* doc/contrib.texi: Fix alphabetical order. Fix typos. Improve
[official-gcc.git] / gcc / reg-stack.c
blob2bf0fe7e3e32d2a9ba169092e9a0449638f7099a
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "tree.h"
157 #include "rtl.h"
158 #include "tm_p.h"
159 #include "function.h"
160 #include "insn-config.h"
161 #include "regs.h"
162 #include "hard-reg-set.h"
163 #include "flags.h"
164 #include "toplev.h"
165 #include "recog.h"
166 #include "output.h"
167 #include "basic-block.h"
168 #include "varray.h"
169 #include "reload.h"
171 #ifdef STACK_REGS
173 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
175 /* This is the basic stack record. TOP is an index into REG[] such
176 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
178 If TOP is -2, REG[] is not yet initialized. Stack initialization
179 consists of placing each live reg in array `reg' and setting `top'
180 appropriately.
182 REG_SET indicates which registers are live. */
184 typedef struct stack_def
186 int top; /* index to top stack element */
187 HARD_REG_SET reg_set; /* set of live registers */
188 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
189 } *stack;
191 /* This is used to carry information about basic blocks. It is
192 attached to the AUX field of the standard CFG block. */
194 typedef struct block_info_def
196 struct stack_def stack_in; /* Input stack configuration. */
197 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
198 int done; /* True if block already converted. */
199 } *block_info;
201 #define BLOCK_INFO(B) ((block_info) (B)->aux)
203 /* Passed to change_stack to indicate where to emit insns. */
204 enum emit_where
206 EMIT_AFTER,
207 EMIT_BEFORE
210 /* We use this array to cache info about insns, because otherwise we
211 spend too much time in stack_regs_mentioned_p.
213 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
214 the insn uses stack registers, two indicates the insn does not use
215 stack registers. */
216 static varray_type stack_regs_mentioned_data;
218 /* The block we're currently working on. */
219 static basic_block current_block;
221 /* This is the register file for all register after conversion */
222 static rtx
223 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
225 #define FP_MODE_REG(regno,mode) \
226 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int)(mode)])
228 /* Used to initialize uninitialized registers. */
229 static rtx nan;
231 /* Forward declarations */
233 static int stack_regs_mentioned_p PARAMS ((rtx pat));
234 static void straighten_stack PARAMS ((rtx, stack));
235 static void pop_stack PARAMS ((stack, int));
236 static rtx *get_true_reg PARAMS ((rtx *));
238 static int check_asm_stack_operands PARAMS ((rtx));
239 static int get_asm_operand_n_inputs PARAMS ((rtx));
240 static rtx stack_result PARAMS ((tree));
241 static void replace_reg PARAMS ((rtx *, int));
242 static void remove_regno_note PARAMS ((rtx, enum reg_note,
243 unsigned int));
244 static int get_hard_regnum PARAMS ((stack, rtx));
245 static void delete_insn_for_stacker PARAMS ((rtx));
246 static rtx emit_pop_insn PARAMS ((rtx, stack, rtx,
247 enum emit_where));
248 static void emit_swap_insn PARAMS ((rtx, stack, rtx));
249 static void move_for_stack_reg PARAMS ((rtx, stack, rtx));
250 static int swap_rtx_condition_1 PARAMS ((rtx));
251 static int swap_rtx_condition PARAMS ((rtx));
252 static void compare_for_stack_reg PARAMS ((rtx, stack, rtx));
253 static void subst_stack_regs_pat PARAMS ((rtx, stack, rtx));
254 static void subst_asm_stack_regs PARAMS ((rtx, stack));
255 static void subst_stack_regs PARAMS ((rtx, stack));
256 static void change_stack PARAMS ((rtx, stack, stack,
257 enum emit_where));
258 static int convert_regs_entry PARAMS ((void));
259 static void convert_regs_exit PARAMS ((void));
260 static int convert_regs_1 PARAMS ((FILE *, basic_block));
261 static int convert_regs_2 PARAMS ((FILE *, basic_block));
262 static int convert_regs PARAMS ((FILE *));
263 static void print_stack PARAMS ((FILE *, stack));
264 static rtx next_flags_user PARAMS ((rtx));
265 static void record_label_references PARAMS ((rtx, rtx));
267 /* Return non-zero if any stack register is mentioned somewhere within PAT. */
269 static int
270 stack_regs_mentioned_p (pat)
271 rtx pat;
273 register const char *fmt;
274 register int i;
276 if (STACK_REG_P (pat))
277 return 1;
279 fmt = GET_RTX_FORMAT (GET_CODE (pat));
280 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
282 if (fmt[i] == 'E')
284 register int j;
286 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
287 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
288 return 1;
290 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
291 return 1;
294 return 0;
297 /* Return nonzero if INSN mentions stacked registers, else return zero. */
300 stack_regs_mentioned (insn)
301 rtx insn;
303 unsigned int uid, max;
304 int test;
306 if (! INSN_P (insn))
307 return 0;
309 uid = INSN_UID (insn);
310 max = VARRAY_SIZE (stack_regs_mentioned_data);
311 if (uid >= max)
313 /* Allocate some extra size to avoid too many reallocs, but
314 do not grow too quickly. */
315 max = uid + uid / 20;
316 VARRAY_GROW (stack_regs_mentioned_data, max);
319 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
320 if (test == 0)
322 /* This insn has yet to be examined. Do so now. */
323 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
324 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
327 return test == 1;
330 static rtx ix86_flags_rtx;
332 static rtx
333 next_flags_user (insn)
334 rtx insn;
336 /* Search forward looking for the first use of this value.
337 Stop at block boundaries. */
339 while (insn != current_block->end)
341 insn = NEXT_INSN (insn);
343 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
344 return insn;
346 if (GET_CODE (insn) == CALL_INSN)
347 return NULL_RTX;
349 return NULL_RTX;
352 /* Reorganise the stack into ascending numbers,
353 after this insn. */
355 static void
356 straighten_stack (insn, regstack)
357 rtx insn;
358 stack regstack;
360 struct stack_def temp_stack;
361 int top;
363 /* If there is only a single register on the stack, then the stack is
364 already in increasing order and no reorganization is needed.
366 Similarly if the stack is empty. */
367 if (regstack->top <= 0)
368 return;
370 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
372 for (top = temp_stack.top = regstack->top; top >= 0; top--)
373 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
375 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
378 /* Pop a register from the stack */
380 static void
381 pop_stack (regstack, regno)
382 stack regstack;
383 int regno;
385 int top = regstack->top;
387 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
388 regstack->top--;
389 /* If regno was not at the top of stack then adjust stack */
390 if (regstack->reg [top] != regno)
392 int i;
393 for (i = regstack->top; i >= 0; i--)
394 if (regstack->reg [i] == regno)
396 int j;
397 for (j = i; j < top; j++)
398 regstack->reg [j] = regstack->reg [j + 1];
399 break;
404 /* Convert register usage from "flat" register file usage to a "stack
405 register file. FIRST is the first insn in the function, FILE is the
406 dump file, if used.
408 Construct a CFG and run life analysis. Then convert each insn one
409 by one. Run a last jump_optimize pass, if optimizing, to eliminate
410 code duplication created when the converter inserts pop insns on
411 the edges. */
413 void
414 reg_to_stack (first, file)
415 rtx first;
416 FILE *file;
418 int i;
419 int max_uid;
420 block_info bi;
422 /* See if there is something to do. Flow analysis is quite
423 expensive so we might save some compilation time. */
424 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
425 if (regs_ever_live[i])
426 break;
427 if (i > LAST_STACK_REG)
428 return;
430 /* Ok, floating point instructions exist. If not optimizing,
431 build the CFG and run life analysis. */
432 find_basic_blocks (first, max_reg_num (), file);
433 count_or_remove_death_notes (NULL, 1);
434 life_analysis (first, file, PROP_DEATH_NOTES);
436 /* Set up block info for each basic block. */
437 bi = (block_info) xcalloc ((n_basic_blocks + 1), sizeof (*bi));
438 for (i = n_basic_blocks - 1; i >= 0; --i)
439 BASIC_BLOCK (i)->aux = bi + i;
440 EXIT_BLOCK_PTR->aux = bi + n_basic_blocks;
442 /* Create the replacement registers up front. */
443 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
445 enum machine_mode mode;
446 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
447 mode != VOIDmode;
448 mode = GET_MODE_WIDER_MODE (mode))
449 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
450 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
451 mode != VOIDmode;
452 mode = GET_MODE_WIDER_MODE (mode))
453 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
456 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
458 /* A QNaN for initializing uninitialized variables.
460 ??? We can't load from constant memory in PIC mode, because
461 we're insertting these instructions before the prologue and
462 the PIC register hasn't been set up. In that case, fall back
463 on zero, which we can get from `ldz'. */
465 if (flag_pic)
466 nan = CONST0_RTX (SFmode);
467 else
469 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
470 nan = force_const_mem (SFmode, nan);
473 /* Allocate a cache for stack_regs_mentioned. */
474 max_uid = get_max_uid ();
475 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
476 "stack_regs_mentioned cache");
478 if (convert_regs (file) && optimize)
480 jump_optimize (first, JUMP_CROSS_JUMP_DEATH_MATTERS,
481 !JUMP_NOOP_MOVES, !JUMP_AFTER_REGSCAN);
484 /* Clean up. */
485 VARRAY_FREE (stack_regs_mentioned_data);
486 free (bi);
489 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
490 label's chain of references, and note which insn contains each
491 reference. */
493 static void
494 record_label_references (insn, pat)
495 rtx insn, pat;
497 register enum rtx_code code = GET_CODE (pat);
498 register int i;
499 register const char *fmt;
501 if (code == LABEL_REF)
503 register rtx label = XEXP (pat, 0);
504 register rtx ref;
506 if (GET_CODE (label) != CODE_LABEL)
507 abort ();
509 /* If this is an undefined label, LABEL_REFS (label) contains
510 garbage. */
511 if (INSN_UID (label) == 0)
512 return;
514 /* Don't make a duplicate in the code_label's chain. */
516 for (ref = LABEL_REFS (label);
517 ref && ref != label;
518 ref = LABEL_NEXTREF (ref))
519 if (CONTAINING_INSN (ref) == insn)
520 return;
522 CONTAINING_INSN (pat) = insn;
523 LABEL_NEXTREF (pat) = LABEL_REFS (label);
524 LABEL_REFS (label) = pat;
526 return;
529 fmt = GET_RTX_FORMAT (code);
530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
532 if (fmt[i] == 'e')
533 record_label_references (insn, XEXP (pat, i));
534 if (fmt[i] == 'E')
536 register int j;
537 for (j = 0; j < XVECLEN (pat, i); j++)
538 record_label_references (insn, XVECEXP (pat, i, j));
543 /* Return a pointer to the REG expression within PAT. If PAT is not a
544 REG, possible enclosed by a conversion rtx, return the inner part of
545 PAT that stopped the search. */
547 static rtx *
548 get_true_reg (pat)
549 rtx *pat;
551 for (;;)
552 switch (GET_CODE (*pat))
554 case SUBREG:
555 /* Eliminate FP subregister accesses in favour of the
556 actual FP register in use. */
558 rtx subreg;
559 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
561 int regno_off = subreg_regno_offset (REGNO (subreg),
562 GET_MODE (subreg),
563 SUBREG_BYTE (*pat),
564 GET_MODE (*pat));
565 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
566 GET_MODE (subreg));
567 default:
568 return pat;
571 case FLOAT:
572 case FIX:
573 case FLOAT_EXTEND:
574 pat = & XEXP (*pat, 0);
578 /* There are many rules that an asm statement for stack-like regs must
579 follow. Those rules are explained at the top of this file: the rule
580 numbers below refer to that explanation. */
582 static int
583 check_asm_stack_operands (insn)
584 rtx insn;
586 int i;
587 int n_clobbers;
588 int malformed_asm = 0;
589 rtx body = PATTERN (insn);
591 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
592 char implicitly_dies[FIRST_PSEUDO_REGISTER];
593 int alt;
595 rtx *clobber_reg = 0;
596 int n_inputs, n_outputs;
598 /* Find out what the constraints require. If no constraint
599 alternative matches, this asm is malformed. */
600 extract_insn (insn);
601 constrain_operands (1);
602 alt = which_alternative;
604 preprocess_constraints ();
606 n_inputs = get_asm_operand_n_inputs (body);
607 n_outputs = recog_data.n_operands - n_inputs;
609 if (alt < 0)
611 malformed_asm = 1;
612 /* Avoid further trouble with this insn. */
613 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
614 return 0;
617 /* Strip SUBREGs here to make the following code simpler. */
618 for (i = 0; i < recog_data.n_operands; i++)
619 if (GET_CODE (recog_data.operand[i]) == SUBREG
620 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
621 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
623 /* Set up CLOBBER_REG. */
625 n_clobbers = 0;
627 if (GET_CODE (body) == PARALLEL)
629 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
631 for (i = 0; i < XVECLEN (body, 0); i++)
632 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
634 rtx clobber = XVECEXP (body, 0, i);
635 rtx reg = XEXP (clobber, 0);
637 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
638 reg = SUBREG_REG (reg);
640 if (STACK_REG_P (reg))
642 clobber_reg[n_clobbers] = reg;
643 n_clobbers++;
648 /* Enforce rule #4: Output operands must specifically indicate which
649 reg an output appears in after an asm. "=f" is not allowed: the
650 operand constraints must select a class with a single reg.
652 Also enforce rule #5: Output operands must start at the top of
653 the reg-stack: output operands may not "skip" a reg. */
655 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
656 for (i = 0; i < n_outputs; i++)
657 if (STACK_REG_P (recog_data.operand[i]))
659 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
661 error_for_asm (insn, "Output constraint %d must specify a single register", i);
662 malformed_asm = 1;
664 else
666 int j;
668 for (j = 0; j < n_clobbers; j++)
669 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
671 error_for_asm (insn, "Output constraint %d cannot be specified together with \"%s\" clobber",
672 i, reg_names [REGNO (clobber_reg[j])]);
673 malformed_asm = 1;
674 break;
676 if (j == n_clobbers)
677 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
682 /* Search for first non-popped reg. */
683 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
684 if (! reg_used_as_output[i])
685 break;
687 /* If there are any other popped regs, that's an error. */
688 for (; i < LAST_STACK_REG + 1; i++)
689 if (reg_used_as_output[i])
690 break;
692 if (i != LAST_STACK_REG + 1)
694 error_for_asm (insn, "Output regs must be grouped at top of stack");
695 malformed_asm = 1;
698 /* Enforce rule #2: All implicitly popped input regs must be closer
699 to the top of the reg-stack than any input that is not implicitly
700 popped. */
702 memset (implicitly_dies, 0, sizeof (implicitly_dies));
703 for (i = n_outputs; i < n_outputs + n_inputs; i++)
704 if (STACK_REG_P (recog_data.operand[i]))
706 /* An input reg is implicitly popped if it is tied to an
707 output, or if there is a CLOBBER for it. */
708 int j;
710 for (j = 0; j < n_clobbers; j++)
711 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
712 break;
714 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
715 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
718 /* Search for first non-popped reg. */
719 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
720 if (! implicitly_dies[i])
721 break;
723 /* If there are any other popped regs, that's an error. */
724 for (; i < LAST_STACK_REG + 1; i++)
725 if (implicitly_dies[i])
726 break;
728 if (i != LAST_STACK_REG + 1)
730 error_for_asm (insn,
731 "Implicitly popped regs must be grouped at top of stack");
732 malformed_asm = 1;
735 /* Enfore rule #3: If any input operand uses the "f" constraint, all
736 output constraints must use the "&" earlyclobber.
738 ??? Detect this more deterministically by having constrain_asm_operands
739 record any earlyclobber. */
741 for (i = n_outputs; i < n_outputs + n_inputs; i++)
742 if (recog_op_alt[i][alt].matches == -1)
744 int j;
746 for (j = 0; j < n_outputs; j++)
747 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
749 error_for_asm (insn,
750 "Output operand %d must use `&' constraint", j);
751 malformed_asm = 1;
755 if (malformed_asm)
757 /* Avoid further trouble with this insn. */
758 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
759 return 0;
762 return 1;
765 /* Calculate the number of inputs and outputs in BODY, an
766 asm_operands. N_OPERANDS is the total number of operands, and
767 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
768 placed. */
770 static int
771 get_asm_operand_n_inputs (body)
772 rtx body;
774 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
775 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
777 else if (GET_CODE (body) == ASM_OPERANDS)
778 return ASM_OPERANDS_INPUT_LENGTH (body);
780 else if (GET_CODE (body) == PARALLEL
781 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
782 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
784 else if (GET_CODE (body) == PARALLEL
785 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
786 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
788 abort ();
791 /* If current function returns its result in an fp stack register,
792 return the REG. Otherwise, return 0. */
794 static rtx
795 stack_result (decl)
796 tree decl;
798 rtx result;
800 /* If the value is supposed to be returned in memory, then clearly
801 it is not returned in a stack register. */
802 if (aggregate_value_p (DECL_RESULT (decl)))
803 return 0;
805 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
806 if (result != 0)
808 #ifdef FUNCTION_OUTGOING_VALUE
809 result
810 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
811 #else
812 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
813 #endif
816 return result != 0 && STACK_REG_P (result) ? result : 0;
821 * This section deals with stack register substitution, and forms the second
822 * pass over the RTL.
825 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
826 the desired hard REGNO. */
828 static void
829 replace_reg (reg, regno)
830 rtx *reg;
831 int regno;
833 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
834 || ! STACK_REG_P (*reg))
835 abort ();
837 switch (GET_MODE_CLASS (GET_MODE (*reg)))
839 default: abort ();
840 case MODE_FLOAT:
841 case MODE_COMPLEX_FLOAT:;
844 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
847 /* Remove a note of type NOTE, which must be found, for register
848 number REGNO from INSN. Remove only one such note. */
850 static void
851 remove_regno_note (insn, note, regno)
852 rtx insn;
853 enum reg_note note;
854 unsigned int regno;
856 register rtx *note_link, this;
858 note_link = &REG_NOTES(insn);
859 for (this = *note_link; this; this = XEXP (this, 1))
860 if (REG_NOTE_KIND (this) == note
861 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
863 *note_link = XEXP (this, 1);
864 return;
866 else
867 note_link = &XEXP (this, 1);
869 abort ();
872 /* Find the hard register number of virtual register REG in REGSTACK.
873 The hard register number is relative to the top of the stack. -1 is
874 returned if the register is not found. */
876 static int
877 get_hard_regnum (regstack, reg)
878 stack regstack;
879 rtx reg;
881 int i;
883 if (! STACK_REG_P (reg))
884 abort ();
886 for (i = regstack->top; i >= 0; i--)
887 if (regstack->reg[i] == REGNO (reg))
888 break;
890 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
893 /* Delete INSN from the RTL. Mark the insn, but don't remove it from
894 the chain of insns. Doing so could confuse block_begin and block_end
895 if this were the only insn in the block. */
897 static void
898 delete_insn_for_stacker (insn)
899 rtx insn;
901 PUT_CODE (insn, NOTE);
902 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
903 NOTE_SOURCE_FILE (insn) = 0;
906 /* Emit an insn to pop virtual register REG before or after INSN.
907 REGSTACK is the stack state after INSN and is updated to reflect this
908 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
909 is represented as a SET whose destination is the register to be popped
910 and source is the top of stack. A death note for the top of stack
911 cases the movdf pattern to pop. */
913 static rtx
914 emit_pop_insn (insn, regstack, reg, where)
915 rtx insn;
916 stack regstack;
917 rtx reg;
918 enum emit_where where;
920 rtx pop_insn, pop_rtx;
921 int hard_regno;
923 /* For complex types take care to pop both halves. These may survive in
924 CLOBBER and USE expressions. */
925 if (COMPLEX_MODE_P (GET_MODE (reg)))
927 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
928 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
930 pop_insn = NULL_RTX;
931 if (get_hard_regnum (regstack, reg1) >= 0)
932 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
933 if (get_hard_regnum (regstack, reg2) >= 0)
934 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
935 if (!pop_insn)
936 abort ();
937 return pop_insn;
940 hard_regno = get_hard_regnum (regstack, reg);
942 if (hard_regno < FIRST_STACK_REG)
943 abort ();
945 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
946 FP_MODE_REG (FIRST_STACK_REG, DFmode));
948 if (where == EMIT_AFTER)
949 pop_insn = emit_block_insn_after (pop_rtx, insn, current_block);
950 else
951 pop_insn = emit_block_insn_before (pop_rtx, insn, current_block);
953 REG_NOTES (pop_insn)
954 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
955 REG_NOTES (pop_insn));
957 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
958 = regstack->reg[regstack->top];
959 regstack->top -= 1;
960 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
962 return pop_insn;
965 /* Emit an insn before or after INSN to swap virtual register REG with
966 the top of stack. REGSTACK is the stack state before the swap, and
967 is updated to reflect the swap. A swap insn is represented as a
968 PARALLEL of two patterns: each pattern moves one reg to the other.
970 If REG is already at the top of the stack, no insn is emitted. */
972 static void
973 emit_swap_insn (insn, regstack, reg)
974 rtx insn;
975 stack regstack;
976 rtx reg;
978 int hard_regno;
979 rtx swap_rtx;
980 int tmp, other_reg; /* swap regno temps */
981 rtx i1; /* the stack-reg insn prior to INSN */
982 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
984 hard_regno = get_hard_regnum (regstack, reg);
986 if (hard_regno < FIRST_STACK_REG)
987 abort ();
988 if (hard_regno == FIRST_STACK_REG)
989 return;
991 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
993 tmp = regstack->reg[other_reg];
994 regstack->reg[other_reg] = regstack->reg[regstack->top];
995 regstack->reg[regstack->top] = tmp;
997 /* Find the previous insn involving stack regs, but don't pass a
998 block boundary. */
999 i1 = NULL;
1000 if (current_block && insn != current_block->head)
1002 rtx tmp = PREV_INSN (insn);
1003 rtx limit = PREV_INSN (current_block->head);
1004 while (tmp != limit)
1006 if (GET_CODE (tmp) == CODE_LABEL
1007 || GET_CODE (tmp) == CALL_INSN
1008 || NOTE_INSN_BASIC_BLOCK_P (tmp)
1009 || (GET_CODE (tmp) == INSN
1010 && stack_regs_mentioned (tmp)))
1012 i1 = tmp;
1013 break;
1015 tmp = PREV_INSN (tmp);
1019 if (i1 != NULL_RTX
1020 && (i1set = single_set (i1)) != NULL_RTX)
1022 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1023 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1025 /* If the previous register stack push was from the reg we are to
1026 swap with, omit the swap. */
1028 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1029 && GET_CODE (i1src) == REG && REGNO (i1src) == hard_regno - 1
1030 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1031 return;
1033 /* If the previous insn wrote to the reg we are to swap with,
1034 omit the swap. */
1036 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == hard_regno
1037 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1038 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1039 return;
1042 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1043 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1045 if (i1)
1046 emit_block_insn_after (swap_rtx, i1, current_block);
1047 else if (current_block)
1048 emit_block_insn_before (swap_rtx, current_block->head, current_block);
1049 else
1050 emit_insn_before (swap_rtx, insn);
1053 /* Handle a move to or from a stack register in PAT, which is in INSN.
1054 REGSTACK is the current stack. */
1056 static void
1057 move_for_stack_reg (insn, regstack, pat)
1058 rtx insn;
1059 stack regstack;
1060 rtx pat;
1062 rtx *psrc = get_true_reg (&SET_SRC (pat));
1063 rtx *pdest = get_true_reg (&SET_DEST (pat));
1064 rtx src, dest;
1065 rtx note;
1067 src = *psrc; dest = *pdest;
1069 if (STACK_REG_P (src) && STACK_REG_P (dest))
1071 /* Write from one stack reg to another. If SRC dies here, then
1072 just change the register mapping and delete the insn. */
1074 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1075 if (note)
1077 int i;
1079 /* If this is a no-op move, there must not be a REG_DEAD note. */
1080 if (REGNO (src) == REGNO (dest))
1081 abort ();
1083 for (i = regstack->top; i >= 0; i--)
1084 if (regstack->reg[i] == REGNO (src))
1085 break;
1087 /* The source must be live, and the dest must be dead. */
1088 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1089 abort ();
1091 /* It is possible that the dest is unused after this insn.
1092 If so, just pop the src. */
1094 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1096 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1098 delete_insn_for_stacker (insn);
1099 return;
1102 regstack->reg[i] = REGNO (dest);
1104 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1105 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1107 delete_insn_for_stacker (insn);
1109 return;
1112 /* The source reg does not die. */
1114 /* If this appears to be a no-op move, delete it, or else it
1115 will confuse the machine description output patterns. But if
1116 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1117 for REG_UNUSED will not work for deleted insns. */
1119 if (REGNO (src) == REGNO (dest))
1121 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1122 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1124 delete_insn_for_stacker (insn);
1125 return;
1128 /* The destination ought to be dead */
1129 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1130 abort ();
1132 replace_reg (psrc, get_hard_regnum (regstack, src));
1134 regstack->reg[++regstack->top] = REGNO (dest);
1135 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1136 replace_reg (pdest, FIRST_STACK_REG);
1138 else if (STACK_REG_P (src))
1140 /* Save from a stack reg to MEM, or possibly integer reg. Since
1141 only top of stack may be saved, emit an exchange first if
1142 needs be. */
1144 emit_swap_insn (insn, regstack, src);
1146 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1147 if (note)
1149 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1150 regstack->top--;
1151 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1153 else if ((GET_MODE (src) == XFmode || GET_MODE (src) == TFmode)
1154 && regstack->top < REG_STACK_SIZE - 1)
1156 /* A 387 cannot write an XFmode value to a MEM without
1157 clobbering the source reg. The output code can handle
1158 this by reading back the value from the MEM.
1159 But it is more efficient to use a temp register if one is
1160 available. Push the source value here if the register
1161 stack is not full, and then write the value to memory via
1162 a pop. */
1163 rtx push_rtx, push_insn;
1164 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1166 if (GET_MODE (src) == TFmode)
1167 push_rtx = gen_movtf (top_stack_reg, top_stack_reg);
1168 else
1169 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1170 push_insn = emit_insn_before (push_rtx, insn);
1171 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1172 REG_NOTES (insn));
1175 replace_reg (psrc, FIRST_STACK_REG);
1177 else if (STACK_REG_P (dest))
1179 /* Load from MEM, or possibly integer REG or constant, into the
1180 stack regs. The actual target is always the top of the
1181 stack. The stack mapping is changed to reflect that DEST is
1182 now at top of stack. */
1184 /* The destination ought to be dead */
1185 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1186 abort ();
1188 if (regstack->top >= REG_STACK_SIZE)
1189 abort ();
1191 regstack->reg[++regstack->top] = REGNO (dest);
1192 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1193 replace_reg (pdest, FIRST_STACK_REG);
1195 else
1196 abort ();
1199 /* Swap the condition on a branch, if there is one. Return true if we
1200 found a condition to swap. False if the condition was not used as
1201 such. */
1203 static int
1204 swap_rtx_condition_1 (pat)
1205 rtx pat;
1207 register const char *fmt;
1208 register int i, r = 0;
1210 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1212 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1213 r = 1;
1215 else
1217 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1218 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1220 if (fmt[i] == 'E')
1222 register int j;
1224 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1225 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1227 else if (fmt[i] == 'e')
1228 r |= swap_rtx_condition_1 (XEXP (pat, i));
1232 return r;
1235 static int
1236 swap_rtx_condition (insn)
1237 rtx insn;
1239 rtx pat = PATTERN (insn);
1241 /* We're looking for a single set to cc0 or an HImode temporary. */
1243 if (GET_CODE (pat) == SET
1244 && GET_CODE (SET_DEST (pat)) == REG
1245 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1247 insn = next_flags_user (insn);
1248 if (insn == NULL_RTX)
1249 return 0;
1250 pat = PATTERN (insn);
1253 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1254 not doing anything with the cc value right now. We may be able to
1255 search for one though. */
1257 if (GET_CODE (pat) == SET
1258 && GET_CODE (SET_SRC (pat)) == UNSPEC
1259 && XINT (SET_SRC (pat), 1) == 9)
1261 rtx dest = SET_DEST (pat);
1263 /* Search forward looking for the first use of this value.
1264 Stop at block boundaries. */
1265 while (insn != current_block->end)
1267 insn = NEXT_INSN (insn);
1268 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1269 break;
1270 if (GET_CODE (insn) == CALL_INSN)
1271 return 0;
1274 /* So we've found the insn using this value. If it is anything
1275 other than sahf, aka unspec 10, or the value does not die
1276 (meaning we'd have to search further), then we must give up. */
1277 pat = PATTERN (insn);
1278 if (GET_CODE (pat) != SET
1279 || GET_CODE (SET_SRC (pat)) != UNSPEC
1280 || XINT (SET_SRC (pat), 1) != 10
1281 || ! dead_or_set_p (insn, dest))
1282 return 0;
1284 /* Now we are prepared to handle this as a normal cc0 setter. */
1285 insn = next_flags_user (insn);
1286 if (insn == NULL_RTX)
1287 return 0;
1288 pat = PATTERN (insn);
1291 if (swap_rtx_condition_1 (pat))
1293 int fail = 0;
1294 INSN_CODE (insn) = -1;
1295 if (recog_memoized (insn) == -1)
1296 fail = 1;
1297 /* In case the flags don't die here, recurse to try fix
1298 following user too. */
1299 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1301 insn = next_flags_user (insn);
1302 if (!insn || !swap_rtx_condition (insn))
1303 fail = 1;
1305 if (fail)
1307 swap_rtx_condition_1 (pat);
1308 return 0;
1310 return 1;
1312 return 0;
1315 /* Handle a comparison. Special care needs to be taken to avoid
1316 causing comparisons that a 387 cannot do correctly, such as EQ.
1318 Also, a pop insn may need to be emitted. The 387 does have an
1319 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1320 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1321 set up. */
1323 static void
1324 compare_for_stack_reg (insn, regstack, pat_src)
1325 rtx insn;
1326 stack regstack;
1327 rtx pat_src;
1329 rtx *src1, *src2;
1330 rtx src1_note, src2_note;
1331 rtx flags_user;
1333 src1 = get_true_reg (&XEXP (pat_src, 0));
1334 src2 = get_true_reg (&XEXP (pat_src, 1));
1335 flags_user = next_flags_user (insn);
1337 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1338 registers that die in this insn - move those to stack top first. */
1339 if ((! STACK_REG_P (*src1)
1340 || (STACK_REG_P (*src2)
1341 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1342 && swap_rtx_condition (insn))
1344 rtx temp;
1345 temp = XEXP (pat_src, 0);
1346 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1347 XEXP (pat_src, 1) = temp;
1349 src1 = get_true_reg (&XEXP (pat_src, 0));
1350 src2 = get_true_reg (&XEXP (pat_src, 1));
1352 INSN_CODE (insn) = -1;
1355 /* We will fix any death note later. */
1357 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1359 if (STACK_REG_P (*src2))
1360 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1361 else
1362 src2_note = NULL_RTX;
1364 emit_swap_insn (insn, regstack, *src1);
1366 replace_reg (src1, FIRST_STACK_REG);
1368 if (STACK_REG_P (*src2))
1369 replace_reg (src2, get_hard_regnum (regstack, *src2));
1371 if (src1_note)
1373 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1374 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1377 /* If the second operand dies, handle that. But if the operands are
1378 the same stack register, don't bother, because only one death is
1379 needed, and it was just handled. */
1381 if (src2_note
1382 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1383 && REGNO (*src1) == REGNO (*src2)))
1385 /* As a special case, two regs may die in this insn if src2 is
1386 next to top of stack and the top of stack also dies. Since
1387 we have already popped src1, "next to top of stack" is really
1388 at top (FIRST_STACK_REG) now. */
1390 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1391 && src1_note)
1393 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1394 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1396 else
1398 /* The 386 can only represent death of the first operand in
1399 the case handled above. In all other cases, emit a separate
1400 pop and remove the death note from here. */
1402 /* link_cc0_insns (insn); */
1404 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1406 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1407 EMIT_AFTER);
1412 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1413 is the current register layout. */
1415 static void
1416 subst_stack_regs_pat (insn, regstack, pat)
1417 rtx insn;
1418 stack regstack;
1419 rtx pat;
1421 rtx *dest, *src;
1423 switch (GET_CODE (pat))
1425 case USE:
1426 /* Deaths in USE insns can happen in non optimizing compilation.
1427 Handle them by popping the dying register. */
1428 src = get_true_reg (&XEXP (pat, 0));
1429 if (STACK_REG_P (*src)
1430 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1432 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1433 return;
1435 /* ??? Uninitialized USE should not happen. */
1436 else if (get_hard_regnum (regstack, *src) == -1)
1437 abort();
1438 break;
1440 case CLOBBER:
1442 rtx note;
1444 dest = get_true_reg (&XEXP (pat, 0));
1445 if (STACK_REG_P (*dest))
1447 note = find_reg_note (insn, REG_DEAD, *dest);
1449 if (pat != PATTERN (insn))
1451 /* The fix_truncdi_1 pattern wants to be able to allocate
1452 it's own scratch register. It does this by clobbering
1453 an fp reg so that it is assured of an empty reg-stack
1454 register. If the register is live, kill it now.
1455 Remove the DEAD/UNUSED note so we don't try to kill it
1456 later too. */
1458 if (note)
1459 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1460 else
1462 note = find_reg_note (insn, REG_UNUSED, *dest);
1463 if (!note)
1464 abort ();
1466 remove_note (insn, note);
1467 replace_reg (dest, LAST_STACK_REG);
1469 else
1471 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1472 indicates an uninitialized value. Because reload removed
1473 all other clobbers, this must be due to a function
1474 returning without a value. Load up a NaN. */
1476 if (! note
1477 && get_hard_regnum (regstack, *dest) == -1)
1479 pat = gen_rtx_SET (VOIDmode,
1480 FP_MODE_REG (REGNO (*dest), SFmode),
1481 nan);
1482 PATTERN (insn) = pat;
1483 move_for_stack_reg (insn, regstack, pat);
1485 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1486 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1488 pat = gen_rtx_SET (VOIDmode,
1489 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1490 nan);
1491 PATTERN (insn) = pat;
1492 move_for_stack_reg (insn, regstack, pat);
1496 break;
1499 case SET:
1501 rtx *src1 = (rtx *) 0, *src2;
1502 rtx src1_note, src2_note;
1503 rtx pat_src;
1505 dest = get_true_reg (&SET_DEST (pat));
1506 src = get_true_reg (&SET_SRC (pat));
1507 pat_src = SET_SRC (pat);
1509 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1510 if (STACK_REG_P (*src)
1511 || (STACK_REG_P (*dest)
1512 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1513 || GET_CODE (*src) == CONST_DOUBLE)))
1515 move_for_stack_reg (insn, regstack, pat);
1516 break;
1519 switch (GET_CODE (pat_src))
1521 case COMPARE:
1522 compare_for_stack_reg (insn, regstack, pat_src);
1523 break;
1525 case CALL:
1527 int count;
1528 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1529 --count >= 0;)
1531 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1532 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1535 replace_reg (dest, FIRST_STACK_REG);
1536 break;
1538 case REG:
1539 /* This is a `tstM2' case. */
1540 if (*dest != cc0_rtx)
1541 abort ();
1542 src1 = src;
1544 /* Fall through. */
1546 case FLOAT_TRUNCATE:
1547 case SQRT:
1548 case ABS:
1549 case NEG:
1550 /* These insns only operate on the top of the stack. DEST might
1551 be cc0_rtx if we're processing a tstM pattern. Also, it's
1552 possible that the tstM case results in a REG_DEAD note on the
1553 source. */
1555 if (src1 == 0)
1556 src1 = get_true_reg (&XEXP (pat_src, 0));
1558 emit_swap_insn (insn, regstack, *src1);
1560 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1562 if (STACK_REG_P (*dest))
1563 replace_reg (dest, FIRST_STACK_REG);
1565 if (src1_note)
1567 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1568 regstack->top--;
1569 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1572 replace_reg (src1, FIRST_STACK_REG);
1573 break;
1575 case MINUS:
1576 case DIV:
1577 /* On i386, reversed forms of subM3 and divM3 exist for
1578 MODE_FLOAT, so the same code that works for addM3 and mulM3
1579 can be used. */
1580 case MULT:
1581 case PLUS:
1582 /* These insns can accept the top of stack as a destination
1583 from a stack reg or mem, or can use the top of stack as a
1584 source and some other stack register (possibly top of stack)
1585 as a destination. */
1587 src1 = get_true_reg (&XEXP (pat_src, 0));
1588 src2 = get_true_reg (&XEXP (pat_src, 1));
1590 /* We will fix any death note later. */
1592 if (STACK_REG_P (*src1))
1593 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1594 else
1595 src1_note = NULL_RTX;
1596 if (STACK_REG_P (*src2))
1597 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1598 else
1599 src2_note = NULL_RTX;
1601 /* If either operand is not a stack register, then the dest
1602 must be top of stack. */
1604 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1605 emit_swap_insn (insn, regstack, *dest);
1606 else
1608 /* Both operands are REG. If neither operand is already
1609 at the top of stack, choose to make the one that is the dest
1610 the new top of stack. */
1612 int src1_hard_regnum, src2_hard_regnum;
1614 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1615 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1616 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1617 abort ();
1619 if (src1_hard_regnum != FIRST_STACK_REG
1620 && src2_hard_regnum != FIRST_STACK_REG)
1621 emit_swap_insn (insn, regstack, *dest);
1624 if (STACK_REG_P (*src1))
1625 replace_reg (src1, get_hard_regnum (regstack, *src1));
1626 if (STACK_REG_P (*src2))
1627 replace_reg (src2, get_hard_regnum (regstack, *src2));
1629 if (src1_note)
1631 rtx src1_reg = XEXP (src1_note, 0);
1633 /* If the register that dies is at the top of stack, then
1634 the destination is somewhere else - merely substitute it.
1635 But if the reg that dies is not at top of stack, then
1636 move the top of stack to the dead reg, as though we had
1637 done the insn and then a store-with-pop. */
1639 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1641 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1642 replace_reg (dest, get_hard_regnum (regstack, *dest));
1644 else
1646 int regno = get_hard_regnum (regstack, src1_reg);
1648 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1649 replace_reg (dest, regno);
1651 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1652 = regstack->reg[regstack->top];
1655 CLEAR_HARD_REG_BIT (regstack->reg_set,
1656 REGNO (XEXP (src1_note, 0)));
1657 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1658 regstack->top--;
1660 else if (src2_note)
1662 rtx src2_reg = XEXP (src2_note, 0);
1663 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1665 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1666 replace_reg (dest, get_hard_regnum (regstack, *dest));
1668 else
1670 int regno = get_hard_regnum (regstack, src2_reg);
1672 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1673 replace_reg (dest, regno);
1675 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1676 = regstack->reg[regstack->top];
1679 CLEAR_HARD_REG_BIT (regstack->reg_set,
1680 REGNO (XEXP (src2_note, 0)));
1681 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1682 regstack->top--;
1684 else
1686 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1687 replace_reg (dest, get_hard_regnum (regstack, *dest));
1690 /* Keep operand 1 maching with destination. */
1691 if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1692 && REG_P (*src1) && REG_P (*src2)
1693 && REGNO (*src1) != REGNO (*dest))
1695 int tmp = REGNO (*src1);
1696 replace_reg (src1, REGNO (*src2));
1697 replace_reg (src2, tmp);
1699 break;
1701 case UNSPEC:
1702 switch (XINT (pat_src, 1))
1704 case 1: /* sin */
1705 case 2: /* cos */
1706 /* These insns only operate on the top of the stack. */
1708 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1710 emit_swap_insn (insn, regstack, *src1);
1712 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1714 if (STACK_REG_P (*dest))
1715 replace_reg (dest, FIRST_STACK_REG);
1717 if (src1_note)
1719 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1720 regstack->top--;
1721 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1724 replace_reg (src1, FIRST_STACK_REG);
1725 break;
1727 case 10:
1728 /* (unspec [(unspec [(compare ..)] 9)] 10)
1729 Unspec 9 is fnstsw; unspec 10 is sahf. The combination
1730 matches the PPRO fcomi instruction. */
1732 pat_src = XVECEXP (pat_src, 0, 0);
1733 if (GET_CODE (pat_src) != UNSPEC
1734 || XINT (pat_src, 1) != 9)
1735 abort ();
1736 /* FALLTHRU */
1738 case 9:
1739 /* (unspec [(compare ..)] 9) */
1740 /* Combined fcomp+fnstsw generated for doing well with
1741 CSE. When optimizing this would have been broken
1742 up before now. */
1744 pat_src = XVECEXP (pat_src, 0, 0);
1745 if (GET_CODE (pat_src) != COMPARE)
1746 abort ();
1748 compare_for_stack_reg (insn, regstack, pat_src);
1749 break;
1751 default:
1752 abort ();
1754 break;
1756 case IF_THEN_ELSE:
1757 /* This insn requires the top of stack to be the destination. */
1759 /* If the comparison operator is an FP comparison operator,
1760 it is handled correctly by compare_for_stack_reg () who
1761 will move the destination to the top of stack. But if the
1762 comparison operator is not an FP comparison operator, we
1763 have to handle it here. */
1764 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1765 && REGNO (*dest) != regstack->reg[regstack->top])
1766 emit_swap_insn (insn, regstack, *dest);
1768 src1 = get_true_reg (&XEXP (pat_src, 1));
1769 src2 = get_true_reg (&XEXP (pat_src, 2));
1771 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1772 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1775 rtx src_note [3];
1776 int i;
1778 src_note[0] = 0;
1779 src_note[1] = src1_note;
1780 src_note[2] = src2_note;
1782 if (STACK_REG_P (*src1))
1783 replace_reg (src1, get_hard_regnum (regstack, *src1));
1784 if (STACK_REG_P (*src2))
1785 replace_reg (src2, get_hard_regnum (regstack, *src2));
1787 for (i = 1; i <= 2; i++)
1788 if (src_note [i])
1790 int regno = REGNO (XEXP (src_note[i], 0));
1792 /* If the register that dies is not at the top of
1793 stack, then move the top of stack to the dead reg */
1794 if (regno != regstack->reg[regstack->top])
1796 remove_regno_note (insn, REG_DEAD, regno);
1797 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1798 EMIT_AFTER);
1800 else
1802 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
1803 replace_reg (&XEXP (src_note[i], 0), FIRST_STACK_REG);
1804 regstack->top--;
1809 /* Make dest the top of stack. Add dest to regstack if
1810 not present. */
1811 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1812 regstack->reg[++regstack->top] = REGNO (*dest);
1813 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1814 replace_reg (dest, FIRST_STACK_REG);
1815 break;
1817 default:
1818 abort ();
1820 break;
1823 default:
1824 break;
1828 /* Substitute hard regnums for any stack regs in INSN, which has
1829 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1830 before the insn, and is updated with changes made here.
1832 There are several requirements and assumptions about the use of
1833 stack-like regs in asm statements. These rules are enforced by
1834 record_asm_stack_regs; see comments there for details. Any
1835 asm_operands left in the RTL at this point may be assume to meet the
1836 requirements, since record_asm_stack_regs removes any problem asm. */
1838 static void
1839 subst_asm_stack_regs (insn, regstack)
1840 rtx insn;
1841 stack regstack;
1843 rtx body = PATTERN (insn);
1844 int alt;
1846 rtx *note_reg; /* Array of note contents */
1847 rtx **note_loc; /* Address of REG field of each note */
1848 enum reg_note *note_kind; /* The type of each note */
1850 rtx *clobber_reg = 0;
1851 rtx **clobber_loc = 0;
1853 struct stack_def temp_stack;
1854 int n_notes;
1855 int n_clobbers;
1856 rtx note;
1857 int i;
1858 int n_inputs, n_outputs;
1860 if (! check_asm_stack_operands (insn))
1861 return;
1863 /* Find out what the constraints required. If no constraint
1864 alternative matches, that is a compiler bug: we should have caught
1865 such an insn in check_asm_stack_operands. */
1866 extract_insn (insn);
1867 constrain_operands (1);
1868 alt = which_alternative;
1870 preprocess_constraints ();
1872 n_inputs = get_asm_operand_n_inputs (body);
1873 n_outputs = recog_data.n_operands - n_inputs;
1875 if (alt < 0)
1876 abort ();
1878 /* Strip SUBREGs here to make the following code simpler. */
1879 for (i = 0; i < recog_data.n_operands; i++)
1880 if (GET_CODE (recog_data.operand[i]) == SUBREG
1881 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
1883 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1884 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1887 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1889 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1890 i++;
1892 note_reg = (rtx *) alloca (i * sizeof (rtx));
1893 note_loc = (rtx **) alloca (i * sizeof (rtx *));
1894 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1896 n_notes = 0;
1897 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1899 rtx reg = XEXP (note, 0);
1900 rtx *loc = & XEXP (note, 0);
1902 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1904 loc = & SUBREG_REG (reg);
1905 reg = SUBREG_REG (reg);
1908 if (STACK_REG_P (reg)
1909 && (REG_NOTE_KIND (note) == REG_DEAD
1910 || REG_NOTE_KIND (note) == REG_UNUSED))
1912 note_reg[n_notes] = reg;
1913 note_loc[n_notes] = loc;
1914 note_kind[n_notes] = REG_NOTE_KIND (note);
1915 n_notes++;
1919 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1921 n_clobbers = 0;
1923 if (GET_CODE (body) == PARALLEL)
1925 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
1926 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
1928 for (i = 0; i < XVECLEN (body, 0); i++)
1929 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1931 rtx clobber = XVECEXP (body, 0, i);
1932 rtx reg = XEXP (clobber, 0);
1933 rtx *loc = & XEXP (clobber, 0);
1935 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1937 loc = & SUBREG_REG (reg);
1938 reg = SUBREG_REG (reg);
1941 if (STACK_REG_P (reg))
1943 clobber_reg[n_clobbers] = reg;
1944 clobber_loc[n_clobbers] = loc;
1945 n_clobbers++;
1950 temp_stack = *regstack;
1952 /* Put the input regs into the desired place in TEMP_STACK. */
1954 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1955 if (STACK_REG_P (recog_data.operand[i])
1956 && reg_class_subset_p (recog_op_alt[i][alt].class,
1957 FLOAT_REGS)
1958 && recog_op_alt[i][alt].class != FLOAT_REGS)
1960 /* If an operand needs to be in a particular reg in
1961 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1962 these constraints are for single register classes, and
1963 reload guaranteed that operand[i] is already in that class,
1964 we can just use REGNO (recog_data.operand[i]) to know which
1965 actual reg this operand needs to be in. */
1967 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
1969 if (regno < 0)
1970 abort ();
1972 if (regno != REGNO (recog_data.operand[i]))
1974 /* recog_data.operand[i] is not in the right place. Find
1975 it and swap it with whatever is already in I's place.
1976 K is where recog_data.operand[i] is now. J is where it
1977 should be. */
1978 int j, k, temp;
1980 k = temp_stack.top - (regno - FIRST_STACK_REG);
1981 j = (temp_stack.top
1982 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
1984 temp = temp_stack.reg[k];
1985 temp_stack.reg[k] = temp_stack.reg[j];
1986 temp_stack.reg[j] = temp;
1990 /* Emit insns before INSN to make sure the reg-stack is in the right
1991 order. */
1993 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1995 /* Make the needed input register substitutions. Do death notes and
1996 clobbers too, because these are for inputs, not outputs. */
1998 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1999 if (STACK_REG_P (recog_data.operand[i]))
2001 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2003 if (regnum < 0)
2004 abort ();
2006 replace_reg (recog_data.operand_loc[i], regnum);
2009 for (i = 0; i < n_notes; i++)
2010 if (note_kind[i] == REG_DEAD)
2012 int regnum = get_hard_regnum (regstack, note_reg[i]);
2014 if (regnum < 0)
2015 abort ();
2017 replace_reg (note_loc[i], regnum);
2020 for (i = 0; i < n_clobbers; i++)
2022 /* It's OK for a CLOBBER to reference a reg that is not live.
2023 Don't try to replace it in that case. */
2024 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2026 if (regnum >= 0)
2028 /* Sigh - clobbers always have QImode. But replace_reg knows
2029 that these regs can't be MODE_INT and will abort. Just put
2030 the right reg there without calling replace_reg. */
2032 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2036 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2038 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2039 if (STACK_REG_P (recog_data.operand[i]))
2041 /* An input reg is implicitly popped if it is tied to an
2042 output, or if there is a CLOBBER for it. */
2043 int j;
2045 for (j = 0; j < n_clobbers; j++)
2046 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2047 break;
2049 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2051 /* recog_data.operand[i] might not be at the top of stack.
2052 But that's OK, because all we need to do is pop the
2053 right number of regs off of the top of the reg-stack.
2054 record_asm_stack_regs guaranteed that all implicitly
2055 popped regs were grouped at the top of the reg-stack. */
2057 CLEAR_HARD_REG_BIT (regstack->reg_set,
2058 regstack->reg[regstack->top]);
2059 regstack->top--;
2063 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2064 Note that there isn't any need to substitute register numbers.
2065 ??? Explain why this is true. */
2067 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2069 /* See if there is an output for this hard reg. */
2070 int j;
2072 for (j = 0; j < n_outputs; j++)
2073 if (STACK_REG_P (recog_data.operand[j])
2074 && REGNO (recog_data.operand[j]) == i)
2076 regstack->reg[++regstack->top] = i;
2077 SET_HARD_REG_BIT (regstack->reg_set, i);
2078 break;
2082 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2083 input that the asm didn't implicitly pop. If the asm didn't
2084 implicitly pop an input reg, that reg will still be live.
2086 Note that we can't use find_regno_note here: the register numbers
2087 in the death notes have already been substituted. */
2089 for (i = 0; i < n_outputs; i++)
2090 if (STACK_REG_P (recog_data.operand[i]))
2092 int j;
2094 for (j = 0; j < n_notes; j++)
2095 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2096 && note_kind[j] == REG_UNUSED)
2098 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2099 EMIT_AFTER);
2100 break;
2104 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2105 if (STACK_REG_P (recog_data.operand[i]))
2107 int j;
2109 for (j = 0; j < n_notes; j++)
2110 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2111 && note_kind[j] == REG_DEAD
2112 && TEST_HARD_REG_BIT (regstack->reg_set,
2113 REGNO (recog_data.operand[i])))
2115 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2116 EMIT_AFTER);
2117 break;
2122 /* Substitute stack hard reg numbers for stack virtual registers in
2123 INSN. Non-stack register numbers are not changed. REGSTACK is the
2124 current stack content. Insns may be emitted as needed to arrange the
2125 stack for the 387 based on the contents of the insn. */
2127 static void
2128 subst_stack_regs (insn, regstack)
2129 rtx insn;
2130 stack regstack;
2132 register rtx *note_link, note;
2133 register int i;
2135 if (GET_CODE (insn) == CALL_INSN)
2137 int top = regstack->top;
2139 /* If there are any floating point parameters to be passed in
2140 registers for this call, make sure they are in the right
2141 order. */
2143 if (top >= 0)
2145 straighten_stack (PREV_INSN (insn), regstack);
2147 /* Now mark the arguments as dead after the call. */
2149 while (regstack->top >= 0)
2151 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2152 regstack->top--;
2157 /* Do the actual substitution if any stack regs are mentioned.
2158 Since we only record whether entire insn mentions stack regs, and
2159 subst_stack_regs_pat only works for patterns that contain stack regs,
2160 we must check each pattern in a parallel here. A call_value_pop could
2161 fail otherwise. */
2163 if (stack_regs_mentioned (insn))
2165 int n_operands = asm_noperands (PATTERN (insn));
2166 if (n_operands >= 0)
2168 /* This insn is an `asm' with operands. Decode the operands,
2169 decide how many are inputs, and do register substitution.
2170 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2172 subst_asm_stack_regs (insn, regstack);
2173 return;
2176 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2177 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2179 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2180 subst_stack_regs_pat (insn, regstack,
2181 XVECEXP (PATTERN (insn), 0, i));
2183 else
2184 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2187 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2188 REG_UNUSED will already have been dealt with, so just return. */
2190 if (GET_CODE (insn) == NOTE)
2191 return;
2193 /* If there is a REG_UNUSED note on a stack register on this insn,
2194 the indicated reg must be popped. The REG_UNUSED note is removed,
2195 since the form of the newly emitted pop insn references the reg,
2196 making it no longer `unset'. */
2198 note_link = &REG_NOTES(insn);
2199 for (note = *note_link; note; note = XEXP (note, 1))
2200 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2202 *note_link = XEXP (note, 1);
2203 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2205 else
2206 note_link = &XEXP (note, 1);
2209 /* Change the organization of the stack so that it fits a new basic
2210 block. Some registers might have to be popped, but there can never be
2211 a register live in the new block that is not now live.
2213 Insert any needed insns before or after INSN, as indicated by
2214 WHERE. OLD is the original stack layout, and NEW is the desired
2215 form. OLD is updated to reflect the code emitted, ie, it will be
2216 the same as NEW upon return.
2218 This function will not preserve block_end[]. But that information
2219 is no longer needed once this has executed. */
2221 static void
2222 change_stack (insn, old, new, where)
2223 rtx insn;
2224 stack old;
2225 stack new;
2226 enum emit_where where;
2228 int reg;
2229 int update_end = 0;
2231 /* We will be inserting new insns "backwards". If we are to insert
2232 after INSN, find the next insn, and insert before it. */
2234 if (where == EMIT_AFTER)
2236 if (current_block && current_block->end == insn)
2237 update_end = 1;
2238 insn = NEXT_INSN (insn);
2241 /* Pop any registers that are not needed in the new block. */
2243 for (reg = old->top; reg >= 0; reg--)
2244 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2245 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2246 EMIT_BEFORE);
2248 if (new->top == -2)
2250 /* If the new block has never been processed, then it can inherit
2251 the old stack order. */
2253 new->top = old->top;
2254 memcpy (new->reg, old->reg, sizeof (new->reg));
2256 else
2258 /* This block has been entered before, and we must match the
2259 previously selected stack order. */
2261 /* By now, the only difference should be the order of the stack,
2262 not their depth or liveliness. */
2264 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2265 abort ();
2266 win:
2267 if (old->top != new->top)
2268 abort ();
2270 /* If the stack is not empty (new->top != -1), loop here emitting
2271 swaps until the stack is correct.
2273 The worst case number of swaps emitted is N + 2, where N is the
2274 depth of the stack. In some cases, the reg at the top of
2275 stack may be correct, but swapped anyway in order to fix
2276 other regs. But since we never swap any other reg away from
2277 its correct slot, this algorithm will converge. */
2279 if (new->top != -1)
2282 /* Swap the reg at top of stack into the position it is
2283 supposed to be in, until the correct top of stack appears. */
2285 while (old->reg[old->top] != new->reg[new->top])
2287 for (reg = new->top; reg >= 0; reg--)
2288 if (new->reg[reg] == old->reg[old->top])
2289 break;
2291 if (reg == -1)
2292 abort ();
2294 emit_swap_insn (insn, old,
2295 FP_MODE_REG (old->reg[reg], DFmode));
2298 /* See if any regs remain incorrect. If so, bring an
2299 incorrect reg to the top of stack, and let the while loop
2300 above fix it. */
2302 for (reg = new->top; reg >= 0; reg--)
2303 if (new->reg[reg] != old->reg[reg])
2305 emit_swap_insn (insn, old,
2306 FP_MODE_REG (old->reg[reg], DFmode));
2307 break;
2309 } while (reg >= 0);
2311 /* At this point there must be no differences. */
2313 for (reg = old->top; reg >= 0; reg--)
2314 if (old->reg[reg] != new->reg[reg])
2315 abort ();
2318 if (update_end)
2319 current_block->end = PREV_INSN (insn);
2322 /* Print stack configuration. */
2324 static void
2325 print_stack (file, s)
2326 FILE *file;
2327 stack s;
2329 if (! file)
2330 return;
2332 if (s->top == -2)
2333 fprintf (file, "uninitialized\n");
2334 else if (s->top == -1)
2335 fprintf (file, "empty\n");
2336 else
2338 int i;
2339 fputs ("[ ", file);
2340 for (i = 0; i <= s->top; ++i)
2341 fprintf (file, "%d ", s->reg[i]);
2342 fputs ("]\n", file);
2346 /* This function was doing life analysis. We now let the regular live
2347 code do it's job, so we only need to check some extra invariants
2348 that reg-stack expects. Primary among these being that all registers
2349 are initialized before use.
2351 The function returns true when code was emitted to CFG edges and
2352 commit_edge_insertions needs to be called. */
2354 static int
2355 convert_regs_entry ()
2357 int inserted = 0, i;
2358 edge e;
2360 for (i = n_basic_blocks - 1; i >= 0; --i)
2362 basic_block block = BASIC_BLOCK (i);
2363 block_info bi = BLOCK_INFO (block);
2364 int reg;
2366 /* Set current register status at last instruction `uninitialized'. */
2367 bi->stack_in.top = -2;
2369 /* Copy live_at_end and live_at_start into temporaries. */
2370 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2372 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2373 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2374 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2375 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2379 /* Load something into each stack register live at function entry.
2380 Such live registers can be caused by uninitialized variables or
2381 functions not returning values on all paths. In order to keep
2382 the push/pop code happy, and to not scrog the register stack, we
2383 must put something in these registers. Use a QNaN.
2385 Note that we are insertting converted code here. This code is
2386 never seen by the convert_regs pass. */
2388 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2390 basic_block block = e->dest;
2391 block_info bi = BLOCK_INFO (block);
2392 int reg, top = -1;
2394 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2395 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2397 rtx init;
2399 bi->stack_in.reg[++top] = reg;
2401 init = gen_rtx_SET (VOIDmode,
2402 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2403 nan);
2404 insert_insn_on_edge (init, e);
2405 inserted = 1;
2408 bi->stack_in.top = top;
2411 return inserted;
2414 /* Construct the desired stack for function exit. This will either
2415 be `empty', or the function return value at top-of-stack. */
2417 static void
2418 convert_regs_exit ()
2420 int value_reg_low, value_reg_high;
2421 stack output_stack;
2422 rtx retvalue;
2424 retvalue = stack_result (current_function_decl);
2425 value_reg_low = value_reg_high = -1;
2426 if (retvalue)
2428 value_reg_low = REGNO (retvalue);
2429 value_reg_high = value_reg_low
2430 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2433 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2434 if (value_reg_low == -1)
2435 output_stack->top = -1;
2436 else
2438 int reg;
2440 output_stack->top = value_reg_high - value_reg_low;
2441 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2443 output_stack->reg[reg - value_reg_low] = reg;
2444 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2449 /* Convert stack register references in one block. */
2451 static int
2452 convert_regs_1 (file, block)
2453 FILE *file;
2454 basic_block block;
2456 struct stack_def regstack, tmpstack;
2457 block_info bi = BLOCK_INFO (block);
2458 int inserted, reg;
2459 rtx insn, next;
2460 edge e;
2462 current_block = block;
2464 if (file)
2466 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2467 print_stack (file, &bi->stack_in);
2470 /* Process all insns in this block. Keep track of NEXT so that we
2471 don't process insns emitted while substituting in INSN. */
2472 next = block->head;
2473 regstack = bi->stack_in;
2476 insn = next;
2477 next = NEXT_INSN (insn);
2479 /* Ensure we have not missed a block boundary. */
2480 if (next == NULL)
2481 abort ();
2482 if (insn == block->end)
2483 next = NULL;
2485 /* Don't bother processing unless there is a stack reg
2486 mentioned or if it's a CALL_INSN. */
2487 if (stack_regs_mentioned (insn)
2488 || GET_CODE (insn) == CALL_INSN)
2490 if (file)
2492 fprintf (file, " insn %d input stack: ",
2493 INSN_UID (insn));
2494 print_stack (file, &regstack);
2496 subst_stack_regs (insn, &regstack);
2499 while (next);
2501 if (file)
2503 fprintf (file, "Expected live registers [");
2504 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2505 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2506 fprintf (file, " %d", reg);
2507 fprintf (file, " ]\nOutput stack: ");
2508 print_stack (file, &regstack);
2511 insn = block->end;
2512 if (GET_CODE (insn) == JUMP_INSN)
2513 insn = PREV_INSN (insn);
2515 /* If the function is declared to return a value, but it returns one
2516 in only some cases, some registers might come live here. Emit
2517 necessary moves for them. */
2519 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2521 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2522 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2524 rtx set;
2526 if (file)
2528 fprintf (file, "Emitting insn initializing reg %d\n",
2529 reg);
2532 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2533 nan);
2534 insn = emit_block_insn_after (set, insn, block);
2535 subst_stack_regs (insn, &regstack);
2539 /* Something failed if the stack lives don't match. */
2540 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2541 abort ();
2542 win:
2544 /* Adjust the stack of this block on exit to match the stack of the
2545 target block, or copy stack info into the stack of the successor
2546 of the successor hasn't been processed yet. */
2547 inserted = 0;
2548 for (e = block->succ; e ; e = e->succ_next)
2550 basic_block target = e->dest;
2551 stack target_stack = &BLOCK_INFO (target)->stack_in;
2553 if (file)
2554 fprintf (file, "Edge to block %d: ", target->index);
2556 if (target_stack->top == -2)
2558 /* The target block hasn't had a stack order selected.
2559 We need merely ensure that no pops are needed. */
2560 for (reg = regstack.top; reg >= 0; --reg)
2561 if (! TEST_HARD_REG_BIT (target_stack->reg_set,
2562 regstack.reg[reg]))
2563 break;
2565 if (reg == -1)
2567 if (file)
2568 fprintf (file, "new block; copying stack position\n");
2570 /* change_stack kills values in regstack. */
2571 tmpstack = regstack;
2573 change_stack (block->end, &tmpstack,
2574 target_stack, EMIT_AFTER);
2575 continue;
2578 if (file)
2579 fprintf (file, "new block; pops needed\n");
2581 else
2583 if (target_stack->top == regstack.top)
2585 for (reg = target_stack->top; reg >= 0; --reg)
2586 if (target_stack->reg[reg] != regstack.reg[reg])
2587 break;
2589 if (reg == -1)
2591 if (file)
2592 fprintf (file, "no changes needed\n");
2593 continue;
2597 if (file)
2599 fprintf (file, "correcting stack to ");
2600 print_stack (file, target_stack);
2604 /* Care for non-call EH edges specially. The normal return path have
2605 values in registers. These will be popped en masse by the unwind
2606 library. */
2607 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2608 target_stack->top = -1;
2610 /* Other calls may appear to have values live in st(0), but the
2611 abnormal return path will not have actually loaded the values. */
2612 else if (e->flags & EDGE_ABNORMAL_CALL)
2614 /* Assert that the lifetimes are as we expect -- one value
2615 live at st(0) on the end of the source block, and no
2616 values live at the beginning of the destination block. */
2617 HARD_REG_SET tmp;
2619 CLEAR_HARD_REG_SET (tmp);
2620 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2621 abort();
2622 eh1:
2624 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2625 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2626 abort();
2627 eh2:
2629 target_stack->top = -1;
2632 /* It is better to output directly to the end of the block
2633 instead of to the edge, because emit_swap can do minimal
2634 insn scheduling. We can do this when there is only one
2635 edge out, and it is not abnormal. */
2636 else if (block->succ->succ_next == NULL
2637 && ! (e->flags & EDGE_ABNORMAL))
2639 /* change_stack kills values in regstack. */
2640 tmpstack = regstack;
2642 change_stack (block->end, &tmpstack, target_stack,
2643 (GET_CODE (block->end) == JUMP_INSN
2644 ? EMIT_BEFORE : EMIT_AFTER));
2646 else
2648 rtx seq, after;
2650 /* We don't support abnormal edges. Global takes care to
2651 avoid any live register across them, so we should never
2652 have to insert instructions on such edges. */
2653 if (e->flags & EDGE_ABNORMAL)
2654 abort ();
2656 current_block = NULL;
2657 start_sequence ();
2659 /* ??? change_stack needs some point to emit insns after.
2660 Also needed to keep gen_sequence from returning a
2661 pattern as opposed to a sequence, which would lose
2662 REG_DEAD notes. */
2663 after = emit_note (NULL, NOTE_INSN_DELETED);
2665 tmpstack = regstack;
2666 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2668 seq = gen_sequence ();
2669 end_sequence ();
2671 insert_insn_on_edge (seq, e);
2672 inserted = 1;
2673 current_block = block;
2677 return inserted;
2680 /* Convert registers in all blocks reachable from BLOCK. */
2682 static int
2683 convert_regs_2 (file, block)
2684 FILE *file;
2685 basic_block block;
2687 basic_block *stack, *sp;
2688 int inserted;
2690 stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
2691 sp = stack;
2693 *sp++ = block;
2694 BLOCK_INFO (block)->done = 1;
2696 inserted = 0;
2699 edge e;
2701 block = *--sp;
2702 inserted |= convert_regs_1 (file, block);
2704 for (e = block->succ; e ; e = e->succ_next)
2705 if (! BLOCK_INFO (e->dest)->done)
2707 *sp++ = e->dest;
2708 BLOCK_INFO (e->dest)->done = 1;
2711 while (sp != stack);
2713 return inserted;
2716 /* Traverse all basic blocks in a function, converting the register
2717 references in each insn from the "flat" register file that gcc uses,
2718 to the stack-like registers the 387 uses. */
2720 static int
2721 convert_regs (file)
2722 FILE *file;
2724 int inserted, i;
2725 edge e;
2727 /* Initialize uninitialized registers on function entry. */
2728 inserted = convert_regs_entry ();
2730 /* Construct the desired stack for function exit. */
2731 convert_regs_exit ();
2732 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2734 /* ??? Future: process inner loops first, and give them arbitrary
2735 initial stacks which emit_swap_insn can modify. This ought to
2736 prevent double fxch that aften appears at the head of a loop. */
2738 /* Process all blocks reachable from all entry points. */
2739 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2740 inserted |= convert_regs_2 (file, e->dest);
2742 /* ??? Process all unreachable blocks. Though there's no excuse
2743 for keeping these even when not optimizing. */
2744 for (i = 0; i < n_basic_blocks; ++i)
2746 basic_block b = BASIC_BLOCK (i);
2747 block_info bi = BLOCK_INFO (b);
2749 if (! bi->done)
2751 int reg;
2753 /* Create an arbitrary input stack. */
2754 bi->stack_in.top = -1;
2755 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2756 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2757 bi->stack_in.reg[++bi->stack_in.top] = reg;
2759 inserted |= convert_regs_2 (file, b);
2763 if (inserted)
2764 commit_edge_insertions ();
2766 if (file)
2767 fputc ('\n', file);
2769 return inserted;
2771 #endif /* STACK_REGS */