1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
28 #include "insn-config.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx
, const_rtx
, void *);
43 static bool covers_regno_p (const_rtx
, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
45 static int rtx_referenced_p_1 (rtx
*, void *);
46 static int computed_jump_p_1 (const_rtx
);
47 static void parms_set (rtx
, const_rtx
, void *);
49 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, enum machine_mode
,
50 const_rtx
, enum machine_mode
,
51 unsigned HOST_WIDE_INT
);
52 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, enum machine_mode
,
53 const_rtx
, enum machine_mode
,
54 unsigned HOST_WIDE_INT
);
55 static unsigned int cached_num_sign_bit_copies (const_rtx
, enum machine_mode
, const_rtx
,
58 static unsigned int num_sign_bit_copies1 (const_rtx
, enum machine_mode
, const_rtx
,
59 enum machine_mode
, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67 SIGN_EXTEND then while narrowing we also have to enforce the
68 representation and sign-extend the value to mode DESTINATION_REP.
70 If the value is already sign-extended to DESTINATION_REP mode we
71 can just switch to DESTINATION mode on it. For each pair of
72 integral modes SOURCE and DESTINATION, when truncating from SOURCE
73 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74 contains the number of high-order bits in SOURCE that have to be
75 copies of the sign-bit so that we can do this mode-switch to
79 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
81 /* Return 1 if the value of X is unstable
82 (would be different at a different point in the program).
83 The frame pointer, arg pointer, etc. are considered stable
84 (within one function) and so is anything marked `unchanging'. */
87 rtx_unstable_p (const_rtx x
)
89 const RTX_CODE code
= GET_CODE (x
);
96 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
105 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
106 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
107 /* The arg pointer varies if it is not a fixed register. */
108 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
110 /* ??? When call-clobbered, the value is stable modulo the restore
111 that must happen after a call. This currently screws up local-alloc
112 into believing that the restore is not needed. */
113 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& x
== pic_offset_table_rtx
)
118 if (MEM_VOLATILE_P (x
))
127 fmt
= GET_RTX_FORMAT (code
);
128 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
131 if (rtx_unstable_p (XEXP (x
, i
)))
134 else if (fmt
[i
] == 'E')
137 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
138 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
145 /* Return 1 if X has a value that can vary even between two
146 executions of the program. 0 means X can be compared reliably
147 against certain constants or near-constants.
148 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
149 zero, we are slightly more conservative.
150 The frame pointer and the arg pointer are considered constant. */
153 rtx_varies_p (const_rtx x
, bool for_alias
)
166 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
175 /* Note that we have to test for the actual rtx used for the frame
176 and arg pointers and not just the register number in case we have
177 eliminated the frame and/or arg pointer and are using it
179 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
180 /* The arg pointer varies if it is not a fixed register. */
181 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
183 if (x
== pic_offset_table_rtx
184 /* ??? When call-clobbered, the value is stable modulo the restore
185 that must happen after a call. This currently screws up
186 local-alloc into believing that the restore is not needed, so we
187 must return 0 only if we are called from alias analysis. */
188 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|| for_alias
))
193 /* The operand 0 of a LO_SUM is considered constant
194 (in fact it is related specifically to operand 1)
195 during alias analysis. */
196 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
197 || rtx_varies_p (XEXP (x
, 1), for_alias
);
200 if (MEM_VOLATILE_P (x
))
209 fmt
= GET_RTX_FORMAT (code
);
210 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
213 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
216 else if (fmt
[i
] == 'E')
219 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
220 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
227 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
228 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
229 whether nonzero is returned for unaligned memory accesses on strict
230 alignment machines. */
233 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
234 enum machine_mode mode
, bool unaligned_mems
)
236 enum rtx_code code
= GET_CODE (x
);
240 && GET_MODE_SIZE (mode
) != 0)
242 HOST_WIDE_INT actual_offset
= offset
;
243 #ifdef SPARC_STACK_BOUNDARY_HACK
244 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
245 the real alignment of %sp. However, when it does this, the
246 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
247 if (SPARC_STACK_BOUNDARY_HACK
248 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
249 actual_offset
-= STACK_POINTER_OFFSET
;
252 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
259 if (SYMBOL_REF_WEAK (x
))
261 if (!CONSTANT_POOL_ADDRESS_P (x
))
264 HOST_WIDE_INT decl_size
;
269 size
= GET_MODE_SIZE (mode
);
273 /* If the size of the access or of the symbol is unknown,
275 decl
= SYMBOL_REF_DECL (x
);
277 /* Else check that the access is in bounds. TODO: restructure
278 expr_size/tree_expr_size/int_expr_size and just use the latter. */
281 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
282 decl_size
= (host_integerp (DECL_SIZE_UNIT (decl
), 0)
283 ? tree_low_cst (DECL_SIZE_UNIT (decl
), 0)
285 else if (TREE_CODE (decl
) == STRING_CST
)
286 decl_size
= TREE_STRING_LENGTH (decl
);
287 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
288 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
292 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
301 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
302 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
303 || x
== stack_pointer_rtx
304 /* The arg pointer varies if it is not a fixed register. */
305 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
307 /* All of the virtual frame registers are stack references. */
308 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
309 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
314 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
315 mode
, unaligned_mems
);
318 /* An address is assumed not to trap if:
319 - it is the pic register plus a constant. */
320 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
323 /* - or it is an address that can't trap plus a constant integer,
324 with the proper remainder modulo the mode size if we are
325 considering unaligned memory references. */
326 if (CONST_INT_P (XEXP (x
, 1))
327 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
328 size
, mode
, unaligned_mems
))
335 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
336 mode
, unaligned_mems
);
343 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
344 mode
, unaligned_mems
);
350 /* If it isn't one of the case above, it can cause a trap. */
354 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
357 rtx_addr_can_trap_p (const_rtx x
)
359 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
362 /* Return true if X is an address that is known to not be zero. */
365 nonzero_address_p (const_rtx x
)
367 const enum rtx_code code
= GET_CODE (x
);
372 return !SYMBOL_REF_WEAK (x
);
378 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
379 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
380 || x
== stack_pointer_rtx
381 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
383 /* All of the virtual frame registers are stack references. */
384 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
385 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
390 return nonzero_address_p (XEXP (x
, 0));
393 /* Handle PIC references. */
394 if (XEXP (x
, 0) == pic_offset_table_rtx
395 && CONSTANT_P (XEXP (x
, 1)))
400 /* Similar to the above; allow positive offsets. Further, since
401 auto-inc is only allowed in memories, the register must be a
403 if (CONST_INT_P (XEXP (x
, 1))
404 && INTVAL (XEXP (x
, 1)) > 0)
406 return nonzero_address_p (XEXP (x
, 0));
409 /* Similarly. Further, the offset is always positive. */
416 return nonzero_address_p (XEXP (x
, 0));
419 return nonzero_address_p (XEXP (x
, 1));
425 /* If it isn't one of the case above, might be zero. */
429 /* Return 1 if X refers to a memory location whose address
430 cannot be compared reliably with constant addresses,
431 or if X refers to a BLKmode memory object.
432 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
433 zero, we are slightly more conservative. */
436 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
447 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
449 fmt
= GET_RTX_FORMAT (code
);
450 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
453 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
456 else if (fmt
[i
] == 'E')
459 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
460 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
466 /* Return the CALL in X if there is one. */
469 get_call_rtx_from (rtx x
)
473 if (GET_CODE (x
) == PARALLEL
)
474 x
= XVECEXP (x
, 0, 0);
475 if (GET_CODE (x
) == SET
)
477 if (GET_CODE (x
) == CALL
&& MEM_P (XEXP (x
, 0)))
482 /* Return the value of the integer term in X, if one is apparent;
484 Only obvious integer terms are detected.
485 This is used in cse.c with the `related_value' field. */
488 get_integer_term (const_rtx x
)
490 if (GET_CODE (x
) == CONST
)
493 if (GET_CODE (x
) == MINUS
494 && CONST_INT_P (XEXP (x
, 1)))
495 return - INTVAL (XEXP (x
, 1));
496 if (GET_CODE (x
) == PLUS
497 && CONST_INT_P (XEXP (x
, 1)))
498 return INTVAL (XEXP (x
, 1));
502 /* If X is a constant, return the value sans apparent integer term;
504 Only obvious integer terms are detected. */
507 get_related_value (const_rtx x
)
509 if (GET_CODE (x
) != CONST
)
512 if (GET_CODE (x
) == PLUS
513 && CONST_INT_P (XEXP (x
, 1)))
515 else if (GET_CODE (x
) == MINUS
516 && CONST_INT_P (XEXP (x
, 1)))
521 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
522 to somewhere in the same object or object_block as SYMBOL. */
525 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
529 if (GET_CODE (symbol
) != SYMBOL_REF
)
537 if (CONSTANT_POOL_ADDRESS_P (symbol
)
538 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
541 decl
= SYMBOL_REF_DECL (symbol
);
542 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
546 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
547 && SYMBOL_REF_BLOCK (symbol
)
548 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
549 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
550 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
556 /* Split X into a base and a constant offset, storing them in *BASE_OUT
557 and *OFFSET_OUT respectively. */
560 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
562 if (GET_CODE (x
) == CONST
)
565 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
567 *base_out
= XEXP (x
, 0);
568 *offset_out
= XEXP (x
, 1);
573 *offset_out
= const0_rtx
;
576 /* Return the number of places FIND appears within X. If COUNT_DEST is
577 zero, we do not count occurrences inside the destination of a SET. */
580 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
584 const char *format_ptr
;
603 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
605 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
609 if (MEM_P (find
) && rtx_equal_p (x
, find
))
614 if (SET_DEST (x
) == find
&& ! count_dest
)
615 return count_occurrences (SET_SRC (x
), find
, count_dest
);
622 format_ptr
= GET_RTX_FORMAT (code
);
625 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
627 switch (*format_ptr
++)
630 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
634 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
635 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
643 /* Return TRUE if OP is a register or subreg of a register that
644 holds an unsigned quantity. Otherwise, return FALSE. */
647 unsigned_reg_p (rtx op
)
651 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op
))))
654 if (GET_CODE (op
) == SUBREG
655 && SUBREG_PROMOTED_UNSIGNED_P (op
))
662 /* Nonzero if register REG appears somewhere within IN.
663 Also works if REG is not a register; in this case it checks
664 for a subexpression of IN that is Lisp "equal" to REG. */
667 reg_mentioned_p (const_rtx reg
, const_rtx in
)
679 if (GET_CODE (in
) == LABEL_REF
)
680 return reg
== XEXP (in
, 0);
682 code
= GET_CODE (in
);
686 /* Compare registers by number. */
688 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
690 /* These codes have no constituent expressions
698 /* These are kept unique for a given value. */
705 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
708 fmt
= GET_RTX_FORMAT (code
);
710 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
715 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
716 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
719 else if (fmt
[i
] == 'e'
720 && reg_mentioned_p (reg
, XEXP (in
, i
)))
726 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
727 no CODE_LABEL insn. */
730 no_labels_between_p (const_rtx beg
, const_rtx end
)
735 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
741 /* Nonzero if register REG is used in an insn between
742 FROM_INSN and TO_INSN (exclusive of those two). */
745 reg_used_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
749 if (from_insn
== to_insn
)
752 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
753 if (NONDEBUG_INSN_P (insn
)
754 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
755 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
760 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
761 is entirely replaced by a new value and the only use is as a SET_DEST,
762 we do not consider it a reference. */
765 reg_referenced_p (const_rtx x
, const_rtx body
)
769 switch (GET_CODE (body
))
772 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
775 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
776 of a REG that occupies all of the REG, the insn references X if
777 it is mentioned in the destination. */
778 if (GET_CODE (SET_DEST (body
)) != CC0
779 && GET_CODE (SET_DEST (body
)) != PC
780 && !REG_P (SET_DEST (body
))
781 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
782 && REG_P (SUBREG_REG (SET_DEST (body
)))
783 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
784 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
785 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
786 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
787 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
792 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
793 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
800 return reg_overlap_mentioned_p (x
, body
);
803 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
806 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
809 case UNSPEC_VOLATILE
:
810 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
811 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
816 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
817 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
822 if (MEM_P (XEXP (body
, 0)))
823 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
828 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
830 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
837 /* Nonzero if register REG is set or clobbered in an insn between
838 FROM_INSN and TO_INSN (exclusive of those two). */
841 reg_set_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
845 if (from_insn
== to_insn
)
848 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
849 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
854 /* Internals of reg_set_between_p. */
856 reg_set_p (const_rtx reg
, const_rtx insn
)
858 /* We can be passed an insn or part of one. If we are passed an insn,
859 check if a side-effect of the insn clobbers REG. */
861 && (FIND_REG_INC_NOTE (insn
, reg
)
864 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
865 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
866 GET_MODE (reg
), REGNO (reg
)))
868 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
871 return set_of (reg
, insn
) != NULL_RTX
;
874 /* Similar to reg_set_between_p, but check all registers in X. Return 0
875 only if none of them are modified between START and END. Return 1 if
876 X contains a MEM; this routine does use memory aliasing. */
879 modified_between_p (const_rtx x
, const_rtx start
, const_rtx end
)
881 const enum rtx_code code
= GET_CODE (x
);
902 if (modified_between_p (XEXP (x
, 0), start
, end
))
904 if (MEM_READONLY_P (x
))
906 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
907 if (memory_modified_in_insn_p (x
, insn
))
913 return reg_set_between_p (x
, start
, end
);
919 fmt
= GET_RTX_FORMAT (code
);
920 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
922 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
925 else if (fmt
[i
] == 'E')
926 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
927 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
934 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
935 of them are modified in INSN. Return 1 if X contains a MEM; this routine
936 does use memory aliasing. */
939 modified_in_p (const_rtx x
, const_rtx insn
)
941 const enum rtx_code code
= GET_CODE (x
);
958 if (modified_in_p (XEXP (x
, 0), insn
))
960 if (MEM_READONLY_P (x
))
962 if (memory_modified_in_insn_p (x
, insn
))
968 return reg_set_p (x
, insn
);
974 fmt
= GET_RTX_FORMAT (code
);
975 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
977 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
980 else if (fmt
[i
] == 'E')
981 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
982 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
989 /* Helper function for set_of. */
997 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
999 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
1000 if (rtx_equal_p (x
, data
->pat
)
1001 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
1005 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1006 (either directly or via STRICT_LOW_PART and similar modifiers). */
1008 set_of (const_rtx pat
, const_rtx insn
)
1010 struct set_of_data data
;
1011 data
.found
= NULL_RTX
;
1013 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1017 /* This function, called through note_stores, collects sets and
1018 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1021 record_hard_reg_sets (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1023 HARD_REG_SET
*pset
= (HARD_REG_SET
*)data
;
1024 if (REG_P (x
) && HARD_REGISTER_P (x
))
1025 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1028 /* Examine INSN, and compute the set of hard registers written by it.
1029 Store it in *PSET. Should only be called after reload. */
1031 find_all_hard_reg_sets (const_rtx insn
, HARD_REG_SET
*pset
)
1035 CLEAR_HARD_REG_SET (*pset
);
1036 note_stores (PATTERN (insn
), record_hard_reg_sets
, pset
);
1038 IOR_HARD_REG_SET (*pset
, call_used_reg_set
);
1039 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1040 if (REG_NOTE_KIND (link
) == REG_INC
)
1041 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1044 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1046 record_hard_reg_uses_1 (rtx
*px
, void *data
)
1049 HARD_REG_SET
*pused
= (HARD_REG_SET
*)data
;
1051 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1053 int nregs
= hard_regno_nregs
[REGNO (x
)][GET_MODE (x
)];
1055 SET_HARD_REG_BIT (*pused
, REGNO (x
) + nregs
);
1060 /* Like record_hard_reg_sets, but called through note_uses. */
1062 record_hard_reg_uses (rtx
*px
, void *data
)
1064 for_each_rtx (px
, record_hard_reg_uses_1
, data
);
1067 /* Given an INSN, return a SET expression if this insn has only a single SET.
1068 It may also have CLOBBERs, USEs, or SET whose output
1069 will not be used, which we ignore. */
1072 single_set_2 (const_rtx insn
, const_rtx pat
)
1075 int set_verified
= 1;
1078 if (GET_CODE (pat
) == PARALLEL
)
1080 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1082 rtx sub
= XVECEXP (pat
, 0, i
);
1083 switch (GET_CODE (sub
))
1090 /* We can consider insns having multiple sets, where all
1091 but one are dead as single set insns. In common case
1092 only single set is present in the pattern so we want
1093 to avoid checking for REG_UNUSED notes unless necessary.
1095 When we reach set first time, we just expect this is
1096 the single set we are looking for and only when more
1097 sets are found in the insn, we check them. */
1100 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1101 && !side_effects_p (set
))
1107 set
= sub
, set_verified
= 0;
1108 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1109 || side_effects_p (sub
))
1121 /* Given an INSN, return nonzero if it has more than one SET, else return
1125 multiple_sets (const_rtx insn
)
1130 /* INSN must be an insn. */
1131 if (! INSN_P (insn
))
1134 /* Only a PARALLEL can have multiple SETs. */
1135 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1137 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1138 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1140 /* If we have already found a SET, then return now. */
1148 /* Either zero or one SET. */
1152 /* Return nonzero if the destination of SET equals the source
1153 and there are no side effects. */
1156 set_noop_p (const_rtx set
)
1158 rtx src
= SET_SRC (set
);
1159 rtx dst
= SET_DEST (set
);
1161 if (dst
== pc_rtx
&& src
== pc_rtx
)
1164 if (MEM_P (dst
) && MEM_P (src
))
1165 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1167 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1168 return rtx_equal_p (XEXP (dst
, 0), src
)
1169 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1170 && !side_effects_p (src
);
1172 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1173 dst
= XEXP (dst
, 0);
1175 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1177 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1179 src
= SUBREG_REG (src
);
1180 dst
= SUBREG_REG (dst
);
1183 return (REG_P (src
) && REG_P (dst
)
1184 && REGNO (src
) == REGNO (dst
));
1187 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1191 noop_move_p (const_rtx insn
)
1193 rtx pat
= PATTERN (insn
);
1195 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1198 /* Insns carrying these notes are useful later on. */
1199 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1202 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1205 if (GET_CODE (pat
) == PARALLEL
)
1208 /* If nothing but SETs of registers to themselves,
1209 this insn can also be deleted. */
1210 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1212 rtx tem
= XVECEXP (pat
, 0, i
);
1214 if (GET_CODE (tem
) == USE
1215 || GET_CODE (tem
) == CLOBBER
)
1218 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1228 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1229 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1230 If the object was modified, if we hit a partial assignment to X, or hit a
1231 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1232 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1236 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1240 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1244 rtx set
= single_set (p
);
1245 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1247 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1249 rtx src
= SET_SRC (set
);
1251 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1252 src
= XEXP (note
, 0);
1254 if ((valid_to
== NULL_RTX
1255 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1256 /* Reject hard registers because we don't usually want
1257 to use them; we'd rather use a pseudo. */
1259 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1266 /* If set in non-simple way, we don't have a value. */
1267 if (reg_set_p (x
, p
))
1274 /* Return nonzero if register in range [REGNO, ENDREGNO)
1275 appears either explicitly or implicitly in X
1276 other than being stored into.
1278 References contained within the substructure at LOC do not count.
1279 LOC may be zero, meaning don't ignore anything. */
1282 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1286 unsigned int x_regno
;
1291 /* The contents of a REG_NONNEG note is always zero, so we must come here
1292 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1296 code
= GET_CODE (x
);
1301 x_regno
= REGNO (x
);
1303 /* If we modifying the stack, frame, or argument pointer, it will
1304 clobber a virtual register. In fact, we could be more precise,
1305 but it isn't worth it. */
1306 if ((x_regno
== STACK_POINTER_REGNUM
1307 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1308 || x_regno
== ARG_POINTER_REGNUM
1310 || x_regno
== FRAME_POINTER_REGNUM
)
1311 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1314 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1317 /* If this is a SUBREG of a hard reg, we can see exactly which
1318 registers are being modified. Otherwise, handle normally. */
1319 if (REG_P (SUBREG_REG (x
))
1320 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1322 unsigned int inner_regno
= subreg_regno (x
);
1323 unsigned int inner_endregno
1324 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1325 ? subreg_nregs (x
) : 1);
1327 return endregno
> inner_regno
&& regno
< inner_endregno
;
1333 if (&SET_DEST (x
) != loc
1334 /* Note setting a SUBREG counts as referring to the REG it is in for
1335 a pseudo but not for hard registers since we can
1336 treat each word individually. */
1337 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1338 && loc
!= &SUBREG_REG (SET_DEST (x
))
1339 && REG_P (SUBREG_REG (SET_DEST (x
)))
1340 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1341 && refers_to_regno_p (regno
, endregno
,
1342 SUBREG_REG (SET_DEST (x
)), loc
))
1343 || (!REG_P (SET_DEST (x
))
1344 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1347 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1356 /* X does not match, so try its subexpressions. */
1358 fmt
= GET_RTX_FORMAT (code
);
1359 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1361 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1369 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1372 else if (fmt
[i
] == 'E')
1375 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1376 if (loc
!= &XVECEXP (x
, i
, j
)
1377 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1384 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1385 we check if any register number in X conflicts with the relevant register
1386 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1387 contains a MEM (we don't bother checking for memory addresses that can't
1388 conflict because we expect this to be a rare case. */
1391 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1393 unsigned int regno
, endregno
;
1395 /* If either argument is a constant, then modifying X can not
1396 affect IN. Here we look at IN, we can profitably combine
1397 CONSTANT_P (x) with the switch statement below. */
1398 if (CONSTANT_P (in
))
1402 switch (GET_CODE (x
))
1404 case STRICT_LOW_PART
:
1407 /* Overly conservative. */
1412 regno
= REGNO (SUBREG_REG (x
));
1413 if (regno
< FIRST_PSEUDO_REGISTER
)
1414 regno
= subreg_regno (x
);
1415 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1416 ? subreg_nregs (x
) : 1);
1421 endregno
= END_REGNO (x
);
1423 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1433 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1434 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1437 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1440 else if (fmt
[i
] == 'E')
1443 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1444 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1454 return reg_mentioned_p (x
, in
);
1460 /* If any register in here refers to it we return true. */
1461 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1462 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1463 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1469 gcc_assert (CONSTANT_P (x
));
1474 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1475 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1476 ignored by note_stores, but passed to FUN.
1478 FUN receives three arguments:
1479 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1480 2. the SET or CLOBBER rtx that does the store,
1481 3. the pointer DATA provided to note_stores.
1483 If the item being stored in or clobbered is a SUBREG of a hard register,
1484 the SUBREG will be passed. */
1487 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1491 if (GET_CODE (x
) == COND_EXEC
)
1492 x
= COND_EXEC_CODE (x
);
1494 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1496 rtx dest
= SET_DEST (x
);
1498 while ((GET_CODE (dest
) == SUBREG
1499 && (!REG_P (SUBREG_REG (dest
))
1500 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1501 || GET_CODE (dest
) == ZERO_EXTRACT
1502 || GET_CODE (dest
) == STRICT_LOW_PART
)
1503 dest
= XEXP (dest
, 0);
1505 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1506 each of whose first operand is a register. */
1507 if (GET_CODE (dest
) == PARALLEL
)
1509 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1510 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1511 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1514 (*fun
) (dest
, x
, data
);
1517 else if (GET_CODE (x
) == PARALLEL
)
1518 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1519 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1522 /* Like notes_stores, but call FUN for each expression that is being
1523 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1524 FUN for each expression, not any interior subexpressions. FUN receives a
1525 pointer to the expression and the DATA passed to this function.
1527 Note that this is not quite the same test as that done in reg_referenced_p
1528 since that considers something as being referenced if it is being
1529 partially set, while we do not. */
1532 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1537 switch (GET_CODE (body
))
1540 (*fun
) (&COND_EXEC_TEST (body
), data
);
1541 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1545 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1546 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1550 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1551 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1555 (*fun
) (&XEXP (body
, 0), data
);
1559 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1560 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1564 (*fun
) (&TRAP_CONDITION (body
), data
);
1568 (*fun
) (&XEXP (body
, 0), data
);
1572 case UNSPEC_VOLATILE
:
1573 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1574 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1578 if (MEM_P (XEXP (body
, 0)))
1579 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1584 rtx dest
= SET_DEST (body
);
1586 /* For sets we replace everything in source plus registers in memory
1587 expression in store and operands of a ZERO_EXTRACT. */
1588 (*fun
) (&SET_SRC (body
), data
);
1590 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1592 (*fun
) (&XEXP (dest
, 1), data
);
1593 (*fun
) (&XEXP (dest
, 2), data
);
1596 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1597 dest
= XEXP (dest
, 0);
1600 (*fun
) (&XEXP (dest
, 0), data
);
1605 /* All the other possibilities never store. */
1606 (*fun
) (pbody
, data
);
1611 /* Return nonzero if X's old contents don't survive after INSN.
1612 This will be true if X is (cc0) or if X is a register and
1613 X dies in INSN or because INSN entirely sets X.
1615 "Entirely set" means set directly and not through a SUBREG, or
1616 ZERO_EXTRACT, so no trace of the old contents remains.
1617 Likewise, REG_INC does not count.
1619 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1620 but for this use that makes no difference, since regs don't overlap
1621 during their lifetimes. Therefore, this function may be used
1622 at any time after deaths have been computed.
1624 If REG is a hard reg that occupies multiple machine registers, this
1625 function will only return 1 if each of those registers will be replaced
1629 dead_or_set_p (const_rtx insn
, const_rtx x
)
1631 unsigned int regno
, end_regno
;
1634 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1635 if (GET_CODE (x
) == CC0
)
1638 gcc_assert (REG_P (x
));
1641 end_regno
= END_REGNO (x
);
1642 for (i
= regno
; i
< end_regno
; i
++)
1643 if (! dead_or_set_regno_p (insn
, i
))
1649 /* Return TRUE iff DEST is a register or subreg of a register and
1650 doesn't change the number of words of the inner register, and any
1651 part of the register is TEST_REGNO. */
1654 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1656 unsigned int regno
, endregno
;
1658 if (GET_CODE (dest
) == SUBREG
1659 && (((GET_MODE_SIZE (GET_MODE (dest
))
1660 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1661 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1662 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1663 dest
= SUBREG_REG (dest
);
1668 regno
= REGNO (dest
);
1669 endregno
= END_REGNO (dest
);
1670 return (test_regno
>= regno
&& test_regno
< endregno
);
1673 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1674 any member matches the covers_regno_no_parallel_p criteria. */
1677 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
1679 if (GET_CODE (dest
) == PARALLEL
)
1681 /* Some targets place small structures in registers for return
1682 values of functions, and those registers are wrapped in
1683 PARALLELs that we may see as the destination of a SET. */
1686 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1688 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1689 if (inner
!= NULL_RTX
1690 && covers_regno_no_parallel_p (inner
, test_regno
))
1697 return covers_regno_no_parallel_p (dest
, test_regno
);
1700 /* Utility function for dead_or_set_p to check an individual register. */
1703 dead_or_set_regno_p (const_rtx insn
, unsigned int test_regno
)
1707 /* See if there is a death note for something that includes TEST_REGNO. */
1708 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1712 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1715 pattern
= PATTERN (insn
);
1717 /* If a COND_EXEC is not executed, the value survives. */
1718 if (GET_CODE (pattern
) == COND_EXEC
)
1721 if (GET_CODE (pattern
) == SET
)
1722 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1723 else if (GET_CODE (pattern
) == PARALLEL
)
1727 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1729 rtx body
= XVECEXP (pattern
, 0, i
);
1731 if (GET_CODE (body
) == COND_EXEC
)
1732 body
= COND_EXEC_CODE (body
);
1734 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1735 && covers_regno_p (SET_DEST (body
), test_regno
))
1743 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1744 If DATUM is nonzero, look for one whose datum is DATUM. */
1747 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
1751 gcc_checking_assert (insn
);
1753 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1754 if (! INSN_P (insn
))
1758 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1759 if (REG_NOTE_KIND (link
) == kind
)
1764 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1765 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1770 /* Return the reg-note of kind KIND in insn INSN which applies to register
1771 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1772 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1773 it might be the case that the note overlaps REGNO. */
1776 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
1780 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1781 if (! INSN_P (insn
))
1784 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1785 if (REG_NOTE_KIND (link
) == kind
1786 /* Verify that it is a register, so that scratch and MEM won't cause a
1788 && REG_P (XEXP (link
, 0))
1789 && REGNO (XEXP (link
, 0)) <= regno
1790 && END_REGNO (XEXP (link
, 0)) > regno
)
1795 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1799 find_reg_equal_equiv_note (const_rtx insn
)
1806 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1807 if (REG_NOTE_KIND (link
) == REG_EQUAL
1808 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1810 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1811 insns that have multiple sets. Checking single_set to
1812 make sure of this is not the proper check, as explained
1813 in the comment in set_unique_reg_note.
1815 This should be changed into an assert. */
1816 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1823 /* Check whether INSN is a single_set whose source is known to be
1824 equivalent to a constant. Return that constant if so, otherwise
1828 find_constant_src (const_rtx insn
)
1832 set
= single_set (insn
);
1835 x
= avoid_constant_pool_reference (SET_SRC (set
));
1840 note
= find_reg_equal_equiv_note (insn
);
1841 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1842 return XEXP (note
, 0);
1847 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1848 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1851 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
1853 /* If it's not a CALL_INSN, it can't possibly have a
1854 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1864 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1866 link
= XEXP (link
, 1))
1867 if (GET_CODE (XEXP (link
, 0)) == code
1868 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1873 unsigned int regno
= REGNO (datum
);
1875 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1876 to pseudo registers, so don't bother checking. */
1878 if (regno
< FIRST_PSEUDO_REGISTER
)
1880 unsigned int end_regno
= END_HARD_REGNO (datum
);
1883 for (i
= regno
; i
< end_regno
; i
++)
1884 if (find_regno_fusage (insn
, code
, i
))
1892 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1893 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1896 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
1900 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1901 to pseudo registers, so don't bother checking. */
1903 if (regno
>= FIRST_PSEUDO_REGISTER
1907 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1911 if (GET_CODE (op
= XEXP (link
, 0)) == code
1912 && REG_P (reg
= XEXP (op
, 0))
1913 && REGNO (reg
) <= regno
1914 && END_HARD_REGNO (reg
) > regno
)
1922 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1923 stored as the pointer to the next register note. */
1926 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
1934 case REG_LABEL_TARGET
:
1935 case REG_LABEL_OPERAND
:
1937 /* These types of register notes use an INSN_LIST rather than an
1938 EXPR_LIST, so that copying is done right and dumps look
1940 note
= alloc_INSN_LIST (datum
, list
);
1941 PUT_REG_NOTE_KIND (note
, kind
);
1945 note
= alloc_EXPR_LIST (kind
, datum
, list
);
1952 /* Add register note with kind KIND and datum DATUM to INSN. */
1955 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1957 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
1960 /* Remove register note NOTE from the REG_NOTES of INSN. */
1963 remove_note (rtx insn
, const_rtx note
)
1967 if (note
== NULL_RTX
)
1970 if (REG_NOTES (insn
) == note
)
1971 REG_NOTES (insn
) = XEXP (note
, 1);
1973 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1974 if (XEXP (link
, 1) == note
)
1976 XEXP (link
, 1) = XEXP (note
, 1);
1980 switch (REG_NOTE_KIND (note
))
1984 df_notes_rescan (insn
);
1991 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1994 remove_reg_equal_equiv_notes (rtx insn
)
1998 loc
= ®_NOTES (insn
);
2001 enum reg_note kind
= REG_NOTE_KIND (*loc
);
2002 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
2003 *loc
= XEXP (*loc
, 1);
2005 loc
= &XEXP (*loc
, 1);
2009 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2012 remove_reg_equal_equiv_notes_for_regno (unsigned int regno
)
2019 /* This loop is a little tricky. We cannot just go down the chain because
2020 it is being modified by some actions in the loop. So we just iterate
2021 over the head. We plan to drain the list anyway. */
2022 while ((eq_use
= DF_REG_EQ_USE_CHAIN (regno
)) != NULL
)
2024 rtx insn
= DF_REF_INSN (eq_use
);
2025 rtx note
= find_reg_equal_equiv_note (insn
);
2027 /* This assert is generally triggered when someone deletes a REG_EQUAL
2028 or REG_EQUIV note by hacking the list manually rather than calling
2032 remove_note (insn
, note
);
2036 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2037 return 1 if it is found. A simple equality test is used to determine if
2041 in_expr_list_p (const_rtx listp
, const_rtx node
)
2045 for (x
= listp
; x
; x
= XEXP (x
, 1))
2046 if (node
== XEXP (x
, 0))
2052 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2053 remove that entry from the list if it is found.
2055 A simple equality test is used to determine if NODE matches. */
2058 remove_node_from_expr_list (const_rtx node
, rtx
*listp
)
2061 rtx prev
= NULL_RTX
;
2065 if (node
== XEXP (temp
, 0))
2067 /* Splice the node out of the list. */
2069 XEXP (prev
, 1) = XEXP (temp
, 1);
2071 *listp
= XEXP (temp
, 1);
2077 temp
= XEXP (temp
, 1);
2081 /* Nonzero if X contains any volatile instructions. These are instructions
2082 which may cause unpredictable machine state instructions, and thus no
2083 instructions or register uses should be moved or combined across them.
2084 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2087 volatile_insn_p (const_rtx x
)
2089 const RTX_CODE code
= GET_CODE (x
);
2107 case UNSPEC_VOLATILE
:
2112 if (MEM_VOLATILE_P (x
))
2119 /* Recursively scan the operands of this expression. */
2122 const char *const fmt
= GET_RTX_FORMAT (code
);
2125 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2129 if (volatile_insn_p (XEXP (x
, i
)))
2132 else if (fmt
[i
] == 'E')
2135 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2136 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2144 /* Nonzero if X contains any volatile memory references
2145 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2148 volatile_refs_p (const_rtx x
)
2150 const RTX_CODE code
= GET_CODE (x
);
2166 case UNSPEC_VOLATILE
:
2172 if (MEM_VOLATILE_P (x
))
2179 /* Recursively scan the operands of this expression. */
2182 const char *const fmt
= GET_RTX_FORMAT (code
);
2185 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2189 if (volatile_refs_p (XEXP (x
, i
)))
2192 else if (fmt
[i
] == 'E')
2195 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2196 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2204 /* Similar to above, except that it also rejects register pre- and post-
2208 side_effects_p (const_rtx x
)
2210 const RTX_CODE code
= GET_CODE (x
);
2227 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2228 when some combination can't be done. If we see one, don't think
2229 that we can simplify the expression. */
2230 return (GET_MODE (x
) != VOIDmode
);
2239 case UNSPEC_VOLATILE
:
2245 if (MEM_VOLATILE_P (x
))
2252 /* Recursively scan the operands of this expression. */
2255 const char *fmt
= GET_RTX_FORMAT (code
);
2258 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2262 if (side_effects_p (XEXP (x
, i
)))
2265 else if (fmt
[i
] == 'E')
2268 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2269 if (side_effects_p (XVECEXP (x
, i
, j
)))
2277 /* Return nonzero if evaluating rtx X might cause a trap.
2278 FLAGS controls how to consider MEMs. A nonzero means the context
2279 of the access may have changed from the original, such that the
2280 address may have become invalid. */
2283 may_trap_p_1 (const_rtx x
, unsigned flags
)
2289 /* We make no distinction currently, but this function is part of
2290 the internal target-hooks ABI so we keep the parameter as
2291 "unsigned flags". */
2292 bool code_changed
= flags
!= 0;
2296 code
= GET_CODE (x
);
2299 /* Handle these cases quickly. */
2311 return targetm
.unspec_may_trap_p (x
, flags
);
2313 case UNSPEC_VOLATILE
:
2319 return MEM_VOLATILE_P (x
);
2321 /* Memory ref can trap unless it's a static var or a stack slot. */
2323 /* Recognize specific pattern of stack checking probes. */
2324 if (flag_stack_check
2325 && MEM_VOLATILE_P (x
)
2326 && XEXP (x
, 0) == stack_pointer_rtx
)
2328 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2329 reference; moving it out of context such as when moving code
2330 when optimizing, might cause its address to become invalid. */
2332 || !MEM_NOTRAP_P (x
))
2334 HOST_WIDE_INT size
= MEM_SIZE_KNOWN_P (x
) ? MEM_SIZE (x
) : 0;
2335 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2336 GET_MODE (x
), code_changed
);
2341 /* Division by a non-constant might trap. */
2346 if (HONOR_SNANS (GET_MODE (x
)))
2348 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2349 return flag_trapping_math
;
2350 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2355 /* An EXPR_LIST is used to represent a function call. This
2356 certainly may trap. */
2365 /* Some floating point comparisons may trap. */
2366 if (!flag_trapping_math
)
2368 /* ??? There is no machine independent way to check for tests that trap
2369 when COMPARE is used, though many targets do make this distinction.
2370 For instance, sparc uses CCFPE for compares which generate exceptions
2371 and CCFP for compares which do not generate exceptions. */
2372 if (HONOR_NANS (GET_MODE (x
)))
2374 /* But often the compare has some CC mode, so check operand
2376 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2377 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2383 if (HONOR_SNANS (GET_MODE (x
)))
2385 /* Often comparison is CC mode, so check operand modes. */
2386 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2387 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2392 /* Conversion of floating point might trap. */
2393 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2400 /* These operations don't trap even with floating point. */
2404 /* Any floating arithmetic may trap. */
2405 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)) && flag_trapping_math
)
2409 fmt
= GET_RTX_FORMAT (code
);
2410 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2414 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2417 else if (fmt
[i
] == 'E')
2420 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2421 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2428 /* Return nonzero if evaluating rtx X might cause a trap. */
2431 may_trap_p (const_rtx x
)
2433 return may_trap_p_1 (x
, 0);
2436 /* Same as above, but additionally return nonzero if evaluating rtx X might
2437 cause a fault. We define a fault for the purpose of this function as a
2438 erroneous execution condition that cannot be encountered during the normal
2439 execution of a valid program; the typical example is an unaligned memory
2440 access on a strict alignment machine. The compiler guarantees that it
2441 doesn't generate code that will fault from a valid program, but this
2442 guarantee doesn't mean anything for individual instructions. Consider
2443 the following example:
2445 struct S { int d; union { char *cp; int *ip; }; };
2447 int foo(struct S *s)
2455 on a strict alignment machine. In a valid program, foo will never be
2456 invoked on a structure for which d is equal to 1 and the underlying
2457 unique field of the union not aligned on a 4-byte boundary, but the
2458 expression *s->ip might cause a fault if considered individually.
2460 At the RTL level, potentially problematic expressions will almost always
2461 verify may_trap_p; for example, the above dereference can be emitted as
2462 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2463 However, suppose that foo is inlined in a caller that causes s->cp to
2464 point to a local character variable and guarantees that s->d is not set
2465 to 1; foo may have been effectively translated into pseudo-RTL as:
2468 (set (reg:SI) (mem:SI (%fp - 7)))
2470 (set (reg:QI) (mem:QI (%fp - 7)))
2472 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2473 memory reference to a stack slot, but it will certainly cause a fault
2474 on a strict alignment machine. */
2477 may_trap_or_fault_p (const_rtx x
)
2479 return may_trap_p_1 (x
, 1);
2482 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2483 i.e., an inequality. */
2486 inequality_comparisons_p (const_rtx x
)
2490 const enum rtx_code code
= GET_CODE (x
);
2518 len
= GET_RTX_LENGTH (code
);
2519 fmt
= GET_RTX_FORMAT (code
);
2521 for (i
= 0; i
< len
; i
++)
2525 if (inequality_comparisons_p (XEXP (x
, i
)))
2528 else if (fmt
[i
] == 'E')
2531 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2532 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2540 /* Replace any occurrence of FROM in X with TO. The function does
2541 not enter into CONST_DOUBLE for the replace.
2543 Note that copying is not done so X must not be shared unless all copies
2544 are to be modified. */
2547 replace_rtx (rtx x
, rtx from
, rtx to
)
2555 /* Allow this function to make replacements in EXPR_LISTs. */
2559 if (GET_CODE (x
) == SUBREG
)
2561 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
);
2563 if (CONST_INT_P (new_rtx
))
2565 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
2566 GET_MODE (SUBREG_REG (x
)),
2571 SUBREG_REG (x
) = new_rtx
;
2575 else if (GET_CODE (x
) == ZERO_EXTEND
)
2577 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
);
2579 if (CONST_INT_P (new_rtx
))
2581 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2582 new_rtx
, GET_MODE (XEXP (x
, 0)));
2586 XEXP (x
, 0) = new_rtx
;
2591 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2592 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2595 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2596 else if (fmt
[i
] == 'E')
2597 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2598 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2604 /* Replace occurrences of the old label in *X with the new one.
2605 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2608 replace_label (rtx
*x
, void *data
)
2611 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2612 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2613 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2618 if (GET_CODE (l
) == SYMBOL_REF
2619 && CONSTANT_POOL_ADDRESS_P (l
))
2621 rtx c
= get_pool_constant (l
);
2622 if (rtx_referenced_p (old_label
, c
))
2625 replace_label_data
*d
= (replace_label_data
*) data
;
2627 /* Create a copy of constant C; replace the label inside
2628 but do not update LABEL_NUSES because uses in constant pool
2630 new_c
= copy_rtx (c
);
2631 d
->update_label_nuses
= false;
2632 for_each_rtx (&new_c
, replace_label
, data
);
2633 d
->update_label_nuses
= update_label_nuses
;
2635 /* Add the new constant NEW_C to constant pool and replace
2636 the old reference to constant by new reference. */
2637 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2638 *x
= replace_rtx (l
, l
, new_l
);
2643 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2644 field. This is not handled by for_each_rtx because it doesn't
2645 handle unprinted ('0') fields. */
2646 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2647 JUMP_LABEL (l
) = new_label
;
2649 if ((GET_CODE (l
) == LABEL_REF
2650 || GET_CODE (l
) == INSN_LIST
)
2651 && XEXP (l
, 0) == old_label
)
2653 XEXP (l
, 0) = new_label
;
2654 if (update_label_nuses
)
2656 ++LABEL_NUSES (new_label
);
2657 --LABEL_NUSES (old_label
);
2665 /* When *BODY is equal to X or X is directly referenced by *BODY
2666 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2667 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2670 rtx_referenced_p_1 (rtx
*body
, void *x
)
2674 if (*body
== NULL_RTX
)
2675 return y
== NULL_RTX
;
2677 /* Return true if a label_ref *BODY refers to label Y. */
2678 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2679 return XEXP (*body
, 0) == y
;
2681 /* If *BODY is a reference to pool constant traverse the constant. */
2682 if (GET_CODE (*body
) == SYMBOL_REF
2683 && CONSTANT_POOL_ADDRESS_P (*body
))
2684 return rtx_referenced_p (y
, get_pool_constant (*body
));
2686 /* By default, compare the RTL expressions. */
2687 return rtx_equal_p (*body
, y
);
2690 /* Return true if X is referenced in BODY. */
2693 rtx_referenced_p (rtx x
, rtx body
)
2695 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2698 /* If INSN is a tablejump return true and store the label (before jump table) to
2699 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2702 tablejump_p (const_rtx insn
, rtx
*labelp
, rtx
*tablep
)
2709 label
= JUMP_LABEL (insn
);
2710 if (label
!= NULL_RTX
&& !ANY_RETURN_P (label
)
2711 && (table
= next_active_insn (label
)) != NULL_RTX
2712 && JUMP_TABLE_DATA_P (table
))
2714 gcc_assert (table
== NEXT_INSN (label
));
2724 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2725 constant that is not in the constant pool and not in the condition
2726 of an IF_THEN_ELSE. */
2729 computed_jump_p_1 (const_rtx x
)
2731 const enum rtx_code code
= GET_CODE (x
);
2748 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2749 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2752 return (computed_jump_p_1 (XEXP (x
, 1))
2753 || computed_jump_p_1 (XEXP (x
, 2)));
2759 fmt
= GET_RTX_FORMAT (code
);
2760 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2763 && computed_jump_p_1 (XEXP (x
, i
)))
2766 else if (fmt
[i
] == 'E')
2767 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2768 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2775 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2777 Tablejumps and casesi insns are not considered indirect jumps;
2778 we can recognize them by a (use (label_ref)). */
2781 computed_jump_p (const_rtx insn
)
2786 rtx pat
= PATTERN (insn
);
2788 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2789 if (JUMP_LABEL (insn
) != NULL
)
2792 if (GET_CODE (pat
) == PARALLEL
)
2794 int len
= XVECLEN (pat
, 0);
2795 int has_use_labelref
= 0;
2797 for (i
= len
- 1; i
>= 0; i
--)
2798 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2799 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2801 has_use_labelref
= 1;
2803 if (! has_use_labelref
)
2804 for (i
= len
- 1; i
>= 0; i
--)
2805 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2806 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2807 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2810 else if (GET_CODE (pat
) == SET
2811 && SET_DEST (pat
) == pc_rtx
2812 && computed_jump_p_1 (SET_SRC (pat
)))
2818 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2819 calls. Processes the subexpressions of EXP and passes them to F. */
2821 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2824 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2827 for (; format
[n
] != '\0'; n
++)
2834 result
= (*f
) (x
, data
);
2836 /* Do not traverse sub-expressions. */
2838 else if (result
!= 0)
2839 /* Stop the traversal. */
2843 /* There are no sub-expressions. */
2846 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2849 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2857 if (XVEC (exp
, n
) == 0)
2859 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2862 x
= &XVECEXP (exp
, n
, j
);
2863 result
= (*f
) (x
, data
);
2865 /* Do not traverse sub-expressions. */
2867 else if (result
!= 0)
2868 /* Stop the traversal. */
2872 /* There are no sub-expressions. */
2875 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2878 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2886 /* Nothing to do. */
2894 /* Traverse X via depth-first search, calling F for each
2895 sub-expression (including X itself). F is also passed the DATA.
2896 If F returns -1, do not traverse sub-expressions, but continue
2897 traversing the rest of the tree. If F ever returns any other
2898 nonzero value, stop the traversal, and return the value returned
2899 by F. Otherwise, return 0. This function does not traverse inside
2900 tree structure that contains RTX_EXPRs, or into sub-expressions
2901 whose format code is `0' since it is not known whether or not those
2902 codes are actually RTL.
2904 This routine is very general, and could (should?) be used to
2905 implement many of the other routines in this file. */
2908 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2914 result
= (*f
) (x
, data
);
2916 /* Do not traverse sub-expressions. */
2918 else if (result
!= 0)
2919 /* Stop the traversal. */
2923 /* There are no sub-expressions. */
2926 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2930 return for_each_rtx_1 (*x
, i
, f
, data
);
2935 /* Data structure that holds the internal state communicated between
2936 for_each_inc_dec, for_each_inc_dec_find_mem and
2937 for_each_inc_dec_find_inc_dec. */
2939 struct for_each_inc_dec_ops
{
2940 /* The function to be called for each autoinc operation found. */
2941 for_each_inc_dec_fn fn
;
2942 /* The opaque argument to be passed to it. */
2944 /* The MEM we're visiting, if any. */
2948 static int for_each_inc_dec_find_mem (rtx
*r
, void *d
);
2950 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2951 operands of the equivalent add insn and pass the result to the
2952 operator specified by *D. */
2955 for_each_inc_dec_find_inc_dec (rtx
*r
, void *d
)
2958 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*)d
;
2960 switch (GET_CODE (x
))
2965 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
2966 rtx r1
= XEXP (x
, 0);
2967 rtx c
= gen_int_mode (size
, GET_MODE (r1
));
2968 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
2974 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
2975 rtx r1
= XEXP (x
, 0);
2976 rtx c
= gen_int_mode (-size
, GET_MODE (r1
));
2977 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
2983 rtx r1
= XEXP (x
, 0);
2984 rtx add
= XEXP (x
, 1);
2985 return data
->fn (data
->mem
, x
, r1
, add
, NULL
, data
->arg
);
2990 rtx save
= data
->mem
;
2991 int ret
= for_each_inc_dec_find_mem (r
, d
);
3001 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3002 address, extract the operands of the equivalent add insn and pass
3003 the result to the operator specified by *D. */
3006 for_each_inc_dec_find_mem (rtx
*r
, void *d
)
3009 if (x
!= NULL_RTX
&& MEM_P (x
))
3011 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*) d
;
3016 result
= for_each_rtx (&XEXP (x
, 0), for_each_inc_dec_find_inc_dec
,
3026 /* Traverse *X looking for MEMs, and for autoinc operations within
3027 them. For each such autoinc operation found, call FN, passing it
3028 the innermost enclosing MEM, the operation itself, the RTX modified
3029 by the operation, two RTXs (the second may be NULL) that, once
3030 added, represent the value to be held by the modified RTX
3031 afterwards, and ARG. FN is to return -1 to skip looking for other
3032 autoinc operations within the visited operation, 0 to continue the
3033 traversal, or any other value to have it returned to the caller of
3034 for_each_inc_dec. */
3037 for_each_inc_dec (rtx
*x
,
3038 for_each_inc_dec_fn fn
,
3041 struct for_each_inc_dec_ops data
;
3047 return for_each_rtx (x
, for_each_inc_dec_find_mem
, &data
);
3051 /* Searches X for any reference to REGNO, returning the rtx of the
3052 reference found if any. Otherwise, returns NULL_RTX. */
3055 regno_use_in (unsigned int regno
, rtx x
)
3061 if (REG_P (x
) && REGNO (x
) == regno
)
3064 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3065 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3069 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
3072 else if (fmt
[i
] == 'E')
3073 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3074 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
3081 /* Return a value indicating whether OP, an operand of a commutative
3082 operation, is preferred as the first or second operand. The higher
3083 the value, the stronger the preference for being the first operand.
3084 We use negative values to indicate a preference for the first operand
3085 and positive values for the second operand. */
3088 commutative_operand_precedence (rtx op
)
3090 enum rtx_code code
= GET_CODE (op
);
3092 /* Constants always come the second operand. Prefer "nice" constants. */
3093 if (code
== CONST_INT
)
3095 if (code
== CONST_DOUBLE
)
3097 if (code
== CONST_FIXED
)
3099 op
= avoid_constant_pool_reference (op
);
3100 code
= GET_CODE (op
);
3102 switch (GET_RTX_CLASS (code
))
3105 if (code
== CONST_INT
)
3107 if (code
== CONST_DOUBLE
)
3109 if (code
== CONST_FIXED
)
3114 /* SUBREGs of objects should come second. */
3115 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
3120 /* Complex expressions should be the first, so decrease priority
3121 of objects. Prefer pointer objects over non pointer objects. */
3122 if ((REG_P (op
) && REG_POINTER (op
))
3123 || (MEM_P (op
) && MEM_POINTER (op
)))
3127 case RTX_COMM_ARITH
:
3128 /* Prefer operands that are themselves commutative to be first.
3129 This helps to make things linear. In particular,
3130 (and (and (reg) (reg)) (not (reg))) is canonical. */
3134 /* If only one operand is a binary expression, it will be the first
3135 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3136 is canonical, although it will usually be further simplified. */
3140 /* Then prefer NEG and NOT. */
3141 if (code
== NEG
|| code
== NOT
)
3149 /* Return 1 iff it is necessary to swap operands of commutative operation
3150 in order to canonicalize expression. */
3153 swap_commutative_operands_p (rtx x
, rtx y
)
3155 return (commutative_operand_precedence (x
)
3156 < commutative_operand_precedence (y
));
3159 /* Return 1 if X is an autoincrement side effect and the register is
3160 not the stack pointer. */
3162 auto_inc_p (const_rtx x
)
3164 switch (GET_CODE (x
))
3172 /* There are no REG_INC notes for SP. */
3173 if (XEXP (x
, 0) != stack_pointer_rtx
)
3181 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3183 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3192 code
= GET_CODE (in
);
3193 fmt
= GET_RTX_FORMAT (code
);
3194 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3198 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3201 else if (fmt
[i
] == 'E')
3202 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3203 if (loc
== &XVECEXP (in
, i
, j
)
3204 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3210 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3211 and SUBREG_BYTE, return the bit offset where the subreg begins
3212 (counting from the least significant bit of the operand). */
3215 subreg_lsb_1 (enum machine_mode outer_mode
,
3216 enum machine_mode inner_mode
,
3217 unsigned int subreg_byte
)
3219 unsigned int bitpos
;
3223 /* A paradoxical subreg begins at bit position 0. */
3224 if (GET_MODE_PRECISION (outer_mode
) > GET_MODE_PRECISION (inner_mode
))
3227 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3228 /* If the subreg crosses a word boundary ensure that
3229 it also begins and ends on a word boundary. */
3230 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3231 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3232 && (subreg_byte
% UNITS_PER_WORD
3233 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3235 if (WORDS_BIG_ENDIAN
)
3236 word
= (GET_MODE_SIZE (inner_mode
)
3237 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3239 word
= subreg_byte
/ UNITS_PER_WORD
;
3240 bitpos
= word
* BITS_PER_WORD
;
3242 if (BYTES_BIG_ENDIAN
)
3243 byte
= (GET_MODE_SIZE (inner_mode
)
3244 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3246 byte
= subreg_byte
% UNITS_PER_WORD
;
3247 bitpos
+= byte
* BITS_PER_UNIT
;
3252 /* Given a subreg X, return the bit offset where the subreg begins
3253 (counting from the least significant bit of the reg). */
3256 subreg_lsb (const_rtx x
)
3258 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3262 /* Fill in information about a subreg of a hard register.
3263 xregno - A regno of an inner hard subreg_reg (or what will become one).
3264 xmode - The mode of xregno.
3265 offset - The byte offset.
3266 ymode - The mode of a top level SUBREG (or what may become one).
3267 info - Pointer to structure to fill in. */
3269 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
3270 unsigned int offset
, enum machine_mode ymode
,
3271 struct subreg_info
*info
)
3273 int nregs_xmode
, nregs_ymode
;
3274 int mode_multiple
, nregs_multiple
;
3275 int offset_adj
, y_offset
, y_offset_adj
;
3276 int regsize_xmode
, regsize_ymode
;
3279 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3283 /* If there are holes in a non-scalar mode in registers, we expect
3284 that it is made up of its units concatenated together. */
3285 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3287 enum machine_mode xmode_unit
;
3289 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3290 if (GET_MODE_INNER (xmode
) == VOIDmode
)
3293 xmode_unit
= GET_MODE_INNER (xmode
);
3294 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3295 gcc_assert (nregs_xmode
3296 == (GET_MODE_NUNITS (xmode
)
3297 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3298 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3299 == (hard_regno_nregs
[xregno
][xmode_unit
]
3300 * GET_MODE_NUNITS (xmode
)));
3302 /* You can only ask for a SUBREG of a value with holes in the middle
3303 if you don't cross the holes. (Such a SUBREG should be done by
3304 picking a different register class, or doing it in memory if
3305 necessary.) An example of a value with holes is XCmode on 32-bit
3306 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3307 3 for each part, but in memory it's two 128-bit parts.
3308 Padding is assumed to be at the end (not necessarily the 'high part')
3310 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
3311 < GET_MODE_NUNITS (xmode
))
3312 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3313 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
3314 / GET_MODE_SIZE (xmode_unit
))))
3316 info
->representable_p
= false;
3321 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3323 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3325 /* Paradoxical subregs are otherwise valid. */
3328 && GET_MODE_PRECISION (ymode
) > GET_MODE_PRECISION (xmode
))
3330 info
->representable_p
= true;
3331 /* If this is a big endian paradoxical subreg, which uses more
3332 actual hard registers than the original register, we must
3333 return a negative offset so that we find the proper highpart
3335 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3336 ? REG_WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3337 info
->offset
= nregs_xmode
- nregs_ymode
;
3340 info
->nregs
= nregs_ymode
;
3344 /* If registers store different numbers of bits in the different
3345 modes, we cannot generally form this subreg. */
3346 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3347 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3348 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3349 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3351 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3352 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3353 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3355 info
->representable_p
= false;
3357 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3358 info
->offset
= offset
/ regsize_xmode
;
3361 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3363 info
->representable_p
= false;
3365 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3366 info
->offset
= offset
/ regsize_xmode
;
3371 /* Lowpart subregs are otherwise valid. */
3372 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3374 info
->representable_p
= true;
3377 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3380 info
->nregs
= nregs_ymode
;
3385 /* This should always pass, otherwise we don't know how to verify
3386 the constraint. These conditions may be relaxed but
3387 subreg_regno_offset would need to be redesigned. */
3388 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3389 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3391 if (WORDS_BIG_ENDIAN
!= REG_WORDS_BIG_ENDIAN
3392 && GET_MODE_SIZE (xmode
) > UNITS_PER_WORD
)
3394 HOST_WIDE_INT xsize
= GET_MODE_SIZE (xmode
);
3395 HOST_WIDE_INT ysize
= GET_MODE_SIZE (ymode
);
3396 HOST_WIDE_INT off_low
= offset
& (ysize
- 1);
3397 HOST_WIDE_INT off_high
= offset
& ~(ysize
- 1);
3398 offset
= (xsize
- ysize
- off_high
) | off_low
;
3400 /* The XMODE value can be seen as a vector of NREGS_XMODE
3401 values. The subreg must represent a lowpart of given field.
3402 Compute what field it is. */
3403 offset_adj
= offset
;
3404 offset_adj
-= subreg_lowpart_offset (ymode
,
3405 mode_for_size (GET_MODE_BITSIZE (xmode
)
3409 /* Size of ymode must not be greater than the size of xmode. */
3410 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3411 gcc_assert (mode_multiple
!= 0);
3413 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3414 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3415 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3417 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3418 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3422 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3425 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3426 info
->nregs
= nregs_ymode
;
3429 /* This function returns the regno offset of a subreg expression.
3430 xregno - A regno of an inner hard subreg_reg (or what will become one).
3431 xmode - The mode of xregno.
3432 offset - The byte offset.
3433 ymode - The mode of a top level SUBREG (or what may become one).
3434 RETURN - The regno offset which would be used. */
3436 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3437 unsigned int offset
, enum machine_mode ymode
)
3439 struct subreg_info info
;
3440 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3444 /* This function returns true when the offset is representable via
3445 subreg_offset in the given regno.
3446 xregno - A regno of an inner hard subreg_reg (or what will become one).
3447 xmode - The mode of xregno.
3448 offset - The byte offset.
3449 ymode - The mode of a top level SUBREG (or what may become one).
3450 RETURN - Whether the offset is representable. */
3452 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3453 unsigned int offset
, enum machine_mode ymode
)
3455 struct subreg_info info
;
3456 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3457 return info
.representable_p
;
3460 /* Return the number of a YMODE register to which
3462 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3464 can be simplified. Return -1 if the subreg can't be simplified.
3466 XREGNO is a hard register number. */
3469 simplify_subreg_regno (unsigned int xregno
, enum machine_mode xmode
,
3470 unsigned int offset
, enum machine_mode ymode
)
3472 struct subreg_info info
;
3473 unsigned int yregno
;
3475 #ifdef CANNOT_CHANGE_MODE_CLASS
3476 /* Give the backend a chance to disallow the mode change. */
3477 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3478 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3479 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
)
3480 /* We can use mode change in LRA for some transformations. */
3481 && ! lra_in_progress
)
3485 /* We shouldn't simplify stack-related registers. */
3486 if ((!reload_completed
|| frame_pointer_needed
)
3487 && xregno
== FRAME_POINTER_REGNUM
)
3490 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3491 && xregno
== ARG_POINTER_REGNUM
)
3494 if (xregno
== STACK_POINTER_REGNUM
3495 /* We should convert hard stack register in LRA if it is
3497 && ! lra_in_progress
)
3500 /* Try to get the register offset. */
3501 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3502 if (!info
.representable_p
)
3505 /* Make sure that the offsetted register value is in range. */
3506 yregno
= xregno
+ info
.offset
;
3507 if (!HARD_REGISTER_NUM_P (yregno
))
3510 /* See whether (reg:YMODE YREGNO) is valid.
3512 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3513 This is a kludge to work around how complex FP arguments are passed
3514 on IA-64 and should be fixed. See PR target/49226. */
3515 if (!HARD_REGNO_MODE_OK (yregno
, ymode
)
3516 && HARD_REGNO_MODE_OK (xregno
, xmode
))
3519 return (int) yregno
;
3522 /* Return the final regno that a subreg expression refers to. */
3524 subreg_regno (const_rtx x
)
3527 rtx subreg
= SUBREG_REG (x
);
3528 int regno
= REGNO (subreg
);
3530 ret
= regno
+ subreg_regno_offset (regno
,
3538 /* Return the number of registers that a subreg expression refers
3541 subreg_nregs (const_rtx x
)
3543 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3546 /* Return the number of registers that a subreg REG with REGNO
3547 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3548 changed so that the regno can be passed in. */
3551 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3553 struct subreg_info info
;
3554 rtx subreg
= SUBREG_REG (x
);
3556 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3562 struct parms_set_data
3568 /* Helper function for noticing stores to parameter registers. */
3570 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3572 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3573 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3574 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3576 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3581 /* Look backward for first parameter to be loaded.
3582 Note that loads of all parameters will not necessarily be
3583 found if CSE has eliminated some of them (e.g., an argument
3584 to the outer function is passed down as a parameter).
3585 Do not skip BOUNDARY. */
3587 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3589 struct parms_set_data parm
;
3590 rtx p
, before
, first_set
;
3592 /* Since different machines initialize their parameter registers
3593 in different orders, assume nothing. Collect the set of all
3594 parameter registers. */
3595 CLEAR_HARD_REG_SET (parm
.regs
);
3597 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3598 if (GET_CODE (XEXP (p
, 0)) == USE
3599 && REG_P (XEXP (XEXP (p
, 0), 0)))
3601 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3603 /* We only care about registers which can hold function
3605 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3608 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3612 first_set
= call_insn
;
3614 /* Search backward for the first set of a register in this set. */
3615 while (parm
.nregs
&& before
!= boundary
)
3617 before
= PREV_INSN (before
);
3619 /* It is possible that some loads got CSEed from one call to
3620 another. Stop in that case. */
3621 if (CALL_P (before
))
3624 /* Our caller needs either ensure that we will find all sets
3625 (in case code has not been optimized yet), or take care
3626 for possible labels in a way by setting boundary to preceding
3628 if (LABEL_P (before
))
3630 gcc_assert (before
== boundary
);
3634 if (INSN_P (before
))
3636 int nregs_old
= parm
.nregs
;
3637 note_stores (PATTERN (before
), parms_set
, &parm
);
3638 /* If we found something that did not set a parameter reg,
3639 we're done. Do not keep going, as that might result
3640 in hoisting an insn before the setting of a pseudo
3641 that is used by the hoisted insn. */
3642 if (nregs_old
!= parm
.nregs
)
3651 /* Return true if we should avoid inserting code between INSN and preceding
3652 call instruction. */
3655 keep_with_call_p (const_rtx insn
)
3659 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3661 if (REG_P (SET_DEST (set
))
3662 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3663 && fixed_regs
[REGNO (SET_DEST (set
))]
3664 && general_operand (SET_SRC (set
), VOIDmode
))
3666 if (REG_P (SET_SRC (set
))
3667 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
3668 && REG_P (SET_DEST (set
))
3669 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3671 /* There may be a stack pop just after the call and before the store
3672 of the return register. Search for the actual store when deciding
3673 if we can break or not. */
3674 if (SET_DEST (set
) == stack_pointer_rtx
)
3676 /* This CONST_CAST is okay because next_nonnote_insn just
3677 returns its argument and we assign it to a const_rtx
3679 const_rtx i2
= next_nonnote_insn (CONST_CAST_RTX(insn
));
3680 if (i2
&& keep_with_call_p (i2
))
3687 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3688 to non-complex jumps. That is, direct unconditional, conditional,
3689 and tablejumps, but not computed jumps or returns. It also does
3690 not apply to the fallthru case of a conditional jump. */
3693 label_is_jump_target_p (const_rtx label
, const_rtx jump_insn
)
3695 rtx tmp
= JUMP_LABEL (jump_insn
);
3700 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3702 rtvec vec
= XVEC (PATTERN (tmp
),
3703 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3704 int i
, veclen
= GET_NUM_ELEM (vec
);
3706 for (i
= 0; i
< veclen
; ++i
)
3707 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3711 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
3718 /* Return an estimate of the cost of computing rtx X.
3719 One use is in cse, to decide which expression to keep in the hash table.
3720 Another is in rtl generation, to pick the cheapest way to multiply.
3721 Other uses like the latter are expected in the future.
3723 X appears as operand OPNO in an expression with code OUTER_CODE.
3724 SPEED specifies whether costs optimized for speed or size should
3728 rtx_cost (rtx x
, enum rtx_code outer_code
, int opno
, bool speed
)
3739 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3740 many insns, taking N times as long. */
3741 factor
= GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
;
3745 /* Compute the default costs of certain things.
3746 Note that targetm.rtx_costs can override the defaults. */
3748 code
= GET_CODE (x
);
3752 /* Multiplication has time-complexity O(N*N), where N is the
3753 number of units (translated from digits) when using
3754 schoolbook long multiplication. */
3755 total
= factor
* factor
* COSTS_N_INSNS (5);
3761 /* Similarly, complexity for schoolbook long division. */
3762 total
= factor
* factor
* COSTS_N_INSNS (7);
3765 /* Used in combine.c as a marker. */
3769 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3770 the mode for the factor. */
3771 factor
= GET_MODE_SIZE (GET_MODE (SET_DEST (x
))) / UNITS_PER_WORD
;
3776 total
= factor
* COSTS_N_INSNS (1);
3786 /* If we can't tie these modes, make this expensive. The larger
3787 the mode, the more expensive it is. */
3788 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3789 return COSTS_N_INSNS (2 + factor
);
3793 if (targetm
.rtx_costs (x
, code
, outer_code
, opno
, &total
, speed
))
3798 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3799 which is already in total. */
3801 fmt
= GET_RTX_FORMAT (code
);
3802 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3804 total
+= rtx_cost (XEXP (x
, i
), code
, i
, speed
);
3805 else if (fmt
[i
] == 'E')
3806 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3807 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
, i
, speed
);
3812 /* Fill in the structure C with information about both speed and size rtx
3813 costs for X, which is operand OPNO in an expression with code OUTER. */
3816 get_full_rtx_cost (rtx x
, enum rtx_code outer
, int opno
,
3817 struct full_rtx_costs
*c
)
3819 c
->speed
= rtx_cost (x
, outer
, opno
, true);
3820 c
->size
= rtx_cost (x
, outer
, opno
, false);
3824 /* Return cost of address expression X.
3825 Expect that X is properly formed address reference.
3827 SPEED parameter specify whether costs optimized for speed or size should
3831 address_cost (rtx x
, enum machine_mode mode
, addr_space_t as
, bool speed
)
3833 /* We may be asked for cost of various unusual addresses, such as operands
3834 of push instruction. It is not worthwhile to complicate writing
3835 of the target hook by such cases. */
3837 if (!memory_address_addr_space_p (mode
, x
, as
))
3840 return targetm
.address_cost (x
, mode
, as
, speed
);
3843 /* If the target doesn't override, compute the cost as with arithmetic. */
3846 default_address_cost (rtx x
, enum machine_mode
, addr_space_t
, bool speed
)
3848 return rtx_cost (x
, MEM
, 0, speed
);
3852 unsigned HOST_WIDE_INT
3853 nonzero_bits (const_rtx x
, enum machine_mode mode
)
3855 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3859 num_sign_bit_copies (const_rtx x
, enum machine_mode mode
)
3861 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3864 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3865 It avoids exponential behavior in nonzero_bits1 when X has
3866 identical subexpressions on the first or the second level. */
3868 static unsigned HOST_WIDE_INT
3869 cached_nonzero_bits (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3870 enum machine_mode known_mode
,
3871 unsigned HOST_WIDE_INT known_ret
)
3873 if (x
== known_x
&& mode
== known_mode
)
3876 /* Try to find identical subexpressions. If found call
3877 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3878 precomputed value for the subexpression as KNOWN_RET. */
3880 if (ARITHMETIC_P (x
))
3882 rtx x0
= XEXP (x
, 0);
3883 rtx x1
= XEXP (x
, 1);
3885 /* Check the first level. */
3887 return nonzero_bits1 (x
, mode
, x0
, mode
,
3888 cached_nonzero_bits (x0
, mode
, known_x
,
3889 known_mode
, known_ret
));
3891 /* Check the second level. */
3892 if (ARITHMETIC_P (x0
)
3893 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3894 return nonzero_bits1 (x
, mode
, x1
, mode
,
3895 cached_nonzero_bits (x1
, mode
, known_x
,
3896 known_mode
, known_ret
));
3898 if (ARITHMETIC_P (x1
)
3899 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3900 return nonzero_bits1 (x
, mode
, x0
, mode
,
3901 cached_nonzero_bits (x0
, mode
, known_x
,
3902 known_mode
, known_ret
));
3905 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3908 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3909 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3910 is less useful. We can't allow both, because that results in exponential
3911 run time recursion. There is a nullstone testcase that triggered
3912 this. This macro avoids accidental uses of num_sign_bit_copies. */
3913 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3915 /* Given an expression, X, compute which bits in X can be nonzero.
3916 We don't care about bits outside of those defined in MODE.
3918 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3919 an arithmetic operation, we can do better. */
3921 static unsigned HOST_WIDE_INT
3922 nonzero_bits1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3923 enum machine_mode known_mode
,
3924 unsigned HOST_WIDE_INT known_ret
)
3926 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3927 unsigned HOST_WIDE_INT inner_nz
;
3929 enum machine_mode inner_mode
;
3930 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
3932 /* For floating-point and vector values, assume all bits are needed. */
3933 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
)
3934 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
3937 /* If X is wider than MODE, use its mode instead. */
3938 if (GET_MODE_PRECISION (GET_MODE (x
)) > mode_width
)
3940 mode
= GET_MODE (x
);
3941 nonzero
= GET_MODE_MASK (mode
);
3942 mode_width
= GET_MODE_PRECISION (mode
);
3945 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
3946 /* Our only callers in this case look for single bit values. So
3947 just return the mode mask. Those tests will then be false. */
3950 #ifndef WORD_REGISTER_OPERATIONS
3951 /* If MODE is wider than X, but both are a single word for both the host
3952 and target machines, we can compute this from which bits of the
3953 object might be nonzero in its own mode, taking into account the fact
3954 that on many CISC machines, accessing an object in a wider mode
3955 causes the high-order bits to become undefined. So they are
3956 not known to be zero. */
3958 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
3959 && GET_MODE_PRECISION (GET_MODE (x
)) <= BITS_PER_WORD
3960 && GET_MODE_PRECISION (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
3961 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (GET_MODE (x
)))
3963 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
3964 known_x
, known_mode
, known_ret
);
3965 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
3970 code
= GET_CODE (x
);
3974 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3975 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3976 all the bits above ptr_mode are known to be zero. */
3977 /* As we do not know which address space the pointer is referring to,
3978 we can do this only if the target does not support different pointer
3979 or address modes depending on the address space. */
3980 if (target_default_pointer_address_modes_p ()
3981 && POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
3983 nonzero
&= GET_MODE_MASK (ptr_mode
);
3986 /* Include declared information about alignment of pointers. */
3987 /* ??? We don't properly preserve REG_POINTER changes across
3988 pointer-to-integer casts, so we can't trust it except for
3989 things that we know must be pointers. See execute/960116-1.c. */
3990 if ((x
== stack_pointer_rtx
3991 || x
== frame_pointer_rtx
3992 || x
== arg_pointer_rtx
)
3993 && REGNO_POINTER_ALIGN (REGNO (x
)))
3995 unsigned HOST_WIDE_INT alignment
3996 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
3998 #ifdef PUSH_ROUNDING
3999 /* If PUSH_ROUNDING is defined, it is possible for the
4000 stack to be momentarily aligned only to that amount,
4001 so we pick the least alignment. */
4002 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
4003 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
4007 nonzero
&= ~(alignment
- 1);
4011 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
4012 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
4013 known_mode
, known_ret
,
4017 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
4018 known_mode
, known_ret
);
4020 return nonzero_for_hook
;
4024 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4025 /* If X is negative in MODE, sign-extend the value. */
4027 && mode_width
< BITS_PER_WORD
4028 && (UINTVAL (x
) & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
4030 return UINTVAL (x
) | ((unsigned HOST_WIDE_INT
) (-1) << mode_width
);
4036 #ifdef LOAD_EXTEND_OP
4037 /* In many, if not most, RISC machines, reading a byte from memory
4038 zeros the rest of the register. Noticing that fact saves a lot
4039 of extra zero-extends. */
4040 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
4041 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
4046 case UNEQ
: case LTGT
:
4047 case GT
: case GTU
: case UNGT
:
4048 case LT
: case LTU
: case UNLT
:
4049 case GE
: case GEU
: case UNGE
:
4050 case LE
: case LEU
: case UNLE
:
4051 case UNORDERED
: case ORDERED
:
4052 /* If this produces an integer result, we know which bits are set.
4053 Code here used to clear bits outside the mode of X, but that is
4055 /* Mind that MODE is the mode the caller wants to look at this
4056 operation in, and not the actual operation mode. We can wind
4057 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4058 that describes the results of a vector compare. */
4059 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
4060 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
4061 nonzero
= STORE_FLAG_VALUE
;
4066 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4067 and num_sign_bit_copies. */
4068 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4069 == GET_MODE_PRECISION (GET_MODE (x
)))
4073 if (GET_MODE_PRECISION (GET_MODE (x
)) < mode_width
)
4074 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
4079 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4080 and num_sign_bit_copies. */
4081 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4082 == GET_MODE_PRECISION (GET_MODE (x
)))
4088 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
4089 known_x
, known_mode
, known_ret
)
4090 & GET_MODE_MASK (mode
));
4094 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4095 known_x
, known_mode
, known_ret
);
4096 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4097 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4101 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4102 Otherwise, show all the bits in the outer mode but not the inner
4104 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
4105 known_x
, known_mode
, known_ret
);
4106 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4108 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4109 if (val_signbit_known_set_p (GET_MODE (XEXP (x
, 0)), inner_nz
))
4110 inner_nz
|= (GET_MODE_MASK (mode
)
4111 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
4114 nonzero
&= inner_nz
;
4118 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4119 known_x
, known_mode
, known_ret
)
4120 & cached_nonzero_bits (XEXP (x
, 1), mode
,
4121 known_x
, known_mode
, known_ret
);
4125 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
4127 unsigned HOST_WIDE_INT nonzero0
4128 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4129 known_x
, known_mode
, known_ret
);
4131 /* Don't call nonzero_bits for the second time if it cannot change
4133 if ((nonzero
& nonzero0
) != nonzero
)
4135 | cached_nonzero_bits (XEXP (x
, 1), mode
,
4136 known_x
, known_mode
, known_ret
);
4140 case PLUS
: case MINUS
:
4142 case DIV
: case UDIV
:
4143 case MOD
: case UMOD
:
4144 /* We can apply the rules of arithmetic to compute the number of
4145 high- and low-order zero bits of these operations. We start by
4146 computing the width (position of the highest-order nonzero bit)
4147 and the number of low-order zero bits for each value. */
4149 unsigned HOST_WIDE_INT nz0
4150 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4151 known_x
, known_mode
, known_ret
);
4152 unsigned HOST_WIDE_INT nz1
4153 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4154 known_x
, known_mode
, known_ret
);
4155 int sign_index
= GET_MODE_PRECISION (GET_MODE (x
)) - 1;
4156 int width0
= floor_log2 (nz0
) + 1;
4157 int width1
= floor_log2 (nz1
) + 1;
4158 int low0
= floor_log2 (nz0
& -nz0
);
4159 int low1
= floor_log2 (nz1
& -nz1
);
4160 unsigned HOST_WIDE_INT op0_maybe_minusp
4161 = nz0
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4162 unsigned HOST_WIDE_INT op1_maybe_minusp
4163 = nz1
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4164 unsigned int result_width
= mode_width
;
4170 result_width
= MAX (width0
, width1
) + 1;
4171 result_low
= MIN (low0
, low1
);
4174 result_low
= MIN (low0
, low1
);
4177 result_width
= width0
+ width1
;
4178 result_low
= low0
+ low1
;
4183 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4184 result_width
= width0
;
4189 result_width
= width0
;
4194 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4195 result_width
= MIN (width0
, width1
);
4196 result_low
= MIN (low0
, low1
);
4201 result_width
= MIN (width0
, width1
);
4202 result_low
= MIN (low0
, low1
);
4208 if (result_width
< mode_width
)
4209 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << result_width
) - 1;
4212 nonzero
&= ~(((unsigned HOST_WIDE_INT
) 1 << result_low
) - 1);
4217 if (CONST_INT_P (XEXP (x
, 1))
4218 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4219 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
4223 /* If this is a SUBREG formed for a promoted variable that has
4224 been zero-extended, we know that at least the high-order bits
4225 are zero, though others might be too. */
4227 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
4228 nonzero
= GET_MODE_MASK (GET_MODE (x
))
4229 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
4230 known_x
, known_mode
, known_ret
);
4232 inner_mode
= GET_MODE (SUBREG_REG (x
));
4233 /* If the inner mode is a single word for both the host and target
4234 machines, we can compute this from which bits of the inner
4235 object might be nonzero. */
4236 if (GET_MODE_PRECISION (inner_mode
) <= BITS_PER_WORD
4237 && (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
))
4239 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4240 known_x
, known_mode
, known_ret
);
4242 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4243 /* If this is a typical RISC machine, we only have to worry
4244 about the way loads are extended. */
4245 if ((LOAD_EXTEND_OP (inner_mode
) == SIGN_EXTEND
4246 ? val_signbit_known_set_p (inner_mode
, nonzero
)
4247 : LOAD_EXTEND_OP (inner_mode
) != ZERO_EXTEND
)
4248 || !MEM_P (SUBREG_REG (x
)))
4251 /* On many CISC machines, accessing an object in a wider mode
4252 causes the high-order bits to become undefined. So they are
4253 not known to be zero. */
4254 if (GET_MODE_PRECISION (GET_MODE (x
))
4255 > GET_MODE_PRECISION (inner_mode
))
4256 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
4257 & ~GET_MODE_MASK (inner_mode
));
4266 /* The nonzero bits are in two classes: any bits within MODE
4267 that aren't in GET_MODE (x) are always significant. The rest of the
4268 nonzero bits are those that are significant in the operand of
4269 the shift when shifted the appropriate number of bits. This
4270 shows that high-order bits are cleared by the right shift and
4271 low-order bits by left shifts. */
4272 if (CONST_INT_P (XEXP (x
, 1))
4273 && INTVAL (XEXP (x
, 1)) >= 0
4274 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4275 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4277 enum machine_mode inner_mode
= GET_MODE (x
);
4278 unsigned int width
= GET_MODE_PRECISION (inner_mode
);
4279 int count
= INTVAL (XEXP (x
, 1));
4280 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
4281 unsigned HOST_WIDE_INT op_nonzero
4282 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4283 known_x
, known_mode
, known_ret
);
4284 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4285 unsigned HOST_WIDE_INT outer
= 0;
4287 if (mode_width
> width
)
4288 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4290 if (code
== LSHIFTRT
)
4292 else if (code
== ASHIFTRT
)
4296 /* If the sign bit may have been nonzero before the shift, we
4297 need to mark all the places it could have been copied to
4298 by the shift as possibly nonzero. */
4299 if (inner
& ((unsigned HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
4300 inner
|= (((unsigned HOST_WIDE_INT
) 1 << count
) - 1)
4303 else if (code
== ASHIFT
)
4306 inner
= ((inner
<< (count
% width
)
4307 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4309 nonzero
&= (outer
| inner
);
4315 /* This is at most the number of bits in the mode. */
4316 nonzero
= ((unsigned HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4320 /* If CLZ has a known value at zero, then the nonzero bits are
4321 that value, plus the number of bits in the mode minus one. */
4322 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4324 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4330 /* If CTZ has a known value at zero, then the nonzero bits are
4331 that value, plus the number of bits in the mode minus one. */
4332 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4334 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4340 /* This is at most the number of bits in the mode minus 1. */
4341 nonzero
= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4350 unsigned HOST_WIDE_INT nonzero_true
4351 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4352 known_x
, known_mode
, known_ret
);
4354 /* Don't call nonzero_bits for the second time if it cannot change
4356 if ((nonzero
& nonzero_true
) != nonzero
)
4357 nonzero
&= nonzero_true
4358 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4359 known_x
, known_mode
, known_ret
);
4370 /* See the macro definition above. */
4371 #undef cached_num_sign_bit_copies
4374 /* The function cached_num_sign_bit_copies is a wrapper around
4375 num_sign_bit_copies1. It avoids exponential behavior in
4376 num_sign_bit_copies1 when X has identical subexpressions on the
4377 first or the second level. */
4380 cached_num_sign_bit_copies (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4381 enum machine_mode known_mode
,
4382 unsigned int known_ret
)
4384 if (x
== known_x
&& mode
== known_mode
)
4387 /* Try to find identical subexpressions. If found call
4388 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4389 the precomputed value for the subexpression as KNOWN_RET. */
4391 if (ARITHMETIC_P (x
))
4393 rtx x0
= XEXP (x
, 0);
4394 rtx x1
= XEXP (x
, 1);
4396 /* Check the first level. */
4399 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4400 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4404 /* Check the second level. */
4405 if (ARITHMETIC_P (x0
)
4406 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4408 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4409 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4413 if (ARITHMETIC_P (x1
)
4414 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4416 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4417 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4422 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4425 /* Return the number of bits at the high-order end of X that are known to
4426 be equal to the sign bit. X will be used in mode MODE; if MODE is
4427 VOIDmode, X will be used in its own mode. The returned value will always
4428 be between 1 and the number of bits in MODE. */
4431 num_sign_bit_copies1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4432 enum machine_mode known_mode
,
4433 unsigned int known_ret
)
4435 enum rtx_code code
= GET_CODE (x
);
4436 unsigned int bitwidth
= GET_MODE_PRECISION (mode
);
4437 int num0
, num1
, result
;
4438 unsigned HOST_WIDE_INT nonzero
;
4440 /* If we weren't given a mode, use the mode of X. If the mode is still
4441 VOIDmode, we don't know anything. Likewise if one of the modes is
4444 if (mode
== VOIDmode
)
4445 mode
= GET_MODE (x
);
4447 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
))
4448 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4451 /* For a smaller object, just ignore the high bits. */
4452 if (bitwidth
< GET_MODE_PRECISION (GET_MODE (x
)))
4454 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4455 known_x
, known_mode
, known_ret
);
4457 num0
- (int) (GET_MODE_PRECISION (GET_MODE (x
)) - bitwidth
));
4460 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_PRECISION (GET_MODE (x
)))
4462 #ifndef WORD_REGISTER_OPERATIONS
4463 /* If this machine does not do all register operations on the entire
4464 register and MODE is wider than the mode of X, we can say nothing
4465 at all about the high-order bits. */
4468 /* Likewise on machines that do, if the mode of the object is smaller
4469 than a word and loads of that size don't sign extend, we can say
4470 nothing about the high order bits. */
4471 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
4472 #ifdef LOAD_EXTEND_OP
4473 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4484 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4485 /* If pointers extend signed and this is a pointer in Pmode, say that
4486 all the bits above ptr_mode are known to be sign bit copies. */
4487 /* As we do not know which address space the pointer is referring to,
4488 we can do this only if the target does not support different pointer
4489 or address modes depending on the address space. */
4490 if (target_default_pointer_address_modes_p ()
4491 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4492 && mode
== Pmode
&& REG_POINTER (x
))
4493 return GET_MODE_PRECISION (Pmode
) - GET_MODE_PRECISION (ptr_mode
) + 1;
4497 unsigned int copies_for_hook
= 1, copies
= 1;
4498 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4499 known_mode
, known_ret
,
4503 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4504 known_mode
, known_ret
);
4506 if (copies
> 1 || copies_for_hook
> 1)
4507 return MAX (copies
, copies_for_hook
);
4509 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4514 #ifdef LOAD_EXTEND_OP
4515 /* Some RISC machines sign-extend all loads of smaller than a word. */
4516 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4517 return MAX (1, ((int) bitwidth
4518 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1));
4523 /* If the constant is negative, take its 1's complement and remask.
4524 Then see how many zero bits we have. */
4525 nonzero
= UINTVAL (x
) & GET_MODE_MASK (mode
);
4526 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4527 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4528 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4530 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4533 /* If this is a SUBREG for a promoted object that is sign-extended
4534 and we are looking at it in a wider mode, we know that at least the
4535 high-order bits are known to be sign bit copies. */
4537 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4539 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4540 known_x
, known_mode
, known_ret
);
4541 return MAX ((int) bitwidth
4542 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1,
4546 /* For a smaller object, just ignore the high bits. */
4547 if (bitwidth
<= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))))
4549 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4550 known_x
, known_mode
, known_ret
);
4551 return MAX (1, (num0
4552 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
)))
4556 #ifdef WORD_REGISTER_OPERATIONS
4557 #ifdef LOAD_EXTEND_OP
4558 /* For paradoxical SUBREGs on machines where all register operations
4559 affect the entire register, just look inside. Note that we are
4560 passing MODE to the recursive call, so the number of sign bit copies
4561 will remain relative to that mode, not the inner mode. */
4563 /* This works only if loads sign extend. Otherwise, if we get a
4564 reload for the inner part, it may be loaded from the stack, and
4565 then we lose all sign bit copies that existed before the store
4568 if (paradoxical_subreg_p (x
)
4569 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4570 && MEM_P (SUBREG_REG (x
)))
4571 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4572 known_x
, known_mode
, known_ret
);
4578 if (CONST_INT_P (XEXP (x
, 1)))
4579 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4583 return (bitwidth
- GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4584 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4585 known_x
, known_mode
, known_ret
));
4588 /* For a smaller object, just ignore the high bits. */
4589 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4590 known_x
, known_mode
, known_ret
);
4591 return MAX (1, (num0
- (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4595 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4596 known_x
, known_mode
, known_ret
);
4598 case ROTATE
: case ROTATERT
:
4599 /* If we are rotating left by a number of bits less than the number
4600 of sign bit copies, we can just subtract that amount from the
4602 if (CONST_INT_P (XEXP (x
, 1))
4603 && INTVAL (XEXP (x
, 1)) >= 0
4604 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4606 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4607 known_x
, known_mode
, known_ret
);
4608 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4609 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4614 /* In general, this subtracts one sign bit copy. But if the value
4615 is known to be positive, the number of sign bit copies is the
4616 same as that of the input. Finally, if the input has just one bit
4617 that might be nonzero, all the bits are copies of the sign bit. */
4618 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4619 known_x
, known_mode
, known_ret
);
4620 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4621 return num0
> 1 ? num0
- 1 : 1;
4623 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4628 && (((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4633 case IOR
: case AND
: case XOR
:
4634 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4635 /* Logical operations will preserve the number of sign-bit copies.
4636 MIN and MAX operations always return one of the operands. */
4637 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4638 known_x
, known_mode
, known_ret
);
4639 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4640 known_x
, known_mode
, known_ret
);
4642 /* If num1 is clearing some of the top bits then regardless of
4643 the other term, we are guaranteed to have at least that many
4644 high-order zero bits. */
4647 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4648 && CONST_INT_P (XEXP (x
, 1))
4649 && (UINTVAL (XEXP (x
, 1))
4650 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) == 0)
4653 /* Similarly for IOR when setting high-order bits. */
4656 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4657 && CONST_INT_P (XEXP (x
, 1))
4658 && (UINTVAL (XEXP (x
, 1))
4659 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4662 return MIN (num0
, num1
);
4664 case PLUS
: case MINUS
:
4665 /* For addition and subtraction, we can have a 1-bit carry. However,
4666 if we are subtracting 1 from a positive number, there will not
4667 be such a carry. Furthermore, if the positive number is known to
4668 be 0 or 1, we know the result is either -1 or 0. */
4670 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4671 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4673 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4674 if ((((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4675 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4676 : bitwidth
- floor_log2 (nonzero
) - 1);
4679 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4680 known_x
, known_mode
, known_ret
);
4681 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4682 known_x
, known_mode
, known_ret
);
4683 result
= MAX (1, MIN (num0
, num1
) - 1);
4688 /* The number of bits of the product is the sum of the number of
4689 bits of both terms. However, unless one of the terms if known
4690 to be positive, we must allow for an additional bit since negating
4691 a negative number can remove one sign bit copy. */
4693 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4694 known_x
, known_mode
, known_ret
);
4695 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4696 known_x
, known_mode
, known_ret
);
4698 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4700 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4701 || (((nonzero_bits (XEXP (x
, 0), mode
)
4702 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4703 && ((nonzero_bits (XEXP (x
, 1), mode
)
4704 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)))
4708 return MAX (1, result
);
4711 /* The result must be <= the first operand. If the first operand
4712 has the high bit set, we know nothing about the number of sign
4714 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4716 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4717 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4720 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4721 known_x
, known_mode
, known_ret
);
4724 /* The result must be <= the second operand. If the second operand
4725 has (or just might have) the high bit set, we know nothing about
4726 the number of sign bit copies. */
4727 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4729 else if ((nonzero_bits (XEXP (x
, 1), mode
)
4730 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4733 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4734 known_x
, known_mode
, known_ret
);
4737 /* Similar to unsigned division, except that we have to worry about
4738 the case where the divisor is negative, in which case we have
4740 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4741 known_x
, known_mode
, known_ret
);
4743 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4744 || (nonzero_bits (XEXP (x
, 1), mode
)
4745 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4751 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4752 known_x
, known_mode
, known_ret
);
4754 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4755 || (nonzero_bits (XEXP (x
, 1), mode
)
4756 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4762 /* Shifts by a constant add to the number of bits equal to the
4764 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4765 known_x
, known_mode
, known_ret
);
4766 if (CONST_INT_P (XEXP (x
, 1))
4767 && INTVAL (XEXP (x
, 1)) > 0
4768 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4769 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4774 /* Left shifts destroy copies. */
4775 if (!CONST_INT_P (XEXP (x
, 1))
4776 || INTVAL (XEXP (x
, 1)) < 0
4777 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
4778 || INTVAL (XEXP (x
, 1)) >= GET_MODE_PRECISION (GET_MODE (x
)))
4781 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4782 known_x
, known_mode
, known_ret
);
4783 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4786 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4787 known_x
, known_mode
, known_ret
);
4788 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4789 known_x
, known_mode
, known_ret
);
4790 return MIN (num0
, num1
);
4792 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4793 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4794 case GEU
: case GTU
: case LEU
: case LTU
:
4795 case UNORDERED
: case ORDERED
:
4796 /* If the constant is negative, take its 1's complement and remask.
4797 Then see how many zero bits we have. */
4798 nonzero
= STORE_FLAG_VALUE
;
4799 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4800 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4801 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4803 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4809 /* If we haven't been able to figure it out by one of the above rules,
4810 see if some of the high-order bits are known to be zero. If so,
4811 count those bits and return one less than that amount. If we can't
4812 safely compute the mask for this mode, always return BITWIDTH. */
4814 bitwidth
= GET_MODE_PRECISION (mode
);
4815 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4818 nonzero
= nonzero_bits (x
, mode
);
4819 return nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4820 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4823 /* Calculate the rtx_cost of a single instruction. A return value of
4824 zero indicates an instruction pattern without a known cost. */
4827 insn_rtx_cost (rtx pat
, bool speed
)
4832 /* Extract the single set rtx from the instruction pattern.
4833 We can't use single_set since we only have the pattern. */
4834 if (GET_CODE (pat
) == SET
)
4836 else if (GET_CODE (pat
) == PARALLEL
)
4839 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4841 rtx x
= XVECEXP (pat
, 0, i
);
4842 if (GET_CODE (x
) == SET
)
4855 cost
= set_src_cost (SET_SRC (set
), speed
);
4856 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4859 /* Given an insn INSN and condition COND, return the condition in a
4860 canonical form to simplify testing by callers. Specifically:
4862 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4863 (2) Both operands will be machine operands; (cc0) will have been replaced.
4864 (3) If an operand is a constant, it will be the second operand.
4865 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4866 for GE, GEU, and LEU.
4868 If the condition cannot be understood, or is an inequality floating-point
4869 comparison which needs to be reversed, 0 will be returned.
4871 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4873 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4874 insn used in locating the condition was found. If a replacement test
4875 of the condition is desired, it should be placed in front of that
4876 insn and we will be sure that the inputs are still valid.
4878 If WANT_REG is nonzero, we wish the condition to be relative to that
4879 register, if possible. Therefore, do not canonicalize the condition
4880 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4881 to be a compare to a CC mode register.
4883 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4887 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4888 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4895 int reverse_code
= 0;
4896 enum machine_mode mode
;
4897 basic_block bb
= BLOCK_FOR_INSN (insn
);
4899 code
= GET_CODE (cond
);
4900 mode
= GET_MODE (cond
);
4901 op0
= XEXP (cond
, 0);
4902 op1
= XEXP (cond
, 1);
4905 code
= reversed_comparison_code (cond
, insn
);
4906 if (code
== UNKNOWN
)
4912 /* If we are comparing a register with zero, see if the register is set
4913 in the previous insn to a COMPARE or a comparison operation. Perform
4914 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4917 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4918 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4919 && op1
== CONST0_RTX (GET_MODE (op0
))
4922 /* Set nonzero when we find something of interest. */
4926 /* If comparison with cc0, import actual comparison from compare
4930 if ((prev
= prev_nonnote_insn (prev
)) == 0
4931 || !NONJUMP_INSN_P (prev
)
4932 || (set
= single_set (prev
)) == 0
4933 || SET_DEST (set
) != cc0_rtx
)
4936 op0
= SET_SRC (set
);
4937 op1
= CONST0_RTX (GET_MODE (op0
));
4943 /* If this is a COMPARE, pick up the two things being compared. */
4944 if (GET_CODE (op0
) == COMPARE
)
4946 op1
= XEXP (op0
, 1);
4947 op0
= XEXP (op0
, 0);
4950 else if (!REG_P (op0
))
4953 /* Go back to the previous insn. Stop if it is not an INSN. We also
4954 stop if it isn't a single set or if it has a REG_INC note because
4955 we don't want to bother dealing with it. */
4957 prev
= prev_nonnote_nondebug_insn (prev
);
4960 || !NONJUMP_INSN_P (prev
)
4961 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
4962 /* In cfglayout mode, there do not have to be labels at the
4963 beginning of a block, or jumps at the end, so the previous
4964 conditions would not stop us when we reach bb boundary. */
4965 || BLOCK_FOR_INSN (prev
) != bb
)
4968 set
= set_of (op0
, prev
);
4971 && (GET_CODE (set
) != SET
4972 || !rtx_equal_p (SET_DEST (set
), op0
)))
4975 /* If this is setting OP0, get what it sets it to if it looks
4979 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
4980 #ifdef FLOAT_STORE_FLAG_VALUE
4981 REAL_VALUE_TYPE fsfv
;
4984 /* ??? We may not combine comparisons done in a CCmode with
4985 comparisons not done in a CCmode. This is to aid targets
4986 like Alpha that have an IEEE compliant EQ instruction, and
4987 a non-IEEE compliant BEQ instruction. The use of CCmode is
4988 actually artificial, simply to prevent the combination, but
4989 should not affect other platforms.
4991 However, we must allow VOIDmode comparisons to match either
4992 CCmode or non-CCmode comparison, because some ports have
4993 modeless comparisons inside branch patterns.
4995 ??? This mode check should perhaps look more like the mode check
4996 in simplify_comparison in combine. */
4998 if ((GET_CODE (SET_SRC (set
)) == COMPARE
5001 && val_signbit_known_set_p (inner_mode
,
5003 #ifdef FLOAT_STORE_FLAG_VALUE
5005 && SCALAR_FLOAT_MODE_P (inner_mode
)
5006 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5007 REAL_VALUE_NEGATIVE (fsfv
)))
5010 && COMPARISON_P (SET_SRC (set
))))
5011 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
5012 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5013 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
5015 else if (((code
== EQ
5017 && val_signbit_known_set_p (inner_mode
,
5019 #ifdef FLOAT_STORE_FLAG_VALUE
5021 && SCALAR_FLOAT_MODE_P (inner_mode
)
5022 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5023 REAL_VALUE_NEGATIVE (fsfv
)))
5026 && COMPARISON_P (SET_SRC (set
))
5027 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
5028 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5029 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
5039 else if (reg_set_p (op0
, prev
))
5040 /* If this sets OP0, but not directly, we have to give up. */
5045 /* If the caller is expecting the condition to be valid at INSN,
5046 make sure X doesn't change before INSN. */
5047 if (valid_at_insn_p
)
5048 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
5050 if (COMPARISON_P (x
))
5051 code
= GET_CODE (x
);
5054 code
= reversed_comparison_code (x
, prev
);
5055 if (code
== UNKNOWN
)
5060 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5066 /* If constant is first, put it last. */
5067 if (CONSTANT_P (op0
))
5068 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
5070 /* If OP0 is the result of a comparison, we weren't able to find what
5071 was really being compared, so fail. */
5073 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5076 /* Canonicalize any ordered comparison with integers involving equality
5077 if we can do computations in the relevant mode and we do not
5080 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
5081 && CONST_INT_P (op1
)
5082 && GET_MODE (op0
) != VOIDmode
5083 && GET_MODE_PRECISION (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
5085 HOST_WIDE_INT const_val
= INTVAL (op1
);
5086 unsigned HOST_WIDE_INT uconst_val
= const_val
;
5087 unsigned HOST_WIDE_INT max_val
5088 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
5093 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
5094 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
5097 /* When cross-compiling, const_val might be sign-extended from
5098 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5100 if ((const_val
& max_val
)
5101 != ((unsigned HOST_WIDE_INT
) 1
5102 << (GET_MODE_PRECISION (GET_MODE (op0
)) - 1)))
5103 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
5107 if (uconst_val
< max_val
)
5108 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
5112 if (uconst_val
!= 0)
5113 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
5121 /* Never return CC0; return zero instead. */
5125 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
5128 /* Given a jump insn JUMP, return the condition that will cause it to branch
5129 to its JUMP_LABEL. If the condition cannot be understood, or is an
5130 inequality floating-point comparison which needs to be reversed, 0 will
5133 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5134 insn used in locating the condition was found. If a replacement test
5135 of the condition is desired, it should be placed in front of that
5136 insn and we will be sure that the inputs are still valid. If EARLIEST
5137 is null, the returned condition will be valid at INSN.
5139 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5140 compare CC mode register.
5142 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5145 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
5151 /* If this is not a standard conditional jump, we can't parse it. */
5153 || ! any_condjump_p (jump
))
5155 set
= pc_set (jump
);
5157 cond
= XEXP (SET_SRC (set
), 0);
5159 /* If this branches to JUMP_LABEL when the condition is false, reverse
5162 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
5163 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
5165 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
5166 allow_cc_mode
, valid_at_insn_p
);
5169 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5170 TARGET_MODE_REP_EXTENDED.
5172 Note that we assume that the property of
5173 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5174 narrower than mode B. I.e., if A is a mode narrower than B then in
5175 order to be able to operate on it in mode B, mode A needs to
5176 satisfy the requirements set by the representation of mode B. */
5179 init_num_sign_bit_copies_in_rep (void)
5181 enum machine_mode mode
, in_mode
;
5183 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
5184 in_mode
= GET_MODE_WIDER_MODE (mode
))
5185 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
5186 mode
= GET_MODE_WIDER_MODE (mode
))
5188 enum machine_mode i
;
5190 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5191 extends to the next widest mode. */
5192 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5193 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
5195 /* We are in in_mode. Count how many bits outside of mode
5196 have to be copies of the sign-bit. */
5197 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
5199 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
5201 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5202 /* We can only check sign-bit copies starting from the
5203 top-bit. In order to be able to check the bits we
5204 have already seen we pretend that subsequent bits
5205 have to be sign-bit copies too. */
5206 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5207 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5208 += GET_MODE_PRECISION (wider
) - GET_MODE_PRECISION (i
);
5213 /* Suppose that truncation from the machine mode of X to MODE is not a
5214 no-op. See if there is anything special about X so that we can
5215 assume it already contains a truncated value of MODE. */
5218 truncated_to_mode (enum machine_mode mode
, const_rtx x
)
5220 /* This register has already been used in MODE without explicit
5222 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5225 /* See if we already satisfy the requirements of MODE. If yes we
5226 can just switch to MODE. */
5227 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5228 && (num_sign_bit_copies (x
, GET_MODE (x
))
5229 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5235 /* Initialize non_rtx_starting_operands, which is used to speed up
5241 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5243 const char *format
= GET_RTX_FORMAT (i
);
5244 const char *first
= strpbrk (format
, "eEV");
5245 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
5248 init_num_sign_bit_copies_in_rep ();
5251 /* Check whether this is a constant pool constant. */
5253 constant_pool_constant_p (rtx x
)
5255 x
= avoid_constant_pool_reference (x
);
5256 return CONST_DOUBLE_P (x
);
5259 /* If M is a bitmask that selects a field of low-order bits within an item but
5260 not the entire word, return the length of the field. Return -1 otherwise.
5261 M is used in machine mode MODE. */
5264 low_bitmask_len (enum machine_mode mode
, unsigned HOST_WIDE_INT m
)
5266 if (mode
!= VOIDmode
)
5268 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
5270 m
&= GET_MODE_MASK (mode
);
5273 return exact_log2 (m
+ 1);
5276 /* Return the mode of MEM's address. */
5279 get_address_mode (rtx mem
)
5281 enum machine_mode mode
;
5283 gcc_assert (MEM_P (mem
));
5284 mode
= GET_MODE (XEXP (mem
, 0));
5285 if (mode
!= VOIDmode
)
5287 return targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
5290 /* Split up a CONST_DOUBLE or integer constant rtx
5291 into two rtx's for single words,
5292 storing in *FIRST the word that comes first in memory in the target
5293 and in *SECOND the other. */
5296 split_double (rtx value
, rtx
*first
, rtx
*second
)
5298 if (CONST_INT_P (value
))
5300 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
5302 /* In this case the CONST_INT holds both target words.
5303 Extract the bits from it into two word-sized pieces.
5304 Sign extend each half to HOST_WIDE_INT. */
5305 unsigned HOST_WIDE_INT low
, high
;
5306 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
5307 unsigned bits_per_word
= BITS_PER_WORD
;
5309 /* Set sign_bit to the most significant bit of a word. */
5311 sign_bit
<<= bits_per_word
- 1;
5313 /* Set mask so that all bits of the word are set. We could
5314 have used 1 << BITS_PER_WORD instead of basing the
5315 calculation on sign_bit. However, on machines where
5316 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5317 compiler warning, even though the code would never be
5319 mask
= sign_bit
<< 1;
5322 /* Set sign_extend as any remaining bits. */
5323 sign_extend
= ~mask
;
5325 /* Pick the lower word and sign-extend it. */
5326 low
= INTVAL (value
);
5331 /* Pick the higher word, shifted to the least significant
5332 bits, and sign-extend it. */
5333 high
= INTVAL (value
);
5334 high
>>= bits_per_word
- 1;
5337 if (high
& sign_bit
)
5338 high
|= sign_extend
;
5340 /* Store the words in the target machine order. */
5341 if (WORDS_BIG_ENDIAN
)
5343 *first
= GEN_INT (high
);
5344 *second
= GEN_INT (low
);
5348 *first
= GEN_INT (low
);
5349 *second
= GEN_INT (high
);
5354 /* The rule for using CONST_INT for a wider mode
5355 is that we regard the value as signed.
5356 So sign-extend it. */
5357 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
5358 if (WORDS_BIG_ENDIAN
)
5370 else if (!CONST_DOUBLE_P (value
))
5372 if (WORDS_BIG_ENDIAN
)
5374 *first
= const0_rtx
;
5380 *second
= const0_rtx
;
5383 else if (GET_MODE (value
) == VOIDmode
5384 /* This is the old way we did CONST_DOUBLE integers. */
5385 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
5387 /* In an integer, the words are defined as most and least significant.
5388 So order them by the target's convention. */
5389 if (WORDS_BIG_ENDIAN
)
5391 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5392 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
5396 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
5397 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5404 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
5406 /* Note, this converts the REAL_VALUE_TYPE to the target's
5407 format, splits up the floating point double and outputs
5408 exactly 32 bits of it into each of l[0] and l[1] --
5409 not necessarily BITS_PER_WORD bits. */
5410 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
5412 /* If 32 bits is an entire word for the target, but not for the host,
5413 then sign-extend on the host so that the number will look the same
5414 way on the host that it would on the target. See for instance
5415 simplify_unary_operation. The #if is needed to avoid compiler
5418 #if HOST_BITS_PER_LONG > 32
5419 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
5421 if (l
[0] & ((long) 1 << 31))
5422 l
[0] |= ((long) (-1) << 32);
5423 if (l
[1] & ((long) 1 << 31))
5424 l
[1] |= ((long) (-1) << 32);
5428 *first
= GEN_INT (l
[0]);
5429 *second
= GEN_INT (l
[1]);
5433 /* Strip outer address "mutations" from LOC and return a pointer to the
5434 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5435 stripped expression there.
5437 "Mutations" either convert between modes or apply some kind of
5441 strip_address_mutations (rtx
*loc
, enum rtx_code
*outer_code
)
5445 enum rtx_code code
= GET_CODE (*loc
);
5446 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
5447 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5448 used to convert between pointer sizes. */
5449 loc
= &XEXP (*loc
, 0);
5450 else if (code
== AND
&& CONST_INT_P (XEXP (*loc
, 1)))
5451 /* (and ... (const_int -X)) is used to align to X bytes. */
5452 loc
= &XEXP (*loc
, 0);
5453 else if (code
== SUBREG
5454 && !OBJECT_P (SUBREG_REG (*loc
))
5455 && subreg_lowpart_p (*loc
))
5456 /* (subreg (operator ...) ...) inside and is used for mode
5458 loc
= &SUBREG_REG (*loc
);
5466 /* Return true if X must be a base rather than an index. */
5469 must_be_base_p (rtx x
)
5471 return GET_CODE (x
) == LO_SUM
;
5474 /* Return true if X must be an index rather than a base. */
5477 must_be_index_p (rtx x
)
5479 return GET_CODE (x
) == MULT
|| GET_CODE (x
) == ASHIFT
;
5482 /* Set the segment part of address INFO to LOC, given that INNER is the
5486 set_address_segment (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5488 gcc_checking_assert (GET_CODE (*inner
) == UNSPEC
);
5490 gcc_assert (!info
->segment
);
5491 info
->segment
= loc
;
5492 info
->segment_term
= inner
;
5495 /* Set the base part of address INFO to LOC, given that INNER is the
5499 set_address_base (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5501 if (GET_CODE (*inner
) == LO_SUM
)
5502 inner
= strip_address_mutations (&XEXP (*inner
, 0));
5503 gcc_checking_assert (REG_P (*inner
)
5505 || GET_CODE (*inner
) == SUBREG
);
5507 gcc_assert (!info
->base
);
5509 info
->base_term
= inner
;
5512 /* Set the index part of address INFO to LOC, given that INNER is the
5516 set_address_index (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5518 if ((GET_CODE (*inner
) == MULT
|| GET_CODE (*inner
) == ASHIFT
)
5519 && CONSTANT_P (XEXP (*inner
, 1)))
5520 inner
= strip_address_mutations (&XEXP (*inner
, 0));
5521 gcc_checking_assert (REG_P (*inner
)
5523 || GET_CODE (*inner
) == SUBREG
);
5525 gcc_assert (!info
->index
);
5527 info
->index_term
= inner
;
5530 /* Set the displacement part of address INFO to LOC, given that INNER
5531 is the constant term. */
5534 set_address_disp (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5536 gcc_checking_assert (CONSTANT_P (*inner
));
5538 gcc_assert (!info
->disp
);
5540 info
->disp_term
= inner
;
5543 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5544 rest of INFO accordingly. */
5547 decompose_incdec_address (struct address_info
*info
)
5549 info
->autoinc_p
= true;
5551 rtx
*base
= &XEXP (*info
->inner
, 0);
5552 set_address_base (info
, base
, base
);
5553 gcc_checking_assert (info
->base
== info
->base_term
);
5555 /* These addresses are only valid when the size of the addressed
5557 gcc_checking_assert (info
->mode
!= VOIDmode
);
5560 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5561 of INFO accordingly. */
5564 decompose_automod_address (struct address_info
*info
)
5566 info
->autoinc_p
= true;
5568 rtx
*base
= &XEXP (*info
->inner
, 0);
5569 set_address_base (info
, base
, base
);
5570 gcc_checking_assert (info
->base
== info
->base_term
);
5572 rtx plus
= XEXP (*info
->inner
, 1);
5573 gcc_assert (GET_CODE (plus
) == PLUS
);
5575 info
->base_term2
= &XEXP (plus
, 0);
5576 gcc_checking_assert (rtx_equal_p (*info
->base_term
, *info
->base_term2
));
5578 rtx
*step
= &XEXP (plus
, 1);
5579 rtx
*inner_step
= strip_address_mutations (step
);
5580 if (CONSTANT_P (*inner_step
))
5581 set_address_disp (info
, step
, inner_step
);
5583 set_address_index (info
, step
, inner_step
);
5586 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5587 values in [PTR, END). Return a pointer to the end of the used array. */
5590 extract_plus_operands (rtx
*loc
, rtx
**ptr
, rtx
**end
)
5593 if (GET_CODE (x
) == PLUS
)
5595 ptr
= extract_plus_operands (&XEXP (x
, 0), ptr
, end
);
5596 ptr
= extract_plus_operands (&XEXP (x
, 1), ptr
, end
);
5600 gcc_assert (ptr
!= end
);
5606 /* Evaluate the likelihood of X being a base or index value, returning
5607 positive if it is likely to be a base, negative if it is likely to be
5608 an index, and 0 if we can't tell. Make the magnitude of the return
5609 value reflect the amount of confidence we have in the answer.
5611 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5614 baseness (rtx x
, enum machine_mode mode
, addr_space_t as
,
5615 enum rtx_code outer_code
, enum rtx_code index_code
)
5617 /* See whether we can be certain. */
5618 if (must_be_base_p (x
))
5620 if (must_be_index_p (x
))
5623 /* Believe *_POINTER unless the address shape requires otherwise. */
5624 if (REG_P (x
) && REG_POINTER (x
))
5626 if (MEM_P (x
) && MEM_POINTER (x
))
5629 if (REG_P (x
) && HARD_REGISTER_P (x
))
5631 /* X is a hard register. If it only fits one of the base
5632 or index classes, choose that interpretation. */
5633 int regno
= REGNO (x
);
5634 bool base_p
= ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
5635 bool index_p
= REGNO_OK_FOR_INDEX_P (regno
);
5636 if (base_p
!= index_p
)
5637 return base_p
? 1 : -1;
5642 /* INFO->INNER describes a normal, non-automodified address.
5643 Fill in the rest of INFO accordingly. */
5646 decompose_normal_address (struct address_info
*info
)
5648 /* Treat the address as the sum of up to four values. */
5650 size_t n_ops
= extract_plus_operands (info
->inner
, ops
,
5651 ops
+ ARRAY_SIZE (ops
)) - ops
;
5653 /* If there is more than one component, any base component is in a PLUS. */
5655 info
->base_outer_code
= PLUS
;
5657 /* Separate the parts that contain a REG or MEM from those that don't.
5658 Record the latter in INFO and leave the former in OPS. */
5661 for (size_t in
= 0; in
< n_ops
; ++in
)
5664 rtx
*inner
= strip_address_mutations (loc
);
5665 if (CONSTANT_P (*inner
))
5666 set_address_disp (info
, loc
, inner
);
5667 else if (GET_CODE (*inner
) == UNSPEC
)
5668 set_address_segment (info
, loc
, inner
);
5672 inner_ops
[out
] = inner
;
5677 /* Classify the remaining OPS members as bases and indexes. */
5680 /* Assume that the remaining value is a base unless the shape
5681 requires otherwise. */
5682 if (!must_be_index_p (*inner_ops
[0]))
5683 set_address_base (info
, ops
[0], inner_ops
[0]);
5685 set_address_index (info
, ops
[0], inner_ops
[0]);
5689 /* In the event of a tie, assume the base comes first. */
5690 if (baseness (*inner_ops
[0], info
->mode
, info
->as
, PLUS
,
5692 >= baseness (*inner_ops
[1], info
->mode
, info
->as
, PLUS
,
5693 GET_CODE (*ops
[0])))
5695 set_address_base (info
, ops
[0], inner_ops
[0]);
5696 set_address_index (info
, ops
[1], inner_ops
[1]);
5700 set_address_base (info
, ops
[1], inner_ops
[1]);
5701 set_address_index (info
, ops
[0], inner_ops
[0]);
5705 gcc_assert (out
== 0);
5708 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5709 or VOIDmode if not known. AS is the address space associated with LOC.
5710 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5713 decompose_address (struct address_info
*info
, rtx
*loc
, enum machine_mode mode
,
5714 addr_space_t as
, enum rtx_code outer_code
)
5716 memset (info
, 0, sizeof (*info
));
5719 info
->addr_outer_code
= outer_code
;
5721 info
->inner
= strip_address_mutations (loc
, &outer_code
);
5722 info
->base_outer_code
= outer_code
;
5723 switch (GET_CODE (*info
->inner
))
5729 decompose_incdec_address (info
);
5734 decompose_automod_address (info
);
5738 decompose_normal_address (info
);
5743 /* Describe address operand LOC in INFO. */
5746 decompose_lea_address (struct address_info
*info
, rtx
*loc
)
5748 decompose_address (info
, loc
, VOIDmode
, ADDR_SPACE_GENERIC
, ADDRESS
);
5751 /* Describe the address of MEM X in INFO. */
5754 decompose_mem_address (struct address_info
*info
, rtx x
)
5756 gcc_assert (MEM_P (x
));
5757 decompose_address (info
, &XEXP (x
, 0), GET_MODE (x
),
5758 MEM_ADDR_SPACE (x
), MEM
);
5761 /* Update INFO after a change to the address it describes. */
5764 update_address (struct address_info
*info
)
5766 decompose_address (info
, info
->outer
, info
->mode
, info
->as
,
5767 info
->addr_outer_code
);
5770 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5771 more complicated than that. */
5774 get_index_scale (const struct address_info
*info
)
5776 rtx index
= *info
->index
;
5777 if (GET_CODE (index
) == MULT
5778 && CONST_INT_P (XEXP (index
, 1))
5779 && info
->index_term
== &XEXP (index
, 0))
5780 return INTVAL (XEXP (index
, 1));
5782 if (GET_CODE (index
) == ASHIFT
5783 && CONST_INT_P (XEXP (index
, 1))
5784 && info
->index_term
== &XEXP (index
, 0))
5785 return (HOST_WIDE_INT
) 1 << INTVAL (XEXP (index
, 1));
5787 if (info
->index
== info
->index_term
)
5793 /* Return the "index code" of INFO, in the form required by
5797 get_index_code (const struct address_info
*info
)
5800 return GET_CODE (*info
->index
);
5803 return GET_CODE (*info
->disp
);