Convert PATTERN from a macro to a pair of inline functions
[official-gcc.git] / gcc / function.c
blob25f1519a93e4d18147298d2aafae687beb8593fb
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
66 #include "shrink-wrap.h"
67 #include "toplev.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Round a value to the lowest integer less than it that is a multiple of
79 the required alignment. Avoid using division in case the value is
80 negative. Assume the alignment is a power of two. */
81 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
83 /* Similar, but round to the next highest integer that meets the
84 alignment. */
85 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
87 /* Nonzero once virtual register instantiation has been done.
88 assign_stack_local uses frame_pointer_rtx when this is nonzero.
89 calls.c:emit_library_call_value_1 uses it to set up
90 post-instantiation libcalls. */
91 int virtuals_instantiated;
93 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
94 static GTY(()) int funcdef_no;
96 /* These variables hold pointers to functions to create and destroy
97 target specific, per-function data structures. */
98 struct machine_function * (*init_machine_status) (void);
100 /* The currently compiled function. */
101 struct function *cfun = 0;
103 /* These hashes record the prologue and epilogue insns. */
104 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
105 htab_t prologue_insn_hash;
106 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
107 htab_t epilogue_insn_hash;
110 htab_t types_used_by_vars_hash = NULL;
111 vec<tree, va_gc> *types_used_by_cur_var_decl;
113 /* Forward declarations. */
115 static struct temp_slot *find_temp_slot_from_address (rtx);
116 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
117 static void pad_below (struct args_size *, enum machine_mode, tree);
118 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
119 static int all_blocks (tree, tree *);
120 static tree *get_block_vector (tree, int *);
121 extern tree debug_find_var_in_block_tree (tree, tree);
122 /* We always define `record_insns' even if it's not used so that we
123 can always export `prologue_epilogue_contains'. */
124 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
125 static bool contains (const_rtx, htab_t);
126 static void prepare_function_start (void);
127 static void do_clobber_return_reg (rtx, void *);
128 static void do_use_return_reg (rtx, void *);
130 /* Stack of nested functions. */
131 /* Keep track of the cfun stack. */
133 typedef struct function *function_p;
135 static vec<function_p> function_context_stack;
137 /* Save the current context for compilation of a nested function.
138 This is called from language-specific code. */
140 void
141 push_function_context (void)
143 if (cfun == 0)
144 allocate_struct_function (NULL, false);
146 function_context_stack.safe_push (cfun);
147 set_cfun (NULL);
150 /* Restore the last saved context, at the end of a nested function.
151 This function is called from language-specific code. */
153 void
154 pop_function_context (void)
156 struct function *p = function_context_stack.pop ();
157 set_cfun (p);
158 current_function_decl = p->decl;
160 /* Reset variables that have known state during rtx generation. */
161 virtuals_instantiated = 0;
162 generating_concat_p = 1;
165 /* Clear out all parts of the state in F that can safely be discarded
166 after the function has been parsed, but not compiled, to let
167 garbage collection reclaim the memory. */
169 void
170 free_after_parsing (struct function *f)
172 f->language = 0;
175 /* Clear out all parts of the state in F that can safely be discarded
176 after the function has been compiled, to let garbage collection
177 reclaim the memory. */
179 void
180 free_after_compilation (struct function *f)
182 prologue_insn_hash = NULL;
183 epilogue_insn_hash = NULL;
185 free (crtl->emit.regno_pointer_align);
187 memset (crtl, 0, sizeof (struct rtl_data));
188 f->eh = NULL;
189 f->machine = NULL;
190 f->cfg = NULL;
192 regno_reg_rtx = NULL;
195 /* Return size needed for stack frame based on slots so far allocated.
196 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
197 the caller may have to do that. */
199 HOST_WIDE_INT
200 get_frame_size (void)
202 if (FRAME_GROWS_DOWNWARD)
203 return -frame_offset;
204 else
205 return frame_offset;
208 /* Issue an error message and return TRUE if frame OFFSET overflows in
209 the signed target pointer arithmetics for function FUNC. Otherwise
210 return FALSE. */
212 bool
213 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
215 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
217 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
218 /* Leave room for the fixed part of the frame. */
219 - 64 * UNITS_PER_WORD)
221 error_at (DECL_SOURCE_LOCATION (func),
222 "total size of local objects too large");
223 return TRUE;
226 return FALSE;
229 /* Return stack slot alignment in bits for TYPE and MODE. */
231 static unsigned int
232 get_stack_local_alignment (tree type, enum machine_mode mode)
234 unsigned int alignment;
236 if (mode == BLKmode)
237 alignment = BIGGEST_ALIGNMENT;
238 else
239 alignment = GET_MODE_ALIGNMENT (mode);
241 /* Allow the frond-end to (possibly) increase the alignment of this
242 stack slot. */
243 if (! type)
244 type = lang_hooks.types.type_for_mode (mode, 0);
246 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
249 /* Determine whether it is possible to fit a stack slot of size SIZE and
250 alignment ALIGNMENT into an area in the stack frame that starts at
251 frame offset START and has a length of LENGTH. If so, store the frame
252 offset to be used for the stack slot in *POFFSET and return true;
253 return false otherwise. This function will extend the frame size when
254 given a start/length pair that lies at the end of the frame. */
256 static bool
257 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
258 HOST_WIDE_INT size, unsigned int alignment,
259 HOST_WIDE_INT *poffset)
261 HOST_WIDE_INT this_frame_offset;
262 int frame_off, frame_alignment, frame_phase;
264 /* Calculate how many bytes the start of local variables is off from
265 stack alignment. */
266 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
267 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
268 frame_phase = frame_off ? frame_alignment - frame_off : 0;
270 /* Round the frame offset to the specified alignment. */
272 /* We must be careful here, since FRAME_OFFSET might be negative and
273 division with a negative dividend isn't as well defined as we might
274 like. So we instead assume that ALIGNMENT is a power of two and
275 use logical operations which are unambiguous. */
276 if (FRAME_GROWS_DOWNWARD)
277 this_frame_offset
278 = (FLOOR_ROUND (start + length - size - frame_phase,
279 (unsigned HOST_WIDE_INT) alignment)
280 + frame_phase);
281 else
282 this_frame_offset
283 = (CEIL_ROUND (start - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
287 /* See if it fits. If this space is at the edge of the frame,
288 consider extending the frame to make it fit. Our caller relies on
289 this when allocating a new slot. */
290 if (frame_offset == start && this_frame_offset < frame_offset)
291 frame_offset = this_frame_offset;
292 else if (this_frame_offset < start)
293 return false;
294 else if (start + length == frame_offset
295 && this_frame_offset + size > start + length)
296 frame_offset = this_frame_offset + size;
297 else if (this_frame_offset + size > start + length)
298 return false;
300 *poffset = this_frame_offset;
301 return true;
304 /* Create a new frame_space structure describing free space in the stack
305 frame beginning at START and ending at END, and chain it into the
306 function's frame_space_list. */
308 static void
309 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
311 struct frame_space *space = ggc_alloc<frame_space> ();
312 space->next = crtl->frame_space_list;
313 crtl->frame_space_list = space;
314 space->start = start;
315 space->length = end - start;
318 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
319 with machine mode MODE.
321 ALIGN controls the amount of alignment for the address of the slot:
322 0 means according to MODE,
323 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
324 -2 means use BITS_PER_UNIT,
325 positive specifies alignment boundary in bits.
327 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
328 alignment and ASLK_RECORD_PAD bit set if we should remember
329 extra space we allocated for alignment purposes. When we are
330 called from assign_stack_temp_for_type, it is not set so we don't
331 track the same stack slot in two independent lists.
333 We do not round to stack_boundary here. */
336 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
337 int align, int kind)
339 rtx x, addr;
340 int bigend_correction = 0;
341 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
342 unsigned int alignment, alignment_in_bits;
344 if (align == 0)
346 alignment = get_stack_local_alignment (NULL, mode);
347 alignment /= BITS_PER_UNIT;
349 else if (align == -1)
351 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
352 size = CEIL_ROUND (size, alignment);
354 else if (align == -2)
355 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
356 else
357 alignment = align / BITS_PER_UNIT;
359 alignment_in_bits = alignment * BITS_PER_UNIT;
361 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
362 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
364 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
365 alignment = alignment_in_bits / BITS_PER_UNIT;
368 if (SUPPORTS_STACK_ALIGNMENT)
370 if (crtl->stack_alignment_estimated < alignment_in_bits)
372 if (!crtl->stack_realign_processed)
373 crtl->stack_alignment_estimated = alignment_in_bits;
374 else
376 /* If stack is realigned and stack alignment value
377 hasn't been finalized, it is OK not to increase
378 stack_alignment_estimated. The bigger alignment
379 requirement is recorded in stack_alignment_needed
380 below. */
381 gcc_assert (!crtl->stack_realign_finalized);
382 if (!crtl->stack_realign_needed)
384 /* It is OK to reduce the alignment as long as the
385 requested size is 0 or the estimated stack
386 alignment >= mode alignment. */
387 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
388 || size == 0
389 || (crtl->stack_alignment_estimated
390 >= GET_MODE_ALIGNMENT (mode)));
391 alignment_in_bits = crtl->stack_alignment_estimated;
392 alignment = alignment_in_bits / BITS_PER_UNIT;
398 if (crtl->stack_alignment_needed < alignment_in_bits)
399 crtl->stack_alignment_needed = alignment_in_bits;
400 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
401 crtl->max_used_stack_slot_alignment = alignment_in_bits;
403 if (mode != BLKmode || size != 0)
405 if (kind & ASLK_RECORD_PAD)
407 struct frame_space **psp;
409 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
411 struct frame_space *space = *psp;
412 if (!try_fit_stack_local (space->start, space->length, size,
413 alignment, &slot_offset))
414 continue;
415 *psp = space->next;
416 if (slot_offset > space->start)
417 add_frame_space (space->start, slot_offset);
418 if (slot_offset + size < space->start + space->length)
419 add_frame_space (slot_offset + size,
420 space->start + space->length);
421 goto found_space;
425 else if (!STACK_ALIGNMENT_NEEDED)
427 slot_offset = frame_offset;
428 goto found_space;
431 old_frame_offset = frame_offset;
433 if (FRAME_GROWS_DOWNWARD)
435 frame_offset -= size;
436 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
438 if (kind & ASLK_RECORD_PAD)
440 if (slot_offset > frame_offset)
441 add_frame_space (frame_offset, slot_offset);
442 if (slot_offset + size < old_frame_offset)
443 add_frame_space (slot_offset + size, old_frame_offset);
446 else
448 frame_offset += size;
449 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
451 if (kind & ASLK_RECORD_PAD)
453 if (slot_offset > old_frame_offset)
454 add_frame_space (old_frame_offset, slot_offset);
455 if (slot_offset + size < frame_offset)
456 add_frame_space (slot_offset + size, frame_offset);
460 found_space:
461 /* On a big-endian machine, if we are allocating more space than we will use,
462 use the least significant bytes of those that are allocated. */
463 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
464 bigend_correction = size - GET_MODE_SIZE (mode);
466 /* If we have already instantiated virtual registers, return the actual
467 address relative to the frame pointer. */
468 if (virtuals_instantiated)
469 addr = plus_constant (Pmode, frame_pointer_rtx,
470 trunc_int_for_mode
471 (slot_offset + bigend_correction
472 + STARTING_FRAME_OFFSET, Pmode));
473 else
474 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction,
477 Pmode));
479 x = gen_rtx_MEM (mode, addr);
480 set_mem_align (x, alignment_in_bits);
481 MEM_NOTRAP_P (x) = 1;
483 stack_slot_list
484 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
486 if (frame_offset_overflow (frame_offset, current_function_decl))
487 frame_offset = 0;
489 return x;
492 /* Wrap up assign_stack_local_1 with last parameter as false. */
495 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
497 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
500 /* In order to evaluate some expressions, such as function calls returning
501 structures in memory, we need to temporarily allocate stack locations.
502 We record each allocated temporary in the following structure.
504 Associated with each temporary slot is a nesting level. When we pop up
505 one level, all temporaries associated with the previous level are freed.
506 Normally, all temporaries are freed after the execution of the statement
507 in which they were created. However, if we are inside a ({...}) grouping,
508 the result may be in a temporary and hence must be preserved. If the
509 result could be in a temporary, we preserve it if we can determine which
510 one it is in. If we cannot determine which temporary may contain the
511 result, all temporaries are preserved. A temporary is preserved by
512 pretending it was allocated at the previous nesting level. */
514 struct GTY(()) temp_slot {
515 /* Points to next temporary slot. */
516 struct temp_slot *next;
517 /* Points to previous temporary slot. */
518 struct temp_slot *prev;
519 /* The rtx to used to reference the slot. */
520 rtx slot;
521 /* The size, in units, of the slot. */
522 HOST_WIDE_INT size;
523 /* The type of the object in the slot, or zero if it doesn't correspond
524 to a type. We use this to determine whether a slot can be reused.
525 It can be reused if objects of the type of the new slot will always
526 conflict with objects of the type of the old slot. */
527 tree type;
528 /* The alignment (in bits) of the slot. */
529 unsigned int align;
530 /* Nonzero if this temporary is currently in use. */
531 char in_use;
532 /* Nesting level at which this slot is being used. */
533 int level;
534 /* The offset of the slot from the frame_pointer, including extra space
535 for alignment. This info is for combine_temp_slots. */
536 HOST_WIDE_INT base_offset;
537 /* The size of the slot, including extra space for alignment. This
538 info is for combine_temp_slots. */
539 HOST_WIDE_INT full_size;
542 /* A table of addresses that represent a stack slot. The table is a mapping
543 from address RTXen to a temp slot. */
544 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
545 static size_t n_temp_slots_in_use;
547 /* Entry for the above hash table. */
548 struct GTY(()) temp_slot_address_entry {
549 hashval_t hash;
550 rtx address;
551 struct temp_slot *temp_slot;
554 /* Removes temporary slot TEMP from LIST. */
556 static void
557 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
559 if (temp->next)
560 temp->next->prev = temp->prev;
561 if (temp->prev)
562 temp->prev->next = temp->next;
563 else
564 *list = temp->next;
566 temp->prev = temp->next = NULL;
569 /* Inserts temporary slot TEMP to LIST. */
571 static void
572 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
574 temp->next = *list;
575 if (*list)
576 (*list)->prev = temp;
577 temp->prev = NULL;
578 *list = temp;
581 /* Returns the list of used temp slots at LEVEL. */
583 static struct temp_slot **
584 temp_slots_at_level (int level)
586 if (level >= (int) vec_safe_length (used_temp_slots))
587 vec_safe_grow_cleared (used_temp_slots, level + 1);
589 return &(*used_temp_slots)[level];
592 /* Returns the maximal temporary slot level. */
594 static int
595 max_slot_level (void)
597 if (!used_temp_slots)
598 return -1;
600 return used_temp_slots->length () - 1;
603 /* Moves temporary slot TEMP to LEVEL. */
605 static void
606 move_slot_to_level (struct temp_slot *temp, int level)
608 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
609 insert_slot_to_list (temp, temp_slots_at_level (level));
610 temp->level = level;
613 /* Make temporary slot TEMP available. */
615 static void
616 make_slot_available (struct temp_slot *temp)
618 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
619 insert_slot_to_list (temp, &avail_temp_slots);
620 temp->in_use = 0;
621 temp->level = -1;
622 n_temp_slots_in_use--;
625 /* Compute the hash value for an address -> temp slot mapping.
626 The value is cached on the mapping entry. */
627 static hashval_t
628 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
630 int do_not_record = 0;
631 return hash_rtx (t->address, GET_MODE (t->address),
632 &do_not_record, NULL, false);
635 /* Return the hash value for an address -> temp slot mapping. */
636 static hashval_t
637 temp_slot_address_hash (const void *p)
639 const struct temp_slot_address_entry *t;
640 t = (const struct temp_slot_address_entry *) p;
641 return t->hash;
644 /* Compare two address -> temp slot mapping entries. */
645 static int
646 temp_slot_address_eq (const void *p1, const void *p2)
648 const struct temp_slot_address_entry *t1, *t2;
649 t1 = (const struct temp_slot_address_entry *) p1;
650 t2 = (const struct temp_slot_address_entry *) p2;
651 return exp_equiv_p (t1->address, t2->address, 0, true);
654 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
655 static void
656 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
658 void **slot;
659 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
660 t->address = address;
661 t->temp_slot = temp_slot;
662 t->hash = temp_slot_address_compute_hash (t);
663 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
664 *slot = t;
667 /* Remove an address -> temp slot mapping entry if the temp slot is
668 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
669 static int
670 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
672 const struct temp_slot_address_entry *t;
673 t = (const struct temp_slot_address_entry *) *slot;
674 if (! t->temp_slot->in_use)
675 htab_clear_slot (temp_slot_address_table, slot);
676 return 1;
679 /* Remove all mappings of addresses to unused temp slots. */
680 static void
681 remove_unused_temp_slot_addresses (void)
683 /* Use quicker clearing if there aren't any active temp slots. */
684 if (n_temp_slots_in_use)
685 htab_traverse (temp_slot_address_table,
686 remove_unused_temp_slot_addresses_1,
687 NULL);
688 else
689 htab_empty (temp_slot_address_table);
692 /* Find the temp slot corresponding to the object at address X. */
694 static struct temp_slot *
695 find_temp_slot_from_address (rtx x)
697 struct temp_slot *p;
698 struct temp_slot_address_entry tmp, *t;
700 /* First try the easy way:
701 See if X exists in the address -> temp slot mapping. */
702 tmp.address = x;
703 tmp.temp_slot = NULL;
704 tmp.hash = temp_slot_address_compute_hash (&tmp);
705 t = (struct temp_slot_address_entry *)
706 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
707 if (t)
708 return t->temp_slot;
710 /* If we have a sum involving a register, see if it points to a temp
711 slot. */
712 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
713 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
714 return p;
715 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
716 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
717 return p;
719 /* Last resort: Address is a virtual stack var address. */
720 if (GET_CODE (x) == PLUS
721 && XEXP (x, 0) == virtual_stack_vars_rtx
722 && CONST_INT_P (XEXP (x, 1)))
724 int i;
725 for (i = max_slot_level (); i >= 0; i--)
726 for (p = *temp_slots_at_level (i); p; p = p->next)
728 if (INTVAL (XEXP (x, 1)) >= p->base_offset
729 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
730 return p;
734 return NULL;
737 /* Allocate a temporary stack slot and record it for possible later
738 reuse.
740 MODE is the machine mode to be given to the returned rtx.
742 SIZE is the size in units of the space required. We do no rounding here
743 since assign_stack_local will do any required rounding.
745 TYPE is the type that will be used for the stack slot. */
748 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
749 tree type)
751 unsigned int align;
752 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
753 rtx slot;
755 /* If SIZE is -1 it means that somebody tried to allocate a temporary
756 of a variable size. */
757 gcc_assert (size != -1);
759 align = get_stack_local_alignment (type, mode);
761 /* Try to find an available, already-allocated temporary of the proper
762 mode which meets the size and alignment requirements. Choose the
763 smallest one with the closest alignment.
765 If assign_stack_temp is called outside of the tree->rtl expansion,
766 we cannot reuse the stack slots (that may still refer to
767 VIRTUAL_STACK_VARS_REGNUM). */
768 if (!virtuals_instantiated)
770 for (p = avail_temp_slots; p; p = p->next)
772 if (p->align >= align && p->size >= size
773 && GET_MODE (p->slot) == mode
774 && objects_must_conflict_p (p->type, type)
775 && (best_p == 0 || best_p->size > p->size
776 || (best_p->size == p->size && best_p->align > p->align)))
778 if (p->align == align && p->size == size)
780 selected = p;
781 cut_slot_from_list (selected, &avail_temp_slots);
782 best_p = 0;
783 break;
785 best_p = p;
790 /* Make our best, if any, the one to use. */
791 if (best_p)
793 selected = best_p;
794 cut_slot_from_list (selected, &avail_temp_slots);
796 /* If there are enough aligned bytes left over, make them into a new
797 temp_slot so that the extra bytes don't get wasted. Do this only
798 for BLKmode slots, so that we can be sure of the alignment. */
799 if (GET_MODE (best_p->slot) == BLKmode)
801 int alignment = best_p->align / BITS_PER_UNIT;
802 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
804 if (best_p->size - rounded_size >= alignment)
806 p = ggc_alloc<temp_slot> ();
807 p->in_use = 0;
808 p->size = best_p->size - rounded_size;
809 p->base_offset = best_p->base_offset + rounded_size;
810 p->full_size = best_p->full_size - rounded_size;
811 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
812 p->align = best_p->align;
813 p->type = best_p->type;
814 insert_slot_to_list (p, &avail_temp_slots);
816 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
817 stack_slot_list);
819 best_p->size = rounded_size;
820 best_p->full_size = rounded_size;
825 /* If we still didn't find one, make a new temporary. */
826 if (selected == 0)
828 HOST_WIDE_INT frame_offset_old = frame_offset;
830 p = ggc_alloc<temp_slot> ();
832 /* We are passing an explicit alignment request to assign_stack_local.
833 One side effect of that is assign_stack_local will not round SIZE
834 to ensure the frame offset remains suitably aligned.
836 So for requests which depended on the rounding of SIZE, we go ahead
837 and round it now. We also make sure ALIGNMENT is at least
838 BIGGEST_ALIGNMENT. */
839 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
840 p->slot = assign_stack_local_1 (mode,
841 (mode == BLKmode
842 ? CEIL_ROUND (size,
843 (int) align
844 / BITS_PER_UNIT)
845 : size),
846 align, 0);
848 p->align = align;
850 /* The following slot size computation is necessary because we don't
851 know the actual size of the temporary slot until assign_stack_local
852 has performed all the frame alignment and size rounding for the
853 requested temporary. Note that extra space added for alignment
854 can be either above or below this stack slot depending on which
855 way the frame grows. We include the extra space if and only if it
856 is above this slot. */
857 if (FRAME_GROWS_DOWNWARD)
858 p->size = frame_offset_old - frame_offset;
859 else
860 p->size = size;
862 /* Now define the fields used by combine_temp_slots. */
863 if (FRAME_GROWS_DOWNWARD)
865 p->base_offset = frame_offset;
866 p->full_size = frame_offset_old - frame_offset;
868 else
870 p->base_offset = frame_offset_old;
871 p->full_size = frame_offset - frame_offset_old;
874 selected = p;
877 p = selected;
878 p->in_use = 1;
879 p->type = type;
880 p->level = temp_slot_level;
881 n_temp_slots_in_use++;
883 pp = temp_slots_at_level (p->level);
884 insert_slot_to_list (p, pp);
885 insert_temp_slot_address (XEXP (p->slot, 0), p);
887 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
888 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
889 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
891 /* If we know the alias set for the memory that will be used, use
892 it. If there's no TYPE, then we don't know anything about the
893 alias set for the memory. */
894 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
895 set_mem_align (slot, align);
897 /* If a type is specified, set the relevant flags. */
898 if (type != 0)
899 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
900 MEM_NOTRAP_P (slot) = 1;
902 return slot;
905 /* Allocate a temporary stack slot and record it for possible later
906 reuse. First two arguments are same as in preceding function. */
909 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
911 return assign_stack_temp_for_type (mode, size, NULL_TREE);
914 /* Assign a temporary.
915 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
916 and so that should be used in error messages. In either case, we
917 allocate of the given type.
918 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
919 it is 0 if a register is OK.
920 DONT_PROMOTE is 1 if we should not promote values in register
921 to wider modes. */
924 assign_temp (tree type_or_decl, int memory_required,
925 int dont_promote ATTRIBUTE_UNUSED)
927 tree type, decl;
928 enum machine_mode mode;
929 #ifdef PROMOTE_MODE
930 int unsignedp;
931 #endif
933 if (DECL_P (type_or_decl))
934 decl = type_or_decl, type = TREE_TYPE (decl);
935 else
936 decl = NULL, type = type_or_decl;
938 mode = TYPE_MODE (type);
939 #ifdef PROMOTE_MODE
940 unsignedp = TYPE_UNSIGNED (type);
941 #endif
943 if (mode == BLKmode || memory_required)
945 HOST_WIDE_INT size = int_size_in_bytes (type);
946 rtx tmp;
948 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
949 problems with allocating the stack space. */
950 if (size == 0)
951 size = 1;
953 /* Unfortunately, we don't yet know how to allocate variable-sized
954 temporaries. However, sometimes we can find a fixed upper limit on
955 the size, so try that instead. */
956 else if (size == -1)
957 size = max_int_size_in_bytes (type);
959 /* The size of the temporary may be too large to fit into an integer. */
960 /* ??? Not sure this should happen except for user silliness, so limit
961 this to things that aren't compiler-generated temporaries. The
962 rest of the time we'll die in assign_stack_temp_for_type. */
963 if (decl && size == -1
964 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
966 error ("size of variable %q+D is too large", decl);
967 size = 1;
970 tmp = assign_stack_temp_for_type (mode, size, type);
971 return tmp;
974 #ifdef PROMOTE_MODE
975 if (! dont_promote)
976 mode = promote_mode (type, mode, &unsignedp);
977 #endif
979 return gen_reg_rtx (mode);
982 /* Combine temporary stack slots which are adjacent on the stack.
984 This allows for better use of already allocated stack space. This is only
985 done for BLKmode slots because we can be sure that we won't have alignment
986 problems in this case. */
988 static void
989 combine_temp_slots (void)
991 struct temp_slot *p, *q, *next, *next_q;
992 int num_slots;
994 /* We can't combine slots, because the information about which slot
995 is in which alias set will be lost. */
996 if (flag_strict_aliasing)
997 return;
999 /* If there are a lot of temp slots, don't do anything unless
1000 high levels of optimization. */
1001 if (! flag_expensive_optimizations)
1002 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1003 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1004 return;
1006 for (p = avail_temp_slots; p; p = next)
1008 int delete_p = 0;
1010 next = p->next;
1012 if (GET_MODE (p->slot) != BLKmode)
1013 continue;
1015 for (q = p->next; q; q = next_q)
1017 int delete_q = 0;
1019 next_q = q->next;
1021 if (GET_MODE (q->slot) != BLKmode)
1022 continue;
1024 if (p->base_offset + p->full_size == q->base_offset)
1026 /* Q comes after P; combine Q into P. */
1027 p->size += q->size;
1028 p->full_size += q->full_size;
1029 delete_q = 1;
1031 else if (q->base_offset + q->full_size == p->base_offset)
1033 /* P comes after Q; combine P into Q. */
1034 q->size += p->size;
1035 q->full_size += p->full_size;
1036 delete_p = 1;
1037 break;
1039 if (delete_q)
1040 cut_slot_from_list (q, &avail_temp_slots);
1043 /* Either delete P or advance past it. */
1044 if (delete_p)
1045 cut_slot_from_list (p, &avail_temp_slots);
1049 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1050 slot that previously was known by OLD_RTX. */
1052 void
1053 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1055 struct temp_slot *p;
1057 if (rtx_equal_p (old_rtx, new_rtx))
1058 return;
1060 p = find_temp_slot_from_address (old_rtx);
1062 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1063 NEW_RTX is a register, see if one operand of the PLUS is a
1064 temporary location. If so, NEW_RTX points into it. Otherwise,
1065 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1066 in common between them. If so, try a recursive call on those
1067 values. */
1068 if (p == 0)
1070 if (GET_CODE (old_rtx) != PLUS)
1071 return;
1073 if (REG_P (new_rtx))
1075 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1076 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1077 return;
1079 else if (GET_CODE (new_rtx) != PLUS)
1080 return;
1082 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1083 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1084 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1085 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1086 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1087 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1088 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1089 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1091 return;
1094 /* Otherwise add an alias for the temp's address. */
1095 insert_temp_slot_address (new_rtx, p);
1098 /* If X could be a reference to a temporary slot, mark that slot as
1099 belonging to the to one level higher than the current level. If X
1100 matched one of our slots, just mark that one. Otherwise, we can't
1101 easily predict which it is, so upgrade all of them.
1103 This is called when an ({...}) construct occurs and a statement
1104 returns a value in memory. */
1106 void
1107 preserve_temp_slots (rtx x)
1109 struct temp_slot *p = 0, *next;
1111 if (x == 0)
1112 return;
1114 /* If X is a register that is being used as a pointer, see if we have
1115 a temporary slot we know it points to. */
1116 if (REG_P (x) && REG_POINTER (x))
1117 p = find_temp_slot_from_address (x);
1119 /* If X is not in memory or is at a constant address, it cannot be in
1120 a temporary slot. */
1121 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1122 return;
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1128 if (p != 0)
1130 if (p->level == temp_slot_level)
1131 move_slot_to_level (p, temp_slot_level - 1);
1132 return;
1135 /* Otherwise, preserve all non-kept slots at this level. */
1136 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1138 next = p->next;
1139 move_slot_to_level (p, temp_slot_level - 1);
1143 /* Free all temporaries used so far. This is normally called at the
1144 end of generating code for a statement. */
1146 void
1147 free_temp_slots (void)
1149 struct temp_slot *p, *next;
1150 bool some_available = false;
1152 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1154 next = p->next;
1155 make_slot_available (p);
1156 some_available = true;
1159 if (some_available)
1161 remove_unused_temp_slot_addresses ();
1162 combine_temp_slots ();
1166 /* Push deeper into the nesting level for stack temporaries. */
1168 void
1169 push_temp_slots (void)
1171 temp_slot_level++;
1174 /* Pop a temporary nesting level. All slots in use in the current level
1175 are freed. */
1177 void
1178 pop_temp_slots (void)
1180 free_temp_slots ();
1181 temp_slot_level--;
1184 /* Initialize temporary slots. */
1186 void
1187 init_temp_slots (void)
1189 /* We have not allocated any temporaries yet. */
1190 avail_temp_slots = 0;
1191 vec_alloc (used_temp_slots, 0);
1192 temp_slot_level = 0;
1193 n_temp_slots_in_use = 0;
1195 /* Set up the table to map addresses to temp slots. */
1196 if (! temp_slot_address_table)
1197 temp_slot_address_table = htab_create_ggc (32,
1198 temp_slot_address_hash,
1199 temp_slot_address_eq,
1200 NULL);
1201 else
1202 htab_empty (temp_slot_address_table);
1205 /* Functions and data structures to keep track of the values hard regs
1206 had at the start of the function. */
1208 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1209 and has_hard_reg_initial_val.. */
1210 typedef struct GTY(()) initial_value_pair {
1211 rtx hard_reg;
1212 rtx pseudo;
1213 } initial_value_pair;
1214 /* ??? This could be a VEC but there is currently no way to define an
1215 opaque VEC type. This could be worked around by defining struct
1216 initial_value_pair in function.h. */
1217 typedef struct GTY(()) initial_value_struct {
1218 int num_entries;
1219 int max_entries;
1220 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1221 } initial_value_struct;
1223 /* If a pseudo represents an initial hard reg (or expression), return
1224 it, else return NULL_RTX. */
1227 get_hard_reg_initial_reg (rtx reg)
1229 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1230 int i;
1232 if (ivs == 0)
1233 return NULL_RTX;
1235 for (i = 0; i < ivs->num_entries; i++)
1236 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1237 return ivs->entries[i].hard_reg;
1239 return NULL_RTX;
1242 /* Make sure that there's a pseudo register of mode MODE that stores the
1243 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1246 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1248 struct initial_value_struct *ivs;
1249 rtx rv;
1251 rv = has_hard_reg_initial_val (mode, regno);
1252 if (rv)
1253 return rv;
1255 ivs = crtl->hard_reg_initial_vals;
1256 if (ivs == 0)
1258 ivs = ggc_alloc<initial_value_struct> ();
1259 ivs->num_entries = 0;
1260 ivs->max_entries = 5;
1261 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1262 crtl->hard_reg_initial_vals = ivs;
1265 if (ivs->num_entries >= ivs->max_entries)
1267 ivs->max_entries += 5;
1268 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1269 ivs->max_entries);
1272 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1273 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1275 return ivs->entries[ivs->num_entries++].pseudo;
1278 /* See if get_hard_reg_initial_val has been used to create a pseudo
1279 for the initial value of hard register REGNO in mode MODE. Return
1280 the associated pseudo if so, otherwise return NULL. */
1283 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1285 struct initial_value_struct *ivs;
1286 int i;
1288 ivs = crtl->hard_reg_initial_vals;
1289 if (ivs != 0)
1290 for (i = 0; i < ivs->num_entries; i++)
1291 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1292 && REGNO (ivs->entries[i].hard_reg) == regno)
1293 return ivs->entries[i].pseudo;
1295 return NULL_RTX;
1298 unsigned int
1299 emit_initial_value_sets (void)
1301 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1302 int i;
1303 rtx_insn *seq;
1305 if (ivs == 0)
1306 return 0;
1308 start_sequence ();
1309 for (i = 0; i < ivs->num_entries; i++)
1310 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1311 seq = get_insns ();
1312 end_sequence ();
1314 emit_insn_at_entry (seq);
1315 return 0;
1318 /* Return the hardreg-pseudoreg initial values pair entry I and
1319 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1320 bool
1321 initial_value_entry (int i, rtx *hreg, rtx *preg)
1323 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1324 if (!ivs || i >= ivs->num_entries)
1325 return false;
1327 *hreg = ivs->entries[i].hard_reg;
1328 *preg = ivs->entries[i].pseudo;
1329 return true;
1332 /* These routines are responsible for converting virtual register references
1333 to the actual hard register references once RTL generation is complete.
1335 The following four variables are used for communication between the
1336 routines. They contain the offsets of the virtual registers from their
1337 respective hard registers. */
1339 static int in_arg_offset;
1340 static int var_offset;
1341 static int dynamic_offset;
1342 static int out_arg_offset;
1343 static int cfa_offset;
1345 /* In most machines, the stack pointer register is equivalent to the bottom
1346 of the stack. */
1348 #ifndef STACK_POINTER_OFFSET
1349 #define STACK_POINTER_OFFSET 0
1350 #endif
1352 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1353 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1354 #endif
1356 /* If not defined, pick an appropriate default for the offset of dynamically
1357 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1358 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1360 #ifndef STACK_DYNAMIC_OFFSET
1362 /* The bottom of the stack points to the actual arguments. If
1363 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1364 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1365 stack space for register parameters is not pushed by the caller, but
1366 rather part of the fixed stack areas and hence not included in
1367 `crtl->outgoing_args_size'. Nevertheless, we must allow
1368 for it when allocating stack dynamic objects. */
1370 #ifdef INCOMING_REG_PARM_STACK_SPACE
1371 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1372 ((ACCUMULATE_OUTGOING_ARGS \
1373 ? (crtl->outgoing_args_size \
1374 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1375 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1376 : 0) + (STACK_POINTER_OFFSET))
1377 #else
1378 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1379 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1380 + (STACK_POINTER_OFFSET))
1381 #endif
1382 #endif
1385 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1386 is a virtual register, return the equivalent hard register and set the
1387 offset indirectly through the pointer. Otherwise, return 0. */
1389 static rtx
1390 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1392 rtx new_rtx;
1393 HOST_WIDE_INT offset;
1395 if (x == virtual_incoming_args_rtx)
1397 if (stack_realign_drap)
1399 /* Replace virtual_incoming_args_rtx with internal arg
1400 pointer if DRAP is used to realign stack. */
1401 new_rtx = crtl->args.internal_arg_pointer;
1402 offset = 0;
1404 else
1405 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1407 else if (x == virtual_stack_vars_rtx)
1408 new_rtx = frame_pointer_rtx, offset = var_offset;
1409 else if (x == virtual_stack_dynamic_rtx)
1410 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1411 else if (x == virtual_outgoing_args_rtx)
1412 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1413 else if (x == virtual_cfa_rtx)
1415 #ifdef FRAME_POINTER_CFA_OFFSET
1416 new_rtx = frame_pointer_rtx;
1417 #else
1418 new_rtx = arg_pointer_rtx;
1419 #endif
1420 offset = cfa_offset;
1422 else if (x == virtual_preferred_stack_boundary_rtx)
1424 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1425 offset = 0;
1427 else
1428 return NULL_RTX;
1430 *poffset = offset;
1431 return new_rtx;
1434 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1435 Instantiate any virtual registers present inside of *LOC. The expression
1436 is simplified, as much as possible, but is not to be considered "valid"
1437 in any sense implied by the target. If any change is made, set CHANGED
1438 to true. */
1440 static int
1441 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1443 HOST_WIDE_INT offset;
1444 bool *changed = (bool *) data;
1445 rtx x, new_rtx;
1447 x = *loc;
1448 if (x == 0)
1449 return 0;
1451 switch (GET_CODE (x))
1453 case REG:
1454 new_rtx = instantiate_new_reg (x, &offset);
1455 if (new_rtx)
1457 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1458 if (changed)
1459 *changed = true;
1461 return -1;
1463 case PLUS:
1464 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1465 if (new_rtx)
1467 XEXP (x, 0) = new_rtx;
1468 *loc = plus_constant (GET_MODE (x), x, offset, true);
1469 if (changed)
1470 *changed = true;
1471 return -1;
1474 /* FIXME -- from old code */
1475 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1476 we can commute the PLUS and SUBREG because pointers into the
1477 frame are well-behaved. */
1478 break;
1480 default:
1481 break;
1484 return 0;
1487 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1488 matches the predicate for insn CODE operand OPERAND. */
1490 static int
1491 safe_insn_predicate (int code, int operand, rtx x)
1493 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1496 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1497 registers present inside of insn. The result will be a valid insn. */
1499 static void
1500 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1502 HOST_WIDE_INT offset;
1503 int insn_code, i;
1504 bool any_change = false;
1505 rtx set, new_rtx, x;
1506 rtx_insn *seq;
1508 /* There are some special cases to be handled first. */
1509 set = single_set (insn);
1510 if (set)
1512 /* We're allowed to assign to a virtual register. This is interpreted
1513 to mean that the underlying register gets assigned the inverse
1514 transformation. This is used, for example, in the handling of
1515 non-local gotos. */
1516 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1517 if (new_rtx)
1519 start_sequence ();
1521 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1522 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1523 gen_int_mode (-offset, GET_MODE (new_rtx)));
1524 x = force_operand (x, new_rtx);
1525 if (x != new_rtx)
1526 emit_move_insn (new_rtx, x);
1528 seq = get_insns ();
1529 end_sequence ();
1531 emit_insn_before (seq, insn);
1532 delete_insn (insn);
1533 return;
1536 /* Handle a straight copy from a virtual register by generating a
1537 new add insn. The difference between this and falling through
1538 to the generic case is avoiding a new pseudo and eliminating a
1539 move insn in the initial rtl stream. */
1540 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1541 if (new_rtx && offset != 0
1542 && REG_P (SET_DEST (set))
1543 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1545 start_sequence ();
1547 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1548 gen_int_mode (offset,
1549 GET_MODE (SET_DEST (set))),
1550 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1551 if (x != SET_DEST (set))
1552 emit_move_insn (SET_DEST (set), x);
1554 seq = get_insns ();
1555 end_sequence ();
1557 emit_insn_before (seq, insn);
1558 delete_insn (insn);
1559 return;
1562 extract_insn (insn);
1563 insn_code = INSN_CODE (insn);
1565 /* Handle a plus involving a virtual register by determining if the
1566 operands remain valid if they're modified in place. */
1567 if (GET_CODE (SET_SRC (set)) == PLUS
1568 && recog_data.n_operands >= 3
1569 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1570 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1571 && CONST_INT_P (recog_data.operand[2])
1572 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1574 offset += INTVAL (recog_data.operand[2]);
1576 /* If the sum is zero, then replace with a plain move. */
1577 if (offset == 0
1578 && REG_P (SET_DEST (set))
1579 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1581 start_sequence ();
1582 emit_move_insn (SET_DEST (set), new_rtx);
1583 seq = get_insns ();
1584 end_sequence ();
1586 emit_insn_before (seq, insn);
1587 delete_insn (insn);
1588 return;
1591 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1593 /* Using validate_change and apply_change_group here leaves
1594 recog_data in an invalid state. Since we know exactly what
1595 we want to check, do those two by hand. */
1596 if (safe_insn_predicate (insn_code, 1, new_rtx)
1597 && safe_insn_predicate (insn_code, 2, x))
1599 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1600 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1601 any_change = true;
1603 /* Fall through into the regular operand fixup loop in
1604 order to take care of operands other than 1 and 2. */
1608 else
1610 extract_insn (insn);
1611 insn_code = INSN_CODE (insn);
1614 /* In the general case, we expect virtual registers to appear only in
1615 operands, and then only as either bare registers or inside memories. */
1616 for (i = 0; i < recog_data.n_operands; ++i)
1618 x = recog_data.operand[i];
1619 switch (GET_CODE (x))
1621 case MEM:
1623 rtx addr = XEXP (x, 0);
1624 bool changed = false;
1626 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1627 if (!changed)
1628 continue;
1630 start_sequence ();
1631 x = replace_equiv_address (x, addr, true);
1632 /* It may happen that the address with the virtual reg
1633 was valid (e.g. based on the virtual stack reg, which might
1634 be acceptable to the predicates with all offsets), whereas
1635 the address now isn't anymore, for instance when the address
1636 is still offsetted, but the base reg isn't virtual-stack-reg
1637 anymore. Below we would do a force_reg on the whole operand,
1638 but this insn might actually only accept memory. Hence,
1639 before doing that last resort, try to reload the address into
1640 a register, so this operand stays a MEM. */
1641 if (!safe_insn_predicate (insn_code, i, x))
1643 addr = force_reg (GET_MODE (addr), addr);
1644 x = replace_equiv_address (x, addr, true);
1646 seq = get_insns ();
1647 end_sequence ();
1648 if (seq)
1649 emit_insn_before (seq, insn);
1651 break;
1653 case REG:
1654 new_rtx = instantiate_new_reg (x, &offset);
1655 if (new_rtx == NULL)
1656 continue;
1657 if (offset == 0)
1658 x = new_rtx;
1659 else
1661 start_sequence ();
1663 /* Careful, special mode predicates may have stuff in
1664 insn_data[insn_code].operand[i].mode that isn't useful
1665 to us for computing a new value. */
1666 /* ??? Recognize address_operand and/or "p" constraints
1667 to see if (plus new offset) is a valid before we put
1668 this through expand_simple_binop. */
1669 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1670 gen_int_mode (offset, GET_MODE (x)),
1671 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1672 seq = get_insns ();
1673 end_sequence ();
1674 emit_insn_before (seq, insn);
1676 break;
1678 case SUBREG:
1679 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1680 if (new_rtx == NULL)
1681 continue;
1682 if (offset != 0)
1684 start_sequence ();
1685 new_rtx = expand_simple_binop
1686 (GET_MODE (new_rtx), PLUS, new_rtx,
1687 gen_int_mode (offset, GET_MODE (new_rtx)),
1688 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1689 seq = get_insns ();
1690 end_sequence ();
1691 emit_insn_before (seq, insn);
1693 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1694 GET_MODE (new_rtx), SUBREG_BYTE (x));
1695 gcc_assert (x);
1696 break;
1698 default:
1699 continue;
1702 /* At this point, X contains the new value for the operand.
1703 Validate the new value vs the insn predicate. Note that
1704 asm insns will have insn_code -1 here. */
1705 if (!safe_insn_predicate (insn_code, i, x))
1707 start_sequence ();
1708 if (REG_P (x))
1710 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1711 x = copy_to_reg (x);
1713 else
1714 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1715 seq = get_insns ();
1716 end_sequence ();
1717 if (seq)
1718 emit_insn_before (seq, insn);
1721 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1722 any_change = true;
1725 if (any_change)
1727 /* Propagate operand changes into the duplicates. */
1728 for (i = 0; i < recog_data.n_dups; ++i)
1729 *recog_data.dup_loc[i]
1730 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1732 /* Force re-recognition of the instruction for validation. */
1733 INSN_CODE (insn) = -1;
1736 if (asm_noperands (PATTERN (insn)) >= 0)
1738 if (!check_asm_operands (PATTERN (insn)))
1740 error_for_asm (insn, "impossible constraint in %<asm%>");
1741 /* For asm goto, instead of fixing up all the edges
1742 just clear the template and clear input operands
1743 (asm goto doesn't have any output operands). */
1744 if (JUMP_P (insn))
1746 rtx asm_op = extract_asm_operands (PATTERN (insn));
1747 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1748 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1749 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1751 else
1752 delete_insn (insn);
1755 else
1757 if (recog_memoized (insn) < 0)
1758 fatal_insn_not_found (insn);
1762 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1763 do any instantiation required. */
1765 void
1766 instantiate_decl_rtl (rtx x)
1768 rtx addr;
1770 if (x == 0)
1771 return;
1773 /* If this is a CONCAT, recurse for the pieces. */
1774 if (GET_CODE (x) == CONCAT)
1776 instantiate_decl_rtl (XEXP (x, 0));
1777 instantiate_decl_rtl (XEXP (x, 1));
1778 return;
1781 /* If this is not a MEM, no need to do anything. Similarly if the
1782 address is a constant or a register that is not a virtual register. */
1783 if (!MEM_P (x))
1784 return;
1786 addr = XEXP (x, 0);
1787 if (CONSTANT_P (addr)
1788 || (REG_P (addr)
1789 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1790 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1791 return;
1793 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1796 /* Helper for instantiate_decls called via walk_tree: Process all decls
1797 in the given DECL_VALUE_EXPR. */
1799 static tree
1800 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1802 tree t = *tp;
1803 if (! EXPR_P (t))
1805 *walk_subtrees = 0;
1806 if (DECL_P (t))
1808 if (DECL_RTL_SET_P (t))
1809 instantiate_decl_rtl (DECL_RTL (t));
1810 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1811 && DECL_INCOMING_RTL (t))
1812 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1813 if ((TREE_CODE (t) == VAR_DECL
1814 || TREE_CODE (t) == RESULT_DECL)
1815 && DECL_HAS_VALUE_EXPR_P (t))
1817 tree v = DECL_VALUE_EXPR (t);
1818 walk_tree (&v, instantiate_expr, NULL, NULL);
1822 return NULL;
1825 /* Subroutine of instantiate_decls: Process all decls in the given
1826 BLOCK node and all its subblocks. */
1828 static void
1829 instantiate_decls_1 (tree let)
1831 tree t;
1833 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1835 if (DECL_RTL_SET_P (t))
1836 instantiate_decl_rtl (DECL_RTL (t));
1837 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1839 tree v = DECL_VALUE_EXPR (t);
1840 walk_tree (&v, instantiate_expr, NULL, NULL);
1844 /* Process all subblocks. */
1845 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1846 instantiate_decls_1 (t);
1849 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1850 all virtual registers in their DECL_RTL's. */
1852 static void
1853 instantiate_decls (tree fndecl)
1855 tree decl;
1856 unsigned ix;
1858 /* Process all parameters of the function. */
1859 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1861 instantiate_decl_rtl (DECL_RTL (decl));
1862 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1863 if (DECL_HAS_VALUE_EXPR_P (decl))
1865 tree v = DECL_VALUE_EXPR (decl);
1866 walk_tree (&v, instantiate_expr, NULL, NULL);
1870 if ((decl = DECL_RESULT (fndecl))
1871 && TREE_CODE (decl) == RESULT_DECL)
1873 if (DECL_RTL_SET_P (decl))
1874 instantiate_decl_rtl (DECL_RTL (decl));
1875 if (DECL_HAS_VALUE_EXPR_P (decl))
1877 tree v = DECL_VALUE_EXPR (decl);
1878 walk_tree (&v, instantiate_expr, NULL, NULL);
1882 /* Process the saved static chain if it exists. */
1883 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1884 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1885 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1887 /* Now process all variables defined in the function or its subblocks. */
1888 instantiate_decls_1 (DECL_INITIAL (fndecl));
1890 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1891 if (DECL_RTL_SET_P (decl))
1892 instantiate_decl_rtl (DECL_RTL (decl));
1893 vec_free (cfun->local_decls);
1896 /* Pass through the INSNS of function FNDECL and convert virtual register
1897 references to hard register references. */
1899 static unsigned int
1900 instantiate_virtual_regs (void)
1902 rtx_insn *insn;
1904 /* Compute the offsets to use for this function. */
1905 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1906 var_offset = STARTING_FRAME_OFFSET;
1907 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1908 out_arg_offset = STACK_POINTER_OFFSET;
1909 #ifdef FRAME_POINTER_CFA_OFFSET
1910 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1911 #else
1912 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1913 #endif
1915 /* Initialize recognition, indicating that volatile is OK. */
1916 init_recog ();
1918 /* Scan through all the insns, instantiating every virtual register still
1919 present. */
1920 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1921 if (INSN_P (insn))
1923 /* These patterns in the instruction stream can never be recognized.
1924 Fortunately, they shouldn't contain virtual registers either. */
1925 if (GET_CODE (PATTERN (insn)) == USE
1926 || GET_CODE (PATTERN (insn)) == CLOBBER
1927 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1928 continue;
1929 else if (DEBUG_INSN_P (insn))
1930 for_each_rtx (&INSN_VAR_LOCATION (insn),
1931 instantiate_virtual_regs_in_rtx, NULL);
1932 else
1933 instantiate_virtual_regs_in_insn (insn);
1935 if (INSN_DELETED_P (insn))
1936 continue;
1938 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1940 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1941 if (CALL_P (insn))
1942 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1943 instantiate_virtual_regs_in_rtx, NULL);
1946 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1947 instantiate_decls (current_function_decl);
1949 targetm.instantiate_decls ();
1951 /* Indicate that, from now on, assign_stack_local should use
1952 frame_pointer_rtx. */
1953 virtuals_instantiated = 1;
1955 return 0;
1958 namespace {
1960 const pass_data pass_data_instantiate_virtual_regs =
1962 RTL_PASS, /* type */
1963 "vregs", /* name */
1964 OPTGROUP_NONE, /* optinfo_flags */
1965 TV_NONE, /* tv_id */
1966 0, /* properties_required */
1967 0, /* properties_provided */
1968 0, /* properties_destroyed */
1969 0, /* todo_flags_start */
1970 0, /* todo_flags_finish */
1973 class pass_instantiate_virtual_regs : public rtl_opt_pass
1975 public:
1976 pass_instantiate_virtual_regs (gcc::context *ctxt)
1977 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1980 /* opt_pass methods: */
1981 virtual unsigned int execute (function *)
1983 return instantiate_virtual_regs ();
1986 }; // class pass_instantiate_virtual_regs
1988 } // anon namespace
1990 rtl_opt_pass *
1991 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1993 return new pass_instantiate_virtual_regs (ctxt);
1997 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1998 This means a type for which function calls must pass an address to the
1999 function or get an address back from the function.
2000 EXP may be a type node or an expression (whose type is tested). */
2003 aggregate_value_p (const_tree exp, const_tree fntype)
2005 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2006 int i, regno, nregs;
2007 rtx reg;
2009 if (fntype)
2010 switch (TREE_CODE (fntype))
2012 case CALL_EXPR:
2014 tree fndecl = get_callee_fndecl (fntype);
2015 fntype = (fndecl
2016 ? TREE_TYPE (fndecl)
2017 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2019 break;
2020 case FUNCTION_DECL:
2021 fntype = TREE_TYPE (fntype);
2022 break;
2023 case FUNCTION_TYPE:
2024 case METHOD_TYPE:
2025 break;
2026 case IDENTIFIER_NODE:
2027 fntype = NULL_TREE;
2028 break;
2029 default:
2030 /* We don't expect other tree types here. */
2031 gcc_unreachable ();
2034 if (VOID_TYPE_P (type))
2035 return 0;
2037 /* If a record should be passed the same as its first (and only) member
2038 don't pass it as an aggregate. */
2039 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2040 return aggregate_value_p (first_field (type), fntype);
2042 /* If the front end has decided that this needs to be passed by
2043 reference, do so. */
2044 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2045 && DECL_BY_REFERENCE (exp))
2046 return 1;
2048 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2049 if (fntype && TREE_ADDRESSABLE (fntype))
2050 return 1;
2052 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2053 and thus can't be returned in registers. */
2054 if (TREE_ADDRESSABLE (type))
2055 return 1;
2057 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2058 return 1;
2060 if (targetm.calls.return_in_memory (type, fntype))
2061 return 1;
2063 /* Make sure we have suitable call-clobbered regs to return
2064 the value in; if not, we must return it in memory. */
2065 reg = hard_function_value (type, 0, fntype, 0);
2067 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2068 it is OK. */
2069 if (!REG_P (reg))
2070 return 0;
2072 regno = REGNO (reg);
2073 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2074 for (i = 0; i < nregs; i++)
2075 if (! call_used_regs[regno + i])
2076 return 1;
2078 return 0;
2081 /* Return true if we should assign DECL a pseudo register; false if it
2082 should live on the local stack. */
2084 bool
2085 use_register_for_decl (const_tree decl)
2087 if (!targetm.calls.allocate_stack_slots_for_args ())
2088 return true;
2090 /* Honor volatile. */
2091 if (TREE_SIDE_EFFECTS (decl))
2092 return false;
2094 /* Honor addressability. */
2095 if (TREE_ADDRESSABLE (decl))
2096 return false;
2098 /* Only register-like things go in registers. */
2099 if (DECL_MODE (decl) == BLKmode)
2100 return false;
2102 /* If -ffloat-store specified, don't put explicit float variables
2103 into registers. */
2104 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2105 propagates values across these stores, and it probably shouldn't. */
2106 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2107 return false;
2109 /* If we're not interested in tracking debugging information for
2110 this decl, then we can certainly put it in a register. */
2111 if (DECL_IGNORED_P (decl))
2112 return true;
2114 if (optimize)
2115 return true;
2117 if (!DECL_REGISTER (decl))
2118 return false;
2120 switch (TREE_CODE (TREE_TYPE (decl)))
2122 case RECORD_TYPE:
2123 case UNION_TYPE:
2124 case QUAL_UNION_TYPE:
2125 /* When not optimizing, disregard register keyword for variables with
2126 types containing methods, otherwise the methods won't be callable
2127 from the debugger. */
2128 if (TYPE_METHODS (TREE_TYPE (decl)))
2129 return false;
2130 break;
2131 default:
2132 break;
2135 return true;
2138 /* Return true if TYPE should be passed by invisible reference. */
2140 bool
2141 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2142 tree type, bool named_arg)
2144 if (type)
2146 /* If this type contains non-trivial constructors, then it is
2147 forbidden for the middle-end to create any new copies. */
2148 if (TREE_ADDRESSABLE (type))
2149 return true;
2151 /* GCC post 3.4 passes *all* variable sized types by reference. */
2152 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2153 return true;
2155 /* If a record type should be passed the same as its first (and only)
2156 member, use the type and mode of that member. */
2157 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2159 type = TREE_TYPE (first_field (type));
2160 mode = TYPE_MODE (type);
2164 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2165 type, named_arg);
2168 /* Return true if TYPE, which is passed by reference, should be callee
2169 copied instead of caller copied. */
2171 bool
2172 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2173 tree type, bool named_arg)
2175 if (type && TREE_ADDRESSABLE (type))
2176 return false;
2177 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2178 named_arg);
2181 /* Structures to communicate between the subroutines of assign_parms.
2182 The first holds data persistent across all parameters, the second
2183 is cleared out for each parameter. */
2185 struct assign_parm_data_all
2187 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2188 should become a job of the target or otherwise encapsulated. */
2189 CUMULATIVE_ARGS args_so_far_v;
2190 cumulative_args_t args_so_far;
2191 struct args_size stack_args_size;
2192 tree function_result_decl;
2193 tree orig_fnargs;
2194 rtx_insn *first_conversion_insn;
2195 rtx_insn *last_conversion_insn;
2196 HOST_WIDE_INT pretend_args_size;
2197 HOST_WIDE_INT extra_pretend_bytes;
2198 int reg_parm_stack_space;
2201 struct assign_parm_data_one
2203 tree nominal_type;
2204 tree passed_type;
2205 rtx entry_parm;
2206 rtx stack_parm;
2207 enum machine_mode nominal_mode;
2208 enum machine_mode passed_mode;
2209 enum machine_mode promoted_mode;
2210 struct locate_and_pad_arg_data locate;
2211 int partial;
2212 BOOL_BITFIELD named_arg : 1;
2213 BOOL_BITFIELD passed_pointer : 1;
2214 BOOL_BITFIELD on_stack : 1;
2215 BOOL_BITFIELD loaded_in_reg : 1;
2218 /* A subroutine of assign_parms. Initialize ALL. */
2220 static void
2221 assign_parms_initialize_all (struct assign_parm_data_all *all)
2223 tree fntype ATTRIBUTE_UNUSED;
2225 memset (all, 0, sizeof (*all));
2227 fntype = TREE_TYPE (current_function_decl);
2229 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2230 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2231 #else
2232 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2233 current_function_decl, -1);
2234 #endif
2235 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2237 #ifdef INCOMING_REG_PARM_STACK_SPACE
2238 all->reg_parm_stack_space
2239 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2240 #endif
2243 /* If ARGS contains entries with complex types, split the entry into two
2244 entries of the component type. Return a new list of substitutions are
2245 needed, else the old list. */
2247 static void
2248 split_complex_args (vec<tree> *args)
2250 unsigned i;
2251 tree p;
2253 FOR_EACH_VEC_ELT (*args, i, p)
2255 tree type = TREE_TYPE (p);
2256 if (TREE_CODE (type) == COMPLEX_TYPE
2257 && targetm.calls.split_complex_arg (type))
2259 tree decl;
2260 tree subtype = TREE_TYPE (type);
2261 bool addressable = TREE_ADDRESSABLE (p);
2263 /* Rewrite the PARM_DECL's type with its component. */
2264 p = copy_node (p);
2265 TREE_TYPE (p) = subtype;
2266 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2267 DECL_MODE (p) = VOIDmode;
2268 DECL_SIZE (p) = NULL;
2269 DECL_SIZE_UNIT (p) = NULL;
2270 /* If this arg must go in memory, put it in a pseudo here.
2271 We can't allow it to go in memory as per normal parms,
2272 because the usual place might not have the imag part
2273 adjacent to the real part. */
2274 DECL_ARTIFICIAL (p) = addressable;
2275 DECL_IGNORED_P (p) = addressable;
2276 TREE_ADDRESSABLE (p) = 0;
2277 layout_decl (p, 0);
2278 (*args)[i] = p;
2280 /* Build a second synthetic decl. */
2281 decl = build_decl (EXPR_LOCATION (p),
2282 PARM_DECL, NULL_TREE, subtype);
2283 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2284 DECL_ARTIFICIAL (decl) = addressable;
2285 DECL_IGNORED_P (decl) = addressable;
2286 layout_decl (decl, 0);
2287 args->safe_insert (++i, decl);
2292 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2293 the hidden struct return argument, and (abi willing) complex args.
2294 Return the new parameter list. */
2296 static vec<tree>
2297 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2299 tree fndecl = current_function_decl;
2300 tree fntype = TREE_TYPE (fndecl);
2301 vec<tree> fnargs = vNULL;
2302 tree arg;
2304 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2305 fnargs.safe_push (arg);
2307 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2309 /* If struct value address is treated as the first argument, make it so. */
2310 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2311 && ! cfun->returns_pcc_struct
2312 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2314 tree type = build_pointer_type (TREE_TYPE (fntype));
2315 tree decl;
2317 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2318 PARM_DECL, get_identifier (".result_ptr"), type);
2319 DECL_ARG_TYPE (decl) = type;
2320 DECL_ARTIFICIAL (decl) = 1;
2321 DECL_NAMELESS (decl) = 1;
2322 TREE_CONSTANT (decl) = 1;
2324 DECL_CHAIN (decl) = all->orig_fnargs;
2325 all->orig_fnargs = decl;
2326 fnargs.safe_insert (0, decl);
2328 all->function_result_decl = decl;
2331 /* If the target wants to split complex arguments into scalars, do so. */
2332 if (targetm.calls.split_complex_arg)
2333 split_complex_args (&fnargs);
2335 return fnargs;
2338 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2339 data for the parameter. Incorporate ABI specifics such as pass-by-
2340 reference and type promotion. */
2342 static void
2343 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2344 struct assign_parm_data_one *data)
2346 tree nominal_type, passed_type;
2347 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2348 int unsignedp;
2350 memset (data, 0, sizeof (*data));
2352 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2353 if (!cfun->stdarg)
2354 data->named_arg = 1; /* No variadic parms. */
2355 else if (DECL_CHAIN (parm))
2356 data->named_arg = 1; /* Not the last non-variadic parm. */
2357 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2358 data->named_arg = 1; /* Only variadic ones are unnamed. */
2359 else
2360 data->named_arg = 0; /* Treat as variadic. */
2362 nominal_type = TREE_TYPE (parm);
2363 passed_type = DECL_ARG_TYPE (parm);
2365 /* Look out for errors propagating this far. Also, if the parameter's
2366 type is void then its value doesn't matter. */
2367 if (TREE_TYPE (parm) == error_mark_node
2368 /* This can happen after weird syntax errors
2369 or if an enum type is defined among the parms. */
2370 || TREE_CODE (parm) != PARM_DECL
2371 || passed_type == NULL
2372 || VOID_TYPE_P (nominal_type))
2374 nominal_type = passed_type = void_type_node;
2375 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2376 goto egress;
2379 /* Find mode of arg as it is passed, and mode of arg as it should be
2380 during execution of this function. */
2381 passed_mode = TYPE_MODE (passed_type);
2382 nominal_mode = TYPE_MODE (nominal_type);
2384 /* If the parm is to be passed as a transparent union or record, use the
2385 type of the first field for the tests below. We have already verified
2386 that the modes are the same. */
2387 if ((TREE_CODE (passed_type) == UNION_TYPE
2388 || TREE_CODE (passed_type) == RECORD_TYPE)
2389 && TYPE_TRANSPARENT_AGGR (passed_type))
2390 passed_type = TREE_TYPE (first_field (passed_type));
2392 /* See if this arg was passed by invisible reference. */
2393 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2394 passed_type, data->named_arg))
2396 passed_type = nominal_type = build_pointer_type (passed_type);
2397 data->passed_pointer = true;
2398 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2401 /* Find mode as it is passed by the ABI. */
2402 unsignedp = TYPE_UNSIGNED (passed_type);
2403 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2404 TREE_TYPE (current_function_decl), 0);
2406 egress:
2407 data->nominal_type = nominal_type;
2408 data->passed_type = passed_type;
2409 data->nominal_mode = nominal_mode;
2410 data->passed_mode = passed_mode;
2411 data->promoted_mode = promoted_mode;
2414 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2416 static void
2417 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2418 struct assign_parm_data_one *data, bool no_rtl)
2420 int varargs_pretend_bytes = 0;
2422 targetm.calls.setup_incoming_varargs (all->args_so_far,
2423 data->promoted_mode,
2424 data->passed_type,
2425 &varargs_pretend_bytes, no_rtl);
2427 /* If the back-end has requested extra stack space, record how much is
2428 needed. Do not change pretend_args_size otherwise since it may be
2429 nonzero from an earlier partial argument. */
2430 if (varargs_pretend_bytes > 0)
2431 all->pretend_args_size = varargs_pretend_bytes;
2434 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2435 the incoming location of the current parameter. */
2437 static void
2438 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2439 struct assign_parm_data_one *data)
2441 HOST_WIDE_INT pretend_bytes = 0;
2442 rtx entry_parm;
2443 bool in_regs;
2445 if (data->promoted_mode == VOIDmode)
2447 data->entry_parm = data->stack_parm = const0_rtx;
2448 return;
2451 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2452 data->promoted_mode,
2453 data->passed_type,
2454 data->named_arg);
2456 if (entry_parm == 0)
2457 data->promoted_mode = data->passed_mode;
2459 /* Determine parm's home in the stack, in case it arrives in the stack
2460 or we should pretend it did. Compute the stack position and rtx where
2461 the argument arrives and its size.
2463 There is one complexity here: If this was a parameter that would
2464 have been passed in registers, but wasn't only because it is
2465 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2466 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2467 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2468 as it was the previous time. */
2469 in_regs = entry_parm != 0;
2470 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2471 in_regs = true;
2472 #endif
2473 if (!in_regs && !data->named_arg)
2475 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2477 rtx tem;
2478 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2479 data->promoted_mode,
2480 data->passed_type, true);
2481 in_regs = tem != NULL;
2485 /* If this parameter was passed both in registers and in the stack, use
2486 the copy on the stack. */
2487 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2488 data->passed_type))
2489 entry_parm = 0;
2491 if (entry_parm)
2493 int partial;
2495 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2496 data->promoted_mode,
2497 data->passed_type,
2498 data->named_arg);
2499 data->partial = partial;
2501 /* The caller might already have allocated stack space for the
2502 register parameters. */
2503 if (partial != 0 && all->reg_parm_stack_space == 0)
2505 /* Part of this argument is passed in registers and part
2506 is passed on the stack. Ask the prologue code to extend
2507 the stack part so that we can recreate the full value.
2509 PRETEND_BYTES is the size of the registers we need to store.
2510 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2511 stack space that the prologue should allocate.
2513 Internally, gcc assumes that the argument pointer is aligned
2514 to STACK_BOUNDARY bits. This is used both for alignment
2515 optimizations (see init_emit) and to locate arguments that are
2516 aligned to more than PARM_BOUNDARY bits. We must preserve this
2517 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2518 a stack boundary. */
2520 /* We assume at most one partial arg, and it must be the first
2521 argument on the stack. */
2522 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2524 pretend_bytes = partial;
2525 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2527 /* We want to align relative to the actual stack pointer, so
2528 don't include this in the stack size until later. */
2529 all->extra_pretend_bytes = all->pretend_args_size;
2533 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2534 all->reg_parm_stack_space,
2535 entry_parm ? data->partial : 0, current_function_decl,
2536 &all->stack_args_size, &data->locate);
2538 /* Update parm_stack_boundary if this parameter is passed in the
2539 stack. */
2540 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2541 crtl->parm_stack_boundary = data->locate.boundary;
2543 /* Adjust offsets to include the pretend args. */
2544 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2545 data->locate.slot_offset.constant += pretend_bytes;
2546 data->locate.offset.constant += pretend_bytes;
2548 data->entry_parm = entry_parm;
2551 /* A subroutine of assign_parms. If there is actually space on the stack
2552 for this parm, count it in stack_args_size and return true. */
2554 static bool
2555 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2556 struct assign_parm_data_one *data)
2558 /* Trivially true if we've no incoming register. */
2559 if (data->entry_parm == NULL)
2561 /* Also true if we're partially in registers and partially not,
2562 since we've arranged to drop the entire argument on the stack. */
2563 else if (data->partial != 0)
2565 /* Also true if the target says that it's passed in both registers
2566 and on the stack. */
2567 else if (GET_CODE (data->entry_parm) == PARALLEL
2568 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2570 /* Also true if the target says that there's stack allocated for
2571 all register parameters. */
2572 else if (all->reg_parm_stack_space > 0)
2574 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2575 else
2576 return false;
2578 all->stack_args_size.constant += data->locate.size.constant;
2579 if (data->locate.size.var)
2580 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2582 return true;
2585 /* A subroutine of assign_parms. Given that this parameter is allocated
2586 stack space by the ABI, find it. */
2588 static void
2589 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2591 rtx offset_rtx, stack_parm;
2592 unsigned int align, boundary;
2594 /* If we're passing this arg using a reg, make its stack home the
2595 aligned stack slot. */
2596 if (data->entry_parm)
2597 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2598 else
2599 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2601 stack_parm = crtl->args.internal_arg_pointer;
2602 if (offset_rtx != const0_rtx)
2603 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2604 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2606 if (!data->passed_pointer)
2608 set_mem_attributes (stack_parm, parm, 1);
2609 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2610 while promoted mode's size is needed. */
2611 if (data->promoted_mode != BLKmode
2612 && data->promoted_mode != DECL_MODE (parm))
2614 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2615 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2617 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2618 data->promoted_mode);
2619 if (offset)
2620 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2625 boundary = data->locate.boundary;
2626 align = BITS_PER_UNIT;
2628 /* If we're padding upward, we know that the alignment of the slot
2629 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2630 intentionally forcing upward padding. Otherwise we have to come
2631 up with a guess at the alignment based on OFFSET_RTX. */
2632 if (data->locate.where_pad != downward || data->entry_parm)
2633 align = boundary;
2634 else if (CONST_INT_P (offset_rtx))
2636 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2637 align = align & -align;
2639 set_mem_align (stack_parm, align);
2641 if (data->entry_parm)
2642 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2644 data->stack_parm = stack_parm;
2647 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2648 always valid and contiguous. */
2650 static void
2651 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2653 rtx entry_parm = data->entry_parm;
2654 rtx stack_parm = data->stack_parm;
2656 /* If this parm was passed part in regs and part in memory, pretend it
2657 arrived entirely in memory by pushing the register-part onto the stack.
2658 In the special case of a DImode or DFmode that is split, we could put
2659 it together in a pseudoreg directly, but for now that's not worth
2660 bothering with. */
2661 if (data->partial != 0)
2663 /* Handle calls that pass values in multiple non-contiguous
2664 locations. The Irix 6 ABI has examples of this. */
2665 if (GET_CODE (entry_parm) == PARALLEL)
2666 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2667 data->passed_type,
2668 int_size_in_bytes (data->passed_type));
2669 else
2671 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2672 move_block_from_reg (REGNO (entry_parm),
2673 validize_mem (copy_rtx (stack_parm)),
2674 data->partial / UNITS_PER_WORD);
2677 entry_parm = stack_parm;
2680 /* If we didn't decide this parm came in a register, by default it came
2681 on the stack. */
2682 else if (entry_parm == NULL)
2683 entry_parm = stack_parm;
2685 /* When an argument is passed in multiple locations, we can't make use
2686 of this information, but we can save some copying if the whole argument
2687 is passed in a single register. */
2688 else if (GET_CODE (entry_parm) == PARALLEL
2689 && data->nominal_mode != BLKmode
2690 && data->passed_mode != BLKmode)
2692 size_t i, len = XVECLEN (entry_parm, 0);
2694 for (i = 0; i < len; i++)
2695 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2696 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2697 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2698 == data->passed_mode)
2699 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2701 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2702 break;
2706 data->entry_parm = entry_parm;
2709 /* A subroutine of assign_parms. Reconstitute any values which were
2710 passed in multiple registers and would fit in a single register. */
2712 static void
2713 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2715 rtx entry_parm = data->entry_parm;
2717 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2718 This can be done with register operations rather than on the
2719 stack, even if we will store the reconstituted parameter on the
2720 stack later. */
2721 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2723 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2724 emit_group_store (parmreg, entry_parm, data->passed_type,
2725 GET_MODE_SIZE (GET_MODE (entry_parm)));
2726 entry_parm = parmreg;
2729 data->entry_parm = entry_parm;
2732 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2733 always valid and properly aligned. */
2735 static void
2736 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2738 rtx stack_parm = data->stack_parm;
2740 /* If we can't trust the parm stack slot to be aligned enough for its
2741 ultimate type, don't use that slot after entry. We'll make another
2742 stack slot, if we need one. */
2743 if (stack_parm
2744 && ((STRICT_ALIGNMENT
2745 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2746 || (data->nominal_type
2747 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2748 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2749 stack_parm = NULL;
2751 /* If parm was passed in memory, and we need to convert it on entry,
2752 don't store it back in that same slot. */
2753 else if (data->entry_parm == stack_parm
2754 && data->nominal_mode != BLKmode
2755 && data->nominal_mode != data->passed_mode)
2756 stack_parm = NULL;
2758 /* If stack protection is in effect for this function, don't leave any
2759 pointers in their passed stack slots. */
2760 else if (crtl->stack_protect_guard
2761 && (flag_stack_protect == 2
2762 || data->passed_pointer
2763 || POINTER_TYPE_P (data->nominal_type)))
2764 stack_parm = NULL;
2766 data->stack_parm = stack_parm;
2769 /* A subroutine of assign_parms. Return true if the current parameter
2770 should be stored as a BLKmode in the current frame. */
2772 static bool
2773 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2775 if (data->nominal_mode == BLKmode)
2776 return true;
2777 if (GET_MODE (data->entry_parm) == BLKmode)
2778 return true;
2780 #ifdef BLOCK_REG_PADDING
2781 /* Only assign_parm_setup_block knows how to deal with register arguments
2782 that are padded at the least significant end. */
2783 if (REG_P (data->entry_parm)
2784 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2785 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2786 == (BYTES_BIG_ENDIAN ? upward : downward)))
2787 return true;
2788 #endif
2790 return false;
2793 /* A subroutine of assign_parms. Arrange for the parameter to be
2794 present and valid in DATA->STACK_RTL. */
2796 static void
2797 assign_parm_setup_block (struct assign_parm_data_all *all,
2798 tree parm, struct assign_parm_data_one *data)
2800 rtx entry_parm = data->entry_parm;
2801 rtx stack_parm = data->stack_parm;
2802 HOST_WIDE_INT size;
2803 HOST_WIDE_INT size_stored;
2805 if (GET_CODE (entry_parm) == PARALLEL)
2806 entry_parm = emit_group_move_into_temps (entry_parm);
2808 size = int_size_in_bytes (data->passed_type);
2809 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2810 if (stack_parm == 0)
2812 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2813 stack_parm = assign_stack_local (BLKmode, size_stored,
2814 DECL_ALIGN (parm));
2815 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2816 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2817 set_mem_attributes (stack_parm, parm, 1);
2820 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2821 calls that pass values in multiple non-contiguous locations. */
2822 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2824 rtx mem;
2826 /* Note that we will be storing an integral number of words.
2827 So we have to be careful to ensure that we allocate an
2828 integral number of words. We do this above when we call
2829 assign_stack_local if space was not allocated in the argument
2830 list. If it was, this will not work if PARM_BOUNDARY is not
2831 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2832 if it becomes a problem. Exception is when BLKmode arrives
2833 with arguments not conforming to word_mode. */
2835 if (data->stack_parm == 0)
2837 else if (GET_CODE (entry_parm) == PARALLEL)
2839 else
2840 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2842 mem = validize_mem (copy_rtx (stack_parm));
2844 /* Handle values in multiple non-contiguous locations. */
2845 if (GET_CODE (entry_parm) == PARALLEL)
2847 push_to_sequence2 (all->first_conversion_insn,
2848 all->last_conversion_insn);
2849 emit_group_store (mem, entry_parm, data->passed_type, size);
2850 all->first_conversion_insn = get_insns ();
2851 all->last_conversion_insn = get_last_insn ();
2852 end_sequence ();
2855 else if (size == 0)
2858 /* If SIZE is that of a mode no bigger than a word, just use
2859 that mode's store operation. */
2860 else if (size <= UNITS_PER_WORD)
2862 enum machine_mode mode
2863 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2865 if (mode != BLKmode
2866 #ifdef BLOCK_REG_PADDING
2867 && (size == UNITS_PER_WORD
2868 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2869 != (BYTES_BIG_ENDIAN ? upward : downward)))
2870 #endif
2873 rtx reg;
2875 /* We are really truncating a word_mode value containing
2876 SIZE bytes into a value of mode MODE. If such an
2877 operation requires no actual instructions, we can refer
2878 to the value directly in mode MODE, otherwise we must
2879 start with the register in word_mode and explicitly
2880 convert it. */
2881 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2882 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2883 else
2885 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2886 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2888 emit_move_insn (change_address (mem, mode, 0), reg);
2891 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2892 machine must be aligned to the left before storing
2893 to memory. Note that the previous test doesn't
2894 handle all cases (e.g. SIZE == 3). */
2895 else if (size != UNITS_PER_WORD
2896 #ifdef BLOCK_REG_PADDING
2897 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2898 == downward)
2899 #else
2900 && BYTES_BIG_ENDIAN
2901 #endif
2904 rtx tem, x;
2905 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2906 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2908 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2909 tem = change_address (mem, word_mode, 0);
2910 emit_move_insn (tem, x);
2912 else
2913 move_block_from_reg (REGNO (entry_parm), mem,
2914 size_stored / UNITS_PER_WORD);
2916 else
2917 move_block_from_reg (REGNO (entry_parm), mem,
2918 size_stored / UNITS_PER_WORD);
2920 else if (data->stack_parm == 0)
2922 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2923 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2924 BLOCK_OP_NORMAL);
2925 all->first_conversion_insn = get_insns ();
2926 all->last_conversion_insn = get_last_insn ();
2927 end_sequence ();
2930 data->stack_parm = stack_parm;
2931 SET_DECL_RTL (parm, stack_parm);
2934 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2935 parameter. Get it there. Perform all ABI specified conversions. */
2937 static void
2938 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2939 struct assign_parm_data_one *data)
2941 rtx parmreg, validated_mem;
2942 rtx equiv_stack_parm;
2943 enum machine_mode promoted_nominal_mode;
2944 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2945 bool did_conversion = false;
2946 bool need_conversion, moved;
2948 /* Store the parm in a pseudoregister during the function, but we may
2949 need to do it in a wider mode. Using 2 here makes the result
2950 consistent with promote_decl_mode and thus expand_expr_real_1. */
2951 promoted_nominal_mode
2952 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2953 TREE_TYPE (current_function_decl), 2);
2955 parmreg = gen_reg_rtx (promoted_nominal_mode);
2957 if (!DECL_ARTIFICIAL (parm))
2958 mark_user_reg (parmreg);
2960 /* If this was an item that we received a pointer to,
2961 set DECL_RTL appropriately. */
2962 if (data->passed_pointer)
2964 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2965 set_mem_attributes (x, parm, 1);
2966 SET_DECL_RTL (parm, x);
2968 else
2969 SET_DECL_RTL (parm, parmreg);
2971 assign_parm_remove_parallels (data);
2973 /* Copy the value into the register, thus bridging between
2974 assign_parm_find_data_types and expand_expr_real_1. */
2976 equiv_stack_parm = data->stack_parm;
2977 validated_mem = validize_mem (copy_rtx (data->entry_parm));
2979 need_conversion = (data->nominal_mode != data->passed_mode
2980 || promoted_nominal_mode != data->promoted_mode);
2981 moved = false;
2983 if (need_conversion
2984 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2985 && data->nominal_mode == data->passed_mode
2986 && data->nominal_mode == GET_MODE (data->entry_parm))
2988 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2989 mode, by the caller. We now have to convert it to
2990 NOMINAL_MODE, if different. However, PARMREG may be in
2991 a different mode than NOMINAL_MODE if it is being stored
2992 promoted.
2994 If ENTRY_PARM is a hard register, it might be in a register
2995 not valid for operating in its mode (e.g., an odd-numbered
2996 register for a DFmode). In that case, moves are the only
2997 thing valid, so we can't do a convert from there. This
2998 occurs when the calling sequence allow such misaligned
2999 usages.
3001 In addition, the conversion may involve a call, which could
3002 clobber parameters which haven't been copied to pseudo
3003 registers yet.
3005 First, we try to emit an insn which performs the necessary
3006 conversion. We verify that this insn does not clobber any
3007 hard registers. */
3009 enum insn_code icode;
3010 rtx op0, op1;
3012 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3013 unsignedp);
3015 op0 = parmreg;
3016 op1 = validated_mem;
3017 if (icode != CODE_FOR_nothing
3018 && insn_operand_matches (icode, 0, op0)
3019 && insn_operand_matches (icode, 1, op1))
3021 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3022 rtx insn, insns, t = op1;
3023 HARD_REG_SET hardregs;
3025 start_sequence ();
3026 /* If op1 is a hard register that is likely spilled, first
3027 force it into a pseudo, otherwise combiner might extend
3028 its lifetime too much. */
3029 if (GET_CODE (t) == SUBREG)
3030 t = SUBREG_REG (t);
3031 if (REG_P (t)
3032 && HARD_REGISTER_P (t)
3033 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3034 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3036 t = gen_reg_rtx (GET_MODE (op1));
3037 emit_move_insn (t, op1);
3039 else
3040 t = op1;
3041 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3042 data->passed_mode, unsignedp);
3043 emit_insn (insn);
3044 insns = get_insns ();
3046 moved = true;
3047 CLEAR_HARD_REG_SET (hardregs);
3048 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3050 if (INSN_P (insn))
3051 note_stores (PATTERN (insn), record_hard_reg_sets,
3052 &hardregs);
3053 if (!hard_reg_set_empty_p (hardregs))
3054 moved = false;
3057 end_sequence ();
3059 if (moved)
3061 emit_insn (insns);
3062 if (equiv_stack_parm != NULL_RTX)
3063 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3064 equiv_stack_parm);
3069 if (moved)
3070 /* Nothing to do. */
3072 else if (need_conversion)
3074 /* We did not have an insn to convert directly, or the sequence
3075 generated appeared unsafe. We must first copy the parm to a
3076 pseudo reg, and save the conversion until after all
3077 parameters have been moved. */
3079 int save_tree_used;
3080 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3082 emit_move_insn (tempreg, validated_mem);
3084 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3085 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3087 if (GET_CODE (tempreg) == SUBREG
3088 && GET_MODE (tempreg) == data->nominal_mode
3089 && REG_P (SUBREG_REG (tempreg))
3090 && data->nominal_mode == data->passed_mode
3091 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3092 && GET_MODE_SIZE (GET_MODE (tempreg))
3093 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3095 /* The argument is already sign/zero extended, so note it
3096 into the subreg. */
3097 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3098 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3101 /* TREE_USED gets set erroneously during expand_assignment. */
3102 save_tree_used = TREE_USED (parm);
3103 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3104 TREE_USED (parm) = save_tree_used;
3105 all->first_conversion_insn = get_insns ();
3106 all->last_conversion_insn = get_last_insn ();
3107 end_sequence ();
3109 did_conversion = true;
3111 else
3112 emit_move_insn (parmreg, validated_mem);
3114 /* If we were passed a pointer but the actual value can safely live
3115 in a register, retrieve it and use it directly. */
3116 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3118 /* We can't use nominal_mode, because it will have been set to
3119 Pmode above. We must use the actual mode of the parm. */
3120 if (use_register_for_decl (parm))
3122 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3123 mark_user_reg (parmreg);
3125 else
3127 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3128 TYPE_MODE (TREE_TYPE (parm)),
3129 TYPE_ALIGN (TREE_TYPE (parm)));
3130 parmreg
3131 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3132 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3133 align);
3134 set_mem_attributes (parmreg, parm, 1);
3137 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3139 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3140 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3142 push_to_sequence2 (all->first_conversion_insn,
3143 all->last_conversion_insn);
3144 emit_move_insn (tempreg, DECL_RTL (parm));
3145 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3146 emit_move_insn (parmreg, tempreg);
3147 all->first_conversion_insn = get_insns ();
3148 all->last_conversion_insn = get_last_insn ();
3149 end_sequence ();
3151 did_conversion = true;
3153 else
3154 emit_move_insn (parmreg, DECL_RTL (parm));
3156 SET_DECL_RTL (parm, parmreg);
3158 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3159 now the parm. */
3160 data->stack_parm = NULL;
3163 /* Mark the register as eliminable if we did no conversion and it was
3164 copied from memory at a fixed offset, and the arg pointer was not
3165 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3166 offset formed an invalid address, such memory-equivalences as we
3167 make here would screw up life analysis for it. */
3168 if (data->nominal_mode == data->passed_mode
3169 && !did_conversion
3170 && data->stack_parm != 0
3171 && MEM_P (data->stack_parm)
3172 && data->locate.offset.var == 0
3173 && reg_mentioned_p (virtual_incoming_args_rtx,
3174 XEXP (data->stack_parm, 0)))
3176 rtx_insn *linsn = get_last_insn ();
3177 rtx_insn *sinsn;
3178 rtx set;
3180 /* Mark complex types separately. */
3181 if (GET_CODE (parmreg) == CONCAT)
3183 enum machine_mode submode
3184 = GET_MODE_INNER (GET_MODE (parmreg));
3185 int regnor = REGNO (XEXP (parmreg, 0));
3186 int regnoi = REGNO (XEXP (parmreg, 1));
3187 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3188 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3189 GET_MODE_SIZE (submode));
3191 /* Scan backwards for the set of the real and
3192 imaginary parts. */
3193 for (sinsn = linsn; sinsn != 0;
3194 sinsn = prev_nonnote_insn (sinsn))
3196 set = single_set (sinsn);
3197 if (set == 0)
3198 continue;
3200 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3201 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3202 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3203 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3206 else
3207 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3210 /* For pointer data type, suggest pointer register. */
3211 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3212 mark_reg_pointer (parmreg,
3213 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3216 /* A subroutine of assign_parms. Allocate stack space to hold the current
3217 parameter. Get it there. Perform all ABI specified conversions. */
3219 static void
3220 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3221 struct assign_parm_data_one *data)
3223 /* Value must be stored in the stack slot STACK_PARM during function
3224 execution. */
3225 bool to_conversion = false;
3227 assign_parm_remove_parallels (data);
3229 if (data->promoted_mode != data->nominal_mode)
3231 /* Conversion is required. */
3232 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3234 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3236 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3237 to_conversion = true;
3239 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3240 TYPE_UNSIGNED (TREE_TYPE (parm)));
3242 if (data->stack_parm)
3244 int offset = subreg_lowpart_offset (data->nominal_mode,
3245 GET_MODE (data->stack_parm));
3246 /* ??? This may need a big-endian conversion on sparc64. */
3247 data->stack_parm
3248 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3249 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3250 set_mem_offset (data->stack_parm,
3251 MEM_OFFSET (data->stack_parm) + offset);
3255 if (data->entry_parm != data->stack_parm)
3257 rtx src, dest;
3259 if (data->stack_parm == 0)
3261 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3262 GET_MODE (data->entry_parm),
3263 TYPE_ALIGN (data->passed_type));
3264 data->stack_parm
3265 = assign_stack_local (GET_MODE (data->entry_parm),
3266 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3267 align);
3268 set_mem_attributes (data->stack_parm, parm, 1);
3271 dest = validize_mem (copy_rtx (data->stack_parm));
3272 src = validize_mem (copy_rtx (data->entry_parm));
3274 if (MEM_P (src))
3276 /* Use a block move to handle potentially misaligned entry_parm. */
3277 if (!to_conversion)
3278 push_to_sequence2 (all->first_conversion_insn,
3279 all->last_conversion_insn);
3280 to_conversion = true;
3282 emit_block_move (dest, src,
3283 GEN_INT (int_size_in_bytes (data->passed_type)),
3284 BLOCK_OP_NORMAL);
3286 else
3287 emit_move_insn (dest, src);
3290 if (to_conversion)
3292 all->first_conversion_insn = get_insns ();
3293 all->last_conversion_insn = get_last_insn ();
3294 end_sequence ();
3297 SET_DECL_RTL (parm, data->stack_parm);
3300 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3301 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3303 static void
3304 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3305 vec<tree> fnargs)
3307 tree parm;
3308 tree orig_fnargs = all->orig_fnargs;
3309 unsigned i = 0;
3311 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3313 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3314 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3316 rtx tmp, real, imag;
3317 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3319 real = DECL_RTL (fnargs[i]);
3320 imag = DECL_RTL (fnargs[i + 1]);
3321 if (inner != GET_MODE (real))
3323 real = gen_lowpart_SUBREG (inner, real);
3324 imag = gen_lowpart_SUBREG (inner, imag);
3327 if (TREE_ADDRESSABLE (parm))
3329 rtx rmem, imem;
3330 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3331 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3332 DECL_MODE (parm),
3333 TYPE_ALIGN (TREE_TYPE (parm)));
3335 /* split_complex_arg put the real and imag parts in
3336 pseudos. Move them to memory. */
3337 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3338 set_mem_attributes (tmp, parm, 1);
3339 rmem = adjust_address_nv (tmp, inner, 0);
3340 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3341 push_to_sequence2 (all->first_conversion_insn,
3342 all->last_conversion_insn);
3343 emit_move_insn (rmem, real);
3344 emit_move_insn (imem, imag);
3345 all->first_conversion_insn = get_insns ();
3346 all->last_conversion_insn = get_last_insn ();
3347 end_sequence ();
3349 else
3350 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3351 SET_DECL_RTL (parm, tmp);
3353 real = DECL_INCOMING_RTL (fnargs[i]);
3354 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3355 if (inner != GET_MODE (real))
3357 real = gen_lowpart_SUBREG (inner, real);
3358 imag = gen_lowpart_SUBREG (inner, imag);
3360 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3361 set_decl_incoming_rtl (parm, tmp, false);
3362 i++;
3367 /* Assign RTL expressions to the function's parameters. This may involve
3368 copying them into registers and using those registers as the DECL_RTL. */
3370 static void
3371 assign_parms (tree fndecl)
3373 struct assign_parm_data_all all;
3374 tree parm;
3375 vec<tree> fnargs;
3376 unsigned i;
3378 crtl->args.internal_arg_pointer
3379 = targetm.calls.internal_arg_pointer ();
3381 assign_parms_initialize_all (&all);
3382 fnargs = assign_parms_augmented_arg_list (&all);
3384 FOR_EACH_VEC_ELT (fnargs, i, parm)
3386 struct assign_parm_data_one data;
3388 /* Extract the type of PARM; adjust it according to ABI. */
3389 assign_parm_find_data_types (&all, parm, &data);
3391 /* Early out for errors and void parameters. */
3392 if (data.passed_mode == VOIDmode)
3394 SET_DECL_RTL (parm, const0_rtx);
3395 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3396 continue;
3399 /* Estimate stack alignment from parameter alignment. */
3400 if (SUPPORTS_STACK_ALIGNMENT)
3402 unsigned int align
3403 = targetm.calls.function_arg_boundary (data.promoted_mode,
3404 data.passed_type);
3405 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3406 align);
3407 if (TYPE_ALIGN (data.nominal_type) > align)
3408 align = MINIMUM_ALIGNMENT (data.nominal_type,
3409 TYPE_MODE (data.nominal_type),
3410 TYPE_ALIGN (data.nominal_type));
3411 if (crtl->stack_alignment_estimated < align)
3413 gcc_assert (!crtl->stack_realign_processed);
3414 crtl->stack_alignment_estimated = align;
3418 if (cfun->stdarg && !DECL_CHAIN (parm))
3419 assign_parms_setup_varargs (&all, &data, false);
3421 /* Find out where the parameter arrives in this function. */
3422 assign_parm_find_entry_rtl (&all, &data);
3424 /* Find out where stack space for this parameter might be. */
3425 if (assign_parm_is_stack_parm (&all, &data))
3427 assign_parm_find_stack_rtl (parm, &data);
3428 assign_parm_adjust_entry_rtl (&data);
3431 /* Record permanently how this parm was passed. */
3432 if (data.passed_pointer)
3434 rtx incoming_rtl
3435 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3436 data.entry_parm);
3437 set_decl_incoming_rtl (parm, incoming_rtl, true);
3439 else
3440 set_decl_incoming_rtl (parm, data.entry_parm, false);
3442 /* Update info on where next arg arrives in registers. */
3443 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3444 data.passed_type, data.named_arg);
3446 assign_parm_adjust_stack_rtl (&data);
3448 if (assign_parm_setup_block_p (&data))
3449 assign_parm_setup_block (&all, parm, &data);
3450 else if (data.passed_pointer || use_register_for_decl (parm))
3451 assign_parm_setup_reg (&all, parm, &data);
3452 else
3453 assign_parm_setup_stack (&all, parm, &data);
3456 if (targetm.calls.split_complex_arg)
3457 assign_parms_unsplit_complex (&all, fnargs);
3459 fnargs.release ();
3461 /* Output all parameter conversion instructions (possibly including calls)
3462 now that all parameters have been copied out of hard registers. */
3463 emit_insn (all.first_conversion_insn);
3465 /* Estimate reload stack alignment from scalar return mode. */
3466 if (SUPPORTS_STACK_ALIGNMENT)
3468 if (DECL_RESULT (fndecl))
3470 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3471 enum machine_mode mode = TYPE_MODE (type);
3473 if (mode != BLKmode
3474 && mode != VOIDmode
3475 && !AGGREGATE_TYPE_P (type))
3477 unsigned int align = GET_MODE_ALIGNMENT (mode);
3478 if (crtl->stack_alignment_estimated < align)
3480 gcc_assert (!crtl->stack_realign_processed);
3481 crtl->stack_alignment_estimated = align;
3487 /* If we are receiving a struct value address as the first argument, set up
3488 the RTL for the function result. As this might require code to convert
3489 the transmitted address to Pmode, we do this here to ensure that possible
3490 preliminary conversions of the address have been emitted already. */
3491 if (all.function_result_decl)
3493 tree result = DECL_RESULT (current_function_decl);
3494 rtx addr = DECL_RTL (all.function_result_decl);
3495 rtx x;
3497 if (DECL_BY_REFERENCE (result))
3499 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3500 x = addr;
3502 else
3504 SET_DECL_VALUE_EXPR (result,
3505 build1 (INDIRECT_REF, TREE_TYPE (result),
3506 all.function_result_decl));
3507 addr = convert_memory_address (Pmode, addr);
3508 x = gen_rtx_MEM (DECL_MODE (result), addr);
3509 set_mem_attributes (x, result, 1);
3512 DECL_HAS_VALUE_EXPR_P (result) = 1;
3514 SET_DECL_RTL (result, x);
3517 /* We have aligned all the args, so add space for the pretend args. */
3518 crtl->args.pretend_args_size = all.pretend_args_size;
3519 all.stack_args_size.constant += all.extra_pretend_bytes;
3520 crtl->args.size = all.stack_args_size.constant;
3522 /* Adjust function incoming argument size for alignment and
3523 minimum length. */
3525 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3526 crtl->args.size = CEIL_ROUND (crtl->args.size,
3527 PARM_BOUNDARY / BITS_PER_UNIT);
3529 #ifdef ARGS_GROW_DOWNWARD
3530 crtl->args.arg_offset_rtx
3531 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3532 : expand_expr (size_diffop (all.stack_args_size.var,
3533 size_int (-all.stack_args_size.constant)),
3534 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3535 #else
3536 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3537 #endif
3539 /* See how many bytes, if any, of its args a function should try to pop
3540 on return. */
3542 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3543 TREE_TYPE (fndecl),
3544 crtl->args.size);
3546 /* For stdarg.h function, save info about
3547 regs and stack space used by the named args. */
3549 crtl->args.info = all.args_so_far_v;
3551 /* Set the rtx used for the function return value. Put this in its
3552 own variable so any optimizers that need this information don't have
3553 to include tree.h. Do this here so it gets done when an inlined
3554 function gets output. */
3556 crtl->return_rtx
3557 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3558 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3560 /* If scalar return value was computed in a pseudo-reg, or was a named
3561 return value that got dumped to the stack, copy that to the hard
3562 return register. */
3563 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3565 tree decl_result = DECL_RESULT (fndecl);
3566 rtx decl_rtl = DECL_RTL (decl_result);
3568 if (REG_P (decl_rtl)
3569 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3570 : DECL_REGISTER (decl_result))
3572 rtx real_decl_rtl;
3574 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3575 fndecl, true);
3576 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3577 /* The delay slot scheduler assumes that crtl->return_rtx
3578 holds the hard register containing the return value, not a
3579 temporary pseudo. */
3580 crtl->return_rtx = real_decl_rtl;
3585 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3586 For all seen types, gimplify their sizes. */
3588 static tree
3589 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3591 tree t = *tp;
3593 *walk_subtrees = 0;
3594 if (TYPE_P (t))
3596 if (POINTER_TYPE_P (t))
3597 *walk_subtrees = 1;
3598 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3599 && !TYPE_SIZES_GIMPLIFIED (t))
3601 gimplify_type_sizes (t, (gimple_seq *) data);
3602 *walk_subtrees = 1;
3606 return NULL;
3609 /* Gimplify the parameter list for current_function_decl. This involves
3610 evaluating SAVE_EXPRs of variable sized parameters and generating code
3611 to implement callee-copies reference parameters. Returns a sequence of
3612 statements to add to the beginning of the function. */
3614 gimple_seq
3615 gimplify_parameters (void)
3617 struct assign_parm_data_all all;
3618 tree parm;
3619 gimple_seq stmts = NULL;
3620 vec<tree> fnargs;
3621 unsigned i;
3623 assign_parms_initialize_all (&all);
3624 fnargs = assign_parms_augmented_arg_list (&all);
3626 FOR_EACH_VEC_ELT (fnargs, i, parm)
3628 struct assign_parm_data_one data;
3630 /* Extract the type of PARM; adjust it according to ABI. */
3631 assign_parm_find_data_types (&all, parm, &data);
3633 /* Early out for errors and void parameters. */
3634 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3635 continue;
3637 /* Update info on where next arg arrives in registers. */
3638 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3639 data.passed_type, data.named_arg);
3641 /* ??? Once upon a time variable_size stuffed parameter list
3642 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3643 turned out to be less than manageable in the gimple world.
3644 Now we have to hunt them down ourselves. */
3645 walk_tree_without_duplicates (&data.passed_type,
3646 gimplify_parm_type, &stmts);
3648 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3650 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3651 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3654 if (data.passed_pointer)
3656 tree type = TREE_TYPE (data.passed_type);
3657 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3658 type, data.named_arg))
3660 tree local, t;
3662 /* For constant-sized objects, this is trivial; for
3663 variable-sized objects, we have to play games. */
3664 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3665 && !(flag_stack_check == GENERIC_STACK_CHECK
3666 && compare_tree_int (DECL_SIZE_UNIT (parm),
3667 STACK_CHECK_MAX_VAR_SIZE) > 0))
3669 local = create_tmp_var (type, get_name (parm));
3670 DECL_IGNORED_P (local) = 0;
3671 /* If PARM was addressable, move that flag over
3672 to the local copy, as its address will be taken,
3673 not the PARMs. Keep the parms address taken
3674 as we'll query that flag during gimplification. */
3675 if (TREE_ADDRESSABLE (parm))
3676 TREE_ADDRESSABLE (local) = 1;
3677 else if (TREE_CODE (type) == COMPLEX_TYPE
3678 || TREE_CODE (type) == VECTOR_TYPE)
3679 DECL_GIMPLE_REG_P (local) = 1;
3681 else
3683 tree ptr_type, addr;
3685 ptr_type = build_pointer_type (type);
3686 addr = create_tmp_reg (ptr_type, get_name (parm));
3687 DECL_IGNORED_P (addr) = 0;
3688 local = build_fold_indirect_ref (addr);
3690 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3691 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3692 size_int (DECL_ALIGN (parm)));
3694 /* The call has been built for a variable-sized object. */
3695 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3696 t = fold_convert (ptr_type, t);
3697 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3698 gimplify_and_add (t, &stmts);
3701 gimplify_assign (local, parm, &stmts);
3703 SET_DECL_VALUE_EXPR (parm, local);
3704 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3709 fnargs.release ();
3711 return stmts;
3714 /* Compute the size and offset from the start of the stacked arguments for a
3715 parm passed in mode PASSED_MODE and with type TYPE.
3717 INITIAL_OFFSET_PTR points to the current offset into the stacked
3718 arguments.
3720 The starting offset and size for this parm are returned in
3721 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3722 nonzero, the offset is that of stack slot, which is returned in
3723 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3724 padding required from the initial offset ptr to the stack slot.
3726 IN_REGS is nonzero if the argument will be passed in registers. It will
3727 never be set if REG_PARM_STACK_SPACE is not defined.
3729 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3730 for arguments which are passed in registers.
3732 FNDECL is the function in which the argument was defined.
3734 There are two types of rounding that are done. The first, controlled by
3735 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3736 argument list to be aligned to the specific boundary (in bits). This
3737 rounding affects the initial and starting offsets, but not the argument
3738 size.
3740 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3741 optionally rounds the size of the parm to PARM_BOUNDARY. The
3742 initial offset is not affected by this rounding, while the size always
3743 is and the starting offset may be. */
3745 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3746 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3747 callers pass in the total size of args so far as
3748 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3750 void
3751 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3752 int reg_parm_stack_space, int partial,
3753 tree fndecl ATTRIBUTE_UNUSED,
3754 struct args_size *initial_offset_ptr,
3755 struct locate_and_pad_arg_data *locate)
3757 tree sizetree;
3758 enum direction where_pad;
3759 unsigned int boundary, round_boundary;
3760 int part_size_in_regs;
3762 /* If we have found a stack parm before we reach the end of the
3763 area reserved for registers, skip that area. */
3764 if (! in_regs)
3766 if (reg_parm_stack_space > 0)
3768 if (initial_offset_ptr->var)
3770 initial_offset_ptr->var
3771 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3772 ssize_int (reg_parm_stack_space));
3773 initial_offset_ptr->constant = 0;
3775 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3776 initial_offset_ptr->constant = reg_parm_stack_space;
3780 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3782 sizetree
3783 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3784 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3785 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3786 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3787 type);
3788 locate->where_pad = where_pad;
3790 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3791 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3792 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3794 locate->boundary = boundary;
3796 if (SUPPORTS_STACK_ALIGNMENT)
3798 /* stack_alignment_estimated can't change after stack has been
3799 realigned. */
3800 if (crtl->stack_alignment_estimated < boundary)
3802 if (!crtl->stack_realign_processed)
3803 crtl->stack_alignment_estimated = boundary;
3804 else
3806 /* If stack is realigned and stack alignment value
3807 hasn't been finalized, it is OK not to increase
3808 stack_alignment_estimated. The bigger alignment
3809 requirement is recorded in stack_alignment_needed
3810 below. */
3811 gcc_assert (!crtl->stack_realign_finalized
3812 && crtl->stack_realign_needed);
3817 /* Remember if the outgoing parameter requires extra alignment on the
3818 calling function side. */
3819 if (crtl->stack_alignment_needed < boundary)
3820 crtl->stack_alignment_needed = boundary;
3821 if (crtl->preferred_stack_boundary < boundary)
3822 crtl->preferred_stack_boundary = boundary;
3824 #ifdef ARGS_GROW_DOWNWARD
3825 locate->slot_offset.constant = -initial_offset_ptr->constant;
3826 if (initial_offset_ptr->var)
3827 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3828 initial_offset_ptr->var);
3831 tree s2 = sizetree;
3832 if (where_pad != none
3833 && (!tree_fits_uhwi_p (sizetree)
3834 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3835 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3836 SUB_PARM_SIZE (locate->slot_offset, s2);
3839 locate->slot_offset.constant += part_size_in_regs;
3841 if (!in_regs || reg_parm_stack_space > 0)
3842 pad_to_arg_alignment (&locate->slot_offset, boundary,
3843 &locate->alignment_pad);
3845 locate->size.constant = (-initial_offset_ptr->constant
3846 - locate->slot_offset.constant);
3847 if (initial_offset_ptr->var)
3848 locate->size.var = size_binop (MINUS_EXPR,
3849 size_binop (MINUS_EXPR,
3850 ssize_int (0),
3851 initial_offset_ptr->var),
3852 locate->slot_offset.var);
3854 /* Pad_below needs the pre-rounded size to know how much to pad
3855 below. */
3856 locate->offset = locate->slot_offset;
3857 if (where_pad == downward)
3858 pad_below (&locate->offset, passed_mode, sizetree);
3860 #else /* !ARGS_GROW_DOWNWARD */
3861 if (!in_regs || reg_parm_stack_space > 0)
3862 pad_to_arg_alignment (initial_offset_ptr, boundary,
3863 &locate->alignment_pad);
3864 locate->slot_offset = *initial_offset_ptr;
3866 #ifdef PUSH_ROUNDING
3867 if (passed_mode != BLKmode)
3868 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3869 #endif
3871 /* Pad_below needs the pre-rounded size to know how much to pad below
3872 so this must be done before rounding up. */
3873 locate->offset = locate->slot_offset;
3874 if (where_pad == downward)
3875 pad_below (&locate->offset, passed_mode, sizetree);
3877 if (where_pad != none
3878 && (!tree_fits_uhwi_p (sizetree)
3879 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3880 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3882 ADD_PARM_SIZE (locate->size, sizetree);
3884 locate->size.constant -= part_size_in_regs;
3885 #endif /* ARGS_GROW_DOWNWARD */
3887 #ifdef FUNCTION_ARG_OFFSET
3888 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3889 #endif
3892 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3893 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3895 static void
3896 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3897 struct args_size *alignment_pad)
3899 tree save_var = NULL_TREE;
3900 HOST_WIDE_INT save_constant = 0;
3901 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3902 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3904 #ifdef SPARC_STACK_BOUNDARY_HACK
3905 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3906 the real alignment of %sp. However, when it does this, the
3907 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3908 if (SPARC_STACK_BOUNDARY_HACK)
3909 sp_offset = 0;
3910 #endif
3912 if (boundary > PARM_BOUNDARY)
3914 save_var = offset_ptr->var;
3915 save_constant = offset_ptr->constant;
3918 alignment_pad->var = NULL_TREE;
3919 alignment_pad->constant = 0;
3921 if (boundary > BITS_PER_UNIT)
3923 if (offset_ptr->var)
3925 tree sp_offset_tree = ssize_int (sp_offset);
3926 tree offset = size_binop (PLUS_EXPR,
3927 ARGS_SIZE_TREE (*offset_ptr),
3928 sp_offset_tree);
3929 #ifdef ARGS_GROW_DOWNWARD
3930 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3931 #else
3932 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3933 #endif
3935 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3936 /* ARGS_SIZE_TREE includes constant term. */
3937 offset_ptr->constant = 0;
3938 if (boundary > PARM_BOUNDARY)
3939 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3940 save_var);
3942 else
3944 offset_ptr->constant = -sp_offset +
3945 #ifdef ARGS_GROW_DOWNWARD
3946 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3947 #else
3948 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3949 #endif
3950 if (boundary > PARM_BOUNDARY)
3951 alignment_pad->constant = offset_ptr->constant - save_constant;
3956 static void
3957 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3959 if (passed_mode != BLKmode)
3961 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3962 offset_ptr->constant
3963 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3964 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3965 - GET_MODE_SIZE (passed_mode));
3967 else
3969 if (TREE_CODE (sizetree) != INTEGER_CST
3970 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3972 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3973 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3974 /* Add it in. */
3975 ADD_PARM_SIZE (*offset_ptr, s2);
3976 SUB_PARM_SIZE (*offset_ptr, sizetree);
3982 /* True if register REGNO was alive at a place where `setjmp' was
3983 called and was set more than once or is an argument. Such regs may
3984 be clobbered by `longjmp'. */
3986 static bool
3987 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3989 /* There appear to be cases where some local vars never reach the
3990 backend but have bogus regnos. */
3991 if (regno >= max_reg_num ())
3992 return false;
3994 return ((REG_N_SETS (regno) > 1
3995 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
3996 regno))
3997 && REGNO_REG_SET_P (setjmp_crosses, regno));
4000 /* Walk the tree of blocks describing the binding levels within a
4001 function and warn about variables the might be killed by setjmp or
4002 vfork. This is done after calling flow_analysis before register
4003 allocation since that will clobber the pseudo-regs to hard
4004 regs. */
4006 static void
4007 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4009 tree decl, sub;
4011 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4013 if (TREE_CODE (decl) == VAR_DECL
4014 && DECL_RTL_SET_P (decl)
4015 && REG_P (DECL_RTL (decl))
4016 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4017 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4018 " %<longjmp%> or %<vfork%>", decl);
4021 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4022 setjmp_vars_warning (setjmp_crosses, sub);
4025 /* Do the appropriate part of setjmp_vars_warning
4026 but for arguments instead of local variables. */
4028 static void
4029 setjmp_args_warning (bitmap setjmp_crosses)
4031 tree decl;
4032 for (decl = DECL_ARGUMENTS (current_function_decl);
4033 decl; decl = DECL_CHAIN (decl))
4034 if (DECL_RTL (decl) != 0
4035 && REG_P (DECL_RTL (decl))
4036 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4037 warning (OPT_Wclobbered,
4038 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4039 decl);
4042 /* Generate warning messages for variables live across setjmp. */
4044 void
4045 generate_setjmp_warnings (void)
4047 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4049 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4050 || bitmap_empty_p (setjmp_crosses))
4051 return;
4053 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4054 setjmp_args_warning (setjmp_crosses);
4058 /* Reverse the order of elements in the fragment chain T of blocks,
4059 and return the new head of the chain (old last element).
4060 In addition to that clear BLOCK_SAME_RANGE flags when needed
4061 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4062 its super fragment origin. */
4064 static tree
4065 block_fragments_nreverse (tree t)
4067 tree prev = 0, block, next, prev_super = 0;
4068 tree super = BLOCK_SUPERCONTEXT (t);
4069 if (BLOCK_FRAGMENT_ORIGIN (super))
4070 super = BLOCK_FRAGMENT_ORIGIN (super);
4071 for (block = t; block; block = next)
4073 next = BLOCK_FRAGMENT_CHAIN (block);
4074 BLOCK_FRAGMENT_CHAIN (block) = prev;
4075 if ((prev && !BLOCK_SAME_RANGE (prev))
4076 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4077 != prev_super))
4078 BLOCK_SAME_RANGE (block) = 0;
4079 prev_super = BLOCK_SUPERCONTEXT (block);
4080 BLOCK_SUPERCONTEXT (block) = super;
4081 prev = block;
4083 t = BLOCK_FRAGMENT_ORIGIN (t);
4084 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4085 != prev_super)
4086 BLOCK_SAME_RANGE (t) = 0;
4087 BLOCK_SUPERCONTEXT (t) = super;
4088 return prev;
4091 /* Reverse the order of elements in the chain T of blocks,
4092 and return the new head of the chain (old last element).
4093 Also do the same on subblocks and reverse the order of elements
4094 in BLOCK_FRAGMENT_CHAIN as well. */
4096 static tree
4097 blocks_nreverse_all (tree t)
4099 tree prev = 0, block, next;
4100 for (block = t; block; block = next)
4102 next = BLOCK_CHAIN (block);
4103 BLOCK_CHAIN (block) = prev;
4104 if (BLOCK_FRAGMENT_CHAIN (block)
4105 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4107 BLOCK_FRAGMENT_CHAIN (block)
4108 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4109 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4110 BLOCK_SAME_RANGE (block) = 0;
4112 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4113 prev = block;
4115 return prev;
4119 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4120 and create duplicate blocks. */
4121 /* ??? Need an option to either create block fragments or to create
4122 abstract origin duplicates of a source block. It really depends
4123 on what optimization has been performed. */
4125 void
4126 reorder_blocks (void)
4128 tree block = DECL_INITIAL (current_function_decl);
4130 if (block == NULL_TREE)
4131 return;
4133 auto_vec<tree, 10> block_stack;
4135 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4136 clear_block_marks (block);
4138 /* Prune the old trees away, so that they don't get in the way. */
4139 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4140 BLOCK_CHAIN (block) = NULL_TREE;
4142 /* Recreate the block tree from the note nesting. */
4143 reorder_blocks_1 (get_insns (), block, &block_stack);
4144 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4147 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4149 void
4150 clear_block_marks (tree block)
4152 while (block)
4154 TREE_ASM_WRITTEN (block) = 0;
4155 clear_block_marks (BLOCK_SUBBLOCKS (block));
4156 block = BLOCK_CHAIN (block);
4160 static void
4161 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4162 vec<tree> *p_block_stack)
4164 rtx_insn *insn;
4165 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4167 for (insn = insns; insn; insn = NEXT_INSN (insn))
4169 if (NOTE_P (insn))
4171 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4173 tree block = NOTE_BLOCK (insn);
4174 tree origin;
4176 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4177 origin = block;
4179 if (prev_end)
4180 BLOCK_SAME_RANGE (prev_end) = 0;
4181 prev_end = NULL_TREE;
4183 /* If we have seen this block before, that means it now
4184 spans multiple address regions. Create a new fragment. */
4185 if (TREE_ASM_WRITTEN (block))
4187 tree new_block = copy_node (block);
4189 BLOCK_SAME_RANGE (new_block) = 0;
4190 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4191 BLOCK_FRAGMENT_CHAIN (new_block)
4192 = BLOCK_FRAGMENT_CHAIN (origin);
4193 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4195 NOTE_BLOCK (insn) = new_block;
4196 block = new_block;
4199 if (prev_beg == current_block && prev_beg)
4200 BLOCK_SAME_RANGE (block) = 1;
4202 prev_beg = origin;
4204 BLOCK_SUBBLOCKS (block) = 0;
4205 TREE_ASM_WRITTEN (block) = 1;
4206 /* When there's only one block for the entire function,
4207 current_block == block and we mustn't do this, it
4208 will cause infinite recursion. */
4209 if (block != current_block)
4211 tree super;
4212 if (block != origin)
4213 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4214 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4215 (origin))
4216 == current_block);
4217 if (p_block_stack->is_empty ())
4218 super = current_block;
4219 else
4221 super = p_block_stack->last ();
4222 gcc_assert (super == current_block
4223 || BLOCK_FRAGMENT_ORIGIN (super)
4224 == current_block);
4226 BLOCK_SUPERCONTEXT (block) = super;
4227 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4228 BLOCK_SUBBLOCKS (current_block) = block;
4229 current_block = origin;
4231 p_block_stack->safe_push (block);
4233 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4235 NOTE_BLOCK (insn) = p_block_stack->pop ();
4236 current_block = BLOCK_SUPERCONTEXT (current_block);
4237 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4238 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4239 prev_beg = NULL_TREE;
4240 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4241 ? NOTE_BLOCK (insn) : NULL_TREE;
4244 else
4246 prev_beg = NULL_TREE;
4247 if (prev_end)
4248 BLOCK_SAME_RANGE (prev_end) = 0;
4249 prev_end = NULL_TREE;
4254 /* Reverse the order of elements in the chain T of blocks,
4255 and return the new head of the chain (old last element). */
4257 tree
4258 blocks_nreverse (tree t)
4260 tree prev = 0, block, next;
4261 for (block = t; block; block = next)
4263 next = BLOCK_CHAIN (block);
4264 BLOCK_CHAIN (block) = prev;
4265 prev = block;
4267 return prev;
4270 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4271 by modifying the last node in chain 1 to point to chain 2. */
4273 tree
4274 block_chainon (tree op1, tree op2)
4276 tree t1;
4278 if (!op1)
4279 return op2;
4280 if (!op2)
4281 return op1;
4283 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4284 continue;
4285 BLOCK_CHAIN (t1) = op2;
4287 #ifdef ENABLE_TREE_CHECKING
4289 tree t2;
4290 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4291 gcc_assert (t2 != t1);
4293 #endif
4295 return op1;
4298 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4299 non-NULL, list them all into VECTOR, in a depth-first preorder
4300 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4301 blocks. */
4303 static int
4304 all_blocks (tree block, tree *vector)
4306 int n_blocks = 0;
4308 while (block)
4310 TREE_ASM_WRITTEN (block) = 0;
4312 /* Record this block. */
4313 if (vector)
4314 vector[n_blocks] = block;
4316 ++n_blocks;
4318 /* Record the subblocks, and their subblocks... */
4319 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4320 vector ? vector + n_blocks : 0);
4321 block = BLOCK_CHAIN (block);
4324 return n_blocks;
4327 /* Return a vector containing all the blocks rooted at BLOCK. The
4328 number of elements in the vector is stored in N_BLOCKS_P. The
4329 vector is dynamically allocated; it is the caller's responsibility
4330 to call `free' on the pointer returned. */
4332 static tree *
4333 get_block_vector (tree block, int *n_blocks_p)
4335 tree *block_vector;
4337 *n_blocks_p = all_blocks (block, NULL);
4338 block_vector = XNEWVEC (tree, *n_blocks_p);
4339 all_blocks (block, block_vector);
4341 return block_vector;
4344 static GTY(()) int next_block_index = 2;
4346 /* Set BLOCK_NUMBER for all the blocks in FN. */
4348 void
4349 number_blocks (tree fn)
4351 int i;
4352 int n_blocks;
4353 tree *block_vector;
4355 /* For SDB and XCOFF debugging output, we start numbering the blocks
4356 from 1 within each function, rather than keeping a running
4357 count. */
4358 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4359 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4360 next_block_index = 1;
4361 #endif
4363 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4365 /* The top-level BLOCK isn't numbered at all. */
4366 for (i = 1; i < n_blocks; ++i)
4367 /* We number the blocks from two. */
4368 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4370 free (block_vector);
4372 return;
4375 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4377 DEBUG_FUNCTION tree
4378 debug_find_var_in_block_tree (tree var, tree block)
4380 tree t;
4382 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4383 if (t == var)
4384 return block;
4386 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4388 tree ret = debug_find_var_in_block_tree (var, t);
4389 if (ret)
4390 return ret;
4393 return NULL_TREE;
4396 /* Keep track of whether we're in a dummy function context. If we are,
4397 we don't want to invoke the set_current_function hook, because we'll
4398 get into trouble if the hook calls target_reinit () recursively or
4399 when the initial initialization is not yet complete. */
4401 static bool in_dummy_function;
4403 /* Invoke the target hook when setting cfun. Update the optimization options
4404 if the function uses different options than the default. */
4406 static void
4407 invoke_set_current_function_hook (tree fndecl)
4409 if (!in_dummy_function)
4411 tree opts = ((fndecl)
4412 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4413 : optimization_default_node);
4415 if (!opts)
4416 opts = optimization_default_node;
4418 /* Change optimization options if needed. */
4419 if (optimization_current_node != opts)
4421 optimization_current_node = opts;
4422 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4425 targetm.set_current_function (fndecl);
4426 this_fn_optabs = this_target_optabs;
4428 if (opts != optimization_default_node)
4430 init_tree_optimization_optabs (opts);
4431 if (TREE_OPTIMIZATION_OPTABS (opts))
4432 this_fn_optabs = (struct target_optabs *)
4433 TREE_OPTIMIZATION_OPTABS (opts);
4438 /* cfun should never be set directly; use this function. */
4440 void
4441 set_cfun (struct function *new_cfun)
4443 if (cfun != new_cfun)
4445 cfun = new_cfun;
4446 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4450 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4452 static vec<function_p> cfun_stack;
4454 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4455 current_function_decl accordingly. */
4457 void
4458 push_cfun (struct function *new_cfun)
4460 gcc_assert ((!cfun && !current_function_decl)
4461 || (cfun && current_function_decl == cfun->decl));
4462 cfun_stack.safe_push (cfun);
4463 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4464 set_cfun (new_cfun);
4467 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4469 void
4470 pop_cfun (void)
4472 struct function *new_cfun = cfun_stack.pop ();
4473 /* When in_dummy_function, we do have a cfun but current_function_decl is
4474 NULL. We also allow pushing NULL cfun and subsequently changing
4475 current_function_decl to something else and have both restored by
4476 pop_cfun. */
4477 gcc_checking_assert (in_dummy_function
4478 || !cfun
4479 || current_function_decl == cfun->decl);
4480 set_cfun (new_cfun);
4481 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4484 /* Return value of funcdef and increase it. */
4486 get_next_funcdef_no (void)
4488 return funcdef_no++;
4491 /* Return value of funcdef. */
4493 get_last_funcdef_no (void)
4495 return funcdef_no;
4498 /* Allocate a function structure for FNDECL and set its contents
4499 to the defaults. Set cfun to the newly-allocated object.
4500 Some of the helper functions invoked during initialization assume
4501 that cfun has already been set. Therefore, assign the new object
4502 directly into cfun and invoke the back end hook explicitly at the
4503 very end, rather than initializing a temporary and calling set_cfun
4504 on it.
4506 ABSTRACT_P is true if this is a function that will never be seen by
4507 the middle-end. Such functions are front-end concepts (like C++
4508 function templates) that do not correspond directly to functions
4509 placed in object files. */
4511 void
4512 allocate_struct_function (tree fndecl, bool abstract_p)
4514 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4516 cfun = ggc_cleared_alloc<function> ();
4518 init_eh_for_function ();
4520 if (init_machine_status)
4521 cfun->machine = (*init_machine_status) ();
4523 #ifdef OVERRIDE_ABI_FORMAT
4524 OVERRIDE_ABI_FORMAT (fndecl);
4525 #endif
4527 if (fndecl != NULL_TREE)
4529 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4530 cfun->decl = fndecl;
4531 current_function_funcdef_no = get_next_funcdef_no ();
4534 invoke_set_current_function_hook (fndecl);
4536 if (fndecl != NULL_TREE)
4538 tree result = DECL_RESULT (fndecl);
4539 if (!abstract_p && aggregate_value_p (result, fndecl))
4541 #ifdef PCC_STATIC_STRUCT_RETURN
4542 cfun->returns_pcc_struct = 1;
4543 #endif
4544 cfun->returns_struct = 1;
4547 cfun->stdarg = stdarg_p (fntype);
4549 /* Assume all registers in stdarg functions need to be saved. */
4550 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4551 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4553 /* ??? This could be set on a per-function basis by the front-end
4554 but is this worth the hassle? */
4555 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4556 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4560 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4561 instead of just setting it. */
4563 void
4564 push_struct_function (tree fndecl)
4566 /* When in_dummy_function we might be in the middle of a pop_cfun and
4567 current_function_decl and cfun may not match. */
4568 gcc_assert (in_dummy_function
4569 || (!cfun && !current_function_decl)
4570 || (cfun && current_function_decl == cfun->decl));
4571 cfun_stack.safe_push (cfun);
4572 current_function_decl = fndecl;
4573 allocate_struct_function (fndecl, false);
4576 /* Reset crtl and other non-struct-function variables to defaults as
4577 appropriate for emitting rtl at the start of a function. */
4579 static void
4580 prepare_function_start (void)
4582 gcc_assert (!crtl->emit.x_last_insn);
4583 init_temp_slots ();
4584 init_emit ();
4585 init_varasm_status ();
4586 init_expr ();
4587 default_rtl_profile ();
4589 if (flag_stack_usage_info)
4591 cfun->su = ggc_cleared_alloc<stack_usage> ();
4592 cfun->su->static_stack_size = -1;
4595 cse_not_expected = ! optimize;
4597 /* Caller save not needed yet. */
4598 caller_save_needed = 0;
4600 /* We haven't done register allocation yet. */
4601 reg_renumber = 0;
4603 /* Indicate that we have not instantiated virtual registers yet. */
4604 virtuals_instantiated = 0;
4606 /* Indicate that we want CONCATs now. */
4607 generating_concat_p = 1;
4609 /* Indicate we have no need of a frame pointer yet. */
4610 frame_pointer_needed = 0;
4613 /* Initialize the rtl expansion mechanism so that we can do simple things
4614 like generate sequences. This is used to provide a context during global
4615 initialization of some passes. You must call expand_dummy_function_end
4616 to exit this context. */
4618 void
4619 init_dummy_function_start (void)
4621 gcc_assert (!in_dummy_function);
4622 in_dummy_function = true;
4623 push_struct_function (NULL_TREE);
4624 prepare_function_start ();
4627 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4628 and initialize static variables for generating RTL for the statements
4629 of the function. */
4631 void
4632 init_function_start (tree subr)
4634 if (subr && DECL_STRUCT_FUNCTION (subr))
4635 set_cfun (DECL_STRUCT_FUNCTION (subr));
4636 else
4637 allocate_struct_function (subr, false);
4639 /* Initialize backend, if needed. */
4640 initialize_rtl ();
4642 prepare_function_start ();
4643 decide_function_section (subr);
4645 /* Warn if this value is an aggregate type,
4646 regardless of which calling convention we are using for it. */
4647 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4648 warning (OPT_Waggregate_return, "function returns an aggregate");
4651 /* Expand code to verify the stack_protect_guard. This is invoked at
4652 the end of a function to be protected. */
4654 #ifndef HAVE_stack_protect_test
4655 # define HAVE_stack_protect_test 0
4656 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4657 #endif
4659 void
4660 stack_protect_epilogue (void)
4662 tree guard_decl = targetm.stack_protect_guard ();
4663 rtx label = gen_label_rtx ();
4664 rtx x, y, tmp;
4666 x = expand_normal (crtl->stack_protect_guard);
4667 y = expand_normal (guard_decl);
4669 /* Allow the target to compare Y with X without leaking either into
4670 a register. */
4671 switch ((int) (HAVE_stack_protect_test != 0))
4673 case 1:
4674 tmp = gen_stack_protect_test (x, y, label);
4675 if (tmp)
4677 emit_insn (tmp);
4678 break;
4680 /* FALLTHRU */
4682 default:
4683 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4684 break;
4687 /* The noreturn predictor has been moved to the tree level. The rtl-level
4688 predictors estimate this branch about 20%, which isn't enough to get
4689 things moved out of line. Since this is the only extant case of adding
4690 a noreturn function at the rtl level, it doesn't seem worth doing ought
4691 except adding the prediction by hand. */
4692 tmp = get_last_insn ();
4693 if (JUMP_P (tmp))
4694 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4696 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4697 free_temp_slots ();
4698 emit_label (label);
4701 /* Start the RTL for a new function, and set variables used for
4702 emitting RTL.
4703 SUBR is the FUNCTION_DECL node.
4704 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4705 the function's parameters, which must be run at any return statement. */
4707 void
4708 expand_function_start (tree subr)
4710 /* Make sure volatile mem refs aren't considered
4711 valid operands of arithmetic insns. */
4712 init_recog_no_volatile ();
4714 crtl->profile
4715 = (profile_flag
4716 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4718 crtl->limit_stack
4719 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4721 /* Make the label for return statements to jump to. Do not special
4722 case machines with special return instructions -- they will be
4723 handled later during jump, ifcvt, or epilogue creation. */
4724 return_label = gen_label_rtx ();
4726 /* Initialize rtx used to return the value. */
4727 /* Do this before assign_parms so that we copy the struct value address
4728 before any library calls that assign parms might generate. */
4730 /* Decide whether to return the value in memory or in a register. */
4731 if (aggregate_value_p (DECL_RESULT (subr), subr))
4733 /* Returning something that won't go in a register. */
4734 rtx value_address = 0;
4736 #ifdef PCC_STATIC_STRUCT_RETURN
4737 if (cfun->returns_pcc_struct)
4739 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4740 value_address = assemble_static_space (size);
4742 else
4743 #endif
4745 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4746 /* Expect to be passed the address of a place to store the value.
4747 If it is passed as an argument, assign_parms will take care of
4748 it. */
4749 if (sv)
4751 value_address = gen_reg_rtx (Pmode);
4752 emit_move_insn (value_address, sv);
4755 if (value_address)
4757 rtx x = value_address;
4758 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4760 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4761 set_mem_attributes (x, DECL_RESULT (subr), 1);
4763 SET_DECL_RTL (DECL_RESULT (subr), x);
4766 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4767 /* If return mode is void, this decl rtl should not be used. */
4768 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4769 else
4771 /* Compute the return values into a pseudo reg, which we will copy
4772 into the true return register after the cleanups are done. */
4773 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4774 if (TYPE_MODE (return_type) != BLKmode
4775 && targetm.calls.return_in_msb (return_type))
4776 /* expand_function_end will insert the appropriate padding in
4777 this case. Use the return value's natural (unpadded) mode
4778 within the function proper. */
4779 SET_DECL_RTL (DECL_RESULT (subr),
4780 gen_reg_rtx (TYPE_MODE (return_type)));
4781 else
4783 /* In order to figure out what mode to use for the pseudo, we
4784 figure out what the mode of the eventual return register will
4785 actually be, and use that. */
4786 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4788 /* Structures that are returned in registers are not
4789 aggregate_value_p, so we may see a PARALLEL or a REG. */
4790 if (REG_P (hard_reg))
4791 SET_DECL_RTL (DECL_RESULT (subr),
4792 gen_reg_rtx (GET_MODE (hard_reg)));
4793 else
4795 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4796 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4800 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4801 result to the real return register(s). */
4802 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4805 /* Initialize rtx for parameters and local variables.
4806 In some cases this requires emitting insns. */
4807 assign_parms (subr);
4809 /* If function gets a static chain arg, store it. */
4810 if (cfun->static_chain_decl)
4812 tree parm = cfun->static_chain_decl;
4813 rtx local, chain, insn;
4815 local = gen_reg_rtx (Pmode);
4816 chain = targetm.calls.static_chain (current_function_decl, true);
4818 set_decl_incoming_rtl (parm, chain, false);
4819 SET_DECL_RTL (parm, local);
4820 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4822 insn = emit_move_insn (local, chain);
4824 /* Mark the register as eliminable, similar to parameters. */
4825 if (MEM_P (chain)
4826 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4827 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4829 /* If we aren't optimizing, save the static chain onto the stack. */
4830 if (!optimize)
4832 tree saved_static_chain_decl
4833 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
4834 DECL_NAME (parm), TREE_TYPE (parm));
4835 rtx saved_static_chain_rtx
4836 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4837 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
4838 emit_move_insn (saved_static_chain_rtx, chain);
4839 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
4840 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4844 /* If the function receives a non-local goto, then store the
4845 bits we need to restore the frame pointer. */
4846 if (cfun->nonlocal_goto_save_area)
4848 tree t_save;
4849 rtx r_save;
4851 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4852 gcc_assert (DECL_RTL_SET_P (var));
4854 t_save = build4 (ARRAY_REF,
4855 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4856 cfun->nonlocal_goto_save_area,
4857 integer_zero_node, NULL_TREE, NULL_TREE);
4858 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4859 gcc_assert (GET_MODE (r_save) == Pmode);
4861 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4862 update_nonlocal_goto_save_area ();
4865 /* The following was moved from init_function_start.
4866 The move is supposed to make sdb output more accurate. */
4867 /* Indicate the beginning of the function body,
4868 as opposed to parm setup. */
4869 emit_note (NOTE_INSN_FUNCTION_BEG);
4871 gcc_assert (NOTE_P (get_last_insn ()));
4873 parm_birth_insn = get_last_insn ();
4875 if (crtl->profile)
4877 #ifdef PROFILE_HOOK
4878 PROFILE_HOOK (current_function_funcdef_no);
4879 #endif
4882 /* If we are doing generic stack checking, the probe should go here. */
4883 if (flag_stack_check == GENERIC_STACK_CHECK)
4884 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4887 /* Undo the effects of init_dummy_function_start. */
4888 void
4889 expand_dummy_function_end (void)
4891 gcc_assert (in_dummy_function);
4893 /* End any sequences that failed to be closed due to syntax errors. */
4894 while (in_sequence_p ())
4895 end_sequence ();
4897 /* Outside function body, can't compute type's actual size
4898 until next function's body starts. */
4900 free_after_parsing (cfun);
4901 free_after_compilation (cfun);
4902 pop_cfun ();
4903 in_dummy_function = false;
4906 /* Call DOIT for each hard register used as a return value from
4907 the current function. */
4909 void
4910 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4912 rtx outgoing = crtl->return_rtx;
4914 if (! outgoing)
4915 return;
4917 if (REG_P (outgoing))
4918 (*doit) (outgoing, arg);
4919 else if (GET_CODE (outgoing) == PARALLEL)
4921 int i;
4923 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4925 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4927 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4928 (*doit) (x, arg);
4933 static void
4934 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4936 emit_clobber (reg);
4939 void
4940 clobber_return_register (void)
4942 diddle_return_value (do_clobber_return_reg, NULL);
4944 /* In case we do use pseudo to return value, clobber it too. */
4945 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4947 tree decl_result = DECL_RESULT (current_function_decl);
4948 rtx decl_rtl = DECL_RTL (decl_result);
4949 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4951 do_clobber_return_reg (decl_rtl, NULL);
4956 static void
4957 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4959 emit_use (reg);
4962 static void
4963 use_return_register (void)
4965 diddle_return_value (do_use_return_reg, NULL);
4968 /* Possibly warn about unused parameters. */
4969 void
4970 do_warn_unused_parameter (tree fn)
4972 tree decl;
4974 for (decl = DECL_ARGUMENTS (fn);
4975 decl; decl = DECL_CHAIN (decl))
4976 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4977 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4978 && !TREE_NO_WARNING (decl))
4979 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4982 /* Set the location of the insn chain starting at INSN to LOC. */
4984 static void
4985 set_insn_locations (rtx insn, int loc)
4987 while (insn != NULL_RTX)
4989 if (INSN_P (insn))
4990 INSN_LOCATION (insn) = loc;
4991 insn = NEXT_INSN (insn);
4995 /* Generate RTL for the end of the current function. */
4997 void
4998 expand_function_end (void)
5000 rtx clobber_after;
5002 /* If arg_pointer_save_area was referenced only from a nested
5003 function, we will not have initialized it yet. Do that now. */
5004 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5005 get_arg_pointer_save_area ();
5007 /* If we are doing generic stack checking and this function makes calls,
5008 do a stack probe at the start of the function to ensure we have enough
5009 space for another stack frame. */
5010 if (flag_stack_check == GENERIC_STACK_CHECK)
5012 rtx_insn *insn, *seq;
5014 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5015 if (CALL_P (insn))
5017 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5018 start_sequence ();
5019 if (STACK_CHECK_MOVING_SP)
5020 anti_adjust_stack_and_probe (max_frame_size, true);
5021 else
5022 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5023 seq = get_insns ();
5024 end_sequence ();
5025 set_insn_locations (seq, prologue_location);
5026 emit_insn_before (seq, stack_check_probe_note);
5027 break;
5031 /* End any sequences that failed to be closed due to syntax errors. */
5032 while (in_sequence_p ())
5033 end_sequence ();
5035 clear_pending_stack_adjust ();
5036 do_pending_stack_adjust ();
5038 /* Output a linenumber for the end of the function.
5039 SDB depends on this. */
5040 set_curr_insn_location (input_location);
5042 /* Before the return label (if any), clobber the return
5043 registers so that they are not propagated live to the rest of
5044 the function. This can only happen with functions that drop
5045 through; if there had been a return statement, there would
5046 have either been a return rtx, or a jump to the return label.
5048 We delay actual code generation after the current_function_value_rtx
5049 is computed. */
5050 clobber_after = get_last_insn ();
5052 /* Output the label for the actual return from the function. */
5053 emit_label (return_label);
5055 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5057 /* Let except.c know where it should emit the call to unregister
5058 the function context for sjlj exceptions. */
5059 if (flag_exceptions)
5060 sjlj_emit_function_exit_after (get_last_insn ());
5062 else
5064 /* We want to ensure that instructions that may trap are not
5065 moved into the epilogue by scheduling, because we don't
5066 always emit unwind information for the epilogue. */
5067 if (cfun->can_throw_non_call_exceptions)
5068 emit_insn (gen_blockage ());
5071 /* If this is an implementation of throw, do what's necessary to
5072 communicate between __builtin_eh_return and the epilogue. */
5073 expand_eh_return ();
5075 /* If scalar return value was computed in a pseudo-reg, or was a named
5076 return value that got dumped to the stack, copy that to the hard
5077 return register. */
5078 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5080 tree decl_result = DECL_RESULT (current_function_decl);
5081 rtx decl_rtl = DECL_RTL (decl_result);
5083 if (REG_P (decl_rtl)
5084 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5085 : DECL_REGISTER (decl_result))
5087 rtx real_decl_rtl = crtl->return_rtx;
5089 /* This should be set in assign_parms. */
5090 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5092 /* If this is a BLKmode structure being returned in registers,
5093 then use the mode computed in expand_return. Note that if
5094 decl_rtl is memory, then its mode may have been changed,
5095 but that crtl->return_rtx has not. */
5096 if (GET_MODE (real_decl_rtl) == BLKmode)
5097 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5099 /* If a non-BLKmode return value should be padded at the least
5100 significant end of the register, shift it left by the appropriate
5101 amount. BLKmode results are handled using the group load/store
5102 machinery. */
5103 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5104 && REG_P (real_decl_rtl)
5105 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5107 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5108 REGNO (real_decl_rtl)),
5109 decl_rtl);
5110 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5112 /* If a named return value dumped decl_return to memory, then
5113 we may need to re-do the PROMOTE_MODE signed/unsigned
5114 extension. */
5115 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5117 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5118 promote_function_mode (TREE_TYPE (decl_result),
5119 GET_MODE (decl_rtl), &unsignedp,
5120 TREE_TYPE (current_function_decl), 1);
5122 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5124 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5126 /* If expand_function_start has created a PARALLEL for decl_rtl,
5127 move the result to the real return registers. Otherwise, do
5128 a group load from decl_rtl for a named return. */
5129 if (GET_CODE (decl_rtl) == PARALLEL)
5130 emit_group_move (real_decl_rtl, decl_rtl);
5131 else
5132 emit_group_load (real_decl_rtl, decl_rtl,
5133 TREE_TYPE (decl_result),
5134 int_size_in_bytes (TREE_TYPE (decl_result)));
5136 /* In the case of complex integer modes smaller than a word, we'll
5137 need to generate some non-trivial bitfield insertions. Do that
5138 on a pseudo and not the hard register. */
5139 else if (GET_CODE (decl_rtl) == CONCAT
5140 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5141 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5143 int old_generating_concat_p;
5144 rtx tmp;
5146 old_generating_concat_p = generating_concat_p;
5147 generating_concat_p = 0;
5148 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5149 generating_concat_p = old_generating_concat_p;
5151 emit_move_insn (tmp, decl_rtl);
5152 emit_move_insn (real_decl_rtl, tmp);
5154 else
5155 emit_move_insn (real_decl_rtl, decl_rtl);
5159 /* If returning a structure, arrange to return the address of the value
5160 in a place where debuggers expect to find it.
5162 If returning a structure PCC style,
5163 the caller also depends on this value.
5164 And cfun->returns_pcc_struct is not necessarily set. */
5165 if (cfun->returns_struct
5166 || cfun->returns_pcc_struct)
5168 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5169 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5170 rtx outgoing;
5172 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5173 type = TREE_TYPE (type);
5174 else
5175 value_address = XEXP (value_address, 0);
5177 outgoing = targetm.calls.function_value (build_pointer_type (type),
5178 current_function_decl, true);
5180 /* Mark this as a function return value so integrate will delete the
5181 assignment and USE below when inlining this function. */
5182 REG_FUNCTION_VALUE_P (outgoing) = 1;
5184 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5185 value_address = convert_memory_address (GET_MODE (outgoing),
5186 value_address);
5188 emit_move_insn (outgoing, value_address);
5190 /* Show return register used to hold result (in this case the address
5191 of the result. */
5192 crtl->return_rtx = outgoing;
5195 /* Emit the actual code to clobber return register. Don't emit
5196 it if clobber_after is a barrier, then the previous basic block
5197 certainly doesn't fall thru into the exit block. */
5198 if (!BARRIER_P (clobber_after))
5200 rtx seq;
5202 start_sequence ();
5203 clobber_return_register ();
5204 seq = get_insns ();
5205 end_sequence ();
5207 emit_insn_after (seq, clobber_after);
5210 /* Output the label for the naked return from the function. */
5211 if (naked_return_label)
5212 emit_label (naked_return_label);
5214 /* @@@ This is a kludge. We want to ensure that instructions that
5215 may trap are not moved into the epilogue by scheduling, because
5216 we don't always emit unwind information for the epilogue. */
5217 if (cfun->can_throw_non_call_exceptions
5218 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5219 emit_insn (gen_blockage ());
5221 /* If stack protection is enabled for this function, check the guard. */
5222 if (crtl->stack_protect_guard)
5223 stack_protect_epilogue ();
5225 /* If we had calls to alloca, and this machine needs
5226 an accurate stack pointer to exit the function,
5227 insert some code to save and restore the stack pointer. */
5228 if (! EXIT_IGNORE_STACK
5229 && cfun->calls_alloca)
5231 rtx tem = 0, seq;
5233 start_sequence ();
5234 emit_stack_save (SAVE_FUNCTION, &tem);
5235 seq = get_insns ();
5236 end_sequence ();
5237 emit_insn_before (seq, parm_birth_insn);
5239 emit_stack_restore (SAVE_FUNCTION, tem);
5242 /* ??? This should no longer be necessary since stupid is no longer with
5243 us, but there are some parts of the compiler (eg reload_combine, and
5244 sh mach_dep_reorg) that still try and compute their own lifetime info
5245 instead of using the general framework. */
5246 use_return_register ();
5250 get_arg_pointer_save_area (void)
5252 rtx ret = arg_pointer_save_area;
5254 if (! ret)
5256 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5257 arg_pointer_save_area = ret;
5260 if (! crtl->arg_pointer_save_area_init)
5262 rtx seq;
5264 /* Save the arg pointer at the beginning of the function. The
5265 generated stack slot may not be a valid memory address, so we
5266 have to check it and fix it if necessary. */
5267 start_sequence ();
5268 emit_move_insn (validize_mem (copy_rtx (ret)),
5269 crtl->args.internal_arg_pointer);
5270 seq = get_insns ();
5271 end_sequence ();
5273 push_topmost_sequence ();
5274 emit_insn_after (seq, entry_of_function ());
5275 pop_topmost_sequence ();
5277 crtl->arg_pointer_save_area_init = true;
5280 return ret;
5283 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5284 for the first time. */
5286 static void
5287 record_insns (rtx insns, rtx end, htab_t *hashp)
5289 rtx tmp;
5290 htab_t hash = *hashp;
5292 if (hash == NULL)
5293 *hashp = hash
5294 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5296 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5298 void **slot = htab_find_slot (hash, tmp, INSERT);
5299 gcc_assert (*slot == NULL);
5300 *slot = tmp;
5304 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5305 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5306 insn, then record COPY as well. */
5308 void
5309 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5311 htab_t hash;
5312 void **slot;
5314 hash = epilogue_insn_hash;
5315 if (!hash || !htab_find (hash, insn))
5317 hash = prologue_insn_hash;
5318 if (!hash || !htab_find (hash, insn))
5319 return;
5322 slot = htab_find_slot (hash, copy, INSERT);
5323 gcc_assert (*slot == NULL);
5324 *slot = copy;
5327 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5328 we can be running after reorg, SEQUENCE rtl is possible. */
5330 static bool
5331 contains (const_rtx insn, htab_t hash)
5333 if (hash == NULL)
5334 return false;
5336 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5338 int i;
5339 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5340 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5341 return true;
5342 return false;
5345 return htab_find (hash, insn) != NULL;
5349 prologue_epilogue_contains (const_rtx insn)
5351 if (contains (insn, prologue_insn_hash))
5352 return 1;
5353 if (contains (insn, epilogue_insn_hash))
5354 return 1;
5355 return 0;
5358 #ifdef HAVE_return
5359 /* Insert use of return register before the end of BB. */
5361 static void
5362 emit_use_return_register_into_block (basic_block bb)
5364 rtx seq, insn;
5365 start_sequence ();
5366 use_return_register ();
5367 seq = get_insns ();
5368 end_sequence ();
5369 insn = BB_END (bb);
5370 #ifdef HAVE_cc0
5371 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5372 insn = prev_cc0_setter (insn);
5373 #endif
5374 emit_insn_before (seq, insn);
5378 /* Create a return pattern, either simple_return or return, depending on
5379 simple_p. */
5381 static rtx
5382 gen_return_pattern (bool simple_p)
5384 #ifdef HAVE_simple_return
5385 return simple_p ? gen_simple_return () : gen_return ();
5386 #else
5387 gcc_assert (!simple_p);
5388 return gen_return ();
5389 #endif
5392 /* Insert an appropriate return pattern at the end of block BB. This
5393 also means updating block_for_insn appropriately. SIMPLE_P is
5394 the same as in gen_return_pattern and passed to it. */
5396 void
5397 emit_return_into_block (bool simple_p, basic_block bb)
5399 rtx jump, pat;
5400 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5401 pat = PATTERN (jump);
5402 if (GET_CODE (pat) == PARALLEL)
5403 pat = XVECEXP (pat, 0, 0);
5404 gcc_assert (ANY_RETURN_P (pat));
5405 JUMP_LABEL (jump) = pat;
5407 #endif
5409 /* Set JUMP_LABEL for a return insn. */
5411 void
5412 set_return_jump_label (rtx returnjump)
5414 rtx pat = PATTERN (returnjump);
5415 if (GET_CODE (pat) == PARALLEL)
5416 pat = XVECEXP (pat, 0, 0);
5417 if (ANY_RETURN_P (pat))
5418 JUMP_LABEL (returnjump) = pat;
5419 else
5420 JUMP_LABEL (returnjump) = ret_rtx;
5423 #if defined (HAVE_return) || defined (HAVE_simple_return)
5424 /* Return true if there are any active insns between HEAD and TAIL. */
5425 bool
5426 active_insn_between (rtx head, rtx tail)
5428 while (tail)
5430 if (active_insn_p (tail))
5431 return true;
5432 if (tail == head)
5433 return false;
5434 tail = PREV_INSN (tail);
5436 return false;
5439 /* LAST_BB is a block that exits, and empty of active instructions.
5440 Examine its predecessors for jumps that can be converted to
5441 (conditional) returns. */
5442 vec<edge>
5443 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5444 vec<edge> unconverted ATTRIBUTE_UNUSED)
5446 int i;
5447 basic_block bb;
5448 rtx label;
5449 edge_iterator ei;
5450 edge e;
5451 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5453 FOR_EACH_EDGE (e, ei, last_bb->preds)
5454 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5455 src_bbs.quick_push (e->src);
5457 label = BB_HEAD (last_bb);
5459 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5461 rtx jump = BB_END (bb);
5463 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5464 continue;
5466 e = find_edge (bb, last_bb);
5468 /* If we have an unconditional jump, we can replace that
5469 with a simple return instruction. */
5470 if (simplejump_p (jump))
5472 /* The use of the return register might be present in the exit
5473 fallthru block. Either:
5474 - removing the use is safe, and we should remove the use in
5475 the exit fallthru block, or
5476 - removing the use is not safe, and we should add it here.
5477 For now, we conservatively choose the latter. Either of the
5478 2 helps in crossjumping. */
5479 emit_use_return_register_into_block (bb);
5481 emit_return_into_block (simple_p, bb);
5482 delete_insn (jump);
5485 /* If we have a conditional jump branching to the last
5486 block, we can try to replace that with a conditional
5487 return instruction. */
5488 else if (condjump_p (jump))
5490 rtx dest;
5492 if (simple_p)
5493 dest = simple_return_rtx;
5494 else
5495 dest = ret_rtx;
5496 if (!redirect_jump (jump, dest, 0))
5498 #ifdef HAVE_simple_return
5499 if (simple_p)
5501 if (dump_file)
5502 fprintf (dump_file,
5503 "Failed to redirect bb %d branch.\n", bb->index);
5504 unconverted.safe_push (e);
5506 #endif
5507 continue;
5510 /* See comment in simplejump_p case above. */
5511 emit_use_return_register_into_block (bb);
5513 /* If this block has only one successor, it both jumps
5514 and falls through to the fallthru block, so we can't
5515 delete the edge. */
5516 if (single_succ_p (bb))
5517 continue;
5519 else
5521 #ifdef HAVE_simple_return
5522 if (simple_p)
5524 if (dump_file)
5525 fprintf (dump_file,
5526 "Failed to redirect bb %d branch.\n", bb->index);
5527 unconverted.safe_push (e);
5529 #endif
5530 continue;
5533 /* Fix up the CFG for the successful change we just made. */
5534 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5535 e->flags &= ~EDGE_CROSSING;
5537 src_bbs.release ();
5538 return unconverted;
5541 /* Emit a return insn for the exit fallthru block. */
5542 basic_block
5543 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5545 basic_block last_bb = exit_fallthru_edge->src;
5547 if (JUMP_P (BB_END (last_bb)))
5549 last_bb = split_edge (exit_fallthru_edge);
5550 exit_fallthru_edge = single_succ_edge (last_bb);
5552 emit_barrier_after (BB_END (last_bb));
5553 emit_return_into_block (simple_p, last_bb);
5554 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5555 return last_bb;
5557 #endif
5560 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5561 this into place with notes indicating where the prologue ends and where
5562 the epilogue begins. Update the basic block information when possible.
5564 Notes on epilogue placement:
5565 There are several kinds of edges to the exit block:
5566 * a single fallthru edge from LAST_BB
5567 * possibly, edges from blocks containing sibcalls
5568 * possibly, fake edges from infinite loops
5570 The epilogue is always emitted on the fallthru edge from the last basic
5571 block in the function, LAST_BB, into the exit block.
5573 If LAST_BB is empty except for a label, it is the target of every
5574 other basic block in the function that ends in a return. If a
5575 target has a return or simple_return pattern (possibly with
5576 conditional variants), these basic blocks can be changed so that a
5577 return insn is emitted into them, and their target is adjusted to
5578 the real exit block.
5580 Notes on shrink wrapping: We implement a fairly conservative
5581 version of shrink-wrapping rather than the textbook one. We only
5582 generate a single prologue and a single epilogue. This is
5583 sufficient to catch a number of interesting cases involving early
5584 exits.
5586 First, we identify the blocks that require the prologue to occur before
5587 them. These are the ones that modify a call-saved register, or reference
5588 any of the stack or frame pointer registers. To simplify things, we then
5589 mark everything reachable from these blocks as also requiring a prologue.
5590 This takes care of loops automatically, and avoids the need to examine
5591 whether MEMs reference the frame, since it is sufficient to check for
5592 occurrences of the stack or frame pointer.
5594 We then compute the set of blocks for which the need for a prologue
5595 is anticipatable (borrowing terminology from the shrink-wrapping
5596 description in Muchnick's book). These are the blocks which either
5597 require a prologue themselves, or those that have only successors
5598 where the prologue is anticipatable. The prologue needs to be
5599 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5600 is not. For the moment, we ensure that only one such edge exists.
5602 The epilogue is placed as described above, but we make a
5603 distinction between inserting return and simple_return patterns
5604 when modifying other blocks that end in a return. Blocks that end
5605 in a sibcall omit the sibcall_epilogue if the block is not in
5606 ANTIC. */
5608 static void
5609 thread_prologue_and_epilogue_insns (void)
5611 bool inserted;
5612 #ifdef HAVE_simple_return
5613 vec<edge> unconverted_simple_returns = vNULL;
5614 bitmap_head bb_flags;
5615 #endif
5616 rtx_insn *returnjump;
5617 rtx seq ATTRIBUTE_UNUSED;
5618 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5619 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5620 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5621 edge_iterator ei;
5623 df_analyze ();
5625 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5627 inserted = false;
5628 seq = NULL_RTX;
5629 epilogue_end = NULL;
5630 returnjump = NULL;
5632 /* Can't deal with multiple successors of the entry block at the
5633 moment. Function should always have at least one entry
5634 point. */
5635 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5636 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5637 orig_entry_edge = entry_edge;
5639 split_prologue_seq = NULL_RTX;
5640 if (flag_split_stack
5641 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5642 == NULL))
5644 #ifndef HAVE_split_stack_prologue
5645 gcc_unreachable ();
5646 #else
5647 gcc_assert (HAVE_split_stack_prologue);
5649 start_sequence ();
5650 emit_insn (gen_split_stack_prologue ());
5651 split_prologue_seq = get_insns ();
5652 end_sequence ();
5654 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5655 set_insn_locations (split_prologue_seq, prologue_location);
5656 #endif
5659 prologue_seq = NULL_RTX;
5660 #ifdef HAVE_prologue
5661 if (HAVE_prologue)
5663 start_sequence ();
5664 seq = gen_prologue ();
5665 emit_insn (seq);
5667 /* Insert an explicit USE for the frame pointer
5668 if the profiling is on and the frame pointer is required. */
5669 if (crtl->profile && frame_pointer_needed)
5670 emit_use (hard_frame_pointer_rtx);
5672 /* Retain a map of the prologue insns. */
5673 record_insns (seq, NULL, &prologue_insn_hash);
5674 emit_note (NOTE_INSN_PROLOGUE_END);
5676 /* Ensure that instructions are not moved into the prologue when
5677 profiling is on. The call to the profiling routine can be
5678 emitted within the live range of a call-clobbered register. */
5679 if (!targetm.profile_before_prologue () && crtl->profile)
5680 emit_insn (gen_blockage ());
5682 prologue_seq = get_insns ();
5683 end_sequence ();
5684 set_insn_locations (prologue_seq, prologue_location);
5686 #endif
5688 #ifdef HAVE_simple_return
5689 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5691 /* Try to perform a kind of shrink-wrapping, making sure the
5692 prologue/epilogue is emitted only around those parts of the
5693 function that require it. */
5695 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5696 #endif
5698 if (split_prologue_seq != NULL_RTX)
5700 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5701 inserted = true;
5703 if (prologue_seq != NULL_RTX)
5705 insert_insn_on_edge (prologue_seq, entry_edge);
5706 inserted = true;
5709 /* If the exit block has no non-fake predecessors, we don't need
5710 an epilogue. */
5711 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5712 if ((e->flags & EDGE_FAKE) == 0)
5713 break;
5714 if (e == NULL)
5715 goto epilogue_done;
5717 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5719 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5721 #ifdef HAVE_simple_return
5722 if (entry_edge != orig_entry_edge)
5723 exit_fallthru_edge
5724 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5725 &unconverted_simple_returns,
5726 &returnjump);
5727 #endif
5728 #ifdef HAVE_return
5729 if (HAVE_return)
5731 if (exit_fallthru_edge == NULL)
5732 goto epilogue_done;
5734 if (optimize)
5736 basic_block last_bb = exit_fallthru_edge->src;
5738 if (LABEL_P (BB_HEAD (last_bb))
5739 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5740 convert_jumps_to_returns (last_bb, false, vNULL);
5742 if (EDGE_COUNT (last_bb->preds) != 0
5743 && single_succ_p (last_bb))
5745 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5746 epilogue_end = returnjump = BB_END (last_bb);
5747 #ifdef HAVE_simple_return
5748 /* Emitting the return may add a basic block.
5749 Fix bb_flags for the added block. */
5750 if (last_bb != exit_fallthru_edge->src)
5751 bitmap_set_bit (&bb_flags, last_bb->index);
5752 #endif
5753 goto epilogue_done;
5757 #endif
5759 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5760 this marker for the splits of EH_RETURN patterns, and nothing else
5761 uses the flag in the meantime. */
5762 epilogue_completed = 1;
5764 #ifdef HAVE_eh_return
5765 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5766 some targets, these get split to a special version of the epilogue
5767 code. In order to be able to properly annotate these with unwind
5768 info, try to split them now. If we get a valid split, drop an
5769 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5770 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5772 rtx_insn *prev, *last, *trial;
5774 if (e->flags & EDGE_FALLTHRU)
5775 continue;
5776 last = BB_END (e->src);
5777 if (!eh_returnjump_p (last))
5778 continue;
5780 prev = PREV_INSN (last);
5781 trial = try_split (PATTERN (last), last, 1);
5782 if (trial == last)
5783 continue;
5785 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5786 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5788 #endif
5790 /* If nothing falls through into the exit block, we don't need an
5791 epilogue. */
5793 if (exit_fallthru_edge == NULL)
5794 goto epilogue_done;
5796 #ifdef HAVE_epilogue
5797 if (HAVE_epilogue)
5799 start_sequence ();
5800 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5801 seq = gen_epilogue ();
5802 if (seq)
5803 emit_jump_insn (seq);
5805 /* Retain a map of the epilogue insns. */
5806 record_insns (seq, NULL, &epilogue_insn_hash);
5807 set_insn_locations (seq, epilogue_location);
5809 seq = get_insns ();
5810 returnjump = get_last_insn ();
5811 end_sequence ();
5813 insert_insn_on_edge (seq, exit_fallthru_edge);
5814 inserted = true;
5816 if (JUMP_P (returnjump))
5817 set_return_jump_label (returnjump);
5819 else
5820 #endif
5822 basic_block cur_bb;
5824 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
5825 goto epilogue_done;
5826 /* We have a fall-through edge to the exit block, the source is not
5827 at the end of the function, and there will be an assembler epilogue
5828 at the end of the function.
5829 We can't use force_nonfallthru here, because that would try to
5830 use return. Inserting a jump 'by hand' is extremely messy, so
5831 we take advantage of cfg_layout_finalize using
5832 fixup_fallthru_exit_predecessor. */
5833 cfg_layout_initialize (0);
5834 FOR_EACH_BB_FN (cur_bb, cfun)
5835 if (cur_bb->index >= NUM_FIXED_BLOCKS
5836 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5837 cur_bb->aux = cur_bb->next_bb;
5838 cfg_layout_finalize ();
5841 epilogue_done:
5843 default_rtl_profile ();
5845 if (inserted)
5847 sbitmap blocks;
5849 commit_edge_insertions ();
5851 /* Look for basic blocks within the prologue insns. */
5852 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
5853 bitmap_clear (blocks);
5854 bitmap_set_bit (blocks, entry_edge->dest->index);
5855 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
5856 find_many_sub_basic_blocks (blocks);
5857 sbitmap_free (blocks);
5859 /* The epilogue insns we inserted may cause the exit edge to no longer
5860 be fallthru. */
5861 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5863 if (((e->flags & EDGE_FALLTHRU) != 0)
5864 && returnjump_p (BB_END (e->src)))
5865 e->flags &= ~EDGE_FALLTHRU;
5869 #ifdef HAVE_simple_return
5870 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
5871 unconverted_simple_returns);
5872 #endif
5874 #ifdef HAVE_sibcall_epilogue
5875 /* Emit sibling epilogues before any sibling call sites. */
5876 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
5877 ei_safe_edge (ei));
5880 basic_block bb = e->src;
5881 rtx_insn *insn = BB_END (bb);
5882 rtx ep_seq;
5884 if (!CALL_P (insn)
5885 || ! SIBLING_CALL_P (insn)
5886 #ifdef HAVE_simple_return
5887 || (entry_edge != orig_entry_edge
5888 && !bitmap_bit_p (&bb_flags, bb->index))
5889 #endif
5892 ei_next (&ei);
5893 continue;
5896 ep_seq = gen_sibcall_epilogue ();
5897 if (ep_seq)
5899 start_sequence ();
5900 emit_note (NOTE_INSN_EPILOGUE_BEG);
5901 emit_insn (ep_seq);
5902 seq = get_insns ();
5903 end_sequence ();
5905 /* Retain a map of the epilogue insns. Used in life analysis to
5906 avoid getting rid of sibcall epilogue insns. Do this before we
5907 actually emit the sequence. */
5908 record_insns (seq, NULL, &epilogue_insn_hash);
5909 set_insn_locations (seq, epilogue_location);
5911 emit_insn_before (seq, insn);
5913 ei_next (&ei);
5915 #endif
5917 #ifdef HAVE_epilogue
5918 if (epilogue_end)
5920 rtx_insn *insn, *next;
5922 /* Similarly, move any line notes that appear after the epilogue.
5923 There is no need, however, to be quite so anal about the existence
5924 of such a note. Also possibly move
5925 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5926 info generation. */
5927 for (insn = epilogue_end; insn; insn = next)
5929 next = NEXT_INSN (insn);
5930 if (NOTE_P (insn)
5931 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5932 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5935 #endif
5937 #ifdef HAVE_simple_return
5938 bitmap_clear (&bb_flags);
5939 #endif
5941 /* Threading the prologue and epilogue changes the artificial refs
5942 in the entry and exit blocks. */
5943 epilogue_completed = 1;
5944 df_update_entry_exit_and_calls ();
5947 /* Reposition the prologue-end and epilogue-begin notes after
5948 instruction scheduling. */
5950 void
5951 reposition_prologue_and_epilogue_notes (void)
5953 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5954 || defined (HAVE_sibcall_epilogue)
5955 /* Since the hash table is created on demand, the fact that it is
5956 non-null is a signal that it is non-empty. */
5957 if (prologue_insn_hash != NULL)
5959 size_t len = htab_elements (prologue_insn_hash);
5960 rtx_insn *insn, *last = NULL, *note = NULL;
5962 /* Scan from the beginning until we reach the last prologue insn. */
5963 /* ??? While we do have the CFG intact, there are two problems:
5964 (1) The prologue can contain loops (typically probing the stack),
5965 which means that the end of the prologue isn't in the first bb.
5966 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5967 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5969 if (NOTE_P (insn))
5971 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5972 note = insn;
5974 else if (contains (insn, prologue_insn_hash))
5976 last = insn;
5977 if (--len == 0)
5978 break;
5982 if (last)
5984 if (note == NULL)
5986 /* Scan forward looking for the PROLOGUE_END note. It should
5987 be right at the beginning of the block, possibly with other
5988 insn notes that got moved there. */
5989 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5991 if (NOTE_P (note)
5992 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5993 break;
5997 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5998 if (LABEL_P (last))
5999 last = NEXT_INSN (last);
6000 reorder_insns (note, note, last);
6004 if (epilogue_insn_hash != NULL)
6006 edge_iterator ei;
6007 edge e;
6009 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6011 rtx_insn *insn, *first = NULL, *note = NULL;
6012 basic_block bb = e->src;
6014 /* Scan from the beginning until we reach the first epilogue insn. */
6015 FOR_BB_INSNS (bb, insn)
6017 if (NOTE_P (insn))
6019 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6021 note = insn;
6022 if (first != NULL)
6023 break;
6026 else if (first == NULL && contains (insn, epilogue_insn_hash))
6028 first = insn;
6029 if (note != NULL)
6030 break;
6034 if (note)
6036 /* If the function has a single basic block, and no real
6037 epilogue insns (e.g. sibcall with no cleanup), the
6038 epilogue note can get scheduled before the prologue
6039 note. If we have frame related prologue insns, having
6040 them scanned during the epilogue will result in a crash.
6041 In this case re-order the epilogue note to just before
6042 the last insn in the block. */
6043 if (first == NULL)
6044 first = BB_END (bb);
6046 if (PREV_INSN (first) != note)
6047 reorder_insns (note, note, PREV_INSN (first));
6051 #endif /* HAVE_prologue or HAVE_epilogue */
6054 /* Returns the name of function declared by FNDECL. */
6055 const char *
6056 fndecl_name (tree fndecl)
6058 if (fndecl == NULL)
6059 return "(nofn)";
6060 return lang_hooks.decl_printable_name (fndecl, 2);
6063 /* Returns the name of function FN. */
6064 const char *
6065 function_name (struct function *fn)
6067 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6068 return fndecl_name (fndecl);
6071 /* Returns the name of the current function. */
6072 const char *
6073 current_function_name (void)
6075 return function_name (cfun);
6079 static unsigned int
6080 rest_of_handle_check_leaf_regs (void)
6082 #ifdef LEAF_REGISTERS
6083 crtl->uses_only_leaf_regs
6084 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6085 #endif
6086 return 0;
6089 /* Insert a TYPE into the used types hash table of CFUN. */
6091 static void
6092 used_types_insert_helper (tree type, struct function *func)
6094 if (type != NULL && func != NULL)
6096 void **slot;
6098 if (func->used_types_hash == NULL)
6099 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6100 htab_eq_pointer, NULL);
6101 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6102 if (*slot == NULL)
6103 *slot = type;
6107 /* Given a type, insert it into the used hash table in cfun. */
6108 void
6109 used_types_insert (tree t)
6111 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6112 if (TYPE_NAME (t))
6113 break;
6114 else
6115 t = TREE_TYPE (t);
6116 if (TREE_CODE (t) == ERROR_MARK)
6117 return;
6118 if (TYPE_NAME (t) == NULL_TREE
6119 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6120 t = TYPE_MAIN_VARIANT (t);
6121 if (debug_info_level > DINFO_LEVEL_NONE)
6123 if (cfun)
6124 used_types_insert_helper (t, cfun);
6125 else
6127 /* So this might be a type referenced by a global variable.
6128 Record that type so that we can later decide to emit its
6129 debug information. */
6130 vec_safe_push (types_used_by_cur_var_decl, t);
6135 /* Helper to Hash a struct types_used_by_vars_entry. */
6137 static hashval_t
6138 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6140 gcc_assert (entry && entry->var_decl && entry->type);
6142 return iterative_hash_object (entry->type,
6143 iterative_hash_object (entry->var_decl, 0));
6146 /* Hash function of the types_used_by_vars_entry hash table. */
6148 hashval_t
6149 types_used_by_vars_do_hash (const void *x)
6151 const struct types_used_by_vars_entry *entry =
6152 (const struct types_used_by_vars_entry *) x;
6154 return hash_types_used_by_vars_entry (entry);
6157 /*Equality function of the types_used_by_vars_entry hash table. */
6160 types_used_by_vars_eq (const void *x1, const void *x2)
6162 const struct types_used_by_vars_entry *e1 =
6163 (const struct types_used_by_vars_entry *) x1;
6164 const struct types_used_by_vars_entry *e2 =
6165 (const struct types_used_by_vars_entry *)x2;
6167 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6170 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6172 void
6173 types_used_by_var_decl_insert (tree type, tree var_decl)
6175 if (type != NULL && var_decl != NULL)
6177 void **slot;
6178 struct types_used_by_vars_entry e;
6179 e.var_decl = var_decl;
6180 e.type = type;
6181 if (types_used_by_vars_hash == NULL)
6182 types_used_by_vars_hash =
6183 htab_create_ggc (37, types_used_by_vars_do_hash,
6184 types_used_by_vars_eq, NULL);
6185 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6186 hash_types_used_by_vars_entry (&e), INSERT);
6187 if (*slot == NULL)
6189 struct types_used_by_vars_entry *entry;
6190 entry = ggc_alloc<types_used_by_vars_entry> ();
6191 entry->type = type;
6192 entry->var_decl = var_decl;
6193 *slot = entry;
6198 namespace {
6200 const pass_data pass_data_leaf_regs =
6202 RTL_PASS, /* type */
6203 "*leaf_regs", /* name */
6204 OPTGROUP_NONE, /* optinfo_flags */
6205 TV_NONE, /* tv_id */
6206 0, /* properties_required */
6207 0, /* properties_provided */
6208 0, /* properties_destroyed */
6209 0, /* todo_flags_start */
6210 0, /* todo_flags_finish */
6213 class pass_leaf_regs : public rtl_opt_pass
6215 public:
6216 pass_leaf_regs (gcc::context *ctxt)
6217 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6220 /* opt_pass methods: */
6221 virtual unsigned int execute (function *)
6223 return rest_of_handle_check_leaf_regs ();
6226 }; // class pass_leaf_regs
6228 } // anon namespace
6230 rtl_opt_pass *
6231 make_pass_leaf_regs (gcc::context *ctxt)
6233 return new pass_leaf_regs (ctxt);
6236 static unsigned int
6237 rest_of_handle_thread_prologue_and_epilogue (void)
6239 if (optimize)
6240 cleanup_cfg (CLEANUP_EXPENSIVE);
6242 /* On some machines, the prologue and epilogue code, or parts thereof,
6243 can be represented as RTL. Doing so lets us schedule insns between
6244 it and the rest of the code and also allows delayed branch
6245 scheduling to operate in the epilogue. */
6246 thread_prologue_and_epilogue_insns ();
6248 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6249 see PR57320. */
6250 cleanup_cfg (0);
6252 /* The stack usage info is finalized during prologue expansion. */
6253 if (flag_stack_usage_info)
6254 output_stack_usage ();
6256 return 0;
6259 namespace {
6261 const pass_data pass_data_thread_prologue_and_epilogue =
6263 RTL_PASS, /* type */
6264 "pro_and_epilogue", /* name */
6265 OPTGROUP_NONE, /* optinfo_flags */
6266 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6267 0, /* properties_required */
6268 0, /* properties_provided */
6269 0, /* properties_destroyed */
6270 0, /* todo_flags_start */
6271 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6274 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6276 public:
6277 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6278 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6281 /* opt_pass methods: */
6282 virtual unsigned int execute (function *)
6284 return rest_of_handle_thread_prologue_and_epilogue ();
6287 }; // class pass_thread_prologue_and_epilogue
6289 } // anon namespace
6291 rtl_opt_pass *
6292 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6294 return new pass_thread_prologue_and_epilogue (ctxt);
6298 /* This mini-pass fixes fall-out from SSA in asm statements that have
6299 in-out constraints. Say you start with
6301 orig = inout;
6302 asm ("": "+mr" (inout));
6303 use (orig);
6305 which is transformed very early to use explicit output and match operands:
6307 orig = inout;
6308 asm ("": "=mr" (inout) : "0" (inout));
6309 use (orig);
6311 Or, after SSA and copyprop,
6313 asm ("": "=mr" (inout_2) : "0" (inout_1));
6314 use (inout_1);
6316 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6317 they represent two separate values, so they will get different pseudo
6318 registers during expansion. Then, since the two operands need to match
6319 per the constraints, but use different pseudo registers, reload can
6320 only register a reload for these operands. But reloads can only be
6321 satisfied by hardregs, not by memory, so we need a register for this
6322 reload, just because we are presented with non-matching operands.
6323 So, even though we allow memory for this operand, no memory can be
6324 used for it, just because the two operands don't match. This can
6325 cause reload failures on register-starved targets.
6327 So it's a symptom of reload not being able to use memory for reloads
6328 or, alternatively it's also a symptom of both operands not coming into
6329 reload as matching (in which case the pseudo could go to memory just
6330 fine, as the alternative allows it, and no reload would be necessary).
6331 We fix the latter problem here, by transforming
6333 asm ("": "=mr" (inout_2) : "0" (inout_1));
6335 back to
6337 inout_2 = inout_1;
6338 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6340 static void
6341 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6343 int i;
6344 bool changed = false;
6345 rtx op = SET_SRC (p_sets[0]);
6346 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6347 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6348 bool *output_matched = XALLOCAVEC (bool, noutputs);
6350 memset (output_matched, 0, noutputs * sizeof (bool));
6351 for (i = 0; i < ninputs; i++)
6353 rtx input, output;
6354 rtx_insn *insns;
6355 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6356 char *end;
6357 int match, j;
6359 if (*constraint == '%')
6360 constraint++;
6362 match = strtoul (constraint, &end, 10);
6363 if (end == constraint)
6364 continue;
6366 gcc_assert (match < noutputs);
6367 output = SET_DEST (p_sets[match]);
6368 input = RTVEC_ELT (inputs, i);
6369 /* Only do the transformation for pseudos. */
6370 if (! REG_P (output)
6371 || rtx_equal_p (output, input)
6372 || (GET_MODE (input) != VOIDmode
6373 && GET_MODE (input) != GET_MODE (output)))
6374 continue;
6376 /* We can't do anything if the output is also used as input,
6377 as we're going to overwrite it. */
6378 for (j = 0; j < ninputs; j++)
6379 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6380 break;
6381 if (j != ninputs)
6382 continue;
6384 /* Avoid changing the same input several times. For
6385 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6386 only change in once (to out1), rather than changing it
6387 first to out1 and afterwards to out2. */
6388 if (i > 0)
6390 for (j = 0; j < noutputs; j++)
6391 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6392 break;
6393 if (j != noutputs)
6394 continue;
6396 output_matched[match] = true;
6398 start_sequence ();
6399 emit_move_insn (output, input);
6400 insns = get_insns ();
6401 end_sequence ();
6402 emit_insn_before (insns, insn);
6404 /* Now replace all mentions of the input with output. We can't
6405 just replace the occurrence in inputs[i], as the register might
6406 also be used in some other input (or even in an address of an
6407 output), which would mean possibly increasing the number of
6408 inputs by one (namely 'output' in addition), which might pose
6409 a too complicated problem for reload to solve. E.g. this situation:
6411 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6413 Here 'input' is used in two occurrences as input (once for the
6414 input operand, once for the address in the second output operand).
6415 If we would replace only the occurrence of the input operand (to
6416 make the matching) we would be left with this:
6418 output = input
6419 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6421 Now we suddenly have two different input values (containing the same
6422 value, but different pseudos) where we formerly had only one.
6423 With more complicated asms this might lead to reload failures
6424 which wouldn't have happen without this pass. So, iterate over
6425 all operands and replace all occurrences of the register used. */
6426 for (j = 0; j < noutputs; j++)
6427 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6428 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6429 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6430 input, output);
6431 for (j = 0; j < ninputs; j++)
6432 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6433 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6434 input, output);
6436 changed = true;
6439 if (changed)
6440 df_insn_rescan (insn);
6443 namespace {
6445 const pass_data pass_data_match_asm_constraints =
6447 RTL_PASS, /* type */
6448 "asmcons", /* name */
6449 OPTGROUP_NONE, /* optinfo_flags */
6450 TV_NONE, /* tv_id */
6451 0, /* properties_required */
6452 0, /* properties_provided */
6453 0, /* properties_destroyed */
6454 0, /* todo_flags_start */
6455 0, /* todo_flags_finish */
6458 class pass_match_asm_constraints : public rtl_opt_pass
6460 public:
6461 pass_match_asm_constraints (gcc::context *ctxt)
6462 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6465 /* opt_pass methods: */
6466 virtual unsigned int execute (function *);
6468 }; // class pass_match_asm_constraints
6470 unsigned
6471 pass_match_asm_constraints::execute (function *fun)
6473 basic_block bb;
6474 rtx_insn *insn;
6475 rtx pat, *p_sets;
6476 int noutputs;
6478 if (!crtl->has_asm_statement)
6479 return 0;
6481 df_set_flags (DF_DEFER_INSN_RESCAN);
6482 FOR_EACH_BB_FN (bb, fun)
6484 FOR_BB_INSNS (bb, insn)
6486 if (!INSN_P (insn))
6487 continue;
6489 pat = PATTERN (insn);
6490 if (GET_CODE (pat) == PARALLEL)
6491 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6492 else if (GET_CODE (pat) == SET)
6493 p_sets = &PATTERN (insn), noutputs = 1;
6494 else
6495 continue;
6497 if (GET_CODE (*p_sets) == SET
6498 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6499 match_asm_constraints_1 (insn, p_sets, noutputs);
6503 return TODO_df_finish;
6506 } // anon namespace
6508 rtl_opt_pass *
6509 make_pass_match_asm_constraints (gcc::context *ctxt)
6511 return new pass_match_asm_constraints (ctxt);
6515 #include "gt-function.h"