* external/sax/Makefile.am (GCJ_WITH_FLAGS): Add "-fclasspath=".
[official-gcc.git] / gcc / reload.c
blob7d42492a98d6899b0c9284b6a7f41e1647c8362d
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 /* True if X is a constant that can be forced into the constant pool. */
112 #define CONST_POOL_OK_P(X) \
113 (CONSTANT_P (X) \
114 && GET_CODE (X) != HIGH \
115 && !targetm.cannot_force_const_mem (X))
117 /* True if C is a non-empty register class that has too few registers
118 to be safely used as a reload target class. */
119 #define SMALL_REGISTER_CLASS_P(C) \
120 (reg_class_size [(C)] == 1 \
121 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
124 /* All reloads of the current insn are recorded here. See reload.h for
125 comments. */
126 int n_reloads;
127 struct reload rld[MAX_RELOADS];
129 /* All the "earlyclobber" operands of the current insn
130 are recorded here. */
131 int n_earlyclobbers;
132 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
134 int reload_n_operands;
136 /* Replacing reloads.
138 If `replace_reloads' is nonzero, then as each reload is recorded
139 an entry is made for it in the table `replacements'.
140 Then later `subst_reloads' can look through that table and
141 perform all the replacements needed. */
143 /* Nonzero means record the places to replace. */
144 static int replace_reloads;
146 /* Each replacement is recorded with a structure like this. */
147 struct replacement
149 rtx *where; /* Location to store in */
150 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
151 a SUBREG; 0 otherwise. */
152 int what; /* which reload this is for */
153 enum machine_mode mode; /* mode it must have */
156 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
158 /* Number of replacements currently recorded. */
159 static int n_replacements;
161 /* Used to track what is modified by an operand. */
162 struct decomposition
164 int reg_flag; /* Nonzero if referencing a register. */
165 int safe; /* Nonzero if this can't conflict with anything. */
166 rtx base; /* Base address for MEM. */
167 HOST_WIDE_INT start; /* Starting offset or register number. */
168 HOST_WIDE_INT end; /* Ending offset or register number. */
171 #ifdef SECONDARY_MEMORY_NEEDED
173 /* Save MEMs needed to copy from one class of registers to another. One MEM
174 is used per mode, but normally only one or two modes are ever used.
176 We keep two versions, before and after register elimination. The one
177 after register elimination is record separately for each operand. This
178 is done in case the address is not valid to be sure that we separately
179 reload each. */
181 static rtx secondary_memlocs[NUM_MACHINE_MODES];
182 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
183 static int secondary_memlocs_elim_used = 0;
184 #endif
186 /* The instruction we are doing reloads for;
187 so we can test whether a register dies in it. */
188 static rtx this_insn;
190 /* Nonzero if this instruction is a user-specified asm with operands. */
191 static int this_insn_is_asm;
193 /* If hard_regs_live_known is nonzero,
194 we can tell which hard regs are currently live,
195 at least enough to succeed in choosing dummy reloads. */
196 static int hard_regs_live_known;
198 /* Indexed by hard reg number,
199 element is nonnegative if hard reg has been spilled.
200 This vector is passed to `find_reloads' as an argument
201 and is not changed here. */
202 static short *static_reload_reg_p;
204 /* Set to 1 in subst_reg_equivs if it changes anything. */
205 static int subst_reg_equivs_changed;
207 /* On return from push_reload, holds the reload-number for the OUT
208 operand, which can be different for that from the input operand. */
209 static int output_reloadnum;
211 /* Compare two RTX's. */
212 #define MATCHES(x, y) \
213 (x == y || (x != 0 && (REG_P (x) \
214 ? REG_P (y) && REGNO (x) == REGNO (y) \
215 : rtx_equal_p (x, y) && ! side_effects_p (x))))
217 /* Indicates if two reloads purposes are for similar enough things that we
218 can merge their reloads. */
219 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
220 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
221 || ((when1) == (when2) && (op1) == (op2)) \
222 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
223 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
224 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
225 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
226 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
228 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
229 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
230 ((when1) != (when2) \
231 || ! ((op1) == (op2) \
232 || (when1) == RELOAD_FOR_INPUT \
233 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
234 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
236 /* If we are going to reload an address, compute the reload type to
237 use. */
238 #define ADDR_TYPE(type) \
239 ((type) == RELOAD_FOR_INPUT_ADDRESS \
240 ? RELOAD_FOR_INPADDR_ADDRESS \
241 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
242 ? RELOAD_FOR_OUTADDR_ADDRESS \
243 : (type)))
245 #ifdef HAVE_SECONDARY_RELOADS
246 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 enum machine_mode, enum reload_type,
248 enum insn_code *);
249 #endif
250 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
251 int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
282 static int refers_to_mem_for_reload_p (rtx);
283 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
284 rtx, rtx *);
286 #ifdef HAVE_SECONDARY_RELOADS
288 /* Determine if any secondary reloads are needed for loading (if IN_P is
289 nonzero) or storing (if IN_P is zero) X to or from a reload register of
290 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
291 are needed, push them.
293 Return the reload number of the secondary reload we made, or -1 if
294 we didn't need one. *PICODE is set to the insn_code to use if we do
295 need a secondary reload. */
297 static int
298 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
299 enum reg_class reload_class,
300 enum machine_mode reload_mode, enum reload_type type,
301 enum insn_code *picode)
303 enum reg_class class = NO_REGS;
304 enum machine_mode mode = reload_mode;
305 enum insn_code icode = CODE_FOR_nothing;
306 enum reg_class t_class = NO_REGS;
307 enum machine_mode t_mode = VOIDmode;
308 enum insn_code t_icode = CODE_FOR_nothing;
309 enum reload_type secondary_type;
310 int s_reload, t_reload = -1;
312 if (type == RELOAD_FOR_INPUT_ADDRESS
313 || type == RELOAD_FOR_OUTPUT_ADDRESS
314 || type == RELOAD_FOR_INPADDR_ADDRESS
315 || type == RELOAD_FOR_OUTADDR_ADDRESS)
316 secondary_type = type;
317 else
318 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
320 *picode = CODE_FOR_nothing;
322 /* If X is a paradoxical SUBREG, use the inner value to determine both the
323 mode and object being reloaded. */
324 if (GET_CODE (x) == SUBREG
325 && (GET_MODE_SIZE (GET_MODE (x))
326 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
328 x = SUBREG_REG (x);
329 reload_mode = GET_MODE (x);
332 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
333 is still a pseudo-register by now, it *must* have an equivalent MEM
334 but we don't want to assume that), use that equivalent when seeing if
335 a secondary reload is needed since whether or not a reload is needed
336 might be sensitive to the form of the MEM. */
338 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
339 && reg_equiv_mem[REGNO (x)] != 0)
340 x = reg_equiv_mem[REGNO (x)];
342 #ifdef SECONDARY_INPUT_RELOAD_CLASS
343 if (in_p)
344 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
345 #endif
347 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
348 if (! in_p)
349 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
350 #endif
352 /* If we don't need any secondary registers, done. */
353 if (class == NO_REGS)
354 return -1;
356 /* Get a possible insn to use. If the predicate doesn't accept X, don't
357 use the insn. */
359 icode = (in_p ? reload_in_optab[(int) reload_mode]
360 : reload_out_optab[(int) reload_mode]);
362 if (icode != CODE_FOR_nothing
363 && insn_data[(int) icode].operand[in_p].predicate
364 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
365 icode = CODE_FOR_nothing;
367 /* If we will be using an insn, see if it can directly handle the reload
368 register we will be using. If it can, the secondary reload is for a
369 scratch register. If it can't, we will use the secondary reload for
370 an intermediate register and require a tertiary reload for the scratch
371 register. */
373 if (icode != CODE_FOR_nothing)
375 /* If IN_P is nonzero, the reload register will be the output in
376 operand 0. If IN_P is zero, the reload register will be the input
377 in operand 1. Outputs should have an initial "=", which we must
378 skip. */
380 enum reg_class insn_class;
382 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
383 insn_class = ALL_REGS;
384 else
386 const char *insn_constraint
387 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
388 char insn_letter = *insn_constraint;
389 insn_class
390 = (insn_letter == 'r' ? GENERAL_REGS
391 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
392 insn_constraint));
394 gcc_assert (insn_class != NO_REGS);
395 gcc_assert (!in_p
396 || insn_data[(int) icode].operand[!in_p].constraint[0]
397 == '=');
400 /* The scratch register's constraint must start with "=&". */
401 gcc_assert (insn_data[(int) icode].operand[2].constraint[0] == '='
402 && insn_data[(int) icode].operand[2].constraint[1] == '&');
404 if (reg_class_subset_p (reload_class, insn_class))
405 mode = insn_data[(int) icode].operand[2].mode;
406 else
408 const char *t_constraint
409 = &insn_data[(int) icode].operand[2].constraint[2];
410 char t_letter = *t_constraint;
411 class = insn_class;
412 t_mode = insn_data[(int) icode].operand[2].mode;
413 t_class = (t_letter == 'r' ? GENERAL_REGS
414 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
415 t_constraint));
416 t_icode = icode;
417 icode = CODE_FOR_nothing;
421 /* This case isn't valid, so fail. Reload is allowed to use the same
422 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
423 in the case of a secondary register, we actually need two different
424 registers for correct code. We fail here to prevent the possibility of
425 silently generating incorrect code later.
427 The convention is that secondary input reloads are valid only if the
428 secondary_class is different from class. If you have such a case, you
429 can not use secondary reloads, you must work around the problem some
430 other way.
432 Allow this when a reload_in/out pattern is being used. I.e. assume
433 that the generated code handles this case. */
435 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
436 || t_icode != CODE_FOR_nothing);
438 /* If we need a tertiary reload, see if we have one we can reuse or else
439 make a new one. */
441 if (t_class != NO_REGS)
443 for (t_reload = 0; t_reload < n_reloads; t_reload++)
444 if (rld[t_reload].secondary_p
445 && (reg_class_subset_p (t_class, rld[t_reload].class)
446 || reg_class_subset_p (rld[t_reload].class, t_class))
447 && ((in_p && rld[t_reload].inmode == t_mode)
448 || (! in_p && rld[t_reload].outmode == t_mode))
449 && ((in_p && (rld[t_reload].secondary_in_icode
450 == CODE_FOR_nothing))
451 || (! in_p &&(rld[t_reload].secondary_out_icode
452 == CODE_FOR_nothing)))
453 && (SMALL_REGISTER_CLASS_P (t_class) || SMALL_REGISTER_CLASSES)
454 && MERGABLE_RELOADS (secondary_type,
455 rld[t_reload].when_needed,
456 opnum, rld[t_reload].opnum))
458 if (in_p)
459 rld[t_reload].inmode = t_mode;
460 if (! in_p)
461 rld[t_reload].outmode = t_mode;
463 if (reg_class_subset_p (t_class, rld[t_reload].class))
464 rld[t_reload].class = t_class;
466 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
467 rld[t_reload].optional &= optional;
468 rld[t_reload].secondary_p = 1;
469 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
470 opnum, rld[t_reload].opnum))
471 rld[t_reload].when_needed = RELOAD_OTHER;
474 if (t_reload == n_reloads)
476 /* We need to make a new tertiary reload for this register class. */
477 rld[t_reload].in = rld[t_reload].out = 0;
478 rld[t_reload].class = t_class;
479 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
480 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
481 rld[t_reload].reg_rtx = 0;
482 rld[t_reload].optional = optional;
483 rld[t_reload].inc = 0;
484 /* Maybe we could combine these, but it seems too tricky. */
485 rld[t_reload].nocombine = 1;
486 rld[t_reload].in_reg = 0;
487 rld[t_reload].out_reg = 0;
488 rld[t_reload].opnum = opnum;
489 rld[t_reload].when_needed = secondary_type;
490 rld[t_reload].secondary_in_reload = -1;
491 rld[t_reload].secondary_out_reload = -1;
492 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
493 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
494 rld[t_reload].secondary_p = 1;
496 n_reloads++;
500 /* See if we can reuse an existing secondary reload. */
501 for (s_reload = 0; s_reload < n_reloads; s_reload++)
502 if (rld[s_reload].secondary_p
503 && (reg_class_subset_p (class, rld[s_reload].class)
504 || reg_class_subset_p (rld[s_reload].class, class))
505 && ((in_p && rld[s_reload].inmode == mode)
506 || (! in_p && rld[s_reload].outmode == mode))
507 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
508 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
509 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
510 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
511 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
512 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
513 opnum, rld[s_reload].opnum))
515 if (in_p)
516 rld[s_reload].inmode = mode;
517 if (! in_p)
518 rld[s_reload].outmode = mode;
520 if (reg_class_subset_p (class, rld[s_reload].class))
521 rld[s_reload].class = class;
523 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
524 rld[s_reload].optional &= optional;
525 rld[s_reload].secondary_p = 1;
526 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
527 opnum, rld[s_reload].opnum))
528 rld[s_reload].when_needed = RELOAD_OTHER;
531 if (s_reload == n_reloads)
533 #ifdef SECONDARY_MEMORY_NEEDED
534 /* If we need a memory location to copy between the two reload regs,
535 set it up now. Note that we do the input case before making
536 the reload and the output case after. This is due to the
537 way reloads are output. */
539 if (in_p && icode == CODE_FOR_nothing
540 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
542 get_secondary_mem (x, reload_mode, opnum, type);
544 /* We may have just added new reloads. Make sure we add
545 the new reload at the end. */
546 s_reload = n_reloads;
548 #endif
550 /* We need to make a new secondary reload for this register class. */
551 rld[s_reload].in = rld[s_reload].out = 0;
552 rld[s_reload].class = class;
554 rld[s_reload].inmode = in_p ? mode : VOIDmode;
555 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
556 rld[s_reload].reg_rtx = 0;
557 rld[s_reload].optional = optional;
558 rld[s_reload].inc = 0;
559 /* Maybe we could combine these, but it seems too tricky. */
560 rld[s_reload].nocombine = 1;
561 rld[s_reload].in_reg = 0;
562 rld[s_reload].out_reg = 0;
563 rld[s_reload].opnum = opnum;
564 rld[s_reload].when_needed = secondary_type;
565 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
566 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
567 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
568 rld[s_reload].secondary_out_icode
569 = ! in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_p = 1;
572 n_reloads++;
574 #ifdef SECONDARY_MEMORY_NEEDED
575 if (! in_p && icode == CODE_FOR_nothing
576 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
577 get_secondary_mem (x, mode, opnum, type);
578 #endif
581 *picode = icode;
582 return s_reload;
584 #endif /* HAVE_SECONDARY_RELOADS */
586 #ifdef SECONDARY_MEMORY_NEEDED
588 /* Return a memory location that will be used to copy X in mode MODE.
589 If we haven't already made a location for this mode in this insn,
590 call find_reloads_address on the location being returned. */
593 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
594 int opnum, enum reload_type type)
596 rtx loc;
597 int mem_valid;
599 /* By default, if MODE is narrower than a word, widen it to a word.
600 This is required because most machines that require these memory
601 locations do not support short load and stores from all registers
602 (e.g., FP registers). */
604 #ifdef SECONDARY_MEMORY_NEEDED_MODE
605 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
606 #else
607 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
608 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
609 #endif
611 /* If we already have made a MEM for this operand in MODE, return it. */
612 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
613 return secondary_memlocs_elim[(int) mode][opnum];
615 /* If this is the first time we've tried to get a MEM for this mode,
616 allocate a new one. `something_changed' in reload will get set
617 by noticing that the frame size has changed. */
619 if (secondary_memlocs[(int) mode] == 0)
621 #ifdef SECONDARY_MEMORY_NEEDED_RTX
622 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
623 #else
624 secondary_memlocs[(int) mode]
625 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
626 #endif
629 /* Get a version of the address doing any eliminations needed. If that
630 didn't give us a new MEM, make a new one if it isn't valid. */
632 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
633 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
635 if (! mem_valid && loc == secondary_memlocs[(int) mode])
636 loc = copy_rtx (loc);
638 /* The only time the call below will do anything is if the stack
639 offset is too large. In that case IND_LEVELS doesn't matter, so we
640 can just pass a zero. Adjust the type to be the address of the
641 corresponding object. If the address was valid, save the eliminated
642 address. If it wasn't valid, we need to make a reload each time, so
643 don't save it. */
645 if (! mem_valid)
647 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
648 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
649 : RELOAD_OTHER);
651 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
652 opnum, type, 0, 0);
655 secondary_memlocs_elim[(int) mode][opnum] = loc;
656 if (secondary_memlocs_elim_used <= (int)mode)
657 secondary_memlocs_elim_used = (int)mode + 1;
658 return loc;
661 /* Clear any secondary memory locations we've made. */
663 void
664 clear_secondary_mem (void)
666 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
668 #endif /* SECONDARY_MEMORY_NEEDED */
671 /* Find the largest class which has at least one register valid in
672 mode INNER, and which for every such register, that register number
673 plus N is also valid in OUTER (if in range) and is cheap to move
674 into REGNO. Abort if no such class exists. */
676 static enum reg_class
677 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
678 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
679 unsigned int dest_regno ATTRIBUTE_UNUSED)
681 int best_cost = -1;
682 int class;
683 int regno;
684 enum reg_class best_class = NO_REGS;
685 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
686 unsigned int best_size = 0;
687 int cost;
689 for (class = 1; class < N_REG_CLASSES; class++)
691 int bad = 0;
692 int good = 0;
693 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
694 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
696 if (HARD_REGNO_MODE_OK (regno, inner))
698 good = 1;
699 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
700 || ! HARD_REGNO_MODE_OK (regno + n, outer))
701 bad = 1;
705 if (bad || !good)
706 continue;
707 cost = REGISTER_MOVE_COST (outer, class, dest_class);
709 if ((reg_class_size[class] > best_size
710 && (best_cost < 0 || best_cost >= cost))
711 || best_cost > cost)
713 best_class = class;
714 best_size = reg_class_size[class];
715 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
719 gcc_assert (best_size != 0);
721 return best_class;
724 /* Return the number of a previously made reload that can be combined with
725 a new one, or n_reloads if none of the existing reloads can be used.
726 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
727 push_reload, they determine the kind of the new reload that we try to
728 combine. P_IN points to the corresponding value of IN, which can be
729 modified by this function.
730 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
732 static int
733 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
734 enum reload_type type, int opnum, int dont_share)
736 rtx in = *p_in;
737 int i;
738 /* We can't merge two reloads if the output of either one is
739 earlyclobbered. */
741 if (earlyclobber_operand_p (out))
742 return n_reloads;
744 /* We can use an existing reload if the class is right
745 and at least one of IN and OUT is a match
746 and the other is at worst neutral.
747 (A zero compared against anything is neutral.)
749 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
750 for the same thing since that can cause us to need more reload registers
751 than we otherwise would. */
753 for (i = 0; i < n_reloads; i++)
754 if ((reg_class_subset_p (class, rld[i].class)
755 || reg_class_subset_p (rld[i].class, class))
756 /* If the existing reload has a register, it must fit our class. */
757 && (rld[i].reg_rtx == 0
758 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
759 true_regnum (rld[i].reg_rtx)))
760 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
761 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
762 || (out != 0 && MATCHES (rld[i].out, out)
763 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
764 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
765 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
766 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
767 return i;
769 /* Reloading a plain reg for input can match a reload to postincrement
770 that reg, since the postincrement's value is the right value.
771 Likewise, it can match a preincrement reload, since we regard
772 the preincrementation as happening before any ref in this insn
773 to that register. */
774 for (i = 0; i < n_reloads; i++)
775 if ((reg_class_subset_p (class, rld[i].class)
776 || reg_class_subset_p (rld[i].class, class))
777 /* If the existing reload has a register, it must fit our
778 class. */
779 && (rld[i].reg_rtx == 0
780 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
781 true_regnum (rld[i].reg_rtx)))
782 && out == 0 && rld[i].out == 0 && rld[i].in != 0
783 && ((REG_P (in)
784 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
785 && MATCHES (XEXP (rld[i].in, 0), in))
786 || (REG_P (rld[i].in)
787 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
788 && MATCHES (XEXP (in, 0), rld[i].in)))
789 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
790 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
791 && MERGABLE_RELOADS (type, rld[i].when_needed,
792 opnum, rld[i].opnum))
794 /* Make sure reload_in ultimately has the increment,
795 not the plain register. */
796 if (REG_P (in))
797 *p_in = rld[i].in;
798 return i;
800 return n_reloads;
803 /* Return nonzero if X is a SUBREG which will require reloading of its
804 SUBREG_REG expression. */
806 static int
807 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
809 rtx inner;
811 /* Only SUBREGs are problematical. */
812 if (GET_CODE (x) != SUBREG)
813 return 0;
815 inner = SUBREG_REG (x);
817 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
818 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
819 return 1;
821 /* If INNER is not a hard register, then INNER will not need to
822 be reloaded. */
823 if (!REG_P (inner)
824 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
825 return 0;
827 /* If INNER is not ok for MODE, then INNER will need reloading. */
828 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
829 return 1;
831 /* If the outer part is a word or smaller, INNER larger than a
832 word and the number of regs for INNER is not the same as the
833 number of words in INNER, then INNER will need reloading. */
834 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
835 && output
836 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
837 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
838 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
841 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
842 requiring an extra reload register. The caller has already found that
843 IN contains some reference to REGNO, so check that we can produce the
844 new value in a single step. E.g. if we have
845 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
846 instruction that adds one to a register, this should succeed.
847 However, if we have something like
848 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
849 needs to be loaded into a register first, we need a separate reload
850 register.
851 Such PLUS reloads are generated by find_reload_address_part.
852 The out-of-range PLUS expressions are usually introduced in the instruction
853 patterns by register elimination and substituting pseudos without a home
854 by their function-invariant equivalences. */
855 static int
856 can_reload_into (rtx in, int regno, enum machine_mode mode)
858 rtx dst, test_insn;
859 int r = 0;
860 struct recog_data save_recog_data;
862 /* For matching constraints, we often get notional input reloads where
863 we want to use the original register as the reload register. I.e.
864 technically this is a non-optional input-output reload, but IN is
865 already a valid register, and has been chosen as the reload register.
866 Speed this up, since it trivially works. */
867 if (REG_P (in))
868 return 1;
870 /* To test MEMs properly, we'd have to take into account all the reloads
871 that are already scheduled, which can become quite complicated.
872 And since we've already handled address reloads for this MEM, it
873 should always succeed anyway. */
874 if (MEM_P (in))
875 return 1;
877 /* If we can make a simple SET insn that does the job, everything should
878 be fine. */
879 dst = gen_rtx_REG (mode, regno);
880 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
881 save_recog_data = recog_data;
882 if (recog_memoized (test_insn) >= 0)
884 extract_insn (test_insn);
885 r = constrain_operands (1);
887 recog_data = save_recog_data;
888 return r;
891 /* Record one reload that needs to be performed.
892 IN is an rtx saying where the data are to be found before this instruction.
893 OUT says where they must be stored after the instruction.
894 (IN is zero for data not read, and OUT is zero for data not written.)
895 INLOC and OUTLOC point to the places in the instructions where
896 IN and OUT were found.
897 If IN and OUT are both nonzero, it means the same register must be used
898 to reload both IN and OUT.
900 CLASS is a register class required for the reloaded data.
901 INMODE is the machine mode that the instruction requires
902 for the reg that replaces IN and OUTMODE is likewise for OUT.
904 If IN is zero, then OUT's location and mode should be passed as
905 INLOC and INMODE.
907 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
909 OPTIONAL nonzero means this reload does not need to be performed:
910 it can be discarded if that is more convenient.
912 OPNUM and TYPE say what the purpose of this reload is.
914 The return value is the reload-number for this reload.
916 If both IN and OUT are nonzero, in some rare cases we might
917 want to make two separate reloads. (Actually we never do this now.)
918 Therefore, the reload-number for OUT is stored in
919 output_reloadnum when we return; the return value applies to IN.
920 Usually (presently always), when IN and OUT are nonzero,
921 the two reload-numbers are equal, but the caller should be careful to
922 distinguish them. */
925 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
926 enum reg_class class, enum machine_mode inmode,
927 enum machine_mode outmode, int strict_low, int optional,
928 int opnum, enum reload_type type)
930 int i;
931 int dont_share = 0;
932 int dont_remove_subreg = 0;
933 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
934 int secondary_in_reload = -1, secondary_out_reload = -1;
935 enum insn_code secondary_in_icode = CODE_FOR_nothing;
936 enum insn_code secondary_out_icode = CODE_FOR_nothing;
938 /* INMODE and/or OUTMODE could be VOIDmode if no mode
939 has been specified for the operand. In that case,
940 use the operand's mode as the mode to reload. */
941 if (inmode == VOIDmode && in != 0)
942 inmode = GET_MODE (in);
943 if (outmode == VOIDmode && out != 0)
944 outmode = GET_MODE (out);
946 /* If IN is a pseudo register everywhere-equivalent to a constant, and
947 it is not in a hard register, reload straight from the constant,
948 since we want to get rid of such pseudo registers.
949 Often this is done earlier, but not always in find_reloads_address. */
950 if (in != 0 && REG_P (in))
952 int regno = REGNO (in);
954 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
955 && reg_equiv_constant[regno] != 0)
956 in = reg_equiv_constant[regno];
959 /* Likewise for OUT. Of course, OUT will never be equivalent to
960 an actual constant, but it might be equivalent to a memory location
961 (in the case of a parameter). */
962 if (out != 0 && REG_P (out))
964 int regno = REGNO (out);
966 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
967 && reg_equiv_constant[regno] != 0)
968 out = reg_equiv_constant[regno];
971 /* If we have a read-write operand with an address side-effect,
972 change either IN or OUT so the side-effect happens only once. */
973 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
974 switch (GET_CODE (XEXP (in, 0)))
976 case POST_INC: case POST_DEC: case POST_MODIFY:
977 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
978 break;
980 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
981 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
982 break;
984 default:
985 break;
988 /* If we are reloading a (SUBREG constant ...), really reload just the
989 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
990 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
991 a pseudo and hence will become a MEM) with M1 wider than M2 and the
992 register is a pseudo, also reload the inside expression.
993 For machines that extend byte loads, do this for any SUBREG of a pseudo
994 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
995 M2 is an integral mode that gets extended when loaded.
996 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
997 either M1 is not valid for R or M2 is wider than a word but we only
998 need one word to store an M2-sized quantity in R.
999 (However, if OUT is nonzero, we need to reload the reg *and*
1000 the subreg, so do nothing here, and let following statement handle it.)
1002 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1003 we can't handle it here because CONST_INT does not indicate a mode.
1005 Similarly, we must reload the inside expression if we have a
1006 STRICT_LOW_PART (presumably, in == out in the cas).
1008 Also reload the inner expression if it does not require a secondary
1009 reload but the SUBREG does.
1011 Finally, reload the inner expression if it is a register that is in
1012 the class whose registers cannot be referenced in a different size
1013 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1014 cannot reload just the inside since we might end up with the wrong
1015 register class. But if it is inside a STRICT_LOW_PART, we have
1016 no choice, so we hope we do get the right register class there. */
1018 if (in != 0 && GET_CODE (in) == SUBREG
1019 && (subreg_lowpart_p (in) || strict_low)
1020 #ifdef CANNOT_CHANGE_MODE_CLASS
1021 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1022 #endif
1023 && (CONSTANT_P (SUBREG_REG (in))
1024 || GET_CODE (SUBREG_REG (in)) == PLUS
1025 || strict_low
1026 || (((REG_P (SUBREG_REG (in))
1027 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1028 || MEM_P (SUBREG_REG (in)))
1029 && ((GET_MODE_SIZE (inmode)
1030 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1031 #ifdef LOAD_EXTEND_OP
1032 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1034 <= UNITS_PER_WORD)
1035 && (GET_MODE_SIZE (inmode)
1036 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1037 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1038 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1039 #endif
1040 #ifdef WORD_REGISTER_OPERATIONS
1041 || ((GET_MODE_SIZE (inmode)
1042 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1043 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1044 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1045 / UNITS_PER_WORD)))
1046 #endif
1048 || (REG_P (SUBREG_REG (in))
1049 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1050 /* The case where out is nonzero
1051 is handled differently in the following statement. */
1052 && (out == 0 || subreg_lowpart_p (in))
1053 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1054 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1055 > UNITS_PER_WORD)
1056 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1057 / UNITS_PER_WORD)
1058 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1059 [GET_MODE (SUBREG_REG (in))]))
1060 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1061 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1062 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1063 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1064 GET_MODE (SUBREG_REG (in)),
1065 SUBREG_REG (in))
1066 == NO_REGS))
1067 #endif
1068 #ifdef CANNOT_CHANGE_MODE_CLASS
1069 || (REG_P (SUBREG_REG (in))
1070 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1071 && REG_CANNOT_CHANGE_MODE_P
1072 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1073 #endif
1076 in_subreg_loc = inloc;
1077 inloc = &SUBREG_REG (in);
1078 in = *inloc;
1079 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1080 if (MEM_P (in))
1081 /* This is supposed to happen only for paradoxical subregs made by
1082 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1083 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1084 #endif
1085 inmode = GET_MODE (in);
1088 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1089 either M1 is not valid for R or M2 is wider than a word but we only
1090 need one word to store an M2-sized quantity in R.
1092 However, we must reload the inner reg *as well as* the subreg in
1093 that case. */
1095 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1096 code above. This can happen if SUBREG_BYTE != 0. */
1098 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1100 enum reg_class in_class = class;
1102 if (REG_P (SUBREG_REG (in)))
1103 in_class
1104 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1105 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1106 GET_MODE (SUBREG_REG (in)),
1107 SUBREG_BYTE (in),
1108 GET_MODE (in)),
1109 REGNO (SUBREG_REG (in)));
1111 /* This relies on the fact that emit_reload_insns outputs the
1112 instructions for input reloads of type RELOAD_OTHER in the same
1113 order as the reloads. Thus if the outer reload is also of type
1114 RELOAD_OTHER, we are guaranteed that this inner reload will be
1115 output before the outer reload. */
1116 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1117 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1118 dont_remove_subreg = 1;
1121 /* Similarly for paradoxical and problematical SUBREGs on the output.
1122 Note that there is no reason we need worry about the previous value
1123 of SUBREG_REG (out); even if wider than out,
1124 storing in a subreg is entitled to clobber it all
1125 (except in the case of STRICT_LOW_PART,
1126 and in that case the constraint should label it input-output.) */
1127 if (out != 0 && GET_CODE (out) == SUBREG
1128 && (subreg_lowpart_p (out) || strict_low)
1129 #ifdef CANNOT_CHANGE_MODE_CLASS
1130 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1131 #endif
1132 && (CONSTANT_P (SUBREG_REG (out))
1133 || strict_low
1134 || (((REG_P (SUBREG_REG (out))
1135 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1136 || MEM_P (SUBREG_REG (out)))
1137 && ((GET_MODE_SIZE (outmode)
1138 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1139 #ifdef WORD_REGISTER_OPERATIONS
1140 || ((GET_MODE_SIZE (outmode)
1141 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1142 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1143 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1144 / UNITS_PER_WORD)))
1145 #endif
1147 || (REG_P (SUBREG_REG (out))
1148 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1149 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1150 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1151 > UNITS_PER_WORD)
1152 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1153 / UNITS_PER_WORD)
1154 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1155 [GET_MODE (SUBREG_REG (out))]))
1156 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1157 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1158 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1159 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1160 GET_MODE (SUBREG_REG (out)),
1161 SUBREG_REG (out))
1162 == NO_REGS))
1163 #endif
1164 #ifdef CANNOT_CHANGE_MODE_CLASS
1165 || (REG_P (SUBREG_REG (out))
1166 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1167 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1168 GET_MODE (SUBREG_REG (out)),
1169 outmode))
1170 #endif
1173 out_subreg_loc = outloc;
1174 outloc = &SUBREG_REG (out);
1175 out = *outloc;
1176 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1177 gcc_assert (!MEM_P (out)
1178 || GET_MODE_SIZE (GET_MODE (out))
1179 <= GET_MODE_SIZE (outmode));
1180 #endif
1181 outmode = GET_MODE (out);
1184 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1185 either M1 is not valid for R or M2 is wider than a word but we only
1186 need one word to store an M2-sized quantity in R.
1188 However, we must reload the inner reg *as well as* the subreg in
1189 that case. In this case, the inner reg is an in-out reload. */
1191 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1193 /* This relies on the fact that emit_reload_insns outputs the
1194 instructions for output reloads of type RELOAD_OTHER in reverse
1195 order of the reloads. Thus if the outer reload is also of type
1196 RELOAD_OTHER, we are guaranteed that this inner reload will be
1197 output after the outer reload. */
1198 dont_remove_subreg = 1;
1199 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1200 &SUBREG_REG (out),
1201 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1202 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1203 GET_MODE (SUBREG_REG (out)),
1204 SUBREG_BYTE (out),
1205 GET_MODE (out)),
1206 REGNO (SUBREG_REG (out))),
1207 VOIDmode, VOIDmode, 0, 0,
1208 opnum, RELOAD_OTHER);
1211 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1212 if (in != 0 && out != 0 && MEM_P (out)
1213 && (REG_P (in) || MEM_P (in))
1214 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1215 dont_share = 1;
1217 /* If IN is a SUBREG of a hard register, make a new REG. This
1218 simplifies some of the cases below. */
1220 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1221 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1222 && ! dont_remove_subreg)
1223 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1225 /* Similarly for OUT. */
1226 if (out != 0 && GET_CODE (out) == SUBREG
1227 && REG_P (SUBREG_REG (out))
1228 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1229 && ! dont_remove_subreg)
1230 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1232 /* Narrow down the class of register wanted if that is
1233 desirable on this machine for efficiency. */
1234 if (in != 0)
1235 class = PREFERRED_RELOAD_CLASS (in, class);
1237 /* Output reloads may need analogous treatment, different in detail. */
1238 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1239 if (out != 0)
1240 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1241 #endif
1243 /* Make sure we use a class that can handle the actual pseudo
1244 inside any subreg. For example, on the 386, QImode regs
1245 can appear within SImode subregs. Although GENERAL_REGS
1246 can handle SImode, QImode needs a smaller class. */
1247 #ifdef LIMIT_RELOAD_CLASS
1248 if (in_subreg_loc)
1249 class = LIMIT_RELOAD_CLASS (inmode, class);
1250 else if (in != 0 && GET_CODE (in) == SUBREG)
1251 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1253 if (out_subreg_loc)
1254 class = LIMIT_RELOAD_CLASS (outmode, class);
1255 if (out != 0 && GET_CODE (out) == SUBREG)
1256 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1257 #endif
1259 /* Verify that this class is at least possible for the mode that
1260 is specified. */
1261 if (this_insn_is_asm)
1263 enum machine_mode mode;
1264 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1265 mode = inmode;
1266 else
1267 mode = outmode;
1268 if (mode == VOIDmode)
1270 error_for_asm (this_insn, "cannot reload integer constant "
1271 "operand in %<asm%>");
1272 mode = word_mode;
1273 if (in != 0)
1274 inmode = word_mode;
1275 if (out != 0)
1276 outmode = word_mode;
1278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1279 if (HARD_REGNO_MODE_OK (i, mode)
1280 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1282 int nregs = hard_regno_nregs[i][mode];
1284 int j;
1285 for (j = 1; j < nregs; j++)
1286 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1287 break;
1288 if (j == nregs)
1289 break;
1291 if (i == FIRST_PSEUDO_REGISTER)
1293 error_for_asm (this_insn, "impossible register constraint "
1294 "in %<asm%>");
1295 class = ALL_REGS;
1299 /* Optional output reloads are always OK even if we have no register class,
1300 since the function of these reloads is only to have spill_reg_store etc.
1301 set, so that the storing insn can be deleted later. */
1302 gcc_assert (class != NO_REGS
1303 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1305 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1307 if (i == n_reloads)
1309 /* See if we need a secondary reload register to move between CLASS
1310 and IN or CLASS and OUT. Get the icode and push any required reloads
1311 needed for each of them if so. */
1313 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1314 if (in != 0)
1315 secondary_in_reload
1316 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1317 &secondary_in_icode);
1318 #endif
1320 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1321 if (out != 0 && GET_CODE (out) != SCRATCH)
1322 secondary_out_reload
1323 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1324 type, &secondary_out_icode);
1325 #endif
1327 /* We found no existing reload suitable for re-use.
1328 So add an additional reload. */
1330 #ifdef SECONDARY_MEMORY_NEEDED
1331 /* If a memory location is needed for the copy, make one. */
1332 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1333 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1334 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1335 class, inmode))
1336 get_secondary_mem (in, inmode, opnum, type);
1337 #endif
1339 i = n_reloads;
1340 rld[i].in = in;
1341 rld[i].out = out;
1342 rld[i].class = class;
1343 rld[i].inmode = inmode;
1344 rld[i].outmode = outmode;
1345 rld[i].reg_rtx = 0;
1346 rld[i].optional = optional;
1347 rld[i].inc = 0;
1348 rld[i].nocombine = 0;
1349 rld[i].in_reg = inloc ? *inloc : 0;
1350 rld[i].out_reg = outloc ? *outloc : 0;
1351 rld[i].opnum = opnum;
1352 rld[i].when_needed = type;
1353 rld[i].secondary_in_reload = secondary_in_reload;
1354 rld[i].secondary_out_reload = secondary_out_reload;
1355 rld[i].secondary_in_icode = secondary_in_icode;
1356 rld[i].secondary_out_icode = secondary_out_icode;
1357 rld[i].secondary_p = 0;
1359 n_reloads++;
1361 #ifdef SECONDARY_MEMORY_NEEDED
1362 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1363 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1364 && SECONDARY_MEMORY_NEEDED (class,
1365 REGNO_REG_CLASS (reg_or_subregno (out)),
1366 outmode))
1367 get_secondary_mem (out, outmode, opnum, type);
1368 #endif
1370 else
1372 /* We are reusing an existing reload,
1373 but we may have additional information for it.
1374 For example, we may now have both IN and OUT
1375 while the old one may have just one of them. */
1377 /* The modes can be different. If they are, we want to reload in
1378 the larger mode, so that the value is valid for both modes. */
1379 if (inmode != VOIDmode
1380 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1381 rld[i].inmode = inmode;
1382 if (outmode != VOIDmode
1383 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1384 rld[i].outmode = outmode;
1385 if (in != 0)
1387 rtx in_reg = inloc ? *inloc : 0;
1388 /* If we merge reloads for two distinct rtl expressions that
1389 are identical in content, there might be duplicate address
1390 reloads. Remove the extra set now, so that if we later find
1391 that we can inherit this reload, we can get rid of the
1392 address reloads altogether.
1394 Do not do this if both reloads are optional since the result
1395 would be an optional reload which could potentially leave
1396 unresolved address replacements.
1398 It is not sufficient to call transfer_replacements since
1399 choose_reload_regs will remove the replacements for address
1400 reloads of inherited reloads which results in the same
1401 problem. */
1402 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1403 && ! (rld[i].optional && optional))
1405 /* We must keep the address reload with the lower operand
1406 number alive. */
1407 if (opnum > rld[i].opnum)
1409 remove_address_replacements (in);
1410 in = rld[i].in;
1411 in_reg = rld[i].in_reg;
1413 else
1414 remove_address_replacements (rld[i].in);
1416 rld[i].in = in;
1417 rld[i].in_reg = in_reg;
1419 if (out != 0)
1421 rld[i].out = out;
1422 rld[i].out_reg = outloc ? *outloc : 0;
1424 if (reg_class_subset_p (class, rld[i].class))
1425 rld[i].class = class;
1426 rld[i].optional &= optional;
1427 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1428 opnum, rld[i].opnum))
1429 rld[i].when_needed = RELOAD_OTHER;
1430 rld[i].opnum = MIN (rld[i].opnum, opnum);
1433 /* If the ostensible rtx being reloaded differs from the rtx found
1434 in the location to substitute, this reload is not safe to combine
1435 because we cannot reliably tell whether it appears in the insn. */
1437 if (in != 0 && in != *inloc)
1438 rld[i].nocombine = 1;
1440 #if 0
1441 /* This was replaced by changes in find_reloads_address_1 and the new
1442 function inc_for_reload, which go with a new meaning of reload_inc. */
1444 /* If this is an IN/OUT reload in an insn that sets the CC,
1445 it must be for an autoincrement. It doesn't work to store
1446 the incremented value after the insn because that would clobber the CC.
1447 So we must do the increment of the value reloaded from,
1448 increment it, store it back, then decrement again. */
1449 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1451 out = 0;
1452 rld[i].out = 0;
1453 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1454 /* If we did not find a nonzero amount-to-increment-by,
1455 that contradicts the belief that IN is being incremented
1456 in an address in this insn. */
1457 gcc_assert (rld[i].inc != 0);
1459 #endif
1461 /* If we will replace IN and OUT with the reload-reg,
1462 record where they are located so that substitution need
1463 not do a tree walk. */
1465 if (replace_reloads)
1467 if (inloc != 0)
1469 struct replacement *r = &replacements[n_replacements++];
1470 r->what = i;
1471 r->subreg_loc = in_subreg_loc;
1472 r->where = inloc;
1473 r->mode = inmode;
1475 if (outloc != 0 && outloc != inloc)
1477 struct replacement *r = &replacements[n_replacements++];
1478 r->what = i;
1479 r->where = outloc;
1480 r->subreg_loc = out_subreg_loc;
1481 r->mode = outmode;
1485 /* If this reload is just being introduced and it has both
1486 an incoming quantity and an outgoing quantity that are
1487 supposed to be made to match, see if either one of the two
1488 can serve as the place to reload into.
1490 If one of them is acceptable, set rld[i].reg_rtx
1491 to that one. */
1493 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1495 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1496 inmode, outmode,
1497 rld[i].class, i,
1498 earlyclobber_operand_p (out));
1500 /* If the outgoing register already contains the same value
1501 as the incoming one, we can dispense with loading it.
1502 The easiest way to tell the caller that is to give a phony
1503 value for the incoming operand (same as outgoing one). */
1504 if (rld[i].reg_rtx == out
1505 && (REG_P (in) || CONSTANT_P (in))
1506 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1507 static_reload_reg_p, i, inmode))
1508 rld[i].in = out;
1511 /* If this is an input reload and the operand contains a register that
1512 dies in this insn and is used nowhere else, see if it is the right class
1513 to be used for this reload. Use it if so. (This occurs most commonly
1514 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1515 this if it is also an output reload that mentions the register unless
1516 the output is a SUBREG that clobbers an entire register.
1518 Note that the operand might be one of the spill regs, if it is a
1519 pseudo reg and we are in a block where spilling has not taken place.
1520 But if there is no spilling in this block, that is OK.
1521 An explicitly used hard reg cannot be a spill reg. */
1523 if (rld[i].reg_rtx == 0 && in != 0)
1525 rtx note;
1526 int regno;
1527 enum machine_mode rel_mode = inmode;
1529 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1530 rel_mode = outmode;
1532 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1533 if (REG_NOTE_KIND (note) == REG_DEAD
1534 && REG_P (XEXP (note, 0))
1535 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1536 && reg_mentioned_p (XEXP (note, 0), in)
1537 && ! refers_to_regno_for_reload_p (regno,
1538 (regno
1539 + hard_regno_nregs[regno]
1540 [rel_mode]),
1541 PATTERN (this_insn), inloc)
1542 /* If this is also an output reload, IN cannot be used as
1543 the reload register if it is set in this insn unless IN
1544 is also OUT. */
1545 && (out == 0 || in == out
1546 || ! hard_reg_set_here_p (regno,
1547 (regno
1548 + hard_regno_nregs[regno]
1549 [rel_mode]),
1550 PATTERN (this_insn)))
1551 /* ??? Why is this code so different from the previous?
1552 Is there any simple coherent way to describe the two together?
1553 What's going on here. */
1554 && (in != out
1555 || (GET_CODE (in) == SUBREG
1556 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1557 / UNITS_PER_WORD)
1558 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1559 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1560 /* Make sure the operand fits in the reg that dies. */
1561 && (GET_MODE_SIZE (rel_mode)
1562 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1563 && HARD_REGNO_MODE_OK (regno, inmode)
1564 && HARD_REGNO_MODE_OK (regno, outmode))
1566 unsigned int offs;
1567 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1568 hard_regno_nregs[regno][outmode]);
1570 for (offs = 0; offs < nregs; offs++)
1571 if (fixed_regs[regno + offs]
1572 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1573 regno + offs))
1574 break;
1576 if (offs == nregs
1577 && (! (refers_to_regno_for_reload_p
1578 (regno, (regno + hard_regno_nregs[regno][inmode]),
1579 in, (rtx *)0))
1580 || can_reload_into (in, regno, inmode)))
1582 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1583 break;
1588 if (out)
1589 output_reloadnum = i;
1591 return i;
1594 /* Record an additional place we must replace a value
1595 for which we have already recorded a reload.
1596 RELOADNUM is the value returned by push_reload
1597 when the reload was recorded.
1598 This is used in insn patterns that use match_dup. */
1600 static void
1601 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1603 if (replace_reloads)
1605 struct replacement *r = &replacements[n_replacements++];
1606 r->what = reloadnum;
1607 r->where = loc;
1608 r->subreg_loc = 0;
1609 r->mode = mode;
1613 /* Duplicate any replacement we have recorded to apply at
1614 location ORIG_LOC to also be performed at DUP_LOC.
1615 This is used in insn patterns that use match_dup. */
1617 static void
1618 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1620 int i, n = n_replacements;
1622 for (i = 0; i < n; i++)
1624 struct replacement *r = &replacements[i];
1625 if (r->where == orig_loc)
1626 push_replacement (dup_loc, r->what, r->mode);
1630 /* Transfer all replacements that used to be in reload FROM to be in
1631 reload TO. */
1633 void
1634 transfer_replacements (int to, int from)
1636 int i;
1638 for (i = 0; i < n_replacements; i++)
1639 if (replacements[i].what == from)
1640 replacements[i].what = to;
1643 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1644 or a subpart of it. If we have any replacements registered for IN_RTX,
1645 cancel the reloads that were supposed to load them.
1646 Return nonzero if we canceled any reloads. */
1648 remove_address_replacements (rtx in_rtx)
1650 int i, j;
1651 char reload_flags[MAX_RELOADS];
1652 int something_changed = 0;
1654 memset (reload_flags, 0, sizeof reload_flags);
1655 for (i = 0, j = 0; i < n_replacements; i++)
1657 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1658 reload_flags[replacements[i].what] |= 1;
1659 else
1661 replacements[j++] = replacements[i];
1662 reload_flags[replacements[i].what] |= 2;
1665 /* Note that the following store must be done before the recursive calls. */
1666 n_replacements = j;
1668 for (i = n_reloads - 1; i >= 0; i--)
1670 if (reload_flags[i] == 1)
1672 deallocate_reload_reg (i);
1673 remove_address_replacements (rld[i].in);
1674 rld[i].in = 0;
1675 something_changed = 1;
1678 return something_changed;
1681 /* If there is only one output reload, and it is not for an earlyclobber
1682 operand, try to combine it with a (logically unrelated) input reload
1683 to reduce the number of reload registers needed.
1685 This is safe if the input reload does not appear in
1686 the value being output-reloaded, because this implies
1687 it is not needed any more once the original insn completes.
1689 If that doesn't work, see we can use any of the registers that
1690 die in this insn as a reload register. We can if it is of the right
1691 class and does not appear in the value being output-reloaded. */
1693 static void
1694 combine_reloads (void)
1696 int i;
1697 int output_reload = -1;
1698 int secondary_out = -1;
1699 rtx note;
1701 /* Find the output reload; return unless there is exactly one
1702 and that one is mandatory. */
1704 for (i = 0; i < n_reloads; i++)
1705 if (rld[i].out != 0)
1707 if (output_reload >= 0)
1708 return;
1709 output_reload = i;
1712 if (output_reload < 0 || rld[output_reload].optional)
1713 return;
1715 /* An input-output reload isn't combinable. */
1717 if (rld[output_reload].in != 0)
1718 return;
1720 /* If this reload is for an earlyclobber operand, we can't do anything. */
1721 if (earlyclobber_operand_p (rld[output_reload].out))
1722 return;
1724 /* If there is a reload for part of the address of this operand, we would
1725 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1726 its life to the point where doing this combine would not lower the
1727 number of spill registers needed. */
1728 for (i = 0; i < n_reloads; i++)
1729 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1730 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1731 && rld[i].opnum == rld[output_reload].opnum)
1732 return;
1734 /* Check each input reload; can we combine it? */
1736 for (i = 0; i < n_reloads; i++)
1737 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1738 /* Life span of this reload must not extend past main insn. */
1739 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1740 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1741 && rld[i].when_needed != RELOAD_OTHER
1742 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1743 == CLASS_MAX_NREGS (rld[output_reload].class,
1744 rld[output_reload].outmode))
1745 && rld[i].inc == 0
1746 && rld[i].reg_rtx == 0
1747 #ifdef SECONDARY_MEMORY_NEEDED
1748 /* Don't combine two reloads with different secondary
1749 memory locations. */
1750 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1751 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1752 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1753 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1754 #endif
1755 && (SMALL_REGISTER_CLASSES
1756 ? (rld[i].class == rld[output_reload].class)
1757 : (reg_class_subset_p (rld[i].class,
1758 rld[output_reload].class)
1759 || reg_class_subset_p (rld[output_reload].class,
1760 rld[i].class)))
1761 && (MATCHES (rld[i].in, rld[output_reload].out)
1762 /* Args reversed because the first arg seems to be
1763 the one that we imagine being modified
1764 while the second is the one that might be affected. */
1765 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1766 rld[i].in)
1767 /* However, if the input is a register that appears inside
1768 the output, then we also can't share.
1769 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1770 If the same reload reg is used for both reg 69 and the
1771 result to be stored in memory, then that result
1772 will clobber the address of the memory ref. */
1773 && ! (REG_P (rld[i].in)
1774 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1775 rld[output_reload].out))))
1776 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1777 rld[i].when_needed != RELOAD_FOR_INPUT)
1778 && (reg_class_size[(int) rld[i].class]
1779 || SMALL_REGISTER_CLASSES)
1780 /* We will allow making things slightly worse by combining an
1781 input and an output, but no worse than that. */
1782 && (rld[i].when_needed == RELOAD_FOR_INPUT
1783 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1785 int j;
1787 /* We have found a reload to combine with! */
1788 rld[i].out = rld[output_reload].out;
1789 rld[i].out_reg = rld[output_reload].out_reg;
1790 rld[i].outmode = rld[output_reload].outmode;
1791 /* Mark the old output reload as inoperative. */
1792 rld[output_reload].out = 0;
1793 /* The combined reload is needed for the entire insn. */
1794 rld[i].when_needed = RELOAD_OTHER;
1795 /* If the output reload had a secondary reload, copy it. */
1796 if (rld[output_reload].secondary_out_reload != -1)
1798 rld[i].secondary_out_reload
1799 = rld[output_reload].secondary_out_reload;
1800 rld[i].secondary_out_icode
1801 = rld[output_reload].secondary_out_icode;
1804 #ifdef SECONDARY_MEMORY_NEEDED
1805 /* Copy any secondary MEM. */
1806 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1807 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1808 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1809 #endif
1810 /* If required, minimize the register class. */
1811 if (reg_class_subset_p (rld[output_reload].class,
1812 rld[i].class))
1813 rld[i].class = rld[output_reload].class;
1815 /* Transfer all replacements from the old reload to the combined. */
1816 for (j = 0; j < n_replacements; j++)
1817 if (replacements[j].what == output_reload)
1818 replacements[j].what = i;
1820 return;
1823 /* If this insn has only one operand that is modified or written (assumed
1824 to be the first), it must be the one corresponding to this reload. It
1825 is safe to use anything that dies in this insn for that output provided
1826 that it does not occur in the output (we already know it isn't an
1827 earlyclobber. If this is an asm insn, give up. */
1829 if (INSN_CODE (this_insn) == -1)
1830 return;
1832 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1833 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1834 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1835 return;
1837 /* See if some hard register that dies in this insn and is not used in
1838 the output is the right class. Only works if the register we pick
1839 up can fully hold our output reload. */
1840 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1841 if (REG_NOTE_KIND (note) == REG_DEAD
1842 && REG_P (XEXP (note, 0))
1843 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1844 rld[output_reload].out)
1845 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1846 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1847 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1848 REGNO (XEXP (note, 0)))
1849 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1850 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1851 /* Ensure that a secondary or tertiary reload for this output
1852 won't want this register. */
1853 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1854 || (! (TEST_HARD_REG_BIT
1855 (reg_class_contents[(int) rld[secondary_out].class],
1856 REGNO (XEXP (note, 0))))
1857 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1858 || ! (TEST_HARD_REG_BIT
1859 (reg_class_contents[(int) rld[secondary_out].class],
1860 REGNO (XEXP (note, 0)))))))
1861 && ! fixed_regs[REGNO (XEXP (note, 0))])
1863 rld[output_reload].reg_rtx
1864 = gen_rtx_REG (rld[output_reload].outmode,
1865 REGNO (XEXP (note, 0)));
1866 return;
1870 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1871 See if one of IN and OUT is a register that may be used;
1872 this is desirable since a spill-register won't be needed.
1873 If so, return the register rtx that proves acceptable.
1875 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1876 CLASS is the register class required for the reload.
1878 If FOR_REAL is >= 0, it is the number of the reload,
1879 and in some cases when it can be discovered that OUT doesn't need
1880 to be computed, clear out rld[FOR_REAL].out.
1882 If FOR_REAL is -1, this should not be done, because this call
1883 is just to see if a register can be found, not to find and install it.
1885 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1886 puts an additional constraint on being able to use IN for OUT since
1887 IN must not appear elsewhere in the insn (it is assumed that IN itself
1888 is safe from the earlyclobber). */
1890 static rtx
1891 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1892 enum machine_mode inmode, enum machine_mode outmode,
1893 enum reg_class class, int for_real, int earlyclobber)
1895 rtx in = real_in;
1896 rtx out = real_out;
1897 int in_offset = 0;
1898 int out_offset = 0;
1899 rtx value = 0;
1901 /* If operands exceed a word, we can't use either of them
1902 unless they have the same size. */
1903 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1904 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1905 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1906 return 0;
1908 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1909 respectively refers to a hard register. */
1911 /* Find the inside of any subregs. */
1912 while (GET_CODE (out) == SUBREG)
1914 if (REG_P (SUBREG_REG (out))
1915 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1916 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1917 GET_MODE (SUBREG_REG (out)),
1918 SUBREG_BYTE (out),
1919 GET_MODE (out));
1920 out = SUBREG_REG (out);
1922 while (GET_CODE (in) == SUBREG)
1924 if (REG_P (SUBREG_REG (in))
1925 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1926 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1927 GET_MODE (SUBREG_REG (in)),
1928 SUBREG_BYTE (in),
1929 GET_MODE (in));
1930 in = SUBREG_REG (in);
1933 /* Narrow down the reg class, the same way push_reload will;
1934 otherwise we might find a dummy now, but push_reload won't. */
1935 class = PREFERRED_RELOAD_CLASS (in, class);
1937 /* See if OUT will do. */
1938 if (REG_P (out)
1939 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1941 unsigned int regno = REGNO (out) + out_offset;
1942 unsigned int nwords = hard_regno_nregs[regno][outmode];
1943 rtx saved_rtx;
1945 /* When we consider whether the insn uses OUT,
1946 ignore references within IN. They don't prevent us
1947 from copying IN into OUT, because those refs would
1948 move into the insn that reloads IN.
1950 However, we only ignore IN in its role as this reload.
1951 If the insn uses IN elsewhere and it contains OUT,
1952 that counts. We can't be sure it's the "same" operand
1953 so it might not go through this reload. */
1954 saved_rtx = *inloc;
1955 *inloc = const0_rtx;
1957 if (regno < FIRST_PSEUDO_REGISTER
1958 && HARD_REGNO_MODE_OK (regno, outmode)
1959 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1960 PATTERN (this_insn), outloc))
1962 unsigned int i;
1964 for (i = 0; i < nwords; i++)
1965 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1966 regno + i))
1967 break;
1969 if (i == nwords)
1971 if (REG_P (real_out))
1972 value = real_out;
1973 else
1974 value = gen_rtx_REG (outmode, regno);
1978 *inloc = saved_rtx;
1981 /* Consider using IN if OUT was not acceptable
1982 or if OUT dies in this insn (like the quotient in a divmod insn).
1983 We can't use IN unless it is dies in this insn,
1984 which means we must know accurately which hard regs are live.
1985 Also, the result can't go in IN if IN is used within OUT,
1986 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1987 if (hard_regs_live_known
1988 && REG_P (in)
1989 && REGNO (in) < FIRST_PSEUDO_REGISTER
1990 && (value == 0
1991 || find_reg_note (this_insn, REG_UNUSED, real_out))
1992 && find_reg_note (this_insn, REG_DEAD, real_in)
1993 && !fixed_regs[REGNO (in)]
1994 && HARD_REGNO_MODE_OK (REGNO (in),
1995 /* The only case where out and real_out might
1996 have different modes is where real_out
1997 is a subreg, and in that case, out
1998 has a real mode. */
1999 (GET_MODE (out) != VOIDmode
2000 ? GET_MODE (out) : outmode)))
2002 unsigned int regno = REGNO (in) + in_offset;
2003 unsigned int nwords = hard_regno_nregs[regno][inmode];
2005 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2006 && ! hard_reg_set_here_p (regno, regno + nwords,
2007 PATTERN (this_insn))
2008 && (! earlyclobber
2009 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2010 PATTERN (this_insn), inloc)))
2012 unsigned int i;
2014 for (i = 0; i < nwords; i++)
2015 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2016 regno + i))
2017 break;
2019 if (i == nwords)
2021 /* If we were going to use OUT as the reload reg
2022 and changed our mind, it means OUT is a dummy that
2023 dies here. So don't bother copying value to it. */
2024 if (for_real >= 0 && value == real_out)
2025 rld[for_real].out = 0;
2026 if (REG_P (real_in))
2027 value = real_in;
2028 else
2029 value = gen_rtx_REG (inmode, regno);
2034 return value;
2037 /* This page contains subroutines used mainly for determining
2038 whether the IN or an OUT of a reload can serve as the
2039 reload register. */
2041 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2044 earlyclobber_operand_p (rtx x)
2046 int i;
2048 for (i = 0; i < n_earlyclobbers; i++)
2049 if (reload_earlyclobbers[i] == x)
2050 return 1;
2052 return 0;
2055 /* Return 1 if expression X alters a hard reg in the range
2056 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2057 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2058 X should be the body of an instruction. */
2060 static int
2061 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2063 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2065 rtx op0 = SET_DEST (x);
2067 while (GET_CODE (op0) == SUBREG)
2068 op0 = SUBREG_REG (op0);
2069 if (REG_P (op0))
2071 unsigned int r = REGNO (op0);
2073 /* See if this reg overlaps range under consideration. */
2074 if (r < end_regno
2075 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2076 return 1;
2079 else if (GET_CODE (x) == PARALLEL)
2081 int i = XVECLEN (x, 0) - 1;
2083 for (; i >= 0; i--)
2084 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2085 return 1;
2088 return 0;
2091 /* Return 1 if ADDR is a valid memory address for mode MODE,
2092 and check that each pseudo reg has the proper kind of
2093 hard reg. */
2096 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2098 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2099 return 0;
2101 win:
2102 return 1;
2105 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2106 if they are the same hard reg, and has special hacks for
2107 autoincrement and autodecrement.
2108 This is specifically intended for find_reloads to use
2109 in determining whether two operands match.
2110 X is the operand whose number is the lower of the two.
2112 The value is 2 if Y contains a pre-increment that matches
2113 a non-incrementing address in X. */
2115 /* ??? To be completely correct, we should arrange to pass
2116 for X the output operand and for Y the input operand.
2117 For now, we assume that the output operand has the lower number
2118 because that is natural in (SET output (... input ...)). */
2121 operands_match_p (rtx x, rtx y)
2123 int i;
2124 RTX_CODE code = GET_CODE (x);
2125 const char *fmt;
2126 int success_2;
2128 if (x == y)
2129 return 1;
2130 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2131 && (REG_P (y) || (GET_CODE (y) == SUBREG
2132 && REG_P (SUBREG_REG (y)))))
2134 int j;
2136 if (code == SUBREG)
2138 i = REGNO (SUBREG_REG (x));
2139 if (i >= FIRST_PSEUDO_REGISTER)
2140 goto slow;
2141 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2142 GET_MODE (SUBREG_REG (x)),
2143 SUBREG_BYTE (x),
2144 GET_MODE (x));
2146 else
2147 i = REGNO (x);
2149 if (GET_CODE (y) == SUBREG)
2151 j = REGNO (SUBREG_REG (y));
2152 if (j >= FIRST_PSEUDO_REGISTER)
2153 goto slow;
2154 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2155 GET_MODE (SUBREG_REG (y)),
2156 SUBREG_BYTE (y),
2157 GET_MODE (y));
2159 else
2160 j = REGNO (y);
2162 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2163 multiple hard register group of scalar integer registers, so that
2164 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2165 register. */
2166 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2167 && SCALAR_INT_MODE_P (GET_MODE (x))
2168 && i < FIRST_PSEUDO_REGISTER)
2169 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2170 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2171 && SCALAR_INT_MODE_P (GET_MODE (y))
2172 && j < FIRST_PSEUDO_REGISTER)
2173 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2175 return i == j;
2177 /* If two operands must match, because they are really a single
2178 operand of an assembler insn, then two postincrements are invalid
2179 because the assembler insn would increment only once.
2180 On the other hand, a postincrement matches ordinary indexing
2181 if the postincrement is the output operand. */
2182 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2183 return operands_match_p (XEXP (x, 0), y);
2184 /* Two preincrements are invalid
2185 because the assembler insn would increment only once.
2186 On the other hand, a preincrement matches ordinary indexing
2187 if the preincrement is the input operand.
2188 In this case, return 2, since some callers need to do special
2189 things when this happens. */
2190 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2191 || GET_CODE (y) == PRE_MODIFY)
2192 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2194 slow:
2196 /* Now we have disposed of all the cases
2197 in which different rtx codes can match. */
2198 if (code != GET_CODE (y))
2199 return 0;
2200 if (code == LABEL_REF)
2201 return XEXP (x, 0) == XEXP (y, 0);
2202 if (code == SYMBOL_REF)
2203 return XSTR (x, 0) == XSTR (y, 0);
2205 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2207 if (GET_MODE (x) != GET_MODE (y))
2208 return 0;
2210 /* Compare the elements. If any pair of corresponding elements
2211 fail to match, return 0 for the whole things. */
2213 success_2 = 0;
2214 fmt = GET_RTX_FORMAT (code);
2215 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2217 int val, j;
2218 switch (fmt[i])
2220 case 'w':
2221 if (XWINT (x, i) != XWINT (y, i))
2222 return 0;
2223 break;
2225 case 'i':
2226 if (XINT (x, i) != XINT (y, i))
2227 return 0;
2228 break;
2230 case 'e':
2231 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2232 if (val == 0)
2233 return 0;
2234 /* If any subexpression returns 2,
2235 we should return 2 if we are successful. */
2236 if (val == 2)
2237 success_2 = 1;
2238 break;
2240 case '0':
2241 break;
2243 case 'E':
2244 if (XVECLEN (x, i) != XVECLEN (y, i))
2245 return 0;
2246 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2248 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2249 if (val == 0)
2250 return 0;
2251 if (val == 2)
2252 success_2 = 1;
2254 break;
2256 /* It is believed that rtx's at this level will never
2257 contain anything but integers and other rtx's,
2258 except for within LABEL_REFs and SYMBOL_REFs. */
2259 default:
2260 gcc_unreachable ();
2263 return 1 + success_2;
2266 /* Describe the range of registers or memory referenced by X.
2267 If X is a register, set REG_FLAG and put the first register
2268 number into START and the last plus one into END.
2269 If X is a memory reference, put a base address into BASE
2270 and a range of integer offsets into START and END.
2271 If X is pushing on the stack, we can assume it causes no trouble,
2272 so we set the SAFE field. */
2274 static struct decomposition
2275 decompose (rtx x)
2277 struct decomposition val;
2278 int all_const = 0;
2280 memset (&val, 0, sizeof (val));
2282 switch (GET_CODE (x))
2284 case MEM:
2286 rtx base = NULL_RTX, offset = 0;
2287 rtx addr = XEXP (x, 0);
2289 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2290 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2292 val.base = XEXP (addr, 0);
2293 val.start = -GET_MODE_SIZE (GET_MODE (x));
2294 val.end = GET_MODE_SIZE (GET_MODE (x));
2295 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2296 return val;
2299 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2301 if (GET_CODE (XEXP (addr, 1)) == PLUS
2302 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2303 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2305 val.base = XEXP (addr, 0);
2306 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2307 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2308 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2309 return val;
2313 if (GET_CODE (addr) == CONST)
2315 addr = XEXP (addr, 0);
2316 all_const = 1;
2318 if (GET_CODE (addr) == PLUS)
2320 if (CONSTANT_P (XEXP (addr, 0)))
2322 base = XEXP (addr, 1);
2323 offset = XEXP (addr, 0);
2325 else if (CONSTANT_P (XEXP (addr, 1)))
2327 base = XEXP (addr, 0);
2328 offset = XEXP (addr, 1);
2332 if (offset == 0)
2334 base = addr;
2335 offset = const0_rtx;
2337 if (GET_CODE (offset) == CONST)
2338 offset = XEXP (offset, 0);
2339 if (GET_CODE (offset) == PLUS)
2341 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2343 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2344 offset = XEXP (offset, 0);
2346 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2348 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2349 offset = XEXP (offset, 1);
2351 else
2353 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2354 offset = const0_rtx;
2357 else if (GET_CODE (offset) != CONST_INT)
2359 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2360 offset = const0_rtx;
2363 if (all_const && GET_CODE (base) == PLUS)
2364 base = gen_rtx_CONST (GET_MODE (base), base);
2366 gcc_assert (GET_CODE (offset) == CONST_INT);
2368 val.start = INTVAL (offset);
2369 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2370 val.base = base;
2372 break;
2374 case REG:
2375 val.reg_flag = 1;
2376 val.start = true_regnum (x);
2377 if (val.start < 0)
2379 /* A pseudo with no hard reg. */
2380 val.start = REGNO (x);
2381 val.end = val.start + 1;
2383 else
2384 /* A hard reg. */
2385 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2386 break;
2388 case SUBREG:
2389 if (!REG_P (SUBREG_REG (x)))
2390 /* This could be more precise, but it's good enough. */
2391 return decompose (SUBREG_REG (x));
2392 val.reg_flag = 1;
2393 val.start = true_regnum (x);
2394 if (val.start < 0)
2395 return decompose (SUBREG_REG (x));
2396 else
2397 /* A hard reg. */
2398 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2399 break;
2401 case SCRATCH:
2402 /* This hasn't been assigned yet, so it can't conflict yet. */
2403 val.safe = 1;
2404 break;
2406 default:
2407 gcc_assert (CONSTANT_P (x));
2408 val.safe = 1;
2409 break;
2411 return val;
2414 /* Return 1 if altering Y will not modify the value of X.
2415 Y is also described by YDATA, which should be decompose (Y). */
2417 static int
2418 immune_p (rtx x, rtx y, struct decomposition ydata)
2420 struct decomposition xdata;
2422 if (ydata.reg_flag)
2423 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2424 if (ydata.safe)
2425 return 1;
2427 gcc_assert (MEM_P (y));
2428 /* If Y is memory and X is not, Y can't affect X. */
2429 if (!MEM_P (x))
2430 return 1;
2432 xdata = decompose (x);
2434 if (! rtx_equal_p (xdata.base, ydata.base))
2436 /* If bases are distinct symbolic constants, there is no overlap. */
2437 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2438 return 1;
2439 /* Constants and stack slots never overlap. */
2440 if (CONSTANT_P (xdata.base)
2441 && (ydata.base == frame_pointer_rtx
2442 || ydata.base == hard_frame_pointer_rtx
2443 || ydata.base == stack_pointer_rtx))
2444 return 1;
2445 if (CONSTANT_P (ydata.base)
2446 && (xdata.base == frame_pointer_rtx
2447 || xdata.base == hard_frame_pointer_rtx
2448 || xdata.base == stack_pointer_rtx))
2449 return 1;
2450 /* If either base is variable, we don't know anything. */
2451 return 0;
2454 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2457 /* Similar, but calls decompose. */
2460 safe_from_earlyclobber (rtx op, rtx clobber)
2462 struct decomposition early_data;
2464 early_data = decompose (clobber);
2465 return immune_p (op, clobber, early_data);
2468 /* Main entry point of this file: search the body of INSN
2469 for values that need reloading and record them with push_reload.
2470 REPLACE nonzero means record also where the values occur
2471 so that subst_reloads can be used.
2473 IND_LEVELS says how many levels of indirection are supported by this
2474 machine; a value of zero means that a memory reference is not a valid
2475 memory address.
2477 LIVE_KNOWN says we have valid information about which hard
2478 regs are live at each point in the program; this is true when
2479 we are called from global_alloc but false when stupid register
2480 allocation has been done.
2482 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2483 which is nonnegative if the reg has been commandeered for reloading into.
2484 It is copied into STATIC_RELOAD_REG_P and referenced from there
2485 by various subroutines.
2487 Return TRUE if some operands need to be changed, because of swapping
2488 commutative operands, reg_equiv_address substitution, or whatever. */
2491 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2492 short *reload_reg_p)
2494 int insn_code_number;
2495 int i, j;
2496 int noperands;
2497 /* These start out as the constraints for the insn
2498 and they are chewed up as we consider alternatives. */
2499 char *constraints[MAX_RECOG_OPERANDS];
2500 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2501 a register. */
2502 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2503 char pref_or_nothing[MAX_RECOG_OPERANDS];
2504 /* Nonzero for a MEM operand whose entire address needs a reload.
2505 May be -1 to indicate the entire address may or may not need a reload. */
2506 int address_reloaded[MAX_RECOG_OPERANDS];
2507 /* Nonzero for an address operand that needs to be completely reloaded.
2508 May be -1 to indicate the entire operand may or may not need a reload. */
2509 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2510 /* Value of enum reload_type to use for operand. */
2511 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2512 /* Value of enum reload_type to use within address of operand. */
2513 enum reload_type address_type[MAX_RECOG_OPERANDS];
2514 /* Save the usage of each operand. */
2515 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2516 int no_input_reloads = 0, no_output_reloads = 0;
2517 int n_alternatives;
2518 int this_alternative[MAX_RECOG_OPERANDS];
2519 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2520 char this_alternative_win[MAX_RECOG_OPERANDS];
2521 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2522 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2523 int this_alternative_matches[MAX_RECOG_OPERANDS];
2524 int swapped;
2525 int goal_alternative[MAX_RECOG_OPERANDS];
2526 int this_alternative_number;
2527 int goal_alternative_number = 0;
2528 int operand_reloadnum[MAX_RECOG_OPERANDS];
2529 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2530 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2531 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2532 char goal_alternative_win[MAX_RECOG_OPERANDS];
2533 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2534 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2535 int goal_alternative_swapped;
2536 int best;
2537 int commutative;
2538 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2539 rtx substed_operand[MAX_RECOG_OPERANDS];
2540 rtx body = PATTERN (insn);
2541 rtx set = single_set (insn);
2542 int goal_earlyclobber = 0, this_earlyclobber;
2543 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2544 int retval = 0;
2546 this_insn = insn;
2547 n_reloads = 0;
2548 n_replacements = 0;
2549 n_earlyclobbers = 0;
2550 replace_reloads = replace;
2551 hard_regs_live_known = live_known;
2552 static_reload_reg_p = reload_reg_p;
2554 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2555 neither are insns that SET cc0. Insns that use CC0 are not allowed
2556 to have any input reloads. */
2557 if (JUMP_P (insn) || CALL_P (insn))
2558 no_output_reloads = 1;
2560 #ifdef HAVE_cc0
2561 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2562 no_input_reloads = 1;
2563 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2564 no_output_reloads = 1;
2565 #endif
2567 #ifdef SECONDARY_MEMORY_NEEDED
2568 /* The eliminated forms of any secondary memory locations are per-insn, so
2569 clear them out here. */
2571 if (secondary_memlocs_elim_used)
2573 memset (secondary_memlocs_elim, 0,
2574 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2575 secondary_memlocs_elim_used = 0;
2577 #endif
2579 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2580 is cheap to move between them. If it is not, there may not be an insn
2581 to do the copy, so we may need a reload. */
2582 if (GET_CODE (body) == SET
2583 && REG_P (SET_DEST (body))
2584 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2585 && REG_P (SET_SRC (body))
2586 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2587 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2588 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2589 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2590 return 0;
2592 extract_insn (insn);
2594 noperands = reload_n_operands = recog_data.n_operands;
2595 n_alternatives = recog_data.n_alternatives;
2597 /* Just return "no reloads" if insn has no operands with constraints. */
2598 if (noperands == 0 || n_alternatives == 0)
2599 return 0;
2601 insn_code_number = INSN_CODE (insn);
2602 this_insn_is_asm = insn_code_number < 0;
2604 memcpy (operand_mode, recog_data.operand_mode,
2605 noperands * sizeof (enum machine_mode));
2606 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2608 commutative = -1;
2610 /* If we will need to know, later, whether some pair of operands
2611 are the same, we must compare them now and save the result.
2612 Reloading the base and index registers will clobber them
2613 and afterward they will fail to match. */
2615 for (i = 0; i < noperands; i++)
2617 char *p;
2618 int c;
2620 substed_operand[i] = recog_data.operand[i];
2621 p = constraints[i];
2623 modified[i] = RELOAD_READ;
2625 /* Scan this operand's constraint to see if it is an output operand,
2626 an in-out operand, is commutative, or should match another. */
2628 while ((c = *p))
2630 p += CONSTRAINT_LEN (c, p);
2631 switch (c)
2633 case '=':
2634 modified[i] = RELOAD_WRITE;
2635 break;
2636 case '+':
2637 modified[i] = RELOAD_READ_WRITE;
2638 break;
2639 case '%':
2641 /* The last operand should not be marked commutative. */
2642 gcc_assert (i != noperands - 1);
2644 /* We currently only support one commutative pair of
2645 operands. Some existing asm code currently uses more
2646 than one pair. Previously, that would usually work,
2647 but sometimes it would crash the compiler. We
2648 continue supporting that case as well as we can by
2649 silently ignoring all but the first pair. In the
2650 future we may handle it correctly. */
2651 if (commutative < 0)
2652 commutative = i;
2653 else
2654 gcc_assert (this_insn_is_asm);
2656 break;
2657 /* Use of ISDIGIT is tempting here, but it may get expensive because
2658 of locale support we don't want. */
2659 case '0': case '1': case '2': case '3': case '4':
2660 case '5': case '6': case '7': case '8': case '9':
2662 c = strtoul (p - 1, &p, 10);
2664 operands_match[c][i]
2665 = operands_match_p (recog_data.operand[c],
2666 recog_data.operand[i]);
2668 /* An operand may not match itself. */
2669 gcc_assert (c != i);
2671 /* If C can be commuted with C+1, and C might need to match I,
2672 then C+1 might also need to match I. */
2673 if (commutative >= 0)
2675 if (c == commutative || c == commutative + 1)
2677 int other = c + (c == commutative ? 1 : -1);
2678 operands_match[other][i]
2679 = operands_match_p (recog_data.operand[other],
2680 recog_data.operand[i]);
2682 if (i == commutative || i == commutative + 1)
2684 int other = i + (i == commutative ? 1 : -1);
2685 operands_match[c][other]
2686 = operands_match_p (recog_data.operand[c],
2687 recog_data.operand[other]);
2689 /* Note that C is supposed to be less than I.
2690 No need to consider altering both C and I because in
2691 that case we would alter one into the other. */
2698 /* Examine each operand that is a memory reference or memory address
2699 and reload parts of the addresses into index registers.
2700 Also here any references to pseudo regs that didn't get hard regs
2701 but are equivalent to constants get replaced in the insn itself
2702 with those constants. Nobody will ever see them again.
2704 Finally, set up the preferred classes of each operand. */
2706 for (i = 0; i < noperands; i++)
2708 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2710 address_reloaded[i] = 0;
2711 address_operand_reloaded[i] = 0;
2712 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2713 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2714 : RELOAD_OTHER);
2715 address_type[i]
2716 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2717 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2718 : RELOAD_OTHER);
2720 if (*constraints[i] == 0)
2721 /* Ignore things like match_operator operands. */
2723 else if (constraints[i][0] == 'p'
2724 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2726 address_operand_reloaded[i]
2727 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2728 recog_data.operand[i],
2729 recog_data.operand_loc[i],
2730 i, operand_type[i], ind_levels, insn);
2732 /* If we now have a simple operand where we used to have a
2733 PLUS or MULT, re-recognize and try again. */
2734 if ((OBJECT_P (*recog_data.operand_loc[i])
2735 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2736 && (GET_CODE (recog_data.operand[i]) == MULT
2737 || GET_CODE (recog_data.operand[i]) == PLUS))
2739 INSN_CODE (insn) = -1;
2740 retval = find_reloads (insn, replace, ind_levels, live_known,
2741 reload_reg_p);
2742 return retval;
2745 recog_data.operand[i] = *recog_data.operand_loc[i];
2746 substed_operand[i] = recog_data.operand[i];
2748 /* Address operands are reloaded in their existing mode,
2749 no matter what is specified in the machine description. */
2750 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2752 else if (code == MEM)
2754 address_reloaded[i]
2755 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2756 recog_data.operand_loc[i],
2757 XEXP (recog_data.operand[i], 0),
2758 &XEXP (recog_data.operand[i], 0),
2759 i, address_type[i], ind_levels, insn);
2760 recog_data.operand[i] = *recog_data.operand_loc[i];
2761 substed_operand[i] = recog_data.operand[i];
2763 else if (code == SUBREG)
2765 rtx reg = SUBREG_REG (recog_data.operand[i]);
2766 rtx op
2767 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2768 ind_levels,
2769 set != 0
2770 && &SET_DEST (set) == recog_data.operand_loc[i],
2771 insn,
2772 &address_reloaded[i]);
2774 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2775 that didn't get a hard register, emit a USE with a REG_EQUAL
2776 note in front so that we might inherit a previous, possibly
2777 wider reload. */
2779 if (replace
2780 && MEM_P (op)
2781 && REG_P (reg)
2782 && (GET_MODE_SIZE (GET_MODE (reg))
2783 >= GET_MODE_SIZE (GET_MODE (op))))
2784 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2785 insn),
2786 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2788 substed_operand[i] = recog_data.operand[i] = op;
2790 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2791 /* We can get a PLUS as an "operand" as a result of register
2792 elimination. See eliminate_regs and gen_reload. We handle
2793 a unary operator by reloading the operand. */
2794 substed_operand[i] = recog_data.operand[i]
2795 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2796 ind_levels, 0, insn,
2797 &address_reloaded[i]);
2798 else if (code == REG)
2800 /* This is equivalent to calling find_reloads_toplev.
2801 The code is duplicated for speed.
2802 When we find a pseudo always equivalent to a constant,
2803 we replace it by the constant. We must be sure, however,
2804 that we don't try to replace it in the insn in which it
2805 is being set. */
2806 int regno = REGNO (recog_data.operand[i]);
2807 if (reg_equiv_constant[regno] != 0
2808 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2810 /* Record the existing mode so that the check if constants are
2811 allowed will work when operand_mode isn't specified. */
2813 if (operand_mode[i] == VOIDmode)
2814 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2816 substed_operand[i] = recog_data.operand[i]
2817 = reg_equiv_constant[regno];
2819 if (reg_equiv_memory_loc[regno] != 0
2820 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2821 /* We need not give a valid is_set_dest argument since the case
2822 of a constant equivalence was checked above. */
2823 substed_operand[i] = recog_data.operand[i]
2824 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2825 ind_levels, 0, insn,
2826 &address_reloaded[i]);
2828 /* If the operand is still a register (we didn't replace it with an
2829 equivalent), get the preferred class to reload it into. */
2830 code = GET_CODE (recog_data.operand[i]);
2831 preferred_class[i]
2832 = ((code == REG && REGNO (recog_data.operand[i])
2833 >= FIRST_PSEUDO_REGISTER)
2834 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2835 : NO_REGS);
2836 pref_or_nothing[i]
2837 = (code == REG
2838 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2839 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2842 /* If this is simply a copy from operand 1 to operand 0, merge the
2843 preferred classes for the operands. */
2844 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2845 && recog_data.operand[1] == SET_SRC (set))
2847 preferred_class[0] = preferred_class[1]
2848 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2849 pref_or_nothing[0] |= pref_or_nothing[1];
2850 pref_or_nothing[1] |= pref_or_nothing[0];
2853 /* Now see what we need for pseudo-regs that didn't get hard regs
2854 or got the wrong kind of hard reg. For this, we must consider
2855 all the operands together against the register constraints. */
2857 best = MAX_RECOG_OPERANDS * 2 + 600;
2859 swapped = 0;
2860 goal_alternative_swapped = 0;
2861 try_swapped:
2863 /* The constraints are made of several alternatives.
2864 Each operand's constraint looks like foo,bar,... with commas
2865 separating the alternatives. The first alternatives for all
2866 operands go together, the second alternatives go together, etc.
2868 First loop over alternatives. */
2870 for (this_alternative_number = 0;
2871 this_alternative_number < n_alternatives;
2872 this_alternative_number++)
2874 /* Loop over operands for one constraint alternative. */
2875 /* LOSERS counts those that don't fit this alternative
2876 and would require loading. */
2877 int losers = 0;
2878 /* BAD is set to 1 if it some operand can't fit this alternative
2879 even after reloading. */
2880 int bad = 0;
2881 /* REJECT is a count of how undesirable this alternative says it is
2882 if any reloading is required. If the alternative matches exactly
2883 then REJECT is ignored, but otherwise it gets this much
2884 counted against it in addition to the reloading needed. Each
2885 ? counts three times here since we want the disparaging caused by
2886 a bad register class to only count 1/3 as much. */
2887 int reject = 0;
2889 this_earlyclobber = 0;
2891 for (i = 0; i < noperands; i++)
2893 char *p = constraints[i];
2894 char *end;
2895 int len;
2896 int win = 0;
2897 int did_match = 0;
2898 /* 0 => this operand can be reloaded somehow for this alternative. */
2899 int badop = 1;
2900 /* 0 => this operand can be reloaded if the alternative allows regs. */
2901 int winreg = 0;
2902 int c;
2903 int m;
2904 rtx operand = recog_data.operand[i];
2905 int offset = 0;
2906 /* Nonzero means this is a MEM that must be reloaded into a reg
2907 regardless of what the constraint says. */
2908 int force_reload = 0;
2909 int offmemok = 0;
2910 /* Nonzero if a constant forced into memory would be OK for this
2911 operand. */
2912 int constmemok = 0;
2913 int earlyclobber = 0;
2915 /* If the predicate accepts a unary operator, it means that
2916 we need to reload the operand, but do not do this for
2917 match_operator and friends. */
2918 if (UNARY_P (operand) && *p != 0)
2919 operand = XEXP (operand, 0);
2921 /* If the operand is a SUBREG, extract
2922 the REG or MEM (or maybe even a constant) within.
2923 (Constants can occur as a result of reg_equiv_constant.) */
2925 while (GET_CODE (operand) == SUBREG)
2927 /* Offset only matters when operand is a REG and
2928 it is a hard reg. This is because it is passed
2929 to reg_fits_class_p if it is a REG and all pseudos
2930 return 0 from that function. */
2931 if (REG_P (SUBREG_REG (operand))
2932 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2934 if (!subreg_offset_representable_p
2935 (REGNO (SUBREG_REG (operand)),
2936 GET_MODE (SUBREG_REG (operand)),
2937 SUBREG_BYTE (operand),
2938 GET_MODE (operand)))
2939 force_reload = 1;
2940 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2941 GET_MODE (SUBREG_REG (operand)),
2942 SUBREG_BYTE (operand),
2943 GET_MODE (operand));
2945 operand = SUBREG_REG (operand);
2946 /* Force reload if this is a constant or PLUS or if there may
2947 be a problem accessing OPERAND in the outer mode. */
2948 if (CONSTANT_P (operand)
2949 || GET_CODE (operand) == PLUS
2950 /* We must force a reload of paradoxical SUBREGs
2951 of a MEM because the alignment of the inner value
2952 may not be enough to do the outer reference. On
2953 big-endian machines, it may also reference outside
2954 the object.
2956 On machines that extend byte operations and we have a
2957 SUBREG where both the inner and outer modes are no wider
2958 than a word and the inner mode is narrower, is integral,
2959 and gets extended when loaded from memory, combine.c has
2960 made assumptions about the behavior of the machine in such
2961 register access. If the data is, in fact, in memory we
2962 must always load using the size assumed to be in the
2963 register and let the insn do the different-sized
2964 accesses.
2966 This is doubly true if WORD_REGISTER_OPERATIONS. In
2967 this case eliminate_regs has left non-paradoxical
2968 subregs for push_reload to see. Make sure it does
2969 by forcing the reload.
2971 ??? When is it right at this stage to have a subreg
2972 of a mem that is _not_ to be handled specially? IMO
2973 those should have been reduced to just a mem. */
2974 || ((MEM_P (operand)
2975 || (REG_P (operand)
2976 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2977 #ifndef WORD_REGISTER_OPERATIONS
2978 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2979 < BIGGEST_ALIGNMENT)
2980 && (GET_MODE_SIZE (operand_mode[i])
2981 > GET_MODE_SIZE (GET_MODE (operand))))
2982 || BYTES_BIG_ENDIAN
2983 #ifdef LOAD_EXTEND_OP
2984 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2985 && (GET_MODE_SIZE (GET_MODE (operand))
2986 <= UNITS_PER_WORD)
2987 && (GET_MODE_SIZE (operand_mode[i])
2988 > GET_MODE_SIZE (GET_MODE (operand)))
2989 && INTEGRAL_MODE_P (GET_MODE (operand))
2990 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2991 #endif
2993 #endif
2996 force_reload = 1;
2999 this_alternative[i] = (int) NO_REGS;
3000 this_alternative_win[i] = 0;
3001 this_alternative_match_win[i] = 0;
3002 this_alternative_offmemok[i] = 0;
3003 this_alternative_earlyclobber[i] = 0;
3004 this_alternative_matches[i] = -1;
3006 /* An empty constraint or empty alternative
3007 allows anything which matched the pattern. */
3008 if (*p == 0 || *p == ',')
3009 win = 1, badop = 0;
3011 /* Scan this alternative's specs for this operand;
3012 set WIN if the operand fits any letter in this alternative.
3013 Otherwise, clear BADOP if this operand could
3014 fit some letter after reloads,
3015 or set WINREG if this operand could fit after reloads
3016 provided the constraint allows some registers. */
3019 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3021 case '\0':
3022 len = 0;
3023 break;
3024 case ',':
3025 c = '\0';
3026 break;
3028 case '=': case '+': case '*':
3029 break;
3031 case '%':
3032 /* We only support one commutative marker, the first
3033 one. We already set commutative above. */
3034 break;
3036 case '?':
3037 reject += 6;
3038 break;
3040 case '!':
3041 reject = 600;
3042 break;
3044 case '#':
3045 /* Ignore rest of this alternative as far as
3046 reloading is concerned. */
3048 p++;
3049 while (*p && *p != ',');
3050 len = 0;
3051 break;
3053 case '0': case '1': case '2': case '3': case '4':
3054 case '5': case '6': case '7': case '8': case '9':
3055 m = strtoul (p, &end, 10);
3056 p = end;
3057 len = 0;
3059 this_alternative_matches[i] = m;
3060 /* We are supposed to match a previous operand.
3061 If we do, we win if that one did.
3062 If we do not, count both of the operands as losers.
3063 (This is too conservative, since most of the time
3064 only a single reload insn will be needed to make
3065 the two operands win. As a result, this alternative
3066 may be rejected when it is actually desirable.) */
3067 if ((swapped && (m != commutative || i != commutative + 1))
3068 /* If we are matching as if two operands were swapped,
3069 also pretend that operands_match had been computed
3070 with swapped.
3071 But if I is the second of those and C is the first,
3072 don't exchange them, because operands_match is valid
3073 only on one side of its diagonal. */
3074 ? (operands_match
3075 [(m == commutative || m == commutative + 1)
3076 ? 2 * commutative + 1 - m : m]
3077 [(i == commutative || i == commutative + 1)
3078 ? 2 * commutative + 1 - i : i])
3079 : operands_match[m][i])
3081 /* If we are matching a non-offsettable address where an
3082 offsettable address was expected, then we must reject
3083 this combination, because we can't reload it. */
3084 if (this_alternative_offmemok[m]
3085 && MEM_P (recog_data.operand[m])
3086 && this_alternative[m] == (int) NO_REGS
3087 && ! this_alternative_win[m])
3088 bad = 1;
3090 did_match = this_alternative_win[m];
3092 else
3094 /* Operands don't match. */
3095 rtx value;
3096 int loc1, loc2;
3097 /* Retroactively mark the operand we had to match
3098 as a loser, if it wasn't already. */
3099 if (this_alternative_win[m])
3100 losers++;
3101 this_alternative_win[m] = 0;
3102 if (this_alternative[m] == (int) NO_REGS)
3103 bad = 1;
3104 /* But count the pair only once in the total badness of
3105 this alternative, if the pair can be a dummy reload.
3106 The pointers in operand_loc are not swapped; swap
3107 them by hand if necessary. */
3108 if (swapped && i == commutative)
3109 loc1 = commutative + 1;
3110 else if (swapped && i == commutative + 1)
3111 loc1 = commutative;
3112 else
3113 loc1 = i;
3114 if (swapped && m == commutative)
3115 loc2 = commutative + 1;
3116 else if (swapped && m == commutative + 1)
3117 loc2 = commutative;
3118 else
3119 loc2 = m;
3120 value
3121 = find_dummy_reload (recog_data.operand[i],
3122 recog_data.operand[m],
3123 recog_data.operand_loc[loc1],
3124 recog_data.operand_loc[loc2],
3125 operand_mode[i], operand_mode[m],
3126 this_alternative[m], -1,
3127 this_alternative_earlyclobber[m]);
3129 if (value != 0)
3130 losers--;
3132 /* This can be fixed with reloads if the operand
3133 we are supposed to match can be fixed with reloads. */
3134 badop = 0;
3135 this_alternative[i] = this_alternative[m];
3137 /* If we have to reload this operand and some previous
3138 operand also had to match the same thing as this
3139 operand, we don't know how to do that. So reject this
3140 alternative. */
3141 if (! did_match || force_reload)
3142 for (j = 0; j < i; j++)
3143 if (this_alternative_matches[j]
3144 == this_alternative_matches[i])
3145 badop = 1;
3146 break;
3148 case 'p':
3149 /* All necessary reloads for an address_operand
3150 were handled in find_reloads_address. */
3151 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3152 win = 1;
3153 badop = 0;
3154 break;
3156 case 'm':
3157 if (force_reload)
3158 break;
3159 if (MEM_P (operand)
3160 || (REG_P (operand)
3161 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3162 && reg_renumber[REGNO (operand)] < 0))
3163 win = 1;
3164 if (CONST_POOL_OK_P (operand))
3165 badop = 0;
3166 constmemok = 1;
3167 break;
3169 case '<':
3170 if (MEM_P (operand)
3171 && ! address_reloaded[i]
3172 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3173 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3174 win = 1;
3175 break;
3177 case '>':
3178 if (MEM_P (operand)
3179 && ! address_reloaded[i]
3180 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3181 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3182 win = 1;
3183 break;
3185 /* Memory operand whose address is not offsettable. */
3186 case 'V':
3187 if (force_reload)
3188 break;
3189 if (MEM_P (operand)
3190 && ! (ind_levels ? offsettable_memref_p (operand)
3191 : offsettable_nonstrict_memref_p (operand))
3192 /* Certain mem addresses will become offsettable
3193 after they themselves are reloaded. This is important;
3194 we don't want our own handling of unoffsettables
3195 to override the handling of reg_equiv_address. */
3196 && !(REG_P (XEXP (operand, 0))
3197 && (ind_levels == 0
3198 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3199 win = 1;
3200 break;
3202 /* Memory operand whose address is offsettable. */
3203 case 'o':
3204 if (force_reload)
3205 break;
3206 if ((MEM_P (operand)
3207 /* If IND_LEVELS, find_reloads_address won't reload a
3208 pseudo that didn't get a hard reg, so we have to
3209 reject that case. */
3210 && ((ind_levels ? offsettable_memref_p (operand)
3211 : offsettable_nonstrict_memref_p (operand))
3212 /* A reloaded address is offsettable because it is now
3213 just a simple register indirect. */
3214 || address_reloaded[i] == 1))
3215 || (REG_P (operand)
3216 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3217 && reg_renumber[REGNO (operand)] < 0
3218 /* If reg_equiv_address is nonzero, we will be
3219 loading it into a register; hence it will be
3220 offsettable, but we cannot say that reg_equiv_mem
3221 is offsettable without checking. */
3222 && ((reg_equiv_mem[REGNO (operand)] != 0
3223 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3224 || (reg_equiv_address[REGNO (operand)] != 0))))
3225 win = 1;
3226 if (CONST_POOL_OK_P (operand)
3227 || MEM_P (operand))
3228 badop = 0;
3229 constmemok = 1;
3230 offmemok = 1;
3231 break;
3233 case '&':
3234 /* Output operand that is stored before the need for the
3235 input operands (and their index registers) is over. */
3236 earlyclobber = 1, this_earlyclobber = 1;
3237 break;
3239 case 'E':
3240 case 'F':
3241 if (GET_CODE (operand) == CONST_DOUBLE
3242 || (GET_CODE (operand) == CONST_VECTOR
3243 && (GET_MODE_CLASS (GET_MODE (operand))
3244 == MODE_VECTOR_FLOAT)))
3245 win = 1;
3246 break;
3248 case 'G':
3249 case 'H':
3250 if (GET_CODE (operand) == CONST_DOUBLE
3251 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3252 win = 1;
3253 break;
3255 case 's':
3256 if (GET_CODE (operand) == CONST_INT
3257 || (GET_CODE (operand) == CONST_DOUBLE
3258 && GET_MODE (operand) == VOIDmode))
3259 break;
3260 case 'i':
3261 if (CONSTANT_P (operand)
3262 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3263 win = 1;
3264 break;
3266 case 'n':
3267 if (GET_CODE (operand) == CONST_INT
3268 || (GET_CODE (operand) == CONST_DOUBLE
3269 && GET_MODE (operand) == VOIDmode))
3270 win = 1;
3271 break;
3273 case 'I':
3274 case 'J':
3275 case 'K':
3276 case 'L':
3277 case 'M':
3278 case 'N':
3279 case 'O':
3280 case 'P':
3281 if (GET_CODE (operand) == CONST_INT
3282 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3283 win = 1;
3284 break;
3286 case 'X':
3287 win = 1;
3288 break;
3290 case 'g':
3291 if (! force_reload
3292 /* A PLUS is never a valid operand, but reload can make
3293 it from a register when eliminating registers. */
3294 && GET_CODE (operand) != PLUS
3295 /* A SCRATCH is not a valid operand. */
3296 && GET_CODE (operand) != SCRATCH
3297 && (! CONSTANT_P (operand)
3298 || ! flag_pic
3299 || LEGITIMATE_PIC_OPERAND_P (operand))
3300 && (GENERAL_REGS == ALL_REGS
3301 || !REG_P (operand)
3302 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3303 && reg_renumber[REGNO (operand)] < 0)))
3304 win = 1;
3305 /* Drop through into 'r' case. */
3307 case 'r':
3308 this_alternative[i]
3309 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3310 goto reg;
3312 default:
3313 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3315 #ifdef EXTRA_CONSTRAINT_STR
3316 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3318 if (force_reload)
3319 break;
3320 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3321 win = 1;
3322 /* If the address was already reloaded,
3323 we win as well. */
3324 else if (MEM_P (operand)
3325 && address_reloaded[i] == 1)
3326 win = 1;
3327 /* Likewise if the address will be reloaded because
3328 reg_equiv_address is nonzero. For reg_equiv_mem
3329 we have to check. */
3330 else if (REG_P (operand)
3331 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3332 && reg_renumber[REGNO (operand)] < 0
3333 && ((reg_equiv_mem[REGNO (operand)] != 0
3334 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3335 || (reg_equiv_address[REGNO (operand)] != 0)))
3336 win = 1;
3338 /* If we didn't already win, we can reload
3339 constants via force_const_mem, and other
3340 MEMs by reloading the address like for 'o'. */
3341 if (CONST_POOL_OK_P (operand)
3342 || MEM_P (operand))
3343 badop = 0;
3344 constmemok = 1;
3345 offmemok = 1;
3346 break;
3348 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3350 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3351 win = 1;
3353 /* If we didn't already win, we can reload
3354 the address into a base register. */
3355 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3356 badop = 0;
3357 break;
3360 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3361 win = 1;
3362 #endif
3363 break;
3366 this_alternative[i]
3367 = (int) (reg_class_subunion
3368 [this_alternative[i]]
3369 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3370 reg:
3371 if (GET_MODE (operand) == BLKmode)
3372 break;
3373 winreg = 1;
3374 if (REG_P (operand)
3375 && reg_fits_class_p (operand, this_alternative[i],
3376 offset, GET_MODE (recog_data.operand[i])))
3377 win = 1;
3378 break;
3380 while ((p += len), c);
3382 constraints[i] = p;
3384 /* If this operand could be handled with a reg,
3385 and some reg is allowed, then this operand can be handled. */
3386 if (winreg && this_alternative[i] != (int) NO_REGS)
3387 badop = 0;
3389 /* Record which operands fit this alternative. */
3390 this_alternative_earlyclobber[i] = earlyclobber;
3391 if (win && ! force_reload)
3392 this_alternative_win[i] = 1;
3393 else if (did_match && ! force_reload)
3394 this_alternative_match_win[i] = 1;
3395 else
3397 int const_to_mem = 0;
3399 this_alternative_offmemok[i] = offmemok;
3400 losers++;
3401 if (badop)
3402 bad = 1;
3403 /* Alternative loses if it has no regs for a reg operand. */
3404 if (REG_P (operand)
3405 && this_alternative[i] == (int) NO_REGS
3406 && this_alternative_matches[i] < 0)
3407 bad = 1;
3409 /* If this is a constant that is reloaded into the desired
3410 class by copying it to memory first, count that as another
3411 reload. This is consistent with other code and is
3412 required to avoid choosing another alternative when
3413 the constant is moved into memory by this function on
3414 an early reload pass. Note that the test here is
3415 precisely the same as in the code below that calls
3416 force_const_mem. */
3417 if (CONST_POOL_OK_P (operand)
3418 && ((PREFERRED_RELOAD_CLASS (operand,
3419 (enum reg_class) this_alternative[i])
3420 == NO_REGS)
3421 || no_input_reloads)
3422 && operand_mode[i] != VOIDmode)
3424 const_to_mem = 1;
3425 if (this_alternative[i] != (int) NO_REGS)
3426 losers++;
3429 /* If we can't reload this value at all, reject this
3430 alternative. Note that we could also lose due to
3431 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3432 here. */
3434 if (! CONSTANT_P (operand)
3435 && (enum reg_class) this_alternative[i] != NO_REGS
3436 && (PREFERRED_RELOAD_CLASS (operand,
3437 (enum reg_class) this_alternative[i])
3438 == NO_REGS))
3439 bad = 1;
3441 /* Alternative loses if it requires a type of reload not
3442 permitted for this insn. We can always reload SCRATCH
3443 and objects with a REG_UNUSED note. */
3444 else if (GET_CODE (operand) != SCRATCH
3445 && modified[i] != RELOAD_READ && no_output_reloads
3446 && ! find_reg_note (insn, REG_UNUSED, operand))
3447 bad = 1;
3448 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3449 && ! const_to_mem)
3450 bad = 1;
3452 /* We prefer to reload pseudos over reloading other things,
3453 since such reloads may be able to be eliminated later.
3454 If we are reloading a SCRATCH, we won't be generating any
3455 insns, just using a register, so it is also preferred.
3456 So bump REJECT in other cases. Don't do this in the
3457 case where we are forcing a constant into memory and
3458 it will then win since we don't want to have a different
3459 alternative match then. */
3460 if (! (REG_P (operand)
3461 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3462 && GET_CODE (operand) != SCRATCH
3463 && ! (const_to_mem && constmemok))
3464 reject += 2;
3466 /* Input reloads can be inherited more often than output
3467 reloads can be removed, so penalize output reloads. */
3468 if (operand_type[i] != RELOAD_FOR_INPUT
3469 && GET_CODE (operand) != SCRATCH)
3470 reject++;
3473 /* If this operand is a pseudo register that didn't get a hard
3474 reg and this alternative accepts some register, see if the
3475 class that we want is a subset of the preferred class for this
3476 register. If not, but it intersects that class, use the
3477 preferred class instead. If it does not intersect the preferred
3478 class, show that usage of this alternative should be discouraged;
3479 it will be discouraged more still if the register is `preferred
3480 or nothing'. We do this because it increases the chance of
3481 reusing our spill register in a later insn and avoiding a pair
3482 of memory stores and loads.
3484 Don't bother with this if this alternative will accept this
3485 operand.
3487 Don't do this for a multiword operand, since it is only a
3488 small win and has the risk of requiring more spill registers,
3489 which could cause a large loss.
3491 Don't do this if the preferred class has only one register
3492 because we might otherwise exhaust the class. */
3494 if (! win && ! did_match
3495 && this_alternative[i] != (int) NO_REGS
3496 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3497 && reg_class_size [(int) preferred_class[i]] > 0
3498 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3500 if (! reg_class_subset_p (this_alternative[i],
3501 preferred_class[i]))
3503 /* Since we don't have a way of forming the intersection,
3504 we just do something special if the preferred class
3505 is a subset of the class we have; that's the most
3506 common case anyway. */
3507 if (reg_class_subset_p (preferred_class[i],
3508 this_alternative[i]))
3509 this_alternative[i] = (int) preferred_class[i];
3510 else
3511 reject += (2 + 2 * pref_or_nothing[i]);
3516 /* Now see if any output operands that are marked "earlyclobber"
3517 in this alternative conflict with any input operands
3518 or any memory addresses. */
3520 for (i = 0; i < noperands; i++)
3521 if (this_alternative_earlyclobber[i]
3522 && (this_alternative_win[i] || this_alternative_match_win[i]))
3524 struct decomposition early_data;
3526 early_data = decompose (recog_data.operand[i]);
3528 gcc_assert (modified[i] != RELOAD_READ);
3530 if (this_alternative[i] == NO_REGS)
3532 this_alternative_earlyclobber[i] = 0;
3533 gcc_assert (this_insn_is_asm);
3534 error_for_asm (this_insn,
3535 "%<&%> constraint used with no register class");
3538 for (j = 0; j < noperands; j++)
3539 /* Is this an input operand or a memory ref? */
3540 if ((MEM_P (recog_data.operand[j])
3541 || modified[j] != RELOAD_WRITE)
3542 && j != i
3543 /* Ignore things like match_operator operands. */
3544 && *recog_data.constraints[j] != 0
3545 /* Don't count an input operand that is constrained to match
3546 the early clobber operand. */
3547 && ! (this_alternative_matches[j] == i
3548 && rtx_equal_p (recog_data.operand[i],
3549 recog_data.operand[j]))
3550 /* Is it altered by storing the earlyclobber operand? */
3551 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3552 early_data))
3554 /* If the output is in a non-empty few-regs class,
3555 it's costly to reload it, so reload the input instead. */
3556 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3557 && (REG_P (recog_data.operand[j])
3558 || GET_CODE (recog_data.operand[j]) == SUBREG))
3560 losers++;
3561 this_alternative_win[j] = 0;
3562 this_alternative_match_win[j] = 0;
3564 else
3565 break;
3567 /* If an earlyclobber operand conflicts with something,
3568 it must be reloaded, so request this and count the cost. */
3569 if (j != noperands)
3571 losers++;
3572 this_alternative_win[i] = 0;
3573 this_alternative_match_win[j] = 0;
3574 for (j = 0; j < noperands; j++)
3575 if (this_alternative_matches[j] == i
3576 && this_alternative_match_win[j])
3578 this_alternative_win[j] = 0;
3579 this_alternative_match_win[j] = 0;
3580 losers++;
3585 /* If one alternative accepts all the operands, no reload required,
3586 choose that alternative; don't consider the remaining ones. */
3587 if (losers == 0)
3589 /* Unswap these so that they are never swapped at `finish'. */
3590 if (commutative >= 0)
3592 recog_data.operand[commutative] = substed_operand[commutative];
3593 recog_data.operand[commutative + 1]
3594 = substed_operand[commutative + 1];
3596 for (i = 0; i < noperands; i++)
3598 goal_alternative_win[i] = this_alternative_win[i];
3599 goal_alternative_match_win[i] = this_alternative_match_win[i];
3600 goal_alternative[i] = this_alternative[i];
3601 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3602 goal_alternative_matches[i] = this_alternative_matches[i];
3603 goal_alternative_earlyclobber[i]
3604 = this_alternative_earlyclobber[i];
3606 goal_alternative_number = this_alternative_number;
3607 goal_alternative_swapped = swapped;
3608 goal_earlyclobber = this_earlyclobber;
3609 goto finish;
3612 /* REJECT, set by the ! and ? constraint characters and when a register
3613 would be reloaded into a non-preferred class, discourages the use of
3614 this alternative for a reload goal. REJECT is incremented by six
3615 for each ? and two for each non-preferred class. */
3616 losers = losers * 6 + reject;
3618 /* If this alternative can be made to work by reloading,
3619 and it needs less reloading than the others checked so far,
3620 record it as the chosen goal for reloading. */
3621 if (! bad && best > losers)
3623 for (i = 0; i < noperands; i++)
3625 goal_alternative[i] = this_alternative[i];
3626 goal_alternative_win[i] = this_alternative_win[i];
3627 goal_alternative_match_win[i] = this_alternative_match_win[i];
3628 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3629 goal_alternative_matches[i] = this_alternative_matches[i];
3630 goal_alternative_earlyclobber[i]
3631 = this_alternative_earlyclobber[i];
3633 goal_alternative_swapped = swapped;
3634 best = losers;
3635 goal_alternative_number = this_alternative_number;
3636 goal_earlyclobber = this_earlyclobber;
3640 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3641 then we need to try each alternative twice,
3642 the second time matching those two operands
3643 as if we had exchanged them.
3644 To do this, really exchange them in operands.
3646 If we have just tried the alternatives the second time,
3647 return operands to normal and drop through. */
3649 if (commutative >= 0)
3651 swapped = !swapped;
3652 if (swapped)
3654 enum reg_class tclass;
3655 int t;
3657 recog_data.operand[commutative] = substed_operand[commutative + 1];
3658 recog_data.operand[commutative + 1] = substed_operand[commutative];
3659 /* Swap the duplicates too. */
3660 for (i = 0; i < recog_data.n_dups; i++)
3661 if (recog_data.dup_num[i] == commutative
3662 || recog_data.dup_num[i] == commutative + 1)
3663 *recog_data.dup_loc[i]
3664 = recog_data.operand[(int) recog_data.dup_num[i]];
3666 tclass = preferred_class[commutative];
3667 preferred_class[commutative] = preferred_class[commutative + 1];
3668 preferred_class[commutative + 1] = tclass;
3670 t = pref_or_nothing[commutative];
3671 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3672 pref_or_nothing[commutative + 1] = t;
3674 t = address_reloaded[commutative];
3675 address_reloaded[commutative] = address_reloaded[commutative + 1];
3676 address_reloaded[commutative + 1] = t;
3678 memcpy (constraints, recog_data.constraints,
3679 noperands * sizeof (char *));
3680 goto try_swapped;
3682 else
3684 recog_data.operand[commutative] = substed_operand[commutative];
3685 recog_data.operand[commutative + 1]
3686 = substed_operand[commutative + 1];
3687 /* Unswap the duplicates too. */
3688 for (i = 0; i < recog_data.n_dups; i++)
3689 if (recog_data.dup_num[i] == commutative
3690 || recog_data.dup_num[i] == commutative + 1)
3691 *recog_data.dup_loc[i]
3692 = recog_data.operand[(int) recog_data.dup_num[i]];
3696 /* The operands don't meet the constraints.
3697 goal_alternative describes the alternative
3698 that we could reach by reloading the fewest operands.
3699 Reload so as to fit it. */
3701 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3703 /* No alternative works with reloads?? */
3704 if (insn_code_number >= 0)
3705 fatal_insn ("unable to generate reloads for:", insn);
3706 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3707 /* Avoid further trouble with this insn. */
3708 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3709 n_reloads = 0;
3710 return 0;
3713 /* Jump to `finish' from above if all operands are valid already.
3714 In that case, goal_alternative_win is all 1. */
3715 finish:
3717 /* Right now, for any pair of operands I and J that are required to match,
3718 with I < J,
3719 goal_alternative_matches[J] is I.
3720 Set up goal_alternative_matched as the inverse function:
3721 goal_alternative_matched[I] = J. */
3723 for (i = 0; i < noperands; i++)
3724 goal_alternative_matched[i] = -1;
3726 for (i = 0; i < noperands; i++)
3727 if (! goal_alternative_win[i]
3728 && goal_alternative_matches[i] >= 0)
3729 goal_alternative_matched[goal_alternative_matches[i]] = i;
3731 for (i = 0; i < noperands; i++)
3732 goal_alternative_win[i] |= goal_alternative_match_win[i];
3734 /* If the best alternative is with operands 1 and 2 swapped,
3735 consider them swapped before reporting the reloads. Update the
3736 operand numbers of any reloads already pushed. */
3738 if (goal_alternative_swapped)
3740 rtx tem;
3742 tem = substed_operand[commutative];
3743 substed_operand[commutative] = substed_operand[commutative + 1];
3744 substed_operand[commutative + 1] = tem;
3745 tem = recog_data.operand[commutative];
3746 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3747 recog_data.operand[commutative + 1] = tem;
3748 tem = *recog_data.operand_loc[commutative];
3749 *recog_data.operand_loc[commutative]
3750 = *recog_data.operand_loc[commutative + 1];
3751 *recog_data.operand_loc[commutative + 1] = tem;
3753 for (i = 0; i < n_reloads; i++)
3755 if (rld[i].opnum == commutative)
3756 rld[i].opnum = commutative + 1;
3757 else if (rld[i].opnum == commutative + 1)
3758 rld[i].opnum = commutative;
3762 for (i = 0; i < noperands; i++)
3764 operand_reloadnum[i] = -1;
3766 /* If this is an earlyclobber operand, we need to widen the scope.
3767 The reload must remain valid from the start of the insn being
3768 reloaded until after the operand is stored into its destination.
3769 We approximate this with RELOAD_OTHER even though we know that we
3770 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3772 One special case that is worth checking is when we have an
3773 output that is earlyclobber but isn't used past the insn (typically
3774 a SCRATCH). In this case, we only need have the reload live
3775 through the insn itself, but not for any of our input or output
3776 reloads.
3777 But we must not accidentally narrow the scope of an existing
3778 RELOAD_OTHER reload - leave these alone.
3780 In any case, anything needed to address this operand can remain
3781 however they were previously categorized. */
3783 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3784 operand_type[i]
3785 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3786 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3789 /* Any constants that aren't allowed and can't be reloaded
3790 into registers are here changed into memory references. */
3791 for (i = 0; i < noperands; i++)
3792 if (! goal_alternative_win[i]
3793 && CONST_POOL_OK_P (recog_data.operand[i])
3794 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3795 (enum reg_class) goal_alternative[i])
3796 == NO_REGS)
3797 || no_input_reloads)
3798 && operand_mode[i] != VOIDmode)
3800 substed_operand[i] = recog_data.operand[i]
3801 = find_reloads_toplev (force_const_mem (operand_mode[i],
3802 recog_data.operand[i]),
3803 i, address_type[i], ind_levels, 0, insn,
3804 NULL);
3805 if (alternative_allows_memconst (recog_data.constraints[i],
3806 goal_alternative_number))
3807 goal_alternative_win[i] = 1;
3810 /* Likewise any invalid constants appearing as operand of a PLUS
3811 that is to be reloaded. */
3812 for (i = 0; i < noperands; i++)
3813 if (! goal_alternative_win[i]
3814 && GET_CODE (recog_data.operand[i]) == PLUS
3815 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3816 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3817 (enum reg_class) goal_alternative[i])
3818 == NO_REGS)
3819 && operand_mode[i] != VOIDmode)
3821 rtx tem = force_const_mem (operand_mode[i],
3822 XEXP (recog_data.operand[i], 1));
3823 tem = gen_rtx_PLUS (operand_mode[i],
3824 XEXP (recog_data.operand[i], 0), tem);
3826 substed_operand[i] = recog_data.operand[i]
3827 = find_reloads_toplev (tem, i, address_type[i],
3828 ind_levels, 0, insn, NULL);
3831 /* Record the values of the earlyclobber operands for the caller. */
3832 if (goal_earlyclobber)
3833 for (i = 0; i < noperands; i++)
3834 if (goal_alternative_earlyclobber[i])
3835 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3837 /* Now record reloads for all the operands that need them. */
3838 for (i = 0; i < noperands; i++)
3839 if (! goal_alternative_win[i])
3841 /* Operands that match previous ones have already been handled. */
3842 if (goal_alternative_matches[i] >= 0)
3844 /* Handle an operand with a nonoffsettable address
3845 appearing where an offsettable address will do
3846 by reloading the address into a base register.
3848 ??? We can also do this when the operand is a register and
3849 reg_equiv_mem is not offsettable, but this is a bit tricky,
3850 so we don't bother with it. It may not be worth doing. */
3851 else if (goal_alternative_matched[i] == -1
3852 && goal_alternative_offmemok[i]
3853 && MEM_P (recog_data.operand[i]))
3855 operand_reloadnum[i]
3856 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3857 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3858 MODE_BASE_REG_CLASS (VOIDmode),
3859 GET_MODE (XEXP (recog_data.operand[i], 0)),
3860 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3861 rld[operand_reloadnum[i]].inc
3862 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3864 /* If this operand is an output, we will have made any
3865 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3866 now we are treating part of the operand as an input, so
3867 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3869 if (modified[i] == RELOAD_WRITE)
3871 for (j = 0; j < n_reloads; j++)
3873 if (rld[j].opnum == i)
3875 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3876 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3877 else if (rld[j].when_needed
3878 == RELOAD_FOR_OUTADDR_ADDRESS)
3879 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3884 else if (goal_alternative_matched[i] == -1)
3886 operand_reloadnum[i]
3887 = push_reload ((modified[i] != RELOAD_WRITE
3888 ? recog_data.operand[i] : 0),
3889 (modified[i] != RELOAD_READ
3890 ? recog_data.operand[i] : 0),
3891 (modified[i] != RELOAD_WRITE
3892 ? recog_data.operand_loc[i] : 0),
3893 (modified[i] != RELOAD_READ
3894 ? recog_data.operand_loc[i] : 0),
3895 (enum reg_class) goal_alternative[i],
3896 (modified[i] == RELOAD_WRITE
3897 ? VOIDmode : operand_mode[i]),
3898 (modified[i] == RELOAD_READ
3899 ? VOIDmode : operand_mode[i]),
3900 (insn_code_number < 0 ? 0
3901 : insn_data[insn_code_number].operand[i].strict_low),
3902 0, i, operand_type[i]);
3904 /* In a matching pair of operands, one must be input only
3905 and the other must be output only.
3906 Pass the input operand as IN and the other as OUT. */
3907 else if (modified[i] == RELOAD_READ
3908 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3910 operand_reloadnum[i]
3911 = push_reload (recog_data.operand[i],
3912 recog_data.operand[goal_alternative_matched[i]],
3913 recog_data.operand_loc[i],
3914 recog_data.operand_loc[goal_alternative_matched[i]],
3915 (enum reg_class) goal_alternative[i],
3916 operand_mode[i],
3917 operand_mode[goal_alternative_matched[i]],
3918 0, 0, i, RELOAD_OTHER);
3919 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3921 else if (modified[i] == RELOAD_WRITE
3922 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3924 operand_reloadnum[goal_alternative_matched[i]]
3925 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3926 recog_data.operand[i],
3927 recog_data.operand_loc[goal_alternative_matched[i]],
3928 recog_data.operand_loc[i],
3929 (enum reg_class) goal_alternative[i],
3930 operand_mode[goal_alternative_matched[i]],
3931 operand_mode[i],
3932 0, 0, i, RELOAD_OTHER);
3933 operand_reloadnum[i] = output_reloadnum;
3935 else
3937 gcc_assert (insn_code_number < 0);
3938 error_for_asm (insn, "inconsistent operand constraints "
3939 "in an %<asm%>");
3940 /* Avoid further trouble with this insn. */
3941 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3942 n_reloads = 0;
3943 return 0;
3946 else if (goal_alternative_matched[i] < 0
3947 && goal_alternative_matches[i] < 0
3948 && address_operand_reloaded[i] != 1
3949 && optimize)
3951 /* For each non-matching operand that's a MEM or a pseudo-register
3952 that didn't get a hard register, make an optional reload.
3953 This may get done even if the insn needs no reloads otherwise. */
3955 rtx operand = recog_data.operand[i];
3957 while (GET_CODE (operand) == SUBREG)
3958 operand = SUBREG_REG (operand);
3959 if ((MEM_P (operand)
3960 || (REG_P (operand)
3961 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3962 /* If this is only for an output, the optional reload would not
3963 actually cause us to use a register now, just note that
3964 something is stored here. */
3965 && ((enum reg_class) goal_alternative[i] != NO_REGS
3966 || modified[i] == RELOAD_WRITE)
3967 && ! no_input_reloads
3968 /* An optional output reload might allow to delete INSN later.
3969 We mustn't make in-out reloads on insns that are not permitted
3970 output reloads.
3971 If this is an asm, we can't delete it; we must not even call
3972 push_reload for an optional output reload in this case,
3973 because we can't be sure that the constraint allows a register,
3974 and push_reload verifies the constraints for asms. */
3975 && (modified[i] == RELOAD_READ
3976 || (! no_output_reloads && ! this_insn_is_asm)))
3977 operand_reloadnum[i]
3978 = push_reload ((modified[i] != RELOAD_WRITE
3979 ? recog_data.operand[i] : 0),
3980 (modified[i] != RELOAD_READ
3981 ? recog_data.operand[i] : 0),
3982 (modified[i] != RELOAD_WRITE
3983 ? recog_data.operand_loc[i] : 0),
3984 (modified[i] != RELOAD_READ
3985 ? recog_data.operand_loc[i] : 0),
3986 (enum reg_class) goal_alternative[i],
3987 (modified[i] == RELOAD_WRITE
3988 ? VOIDmode : operand_mode[i]),
3989 (modified[i] == RELOAD_READ
3990 ? VOIDmode : operand_mode[i]),
3991 (insn_code_number < 0 ? 0
3992 : insn_data[insn_code_number].operand[i].strict_low),
3993 1, i, operand_type[i]);
3994 /* If a memory reference remains (either as a MEM or a pseudo that
3995 did not get a hard register), yet we can't make an optional
3996 reload, check if this is actually a pseudo register reference;
3997 we then need to emit a USE and/or a CLOBBER so that reload
3998 inheritance will do the right thing. */
3999 else if (replace
4000 && (MEM_P (operand)
4001 || (REG_P (operand)
4002 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4003 && reg_renumber [REGNO (operand)] < 0)))
4005 operand = *recog_data.operand_loc[i];
4007 while (GET_CODE (operand) == SUBREG)
4008 operand = SUBREG_REG (operand);
4009 if (REG_P (operand))
4011 if (modified[i] != RELOAD_WRITE)
4012 /* We mark the USE with QImode so that we recognize
4013 it as one that can be safely deleted at the end
4014 of reload. */
4015 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4016 insn), QImode);
4017 if (modified[i] != RELOAD_READ)
4018 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4022 else if (goal_alternative_matches[i] >= 0
4023 && goal_alternative_win[goal_alternative_matches[i]]
4024 && modified[i] == RELOAD_READ
4025 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4026 && ! no_input_reloads && ! no_output_reloads
4027 && optimize)
4029 /* Similarly, make an optional reload for a pair of matching
4030 objects that are in MEM or a pseudo that didn't get a hard reg. */
4032 rtx operand = recog_data.operand[i];
4034 while (GET_CODE (operand) == SUBREG)
4035 operand = SUBREG_REG (operand);
4036 if ((MEM_P (operand)
4037 || (REG_P (operand)
4038 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4039 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4040 != NO_REGS))
4041 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4042 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4043 recog_data.operand[i],
4044 recog_data.operand_loc[goal_alternative_matches[i]],
4045 recog_data.operand_loc[i],
4046 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4047 operand_mode[goal_alternative_matches[i]],
4048 operand_mode[i],
4049 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4052 /* Perform whatever substitutions on the operands we are supposed
4053 to make due to commutativity or replacement of registers
4054 with equivalent constants or memory slots. */
4056 for (i = 0; i < noperands; i++)
4058 /* We only do this on the last pass through reload, because it is
4059 possible for some data (like reg_equiv_address) to be changed during
4060 later passes. Moreover, we loose the opportunity to get a useful
4061 reload_{in,out}_reg when we do these replacements. */
4063 if (replace)
4065 rtx substitution = substed_operand[i];
4067 *recog_data.operand_loc[i] = substitution;
4069 /* If we're replacing an operand with a LABEL_REF, we need
4070 to make sure that there's a REG_LABEL note attached to
4071 this instruction. */
4072 if (!JUMP_P (insn)
4073 && GET_CODE (substitution) == LABEL_REF
4074 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4075 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4076 XEXP (substitution, 0),
4077 REG_NOTES (insn));
4079 else
4080 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4083 /* If this insn pattern contains any MATCH_DUP's, make sure that
4084 they will be substituted if the operands they match are substituted.
4085 Also do now any substitutions we already did on the operands.
4087 Don't do this if we aren't making replacements because we might be
4088 propagating things allocated by frame pointer elimination into places
4089 it doesn't expect. */
4091 if (insn_code_number >= 0 && replace)
4092 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4094 int opno = recog_data.dup_num[i];
4095 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4096 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4099 #if 0
4100 /* This loses because reloading of prior insns can invalidate the equivalence
4101 (or at least find_equiv_reg isn't smart enough to find it any more),
4102 causing this insn to need more reload regs than it needed before.
4103 It may be too late to make the reload regs available.
4104 Now this optimization is done safely in choose_reload_regs. */
4106 /* For each reload of a reg into some other class of reg,
4107 search for an existing equivalent reg (same value now) in the right class.
4108 We can use it as long as we don't need to change its contents. */
4109 for (i = 0; i < n_reloads; i++)
4110 if (rld[i].reg_rtx == 0
4111 && rld[i].in != 0
4112 && REG_P (rld[i].in)
4113 && rld[i].out == 0)
4115 rld[i].reg_rtx
4116 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4117 static_reload_reg_p, 0, rld[i].inmode);
4118 /* Prevent generation of insn to load the value
4119 because the one we found already has the value. */
4120 if (rld[i].reg_rtx)
4121 rld[i].in = rld[i].reg_rtx;
4123 #endif
4125 /* Perhaps an output reload can be combined with another
4126 to reduce needs by one. */
4127 if (!goal_earlyclobber)
4128 combine_reloads ();
4130 /* If we have a pair of reloads for parts of an address, they are reloading
4131 the same object, the operands themselves were not reloaded, and they
4132 are for two operands that are supposed to match, merge the reloads and
4133 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4135 for (i = 0; i < n_reloads; i++)
4137 int k;
4139 for (j = i + 1; j < n_reloads; j++)
4140 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4141 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4142 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4143 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4144 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4145 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4146 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4147 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4148 && rtx_equal_p (rld[i].in, rld[j].in)
4149 && (operand_reloadnum[rld[i].opnum] < 0
4150 || rld[operand_reloadnum[rld[i].opnum]].optional)
4151 && (operand_reloadnum[rld[j].opnum] < 0
4152 || rld[operand_reloadnum[rld[j].opnum]].optional)
4153 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4154 || (goal_alternative_matches[rld[j].opnum]
4155 == rld[i].opnum)))
4157 for (k = 0; k < n_replacements; k++)
4158 if (replacements[k].what == j)
4159 replacements[k].what = i;
4161 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4162 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4163 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4164 else
4165 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4166 rld[j].in = 0;
4170 /* Scan all the reloads and update their type.
4171 If a reload is for the address of an operand and we didn't reload
4172 that operand, change the type. Similarly, change the operand number
4173 of a reload when two operands match. If a reload is optional, treat it
4174 as though the operand isn't reloaded.
4176 ??? This latter case is somewhat odd because if we do the optional
4177 reload, it means the object is hanging around. Thus we need only
4178 do the address reload if the optional reload was NOT done.
4180 Change secondary reloads to be the address type of their operand, not
4181 the normal type.
4183 If an operand's reload is now RELOAD_OTHER, change any
4184 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4185 RELOAD_FOR_OTHER_ADDRESS. */
4187 for (i = 0; i < n_reloads; i++)
4189 if (rld[i].secondary_p
4190 && rld[i].when_needed == operand_type[rld[i].opnum])
4191 rld[i].when_needed = address_type[rld[i].opnum];
4193 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4194 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4195 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4196 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4197 && (operand_reloadnum[rld[i].opnum] < 0
4198 || rld[operand_reloadnum[rld[i].opnum]].optional))
4200 /* If we have a secondary reload to go along with this reload,
4201 change its type to RELOAD_FOR_OPADDR_ADDR. */
4203 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4204 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4205 && rld[i].secondary_in_reload != -1)
4207 int secondary_in_reload = rld[i].secondary_in_reload;
4209 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4211 /* If there's a tertiary reload we have to change it also. */
4212 if (secondary_in_reload > 0
4213 && rld[secondary_in_reload].secondary_in_reload != -1)
4214 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4215 = RELOAD_FOR_OPADDR_ADDR;
4218 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4219 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4220 && rld[i].secondary_out_reload != -1)
4222 int secondary_out_reload = rld[i].secondary_out_reload;
4224 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4226 /* If there's a tertiary reload we have to change it also. */
4227 if (secondary_out_reload
4228 && rld[secondary_out_reload].secondary_out_reload != -1)
4229 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4230 = RELOAD_FOR_OPADDR_ADDR;
4233 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4234 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4235 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4236 else
4237 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4240 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4241 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4242 && operand_reloadnum[rld[i].opnum] >= 0
4243 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4244 == RELOAD_OTHER))
4245 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4247 if (goal_alternative_matches[rld[i].opnum] >= 0)
4248 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4251 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4252 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4253 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4255 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4256 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4257 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4258 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4259 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4260 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4261 This is complicated by the fact that a single operand can have more
4262 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4263 choose_reload_regs without affecting code quality, and cases that
4264 actually fail are extremely rare, so it turns out to be better to fix
4265 the problem here by not generating cases that choose_reload_regs will
4266 fail for. */
4267 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4268 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4269 a single operand.
4270 We can reduce the register pressure by exploiting that a
4271 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4272 does not conflict with any of them, if it is only used for the first of
4273 the RELOAD_FOR_X_ADDRESS reloads. */
4275 int first_op_addr_num = -2;
4276 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4277 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4278 int need_change = 0;
4279 /* We use last_op_addr_reload and the contents of the above arrays
4280 first as flags - -2 means no instance encountered, -1 means exactly
4281 one instance encountered.
4282 If more than one instance has been encountered, we store the reload
4283 number of the first reload of the kind in question; reload numbers
4284 are known to be non-negative. */
4285 for (i = 0; i < noperands; i++)
4286 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4287 for (i = n_reloads - 1; i >= 0; i--)
4289 switch (rld[i].when_needed)
4291 case RELOAD_FOR_OPERAND_ADDRESS:
4292 if (++first_op_addr_num >= 0)
4294 first_op_addr_num = i;
4295 need_change = 1;
4297 break;
4298 case RELOAD_FOR_INPUT_ADDRESS:
4299 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4301 first_inpaddr_num[rld[i].opnum] = i;
4302 need_change = 1;
4304 break;
4305 case RELOAD_FOR_OUTPUT_ADDRESS:
4306 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4308 first_outpaddr_num[rld[i].opnum] = i;
4309 need_change = 1;
4311 break;
4312 default:
4313 break;
4317 if (need_change)
4319 for (i = 0; i < n_reloads; i++)
4321 int first_num;
4322 enum reload_type type;
4324 switch (rld[i].when_needed)
4326 case RELOAD_FOR_OPADDR_ADDR:
4327 first_num = first_op_addr_num;
4328 type = RELOAD_FOR_OPERAND_ADDRESS;
4329 break;
4330 case RELOAD_FOR_INPADDR_ADDRESS:
4331 first_num = first_inpaddr_num[rld[i].opnum];
4332 type = RELOAD_FOR_INPUT_ADDRESS;
4333 break;
4334 case RELOAD_FOR_OUTADDR_ADDRESS:
4335 first_num = first_outpaddr_num[rld[i].opnum];
4336 type = RELOAD_FOR_OUTPUT_ADDRESS;
4337 break;
4338 default:
4339 continue;
4341 if (first_num < 0)
4342 continue;
4343 else if (i > first_num)
4344 rld[i].when_needed = type;
4345 else
4347 /* Check if the only TYPE reload that uses reload I is
4348 reload FIRST_NUM. */
4349 for (j = n_reloads - 1; j > first_num; j--)
4351 if (rld[j].when_needed == type
4352 && (rld[i].secondary_p
4353 ? rld[j].secondary_in_reload == i
4354 : reg_mentioned_p (rld[i].in, rld[j].in)))
4356 rld[i].when_needed = type;
4357 break;
4365 /* See if we have any reloads that are now allowed to be merged
4366 because we've changed when the reload is needed to
4367 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4368 check for the most common cases. */
4370 for (i = 0; i < n_reloads; i++)
4371 if (rld[i].in != 0 && rld[i].out == 0
4372 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4373 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4374 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4375 for (j = 0; j < n_reloads; j++)
4376 if (i != j && rld[j].in != 0 && rld[j].out == 0
4377 && rld[j].when_needed == rld[i].when_needed
4378 && MATCHES (rld[i].in, rld[j].in)
4379 && rld[i].class == rld[j].class
4380 && !rld[i].nocombine && !rld[j].nocombine
4381 && rld[i].reg_rtx == rld[j].reg_rtx)
4383 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4384 transfer_replacements (i, j);
4385 rld[j].in = 0;
4388 #ifdef HAVE_cc0
4389 /* If we made any reloads for addresses, see if they violate a
4390 "no input reloads" requirement for this insn. But loads that we
4391 do after the insn (such as for output addresses) are fine. */
4392 if (no_input_reloads)
4393 for (i = 0; i < n_reloads; i++)
4394 gcc_assert (rld[i].in == 0
4395 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4396 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4397 #endif
4399 /* Compute reload_mode and reload_nregs. */
4400 for (i = 0; i < n_reloads; i++)
4402 rld[i].mode
4403 = (rld[i].inmode == VOIDmode
4404 || (GET_MODE_SIZE (rld[i].outmode)
4405 > GET_MODE_SIZE (rld[i].inmode)))
4406 ? rld[i].outmode : rld[i].inmode;
4408 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4411 /* Special case a simple move with an input reload and a
4412 destination of a hard reg, if the hard reg is ok, use it. */
4413 for (i = 0; i < n_reloads; i++)
4414 if (rld[i].when_needed == RELOAD_FOR_INPUT
4415 && GET_CODE (PATTERN (insn)) == SET
4416 && REG_P (SET_DEST (PATTERN (insn)))
4417 && SET_SRC (PATTERN (insn)) == rld[i].in)
4419 rtx dest = SET_DEST (PATTERN (insn));
4420 unsigned int regno = REGNO (dest);
4422 if (regno < FIRST_PSEUDO_REGISTER
4423 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4424 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4426 int nr = hard_regno_nregs[regno][rld[i].mode];
4427 int ok = 1, nri;
4429 for (nri = 1; nri < nr; nri ++)
4430 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4431 ok = 0;
4433 if (ok)
4434 rld[i].reg_rtx = dest;
4438 return retval;
4441 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4442 accepts a memory operand with constant address. */
4444 static int
4445 alternative_allows_memconst (const char *constraint, int altnum)
4447 int c;
4448 /* Skip alternatives before the one requested. */
4449 while (altnum > 0)
4451 while (*constraint++ != ',');
4452 altnum--;
4454 /* Scan the requested alternative for 'm' or 'o'.
4455 If one of them is present, this alternative accepts memory constants. */
4456 for (; (c = *constraint) && c != ',' && c != '#';
4457 constraint += CONSTRAINT_LEN (c, constraint))
4458 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4459 return 1;
4460 return 0;
4463 /* Scan X for memory references and scan the addresses for reloading.
4464 Also checks for references to "constant" regs that we want to eliminate
4465 and replaces them with the values they stand for.
4466 We may alter X destructively if it contains a reference to such.
4467 If X is just a constant reg, we return the equivalent value
4468 instead of X.
4470 IND_LEVELS says how many levels of indirect addressing this machine
4471 supports.
4473 OPNUM and TYPE identify the purpose of the reload.
4475 IS_SET_DEST is true if X is the destination of a SET, which is not
4476 appropriate to be replaced by a constant.
4478 INSN, if nonzero, is the insn in which we do the reload. It is used
4479 to determine if we may generate output reloads, and where to put USEs
4480 for pseudos that we have to replace with stack slots.
4482 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4483 result of find_reloads_address. */
4485 static rtx
4486 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4487 int ind_levels, int is_set_dest, rtx insn,
4488 int *address_reloaded)
4490 RTX_CODE code = GET_CODE (x);
4492 const char *fmt = GET_RTX_FORMAT (code);
4493 int i;
4494 int copied;
4496 if (code == REG)
4498 /* This code is duplicated for speed in find_reloads. */
4499 int regno = REGNO (x);
4500 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4501 x = reg_equiv_constant[regno];
4502 #if 0
4503 /* This creates (subreg (mem...)) which would cause an unnecessary
4504 reload of the mem. */
4505 else if (reg_equiv_mem[regno] != 0)
4506 x = reg_equiv_mem[regno];
4507 #endif
4508 else if (reg_equiv_memory_loc[regno]
4509 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4511 rtx mem = make_memloc (x, regno);
4512 if (reg_equiv_address[regno]
4513 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4515 /* If this is not a toplevel operand, find_reloads doesn't see
4516 this substitution. We have to emit a USE of the pseudo so
4517 that delete_output_reload can see it. */
4518 if (replace_reloads && recog_data.operand[opnum] != x)
4519 /* We mark the USE with QImode so that we recognize it
4520 as one that can be safely deleted at the end of
4521 reload. */
4522 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4523 QImode);
4524 x = mem;
4525 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4526 opnum, type, ind_levels, insn);
4527 if (address_reloaded)
4528 *address_reloaded = i;
4531 return x;
4533 if (code == MEM)
4535 rtx tem = x;
4537 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4538 opnum, type, ind_levels, insn);
4539 if (address_reloaded)
4540 *address_reloaded = i;
4542 return tem;
4545 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4547 /* Check for SUBREG containing a REG that's equivalent to a constant.
4548 If the constant has a known value, truncate it right now.
4549 Similarly if we are extracting a single-word of a multi-word
4550 constant. If the constant is symbolic, allow it to be substituted
4551 normally. push_reload will strip the subreg later. If the
4552 constant is VOIDmode, abort because we will lose the mode of
4553 the register (this should never happen because one of the cases
4554 above should handle it). */
4556 int regno = REGNO (SUBREG_REG (x));
4557 rtx tem;
4559 if (subreg_lowpart_p (x)
4560 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4561 && reg_equiv_constant[regno] != 0
4562 && (tem = gen_lowpart_common (GET_MODE (x),
4563 reg_equiv_constant[regno])) != 0)
4564 return tem;
4566 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4567 && reg_equiv_constant[regno] != 0)
4569 tem =
4570 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4571 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4572 gcc_assert (tem);
4573 return tem;
4576 /* If the subreg contains a reg that will be converted to a mem,
4577 convert the subreg to a narrower memref now.
4578 Otherwise, we would get (subreg (mem ...) ...),
4579 which would force reload of the mem.
4581 We also need to do this if there is an equivalent MEM that is
4582 not offsettable. In that case, alter_subreg would produce an
4583 invalid address on big-endian machines.
4585 For machines that extend byte loads, we must not reload using
4586 a wider mode if we have a paradoxical SUBREG. find_reloads will
4587 force a reload in that case. So we should not do anything here. */
4589 else if (regno >= FIRST_PSEUDO_REGISTER
4590 #ifdef LOAD_EXTEND_OP
4591 && (GET_MODE_SIZE (GET_MODE (x))
4592 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4593 #endif
4594 && (reg_equiv_address[regno] != 0
4595 || (reg_equiv_mem[regno] != 0
4596 && (! strict_memory_address_p (GET_MODE (x),
4597 XEXP (reg_equiv_mem[regno], 0))
4598 || ! offsettable_memref_p (reg_equiv_mem[regno])
4599 || num_not_at_initial_offset))))
4600 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4601 insn);
4604 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4606 if (fmt[i] == 'e')
4608 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4609 ind_levels, is_set_dest, insn,
4610 address_reloaded);
4611 /* If we have replaced a reg with it's equivalent memory loc -
4612 that can still be handled here e.g. if it's in a paradoxical
4613 subreg - we must make the change in a copy, rather than using
4614 a destructive change. This way, find_reloads can still elect
4615 not to do the change. */
4616 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4618 x = shallow_copy_rtx (x);
4619 copied = 1;
4621 XEXP (x, i) = new_part;
4624 return x;
4627 /* Return a mem ref for the memory equivalent of reg REGNO.
4628 This mem ref is not shared with anything. */
4630 static rtx
4631 make_memloc (rtx ad, int regno)
4633 /* We must rerun eliminate_regs, in case the elimination
4634 offsets have changed. */
4635 rtx tem
4636 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4638 /* If TEM might contain a pseudo, we must copy it to avoid
4639 modifying it when we do the substitution for the reload. */
4640 if (rtx_varies_p (tem, 0))
4641 tem = copy_rtx (tem);
4643 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4644 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4646 /* Copy the result if it's still the same as the equivalence, to avoid
4647 modifying it when we do the substitution for the reload. */
4648 if (tem == reg_equiv_memory_loc[regno])
4649 tem = copy_rtx (tem);
4650 return tem;
4653 /* Returns true if AD could be turned into a valid memory reference
4654 to mode MODE by reloading the part pointed to by PART into a
4655 register. */
4657 static int
4658 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4660 int retv;
4661 rtx tem = *part;
4662 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4664 *part = reg;
4665 retv = memory_address_p (mode, ad);
4666 *part = tem;
4668 return retv;
4671 /* Record all reloads needed for handling memory address AD
4672 which appears in *LOC in a memory reference to mode MODE
4673 which itself is found in location *MEMREFLOC.
4674 Note that we take shortcuts assuming that no multi-reg machine mode
4675 occurs as part of an address.
4677 OPNUM and TYPE specify the purpose of this reload.
4679 IND_LEVELS says how many levels of indirect addressing this machine
4680 supports.
4682 INSN, if nonzero, is the insn in which we do the reload. It is used
4683 to determine if we may generate output reloads, and where to put USEs
4684 for pseudos that we have to replace with stack slots.
4686 Value is one if this address is reloaded or replaced as a whole; it is
4687 zero if the top level of this address was not reloaded or replaced, and
4688 it is -1 if it may or may not have been reloaded or replaced.
4690 Note that there is no verification that the address will be valid after
4691 this routine does its work. Instead, we rely on the fact that the address
4692 was valid when reload started. So we need only undo things that reload
4693 could have broken. These are wrong register types, pseudos not allocated
4694 to a hard register, and frame pointer elimination. */
4696 static int
4697 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4698 rtx *loc, int opnum, enum reload_type type,
4699 int ind_levels, rtx insn)
4701 int regno;
4702 int removed_and = 0;
4703 int op_index;
4704 rtx tem;
4706 /* If the address is a register, see if it is a legitimate address and
4707 reload if not. We first handle the cases where we need not reload
4708 or where we must reload in a non-standard way. */
4710 if (REG_P (ad))
4712 regno = REGNO (ad);
4714 /* If the register is equivalent to an invariant expression, substitute
4715 the invariant, and eliminate any eliminable register references. */
4716 tem = reg_equiv_constant[regno];
4717 if (tem != 0
4718 && (tem = eliminate_regs (tem, mode, insn))
4719 && strict_memory_address_p (mode, tem))
4721 *loc = ad = tem;
4722 return 0;
4725 tem = reg_equiv_memory_loc[regno];
4726 if (tem != 0)
4728 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4730 tem = make_memloc (ad, regno);
4731 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4733 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4734 &XEXP (tem, 0), opnum,
4735 ADDR_TYPE (type), ind_levels, insn);
4737 /* We can avoid a reload if the register's equivalent memory
4738 expression is valid as an indirect memory address.
4739 But not all addresses are valid in a mem used as an indirect
4740 address: only reg or reg+constant. */
4742 if (ind_levels > 0
4743 && strict_memory_address_p (mode, tem)
4744 && (REG_P (XEXP (tem, 0))
4745 || (GET_CODE (XEXP (tem, 0)) == PLUS
4746 && REG_P (XEXP (XEXP (tem, 0), 0))
4747 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4749 /* TEM is not the same as what we'll be replacing the
4750 pseudo with after reload, put a USE in front of INSN
4751 in the final reload pass. */
4752 if (replace_reloads
4753 && num_not_at_initial_offset
4754 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4756 *loc = tem;
4757 /* We mark the USE with QImode so that we
4758 recognize it as one that can be safely
4759 deleted at the end of reload. */
4760 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4761 insn), QImode);
4763 /* This doesn't really count as replacing the address
4764 as a whole, since it is still a memory access. */
4766 return 0;
4768 ad = tem;
4772 /* The only remaining case where we can avoid a reload is if this is a
4773 hard register that is valid as a base register and which is not the
4774 subject of a CLOBBER in this insn. */
4776 else if (regno < FIRST_PSEUDO_REGISTER
4777 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4778 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4779 return 0;
4781 /* If we do not have one of the cases above, we must do the reload. */
4782 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4783 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4784 return 1;
4787 if (strict_memory_address_p (mode, ad))
4789 /* The address appears valid, so reloads are not needed.
4790 But the address may contain an eliminable register.
4791 This can happen because a machine with indirect addressing
4792 may consider a pseudo register by itself a valid address even when
4793 it has failed to get a hard reg.
4794 So do a tree-walk to find and eliminate all such regs. */
4796 /* But first quickly dispose of a common case. */
4797 if (GET_CODE (ad) == PLUS
4798 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4799 && REG_P (XEXP (ad, 0))
4800 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4801 return 0;
4803 subst_reg_equivs_changed = 0;
4804 *loc = subst_reg_equivs (ad, insn);
4806 if (! subst_reg_equivs_changed)
4807 return 0;
4809 /* Check result for validity after substitution. */
4810 if (strict_memory_address_p (mode, ad))
4811 return 0;
4814 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4817 if (memrefloc)
4819 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4820 ind_levels, win);
4822 break;
4823 win:
4824 *memrefloc = copy_rtx (*memrefloc);
4825 XEXP (*memrefloc, 0) = ad;
4826 move_replacements (&ad, &XEXP (*memrefloc, 0));
4827 return -1;
4829 while (0);
4830 #endif
4832 /* The address is not valid. We have to figure out why. First see if
4833 we have an outer AND and remove it if so. Then analyze what's inside. */
4835 if (GET_CODE (ad) == AND)
4837 removed_and = 1;
4838 loc = &XEXP (ad, 0);
4839 ad = *loc;
4842 /* One possibility for why the address is invalid is that it is itself
4843 a MEM. This can happen when the frame pointer is being eliminated, a
4844 pseudo is not allocated to a hard register, and the offset between the
4845 frame and stack pointers is not its initial value. In that case the
4846 pseudo will have been replaced by a MEM referring to the
4847 stack pointer. */
4848 if (MEM_P (ad))
4850 /* First ensure that the address in this MEM is valid. Then, unless
4851 indirect addresses are valid, reload the MEM into a register. */
4852 tem = ad;
4853 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4854 opnum, ADDR_TYPE (type),
4855 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4857 /* If tem was changed, then we must create a new memory reference to
4858 hold it and store it back into memrefloc. */
4859 if (tem != ad && memrefloc)
4861 *memrefloc = copy_rtx (*memrefloc);
4862 copy_replacements (tem, XEXP (*memrefloc, 0));
4863 loc = &XEXP (*memrefloc, 0);
4864 if (removed_and)
4865 loc = &XEXP (*loc, 0);
4868 /* Check similar cases as for indirect addresses as above except
4869 that we can allow pseudos and a MEM since they should have been
4870 taken care of above. */
4872 if (ind_levels == 0
4873 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4874 || MEM_P (XEXP (tem, 0))
4875 || ! (REG_P (XEXP (tem, 0))
4876 || (GET_CODE (XEXP (tem, 0)) == PLUS
4877 && REG_P (XEXP (XEXP (tem, 0), 0))
4878 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4880 /* Must use TEM here, not AD, since it is the one that will
4881 have any subexpressions reloaded, if needed. */
4882 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4883 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4884 VOIDmode, 0,
4885 0, opnum, type);
4886 return ! removed_and;
4888 else
4889 return 0;
4892 /* If we have address of a stack slot but it's not valid because the
4893 displacement is too large, compute the sum in a register.
4894 Handle all base registers here, not just fp/ap/sp, because on some
4895 targets (namely SH) we can also get too large displacements from
4896 big-endian corrections. */
4897 else if (GET_CODE (ad) == PLUS
4898 && REG_P (XEXP (ad, 0))
4899 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4900 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4901 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4903 /* Unshare the MEM rtx so we can safely alter it. */
4904 if (memrefloc)
4906 *memrefloc = copy_rtx (*memrefloc);
4907 loc = &XEXP (*memrefloc, 0);
4908 if (removed_and)
4909 loc = &XEXP (*loc, 0);
4912 if (double_reg_address_ok)
4914 /* Unshare the sum as well. */
4915 *loc = ad = copy_rtx (ad);
4917 /* Reload the displacement into an index reg.
4918 We assume the frame pointer or arg pointer is a base reg. */
4919 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4920 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4921 type, ind_levels);
4922 return 0;
4924 else
4926 /* If the sum of two regs is not necessarily valid,
4927 reload the sum into a base reg.
4928 That will at least work. */
4929 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4930 Pmode, opnum, type, ind_levels);
4932 return ! removed_and;
4935 /* If we have an indexed stack slot, there are three possible reasons why
4936 it might be invalid: The index might need to be reloaded, the address
4937 might have been made by frame pointer elimination and hence have a
4938 constant out of range, or both reasons might apply.
4940 We can easily check for an index needing reload, but even if that is the
4941 case, we might also have an invalid constant. To avoid making the
4942 conservative assumption and requiring two reloads, we see if this address
4943 is valid when not interpreted strictly. If it is, the only problem is
4944 that the index needs a reload and find_reloads_address_1 will take care
4945 of it.
4947 Handle all base registers here, not just fp/ap/sp, because on some
4948 targets (namely SPARC) we can also get invalid addresses from preventive
4949 subreg big-endian corrections made by find_reloads_toplev. We
4950 can also get expressions involving LO_SUM (rather than PLUS) from
4951 find_reloads_subreg_address.
4953 If we decide to do something, it must be that `double_reg_address_ok'
4954 is true. We generate a reload of the base register + constant and
4955 rework the sum so that the reload register will be added to the index.
4956 This is safe because we know the address isn't shared.
4958 We check for the base register as both the first and second operand of
4959 the innermost PLUS and/or LO_SUM. */
4961 for (op_index = 0; op_index < 2; ++op_index)
4963 rtx operand;
4965 if (!(GET_CODE (ad) == PLUS
4966 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4967 && (GET_CODE (XEXP (ad, 0)) == PLUS
4968 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
4969 continue;
4971 operand = XEXP (XEXP (ad, 0), op_index);
4972 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4973 continue;
4975 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
4976 || operand == frame_pointer_rtx
4977 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4978 || operand == hard_frame_pointer_rtx
4979 #endif
4980 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4981 || operand == arg_pointer_rtx
4982 #endif
4983 || operand == stack_pointer_rtx)
4984 && ! maybe_memory_address_p (mode, ad,
4985 &XEXP (XEXP (ad, 0), 1 - op_index)))
4987 rtx offset_reg;
4988 rtx addend;
4990 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
4991 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4993 /* Form the adjusted address. */
4994 if (GET_CODE (XEXP (ad, 0)) == PLUS)
4995 ad = gen_rtx_PLUS (GET_MODE (ad),
4996 op_index == 0 ? offset_reg : addend,
4997 op_index == 0 ? addend : offset_reg);
4998 else
4999 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5000 op_index == 0 ? offset_reg : addend,
5001 op_index == 0 ? addend : offset_reg);
5002 *loc = ad;
5004 find_reloads_address_part (XEXP (ad, op_index),
5005 &XEXP (ad, op_index),
5006 MODE_BASE_REG_CLASS (mode),
5007 GET_MODE (ad), opnum, type, ind_levels);
5008 find_reloads_address_1 (mode,
5009 XEXP (ad, 1 - op_index), 1,
5010 &XEXP (ad, 1 - op_index), opnum,
5011 type, 0, insn);
5013 return 0;
5017 /* See if address becomes valid when an eliminable register
5018 in a sum is replaced. */
5020 tem = ad;
5021 if (GET_CODE (ad) == PLUS)
5022 tem = subst_indexed_address (ad);
5023 if (tem != ad && strict_memory_address_p (mode, tem))
5025 /* Ok, we win that way. Replace any additional eliminable
5026 registers. */
5028 subst_reg_equivs_changed = 0;
5029 tem = subst_reg_equivs (tem, insn);
5031 /* Make sure that didn't make the address invalid again. */
5033 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5035 *loc = tem;
5036 return 0;
5040 /* If constants aren't valid addresses, reload the constant address
5041 into a register. */
5042 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5044 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5045 Unshare it so we can safely alter it. */
5046 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5047 && CONSTANT_POOL_ADDRESS_P (ad))
5049 *memrefloc = copy_rtx (*memrefloc);
5050 loc = &XEXP (*memrefloc, 0);
5051 if (removed_and)
5052 loc = &XEXP (*loc, 0);
5055 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5056 Pmode, opnum, type, ind_levels);
5057 return ! removed_and;
5060 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5061 insn);
5064 /* Find all pseudo regs appearing in AD
5065 that are eliminable in favor of equivalent values
5066 and do not have hard regs; replace them by their equivalents.
5067 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5068 front of it for pseudos that we have to replace with stack slots. */
5070 static rtx
5071 subst_reg_equivs (rtx ad, rtx insn)
5073 RTX_CODE code = GET_CODE (ad);
5074 int i;
5075 const char *fmt;
5077 switch (code)
5079 case HIGH:
5080 case CONST_INT:
5081 case CONST:
5082 case CONST_DOUBLE:
5083 case CONST_VECTOR:
5084 case SYMBOL_REF:
5085 case LABEL_REF:
5086 case PC:
5087 case CC0:
5088 return ad;
5090 case REG:
5092 int regno = REGNO (ad);
5094 if (reg_equiv_constant[regno] != 0)
5096 subst_reg_equivs_changed = 1;
5097 return reg_equiv_constant[regno];
5099 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5101 rtx mem = make_memloc (ad, regno);
5102 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5104 subst_reg_equivs_changed = 1;
5105 /* We mark the USE with QImode so that we recognize it
5106 as one that can be safely deleted at the end of
5107 reload. */
5108 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5109 QImode);
5110 return mem;
5114 return ad;
5116 case PLUS:
5117 /* Quickly dispose of a common case. */
5118 if (XEXP (ad, 0) == frame_pointer_rtx
5119 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5120 return ad;
5121 break;
5123 default:
5124 break;
5127 fmt = GET_RTX_FORMAT (code);
5128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5129 if (fmt[i] == 'e')
5130 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5131 return ad;
5134 /* Compute the sum of X and Y, making canonicalizations assumed in an
5135 address, namely: sum constant integers, surround the sum of two
5136 constants with a CONST, put the constant as the second operand, and
5137 group the constant on the outermost sum.
5139 This routine assumes both inputs are already in canonical form. */
5142 form_sum (rtx x, rtx y)
5144 rtx tem;
5145 enum machine_mode mode = GET_MODE (x);
5147 if (mode == VOIDmode)
5148 mode = GET_MODE (y);
5150 if (mode == VOIDmode)
5151 mode = Pmode;
5153 if (GET_CODE (x) == CONST_INT)
5154 return plus_constant (y, INTVAL (x));
5155 else if (GET_CODE (y) == CONST_INT)
5156 return plus_constant (x, INTVAL (y));
5157 else if (CONSTANT_P (x))
5158 tem = x, x = y, y = tem;
5160 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5161 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5163 /* Note that if the operands of Y are specified in the opposite
5164 order in the recursive calls below, infinite recursion will occur. */
5165 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5166 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5168 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5169 constant will have been placed second. */
5170 if (CONSTANT_P (x) && CONSTANT_P (y))
5172 if (GET_CODE (x) == CONST)
5173 x = XEXP (x, 0);
5174 if (GET_CODE (y) == CONST)
5175 y = XEXP (y, 0);
5177 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5180 return gen_rtx_PLUS (mode, x, y);
5183 /* If ADDR is a sum containing a pseudo register that should be
5184 replaced with a constant (from reg_equiv_constant),
5185 return the result of doing so, and also apply the associative
5186 law so that the result is more likely to be a valid address.
5187 (But it is not guaranteed to be one.)
5189 Note that at most one register is replaced, even if more are
5190 replaceable. Also, we try to put the result into a canonical form
5191 so it is more likely to be a valid address.
5193 In all other cases, return ADDR. */
5195 static rtx
5196 subst_indexed_address (rtx addr)
5198 rtx op0 = 0, op1 = 0, op2 = 0;
5199 rtx tem;
5200 int regno;
5202 if (GET_CODE (addr) == PLUS)
5204 /* Try to find a register to replace. */
5205 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5206 if (REG_P (op0)
5207 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5208 && reg_renumber[regno] < 0
5209 && reg_equiv_constant[regno] != 0)
5210 op0 = reg_equiv_constant[regno];
5211 else if (REG_P (op1)
5212 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5213 && reg_renumber[regno] < 0
5214 && reg_equiv_constant[regno] != 0)
5215 op1 = reg_equiv_constant[regno];
5216 else if (GET_CODE (op0) == PLUS
5217 && (tem = subst_indexed_address (op0)) != op0)
5218 op0 = tem;
5219 else if (GET_CODE (op1) == PLUS
5220 && (tem = subst_indexed_address (op1)) != op1)
5221 op1 = tem;
5222 else
5223 return addr;
5225 /* Pick out up to three things to add. */
5226 if (GET_CODE (op1) == PLUS)
5227 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5228 else if (GET_CODE (op0) == PLUS)
5229 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5231 /* Compute the sum. */
5232 if (op2 != 0)
5233 op1 = form_sum (op1, op2);
5234 if (op1 != 0)
5235 op0 = form_sum (op0, op1);
5237 return op0;
5239 return addr;
5242 /* Update the REG_INC notes for an insn. It updates all REG_INC
5243 notes for the instruction which refer to REGNO the to refer
5244 to the reload number.
5246 INSN is the insn for which any REG_INC notes need updating.
5248 REGNO is the register number which has been reloaded.
5250 RELOADNUM is the reload number. */
5252 static void
5253 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5254 int reloadnum ATTRIBUTE_UNUSED)
5256 #ifdef AUTO_INC_DEC
5257 rtx link;
5259 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5260 if (REG_NOTE_KIND (link) == REG_INC
5261 && (int) REGNO (XEXP (link, 0)) == regno)
5262 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5263 #endif
5266 /* Record the pseudo registers we must reload into hard registers in a
5267 subexpression of a would-be memory address, X referring to a value
5268 in mode MODE. (This function is not called if the address we find
5269 is strictly valid.)
5271 CONTEXT = 1 means we are considering regs as index regs,
5272 = 0 means we are considering them as base regs, = 2 means we
5273 are considering them as base regs for REG + REG.
5275 OPNUM and TYPE specify the purpose of any reloads made.
5277 IND_LEVELS says how many levels of indirect addressing are
5278 supported at this point in the address.
5280 INSN, if nonzero, is the insn in which we do the reload. It is used
5281 to determine if we may generate output reloads.
5283 We return nonzero if X, as a whole, is reloaded or replaced. */
5285 /* Note that we take shortcuts assuming that no multi-reg machine mode
5286 occurs as part of an address.
5287 Also, this is not fully machine-customizable; it works for machines
5288 such as VAXen and 68000's and 32000's, but other possible machines
5289 could have addressing modes that this does not handle right. */
5291 static int
5292 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5293 rtx *loc, int opnum, enum reload_type type,
5294 int ind_levels, rtx insn)
5296 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE) \
5297 ((CONTEXT) == 2 \
5298 ? REGNO_MODE_OK_FOR_REG_BASE_P (REGNO, MODE) \
5299 : (CONTEXT) == 1 \
5300 ? REGNO_OK_FOR_INDEX_P (REGNO) \
5301 : REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE))
5303 enum reg_class context_reg_class;
5304 RTX_CODE code = GET_CODE (x);
5306 if (context == 2)
5307 context_reg_class = MODE_BASE_REG_REG_CLASS (mode);
5308 else if (context == 1)
5309 context_reg_class = INDEX_REG_CLASS;
5310 else
5311 context_reg_class = MODE_BASE_REG_CLASS (mode);
5313 switch (code)
5315 case PLUS:
5317 rtx orig_op0 = XEXP (x, 0);
5318 rtx orig_op1 = XEXP (x, 1);
5319 RTX_CODE code0 = GET_CODE (orig_op0);
5320 RTX_CODE code1 = GET_CODE (orig_op1);
5321 rtx op0 = orig_op0;
5322 rtx op1 = orig_op1;
5324 if (GET_CODE (op0) == SUBREG)
5326 op0 = SUBREG_REG (op0);
5327 code0 = GET_CODE (op0);
5328 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5329 op0 = gen_rtx_REG (word_mode,
5330 (REGNO (op0) +
5331 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5332 GET_MODE (SUBREG_REG (orig_op0)),
5333 SUBREG_BYTE (orig_op0),
5334 GET_MODE (orig_op0))));
5337 if (GET_CODE (op1) == SUBREG)
5339 op1 = SUBREG_REG (op1);
5340 code1 = GET_CODE (op1);
5341 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5342 /* ??? Why is this given op1's mode and above for
5343 ??? op0 SUBREGs we use word_mode? */
5344 op1 = gen_rtx_REG (GET_MODE (op1),
5345 (REGNO (op1) +
5346 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5347 GET_MODE (SUBREG_REG (orig_op1)),
5348 SUBREG_BYTE (orig_op1),
5349 GET_MODE (orig_op1))));
5351 /* Plus in the index register may be created only as a result of
5352 register remateralization for expression like &localvar*4. Reload it.
5353 It may be possible to combine the displacement on the outer level,
5354 but it is probably not worthwhile to do so. */
5355 if (context == 1)
5357 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5358 opnum, ADDR_TYPE (type), ind_levels, insn);
5359 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5360 context_reg_class,
5361 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5362 return 1;
5365 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5366 || code0 == ZERO_EXTEND || code1 == MEM)
5368 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5369 type, ind_levels, insn);
5370 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5371 type, ind_levels, insn);
5374 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5375 || code1 == ZERO_EXTEND || code0 == MEM)
5377 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5378 type, ind_levels, insn);
5379 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5380 type, ind_levels, insn);
5383 else if (code0 == CONST_INT || code0 == CONST
5384 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5385 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5386 type, ind_levels, insn);
5388 else if (code1 == CONST_INT || code1 == CONST
5389 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5390 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5391 type, ind_levels, insn);
5393 else if (code0 == REG && code1 == REG)
5395 if (REG_OK_FOR_INDEX_P (op0)
5396 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5397 return 0;
5398 else if (REG_OK_FOR_INDEX_P (op1)
5399 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5400 return 0;
5401 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5402 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5403 type, ind_levels, insn);
5404 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5405 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5406 type, ind_levels, insn);
5407 else if (REG_OK_FOR_INDEX_P (op1))
5408 find_reloads_address_1 (mode, orig_op0, 2, &XEXP (x, 0), opnum,
5409 type, ind_levels, insn);
5410 else if (REG_OK_FOR_INDEX_P (op0))
5411 find_reloads_address_1 (mode, orig_op1, 2, &XEXP (x, 1), opnum,
5412 type, ind_levels, insn);
5413 else
5415 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5416 type, ind_levels, insn);
5417 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5418 type, ind_levels, insn);
5422 else if (code0 == REG)
5424 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5425 type, ind_levels, insn);
5426 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5427 type, ind_levels, insn);
5430 else if (code1 == REG)
5432 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5433 type, ind_levels, insn);
5434 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5435 type, ind_levels, insn);
5439 return 0;
5441 case POST_MODIFY:
5442 case PRE_MODIFY:
5444 rtx op0 = XEXP (x, 0);
5445 rtx op1 = XEXP (x, 1);
5446 int regno;
5447 int reloadnum;
5449 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5450 return 0;
5452 /* Currently, we only support {PRE,POST}_MODIFY constructs
5453 where a base register is {inc,dec}remented by the contents
5454 of another register or by a constant value. Thus, these
5455 operands must match. */
5456 gcc_assert (op0 == XEXP (op1, 0));
5458 /* Require index register (or constant). Let's just handle the
5459 register case in the meantime... If the target allows
5460 auto-modify by a constant then we could try replacing a pseudo
5461 register with its equivalent constant where applicable. */
5462 if (REG_P (XEXP (op1, 1)))
5463 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5464 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5465 opnum, type, ind_levels, insn);
5467 gcc_assert (REG_P (XEXP (op1, 0)));
5469 regno = REGNO (XEXP (op1, 0));
5471 /* A register that is incremented cannot be constant! */
5472 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5473 || reg_equiv_constant[regno] == 0);
5475 /* Handle a register that is equivalent to a memory location
5476 which cannot be addressed directly. */
5477 if (reg_equiv_memory_loc[regno] != 0
5478 && (reg_equiv_address[regno] != 0
5479 || num_not_at_initial_offset))
5481 rtx tem = make_memloc (XEXP (x, 0), regno);
5483 if (reg_equiv_address[regno]
5484 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5486 /* First reload the memory location's address.
5487 We can't use ADDR_TYPE (type) here, because we need to
5488 write back the value after reading it, hence we actually
5489 need two registers. */
5490 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5491 &XEXP (tem, 0), opnum,
5492 RELOAD_OTHER,
5493 ind_levels, insn);
5495 /* Then reload the memory location into a base
5496 register. */
5497 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5498 &XEXP (op1, 0),
5499 MODE_BASE_REG_CLASS (mode),
5500 GET_MODE (x), GET_MODE (x), 0,
5501 0, opnum, RELOAD_OTHER);
5503 update_auto_inc_notes (this_insn, regno, reloadnum);
5504 return 0;
5508 if (reg_renumber[regno] >= 0)
5509 regno = reg_renumber[regno];
5511 /* We require a base register here... */
5512 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5514 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5515 &XEXP (op1, 0), &XEXP (x, 0),
5516 MODE_BASE_REG_CLASS (mode),
5517 GET_MODE (x), GET_MODE (x), 0, 0,
5518 opnum, RELOAD_OTHER);
5520 update_auto_inc_notes (this_insn, regno, reloadnum);
5521 return 0;
5524 return 0;
5526 case POST_INC:
5527 case POST_DEC:
5528 case PRE_INC:
5529 case PRE_DEC:
5530 if (REG_P (XEXP (x, 0)))
5532 int regno = REGNO (XEXP (x, 0));
5533 int value = 0;
5534 rtx x_orig = x;
5536 /* A register that is incremented cannot be constant! */
5537 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5538 || reg_equiv_constant[regno] == 0);
5540 /* Handle a register that is equivalent to a memory location
5541 which cannot be addressed directly. */
5542 if (reg_equiv_memory_loc[regno] != 0
5543 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5545 rtx tem = make_memloc (XEXP (x, 0), regno);
5546 if (reg_equiv_address[regno]
5547 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5549 /* First reload the memory location's address.
5550 We can't use ADDR_TYPE (type) here, because we need to
5551 write back the value after reading it, hence we actually
5552 need two registers. */
5553 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5554 &XEXP (tem, 0), opnum, type,
5555 ind_levels, insn);
5556 /* Put this inside a new increment-expression. */
5557 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5558 /* Proceed to reload that, as if it contained a register. */
5562 /* If we have a hard register that is ok as an index,
5563 don't make a reload. If an autoincrement of a nice register
5564 isn't "valid", it must be that no autoincrement is "valid".
5565 If that is true and something made an autoincrement anyway,
5566 this must be a special context where one is allowed.
5567 (For example, a "push" instruction.)
5568 We can't improve this address, so leave it alone. */
5570 /* Otherwise, reload the autoincrement into a suitable hard reg
5571 and record how much to increment by. */
5573 if (reg_renumber[regno] >= 0)
5574 regno = reg_renumber[regno];
5575 if (regno >= FIRST_PSEUDO_REGISTER
5576 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5578 int reloadnum;
5580 /* If we can output the register afterwards, do so, this
5581 saves the extra update.
5582 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5583 CALL_INSN - and it does not set CC0.
5584 But don't do this if we cannot directly address the
5585 memory location, since this will make it harder to
5586 reuse address reloads, and increases register pressure.
5587 Also don't do this if we can probably update x directly. */
5588 rtx equiv = (MEM_P (XEXP (x, 0))
5589 ? XEXP (x, 0)
5590 : reg_equiv_mem[regno]);
5591 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5592 if (insn && NONJUMP_INSN_P (insn) && equiv
5593 && memory_operand (equiv, GET_MODE (equiv))
5594 #ifdef HAVE_cc0
5595 && ! sets_cc0_p (PATTERN (insn))
5596 #endif
5597 && ! (icode != CODE_FOR_nothing
5598 && ((*insn_data[icode].operand[0].predicate)
5599 (equiv, Pmode))
5600 && ((*insn_data[icode].operand[1].predicate)
5601 (equiv, Pmode))))
5603 /* We use the original pseudo for loc, so that
5604 emit_reload_insns() knows which pseudo this
5605 reload refers to and updates the pseudo rtx, not
5606 its equivalent memory location, as well as the
5607 corresponding entry in reg_last_reload_reg. */
5608 loc = &XEXP (x_orig, 0);
5609 x = XEXP (x, 0);
5610 reloadnum
5611 = push_reload (x, x, loc, loc,
5612 context_reg_class,
5613 GET_MODE (x), GET_MODE (x), 0, 0,
5614 opnum, RELOAD_OTHER);
5616 else
5618 reloadnum
5619 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5620 context_reg_class,
5621 GET_MODE (x), GET_MODE (x), 0, 0,
5622 opnum, type);
5623 rld[reloadnum].inc
5624 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5626 value = 1;
5629 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5630 reloadnum);
5632 return value;
5635 else if (MEM_P (XEXP (x, 0)))
5637 /* This is probably the result of a substitution, by eliminate_regs,
5638 of an equivalent address for a pseudo that was not allocated to a
5639 hard register. Verify that the specified address is valid and
5640 reload it into a register. */
5641 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5642 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5643 rtx link;
5644 int reloadnum;
5646 /* Since we know we are going to reload this item, don't decrement
5647 for the indirection level.
5649 Note that this is actually conservative: it would be slightly
5650 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5651 reload1.c here. */
5652 /* We can't use ADDR_TYPE (type) here, because we need to
5653 write back the value after reading it, hence we actually
5654 need two registers. */
5655 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5656 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5657 opnum, type, ind_levels, insn);
5659 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5660 context_reg_class,
5661 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5662 rld[reloadnum].inc
5663 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5665 link = FIND_REG_INC_NOTE (this_insn, tem);
5666 if (link != 0)
5667 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5669 return 1;
5671 return 0;
5673 case MEM:
5674 /* This is probably the result of a substitution, by eliminate_regs, of
5675 an equivalent address for a pseudo that was not allocated to a hard
5676 register. Verify that the specified address is valid and reload it
5677 into a register.
5679 Since we know we are going to reload this item, don't decrement for
5680 the indirection level.
5682 Note that this is actually conservative: it would be slightly more
5683 efficient to use the value of SPILL_INDIRECT_LEVELS from
5684 reload1.c here. */
5686 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5687 opnum, ADDR_TYPE (type), ind_levels, insn);
5688 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5689 context_reg_class,
5690 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5691 return 1;
5693 case REG:
5695 int regno = REGNO (x);
5697 if (reg_equiv_constant[regno] != 0)
5699 find_reloads_address_part (reg_equiv_constant[regno], loc,
5700 context_reg_class,
5701 GET_MODE (x), opnum, type, ind_levels);
5702 return 1;
5705 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5706 that feeds this insn. */
5707 if (reg_equiv_mem[regno] != 0)
5709 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5710 context_reg_class,
5711 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5712 return 1;
5714 #endif
5716 if (reg_equiv_memory_loc[regno]
5717 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5719 rtx tem = make_memloc (x, regno);
5720 if (reg_equiv_address[regno] != 0
5721 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5723 x = tem;
5724 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5725 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5726 ind_levels, insn);
5730 if (reg_renumber[regno] >= 0)
5731 regno = reg_renumber[regno];
5733 if (regno >= FIRST_PSEUDO_REGISTER
5734 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5736 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5737 context_reg_class,
5738 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5739 return 1;
5742 /* If a register appearing in an address is the subject of a CLOBBER
5743 in this insn, reload it into some other register to be safe.
5744 The CLOBBER is supposed to make the register unavailable
5745 from before this insn to after it. */
5746 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5748 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5749 context_reg_class,
5750 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5751 return 1;
5754 return 0;
5756 case SUBREG:
5757 if (REG_P (SUBREG_REG (x)))
5759 /* If this is a SUBREG of a hard register and the resulting register
5760 is of the wrong class, reload the whole SUBREG. This avoids
5761 needless copies if SUBREG_REG is multi-word. */
5762 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5764 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5766 if (! REG_OK_FOR_CONTEXT (context, regno, mode))
5768 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5769 context_reg_class,
5770 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5771 return 1;
5774 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5775 is larger than the class size, then reload the whole SUBREG. */
5776 else
5778 enum reg_class class = context_reg_class;
5779 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5780 > reg_class_size[class])
5782 x = find_reloads_subreg_address (x, 0, opnum, type,
5783 ind_levels, insn);
5784 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5785 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5786 return 1;
5790 break;
5792 default:
5793 break;
5797 const char *fmt = GET_RTX_FORMAT (code);
5798 int i;
5800 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5802 if (fmt[i] == 'e')
5803 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5804 opnum, type, ind_levels, insn);
5808 #undef REG_OK_FOR_CONTEXT
5809 return 0;
5812 /* X, which is found at *LOC, is a part of an address that needs to be
5813 reloaded into a register of class CLASS. If X is a constant, or if
5814 X is a PLUS that contains a constant, check that the constant is a
5815 legitimate operand and that we are supposed to be able to load
5816 it into the register.
5818 If not, force the constant into memory and reload the MEM instead.
5820 MODE is the mode to use, in case X is an integer constant.
5822 OPNUM and TYPE describe the purpose of any reloads made.
5824 IND_LEVELS says how many levels of indirect addressing this machine
5825 supports. */
5827 static void
5828 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5829 enum machine_mode mode, int opnum,
5830 enum reload_type type, int ind_levels)
5832 if (CONSTANT_P (x)
5833 && (! LEGITIMATE_CONSTANT_P (x)
5834 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5836 rtx tem;
5838 tem = x = force_const_mem (mode, x);
5839 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5840 opnum, type, ind_levels, 0);
5843 else if (GET_CODE (x) == PLUS
5844 && CONSTANT_P (XEXP (x, 1))
5845 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5846 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5848 rtx tem;
5850 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5851 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5852 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5853 opnum, type, ind_levels, 0);
5856 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5857 mode, VOIDmode, 0, 0, opnum, type);
5860 /* X, a subreg of a pseudo, is a part of an address that needs to be
5861 reloaded.
5863 If the pseudo is equivalent to a memory location that cannot be directly
5864 addressed, make the necessary address reloads.
5866 If address reloads have been necessary, or if the address is changed
5867 by register elimination, return the rtx of the memory location;
5868 otherwise, return X.
5870 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5871 memory location.
5873 OPNUM and TYPE identify the purpose of the reload.
5875 IND_LEVELS says how many levels of indirect addressing are
5876 supported at this point in the address.
5878 INSN, if nonzero, is the insn in which we do the reload. It is used
5879 to determine where to put USEs for pseudos that we have to replace with
5880 stack slots. */
5882 static rtx
5883 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5884 enum reload_type type, int ind_levels, rtx insn)
5886 int regno = REGNO (SUBREG_REG (x));
5888 if (reg_equiv_memory_loc[regno])
5890 /* If the address is not directly addressable, or if the address is not
5891 offsettable, then it must be replaced. */
5892 if (! force_replace
5893 && (reg_equiv_address[regno]
5894 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5895 force_replace = 1;
5897 if (force_replace || num_not_at_initial_offset)
5899 rtx tem = make_memloc (SUBREG_REG (x), regno);
5901 /* If the address changes because of register elimination, then
5902 it must be replaced. */
5903 if (force_replace
5904 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5906 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5907 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5908 int offset;
5910 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5911 hold the correct (negative) byte offset. */
5912 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5913 offset = inner_size - outer_size;
5914 else
5915 offset = SUBREG_BYTE (x);
5917 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5918 PUT_MODE (tem, GET_MODE (x));
5920 /* If this was a paradoxical subreg that we replaced, the
5921 resulting memory must be sufficiently aligned to allow
5922 us to widen the mode of the memory. */
5923 if (outer_size > inner_size && STRICT_ALIGNMENT)
5925 rtx base;
5927 base = XEXP (tem, 0);
5928 if (GET_CODE (base) == PLUS)
5930 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5931 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5932 return x;
5933 base = XEXP (base, 0);
5935 if (!REG_P (base)
5936 || (REGNO_POINTER_ALIGN (REGNO (base))
5937 < outer_size * BITS_PER_UNIT))
5938 return x;
5941 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5942 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5943 ind_levels, insn);
5945 /* If this is not a toplevel operand, find_reloads doesn't see
5946 this substitution. We have to emit a USE of the pseudo so
5947 that delete_output_reload can see it. */
5948 if (replace_reloads && recog_data.operand[opnum] != x)
5949 /* We mark the USE with QImode so that we recognize it
5950 as one that can be safely deleted at the end of
5951 reload. */
5952 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5953 SUBREG_REG (x)),
5954 insn), QImode);
5955 x = tem;
5959 return x;
5962 /* Substitute into the current INSN the registers into which we have reloaded
5963 the things that need reloading. The array `replacements'
5964 contains the locations of all pointers that must be changed
5965 and says what to replace them with.
5967 Return the rtx that X translates into; usually X, but modified. */
5969 void
5970 subst_reloads (rtx insn)
5972 int i;
5974 for (i = 0; i < n_replacements; i++)
5976 struct replacement *r = &replacements[i];
5977 rtx reloadreg = rld[r->what].reg_rtx;
5978 if (reloadreg)
5980 #ifdef ENABLE_CHECKING
5981 /* Internal consistency test. Check that we don't modify
5982 anything in the equivalence arrays. Whenever something from
5983 those arrays needs to be reloaded, it must be unshared before
5984 being substituted into; the equivalence must not be modified.
5985 Otherwise, if the equivalence is used after that, it will
5986 have been modified, and the thing substituted (probably a
5987 register) is likely overwritten and not a usable equivalence. */
5988 int check_regno;
5990 for (check_regno = 0; check_regno < max_regno; check_regno++)
5992 #define CHECK_MODF(ARRAY) \
5993 gcc_assert (!ARRAY[check_regno] \
5994 || !loc_mentioned_in_p (r->where, \
5995 ARRAY[check_regno]))
5997 CHECK_MODF (reg_equiv_constant);
5998 CHECK_MODF (reg_equiv_memory_loc);
5999 CHECK_MODF (reg_equiv_address);
6000 CHECK_MODF (reg_equiv_mem);
6001 #undef CHECK_MODF
6003 #endif /* ENABLE_CHECKING */
6005 /* If we're replacing a LABEL_REF with a register, add a
6006 REG_LABEL note to indicate to flow which label this
6007 register refers to. */
6008 if (GET_CODE (*r->where) == LABEL_REF
6009 && JUMP_P (insn))
6010 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6011 XEXP (*r->where, 0),
6012 REG_NOTES (insn));
6014 /* Encapsulate RELOADREG so its machine mode matches what
6015 used to be there. Note that gen_lowpart_common will
6016 do the wrong thing if RELOADREG is multi-word. RELOADREG
6017 will always be a REG here. */
6018 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6019 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6021 /* If we are putting this into a SUBREG and RELOADREG is a
6022 SUBREG, we would be making nested SUBREGs, so we have to fix
6023 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6025 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6027 if (GET_MODE (*r->subreg_loc)
6028 == GET_MODE (SUBREG_REG (reloadreg)))
6029 *r->subreg_loc = SUBREG_REG (reloadreg);
6030 else
6032 int final_offset =
6033 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6035 /* When working with SUBREGs the rule is that the byte
6036 offset must be a multiple of the SUBREG's mode. */
6037 final_offset = (final_offset /
6038 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6039 final_offset = (final_offset *
6040 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6042 *r->where = SUBREG_REG (reloadreg);
6043 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6046 else
6047 *r->where = reloadreg;
6049 /* If reload got no reg and isn't optional, something's wrong. */
6050 else
6051 gcc_assert (rld[r->what].optional);
6055 /* Make a copy of any replacements being done into X and move those
6056 copies to locations in Y, a copy of X. */
6058 void
6059 copy_replacements (rtx x, rtx y)
6061 /* We can't support X being a SUBREG because we might then need to know its
6062 location if something inside it was replaced. */
6063 gcc_assert (GET_CODE (x) != SUBREG);
6065 copy_replacements_1 (&x, &y, n_replacements);
6068 static void
6069 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6071 int i, j;
6072 rtx x, y;
6073 struct replacement *r;
6074 enum rtx_code code;
6075 const char *fmt;
6077 for (j = 0; j < orig_replacements; j++)
6079 if (replacements[j].subreg_loc == px)
6081 r = &replacements[n_replacements++];
6082 r->where = replacements[j].where;
6083 r->subreg_loc = py;
6084 r->what = replacements[j].what;
6085 r->mode = replacements[j].mode;
6087 else if (replacements[j].where == px)
6089 r = &replacements[n_replacements++];
6090 r->where = py;
6091 r->subreg_loc = 0;
6092 r->what = replacements[j].what;
6093 r->mode = replacements[j].mode;
6097 x = *px;
6098 y = *py;
6099 code = GET_CODE (x);
6100 fmt = GET_RTX_FORMAT (code);
6102 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6104 if (fmt[i] == 'e')
6105 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6106 else if (fmt[i] == 'E')
6107 for (j = XVECLEN (x, i); --j >= 0; )
6108 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6109 orig_replacements);
6113 /* Change any replacements being done to *X to be done to *Y. */
6115 void
6116 move_replacements (rtx *x, rtx *y)
6118 int i;
6120 for (i = 0; i < n_replacements; i++)
6121 if (replacements[i].subreg_loc == x)
6122 replacements[i].subreg_loc = y;
6123 else if (replacements[i].where == x)
6125 replacements[i].where = y;
6126 replacements[i].subreg_loc = 0;
6130 /* If LOC was scheduled to be replaced by something, return the replacement.
6131 Otherwise, return *LOC. */
6134 find_replacement (rtx *loc)
6136 struct replacement *r;
6138 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6140 rtx reloadreg = rld[r->what].reg_rtx;
6142 if (reloadreg && r->where == loc)
6144 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6145 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6147 return reloadreg;
6149 else if (reloadreg && r->subreg_loc == loc)
6151 /* RELOADREG must be either a REG or a SUBREG.
6153 ??? Is it actually still ever a SUBREG? If so, why? */
6155 if (REG_P (reloadreg))
6156 return gen_rtx_REG (GET_MODE (*loc),
6157 (REGNO (reloadreg) +
6158 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6159 GET_MODE (SUBREG_REG (*loc)),
6160 SUBREG_BYTE (*loc),
6161 GET_MODE (*loc))));
6162 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6163 return reloadreg;
6164 else
6166 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6168 /* When working with SUBREGs the rule is that the byte
6169 offset must be a multiple of the SUBREG's mode. */
6170 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6171 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6172 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6173 final_offset);
6178 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6179 what's inside and make a new rtl if so. */
6180 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6181 || GET_CODE (*loc) == MULT)
6183 rtx x = find_replacement (&XEXP (*loc, 0));
6184 rtx y = find_replacement (&XEXP (*loc, 1));
6186 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6187 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6190 return *loc;
6193 /* Return nonzero if register in range [REGNO, ENDREGNO)
6194 appears either explicitly or implicitly in X
6195 other than being stored into (except for earlyclobber operands).
6197 References contained within the substructure at LOC do not count.
6198 LOC may be zero, meaning don't ignore anything.
6200 This is similar to refers_to_regno_p in rtlanal.c except that we
6201 look at equivalences for pseudos that didn't get hard registers. */
6203 static int
6204 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6205 rtx x, rtx *loc)
6207 int i;
6208 unsigned int r;
6209 RTX_CODE code;
6210 const char *fmt;
6212 if (x == 0)
6213 return 0;
6215 repeat:
6216 code = GET_CODE (x);
6218 switch (code)
6220 case REG:
6221 r = REGNO (x);
6223 /* If this is a pseudo, a hard register must not have been allocated.
6224 X must therefore either be a constant or be in memory. */
6225 if (r >= FIRST_PSEUDO_REGISTER)
6227 if (reg_equiv_memory_loc[r])
6228 return refers_to_regno_for_reload_p (regno, endregno,
6229 reg_equiv_memory_loc[r],
6230 (rtx*) 0);
6232 gcc_assert (reg_equiv_constant[r]);
6233 return 0;
6236 return (endregno > r
6237 && regno < r + (r < FIRST_PSEUDO_REGISTER
6238 ? hard_regno_nregs[r][GET_MODE (x)]
6239 : 1));
6241 case SUBREG:
6242 /* If this is a SUBREG of a hard reg, we can see exactly which
6243 registers are being modified. Otherwise, handle normally. */
6244 if (REG_P (SUBREG_REG (x))
6245 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6247 unsigned int inner_regno = subreg_regno (x);
6248 unsigned int inner_endregno
6249 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6250 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6252 return endregno > inner_regno && regno < inner_endregno;
6254 break;
6256 case CLOBBER:
6257 case SET:
6258 if (&SET_DEST (x) != loc
6259 /* Note setting a SUBREG counts as referring to the REG it is in for
6260 a pseudo but not for hard registers since we can
6261 treat each word individually. */
6262 && ((GET_CODE (SET_DEST (x)) == SUBREG
6263 && loc != &SUBREG_REG (SET_DEST (x))
6264 && REG_P (SUBREG_REG (SET_DEST (x)))
6265 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6266 && refers_to_regno_for_reload_p (regno, endregno,
6267 SUBREG_REG (SET_DEST (x)),
6268 loc))
6269 /* If the output is an earlyclobber operand, this is
6270 a conflict. */
6271 || ((!REG_P (SET_DEST (x))
6272 || earlyclobber_operand_p (SET_DEST (x)))
6273 && refers_to_regno_for_reload_p (regno, endregno,
6274 SET_DEST (x), loc))))
6275 return 1;
6277 if (code == CLOBBER || loc == &SET_SRC (x))
6278 return 0;
6279 x = SET_SRC (x);
6280 goto repeat;
6282 default:
6283 break;
6286 /* X does not match, so try its subexpressions. */
6288 fmt = GET_RTX_FORMAT (code);
6289 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6291 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6293 if (i == 0)
6295 x = XEXP (x, 0);
6296 goto repeat;
6298 else
6299 if (refers_to_regno_for_reload_p (regno, endregno,
6300 XEXP (x, i), loc))
6301 return 1;
6303 else if (fmt[i] == 'E')
6305 int j;
6306 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6307 if (loc != &XVECEXP (x, i, j)
6308 && refers_to_regno_for_reload_p (regno, endregno,
6309 XVECEXP (x, i, j), loc))
6310 return 1;
6313 return 0;
6316 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6317 we check if any register number in X conflicts with the relevant register
6318 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6319 contains a MEM (we don't bother checking for memory addresses that can't
6320 conflict because we expect this to be a rare case.
6322 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6323 that we look at equivalences for pseudos that didn't get hard registers. */
6326 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6328 int regno, endregno;
6330 /* Overly conservative. */
6331 if (GET_CODE (x) == STRICT_LOW_PART
6332 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6333 x = XEXP (x, 0);
6335 /* If either argument is a constant, then modifying X can not affect IN. */
6336 if (CONSTANT_P (x) || CONSTANT_P (in))
6337 return 0;
6338 else if (GET_CODE (x) == SUBREG)
6340 regno = REGNO (SUBREG_REG (x));
6341 if (regno < FIRST_PSEUDO_REGISTER)
6342 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6343 GET_MODE (SUBREG_REG (x)),
6344 SUBREG_BYTE (x),
6345 GET_MODE (x));
6347 else if (REG_P (x))
6349 regno = REGNO (x);
6351 /* If this is a pseudo, it must not have been assigned a hard register.
6352 Therefore, it must either be in memory or be a constant. */
6354 if (regno >= FIRST_PSEUDO_REGISTER)
6356 if (reg_equiv_memory_loc[regno])
6357 return refers_to_mem_for_reload_p (in);
6358 gcc_assert (reg_equiv_constant[regno]);
6359 return 0;
6362 else if (MEM_P (x))
6363 return refers_to_mem_for_reload_p (in);
6364 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6365 || GET_CODE (x) == CC0)
6366 return reg_mentioned_p (x, in);
6367 else
6369 gcc_assert (GET_CODE (x) == PLUS);
6371 /* We actually want to know if X is mentioned somewhere inside IN.
6372 We must not say that (plus (sp) (const_int 124)) is in
6373 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6374 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6375 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6376 while (MEM_P (in))
6377 in = XEXP (in, 0);
6378 if (REG_P (in))
6379 return 0;
6380 else if (GET_CODE (in) == PLUS)
6381 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6382 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6383 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6384 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6387 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6388 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6390 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6393 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6394 registers. */
6396 static int
6397 refers_to_mem_for_reload_p (rtx x)
6399 const char *fmt;
6400 int i;
6402 if (MEM_P (x))
6403 return 1;
6405 if (REG_P (x))
6406 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6407 && reg_equiv_memory_loc[REGNO (x)]);
6409 fmt = GET_RTX_FORMAT (GET_CODE (x));
6410 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6411 if (fmt[i] == 'e'
6412 && (MEM_P (XEXP (x, i))
6413 || refers_to_mem_for_reload_p (XEXP (x, i))))
6414 return 1;
6416 return 0;
6419 /* Check the insns before INSN to see if there is a suitable register
6420 containing the same value as GOAL.
6421 If OTHER is -1, look for a register in class CLASS.
6422 Otherwise, just see if register number OTHER shares GOAL's value.
6424 Return an rtx for the register found, or zero if none is found.
6426 If RELOAD_REG_P is (short *)1,
6427 we reject any hard reg that appears in reload_reg_rtx
6428 because such a hard reg is also needed coming into this insn.
6430 If RELOAD_REG_P is any other nonzero value,
6431 it is a vector indexed by hard reg number
6432 and we reject any hard reg whose element in the vector is nonnegative
6433 as well as any that appears in reload_reg_rtx.
6435 If GOAL is zero, then GOALREG is a register number; we look
6436 for an equivalent for that register.
6438 MODE is the machine mode of the value we want an equivalence for.
6439 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6441 This function is used by jump.c as well as in the reload pass.
6443 If GOAL is the sum of the stack pointer and a constant, we treat it
6444 as if it were a constant except that sp is required to be unchanging. */
6447 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6448 short *reload_reg_p, int goalreg, enum machine_mode mode)
6450 rtx p = insn;
6451 rtx goaltry, valtry, value, where;
6452 rtx pat;
6453 int regno = -1;
6454 int valueno;
6455 int goal_mem = 0;
6456 int goal_const = 0;
6457 int goal_mem_addr_varies = 0;
6458 int need_stable_sp = 0;
6459 int nregs;
6460 int valuenregs;
6461 int num = 0;
6463 if (goal == 0)
6464 regno = goalreg;
6465 else if (REG_P (goal))
6466 regno = REGNO (goal);
6467 else if (MEM_P (goal))
6469 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6470 if (MEM_VOLATILE_P (goal))
6471 return 0;
6472 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6473 return 0;
6474 /* An address with side effects must be reexecuted. */
6475 switch (code)
6477 case POST_INC:
6478 case PRE_INC:
6479 case POST_DEC:
6480 case PRE_DEC:
6481 case POST_MODIFY:
6482 case PRE_MODIFY:
6483 return 0;
6484 default:
6485 break;
6487 goal_mem = 1;
6489 else if (CONSTANT_P (goal))
6490 goal_const = 1;
6491 else if (GET_CODE (goal) == PLUS
6492 && XEXP (goal, 0) == stack_pointer_rtx
6493 && CONSTANT_P (XEXP (goal, 1)))
6494 goal_const = need_stable_sp = 1;
6495 else if (GET_CODE (goal) == PLUS
6496 && XEXP (goal, 0) == frame_pointer_rtx
6497 && CONSTANT_P (XEXP (goal, 1)))
6498 goal_const = 1;
6499 else
6500 return 0;
6502 num = 0;
6503 /* Scan insns back from INSN, looking for one that copies
6504 a value into or out of GOAL.
6505 Stop and give up if we reach a label. */
6507 while (1)
6509 p = PREV_INSN (p);
6510 num++;
6511 if (p == 0 || LABEL_P (p)
6512 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6513 return 0;
6515 if (NONJUMP_INSN_P (p)
6516 /* If we don't want spill regs ... */
6517 && (! (reload_reg_p != 0
6518 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6519 /* ... then ignore insns introduced by reload; they aren't
6520 useful and can cause results in reload_as_needed to be
6521 different from what they were when calculating the need for
6522 spills. If we notice an input-reload insn here, we will
6523 reject it below, but it might hide a usable equivalent.
6524 That makes bad code. It may even abort: perhaps no reg was
6525 spilled for this insn because it was assumed we would find
6526 that equivalent. */
6527 || INSN_UID (p) < reload_first_uid))
6529 rtx tem;
6530 pat = single_set (p);
6532 /* First check for something that sets some reg equal to GOAL. */
6533 if (pat != 0
6534 && ((regno >= 0
6535 && true_regnum (SET_SRC (pat)) == regno
6536 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6538 (regno >= 0
6539 && true_regnum (SET_DEST (pat)) == regno
6540 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6542 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6543 /* When looking for stack pointer + const,
6544 make sure we don't use a stack adjust. */
6545 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6546 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6547 || (goal_mem
6548 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6549 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6550 || (goal_mem
6551 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6552 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6553 /* If we are looking for a constant,
6554 and something equivalent to that constant was copied
6555 into a reg, we can use that reg. */
6556 || (goal_const && REG_NOTES (p) != 0
6557 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6558 && ((rtx_equal_p (XEXP (tem, 0), goal)
6559 && (valueno
6560 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6561 || (REG_P (SET_DEST (pat))
6562 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6563 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6564 == MODE_FLOAT)
6565 && GET_CODE (goal) == CONST_INT
6566 && 0 != (goaltry
6567 = operand_subword (XEXP (tem, 0), 0, 0,
6568 VOIDmode))
6569 && rtx_equal_p (goal, goaltry)
6570 && (valtry
6571 = operand_subword (SET_DEST (pat), 0, 0,
6572 VOIDmode))
6573 && (valueno = true_regnum (valtry)) >= 0)))
6574 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6575 NULL_RTX))
6576 && REG_P (SET_DEST (pat))
6577 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6578 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6579 == MODE_FLOAT)
6580 && GET_CODE (goal) == CONST_INT
6581 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6582 VOIDmode))
6583 && rtx_equal_p (goal, goaltry)
6584 && (valtry
6585 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6586 && (valueno = true_regnum (valtry)) >= 0)))
6588 if (other >= 0)
6590 if (valueno != other)
6591 continue;
6593 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6594 continue;
6595 else
6597 int i;
6599 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6600 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6601 valueno + i))
6602 break;
6603 if (i >= 0)
6604 continue;
6606 value = valtry;
6607 where = p;
6608 break;
6613 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6614 (or copying VALUE into GOAL, if GOAL is also a register).
6615 Now verify that VALUE is really valid. */
6617 /* VALUENO is the register number of VALUE; a hard register. */
6619 /* Don't try to re-use something that is killed in this insn. We want
6620 to be able to trust REG_UNUSED notes. */
6621 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6622 return 0;
6624 /* If we propose to get the value from the stack pointer or if GOAL is
6625 a MEM based on the stack pointer, we need a stable SP. */
6626 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6627 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6628 goal)))
6629 need_stable_sp = 1;
6631 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6632 if (GET_MODE (value) != mode)
6633 return 0;
6635 /* Reject VALUE if it was loaded from GOAL
6636 and is also a register that appears in the address of GOAL. */
6638 if (goal_mem && value == SET_DEST (single_set (where))
6639 && refers_to_regno_for_reload_p (valueno,
6640 (valueno
6641 + hard_regno_nregs[valueno][mode]),
6642 goal, (rtx*) 0))
6643 return 0;
6645 /* Reject registers that overlap GOAL. */
6647 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6648 nregs = hard_regno_nregs[regno][mode];
6649 else
6650 nregs = 1;
6651 valuenregs = hard_regno_nregs[valueno][mode];
6653 if (!goal_mem && !goal_const
6654 && regno + nregs > valueno && regno < valueno + valuenregs)
6655 return 0;
6657 /* Reject VALUE if it is one of the regs reserved for reloads.
6658 Reload1 knows how to reuse them anyway, and it would get
6659 confused if we allocated one without its knowledge.
6660 (Now that insns introduced by reload are ignored above,
6661 this case shouldn't happen, but I'm not positive.) */
6663 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6665 int i;
6666 for (i = 0; i < valuenregs; ++i)
6667 if (reload_reg_p[valueno + i] >= 0)
6668 return 0;
6671 /* Reject VALUE if it is a register being used for an input reload
6672 even if it is not one of those reserved. */
6674 if (reload_reg_p != 0)
6676 int i;
6677 for (i = 0; i < n_reloads; i++)
6678 if (rld[i].reg_rtx != 0 && rld[i].in)
6680 int regno1 = REGNO (rld[i].reg_rtx);
6681 int nregs1 = hard_regno_nregs[regno1]
6682 [GET_MODE (rld[i].reg_rtx)];
6683 if (regno1 < valueno + valuenregs
6684 && regno1 + nregs1 > valueno)
6685 return 0;
6689 if (goal_mem)
6690 /* We must treat frame pointer as varying here,
6691 since it can vary--in a nonlocal goto as generated by expand_goto. */
6692 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6694 /* Now verify that the values of GOAL and VALUE remain unaltered
6695 until INSN is reached. */
6697 p = insn;
6698 while (1)
6700 p = PREV_INSN (p);
6701 if (p == where)
6702 return value;
6704 /* Don't trust the conversion past a function call
6705 if either of the two is in a call-clobbered register, or memory. */
6706 if (CALL_P (p))
6708 int i;
6710 if (goal_mem || need_stable_sp)
6711 return 0;
6713 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6714 for (i = 0; i < nregs; ++i)
6715 if (call_used_regs[regno + i]
6716 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6717 return 0;
6719 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6720 for (i = 0; i < valuenregs; ++i)
6721 if (call_used_regs[valueno + i]
6722 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6723 return 0;
6726 if (INSN_P (p))
6728 pat = PATTERN (p);
6730 /* Watch out for unspec_volatile, and volatile asms. */
6731 if (volatile_insn_p (pat))
6732 return 0;
6734 /* If this insn P stores in either GOAL or VALUE, return 0.
6735 If GOAL is a memory ref and this insn writes memory, return 0.
6736 If GOAL is a memory ref and its address is not constant,
6737 and this insn P changes a register used in GOAL, return 0. */
6739 if (GET_CODE (pat) == COND_EXEC)
6740 pat = COND_EXEC_CODE (pat);
6741 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6743 rtx dest = SET_DEST (pat);
6744 while (GET_CODE (dest) == SUBREG
6745 || GET_CODE (dest) == ZERO_EXTRACT
6746 || GET_CODE (dest) == STRICT_LOW_PART)
6747 dest = XEXP (dest, 0);
6748 if (REG_P (dest))
6750 int xregno = REGNO (dest);
6751 int xnregs;
6752 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6753 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6754 else
6755 xnregs = 1;
6756 if (xregno < regno + nregs && xregno + xnregs > regno)
6757 return 0;
6758 if (xregno < valueno + valuenregs
6759 && xregno + xnregs > valueno)
6760 return 0;
6761 if (goal_mem_addr_varies
6762 && reg_overlap_mentioned_for_reload_p (dest, goal))
6763 return 0;
6764 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6765 return 0;
6767 else if (goal_mem && MEM_P (dest)
6768 && ! push_operand (dest, GET_MODE (dest)))
6769 return 0;
6770 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6771 && reg_equiv_memory_loc[regno] != 0)
6772 return 0;
6773 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6774 return 0;
6776 else if (GET_CODE (pat) == PARALLEL)
6778 int i;
6779 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6781 rtx v1 = XVECEXP (pat, 0, i);
6782 if (GET_CODE (v1) == COND_EXEC)
6783 v1 = COND_EXEC_CODE (v1);
6784 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6786 rtx dest = SET_DEST (v1);
6787 while (GET_CODE (dest) == SUBREG
6788 || GET_CODE (dest) == ZERO_EXTRACT
6789 || GET_CODE (dest) == STRICT_LOW_PART)
6790 dest = XEXP (dest, 0);
6791 if (REG_P (dest))
6793 int xregno = REGNO (dest);
6794 int xnregs;
6795 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6796 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6797 else
6798 xnregs = 1;
6799 if (xregno < regno + nregs
6800 && xregno + xnregs > regno)
6801 return 0;
6802 if (xregno < valueno + valuenregs
6803 && xregno + xnregs > valueno)
6804 return 0;
6805 if (goal_mem_addr_varies
6806 && reg_overlap_mentioned_for_reload_p (dest,
6807 goal))
6808 return 0;
6809 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6810 return 0;
6812 else if (goal_mem && MEM_P (dest)
6813 && ! push_operand (dest, GET_MODE (dest)))
6814 return 0;
6815 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6816 && reg_equiv_memory_loc[regno] != 0)
6817 return 0;
6818 else if (need_stable_sp
6819 && push_operand (dest, GET_MODE (dest)))
6820 return 0;
6825 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6827 rtx link;
6829 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6830 link = XEXP (link, 1))
6832 pat = XEXP (link, 0);
6833 if (GET_CODE (pat) == CLOBBER)
6835 rtx dest = SET_DEST (pat);
6837 if (REG_P (dest))
6839 int xregno = REGNO (dest);
6840 int xnregs
6841 = hard_regno_nregs[xregno][GET_MODE (dest)];
6843 if (xregno < regno + nregs
6844 && xregno + xnregs > regno)
6845 return 0;
6846 else if (xregno < valueno + valuenregs
6847 && xregno + xnregs > valueno)
6848 return 0;
6849 else if (goal_mem_addr_varies
6850 && reg_overlap_mentioned_for_reload_p (dest,
6851 goal))
6852 return 0;
6855 else if (goal_mem && MEM_P (dest)
6856 && ! push_operand (dest, GET_MODE (dest)))
6857 return 0;
6858 else if (need_stable_sp
6859 && push_operand (dest, GET_MODE (dest)))
6860 return 0;
6865 #ifdef AUTO_INC_DEC
6866 /* If this insn auto-increments or auto-decrements
6867 either regno or valueno, return 0 now.
6868 If GOAL is a memory ref and its address is not constant,
6869 and this insn P increments a register used in GOAL, return 0. */
6871 rtx link;
6873 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6874 if (REG_NOTE_KIND (link) == REG_INC
6875 && REG_P (XEXP (link, 0)))
6877 int incno = REGNO (XEXP (link, 0));
6878 if (incno < regno + nregs && incno >= regno)
6879 return 0;
6880 if (incno < valueno + valuenregs && incno >= valueno)
6881 return 0;
6882 if (goal_mem_addr_varies
6883 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6884 goal))
6885 return 0;
6888 #endif
6893 /* Find a place where INCED appears in an increment or decrement operator
6894 within X, and return the amount INCED is incremented or decremented by.
6895 The value is always positive. */
6897 static int
6898 find_inc_amount (rtx x, rtx inced)
6900 enum rtx_code code = GET_CODE (x);
6901 const char *fmt;
6902 int i;
6904 if (code == MEM)
6906 rtx addr = XEXP (x, 0);
6907 if ((GET_CODE (addr) == PRE_DEC
6908 || GET_CODE (addr) == POST_DEC
6909 || GET_CODE (addr) == PRE_INC
6910 || GET_CODE (addr) == POST_INC)
6911 && XEXP (addr, 0) == inced)
6912 return GET_MODE_SIZE (GET_MODE (x));
6913 else if ((GET_CODE (addr) == PRE_MODIFY
6914 || GET_CODE (addr) == POST_MODIFY)
6915 && GET_CODE (XEXP (addr, 1)) == PLUS
6916 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6917 && XEXP (addr, 0) == inced
6918 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6920 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6921 return i < 0 ? -i : i;
6925 fmt = GET_RTX_FORMAT (code);
6926 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6928 if (fmt[i] == 'e')
6930 int tem = find_inc_amount (XEXP (x, i), inced);
6931 if (tem != 0)
6932 return tem;
6934 if (fmt[i] == 'E')
6936 int j;
6937 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6939 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6940 if (tem != 0)
6941 return tem;
6946 return 0;
6949 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6950 If SETS is nonzero, also consider SETs. REGNO must refer to a hard
6951 register. */
6954 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6955 int sets)
6957 unsigned int nregs, endregno;
6959 /* regno must be a hard register. */
6960 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
6962 nregs = hard_regno_nregs[regno][mode];
6963 endregno = regno + nregs;
6965 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6966 || (sets && GET_CODE (PATTERN (insn)) == SET))
6967 && REG_P (XEXP (PATTERN (insn), 0)))
6969 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6971 return test >= regno && test < endregno;
6974 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6976 int i = XVECLEN (PATTERN (insn), 0) - 1;
6978 for (; i >= 0; i--)
6980 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6981 if ((GET_CODE (elt) == CLOBBER
6982 || (sets && GET_CODE (PATTERN (insn)) == SET))
6983 && REG_P (XEXP (elt, 0)))
6985 unsigned int test = REGNO (XEXP (elt, 0));
6987 if (test >= regno && test < endregno)
6988 return 1;
6993 return 0;
6996 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6998 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7000 int regno;
7002 if (GET_MODE (reloadreg) == mode)
7003 return reloadreg;
7005 regno = REGNO (reloadreg);
7007 if (WORDS_BIG_ENDIAN)
7008 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7009 - (int) hard_regno_nregs[regno][mode];
7011 return gen_rtx_REG (mode, regno);
7014 static const char *const reload_when_needed_name[] =
7016 "RELOAD_FOR_INPUT",
7017 "RELOAD_FOR_OUTPUT",
7018 "RELOAD_FOR_INSN",
7019 "RELOAD_FOR_INPUT_ADDRESS",
7020 "RELOAD_FOR_INPADDR_ADDRESS",
7021 "RELOAD_FOR_OUTPUT_ADDRESS",
7022 "RELOAD_FOR_OUTADDR_ADDRESS",
7023 "RELOAD_FOR_OPERAND_ADDRESS",
7024 "RELOAD_FOR_OPADDR_ADDR",
7025 "RELOAD_OTHER",
7026 "RELOAD_FOR_OTHER_ADDRESS"
7029 /* These functions are used to print the variables set by 'find_reloads' */
7031 void
7032 debug_reload_to_stream (FILE *f)
7034 int r;
7035 const char *prefix;
7037 if (! f)
7038 f = stderr;
7039 for (r = 0; r < n_reloads; r++)
7041 fprintf (f, "Reload %d: ", r);
7043 if (rld[r].in != 0)
7045 fprintf (f, "reload_in (%s) = ",
7046 GET_MODE_NAME (rld[r].inmode));
7047 print_inline_rtx (f, rld[r].in, 24);
7048 fprintf (f, "\n\t");
7051 if (rld[r].out != 0)
7053 fprintf (f, "reload_out (%s) = ",
7054 GET_MODE_NAME (rld[r].outmode));
7055 print_inline_rtx (f, rld[r].out, 24);
7056 fprintf (f, "\n\t");
7059 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7061 fprintf (f, "%s (opnum = %d)",
7062 reload_when_needed_name[(int) rld[r].when_needed],
7063 rld[r].opnum);
7065 if (rld[r].optional)
7066 fprintf (f, ", optional");
7068 if (rld[r].nongroup)
7069 fprintf (f, ", nongroup");
7071 if (rld[r].inc != 0)
7072 fprintf (f, ", inc by %d", rld[r].inc);
7074 if (rld[r].nocombine)
7075 fprintf (f, ", can't combine");
7077 if (rld[r].secondary_p)
7078 fprintf (f, ", secondary_reload_p");
7080 if (rld[r].in_reg != 0)
7082 fprintf (f, "\n\treload_in_reg: ");
7083 print_inline_rtx (f, rld[r].in_reg, 24);
7086 if (rld[r].out_reg != 0)
7088 fprintf (f, "\n\treload_out_reg: ");
7089 print_inline_rtx (f, rld[r].out_reg, 24);
7092 if (rld[r].reg_rtx != 0)
7094 fprintf (f, "\n\treload_reg_rtx: ");
7095 print_inline_rtx (f, rld[r].reg_rtx, 24);
7098 prefix = "\n\t";
7099 if (rld[r].secondary_in_reload != -1)
7101 fprintf (f, "%ssecondary_in_reload = %d",
7102 prefix, rld[r].secondary_in_reload);
7103 prefix = ", ";
7106 if (rld[r].secondary_out_reload != -1)
7107 fprintf (f, "%ssecondary_out_reload = %d\n",
7108 prefix, rld[r].secondary_out_reload);
7110 prefix = "\n\t";
7111 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7113 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7114 insn_data[rld[r].secondary_in_icode].name);
7115 prefix = ", ";
7118 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7119 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7120 insn_data[rld[r].secondary_out_icode].name);
7122 fprintf (f, "\n");
7126 void
7127 debug_reload (void)
7129 debug_reload_to_stream (stderr);