)
3642 repl_code
= POINTER_PLUS_EXPR
;
3644 repl_code
= PLUS_EXPR
;
3646 /* If the increment has an initializer T_0, replace the candidate
3647 statement with an add of the basis name and the initializer. */
3648 if (incr_vec
[i
].initializer
)
3650 tree init_type
= TREE_TYPE (incr_vec
[i
].initializer
);
3651 tree orig_type
= TREE_TYPE (orig_rhs2
);
3653 if (types_compatible_p (orig_type
, init_type
))
3654 rhs2
= incr_vec
[i
].initializer
;
3656 rhs2
= introduce_cast_before_cand (c
, orig_type
,
3657 incr_vec
[i
].initializer
);
3659 if (incr_vec
[i
].incr
!= cand_incr
)
3661 gcc_assert (repl_code
== PLUS_EXPR
);
3662 repl_code
= MINUS_EXPR
;
3665 stmt_to_print
= replace_rhs_if_not_dup (repl_code
, basis_name
, rhs2
,
3666 orig_code
, orig_rhs1
, orig_rhs2
,
3670 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3671 with a subtract of the stride from the basis name, a copy
3672 from the basis name, or an add of the stride to the basis
3673 name, respectively. It may be necessary to introduce a
3674 cast (or reuse an existing cast). */
3675 else if (cand_incr
== 1)
3677 tree stride_type
= TREE_TYPE (c
->stride
);
3678 tree orig_type
= TREE_TYPE (orig_rhs2
);
3680 if (types_compatible_p (orig_type
, stride_type
))
3683 rhs2
= introduce_cast_before_cand (c
, orig_type
, c
->stride
);
3685 stmt_to_print
= replace_rhs_if_not_dup (repl_code
, basis_name
, rhs2
,
3686 orig_code
, orig_rhs1
, orig_rhs2
,
3690 else if (cand_incr
== -1)
3692 tree stride_type
= TREE_TYPE (c
->stride
);
3693 tree orig_type
= TREE_TYPE (orig_rhs2
);
3694 gcc_assert (repl_code
!= POINTER_PLUS_EXPR
);
3696 if (types_compatible_p (orig_type
, stride_type
))
3699 rhs2
= introduce_cast_before_cand (c
, orig_type
, c
->stride
);
3701 if (orig_code
!= MINUS_EXPR
3702 || !operand_equal_p (basis_name
, orig_rhs1
, 0)
3703 || !operand_equal_p (rhs2
, orig_rhs2
, 0))
3705 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3707 gimple_assign_set_rhs_with_ops (&gsi
, MINUS_EXPR
, basis_name
, rhs2
);
3708 update_stmt (gsi_stmt (gsi
));
3709 c
->cand_stmt
= gsi_stmt (gsi
);
3710 while (cc
->next_interp
)
3712 cc
= lookup_cand (cc
->next_interp
);
3713 cc
->cand_stmt
= gsi_stmt (gsi
);
3716 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3717 stmt_to_print
= gsi_stmt (gsi
);
3719 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3720 fputs (" (duplicate, not actually replacing)\n", dump_file
);
3723 else if (cand_incr
== 0)
3725 tree lhs
= gimple_assign_lhs (c
->cand_stmt
);
3726 tree lhs_type
= TREE_TYPE (lhs
);
3727 tree basis_type
= TREE_TYPE (basis_name
);
3729 if (types_compatible_p (lhs_type
, basis_type
))
3731 gassign
*copy_stmt
= gimple_build_assign (lhs
, basis_name
);
3732 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3734 gimple_set_location (copy_stmt
, gimple_location (c
->cand_stmt
));
3735 gsi_replace (&gsi
, copy_stmt
, false);
3736 c
->cand_stmt
= copy_stmt
;
3737 while (cc
->next_interp
)
3739 cc
= lookup_cand (cc
->next_interp
);
3740 cc
->cand_stmt
= copy_stmt
;
3743 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3744 stmt_to_print
= copy_stmt
;
3748 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3749 gassign
*cast_stmt
= gimple_build_assign (lhs
, NOP_EXPR
, basis_name
);
3751 gimple_set_location (cast_stmt
, gimple_location (c
->cand_stmt
));
3752 gsi_replace (&gsi
, cast_stmt
, false);
3753 c
->cand_stmt
= cast_stmt
;
3754 while (cc
->next_interp
)
3756 cc
= lookup_cand (cc
->next_interp
);
3757 cc
->cand_stmt
= cast_stmt
;
3760 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3761 stmt_to_print
= cast_stmt
;
3767 if (dump_file
&& (dump_flags
& TDF_DETAILS
) && stmt_to_print
)
3769 fputs ("With: ", dump_file
);
3770 print_gimple_stmt (dump_file
, stmt_to_print
, 0);
3771 fputs ("\n", dump_file
);
3775 /* For each candidate in the tree rooted at C, replace it with
3776 an increment if such has been shown to be profitable. */
3779 replace_profitable_candidates (slsr_cand_t c
)
3781 if (!cand_already_replaced (c
))
3783 widest_int increment
= cand_abs_increment (c
);
3784 enum tree_code orig_code
= gimple_assign_rhs_code (c
->cand_stmt
);
3787 i
= incr_vec_index (increment
);
3789 /* Only process profitable increments. Nothing useful can be done
3790 to a cast or copy. */
3792 && profitable_increment_p (i
)
3793 && orig_code
!= SSA_NAME
3794 && !CONVERT_EXPR_CODE_P (orig_code
))
3796 if (phi_dependent_cand_p (c
))
3798 gphi
*phi
= as_a
<gphi
*> (lookup_cand (c
->def_phi
)->cand_stmt
);
3800 if (all_phi_incrs_profitable (c
, phi
))
3802 /* Look up the LHS SSA name from C's basis. This will be
3803 the RHS1 of the adds we will introduce to create new
3805 slsr_cand_t basis
= lookup_cand (c
->basis
);
3806 tree basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
3808 /* Create a new phi statement that will represent C's true
3809 basis after the transformation is complete. */
3810 location_t loc
= gimple_location (c
->cand_stmt
);
3811 tree name
= create_phi_basis (c
, phi
, basis_name
,
3812 loc
, UNKNOWN_STRIDE
);
3814 /* Replace C with an add of the new basis phi and the
3816 replace_one_candidate (c
, i
, name
);
3821 slsr_cand_t basis
= lookup_cand (c
->basis
);
3822 tree basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
3823 replace_one_candidate (c
, i
, basis_name
);
3829 replace_profitable_candidates (lookup_cand (c
->sibling
));
3832 replace_profitable_candidates (lookup_cand (c
->dependent
));
3835 /* Analyze costs of related candidates in the candidate vector,
3836 and make beneficial replacements. */
3839 analyze_candidates_and_replace (void)
3844 /* Each candidate that has a null basis and a non-null
3845 dependent is the root of a tree of related statements.
3846 Analyze each tree to determine a subset of those
3847 statements that can be replaced with maximum benefit. */
3848 FOR_EACH_VEC_ELT (cand_vec
, i
, c
)
3850 slsr_cand_t first_dep
;
3852 if (c
->basis
!= 0 || c
->dependent
== 0)
3855 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3856 fprintf (dump_file
, "\nProcessing dependency tree rooted at %d.\n",
3859 first_dep
= lookup_cand (c
->dependent
);
3861 /* If this is a chain of CAND_REFs, unconditionally replace
3862 each of them with a strength-reduced data reference. */
3863 if (c
->kind
== CAND_REF
)
3866 /* If the common stride of all related candidates is a known
3867 constant, each candidate without a phi-dependence can be
3868 profitably replaced. Each replaces a multiply by a single
3869 add, with the possibility that a feeding add also goes dead.
3870 A candidate with a phi-dependence is replaced only if the
3871 compensation code it requires is offset by the strength
3872 reduction savings. */
3873 else if (TREE_CODE (c
->stride
) == INTEGER_CST
)
3874 replace_uncond_cands_and_profitable_phis (first_dep
);
3876 /* When the stride is an SSA name, it may still be profitable
3877 to replace some or all of the dependent candidates, depending
3878 on whether the introduced increments can be reused, or are
3879 less expensive to calculate than the replaced statements. */
3885 /* Determine whether we'll be generating pointer arithmetic
3886 when replacing candidates. */
3887 address_arithmetic_p
= (c
->kind
== CAND_ADD
3888 && POINTER_TYPE_P (c
->cand_type
));
3890 /* If all candidates have already been replaced under other
3891 interpretations, nothing remains to be done. */
3892 if (!count_candidates (c
))
3895 /* Construct an array of increments for this candidate chain. */
3896 incr_vec
= XNEWVEC (incr_info
, MAX_INCR_VEC_LEN
);
3898 record_increments (c
);
3900 /* Determine which increments are profitable to replace. */
3901 mode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c
->cand_stmt
)));
3902 speed
= optimize_cands_for_speed_p (c
);
3903 analyze_increments (first_dep
, mode
, speed
);
3905 /* Insert initializers of the form T_0 = stride * increment
3906 for use in profitable replacements. */
3907 insert_initializers (first_dep
);
3910 /* Perform the replacements. */
3911 replace_profitable_candidates (first_dep
);
3916 /* For conditional candidates, we may have uncommitted insertions
3917 on edges to clean up. */
3918 gsi_commit_edge_inserts ();
3923 const pass_data pass_data_strength_reduction
=
3925 GIMPLE_PASS
, /* type */
3927 OPTGROUP_NONE
, /* optinfo_flags */
3928 TV_GIMPLE_SLSR
, /* tv_id */
3929 ( PROP_cfg
| PROP_ssa
), /* properties_required */
3930 0, /* properties_provided */
3931 0, /* properties_destroyed */
3932 0, /* todo_flags_start */
3933 0, /* todo_flags_finish */
3936 class pass_strength_reduction
: public gimple_opt_pass
3939 pass_strength_reduction (gcc::context
*ctxt
)
3940 : gimple_opt_pass (pass_data_strength_reduction
, ctxt
)
3943 /* opt_pass methods: */
3944 virtual bool gate (function
*) { return flag_tree_slsr
; }
3945 virtual unsigned int execute (function
*);
3947 }; // class pass_strength_reduction
3950 pass_strength_reduction::execute (function
*fun
)
3952 /* Create the obstack where candidates will reside. */
3953 gcc_obstack_init (&cand_obstack
);
3955 /* Allocate the candidate vector. */
3956 cand_vec
.create (128);
3958 /* Allocate the mapping from statements to candidate indices. */
3959 stmt_cand_map
= new hash_map
<gimple
*, slsr_cand_t
>;
3961 /* Create the obstack where candidate chains will reside. */
3962 gcc_obstack_init (&chain_obstack
);
3964 /* Allocate the mapping from base expressions to candidate chains. */
3965 base_cand_map
= new hash_table
<cand_chain_hasher
> (500);
3967 /* Allocate the mapping from bases to alternative bases. */
3968 alt_base_map
= new hash_map
<tree
, tree
>;
3970 /* Initialize the loop optimizer. We need to detect flow across
3971 back edges, and this gives us dominator information as well. */
3972 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
3974 /* Walk the CFG in predominator order looking for strength reduction
3976 find_candidates_dom_walker (CDI_DOMINATORS
)
3977 .walk (fun
->cfg
->x_entry_block_ptr
);
3979 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3982 dump_cand_chains ();
3985 delete alt_base_map
;
3986 free_affine_expand_cache (&name_expansions
);
3988 /* Analyze costs and make appropriate replacements. */
3989 analyze_candidates_and_replace ();
3991 loop_optimizer_finalize ();
3992 delete base_cand_map
;
3993 base_cand_map
= NULL
;
3994 obstack_free (&chain_obstack
, NULL
);
3995 delete stmt_cand_map
;
3996 cand_vec
.release ();
3997 obstack_free (&cand_obstack
, NULL
);
4005 make_pass_strength_reduction (gcc::context
*ctxt
)
4007 return new pass_strength_reduction (ctxt
);